1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register_is_set && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register_is_set && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register_is_set && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
293 put_unaligned_be24(val << shift, buf);
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
298 put_unaligned_be32(val << shift, buf);
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
303 put_unaligned_le32(val << shift, buf);
306 static void regmap_format_32_native(void *buf, unsigned int val,
309 u32 v = val << shift;
311 memcpy(buf, &v, sizeof(v));
314 static void regmap_parse_inplace_noop(void *buf)
318 static unsigned int regmap_parse_8(const void *buf)
325 static unsigned int regmap_parse_16_be(const void *buf)
327 return get_unaligned_be16(buf);
330 static unsigned int regmap_parse_16_le(const void *buf)
332 return get_unaligned_le16(buf);
335 static void regmap_parse_16_be_inplace(void *buf)
337 u16 v = get_unaligned_be16(buf);
339 memcpy(buf, &v, sizeof(v));
342 static void regmap_parse_16_le_inplace(void *buf)
344 u16 v = get_unaligned_le16(buf);
346 memcpy(buf, &v, sizeof(v));
349 static unsigned int regmap_parse_16_native(const void *buf)
353 memcpy(&v, buf, sizeof(v));
357 static unsigned int regmap_parse_24_be(const void *buf)
359 return get_unaligned_be24(buf);
362 static unsigned int regmap_parse_32_be(const void *buf)
364 return get_unaligned_be32(buf);
367 static unsigned int regmap_parse_32_le(const void *buf)
369 return get_unaligned_le32(buf);
372 static void regmap_parse_32_be_inplace(void *buf)
374 u32 v = get_unaligned_be32(buf);
376 memcpy(buf, &v, sizeof(v));
379 static void regmap_parse_32_le_inplace(void *buf)
381 u32 v = get_unaligned_le32(buf);
383 memcpy(buf, &v, sizeof(v));
386 static unsigned int regmap_parse_32_native(const void *buf)
390 memcpy(&v, buf, sizeof(v));
394 static void regmap_lock_hwlock(void *__map)
396 struct regmap *map = __map;
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
401 static void regmap_lock_hwlock_irq(void *__map)
403 struct regmap *map = __map;
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
408 static void regmap_lock_hwlock_irqsave(void *__map)
410 struct regmap *map = __map;
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
416 static void regmap_unlock_hwlock(void *__map)
418 struct regmap *map = __map;
420 hwspin_unlock(map->hwlock);
423 static void regmap_unlock_hwlock_irq(void *__map)
425 struct regmap *map = __map;
427 hwspin_unlock_irq(map->hwlock);
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
432 struct regmap *map = __map;
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
437 static void regmap_lock_unlock_none(void *__map)
442 static void regmap_lock_mutex(void *__map)
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
448 static void regmap_unlock_mutex(void *__map)
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
457 struct regmap *map = __map;
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
474 struct regmap *map = __map;
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
488 static void dev_get_regmap_release(struct device *dev, void *res)
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
497 static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
525 struct rb_node *node = map->range_tree.rb_node;
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
542 static void regmap_range_exit(struct regmap *map)
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
547 next = rb_first(&map->range_tree);
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
555 kfree(map->selector_work_buf);
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
566 kfree_const(map->name);
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
581 ret = regmap_set_name(map, config);
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
591 regmap_debugfs_exit(map);
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
608 return devres_release(dev, dev_get_regmap_release,
609 dev_get_regmap_match, (void *)map->name);
612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 const struct regmap_config *config)
615 enum regmap_endian endian;
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->reg_format_endian;
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
624 /* Retrieve the endianness specification from the bus config */
625 if (bus && bus->reg_format_endian_default)
626 endian = bus->reg_format_endian_default;
628 /* If the bus specified a non-default value, use that */
629 if (endian != REGMAP_ENDIAN_DEFAULT)
632 /* Use this if no other value was found */
633 return REGMAP_ENDIAN_BIG;
636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 const struct regmap_bus *bus,
638 const struct regmap_config *config)
640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 enum regmap_endian endian;
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->val_format_endian;
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
650 /* If the firmware node exist try to get endianness from it */
651 if (fwnode_property_read_bool(fwnode, "big-endian"))
652 endian = REGMAP_ENDIAN_BIG;
653 else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 endian = REGMAP_ENDIAN_LITTLE;
655 else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 endian = REGMAP_ENDIAN_NATIVE;
658 /* If the endianness was specified in fwnode, use that */
659 if (endian != REGMAP_ENDIAN_DEFAULT)
662 /* Retrieve the endianness specification from the bus config */
663 if (bus && bus->val_format_endian_default)
664 endian = bus->val_format_endian_default;
666 /* If the bus specified a non-default value, use that */
667 if (endian != REGMAP_ENDIAN_DEFAULT)
670 /* Use this if no other value was found */
671 return REGMAP_ENDIAN_BIG;
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
675 struct regmap *__regmap_init(struct device *dev,
676 const struct regmap_bus *bus,
678 const struct regmap_config *config,
679 struct lock_class_key *lock_key,
680 const char *lock_name)
684 enum regmap_endian reg_endian, val_endian;
690 map = kzalloc(sizeof(*map), GFP_KERNEL);
696 ret = regmap_set_name(map, config);
700 ret = -EINVAL; /* Later error paths rely on this */
702 if (config->disable_locking) {
703 map->lock = map->unlock = regmap_lock_unlock_none;
704 map->can_sleep = config->can_sleep;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 map->can_sleep = config->can_sleep;
711 } else if (config->use_hwlock) {
712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
718 switch (config->hwlock_mode) {
719 case HWLOCK_IRQSTATE:
720 map->lock = regmap_lock_hwlock_irqsave;
721 map->unlock = regmap_unlock_hwlock_irqrestore;
724 map->lock = regmap_lock_hwlock_irq;
725 map->unlock = regmap_unlock_hwlock_irq;
728 map->lock = regmap_lock_hwlock;
729 map->unlock = regmap_unlock_hwlock;
735 if ((bus && bus->fast_io) ||
737 if (config->use_raw_spinlock) {
738 raw_spin_lock_init(&map->raw_spinlock);
739 map->lock = regmap_lock_raw_spinlock;
740 map->unlock = regmap_unlock_raw_spinlock;
741 lockdep_set_class_and_name(&map->raw_spinlock,
742 lock_key, lock_name);
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
751 mutex_init(&map->mutex);
752 map->lock = regmap_lock_mutex;
753 map->unlock = regmap_unlock_mutex;
754 map->can_sleep = true;
755 lockdep_set_class_and_name(&map->mutex,
756 lock_key, lock_name);
759 map->lock_key = lock_key;
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
769 map->alloc_flags = GFP_KERNEL;
771 map->reg_base = config->reg_base;
772 map->reg_shift = config->pad_bits % 8;
774 map->format.pad_bytes = config->pad_bits / 8;
775 map->format.reg_shift = config->reg_shift;
776 map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits);
777 map->format.val_bytes = BITS_TO_BYTES(config->val_bits);
778 map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits);
779 if (config->reg_stride)
780 map->reg_stride = config->reg_stride;
783 if (is_power_of_2(map->reg_stride))
784 map->reg_stride_order = ilog2(map->reg_stride);
786 map->reg_stride_order = -1;
787 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
788 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
789 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 map->max_raw_read = bus->max_raw_read;
792 map->max_raw_write = bus->max_raw_write;
793 } else if (config->max_raw_read && config->max_raw_write) {
794 map->max_raw_read = config->max_raw_read;
795 map->max_raw_write = config->max_raw_write;
799 map->bus_context = bus_context;
800 map->max_register = config->max_register;
801 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
802 map->wr_table = config->wr_table;
803 map->rd_table = config->rd_table;
804 map->volatile_table = config->volatile_table;
805 map->precious_table = config->precious_table;
806 map->wr_noinc_table = config->wr_noinc_table;
807 map->rd_noinc_table = config->rd_noinc_table;
808 map->writeable_reg = config->writeable_reg;
809 map->readable_reg = config->readable_reg;
810 map->volatile_reg = config->volatile_reg;
811 map->precious_reg = config->precious_reg;
812 map->writeable_noinc_reg = config->writeable_noinc_reg;
813 map->readable_noinc_reg = config->readable_noinc_reg;
814 map->cache_type = config->cache_type;
816 spin_lock_init(&map->async_lock);
817 INIT_LIST_HEAD(&map->async_list);
818 INIT_LIST_HEAD(&map->async_free);
819 init_waitqueue_head(&map->async_waitq);
821 if (config->read_flag_mask ||
822 config->write_flag_mask ||
823 config->zero_flag_mask) {
824 map->read_flag_mask = config->read_flag_mask;
825 map->write_flag_mask = config->write_flag_mask;
827 map->read_flag_mask = bus->read_flag_mask;
830 if (config && config->read && config->write) {
831 map->reg_read = _regmap_bus_read;
832 if (config->reg_update_bits)
833 map->reg_update_bits = config->reg_update_bits;
835 /* Bulk read/write */
836 map->read = config->read;
837 map->write = config->write;
839 reg_endian = REGMAP_ENDIAN_NATIVE;
840 val_endian = REGMAP_ENDIAN_NATIVE;
842 map->reg_read = config->reg_read;
843 map->reg_write = config->reg_write;
844 map->reg_update_bits = config->reg_update_bits;
846 map->defer_caching = false;
847 goto skip_format_initialization;
848 } else if (!bus->read || !bus->write) {
849 map->reg_read = _regmap_bus_reg_read;
850 map->reg_write = _regmap_bus_reg_write;
851 map->reg_update_bits = bus->reg_update_bits;
853 map->defer_caching = false;
854 goto skip_format_initialization;
856 map->reg_read = _regmap_bus_read;
857 map->reg_update_bits = bus->reg_update_bits;
858 /* Bulk read/write */
859 map->read = bus->read;
860 map->write = bus->write;
862 reg_endian = regmap_get_reg_endian(bus, config);
863 val_endian = regmap_get_val_endian(dev, bus, config);
866 switch (config->reg_bits + map->reg_shift) {
868 switch (config->val_bits) {
870 map->format.format_write = regmap_format_2_6_write;
878 switch (config->val_bits) {
880 map->format.format_write = regmap_format_4_12_write;
888 switch (config->val_bits) {
890 map->format.format_write = regmap_format_7_9_write;
893 map->format.format_write = regmap_format_7_17_write;
901 switch (config->val_bits) {
903 map->format.format_write = regmap_format_10_14_write;
911 switch (config->val_bits) {
913 map->format.format_write = regmap_format_12_20_write;
921 map->format.format_reg = regmap_format_8;
925 switch (reg_endian) {
926 case REGMAP_ENDIAN_BIG:
927 map->format.format_reg = regmap_format_16_be;
929 case REGMAP_ENDIAN_LITTLE:
930 map->format.format_reg = regmap_format_16_le;
932 case REGMAP_ENDIAN_NATIVE:
933 map->format.format_reg = regmap_format_16_native;
941 switch (reg_endian) {
942 case REGMAP_ENDIAN_BIG:
943 map->format.format_reg = regmap_format_24_be;
951 switch (reg_endian) {
952 case REGMAP_ENDIAN_BIG:
953 map->format.format_reg = regmap_format_32_be;
955 case REGMAP_ENDIAN_LITTLE:
956 map->format.format_reg = regmap_format_32_le;
958 case REGMAP_ENDIAN_NATIVE:
959 map->format.format_reg = regmap_format_32_native;
970 if (val_endian == REGMAP_ENDIAN_NATIVE)
971 map->format.parse_inplace = regmap_parse_inplace_noop;
973 switch (config->val_bits) {
975 map->format.format_val = regmap_format_8;
976 map->format.parse_val = regmap_parse_8;
977 map->format.parse_inplace = regmap_parse_inplace_noop;
980 switch (val_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_val = regmap_format_16_be;
983 map->format.parse_val = regmap_parse_16_be;
984 map->format.parse_inplace = regmap_parse_16_be_inplace;
986 case REGMAP_ENDIAN_LITTLE:
987 map->format.format_val = regmap_format_16_le;
988 map->format.parse_val = regmap_parse_16_le;
989 map->format.parse_inplace = regmap_parse_16_le_inplace;
991 case REGMAP_ENDIAN_NATIVE:
992 map->format.format_val = regmap_format_16_native;
993 map->format.parse_val = regmap_parse_16_native;
1000 switch (val_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_val = regmap_format_24_be;
1003 map->format.parse_val = regmap_parse_24_be;
1010 switch (val_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_val = regmap_format_32_be;
1013 map->format.parse_val = regmap_parse_32_be;
1014 map->format.parse_inplace = regmap_parse_32_be_inplace;
1016 case REGMAP_ENDIAN_LITTLE:
1017 map->format.format_val = regmap_format_32_le;
1018 map->format.parse_val = regmap_parse_32_le;
1019 map->format.parse_inplace = regmap_parse_32_le_inplace;
1021 case REGMAP_ENDIAN_NATIVE:
1022 map->format.format_val = regmap_format_32_native;
1023 map->format.parse_val = regmap_parse_32_native;
1031 if (map->format.format_write) {
1032 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1033 (val_endian != REGMAP_ENDIAN_BIG))
1035 map->use_single_write = true;
1038 if (!map->format.format_write &&
1039 !(map->format.format_reg && map->format.format_val))
1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1043 if (map->work_buf == NULL) {
1048 if (map->format.format_write) {
1049 map->defer_caching = false;
1050 map->reg_write = _regmap_bus_formatted_write;
1051 } else if (map->format.format_val) {
1052 map->defer_caching = true;
1053 map->reg_write = _regmap_bus_raw_write;
1056 skip_format_initialization:
1058 map->range_tree = RB_ROOT;
1059 for (i = 0; i < config->num_ranges; i++) {
1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1061 struct regmap_range_node *new;
1064 if (range_cfg->range_max < range_cfg->range_min) {
1065 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1066 range_cfg->range_max, range_cfg->range_min);
1070 if (range_cfg->range_max > map->max_register) {
1071 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1072 range_cfg->range_max, map->max_register);
1076 if (range_cfg->selector_reg > map->max_register) {
1078 "Invalid range %d: selector out of map\n", i);
1082 if (range_cfg->window_len == 0) {
1083 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1088 /* Make sure, that this register range has no selector
1089 or data window within its boundary */
1090 for (j = 0; j < config->num_ranges; j++) {
1091 unsigned int sel_reg = config->ranges[j].selector_reg;
1092 unsigned int win_min = config->ranges[j].window_start;
1093 unsigned int win_max = win_min +
1094 config->ranges[j].window_len - 1;
1096 /* Allow data window inside its own virtual range */
1100 if (range_cfg->range_min <= sel_reg &&
1101 sel_reg <= range_cfg->range_max) {
1103 "Range %d: selector for %d in window\n",
1108 if (!(win_max < range_cfg->range_min ||
1109 win_min > range_cfg->range_max)) {
1111 "Range %d: window for %d in window\n",
1117 new = kzalloc(sizeof(*new), GFP_KERNEL);
1124 new->name = range_cfg->name;
1125 new->range_min = range_cfg->range_min;
1126 new->range_max = range_cfg->range_max;
1127 new->selector_reg = range_cfg->selector_reg;
1128 new->selector_mask = range_cfg->selector_mask;
1129 new->selector_shift = range_cfg->selector_shift;
1130 new->window_start = range_cfg->window_start;
1131 new->window_len = range_cfg->window_len;
1133 if (!_regmap_range_add(map, new)) {
1134 dev_err(map->dev, "Failed to add range %d\n", i);
1139 if (map->selector_work_buf == NULL) {
1140 map->selector_work_buf =
1141 kzalloc(map->format.buf_size, GFP_KERNEL);
1142 if (map->selector_work_buf == NULL) {
1149 ret = regcache_init(map, config);
1154 ret = regmap_attach_dev(dev, map, config);
1158 regmap_debugfs_init(map);
1166 regmap_range_exit(map);
1167 kfree(map->work_buf);
1170 hwspin_lock_free(map->hwlock);
1172 kfree_const(map->name);
1176 if (bus && bus->free_on_exit)
1178 return ERR_PTR(ret);
1180 EXPORT_SYMBOL_GPL(__regmap_init);
1182 static void devm_regmap_release(struct device *dev, void *res)
1184 regmap_exit(*(struct regmap **)res);
1187 struct regmap *__devm_regmap_init(struct device *dev,
1188 const struct regmap_bus *bus,
1190 const struct regmap_config *config,
1191 struct lock_class_key *lock_key,
1192 const char *lock_name)
1194 struct regmap **ptr, *regmap;
1196 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1198 return ERR_PTR(-ENOMEM);
1200 regmap = __regmap_init(dev, bus, bus_context, config,
1201 lock_key, lock_name);
1202 if (!IS_ERR(regmap)) {
1204 devres_add(dev, ptr);
1211 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1213 static void regmap_field_init(struct regmap_field *rm_field,
1214 struct regmap *regmap, struct reg_field reg_field)
1216 rm_field->regmap = regmap;
1217 rm_field->reg = reg_field.reg;
1218 rm_field->shift = reg_field.lsb;
1219 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1221 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1223 rm_field->id_size = reg_field.id_size;
1224 rm_field->id_offset = reg_field.id_offset;
1228 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1230 * @dev: Device that will be interacted with
1231 * @regmap: regmap bank in which this register field is located.
1232 * @reg_field: Register field with in the bank.
1234 * The return value will be an ERR_PTR() on error or a valid pointer
1235 * to a struct regmap_field. The regmap_field will be automatically freed
1236 * by the device management code.
1238 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1239 struct regmap *regmap, struct reg_field reg_field)
1241 struct regmap_field *rm_field = devm_kzalloc(dev,
1242 sizeof(*rm_field), GFP_KERNEL);
1244 return ERR_PTR(-ENOMEM);
1246 regmap_field_init(rm_field, regmap, reg_field);
1251 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1255 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1257 * @regmap: regmap bank in which this register field is located.
1258 * @rm_field: regmap register fields within the bank.
1259 * @reg_field: Register fields within the bank.
1260 * @num_fields: Number of register fields.
1262 * The return value will be an -ENOMEM on error or zero for success.
1263 * Newly allocated regmap_fields should be freed by calling
1264 * regmap_field_bulk_free()
1266 int regmap_field_bulk_alloc(struct regmap *regmap,
1267 struct regmap_field **rm_field,
1268 const struct reg_field *reg_field,
1271 struct regmap_field *rf;
1274 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1278 for (i = 0; i < num_fields; i++) {
1279 regmap_field_init(&rf[i], regmap, reg_field[i]);
1280 rm_field[i] = &rf[i];
1285 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1288 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1291 * @dev: Device that will be interacted with
1292 * @regmap: regmap bank in which this register field is located.
1293 * @rm_field: regmap register fields within the bank.
1294 * @reg_field: Register fields within the bank.
1295 * @num_fields: Number of register fields.
1297 * The return value will be an -ENOMEM on error or zero for success.
1298 * Newly allocated regmap_fields will be automatically freed by the
1299 * device management code.
1301 int devm_regmap_field_bulk_alloc(struct device *dev,
1302 struct regmap *regmap,
1303 struct regmap_field **rm_field,
1304 const struct reg_field *reg_field,
1307 struct regmap_field *rf;
1310 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1314 for (i = 0; i < num_fields; i++) {
1315 regmap_field_init(&rf[i], regmap, reg_field[i]);
1316 rm_field[i] = &rf[i];
1321 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1324 * regmap_field_bulk_free() - Free register field allocated using
1325 * regmap_field_bulk_alloc.
1327 * @field: regmap fields which should be freed.
1329 void regmap_field_bulk_free(struct regmap_field *field)
1333 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1336 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1337 * devm_regmap_field_bulk_alloc.
1339 * @dev: Device that will be interacted with
1340 * @field: regmap field which should be freed.
1342 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1343 * drivers need not call this function, as the memory allocated via devm
1344 * will be freed as per device-driver life-cycle.
1346 void devm_regmap_field_bulk_free(struct device *dev,
1347 struct regmap_field *field)
1349 devm_kfree(dev, field);
1351 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1354 * devm_regmap_field_free() - Free a register field allocated using
1355 * devm_regmap_field_alloc.
1357 * @dev: Device that will be interacted with
1358 * @field: regmap field which should be freed.
1360 * Free register field allocated using devm_regmap_field_alloc(). Usually
1361 * drivers need not call this function, as the memory allocated via devm
1362 * will be freed as per device-driver life-cyle.
1364 void devm_regmap_field_free(struct device *dev,
1365 struct regmap_field *field)
1367 devm_kfree(dev, field);
1369 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1372 * regmap_field_alloc() - Allocate and initialise a register field.
1374 * @regmap: regmap bank in which this register field is located.
1375 * @reg_field: Register field with in the bank.
1377 * The return value will be an ERR_PTR() on error or a valid pointer
1378 * to a struct regmap_field. The regmap_field should be freed by the
1379 * user once its finished working with it using regmap_field_free().
1381 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1382 struct reg_field reg_field)
1384 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1387 return ERR_PTR(-ENOMEM);
1389 regmap_field_init(rm_field, regmap, reg_field);
1393 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1396 * regmap_field_free() - Free register field allocated using
1397 * regmap_field_alloc.
1399 * @field: regmap field which should be freed.
1401 void regmap_field_free(struct regmap_field *field)
1405 EXPORT_SYMBOL_GPL(regmap_field_free);
1408 * regmap_reinit_cache() - Reinitialise the current register cache
1410 * @map: Register map to operate on.
1411 * @config: New configuration. Only the cache data will be used.
1413 * Discard any existing register cache for the map and initialize a
1414 * new cache. This can be used to restore the cache to defaults or to
1415 * update the cache configuration to reflect runtime discovery of the
1418 * No explicit locking is done here, the user needs to ensure that
1419 * this function will not race with other calls to regmap.
1421 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1426 regmap_debugfs_exit(map);
1428 map->max_register = config->max_register;
1429 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1430 map->writeable_reg = config->writeable_reg;
1431 map->readable_reg = config->readable_reg;
1432 map->volatile_reg = config->volatile_reg;
1433 map->precious_reg = config->precious_reg;
1434 map->writeable_noinc_reg = config->writeable_noinc_reg;
1435 map->readable_noinc_reg = config->readable_noinc_reg;
1436 map->cache_type = config->cache_type;
1438 ret = regmap_set_name(map, config);
1442 regmap_debugfs_init(map);
1444 map->cache_bypass = false;
1445 map->cache_only = false;
1447 return regcache_init(map, config);
1449 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1452 * regmap_exit() - Free a previously allocated register map
1454 * @map: Register map to operate on.
1456 void regmap_exit(struct regmap *map)
1458 struct regmap_async *async;
1460 regmap_detach_dev(map->dev, map);
1463 regmap_debugfs_exit(map);
1464 regmap_range_exit(map);
1465 if (map->bus && map->bus->free_context)
1466 map->bus->free_context(map->bus_context);
1467 kfree(map->work_buf);
1468 while (!list_empty(&map->async_free)) {
1469 async = list_first_entry_or_null(&map->async_free,
1470 struct regmap_async,
1472 list_del(&async->list);
1473 kfree(async->work_buf);
1477 hwspin_lock_free(map->hwlock);
1478 if (map->lock == regmap_lock_mutex)
1479 mutex_destroy(&map->mutex);
1480 kfree_const(map->name);
1482 if (map->bus && map->bus->free_on_exit)
1486 EXPORT_SYMBOL_GPL(regmap_exit);
1488 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1490 struct regmap **r = res;
1496 /* If the user didn't specify a name match any */
1498 return (*r)->name && !strcmp((*r)->name, data);
1504 * dev_get_regmap() - Obtain the regmap (if any) for a device
1506 * @dev: Device to retrieve the map for
1507 * @name: Optional name for the register map, usually NULL.
1509 * Returns the regmap for the device if one is present, or NULL. If
1510 * name is specified then it must match the name specified when
1511 * registering the device, if it is NULL then the first regmap found
1512 * will be used. Devices with multiple register maps are very rare,
1513 * generic code should normally not need to specify a name.
1515 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1517 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1518 dev_get_regmap_match, (void *)name);
1524 EXPORT_SYMBOL_GPL(dev_get_regmap);
1527 * regmap_get_device() - Obtain the device from a regmap
1529 * @map: Register map to operate on.
1531 * Returns the underlying device that the regmap has been created for.
1533 struct device *regmap_get_device(struct regmap *map)
1537 EXPORT_SYMBOL_GPL(regmap_get_device);
1539 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1540 struct regmap_range_node *range,
1541 unsigned int val_num)
1543 void *orig_work_buf;
1544 unsigned int win_offset;
1545 unsigned int win_page;
1549 win_offset = (*reg - range->range_min) % range->window_len;
1550 win_page = (*reg - range->range_min) / range->window_len;
1553 /* Bulk write shouldn't cross range boundary */
1554 if (*reg + val_num - 1 > range->range_max)
1557 /* ... or single page boundary */
1558 if (val_num > range->window_len - win_offset)
1562 /* It is possible to have selector register inside data window.
1563 In that case, selector register is located on every page and
1564 it needs no page switching, when accessed alone. */
1566 range->window_start + win_offset != range->selector_reg) {
1567 /* Use separate work_buf during page switching */
1568 orig_work_buf = map->work_buf;
1569 map->work_buf = map->selector_work_buf;
1571 ret = _regmap_update_bits(map, range->selector_reg,
1572 range->selector_mask,
1573 win_page << range->selector_shift,
1576 map->work_buf = orig_work_buf;
1582 *reg = range->window_start + win_offset;
1587 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1593 if (!mask || !map->work_buf)
1596 buf = map->work_buf;
1598 for (i = 0; i < max_bytes; i++)
1599 buf[i] |= (mask >> (8 * i)) & 0xff;
1602 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1604 reg += map->reg_base;
1606 if (map->format.reg_shift > 0)
1607 reg >>= map->format.reg_shift;
1608 else if (map->format.reg_shift < 0)
1609 reg <<= -(map->format.reg_shift);
1614 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1615 const void *val, size_t val_len, bool noinc)
1617 struct regmap_range_node *range;
1618 unsigned long flags;
1619 void *work_val = map->work_buf + map->format.reg_bytes +
1620 map->format.pad_bytes;
1622 int ret = -ENOTSUPP;
1626 /* Check for unwritable or noinc registers in range
1629 if (!regmap_writeable_noinc(map, reg)) {
1630 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1631 unsigned int element =
1632 reg + regmap_get_offset(map, i);
1633 if (!regmap_writeable(map, element) ||
1634 regmap_writeable_noinc(map, element))
1639 if (!map->cache_bypass && map->format.parse_val) {
1640 unsigned int ival, offset;
1641 int val_bytes = map->format.val_bytes;
1643 /* Cache the last written value for noinc writes */
1644 i = noinc ? val_len - val_bytes : 0;
1645 for (; i < val_len; i += val_bytes) {
1646 ival = map->format.parse_val(val + i);
1647 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1648 ret = regcache_write(map, reg + offset, ival);
1651 "Error in caching of register: %x ret: %d\n",
1656 if (map->cache_only) {
1657 map->cache_dirty = true;
1662 range = _regmap_range_lookup(map, reg);
1664 int val_num = val_len / map->format.val_bytes;
1665 int win_offset = (reg - range->range_min) % range->window_len;
1666 int win_residue = range->window_len - win_offset;
1668 /* If the write goes beyond the end of the window split it */
1669 while (val_num > win_residue) {
1670 dev_dbg(map->dev, "Writing window %d/%zu\n",
1671 win_residue, val_len / map->format.val_bytes);
1672 ret = _regmap_raw_write_impl(map, reg, val,
1674 map->format.val_bytes, noinc);
1679 val_num -= win_residue;
1680 val += win_residue * map->format.val_bytes;
1681 val_len -= win_residue * map->format.val_bytes;
1683 win_offset = (reg - range->range_min) %
1685 win_residue = range->window_len - win_offset;
1688 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1693 reg = regmap_reg_addr(map, reg);
1694 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1695 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1696 map->write_flag_mask);
1699 * Essentially all I/O mechanisms will be faster with a single
1700 * buffer to write. Since register syncs often generate raw
1701 * writes of single registers optimise that case.
1703 if (val != work_val && val_len == map->format.val_bytes) {
1704 memcpy(work_val, val, map->format.val_bytes);
1708 if (map->async && map->bus && map->bus->async_write) {
1709 struct regmap_async *async;
1711 trace_regmap_async_write_start(map, reg, val_len);
1713 spin_lock_irqsave(&map->async_lock, flags);
1714 async = list_first_entry_or_null(&map->async_free,
1715 struct regmap_async,
1718 list_del(&async->list);
1719 spin_unlock_irqrestore(&map->async_lock, flags);
1722 async = map->bus->async_alloc();
1726 async->work_buf = kzalloc(map->format.buf_size,
1727 GFP_KERNEL | GFP_DMA);
1728 if (!async->work_buf) {
1736 /* If the caller supplied the value we can use it safely. */
1737 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1738 map->format.reg_bytes + map->format.val_bytes);
1740 spin_lock_irqsave(&map->async_lock, flags);
1741 list_add_tail(&async->list, &map->async_list);
1742 spin_unlock_irqrestore(&map->async_lock, flags);
1744 if (val != work_val)
1745 ret = map->bus->async_write(map->bus_context,
1747 map->format.reg_bytes +
1748 map->format.pad_bytes,
1749 val, val_len, async);
1751 ret = map->bus->async_write(map->bus_context,
1753 map->format.reg_bytes +
1754 map->format.pad_bytes +
1755 val_len, NULL, 0, async);
1758 dev_err(map->dev, "Failed to schedule write: %d\n",
1761 spin_lock_irqsave(&map->async_lock, flags);
1762 list_move(&async->list, &map->async_free);
1763 spin_unlock_irqrestore(&map->async_lock, flags);
1769 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1771 /* If we're doing a single register write we can probably just
1772 * send the work_buf directly, otherwise try to do a gather
1775 if (val == work_val)
1776 ret = map->write(map->bus_context, map->work_buf,
1777 map->format.reg_bytes +
1778 map->format.pad_bytes +
1780 else if (map->bus && map->bus->gather_write)
1781 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1782 map->format.reg_bytes +
1783 map->format.pad_bytes,
1788 /* If that didn't work fall back on linearising by hand. */
1789 if (ret == -ENOTSUPP) {
1790 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1791 buf = kzalloc(len, GFP_KERNEL);
1795 memcpy(buf, map->work_buf, map->format.reg_bytes);
1796 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1798 ret = map->write(map->bus_context, buf, len);
1801 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1802 /* regcache_drop_region() takes lock that we already have,
1803 * thus call map->cache_ops->drop() directly
1805 if (map->cache_ops && map->cache_ops->drop)
1806 map->cache_ops->drop(map, reg, reg + 1);
1809 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1815 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1817 * @map: Map to check.
1819 bool regmap_can_raw_write(struct regmap *map)
1821 return map->write && map->format.format_val && map->format.format_reg;
1823 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1826 * regmap_get_raw_read_max - Get the maximum size we can read
1828 * @map: Map to check.
1830 size_t regmap_get_raw_read_max(struct regmap *map)
1832 return map->max_raw_read;
1834 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1837 * regmap_get_raw_write_max - Get the maximum size we can read
1839 * @map: Map to check.
1841 size_t regmap_get_raw_write_max(struct regmap *map)
1843 return map->max_raw_write;
1845 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1847 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1851 struct regmap_range_node *range;
1852 struct regmap *map = context;
1854 WARN_ON(!map->format.format_write);
1856 range = _regmap_range_lookup(map, reg);
1858 ret = _regmap_select_page(map, ®, range, 1);
1863 reg = regmap_reg_addr(map, reg);
1864 map->format.format_write(map, reg, val);
1866 trace_regmap_hw_write_start(map, reg, 1);
1868 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1870 trace_regmap_hw_write_done(map, reg, 1);
1875 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1878 struct regmap *map = context;
1879 struct regmap_range_node *range;
1882 range = _regmap_range_lookup(map, reg);
1884 ret = _regmap_select_page(map, ®, range, 1);
1889 reg = regmap_reg_addr(map, reg);
1890 return map->bus->reg_write(map->bus_context, reg, val);
1893 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1896 struct regmap *map = context;
1898 WARN_ON(!map->format.format_val);
1900 map->format.format_val(map->work_buf + map->format.reg_bytes
1901 + map->format.pad_bytes, val, 0);
1902 return _regmap_raw_write_impl(map, reg,
1904 map->format.reg_bytes +
1905 map->format.pad_bytes,
1906 map->format.val_bytes,
1910 static inline void *_regmap_map_get_context(struct regmap *map)
1912 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1915 int _regmap_write(struct regmap *map, unsigned int reg,
1919 void *context = _regmap_map_get_context(map);
1921 if (!regmap_writeable(map, reg))
1924 if (!map->cache_bypass && !map->defer_caching) {
1925 ret = regcache_write(map, reg, val);
1928 if (map->cache_only) {
1929 map->cache_dirty = true;
1934 ret = map->reg_write(context, reg, val);
1936 if (regmap_should_log(map))
1937 dev_info(map->dev, "%x <= %x\n", reg, val);
1939 trace_regmap_reg_write(map, reg, val);
1946 * regmap_write() - Write a value to a single register
1948 * @map: Register map to write to
1949 * @reg: Register to write to
1950 * @val: Value to be written
1952 * A value of zero will be returned on success, a negative errno will
1953 * be returned in error cases.
1955 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1959 if (!IS_ALIGNED(reg, map->reg_stride))
1962 map->lock(map->lock_arg);
1964 ret = _regmap_write(map, reg, val);
1966 map->unlock(map->lock_arg);
1970 EXPORT_SYMBOL_GPL(regmap_write);
1973 * regmap_write_async() - Write a value to a single register asynchronously
1975 * @map: Register map to write to
1976 * @reg: Register to write to
1977 * @val: Value to be written
1979 * A value of zero will be returned on success, a negative errno will
1980 * be returned in error cases.
1982 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1986 if (!IS_ALIGNED(reg, map->reg_stride))
1989 map->lock(map->lock_arg);
1993 ret = _regmap_write(map, reg, val);
1997 map->unlock(map->lock_arg);
2001 EXPORT_SYMBOL_GPL(regmap_write_async);
2003 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2004 const void *val, size_t val_len, bool noinc)
2006 size_t val_bytes = map->format.val_bytes;
2007 size_t val_count = val_len / val_bytes;
2008 size_t chunk_count, chunk_bytes;
2009 size_t chunk_regs = val_count;
2015 if (map->use_single_write)
2017 else if (map->max_raw_write && val_len > map->max_raw_write)
2018 chunk_regs = map->max_raw_write / val_bytes;
2020 chunk_count = val_count / chunk_regs;
2021 chunk_bytes = chunk_regs * val_bytes;
2023 /* Write as many bytes as possible with chunk_size */
2024 for (i = 0; i < chunk_count; i++) {
2025 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2029 reg += regmap_get_offset(map, chunk_regs);
2031 val_len -= chunk_bytes;
2034 /* Write remaining bytes */
2036 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2042 * regmap_raw_write() - Write raw values to one or more registers
2044 * @map: Register map to write to
2045 * @reg: Initial register to write to
2046 * @val: Block of data to be written, laid out for direct transmission to the
2048 * @val_len: Length of data pointed to by val.
2050 * This function is intended to be used for things like firmware
2051 * download where a large block of data needs to be transferred to the
2052 * device. No formatting will be done on the data provided.
2054 * A value of zero will be returned on success, a negative errno will
2055 * be returned in error cases.
2057 int regmap_raw_write(struct regmap *map, unsigned int reg,
2058 const void *val, size_t val_len)
2062 if (!regmap_can_raw_write(map))
2064 if (val_len % map->format.val_bytes)
2067 map->lock(map->lock_arg);
2069 ret = _regmap_raw_write(map, reg, val, val_len, false);
2071 map->unlock(map->lock_arg);
2075 EXPORT_SYMBOL_GPL(regmap_raw_write);
2077 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2078 void *val, unsigned int val_len, bool write)
2080 size_t val_bytes = map->format.val_bytes;
2081 size_t val_count = val_len / val_bytes;
2082 unsigned int lastval;
2089 switch (val_bytes) {
2093 lastval = (unsigned int)u8p[val_count - 1];
2098 lastval = (unsigned int)u16p[val_count - 1];
2103 lastval = (unsigned int)u32p[val_count - 1];
2110 * Update the cache with the last value we write, the rest is just
2111 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2112 * sure a single read from the cache will work.
2115 if (!map->cache_bypass && !map->defer_caching) {
2116 ret = regcache_write(map, reg, lastval);
2119 if (map->cache_only) {
2120 map->cache_dirty = true;
2124 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2126 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2129 if (!ret && regmap_should_log(map)) {
2130 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2131 for (i = 0; i < val_count; i++) {
2132 switch (val_bytes) {
2134 pr_cont("%x", u8p[i]);
2137 pr_cont("%x", u16p[i]);
2140 pr_cont("%x", u32p[i]);
2145 if (i == (val_count - 1))
2156 * regmap_noinc_write(): Write data to a register without incrementing the
2159 * @map: Register map to write to
2160 * @reg: Register to write to
2161 * @val: Pointer to data buffer
2162 * @val_len: Length of output buffer in bytes.
2164 * The regmap API usually assumes that bulk bus write operations will write a
2165 * range of registers. Some devices have certain registers for which a write
2166 * operation can write to an internal FIFO.
2168 * The target register must be volatile but registers after it can be
2169 * completely unrelated cacheable registers.
2171 * This will attempt multiple writes as required to write val_len bytes.
2173 * A value of zero will be returned on success, a negative errno will be
2174 * returned in error cases.
2176 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2177 const void *val, size_t val_len)
2182 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2184 if (val_len % map->format.val_bytes)
2186 if (!IS_ALIGNED(reg, map->reg_stride))
2191 map->lock(map->lock_arg);
2193 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2199 * Use the accelerated operation if we can. The val drops the const
2200 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2202 if (map->bus->reg_noinc_write) {
2203 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2208 if (map->max_raw_write && map->max_raw_write < val_len)
2209 write_len = map->max_raw_write;
2211 write_len = val_len;
2212 ret = _regmap_raw_write(map, reg, val, write_len, true);
2215 val = ((u8 *)val) + write_len;
2216 val_len -= write_len;
2220 map->unlock(map->lock_arg);
2223 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2226 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2229 * @field: Register field to write to
2230 * @mask: Bitmask to change
2231 * @val: Value to be written
2232 * @change: Boolean indicating if a write was done
2233 * @async: Boolean indicating asynchronously
2234 * @force: Boolean indicating use force update
2236 * Perform a read/modify/write cycle on the register field with change,
2237 * async, force option.
2239 * A value of zero will be returned on success, a negative errno will
2240 * be returned in error cases.
2242 int regmap_field_update_bits_base(struct regmap_field *field,
2243 unsigned int mask, unsigned int val,
2244 bool *change, bool async, bool force)
2246 mask = (mask << field->shift) & field->mask;
2248 return regmap_update_bits_base(field->regmap, field->reg,
2249 mask, val << field->shift,
2250 change, async, force);
2252 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2255 * regmap_field_test_bits() - Check if all specified bits are set in a
2258 * @field: Register field to operate on
2259 * @bits: Bits to test
2261 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2262 * tested bits is not set and 1 if all tested bits are set.
2264 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2266 unsigned int val, ret;
2268 ret = regmap_field_read(field, &val);
2272 return (val & bits) == bits;
2274 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2277 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2278 * register field with port ID
2280 * @field: Register field to write to
2282 * @mask: Bitmask to change
2283 * @val: Value to be written
2284 * @change: Boolean indicating if a write was done
2285 * @async: Boolean indicating asynchronously
2286 * @force: Boolean indicating use force update
2288 * A value of zero will be returned on success, a negative errno will
2289 * be returned in error cases.
2291 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2292 unsigned int mask, unsigned int val,
2293 bool *change, bool async, bool force)
2295 if (id >= field->id_size)
2298 mask = (mask << field->shift) & field->mask;
2300 return regmap_update_bits_base(field->regmap,
2301 field->reg + (field->id_offset * id),
2302 mask, val << field->shift,
2303 change, async, force);
2305 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2308 * regmap_bulk_write() - Write multiple registers to the device
2310 * @map: Register map to write to
2311 * @reg: First register to be write from
2312 * @val: Block of data to be written, in native register size for device
2313 * @val_count: Number of registers to write
2315 * This function is intended to be used for writing a large block of
2316 * data to the device either in single transfer or multiple transfer.
2318 * A value of zero will be returned on success, a negative errno will
2319 * be returned in error cases.
2321 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2325 size_t val_bytes = map->format.val_bytes;
2327 if (!IS_ALIGNED(reg, map->reg_stride))
2331 * Some devices don't support bulk write, for them we have a series of
2332 * single write operations.
2334 if (!map->write || !map->format.parse_inplace) {
2335 map->lock(map->lock_arg);
2336 for (i = 0; i < val_count; i++) {
2339 switch (val_bytes) {
2341 ival = *(u8 *)(val + (i * val_bytes));
2344 ival = *(u16 *)(val + (i * val_bytes));
2347 ival = *(u32 *)(val + (i * val_bytes));
2354 ret = _regmap_write(map,
2355 reg + regmap_get_offset(map, i),
2361 map->unlock(map->lock_arg);
2365 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2369 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2370 map->format.parse_inplace(wval + i);
2372 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2378 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2382 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2385 * _regmap_raw_multi_reg_write()
2387 * the (register,newvalue) pairs in regs have not been formatted, but
2388 * they are all in the same page and have been changed to being page
2389 * relative. The page register has been written if that was necessary.
2391 static int _regmap_raw_multi_reg_write(struct regmap *map,
2392 const struct reg_sequence *regs,
2399 size_t val_bytes = map->format.val_bytes;
2400 size_t reg_bytes = map->format.reg_bytes;
2401 size_t pad_bytes = map->format.pad_bytes;
2402 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2403 size_t len = pair_size * num_regs;
2408 buf = kzalloc(len, GFP_KERNEL);
2412 /* We have to linearise by hand. */
2416 for (i = 0; i < num_regs; i++) {
2417 unsigned int reg = regs[i].reg;
2418 unsigned int val = regs[i].def;
2419 trace_regmap_hw_write_start(map, reg, 1);
2420 reg = regmap_reg_addr(map, reg);
2421 map->format.format_reg(u8, reg, map->reg_shift);
2422 u8 += reg_bytes + pad_bytes;
2423 map->format.format_val(u8, val, 0);
2427 *u8 |= map->write_flag_mask;
2429 ret = map->write(map->bus_context, buf, len);
2433 for (i = 0; i < num_regs; i++) {
2434 int reg = regs[i].reg;
2435 trace_regmap_hw_write_done(map, reg, 1);
2440 static unsigned int _regmap_register_page(struct regmap *map,
2442 struct regmap_range_node *range)
2444 unsigned int win_page = (reg - range->range_min) / range->window_len;
2449 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2450 struct reg_sequence *regs,
2455 struct reg_sequence *base;
2456 unsigned int this_page = 0;
2457 unsigned int page_change = 0;
2459 * the set of registers are not neccessarily in order, but
2460 * since the order of write must be preserved this algorithm
2461 * chops the set each time the page changes. This also applies
2462 * if there is a delay required at any point in the sequence.
2465 for (i = 0, n = 0; i < num_regs; i++, n++) {
2466 unsigned int reg = regs[i].reg;
2467 struct regmap_range_node *range;
2469 range = _regmap_range_lookup(map, reg);
2471 unsigned int win_page = _regmap_register_page(map, reg,
2475 this_page = win_page;
2476 if (win_page != this_page) {
2477 this_page = win_page;
2482 /* If we have both a page change and a delay make sure to
2483 * write the regs and apply the delay before we change the
2487 if (page_change || regs[i].delay_us) {
2489 /* For situations where the first write requires
2490 * a delay we need to make sure we don't call
2491 * raw_multi_reg_write with n=0
2492 * This can't occur with page breaks as we
2493 * never write on the first iteration
2495 if (regs[i].delay_us && i == 0)
2498 ret = _regmap_raw_multi_reg_write(map, base, n);
2502 if (regs[i].delay_us) {
2504 fsleep(regs[i].delay_us);
2506 udelay(regs[i].delay_us);
2513 ret = _regmap_select_page(map,
2526 return _regmap_raw_multi_reg_write(map, base, n);
2530 static int _regmap_multi_reg_write(struct regmap *map,
2531 const struct reg_sequence *regs,
2537 if (!map->can_multi_write) {
2538 for (i = 0; i < num_regs; i++) {
2539 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2543 if (regs[i].delay_us) {
2545 fsleep(regs[i].delay_us);
2547 udelay(regs[i].delay_us);
2553 if (!map->format.parse_inplace)
2556 if (map->writeable_reg)
2557 for (i = 0; i < num_regs; i++) {
2558 int reg = regs[i].reg;
2559 if (!map->writeable_reg(map->dev, reg))
2561 if (!IS_ALIGNED(reg, map->reg_stride))
2565 if (!map->cache_bypass) {
2566 for (i = 0; i < num_regs; i++) {
2567 unsigned int val = regs[i].def;
2568 unsigned int reg = regs[i].reg;
2569 ret = regcache_write(map, reg, val);
2572 "Error in caching of register: %x ret: %d\n",
2577 if (map->cache_only) {
2578 map->cache_dirty = true;
2585 for (i = 0; i < num_regs; i++) {
2586 unsigned int reg = regs[i].reg;
2587 struct regmap_range_node *range;
2589 /* Coalesce all the writes between a page break or a delay
2592 range = _regmap_range_lookup(map, reg);
2593 if (range || regs[i].delay_us) {
2594 size_t len = sizeof(struct reg_sequence)*num_regs;
2595 struct reg_sequence *base = kmemdup(regs, len,
2599 ret = _regmap_range_multi_paged_reg_write(map, base,
2606 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2610 * regmap_multi_reg_write() - Write multiple registers to the device
2612 * @map: Register map to write to
2613 * @regs: Array of structures containing register,value to be written
2614 * @num_regs: Number of registers to write
2616 * Write multiple registers to the device where the set of register, value
2617 * pairs are supplied in any order, possibly not all in a single range.
2619 * The 'normal' block write mode will send ultimately send data on the
2620 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2621 * addressed. However, this alternative block multi write mode will send
2622 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2623 * must of course support the mode.
2625 * A value of zero will be returned on success, a negative errno will be
2626 * returned in error cases.
2628 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2633 map->lock(map->lock_arg);
2635 ret = _regmap_multi_reg_write(map, regs, num_regs);
2637 map->unlock(map->lock_arg);
2641 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2644 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2645 * device but not the cache
2647 * @map: Register map to write to
2648 * @regs: Array of structures containing register,value to be written
2649 * @num_regs: Number of registers to write
2651 * Write multiple registers to the device but not the cache where the set
2652 * of register are supplied in any order.
2654 * This function is intended to be used for writing a large block of data
2655 * atomically to the device in single transfer for those I2C client devices
2656 * that implement this alternative block write mode.
2658 * A value of zero will be returned on success, a negative errno will
2659 * be returned in error cases.
2661 int regmap_multi_reg_write_bypassed(struct regmap *map,
2662 const struct reg_sequence *regs,
2668 map->lock(map->lock_arg);
2670 bypass = map->cache_bypass;
2671 map->cache_bypass = true;
2673 ret = _regmap_multi_reg_write(map, regs, num_regs);
2675 map->cache_bypass = bypass;
2677 map->unlock(map->lock_arg);
2681 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2684 * regmap_raw_write_async() - Write raw values to one or more registers
2687 * @map: Register map to write to
2688 * @reg: Initial register to write to
2689 * @val: Block of data to be written, laid out for direct transmission to the
2690 * device. Must be valid until regmap_async_complete() is called.
2691 * @val_len: Length of data pointed to by val.
2693 * This function is intended to be used for things like firmware
2694 * download where a large block of data needs to be transferred to the
2695 * device. No formatting will be done on the data provided.
2697 * If supported by the underlying bus the write will be scheduled
2698 * asynchronously, helping maximise I/O speed on higher speed buses
2699 * like SPI. regmap_async_complete() can be called to ensure that all
2700 * asynchrnous writes have been completed.
2702 * A value of zero will be returned on success, a negative errno will
2703 * be returned in error cases.
2705 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2706 const void *val, size_t val_len)
2710 if (val_len % map->format.val_bytes)
2712 if (!IS_ALIGNED(reg, map->reg_stride))
2715 map->lock(map->lock_arg);
2719 ret = _regmap_raw_write(map, reg, val, val_len, false);
2723 map->unlock(map->lock_arg);
2727 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2729 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2730 unsigned int val_len, bool noinc)
2732 struct regmap_range_node *range;
2738 range = _regmap_range_lookup(map, reg);
2740 ret = _regmap_select_page(map, ®, range,
2741 noinc ? 1 : val_len / map->format.val_bytes);
2746 reg = regmap_reg_addr(map, reg);
2747 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2748 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2749 map->read_flag_mask);
2750 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2752 ret = map->read(map->bus_context, map->work_buf,
2753 map->format.reg_bytes + map->format.pad_bytes,
2756 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2761 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2764 struct regmap *map = context;
2765 struct regmap_range_node *range;
2768 range = _regmap_range_lookup(map, reg);
2770 ret = _regmap_select_page(map, ®, range, 1);
2775 reg = regmap_reg_addr(map, reg);
2776 return map->bus->reg_read(map->bus_context, reg, val);
2779 static int _regmap_bus_read(void *context, unsigned int reg,
2783 struct regmap *map = context;
2784 void *work_val = map->work_buf + map->format.reg_bytes +
2785 map->format.pad_bytes;
2787 if (!map->format.parse_val)
2790 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2792 *val = map->format.parse_val(work_val);
2797 static int _regmap_read(struct regmap *map, unsigned int reg,
2801 void *context = _regmap_map_get_context(map);
2803 if (!map->cache_bypass) {
2804 ret = regcache_read(map, reg, val);
2809 if (map->cache_only)
2812 if (!regmap_readable(map, reg))
2815 ret = map->reg_read(context, reg, val);
2817 if (regmap_should_log(map))
2818 dev_info(map->dev, "%x => %x\n", reg, *val);
2820 trace_regmap_reg_read(map, reg, *val);
2822 if (!map->cache_bypass)
2823 regcache_write(map, reg, *val);
2830 * regmap_read() - Read a value from a single register
2832 * @map: Register map to read from
2833 * @reg: Register to be read from
2834 * @val: Pointer to store read value
2836 * A value of zero will be returned on success, a negative errno will
2837 * be returned in error cases.
2839 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2843 if (!IS_ALIGNED(reg, map->reg_stride))
2846 map->lock(map->lock_arg);
2848 ret = _regmap_read(map, reg, val);
2850 map->unlock(map->lock_arg);
2854 EXPORT_SYMBOL_GPL(regmap_read);
2857 * regmap_read_bypassed() - Read a value from a single register direct
2858 * from the device, bypassing the cache
2860 * @map: Register map to read from
2861 * @reg: Register to be read from
2862 * @val: Pointer to store read value
2864 * A value of zero will be returned on success, a negative errno will
2865 * be returned in error cases.
2867 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2870 bool bypass, cache_only;
2872 if (!IS_ALIGNED(reg, map->reg_stride))
2875 map->lock(map->lock_arg);
2877 bypass = map->cache_bypass;
2878 cache_only = map->cache_only;
2879 map->cache_bypass = true;
2880 map->cache_only = false;
2882 ret = _regmap_read(map, reg, val);
2884 map->cache_bypass = bypass;
2885 map->cache_only = cache_only;
2887 map->unlock(map->lock_arg);
2891 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2894 * regmap_raw_read() - Read raw data from the device
2896 * @map: Register map to read from
2897 * @reg: First register to be read from
2898 * @val: Pointer to store read value
2899 * @val_len: Size of data to read
2901 * A value of zero will be returned on success, a negative errno will
2902 * be returned in error cases.
2904 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2907 size_t val_bytes = map->format.val_bytes;
2908 size_t val_count = val_len / val_bytes;
2912 if (val_len % map->format.val_bytes)
2914 if (!IS_ALIGNED(reg, map->reg_stride))
2919 map->lock(map->lock_arg);
2921 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2922 map->cache_type == REGCACHE_NONE) {
2923 size_t chunk_count, chunk_bytes;
2924 size_t chunk_regs = val_count;
2926 if (!map->cache_bypass && map->cache_only) {
2936 if (map->use_single_read)
2938 else if (map->max_raw_read && val_len > map->max_raw_read)
2939 chunk_regs = map->max_raw_read / val_bytes;
2941 chunk_count = val_count / chunk_regs;
2942 chunk_bytes = chunk_regs * val_bytes;
2944 /* Read bytes that fit into whole chunks */
2945 for (i = 0; i < chunk_count; i++) {
2946 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2950 reg += regmap_get_offset(map, chunk_regs);
2952 val_len -= chunk_bytes;
2955 /* Read remaining bytes */
2957 ret = _regmap_raw_read(map, reg, val, val_len, false);
2962 /* Otherwise go word by word for the cache; should be low
2963 * cost as we expect to hit the cache.
2965 for (i = 0; i < val_count; i++) {
2966 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2971 map->format.format_val(val + (i * val_bytes), v, 0);
2976 map->unlock(map->lock_arg);
2980 EXPORT_SYMBOL_GPL(regmap_raw_read);
2983 * regmap_noinc_read(): Read data from a register without incrementing the
2986 * @map: Register map to read from
2987 * @reg: Register to read from
2988 * @val: Pointer to data buffer
2989 * @val_len: Length of output buffer in bytes.
2991 * The regmap API usually assumes that bulk read operations will read a
2992 * range of registers. Some devices have certain registers for which a read
2993 * operation read will read from an internal FIFO.
2995 * The target register must be volatile but registers after it can be
2996 * completely unrelated cacheable registers.
2998 * This will attempt multiple reads as required to read val_len bytes.
3000 * A value of zero will be returned on success, a negative errno will be
3001 * returned in error cases.
3003 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3004 void *val, size_t val_len)
3012 if (val_len % map->format.val_bytes)
3014 if (!IS_ALIGNED(reg, map->reg_stride))
3019 map->lock(map->lock_arg);
3021 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3027 * We have not defined the FIFO semantics for cache, as the
3028 * cache is just one value deep. Should we return the last
3029 * written value? Just avoid this by always reading the FIFO
3030 * even when using cache. Cache only will not work.
3032 if (!map->cache_bypass && map->cache_only) {
3037 /* Use the accelerated operation if we can */
3038 if (map->bus->reg_noinc_read) {
3039 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3044 if (map->max_raw_read && map->max_raw_read < val_len)
3045 read_len = map->max_raw_read;
3048 ret = _regmap_raw_read(map, reg, val, read_len, true);
3051 val = ((u8 *)val) + read_len;
3052 val_len -= read_len;
3056 map->unlock(map->lock_arg);
3059 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3062 * regmap_field_read(): Read a value to a single register field
3064 * @field: Register field to read from
3065 * @val: Pointer to store read value
3067 * A value of zero will be returned on success, a negative errno will
3068 * be returned in error cases.
3070 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3073 unsigned int reg_val;
3074 ret = regmap_read(field->regmap, field->reg, ®_val);
3078 reg_val &= field->mask;
3079 reg_val >>= field->shift;
3084 EXPORT_SYMBOL_GPL(regmap_field_read);
3087 * regmap_fields_read() - Read a value to a single register field with port ID
3089 * @field: Register field to read from
3091 * @val: Pointer to store read value
3093 * A value of zero will be returned on success, a negative errno will
3094 * be returned in error cases.
3096 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3100 unsigned int reg_val;
3102 if (id >= field->id_size)
3105 ret = regmap_read(field->regmap,
3106 field->reg + (field->id_offset * id),
3111 reg_val &= field->mask;
3112 reg_val >>= field->shift;
3117 EXPORT_SYMBOL_GPL(regmap_fields_read);
3119 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3120 const unsigned int *regs, void *val, size_t val_count)
3127 map->lock(map->lock_arg);
3129 for (i = 0; i < val_count; i++) {
3133 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3137 ret = _regmap_read(map, regs[i], &ival);
3139 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3144 switch (map->format.val_bytes) {
3160 map->unlock(map->lock_arg);
3165 * regmap_bulk_read() - Read multiple sequential registers from the device
3167 * @map: Register map to read from
3168 * @reg: First register to be read from
3169 * @val: Pointer to store read value, in native register size for device
3170 * @val_count: Number of registers to read
3172 * A value of zero will be returned on success, a negative errno will
3173 * be returned in error cases.
3175 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3179 size_t val_bytes = map->format.val_bytes;
3180 bool vol = regmap_volatile_range(map, reg, val_count);
3182 if (!IS_ALIGNED(reg, map->reg_stride))
3187 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3188 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3192 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3193 map->format.parse_inplace(val + i);
3195 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3198 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3201 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3204 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3206 * @map: Register map to read from
3207 * @regs: Array of registers to read from
3208 * @val: Pointer to store read value, in native register size for device
3209 * @val_count: Number of registers to read
3211 * A value of zero will be returned on success, a negative errno will
3212 * be returned in error cases.
3214 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val,
3220 return _regmap_bulk_read(map, 0, regs, val, val_count);
3222 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3224 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3225 unsigned int mask, unsigned int val,
3226 bool *change, bool force_write)
3229 unsigned int tmp, orig;
3234 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3235 reg = regmap_reg_addr(map, reg);
3236 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3237 if (ret == 0 && change)
3240 ret = _regmap_read(map, reg, &orig);
3247 if (force_write || (tmp != orig) || map->force_write_field) {
3248 ret = _regmap_write(map, reg, tmp);
3249 if (ret == 0 && change)
3258 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3260 * @map: Register map to update
3261 * @reg: Register to update
3262 * @mask: Bitmask to change
3263 * @val: New value for bitmask
3264 * @change: Boolean indicating if a write was done
3265 * @async: Boolean indicating asynchronously
3266 * @force: Boolean indicating use force update
3268 * Perform a read/modify/write cycle on a register map with change, async, force
3273 * With most buses the read must be done synchronously so this is most useful
3274 * for devices with a cache which do not need to interact with the hardware to
3275 * determine the current register value.
3277 * Returns zero for success, a negative number on error.
3279 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3280 unsigned int mask, unsigned int val,
3281 bool *change, bool async, bool force)
3285 map->lock(map->lock_arg);
3289 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3293 map->unlock(map->lock_arg);
3297 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3300 * regmap_test_bits() - Check if all specified bits are set in a register.
3302 * @map: Register map to operate on
3303 * @reg: Register to read from
3304 * @bits: Bits to test
3306 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3307 * bits are set and a negative error number if the underlying regmap_read()
3310 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3312 unsigned int val, ret;
3314 ret = regmap_read(map, reg, &val);
3318 return (val & bits) == bits;
3320 EXPORT_SYMBOL_GPL(regmap_test_bits);
3322 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3324 struct regmap *map = async->map;
3327 trace_regmap_async_io_complete(map);
3329 spin_lock(&map->async_lock);
3330 list_move(&async->list, &map->async_free);
3331 wake = list_empty(&map->async_list);
3334 map->async_ret = ret;
3336 spin_unlock(&map->async_lock);
3339 wake_up(&map->async_waitq);
3341 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3343 static int regmap_async_is_done(struct regmap *map)
3345 unsigned long flags;
3348 spin_lock_irqsave(&map->async_lock, flags);
3349 ret = list_empty(&map->async_list);
3350 spin_unlock_irqrestore(&map->async_lock, flags);
3356 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3358 * @map: Map to operate on.
3360 * Blocks until any pending asynchronous I/O has completed. Returns
3361 * an error code for any failed I/O operations.
3363 int regmap_async_complete(struct regmap *map)
3365 unsigned long flags;
3368 /* Nothing to do with no async support */
3369 if (!map->bus || !map->bus->async_write)
3372 trace_regmap_async_complete_start(map);
3374 wait_event(map->async_waitq, regmap_async_is_done(map));
3376 spin_lock_irqsave(&map->async_lock, flags);
3377 ret = map->async_ret;
3379 spin_unlock_irqrestore(&map->async_lock, flags);
3381 trace_regmap_async_complete_done(map);
3385 EXPORT_SYMBOL_GPL(regmap_async_complete);
3388 * regmap_register_patch - Register and apply register updates to be applied
3389 * on device initialistion
3391 * @map: Register map to apply updates to.
3392 * @regs: Values to update.
3393 * @num_regs: Number of entries in regs.
3395 * Register a set of register updates to be applied to the device
3396 * whenever the device registers are synchronised with the cache and
3397 * apply them immediately. Typically this is used to apply
3398 * corrections to be applied to the device defaults on startup, such
3399 * as the updates some vendors provide to undocumented registers.
3401 * The caller must ensure that this function cannot be called
3402 * concurrently with either itself or regcache_sync().
3404 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3407 struct reg_sequence *p;
3411 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3415 p = krealloc(map->patch,
3416 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3419 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3421 map->patch_regs += num_regs;
3426 map->lock(map->lock_arg);
3428 bypass = map->cache_bypass;
3430 map->cache_bypass = true;
3433 ret = _regmap_multi_reg_write(map, regs, num_regs);
3436 map->cache_bypass = bypass;
3438 map->unlock(map->lock_arg);
3440 regmap_async_complete(map);
3444 EXPORT_SYMBOL_GPL(regmap_register_patch);
3447 * regmap_get_val_bytes() - Report the size of a register value
3449 * @map: Register map to operate on.
3451 * Report the size of a register value, mainly intended to for use by
3452 * generic infrastructure built on top of regmap.
3454 int regmap_get_val_bytes(struct regmap *map)
3456 if (map->format.format_write)
3459 return map->format.val_bytes;
3461 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3464 * regmap_get_max_register() - Report the max register value
3466 * @map: Register map to operate on.
3468 * Report the max register value, mainly intended to for use by
3469 * generic infrastructure built on top of regmap.
3471 int regmap_get_max_register(struct regmap *map)
3473 return map->max_register_is_set ? map->max_register : -EINVAL;
3475 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3478 * regmap_get_reg_stride() - Report the register address stride
3480 * @map: Register map to operate on.
3482 * Report the register address stride, mainly intended to for use by
3483 * generic infrastructure built on top of regmap.
3485 int regmap_get_reg_stride(struct regmap *map)
3487 return map->reg_stride;
3489 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3492 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3494 * @map: Register map to operate on.
3496 * Returns true if an access to the register might sleep, else false.
3498 bool regmap_might_sleep(struct regmap *map)
3500 return map->can_sleep;
3502 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3504 int regmap_parse_val(struct regmap *map, const void *buf,
3507 if (!map->format.parse_val)
3510 *val = map->format.parse_val(buf);
3514 EXPORT_SYMBOL_GPL(regmap_parse_val);
3516 static int __init regmap_initcall(void)
3518 regmap_debugfs_initcall();
3522 postcore_initcall(regmap_initcall);