1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register_is_set && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register_is_set && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register_is_set && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
293 put_unaligned_be24(val << shift, buf);
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
298 put_unaligned_be32(val << shift, buf);
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
303 put_unaligned_le32(val << shift, buf);
306 static void regmap_format_32_native(void *buf, unsigned int val,
309 u32 v = val << shift;
311 memcpy(buf, &v, sizeof(v));
314 static void regmap_parse_inplace_noop(void *buf)
318 static unsigned int regmap_parse_8(const void *buf)
325 static unsigned int regmap_parse_16_be(const void *buf)
327 return get_unaligned_be16(buf);
330 static unsigned int regmap_parse_16_le(const void *buf)
332 return get_unaligned_le16(buf);
335 static void regmap_parse_16_be_inplace(void *buf)
337 u16 v = get_unaligned_be16(buf);
339 memcpy(buf, &v, sizeof(v));
342 static void regmap_parse_16_le_inplace(void *buf)
344 u16 v = get_unaligned_le16(buf);
346 memcpy(buf, &v, sizeof(v));
349 static unsigned int regmap_parse_16_native(const void *buf)
353 memcpy(&v, buf, sizeof(v));
357 static unsigned int regmap_parse_24_be(const void *buf)
359 return get_unaligned_be24(buf);
362 static unsigned int regmap_parse_32_be(const void *buf)
364 return get_unaligned_be32(buf);
367 static unsigned int regmap_parse_32_le(const void *buf)
369 return get_unaligned_le32(buf);
372 static void regmap_parse_32_be_inplace(void *buf)
374 u32 v = get_unaligned_be32(buf);
376 memcpy(buf, &v, sizeof(v));
379 static void regmap_parse_32_le_inplace(void *buf)
381 u32 v = get_unaligned_le32(buf);
383 memcpy(buf, &v, sizeof(v));
386 static unsigned int regmap_parse_32_native(const void *buf)
390 memcpy(&v, buf, sizeof(v));
394 static void regmap_lock_hwlock(void *__map)
396 struct regmap *map = __map;
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
401 static void regmap_lock_hwlock_irq(void *__map)
403 struct regmap *map = __map;
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
408 static void regmap_lock_hwlock_irqsave(void *__map)
410 struct regmap *map = __map;
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
416 static void regmap_unlock_hwlock(void *__map)
418 struct regmap *map = __map;
420 hwspin_unlock(map->hwlock);
423 static void regmap_unlock_hwlock_irq(void *__map)
425 struct regmap *map = __map;
427 hwspin_unlock_irq(map->hwlock);
430 static void regmap_unlock_hwlock_irqrestore(void *__map)
432 struct regmap *map = __map;
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
437 static void regmap_lock_unlock_none(void *__map)
442 static void regmap_lock_mutex(void *__map)
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
448 static void regmap_unlock_mutex(void *__map)
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
457 struct regmap *map = __map;
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
474 struct regmap *map = __map;
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
488 static void dev_get_regmap_release(struct device *dev, void *res)
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
497 static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
525 struct rb_node *node = map->range_tree.rb_node;
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
542 static void regmap_range_exit(struct regmap *map)
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
547 next = rb_first(&map->range_tree);
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
555 kfree(map->selector_work_buf);
558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
566 kfree_const(map->name);
573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
581 ret = regmap_set_name(map, config);
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
591 regmap_debugfs_exit(map);
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
608 return devres_release(dev, dev_get_regmap_release,
609 dev_get_regmap_match, (void *)map->name);
612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 const struct regmap_config *config)
615 enum regmap_endian endian;
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->reg_format_endian;
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
624 /* Retrieve the endianness specification from the bus config */
625 if (bus && bus->reg_format_endian_default)
626 endian = bus->reg_format_endian_default;
628 /* If the bus specified a non-default value, use that */
629 if (endian != REGMAP_ENDIAN_DEFAULT)
632 /* Use this if no other value was found */
633 return REGMAP_ENDIAN_BIG;
636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 const struct regmap_bus *bus,
638 const struct regmap_config *config)
640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 enum regmap_endian endian;
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->val_format_endian;
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
650 /* If the firmware node exist try to get endianness from it */
651 if (fwnode_property_read_bool(fwnode, "big-endian"))
652 endian = REGMAP_ENDIAN_BIG;
653 else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 endian = REGMAP_ENDIAN_LITTLE;
655 else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 endian = REGMAP_ENDIAN_NATIVE;
658 /* If the endianness was specified in fwnode, use that */
659 if (endian != REGMAP_ENDIAN_DEFAULT)
662 /* Retrieve the endianness specification from the bus config */
663 if (bus && bus->val_format_endian_default)
664 endian = bus->val_format_endian_default;
666 /* If the bus specified a non-default value, use that */
667 if (endian != REGMAP_ENDIAN_DEFAULT)
670 /* Use this if no other value was found */
671 return REGMAP_ENDIAN_BIG;
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
675 struct regmap *__regmap_init(struct device *dev,
676 const struct regmap_bus *bus,
678 const struct regmap_config *config,
679 struct lock_class_key *lock_key,
680 const char *lock_name)
684 enum regmap_endian reg_endian, val_endian;
690 map = kzalloc(sizeof(*map), GFP_KERNEL);
696 ret = regmap_set_name(map, config);
700 ret = -EINVAL; /* Later error paths rely on this */
702 if (config->disable_locking) {
703 map->lock = map->unlock = regmap_lock_unlock_none;
704 map->can_sleep = config->can_sleep;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 map->can_sleep = config->can_sleep;
711 } else if (config->use_hwlock) {
712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
718 switch (config->hwlock_mode) {
719 case HWLOCK_IRQSTATE:
720 map->lock = regmap_lock_hwlock_irqsave;
721 map->unlock = regmap_unlock_hwlock_irqrestore;
724 map->lock = regmap_lock_hwlock_irq;
725 map->unlock = regmap_unlock_hwlock_irq;
728 map->lock = regmap_lock_hwlock;
729 map->unlock = regmap_unlock_hwlock;
735 if ((bus && bus->fast_io) ||
737 if (config->use_raw_spinlock) {
738 raw_spin_lock_init(&map->raw_spinlock);
739 map->lock = regmap_lock_raw_spinlock;
740 map->unlock = regmap_unlock_raw_spinlock;
741 lockdep_set_class_and_name(&map->raw_spinlock,
742 lock_key, lock_name);
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
751 mutex_init(&map->mutex);
752 map->lock = regmap_lock_mutex;
753 map->unlock = regmap_unlock_mutex;
754 map->can_sleep = true;
755 lockdep_set_class_and_name(&map->mutex,
756 lock_key, lock_name);
759 map->lock_key = lock_key;
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
769 map->alloc_flags = GFP_KERNEL;
771 map->reg_base = config->reg_base;
772 map->reg_shift = config->pad_bits % 8;
774 map->format.pad_bytes = config->pad_bits / 8;
775 map->format.reg_shift = config->reg_shift;
776 map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits);
777 map->format.val_bytes = BITS_TO_BYTES(config->val_bits);
778 map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits);
779 if (config->reg_stride)
780 map->reg_stride = config->reg_stride;
783 if (is_power_of_2(map->reg_stride))
784 map->reg_stride_order = ilog2(map->reg_stride);
786 map->reg_stride_order = -1;
787 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
788 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
789 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 map->max_raw_read = bus->max_raw_read;
792 map->max_raw_write = bus->max_raw_write;
793 } else if (config->max_raw_read && config->max_raw_write) {
794 map->max_raw_read = config->max_raw_read;
795 map->max_raw_write = config->max_raw_write;
799 map->bus_context = bus_context;
800 map->max_register = config->max_register;
801 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
802 map->wr_table = config->wr_table;
803 map->rd_table = config->rd_table;
804 map->volatile_table = config->volatile_table;
805 map->precious_table = config->precious_table;
806 map->wr_noinc_table = config->wr_noinc_table;
807 map->rd_noinc_table = config->rd_noinc_table;
808 map->writeable_reg = config->writeable_reg;
809 map->readable_reg = config->readable_reg;
810 map->volatile_reg = config->volatile_reg;
811 map->precious_reg = config->precious_reg;
812 map->writeable_noinc_reg = config->writeable_noinc_reg;
813 map->readable_noinc_reg = config->readable_noinc_reg;
814 map->cache_type = config->cache_type;
816 spin_lock_init(&map->async_lock);
817 INIT_LIST_HEAD(&map->async_list);
818 INIT_LIST_HEAD(&map->async_free);
819 init_waitqueue_head(&map->async_waitq);
821 if (config->read_flag_mask ||
822 config->write_flag_mask ||
823 config->zero_flag_mask) {
824 map->read_flag_mask = config->read_flag_mask;
825 map->write_flag_mask = config->write_flag_mask;
827 map->read_flag_mask = bus->read_flag_mask;
830 if (config && config->read && config->write) {
831 map->reg_read = _regmap_bus_read;
832 if (config->reg_update_bits)
833 map->reg_update_bits = config->reg_update_bits;
835 /* Bulk read/write */
836 map->read = config->read;
837 map->write = config->write;
839 reg_endian = REGMAP_ENDIAN_NATIVE;
840 val_endian = REGMAP_ENDIAN_NATIVE;
842 map->reg_read = config->reg_read;
843 map->reg_write = config->reg_write;
844 map->reg_update_bits = config->reg_update_bits;
846 map->defer_caching = false;
847 goto skip_format_initialization;
848 } else if (!bus->read || !bus->write) {
849 map->reg_read = _regmap_bus_reg_read;
850 map->reg_write = _regmap_bus_reg_write;
851 map->reg_update_bits = bus->reg_update_bits;
853 map->defer_caching = false;
854 goto skip_format_initialization;
856 map->reg_read = _regmap_bus_read;
857 map->reg_update_bits = bus->reg_update_bits;
858 /* Bulk read/write */
859 map->read = bus->read;
860 map->write = bus->write;
862 reg_endian = regmap_get_reg_endian(bus, config);
863 val_endian = regmap_get_val_endian(dev, bus, config);
866 switch (config->reg_bits + map->reg_shift) {
868 switch (config->val_bits) {
870 map->format.format_write = regmap_format_2_6_write;
878 switch (config->val_bits) {
880 map->format.format_write = regmap_format_4_12_write;
888 switch (config->val_bits) {
890 map->format.format_write = regmap_format_7_9_write;
893 map->format.format_write = regmap_format_7_17_write;
901 switch (config->val_bits) {
903 map->format.format_write = regmap_format_10_14_write;
911 switch (config->val_bits) {
913 map->format.format_write = regmap_format_12_20_write;
921 map->format.format_reg = regmap_format_8;
925 switch (reg_endian) {
926 case REGMAP_ENDIAN_BIG:
927 map->format.format_reg = regmap_format_16_be;
929 case REGMAP_ENDIAN_LITTLE:
930 map->format.format_reg = regmap_format_16_le;
932 case REGMAP_ENDIAN_NATIVE:
933 map->format.format_reg = regmap_format_16_native;
941 switch (reg_endian) {
942 case REGMAP_ENDIAN_BIG:
943 map->format.format_reg = regmap_format_24_be;
951 switch (reg_endian) {
952 case REGMAP_ENDIAN_BIG:
953 map->format.format_reg = regmap_format_32_be;
955 case REGMAP_ENDIAN_LITTLE:
956 map->format.format_reg = regmap_format_32_le;
958 case REGMAP_ENDIAN_NATIVE:
959 map->format.format_reg = regmap_format_32_native;
970 if (val_endian == REGMAP_ENDIAN_NATIVE)
971 map->format.parse_inplace = regmap_parse_inplace_noop;
973 switch (config->val_bits) {
975 map->format.format_val = regmap_format_8;
976 map->format.parse_val = regmap_parse_8;
977 map->format.parse_inplace = regmap_parse_inplace_noop;
980 switch (val_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_val = regmap_format_16_be;
983 map->format.parse_val = regmap_parse_16_be;
984 map->format.parse_inplace = regmap_parse_16_be_inplace;
986 case REGMAP_ENDIAN_LITTLE:
987 map->format.format_val = regmap_format_16_le;
988 map->format.parse_val = regmap_parse_16_le;
989 map->format.parse_inplace = regmap_parse_16_le_inplace;
991 case REGMAP_ENDIAN_NATIVE:
992 map->format.format_val = regmap_format_16_native;
993 map->format.parse_val = regmap_parse_16_native;
1000 switch (val_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_val = regmap_format_24_be;
1003 map->format.parse_val = regmap_parse_24_be;
1010 switch (val_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_val = regmap_format_32_be;
1013 map->format.parse_val = regmap_parse_32_be;
1014 map->format.parse_inplace = regmap_parse_32_be_inplace;
1016 case REGMAP_ENDIAN_LITTLE:
1017 map->format.format_val = regmap_format_32_le;
1018 map->format.parse_val = regmap_parse_32_le;
1019 map->format.parse_inplace = regmap_parse_32_le_inplace;
1021 case REGMAP_ENDIAN_NATIVE:
1022 map->format.format_val = regmap_format_32_native;
1023 map->format.parse_val = regmap_parse_32_native;
1031 if (map->format.format_write) {
1032 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1033 (val_endian != REGMAP_ENDIAN_BIG))
1035 map->use_single_write = true;
1038 if (!map->format.format_write &&
1039 !(map->format.format_reg && map->format.format_val))
1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1043 if (map->work_buf == NULL) {
1048 if (map->format.format_write) {
1049 map->defer_caching = false;
1050 map->reg_write = _regmap_bus_formatted_write;
1051 } else if (map->format.format_val) {
1052 map->defer_caching = true;
1053 map->reg_write = _regmap_bus_raw_write;
1056 skip_format_initialization:
1058 map->range_tree = RB_ROOT;
1059 for (i = 0; i < config->num_ranges; i++) {
1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1061 struct regmap_range_node *new;
1064 if (range_cfg->range_max < range_cfg->range_min) {
1065 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1066 range_cfg->range_max, range_cfg->range_min);
1070 if (range_cfg->range_max > map->max_register) {
1071 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1072 range_cfg->range_max, map->max_register);
1076 if (range_cfg->selector_reg > map->max_register) {
1078 "Invalid range %d: selector out of map\n", i);
1082 if (range_cfg->window_len == 0) {
1083 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1088 /* Make sure, that this register range has no selector
1089 or data window within its boundary */
1090 for (j = 0; j < config->num_ranges; j++) {
1091 unsigned int sel_reg = config->ranges[j].selector_reg;
1092 unsigned int win_min = config->ranges[j].window_start;
1093 unsigned int win_max = win_min +
1094 config->ranges[j].window_len - 1;
1096 /* Allow data window inside its own virtual range */
1100 if (range_cfg->range_min <= sel_reg &&
1101 sel_reg <= range_cfg->range_max) {
1103 "Range %d: selector for %d in window\n",
1108 if (!(win_max < range_cfg->range_min ||
1109 win_min > range_cfg->range_max)) {
1111 "Range %d: window for %d in window\n",
1117 new = kzalloc(sizeof(*new), GFP_KERNEL);
1124 new->name = range_cfg->name;
1125 new->range_min = range_cfg->range_min;
1126 new->range_max = range_cfg->range_max;
1127 new->selector_reg = range_cfg->selector_reg;
1128 new->selector_mask = range_cfg->selector_mask;
1129 new->selector_shift = range_cfg->selector_shift;
1130 new->window_start = range_cfg->window_start;
1131 new->window_len = range_cfg->window_len;
1133 if (!_regmap_range_add(map, new)) {
1134 dev_err(map->dev, "Failed to add range %d\n", i);
1139 if (map->selector_work_buf == NULL) {
1140 map->selector_work_buf =
1141 kzalloc(map->format.buf_size, GFP_KERNEL);
1142 if (map->selector_work_buf == NULL) {
1149 ret = regcache_init(map, config);
1154 ret = regmap_attach_dev(dev, map, config);
1158 regmap_debugfs_init(map);
1166 regmap_range_exit(map);
1167 kfree(map->work_buf);
1170 hwspin_lock_free(map->hwlock);
1172 kfree_const(map->name);
1176 return ERR_PTR(ret);
1178 EXPORT_SYMBOL_GPL(__regmap_init);
1180 static void devm_regmap_release(struct device *dev, void *res)
1182 regmap_exit(*(struct regmap **)res);
1185 struct regmap *__devm_regmap_init(struct device *dev,
1186 const struct regmap_bus *bus,
1188 const struct regmap_config *config,
1189 struct lock_class_key *lock_key,
1190 const char *lock_name)
1192 struct regmap **ptr, *regmap;
1194 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1196 return ERR_PTR(-ENOMEM);
1198 regmap = __regmap_init(dev, bus, bus_context, config,
1199 lock_key, lock_name);
1200 if (!IS_ERR(regmap)) {
1202 devres_add(dev, ptr);
1209 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1211 static void regmap_field_init(struct regmap_field *rm_field,
1212 struct regmap *regmap, struct reg_field reg_field)
1214 rm_field->regmap = regmap;
1215 rm_field->reg = reg_field.reg;
1216 rm_field->shift = reg_field.lsb;
1217 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1219 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1221 rm_field->id_size = reg_field.id_size;
1222 rm_field->id_offset = reg_field.id_offset;
1226 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1228 * @dev: Device that will be interacted with
1229 * @regmap: regmap bank in which this register field is located.
1230 * @reg_field: Register field with in the bank.
1232 * The return value will be an ERR_PTR() on error or a valid pointer
1233 * to a struct regmap_field. The regmap_field will be automatically freed
1234 * by the device management code.
1236 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1237 struct regmap *regmap, struct reg_field reg_field)
1239 struct regmap_field *rm_field = devm_kzalloc(dev,
1240 sizeof(*rm_field), GFP_KERNEL);
1242 return ERR_PTR(-ENOMEM);
1244 regmap_field_init(rm_field, regmap, reg_field);
1249 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1253 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1255 * @regmap: regmap bank in which this register field is located.
1256 * @rm_field: regmap register fields within the bank.
1257 * @reg_field: Register fields within the bank.
1258 * @num_fields: Number of register fields.
1260 * The return value will be an -ENOMEM on error or zero for success.
1261 * Newly allocated regmap_fields should be freed by calling
1262 * regmap_field_bulk_free()
1264 int regmap_field_bulk_alloc(struct regmap *regmap,
1265 struct regmap_field **rm_field,
1266 const struct reg_field *reg_field,
1269 struct regmap_field *rf;
1272 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1276 for (i = 0; i < num_fields; i++) {
1277 regmap_field_init(&rf[i], regmap, reg_field[i]);
1278 rm_field[i] = &rf[i];
1283 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1286 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1289 * @dev: Device that will be interacted with
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields will be automatically freed by the
1297 * device management code.
1299 int devm_regmap_field_bulk_alloc(struct device *dev,
1300 struct regmap *regmap,
1301 struct regmap_field **rm_field,
1302 const struct reg_field *reg_field,
1305 struct regmap_field *rf;
1308 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1312 for (i = 0; i < num_fields; i++) {
1313 regmap_field_init(&rf[i], regmap, reg_field[i]);
1314 rm_field[i] = &rf[i];
1319 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1322 * regmap_field_bulk_free() - Free register field allocated using
1323 * regmap_field_bulk_alloc.
1325 * @field: regmap fields which should be freed.
1327 void regmap_field_bulk_free(struct regmap_field *field)
1331 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1334 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1335 * devm_regmap_field_bulk_alloc.
1337 * @dev: Device that will be interacted with
1338 * @field: regmap field which should be freed.
1340 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1341 * drivers need not call this function, as the memory allocated via devm
1342 * will be freed as per device-driver life-cycle.
1344 void devm_regmap_field_bulk_free(struct device *dev,
1345 struct regmap_field *field)
1347 devm_kfree(dev, field);
1349 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1352 * devm_regmap_field_free() - Free a register field allocated using
1353 * devm_regmap_field_alloc.
1355 * @dev: Device that will be interacted with
1356 * @field: regmap field which should be freed.
1358 * Free register field allocated using devm_regmap_field_alloc(). Usually
1359 * drivers need not call this function, as the memory allocated via devm
1360 * will be freed as per device-driver life-cyle.
1362 void devm_regmap_field_free(struct device *dev,
1363 struct regmap_field *field)
1365 devm_kfree(dev, field);
1367 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1370 * regmap_field_alloc() - Allocate and initialise a register field.
1372 * @regmap: regmap bank in which this register field is located.
1373 * @reg_field: Register field with in the bank.
1375 * The return value will be an ERR_PTR() on error or a valid pointer
1376 * to a struct regmap_field. The regmap_field should be freed by the
1377 * user once its finished working with it using regmap_field_free().
1379 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1380 struct reg_field reg_field)
1382 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1385 return ERR_PTR(-ENOMEM);
1387 regmap_field_init(rm_field, regmap, reg_field);
1391 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1394 * regmap_field_free() - Free register field allocated using
1395 * regmap_field_alloc.
1397 * @field: regmap field which should be freed.
1399 void regmap_field_free(struct regmap_field *field)
1403 EXPORT_SYMBOL_GPL(regmap_field_free);
1406 * regmap_reinit_cache() - Reinitialise the current register cache
1408 * @map: Register map to operate on.
1409 * @config: New configuration. Only the cache data will be used.
1411 * Discard any existing register cache for the map and initialize a
1412 * new cache. This can be used to restore the cache to defaults or to
1413 * update the cache configuration to reflect runtime discovery of the
1416 * No explicit locking is done here, the user needs to ensure that
1417 * this function will not race with other calls to regmap.
1419 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1424 regmap_debugfs_exit(map);
1426 map->max_register = config->max_register;
1427 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1428 map->writeable_reg = config->writeable_reg;
1429 map->readable_reg = config->readable_reg;
1430 map->volatile_reg = config->volatile_reg;
1431 map->precious_reg = config->precious_reg;
1432 map->writeable_noinc_reg = config->writeable_noinc_reg;
1433 map->readable_noinc_reg = config->readable_noinc_reg;
1434 map->cache_type = config->cache_type;
1436 ret = regmap_set_name(map, config);
1440 regmap_debugfs_init(map);
1442 map->cache_bypass = false;
1443 map->cache_only = false;
1445 return regcache_init(map, config);
1447 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1450 * regmap_exit() - Free a previously allocated register map
1452 * @map: Register map to operate on.
1454 void regmap_exit(struct regmap *map)
1456 struct regmap_async *async;
1458 regmap_detach_dev(map->dev, map);
1461 regmap_debugfs_exit(map);
1462 regmap_range_exit(map);
1463 if (map->bus && map->bus->free_context)
1464 map->bus->free_context(map->bus_context);
1465 kfree(map->work_buf);
1466 while (!list_empty(&map->async_free)) {
1467 async = list_first_entry_or_null(&map->async_free,
1468 struct regmap_async,
1470 list_del(&async->list);
1471 kfree(async->work_buf);
1475 hwspin_lock_free(map->hwlock);
1476 if (map->lock == regmap_lock_mutex)
1477 mutex_destroy(&map->mutex);
1478 kfree_const(map->name);
1480 if (map->bus && map->bus->free_on_exit)
1484 EXPORT_SYMBOL_GPL(regmap_exit);
1486 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1488 struct regmap **r = res;
1494 /* If the user didn't specify a name match any */
1496 return (*r)->name && !strcmp((*r)->name, data);
1502 * dev_get_regmap() - Obtain the regmap (if any) for a device
1504 * @dev: Device to retrieve the map for
1505 * @name: Optional name for the register map, usually NULL.
1507 * Returns the regmap for the device if one is present, or NULL. If
1508 * name is specified then it must match the name specified when
1509 * registering the device, if it is NULL then the first regmap found
1510 * will be used. Devices with multiple register maps are very rare,
1511 * generic code should normally not need to specify a name.
1513 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1515 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1516 dev_get_regmap_match, (void *)name);
1522 EXPORT_SYMBOL_GPL(dev_get_regmap);
1525 * regmap_get_device() - Obtain the device from a regmap
1527 * @map: Register map to operate on.
1529 * Returns the underlying device that the regmap has been created for.
1531 struct device *regmap_get_device(struct regmap *map)
1535 EXPORT_SYMBOL_GPL(regmap_get_device);
1537 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1538 struct regmap_range_node *range,
1539 unsigned int val_num)
1541 void *orig_work_buf;
1542 unsigned int win_offset;
1543 unsigned int win_page;
1547 win_offset = (*reg - range->range_min) % range->window_len;
1548 win_page = (*reg - range->range_min) / range->window_len;
1551 /* Bulk write shouldn't cross range boundary */
1552 if (*reg + val_num - 1 > range->range_max)
1555 /* ... or single page boundary */
1556 if (val_num > range->window_len - win_offset)
1560 /* It is possible to have selector register inside data window.
1561 In that case, selector register is located on every page and
1562 it needs no page switching, when accessed alone. */
1564 range->window_start + win_offset != range->selector_reg) {
1565 /* Use separate work_buf during page switching */
1566 orig_work_buf = map->work_buf;
1567 map->work_buf = map->selector_work_buf;
1569 ret = _regmap_update_bits(map, range->selector_reg,
1570 range->selector_mask,
1571 win_page << range->selector_shift,
1574 map->work_buf = orig_work_buf;
1580 *reg = range->window_start + win_offset;
1585 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1591 if (!mask || !map->work_buf)
1594 buf = map->work_buf;
1596 for (i = 0; i < max_bytes; i++)
1597 buf[i] |= (mask >> (8 * i)) & 0xff;
1600 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1602 reg += map->reg_base;
1604 if (map->format.reg_shift > 0)
1605 reg >>= map->format.reg_shift;
1606 else if (map->format.reg_shift < 0)
1607 reg <<= -(map->format.reg_shift);
1612 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1613 const void *val, size_t val_len, bool noinc)
1615 struct regmap_range_node *range;
1616 unsigned long flags;
1617 void *work_val = map->work_buf + map->format.reg_bytes +
1618 map->format.pad_bytes;
1620 int ret = -ENOTSUPP;
1624 /* Check for unwritable or noinc registers in range
1627 if (!regmap_writeable_noinc(map, reg)) {
1628 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1629 unsigned int element =
1630 reg + regmap_get_offset(map, i);
1631 if (!regmap_writeable(map, element) ||
1632 regmap_writeable_noinc(map, element))
1637 if (!map->cache_bypass && map->format.parse_val) {
1638 unsigned int ival, offset;
1639 int val_bytes = map->format.val_bytes;
1641 /* Cache the last written value for noinc writes */
1642 i = noinc ? val_len - val_bytes : 0;
1643 for (; i < val_len; i += val_bytes) {
1644 ival = map->format.parse_val(val + i);
1645 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1646 ret = regcache_write(map, reg + offset, ival);
1649 "Error in caching of register: %x ret: %d\n",
1654 if (map->cache_only) {
1655 map->cache_dirty = true;
1660 range = _regmap_range_lookup(map, reg);
1662 int val_num = val_len / map->format.val_bytes;
1663 int win_offset = (reg - range->range_min) % range->window_len;
1664 int win_residue = range->window_len - win_offset;
1666 /* If the write goes beyond the end of the window split it */
1667 while (val_num > win_residue) {
1668 dev_dbg(map->dev, "Writing window %d/%zu\n",
1669 win_residue, val_len / map->format.val_bytes);
1670 ret = _regmap_raw_write_impl(map, reg, val,
1672 map->format.val_bytes, noinc);
1677 val_num -= win_residue;
1678 val += win_residue * map->format.val_bytes;
1679 val_len -= win_residue * map->format.val_bytes;
1681 win_offset = (reg - range->range_min) %
1683 win_residue = range->window_len - win_offset;
1686 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1691 reg = regmap_reg_addr(map, reg);
1692 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1693 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1694 map->write_flag_mask);
1697 * Essentially all I/O mechanisms will be faster with a single
1698 * buffer to write. Since register syncs often generate raw
1699 * writes of single registers optimise that case.
1701 if (val != work_val && val_len == map->format.val_bytes) {
1702 memcpy(work_val, val, map->format.val_bytes);
1706 if (map->async && map->bus && map->bus->async_write) {
1707 struct regmap_async *async;
1709 trace_regmap_async_write_start(map, reg, val_len);
1711 spin_lock_irqsave(&map->async_lock, flags);
1712 async = list_first_entry_or_null(&map->async_free,
1713 struct regmap_async,
1716 list_del(&async->list);
1717 spin_unlock_irqrestore(&map->async_lock, flags);
1720 async = map->bus->async_alloc();
1724 async->work_buf = kzalloc(map->format.buf_size,
1725 GFP_KERNEL | GFP_DMA);
1726 if (!async->work_buf) {
1734 /* If the caller supplied the value we can use it safely. */
1735 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1736 map->format.reg_bytes + map->format.val_bytes);
1738 spin_lock_irqsave(&map->async_lock, flags);
1739 list_add_tail(&async->list, &map->async_list);
1740 spin_unlock_irqrestore(&map->async_lock, flags);
1742 if (val != work_val)
1743 ret = map->bus->async_write(map->bus_context,
1745 map->format.reg_bytes +
1746 map->format.pad_bytes,
1747 val, val_len, async);
1749 ret = map->bus->async_write(map->bus_context,
1751 map->format.reg_bytes +
1752 map->format.pad_bytes +
1753 val_len, NULL, 0, async);
1756 dev_err(map->dev, "Failed to schedule write: %d\n",
1759 spin_lock_irqsave(&map->async_lock, flags);
1760 list_move(&async->list, &map->async_free);
1761 spin_unlock_irqrestore(&map->async_lock, flags);
1767 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1769 /* If we're doing a single register write we can probably just
1770 * send the work_buf directly, otherwise try to do a gather
1773 if (val == work_val)
1774 ret = map->write(map->bus_context, map->work_buf,
1775 map->format.reg_bytes +
1776 map->format.pad_bytes +
1778 else if (map->bus && map->bus->gather_write)
1779 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1780 map->format.reg_bytes +
1781 map->format.pad_bytes,
1786 /* If that didn't work fall back on linearising by hand. */
1787 if (ret == -ENOTSUPP) {
1788 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1789 buf = kzalloc(len, GFP_KERNEL);
1793 memcpy(buf, map->work_buf, map->format.reg_bytes);
1794 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1796 ret = map->write(map->bus_context, buf, len);
1799 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1800 /* regcache_drop_region() takes lock that we already have,
1801 * thus call map->cache_ops->drop() directly
1803 if (map->cache_ops && map->cache_ops->drop)
1804 map->cache_ops->drop(map, reg, reg + 1);
1807 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1813 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1815 * @map: Map to check.
1817 bool regmap_can_raw_write(struct regmap *map)
1819 return map->write && map->format.format_val && map->format.format_reg;
1821 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1824 * regmap_get_raw_read_max - Get the maximum size we can read
1826 * @map: Map to check.
1828 size_t regmap_get_raw_read_max(struct regmap *map)
1830 return map->max_raw_read;
1832 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1835 * regmap_get_raw_write_max - Get the maximum size we can read
1837 * @map: Map to check.
1839 size_t regmap_get_raw_write_max(struct regmap *map)
1841 return map->max_raw_write;
1843 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1845 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1849 struct regmap_range_node *range;
1850 struct regmap *map = context;
1852 WARN_ON(!map->format.format_write);
1854 range = _regmap_range_lookup(map, reg);
1856 ret = _regmap_select_page(map, ®, range, 1);
1861 reg = regmap_reg_addr(map, reg);
1862 map->format.format_write(map, reg, val);
1864 trace_regmap_hw_write_start(map, reg, 1);
1866 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1868 trace_regmap_hw_write_done(map, reg, 1);
1873 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1876 struct regmap *map = context;
1877 struct regmap_range_node *range;
1880 range = _regmap_range_lookup(map, reg);
1882 ret = _regmap_select_page(map, ®, range, 1);
1887 reg = regmap_reg_addr(map, reg);
1888 return map->bus->reg_write(map->bus_context, reg, val);
1891 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1894 struct regmap *map = context;
1896 WARN_ON(!map->format.format_val);
1898 map->format.format_val(map->work_buf + map->format.reg_bytes
1899 + map->format.pad_bytes, val, 0);
1900 return _regmap_raw_write_impl(map, reg,
1902 map->format.reg_bytes +
1903 map->format.pad_bytes,
1904 map->format.val_bytes,
1908 static inline void *_regmap_map_get_context(struct regmap *map)
1910 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1913 int _regmap_write(struct regmap *map, unsigned int reg,
1917 void *context = _regmap_map_get_context(map);
1919 if (!regmap_writeable(map, reg))
1922 if (!map->cache_bypass && !map->defer_caching) {
1923 ret = regcache_write(map, reg, val);
1926 if (map->cache_only) {
1927 map->cache_dirty = true;
1932 ret = map->reg_write(context, reg, val);
1934 if (regmap_should_log(map))
1935 dev_info(map->dev, "%x <= %x\n", reg, val);
1937 trace_regmap_reg_write(map, reg, val);
1944 * regmap_write() - Write a value to a single register
1946 * @map: Register map to write to
1947 * @reg: Register to write to
1948 * @val: Value to be written
1950 * A value of zero will be returned on success, a negative errno will
1951 * be returned in error cases.
1953 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1957 if (!IS_ALIGNED(reg, map->reg_stride))
1960 map->lock(map->lock_arg);
1962 ret = _regmap_write(map, reg, val);
1964 map->unlock(map->lock_arg);
1968 EXPORT_SYMBOL_GPL(regmap_write);
1971 * regmap_write_async() - Write a value to a single register asynchronously
1973 * @map: Register map to write to
1974 * @reg: Register to write to
1975 * @val: Value to be written
1977 * A value of zero will be returned on success, a negative errno will
1978 * be returned in error cases.
1980 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1984 if (!IS_ALIGNED(reg, map->reg_stride))
1987 map->lock(map->lock_arg);
1991 ret = _regmap_write(map, reg, val);
1995 map->unlock(map->lock_arg);
1999 EXPORT_SYMBOL_GPL(regmap_write_async);
2001 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2002 const void *val, size_t val_len, bool noinc)
2004 size_t val_bytes = map->format.val_bytes;
2005 size_t val_count = val_len / val_bytes;
2006 size_t chunk_count, chunk_bytes;
2007 size_t chunk_regs = val_count;
2013 if (map->use_single_write)
2015 else if (map->max_raw_write && val_len > map->max_raw_write)
2016 chunk_regs = map->max_raw_write / val_bytes;
2018 chunk_count = val_count / chunk_regs;
2019 chunk_bytes = chunk_regs * val_bytes;
2021 /* Write as many bytes as possible with chunk_size */
2022 for (i = 0; i < chunk_count; i++) {
2023 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2027 reg += regmap_get_offset(map, chunk_regs);
2029 val_len -= chunk_bytes;
2032 /* Write remaining bytes */
2034 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2040 * regmap_raw_write() - Write raw values to one or more registers
2042 * @map: Register map to write to
2043 * @reg: Initial register to write to
2044 * @val: Block of data to be written, laid out for direct transmission to the
2046 * @val_len: Length of data pointed to by val.
2048 * This function is intended to be used for things like firmware
2049 * download where a large block of data needs to be transferred to the
2050 * device. No formatting will be done on the data provided.
2052 * A value of zero will be returned on success, a negative errno will
2053 * be returned in error cases.
2055 int regmap_raw_write(struct regmap *map, unsigned int reg,
2056 const void *val, size_t val_len)
2060 if (!regmap_can_raw_write(map))
2062 if (val_len % map->format.val_bytes)
2065 map->lock(map->lock_arg);
2067 ret = _regmap_raw_write(map, reg, val, val_len, false);
2069 map->unlock(map->lock_arg);
2073 EXPORT_SYMBOL_GPL(regmap_raw_write);
2075 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2076 void *val, unsigned int val_len, bool write)
2078 size_t val_bytes = map->format.val_bytes;
2079 size_t val_count = val_len / val_bytes;
2080 unsigned int lastval;
2087 switch (val_bytes) {
2091 lastval = (unsigned int)u8p[val_count - 1];
2096 lastval = (unsigned int)u16p[val_count - 1];
2101 lastval = (unsigned int)u32p[val_count - 1];
2108 * Update the cache with the last value we write, the rest is just
2109 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2110 * sure a single read from the cache will work.
2113 if (!map->cache_bypass && !map->defer_caching) {
2114 ret = regcache_write(map, reg, lastval);
2117 if (map->cache_only) {
2118 map->cache_dirty = true;
2122 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2124 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2127 if (!ret && regmap_should_log(map)) {
2128 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2129 for (i = 0; i < val_count; i++) {
2130 switch (val_bytes) {
2132 pr_cont("%x", u8p[i]);
2135 pr_cont("%x", u16p[i]);
2138 pr_cont("%x", u32p[i]);
2143 if (i == (val_count - 1))
2154 * regmap_noinc_write(): Write data to a register without incrementing the
2157 * @map: Register map to write to
2158 * @reg: Register to write to
2159 * @val: Pointer to data buffer
2160 * @val_len: Length of output buffer in bytes.
2162 * The regmap API usually assumes that bulk bus write operations will write a
2163 * range of registers. Some devices have certain registers for which a write
2164 * operation can write to an internal FIFO.
2166 * The target register must be volatile but registers after it can be
2167 * completely unrelated cacheable registers.
2169 * This will attempt multiple writes as required to write val_len bytes.
2171 * A value of zero will be returned on success, a negative errno will be
2172 * returned in error cases.
2174 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2175 const void *val, size_t val_len)
2180 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2182 if (val_len % map->format.val_bytes)
2184 if (!IS_ALIGNED(reg, map->reg_stride))
2189 map->lock(map->lock_arg);
2191 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2197 * Use the accelerated operation if we can. The val drops the const
2198 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2200 if (map->bus->reg_noinc_write) {
2201 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2206 if (map->max_raw_write && map->max_raw_write < val_len)
2207 write_len = map->max_raw_write;
2209 write_len = val_len;
2210 ret = _regmap_raw_write(map, reg, val, write_len, true);
2213 val = ((u8 *)val) + write_len;
2214 val_len -= write_len;
2218 map->unlock(map->lock_arg);
2221 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2224 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2227 * @field: Register field to write to
2228 * @mask: Bitmask to change
2229 * @val: Value to be written
2230 * @change: Boolean indicating if a write was done
2231 * @async: Boolean indicating asynchronously
2232 * @force: Boolean indicating use force update
2234 * Perform a read/modify/write cycle on the register field with change,
2235 * async, force option.
2237 * A value of zero will be returned on success, a negative errno will
2238 * be returned in error cases.
2240 int regmap_field_update_bits_base(struct regmap_field *field,
2241 unsigned int mask, unsigned int val,
2242 bool *change, bool async, bool force)
2244 mask = (mask << field->shift) & field->mask;
2246 return regmap_update_bits_base(field->regmap, field->reg,
2247 mask, val << field->shift,
2248 change, async, force);
2250 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2253 * regmap_field_test_bits() - Check if all specified bits are set in a
2256 * @field: Register field to operate on
2257 * @bits: Bits to test
2259 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2260 * tested bits is not set and 1 if all tested bits are set.
2262 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2264 unsigned int val, ret;
2266 ret = regmap_field_read(field, &val);
2270 return (val & bits) == bits;
2272 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2275 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2276 * register field with port ID
2278 * @field: Register field to write to
2280 * @mask: Bitmask to change
2281 * @val: Value to be written
2282 * @change: Boolean indicating if a write was done
2283 * @async: Boolean indicating asynchronously
2284 * @force: Boolean indicating use force update
2286 * A value of zero will be returned on success, a negative errno will
2287 * be returned in error cases.
2289 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2290 unsigned int mask, unsigned int val,
2291 bool *change, bool async, bool force)
2293 if (id >= field->id_size)
2296 mask = (mask << field->shift) & field->mask;
2298 return regmap_update_bits_base(field->regmap,
2299 field->reg + (field->id_offset * id),
2300 mask, val << field->shift,
2301 change, async, force);
2303 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2306 * regmap_bulk_write() - Write multiple registers to the device
2308 * @map: Register map to write to
2309 * @reg: First register to be write from
2310 * @val: Block of data to be written, in native register size for device
2311 * @val_count: Number of registers to write
2313 * This function is intended to be used for writing a large block of
2314 * data to the device either in single transfer or multiple transfer.
2316 * A value of zero will be returned on success, a negative errno will
2317 * be returned in error cases.
2319 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2323 size_t val_bytes = map->format.val_bytes;
2325 if (!IS_ALIGNED(reg, map->reg_stride))
2329 * Some devices don't support bulk write, for them we have a series of
2330 * single write operations.
2332 if (!map->write || !map->format.parse_inplace) {
2333 map->lock(map->lock_arg);
2334 for (i = 0; i < val_count; i++) {
2337 switch (val_bytes) {
2339 ival = *(u8 *)(val + (i * val_bytes));
2342 ival = *(u16 *)(val + (i * val_bytes));
2345 ival = *(u32 *)(val + (i * val_bytes));
2352 ret = _regmap_write(map,
2353 reg + regmap_get_offset(map, i),
2359 map->unlock(map->lock_arg);
2363 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2367 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2368 map->format.parse_inplace(wval + i);
2370 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2376 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2380 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2383 * _regmap_raw_multi_reg_write()
2385 * the (register,newvalue) pairs in regs have not been formatted, but
2386 * they are all in the same page and have been changed to being page
2387 * relative. The page register has been written if that was necessary.
2389 static int _regmap_raw_multi_reg_write(struct regmap *map,
2390 const struct reg_sequence *regs,
2397 size_t val_bytes = map->format.val_bytes;
2398 size_t reg_bytes = map->format.reg_bytes;
2399 size_t pad_bytes = map->format.pad_bytes;
2400 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2401 size_t len = pair_size * num_regs;
2406 buf = kzalloc(len, GFP_KERNEL);
2410 /* We have to linearise by hand. */
2414 for (i = 0; i < num_regs; i++) {
2415 unsigned int reg = regs[i].reg;
2416 unsigned int val = regs[i].def;
2417 trace_regmap_hw_write_start(map, reg, 1);
2418 reg = regmap_reg_addr(map, reg);
2419 map->format.format_reg(u8, reg, map->reg_shift);
2420 u8 += reg_bytes + pad_bytes;
2421 map->format.format_val(u8, val, 0);
2425 *u8 |= map->write_flag_mask;
2427 ret = map->write(map->bus_context, buf, len);
2431 for (i = 0; i < num_regs; i++) {
2432 int reg = regs[i].reg;
2433 trace_regmap_hw_write_done(map, reg, 1);
2438 static unsigned int _regmap_register_page(struct regmap *map,
2440 struct regmap_range_node *range)
2442 unsigned int win_page = (reg - range->range_min) / range->window_len;
2447 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2448 struct reg_sequence *regs,
2453 struct reg_sequence *base;
2454 unsigned int this_page = 0;
2455 unsigned int page_change = 0;
2457 * the set of registers are not neccessarily in order, but
2458 * since the order of write must be preserved this algorithm
2459 * chops the set each time the page changes. This also applies
2460 * if there is a delay required at any point in the sequence.
2463 for (i = 0, n = 0; i < num_regs; i++, n++) {
2464 unsigned int reg = regs[i].reg;
2465 struct regmap_range_node *range;
2467 range = _regmap_range_lookup(map, reg);
2469 unsigned int win_page = _regmap_register_page(map, reg,
2473 this_page = win_page;
2474 if (win_page != this_page) {
2475 this_page = win_page;
2480 /* If we have both a page change and a delay make sure to
2481 * write the regs and apply the delay before we change the
2485 if (page_change || regs[i].delay_us) {
2487 /* For situations where the first write requires
2488 * a delay we need to make sure we don't call
2489 * raw_multi_reg_write with n=0
2490 * This can't occur with page breaks as we
2491 * never write on the first iteration
2493 if (regs[i].delay_us && i == 0)
2496 ret = _regmap_raw_multi_reg_write(map, base, n);
2500 if (regs[i].delay_us) {
2502 fsleep(regs[i].delay_us);
2504 udelay(regs[i].delay_us);
2511 ret = _regmap_select_page(map,
2524 return _regmap_raw_multi_reg_write(map, base, n);
2528 static int _regmap_multi_reg_write(struct regmap *map,
2529 const struct reg_sequence *regs,
2535 if (!map->can_multi_write) {
2536 for (i = 0; i < num_regs; i++) {
2537 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2541 if (regs[i].delay_us) {
2543 fsleep(regs[i].delay_us);
2545 udelay(regs[i].delay_us);
2551 if (!map->format.parse_inplace)
2554 if (map->writeable_reg)
2555 for (i = 0; i < num_regs; i++) {
2556 int reg = regs[i].reg;
2557 if (!map->writeable_reg(map->dev, reg))
2559 if (!IS_ALIGNED(reg, map->reg_stride))
2563 if (!map->cache_bypass) {
2564 for (i = 0; i < num_regs; i++) {
2565 unsigned int val = regs[i].def;
2566 unsigned int reg = regs[i].reg;
2567 ret = regcache_write(map, reg, val);
2570 "Error in caching of register: %x ret: %d\n",
2575 if (map->cache_only) {
2576 map->cache_dirty = true;
2583 for (i = 0; i < num_regs; i++) {
2584 unsigned int reg = regs[i].reg;
2585 struct regmap_range_node *range;
2587 /* Coalesce all the writes between a page break or a delay
2590 range = _regmap_range_lookup(map, reg);
2591 if (range || regs[i].delay_us) {
2592 size_t len = sizeof(struct reg_sequence)*num_regs;
2593 struct reg_sequence *base = kmemdup(regs, len,
2597 ret = _regmap_range_multi_paged_reg_write(map, base,
2604 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2608 * regmap_multi_reg_write() - Write multiple registers to the device
2610 * @map: Register map to write to
2611 * @regs: Array of structures containing register,value to be written
2612 * @num_regs: Number of registers to write
2614 * Write multiple registers to the device where the set of register, value
2615 * pairs are supplied in any order, possibly not all in a single range.
2617 * The 'normal' block write mode will send ultimately send data on the
2618 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2619 * addressed. However, this alternative block multi write mode will send
2620 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2621 * must of course support the mode.
2623 * A value of zero will be returned on success, a negative errno will be
2624 * returned in error cases.
2626 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2631 map->lock(map->lock_arg);
2633 ret = _regmap_multi_reg_write(map, regs, num_regs);
2635 map->unlock(map->lock_arg);
2639 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2642 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2643 * device but not the cache
2645 * @map: Register map to write to
2646 * @regs: Array of structures containing register,value to be written
2647 * @num_regs: Number of registers to write
2649 * Write multiple registers to the device but not the cache where the set
2650 * of register are supplied in any order.
2652 * This function is intended to be used for writing a large block of data
2653 * atomically to the device in single transfer for those I2C client devices
2654 * that implement this alternative block write mode.
2656 * A value of zero will be returned on success, a negative errno will
2657 * be returned in error cases.
2659 int regmap_multi_reg_write_bypassed(struct regmap *map,
2660 const struct reg_sequence *regs,
2666 map->lock(map->lock_arg);
2668 bypass = map->cache_bypass;
2669 map->cache_bypass = true;
2671 ret = _regmap_multi_reg_write(map, regs, num_regs);
2673 map->cache_bypass = bypass;
2675 map->unlock(map->lock_arg);
2679 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2682 * regmap_raw_write_async() - Write raw values to one or more registers
2685 * @map: Register map to write to
2686 * @reg: Initial register to write to
2687 * @val: Block of data to be written, laid out for direct transmission to the
2688 * device. Must be valid until regmap_async_complete() is called.
2689 * @val_len: Length of data pointed to by val.
2691 * This function is intended to be used for things like firmware
2692 * download where a large block of data needs to be transferred to the
2693 * device. No formatting will be done on the data provided.
2695 * If supported by the underlying bus the write will be scheduled
2696 * asynchronously, helping maximise I/O speed on higher speed buses
2697 * like SPI. regmap_async_complete() can be called to ensure that all
2698 * asynchrnous writes have been completed.
2700 * A value of zero will be returned on success, a negative errno will
2701 * be returned in error cases.
2703 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2704 const void *val, size_t val_len)
2708 if (val_len % map->format.val_bytes)
2710 if (!IS_ALIGNED(reg, map->reg_stride))
2713 map->lock(map->lock_arg);
2717 ret = _regmap_raw_write(map, reg, val, val_len, false);
2721 map->unlock(map->lock_arg);
2725 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2727 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2728 unsigned int val_len, bool noinc)
2730 struct regmap_range_node *range;
2736 range = _regmap_range_lookup(map, reg);
2738 ret = _regmap_select_page(map, ®, range,
2739 noinc ? 1 : val_len / map->format.val_bytes);
2744 reg = regmap_reg_addr(map, reg);
2745 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2746 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2747 map->read_flag_mask);
2748 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2750 ret = map->read(map->bus_context, map->work_buf,
2751 map->format.reg_bytes + map->format.pad_bytes,
2754 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2759 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2762 struct regmap *map = context;
2763 struct regmap_range_node *range;
2766 range = _regmap_range_lookup(map, reg);
2768 ret = _regmap_select_page(map, ®, range, 1);
2773 reg = regmap_reg_addr(map, reg);
2774 return map->bus->reg_read(map->bus_context, reg, val);
2777 static int _regmap_bus_read(void *context, unsigned int reg,
2781 struct regmap *map = context;
2782 void *work_val = map->work_buf + map->format.reg_bytes +
2783 map->format.pad_bytes;
2785 if (!map->format.parse_val)
2788 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2790 *val = map->format.parse_val(work_val);
2795 static int _regmap_read(struct regmap *map, unsigned int reg,
2799 void *context = _regmap_map_get_context(map);
2801 if (!map->cache_bypass) {
2802 ret = regcache_read(map, reg, val);
2807 if (map->cache_only)
2810 if (!regmap_readable(map, reg))
2813 ret = map->reg_read(context, reg, val);
2815 if (regmap_should_log(map))
2816 dev_info(map->dev, "%x => %x\n", reg, *val);
2818 trace_regmap_reg_read(map, reg, *val);
2820 if (!map->cache_bypass)
2821 regcache_write(map, reg, *val);
2828 * regmap_read() - Read a value from a single register
2830 * @map: Register map to read from
2831 * @reg: Register to be read from
2832 * @val: Pointer to store read value
2834 * A value of zero will be returned on success, a negative errno will
2835 * be returned in error cases.
2837 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2841 if (!IS_ALIGNED(reg, map->reg_stride))
2844 map->lock(map->lock_arg);
2846 ret = _regmap_read(map, reg, val);
2848 map->unlock(map->lock_arg);
2852 EXPORT_SYMBOL_GPL(regmap_read);
2855 * regmap_read_bypassed() - Read a value from a single register direct
2856 * from the device, bypassing the cache
2858 * @map: Register map to read from
2859 * @reg: Register to be read from
2860 * @val: Pointer to store read value
2862 * A value of zero will be returned on success, a negative errno will
2863 * be returned in error cases.
2865 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2868 bool bypass, cache_only;
2870 if (!IS_ALIGNED(reg, map->reg_stride))
2873 map->lock(map->lock_arg);
2875 bypass = map->cache_bypass;
2876 cache_only = map->cache_only;
2877 map->cache_bypass = true;
2878 map->cache_only = false;
2880 ret = _regmap_read(map, reg, val);
2882 map->cache_bypass = bypass;
2883 map->cache_only = cache_only;
2885 map->unlock(map->lock_arg);
2889 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2892 * regmap_raw_read() - Read raw data from the device
2894 * @map: Register map to read from
2895 * @reg: First register to be read from
2896 * @val: Pointer to store read value
2897 * @val_len: Size of data to read
2899 * A value of zero will be returned on success, a negative errno will
2900 * be returned in error cases.
2902 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2905 size_t val_bytes = map->format.val_bytes;
2906 size_t val_count = val_len / val_bytes;
2910 if (val_len % map->format.val_bytes)
2912 if (!IS_ALIGNED(reg, map->reg_stride))
2917 map->lock(map->lock_arg);
2919 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2920 map->cache_type == REGCACHE_NONE) {
2921 size_t chunk_count, chunk_bytes;
2922 size_t chunk_regs = val_count;
2924 if (!map->cache_bypass && map->cache_only) {
2934 if (map->use_single_read)
2936 else if (map->max_raw_read && val_len > map->max_raw_read)
2937 chunk_regs = map->max_raw_read / val_bytes;
2939 chunk_count = val_count / chunk_regs;
2940 chunk_bytes = chunk_regs * val_bytes;
2942 /* Read bytes that fit into whole chunks */
2943 for (i = 0; i < chunk_count; i++) {
2944 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2948 reg += regmap_get_offset(map, chunk_regs);
2950 val_len -= chunk_bytes;
2953 /* Read remaining bytes */
2955 ret = _regmap_raw_read(map, reg, val, val_len, false);
2960 /* Otherwise go word by word for the cache; should be low
2961 * cost as we expect to hit the cache.
2963 for (i = 0; i < val_count; i++) {
2964 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2969 map->format.format_val(val + (i * val_bytes), v, 0);
2974 map->unlock(map->lock_arg);
2978 EXPORT_SYMBOL_GPL(regmap_raw_read);
2981 * regmap_noinc_read(): Read data from a register without incrementing the
2984 * @map: Register map to read from
2985 * @reg: Register to read from
2986 * @val: Pointer to data buffer
2987 * @val_len: Length of output buffer in bytes.
2989 * The regmap API usually assumes that bulk read operations will read a
2990 * range of registers. Some devices have certain registers for which a read
2991 * operation read will read from an internal FIFO.
2993 * The target register must be volatile but registers after it can be
2994 * completely unrelated cacheable registers.
2996 * This will attempt multiple reads as required to read val_len bytes.
2998 * A value of zero will be returned on success, a negative errno will be
2999 * returned in error cases.
3001 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3002 void *val, size_t val_len)
3010 if (val_len % map->format.val_bytes)
3012 if (!IS_ALIGNED(reg, map->reg_stride))
3017 map->lock(map->lock_arg);
3019 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3025 * We have not defined the FIFO semantics for cache, as the
3026 * cache is just one value deep. Should we return the last
3027 * written value? Just avoid this by always reading the FIFO
3028 * even when using cache. Cache only will not work.
3030 if (!map->cache_bypass && map->cache_only) {
3035 /* Use the accelerated operation if we can */
3036 if (map->bus->reg_noinc_read) {
3037 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3042 if (map->max_raw_read && map->max_raw_read < val_len)
3043 read_len = map->max_raw_read;
3046 ret = _regmap_raw_read(map, reg, val, read_len, true);
3049 val = ((u8 *)val) + read_len;
3050 val_len -= read_len;
3054 map->unlock(map->lock_arg);
3057 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3060 * regmap_field_read(): Read a value to a single register field
3062 * @field: Register field to read from
3063 * @val: Pointer to store read value
3065 * A value of zero will be returned on success, a negative errno will
3066 * be returned in error cases.
3068 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3071 unsigned int reg_val;
3072 ret = regmap_read(field->regmap, field->reg, ®_val);
3076 reg_val &= field->mask;
3077 reg_val >>= field->shift;
3082 EXPORT_SYMBOL_GPL(regmap_field_read);
3085 * regmap_fields_read() - Read a value to a single register field with port ID
3087 * @field: Register field to read from
3089 * @val: Pointer to store read value
3091 * A value of zero will be returned on success, a negative errno will
3092 * be returned in error cases.
3094 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3098 unsigned int reg_val;
3100 if (id >= field->id_size)
3103 ret = regmap_read(field->regmap,
3104 field->reg + (field->id_offset * id),
3109 reg_val &= field->mask;
3110 reg_val >>= field->shift;
3115 EXPORT_SYMBOL_GPL(regmap_fields_read);
3117 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3118 const unsigned int *regs, void *val, size_t val_count)
3125 map->lock(map->lock_arg);
3127 for (i = 0; i < val_count; i++) {
3131 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3135 ret = _regmap_read(map, regs[i], &ival);
3137 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3142 switch (map->format.val_bytes) {
3158 map->unlock(map->lock_arg);
3163 * regmap_bulk_read() - Read multiple sequential registers from the device
3165 * @map: Register map to read from
3166 * @reg: First register to be read from
3167 * @val: Pointer to store read value, in native register size for device
3168 * @val_count: Number of registers to read
3170 * A value of zero will be returned on success, a negative errno will
3171 * be returned in error cases.
3173 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3177 size_t val_bytes = map->format.val_bytes;
3178 bool vol = regmap_volatile_range(map, reg, val_count);
3180 if (!IS_ALIGNED(reg, map->reg_stride))
3185 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3186 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3190 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3191 map->format.parse_inplace(val + i);
3193 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3196 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3199 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3202 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3204 * @map: Register map to read from
3205 * @regs: Array of registers to read from
3206 * @val: Pointer to store read value, in native register size for device
3207 * @val_count: Number of registers to read
3209 * A value of zero will be returned on success, a negative errno will
3210 * be returned in error cases.
3212 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val,
3218 return _regmap_bulk_read(map, 0, regs, val, val_count);
3220 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3222 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3223 unsigned int mask, unsigned int val,
3224 bool *change, bool force_write)
3227 unsigned int tmp, orig;
3232 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3233 reg = regmap_reg_addr(map, reg);
3234 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235 if (ret == 0 && change)
3238 ret = _regmap_read(map, reg, &orig);
3245 if (force_write || (tmp != orig) || map->force_write_field) {
3246 ret = _regmap_write(map, reg, tmp);
3247 if (ret == 0 && change)
3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3258 * @map: Register map to update
3259 * @reg: Register to update
3260 * @mask: Bitmask to change
3261 * @val: New value for bitmask
3262 * @change: Boolean indicating if a write was done
3263 * @async: Boolean indicating asynchronously
3264 * @force: Boolean indicating use force update
3266 * Perform a read/modify/write cycle on a register map with change, async, force
3271 * With most buses the read must be done synchronously so this is most useful
3272 * for devices with a cache which do not need to interact with the hardware to
3273 * determine the current register value.
3275 * Returns zero for success, a negative number on error.
3277 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278 unsigned int mask, unsigned int val,
3279 bool *change, bool async, bool force)
3283 map->lock(map->lock_arg);
3287 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3291 map->unlock(map->lock_arg);
3295 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3298 * regmap_test_bits() - Check if all specified bits are set in a register.
3300 * @map: Register map to operate on
3301 * @reg: Register to read from
3302 * @bits: Bits to test
3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305 * bits are set and a negative error number if the underlying regmap_read()
3308 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3310 unsigned int val, ret;
3312 ret = regmap_read(map, reg, &val);
3316 return (val & bits) == bits;
3318 EXPORT_SYMBOL_GPL(regmap_test_bits);
3320 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3322 struct regmap *map = async->map;
3325 trace_regmap_async_io_complete(map);
3327 spin_lock(&map->async_lock);
3328 list_move(&async->list, &map->async_free);
3329 wake = list_empty(&map->async_list);
3332 map->async_ret = ret;
3334 spin_unlock(&map->async_lock);
3337 wake_up(&map->async_waitq);
3339 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3341 static int regmap_async_is_done(struct regmap *map)
3343 unsigned long flags;
3346 spin_lock_irqsave(&map->async_lock, flags);
3347 ret = list_empty(&map->async_list);
3348 spin_unlock_irqrestore(&map->async_lock, flags);
3354 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3356 * @map: Map to operate on.
3358 * Blocks until any pending asynchronous I/O has completed. Returns
3359 * an error code for any failed I/O operations.
3361 int regmap_async_complete(struct regmap *map)
3363 unsigned long flags;
3366 /* Nothing to do with no async support */
3367 if (!map->bus || !map->bus->async_write)
3370 trace_regmap_async_complete_start(map);
3372 wait_event(map->async_waitq, regmap_async_is_done(map));
3374 spin_lock_irqsave(&map->async_lock, flags);
3375 ret = map->async_ret;
3377 spin_unlock_irqrestore(&map->async_lock, flags);
3379 trace_regmap_async_complete_done(map);
3383 EXPORT_SYMBOL_GPL(regmap_async_complete);
3386 * regmap_register_patch - Register and apply register updates to be applied
3387 * on device initialistion
3389 * @map: Register map to apply updates to.
3390 * @regs: Values to update.
3391 * @num_regs: Number of entries in regs.
3393 * Register a set of register updates to be applied to the device
3394 * whenever the device registers are synchronised with the cache and
3395 * apply them immediately. Typically this is used to apply
3396 * corrections to be applied to the device defaults on startup, such
3397 * as the updates some vendors provide to undocumented registers.
3399 * The caller must ensure that this function cannot be called
3400 * concurrently with either itself or regcache_sync().
3402 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3405 struct reg_sequence *p;
3409 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3413 p = krealloc(map->patch,
3414 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3417 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3419 map->patch_regs += num_regs;
3424 map->lock(map->lock_arg);
3426 bypass = map->cache_bypass;
3428 map->cache_bypass = true;
3431 ret = _regmap_multi_reg_write(map, regs, num_regs);
3434 map->cache_bypass = bypass;
3436 map->unlock(map->lock_arg);
3438 regmap_async_complete(map);
3442 EXPORT_SYMBOL_GPL(regmap_register_patch);
3445 * regmap_get_val_bytes() - Report the size of a register value
3447 * @map: Register map to operate on.
3449 * Report the size of a register value, mainly intended to for use by
3450 * generic infrastructure built on top of regmap.
3452 int regmap_get_val_bytes(struct regmap *map)
3454 if (map->format.format_write)
3457 return map->format.val_bytes;
3459 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3462 * regmap_get_max_register() - Report the max register value
3464 * @map: Register map to operate on.
3466 * Report the max register value, mainly intended to for use by
3467 * generic infrastructure built on top of regmap.
3469 int regmap_get_max_register(struct regmap *map)
3471 return map->max_register_is_set ? map->max_register : -EINVAL;
3473 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3476 * regmap_get_reg_stride() - Report the register address stride
3478 * @map: Register map to operate on.
3480 * Report the register address stride, mainly intended to for use by
3481 * generic infrastructure built on top of regmap.
3483 int regmap_get_reg_stride(struct regmap *map)
3485 return map->reg_stride;
3487 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3490 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3492 * @map: Register map to operate on.
3494 * Returns true if an access to the register might sleep, else false.
3496 bool regmap_might_sleep(struct regmap *map)
3498 return map->can_sleep;
3500 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3502 int regmap_parse_val(struct regmap *map, const void *buf,
3505 if (!map->format.parse_val)
3508 *val = map->format.parse_val(buf);
3512 EXPORT_SYMBOL_GPL(regmap_parse_val);
3514 static int __init regmap_initcall(void)
3516 regmap_debugfs_initcall();
3520 postcore_initcall(regmap_initcall);