mm, hotplug: avoid compiling memory hotremove functions when disabled
[linux-2.6-block.git] / drivers / base / memory.c
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME       "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37         return section_nr / sections_per_block;
38 }
39
40 static struct bus_type memory_subsys = {
41         .name = MEMORY_CLASS_NAME,
42         .dev_name = MEMORY_CLASS_NAME,
43 };
44
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63         return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69         atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73 static void memory_block_release(struct device *dev)
74 {
75         struct memory_block *mem = container_of(dev, struct memory_block, dev);
76
77         kfree(mem);
78 }
79
80 /*
81  * register_memory - Setup a sysfs device for a memory block
82  */
83 static
84 int register_memory(struct memory_block *memory)
85 {
86         int error;
87
88         memory->dev.bus = &memory_subsys;
89         memory->dev.id = memory->start_section_nr / sections_per_block;
90         memory->dev.release = memory_block_release;
91
92         error = device_register(&memory->dev);
93         return error;
94 }
95
96 unsigned long __weak memory_block_size_bytes(void)
97 {
98         return MIN_MEMORY_BLOCK_SIZE;
99 }
100
101 static unsigned long get_memory_block_size(void)
102 {
103         unsigned long block_sz;
104
105         block_sz = memory_block_size_bytes();
106
107         /* Validate blk_sz is a power of 2 and not less than section size */
108         if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
109                 WARN_ON(1);
110                 block_sz = MIN_MEMORY_BLOCK_SIZE;
111         }
112
113         return block_sz;
114 }
115
116 /*
117  * use this as the physical section index that this memsection
118  * uses.
119  */
120
121 static ssize_t show_mem_start_phys_index(struct device *dev,
122                         struct device_attribute *attr, char *buf)
123 {
124         struct memory_block *mem =
125                 container_of(dev, struct memory_block, dev);
126         unsigned long phys_index;
127
128         phys_index = mem->start_section_nr / sections_per_block;
129         return sprintf(buf, "%08lx\n", phys_index);
130 }
131
132 static ssize_t show_mem_end_phys_index(struct device *dev,
133                         struct device_attribute *attr, char *buf)
134 {
135         struct memory_block *mem =
136                 container_of(dev, struct memory_block, dev);
137         unsigned long phys_index;
138
139         phys_index = mem->end_section_nr / sections_per_block;
140         return sprintf(buf, "%08lx\n", phys_index);
141 }
142
143 /*
144  * Show whether the section of memory is likely to be hot-removable
145  */
146 static ssize_t show_mem_removable(struct device *dev,
147                         struct device_attribute *attr, char *buf)
148 {
149         unsigned long i, pfn;
150         int ret = 1;
151         struct memory_block *mem =
152                 container_of(dev, struct memory_block, dev);
153
154         for (i = 0; i < sections_per_block; i++) {
155                 pfn = section_nr_to_pfn(mem->start_section_nr + i);
156                 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
157         }
158
159         return sprintf(buf, "%d\n", ret);
160 }
161
162 /*
163  * online, offline, going offline, etc.
164  */
165 static ssize_t show_mem_state(struct device *dev,
166                         struct device_attribute *attr, char *buf)
167 {
168         struct memory_block *mem =
169                 container_of(dev, struct memory_block, dev);
170         ssize_t len = 0;
171
172         /*
173          * We can probably put these states in a nice little array
174          * so that they're not open-coded
175          */
176         switch (mem->state) {
177                 case MEM_ONLINE:
178                         len = sprintf(buf, "online\n");
179                         break;
180                 case MEM_OFFLINE:
181                         len = sprintf(buf, "offline\n");
182                         break;
183                 case MEM_GOING_OFFLINE:
184                         len = sprintf(buf, "going-offline\n");
185                         break;
186                 default:
187                         len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
188                                         mem->state);
189                         WARN_ON(1);
190                         break;
191         }
192
193         return len;
194 }
195
196 int memory_notify(unsigned long val, void *v)
197 {
198         return blocking_notifier_call_chain(&memory_chain, val, v);
199 }
200
201 int memory_isolate_notify(unsigned long val, void *v)
202 {
203         return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
204 }
205
206 /*
207  * The probe routines leave the pages reserved, just as the bootmem code does.
208  * Make sure they're still that way.
209  */
210 static bool pages_correctly_reserved(unsigned long start_pfn,
211                                         unsigned long nr_pages)
212 {
213         int i, j;
214         struct page *page;
215         unsigned long pfn = start_pfn;
216
217         /*
218          * memmap between sections is not contiguous except with
219          * SPARSEMEM_VMEMMAP. We lookup the page once per section
220          * and assume memmap is contiguous within each section
221          */
222         for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
223                 if (WARN_ON_ONCE(!pfn_valid(pfn)))
224                         return false;
225                 page = pfn_to_page(pfn);
226
227                 for (j = 0; j < PAGES_PER_SECTION; j++) {
228                         if (PageReserved(page + j))
229                                 continue;
230
231                         printk(KERN_WARNING "section number %ld page number %d "
232                                 "not reserved, was it already online?\n",
233                                 pfn_to_section_nr(pfn), j);
234
235                         return false;
236                 }
237         }
238
239         return true;
240 }
241
242 /*
243  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
244  * OK to have direct references to sparsemem variables in here.
245  */
246 static int
247 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
248 {
249         unsigned long start_pfn;
250         unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
251         struct page *first_page;
252         int ret;
253
254         first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
255         start_pfn = page_to_pfn(first_page);
256
257         switch (action) {
258                 case MEM_ONLINE:
259                         if (!pages_correctly_reserved(start_pfn, nr_pages))
260                                 return -EBUSY;
261
262                         ret = online_pages(start_pfn, nr_pages, online_type);
263                         break;
264                 case MEM_OFFLINE:
265                         ret = offline_pages(start_pfn, nr_pages);
266                         break;
267                 default:
268                         WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
269                              "%ld\n", __func__, phys_index, action, action);
270                         ret = -EINVAL;
271         }
272
273         return ret;
274 }
275
276 static int __memory_block_change_state(struct memory_block *mem,
277                 unsigned long to_state, unsigned long from_state_req,
278                 int online_type)
279 {
280         int ret = 0;
281
282         if (mem->state != from_state_req) {
283                 ret = -EINVAL;
284                 goto out;
285         }
286
287         if (to_state == MEM_OFFLINE)
288                 mem->state = MEM_GOING_OFFLINE;
289
290         ret = memory_block_action(mem->start_section_nr, to_state, online_type);
291
292         if (ret) {
293                 mem->state = from_state_req;
294                 goto out;
295         }
296
297         mem->state = to_state;
298         switch (mem->state) {
299         case MEM_OFFLINE:
300                 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
301                 break;
302         case MEM_ONLINE:
303                 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
304                 break;
305         default:
306                 break;
307         }
308 out:
309         return ret;
310 }
311
312 static int memory_block_change_state(struct memory_block *mem,
313                 unsigned long to_state, unsigned long from_state_req,
314                 int online_type)
315 {
316         int ret;
317
318         mutex_lock(&mem->state_mutex);
319         ret = __memory_block_change_state(mem, to_state, from_state_req,
320                                           online_type);
321         mutex_unlock(&mem->state_mutex);
322
323         return ret;
324 }
325 static ssize_t
326 store_mem_state(struct device *dev,
327                 struct device_attribute *attr, const char *buf, size_t count)
328 {
329         struct memory_block *mem;
330         int ret = -EINVAL;
331
332         mem = container_of(dev, struct memory_block, dev);
333
334         if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
335                 ret = memory_block_change_state(mem, MEM_ONLINE,
336                                                 MEM_OFFLINE, ONLINE_KERNEL);
337         else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
338                 ret = memory_block_change_state(mem, MEM_ONLINE,
339                                                 MEM_OFFLINE, ONLINE_MOVABLE);
340         else if (!strncmp(buf, "online", min_t(int, count, 6)))
341                 ret = memory_block_change_state(mem, MEM_ONLINE,
342                                                 MEM_OFFLINE, ONLINE_KEEP);
343         else if(!strncmp(buf, "offline", min_t(int, count, 7)))
344                 ret = memory_block_change_state(mem, MEM_OFFLINE,
345                                                 MEM_ONLINE, -1);
346
347         if (ret)
348                 return ret;
349         return count;
350 }
351
352 /*
353  * phys_device is a bad name for this.  What I really want
354  * is a way to differentiate between memory ranges that
355  * are part of physical devices that constitute
356  * a complete removable unit or fru.
357  * i.e. do these ranges belong to the same physical device,
358  * s.t. if I offline all of these sections I can then
359  * remove the physical device?
360  */
361 static ssize_t show_phys_device(struct device *dev,
362                                 struct device_attribute *attr, char *buf)
363 {
364         struct memory_block *mem =
365                 container_of(dev, struct memory_block, dev);
366         return sprintf(buf, "%d\n", mem->phys_device);
367 }
368
369 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
370 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
371 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
372 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
373 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
374
375 #define mem_create_simple_file(mem, attr_name)  \
376         device_create_file(&mem->dev, &dev_attr_##attr_name)
377 #define mem_remove_simple_file(mem, attr_name)  \
378         device_remove_file(&mem->dev, &dev_attr_##attr_name)
379
380 /*
381  * Block size attribute stuff
382  */
383 static ssize_t
384 print_block_size(struct device *dev, struct device_attribute *attr,
385                  char *buf)
386 {
387         return sprintf(buf, "%lx\n", get_memory_block_size());
388 }
389
390 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
391
392 static int block_size_init(void)
393 {
394         return device_create_file(memory_subsys.dev_root,
395                                   &dev_attr_block_size_bytes);
396 }
397
398 /*
399  * Some architectures will have custom drivers to do this, and
400  * will not need to do it from userspace.  The fake hot-add code
401  * as well as ppc64 will do all of their discovery in userspace
402  * and will require this interface.
403  */
404 #ifdef CONFIG_ARCH_MEMORY_PROBE
405 static ssize_t
406 memory_probe_store(struct device *dev, struct device_attribute *attr,
407                    const char *buf, size_t count)
408 {
409         u64 phys_addr;
410         int nid;
411         int i, ret;
412         unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
413
414         phys_addr = simple_strtoull(buf, NULL, 0);
415
416         if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
417                 return -EINVAL;
418
419         for (i = 0; i < sections_per_block; i++) {
420                 nid = memory_add_physaddr_to_nid(phys_addr);
421                 ret = add_memory(nid, phys_addr,
422                                  PAGES_PER_SECTION << PAGE_SHIFT);
423                 if (ret)
424                         goto out;
425
426                 phys_addr += MIN_MEMORY_BLOCK_SIZE;
427         }
428
429         ret = count;
430 out:
431         return ret;
432 }
433 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
434
435 static int memory_probe_init(void)
436 {
437         return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
438 }
439 #else
440 static inline int memory_probe_init(void)
441 {
442         return 0;
443 }
444 #endif
445
446 #ifdef CONFIG_MEMORY_FAILURE
447 /*
448  * Support for offlining pages of memory
449  */
450
451 /* Soft offline a page */
452 static ssize_t
453 store_soft_offline_page(struct device *dev,
454                         struct device_attribute *attr,
455                         const char *buf, size_t count)
456 {
457         int ret;
458         u64 pfn;
459         if (!capable(CAP_SYS_ADMIN))
460                 return -EPERM;
461         if (strict_strtoull(buf, 0, &pfn) < 0)
462                 return -EINVAL;
463         pfn >>= PAGE_SHIFT;
464         if (!pfn_valid(pfn))
465                 return -ENXIO;
466         ret = soft_offline_page(pfn_to_page(pfn), 0);
467         return ret == 0 ? count : ret;
468 }
469
470 /* Forcibly offline a page, including killing processes. */
471 static ssize_t
472 store_hard_offline_page(struct device *dev,
473                         struct device_attribute *attr,
474                         const char *buf, size_t count)
475 {
476         int ret;
477         u64 pfn;
478         if (!capable(CAP_SYS_ADMIN))
479                 return -EPERM;
480         if (strict_strtoull(buf, 0, &pfn) < 0)
481                 return -EINVAL;
482         pfn >>= PAGE_SHIFT;
483         ret = memory_failure(pfn, 0, 0);
484         return ret ? ret : count;
485 }
486
487 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
488 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
489
490 static __init int memory_fail_init(void)
491 {
492         int err;
493
494         err = device_create_file(memory_subsys.dev_root,
495                                 &dev_attr_soft_offline_page);
496         if (!err)
497                 err = device_create_file(memory_subsys.dev_root,
498                                 &dev_attr_hard_offline_page);
499         return err;
500 }
501 #else
502 static inline int memory_fail_init(void)
503 {
504         return 0;
505 }
506 #endif
507
508 /*
509  * Note that phys_device is optional.  It is here to allow for
510  * differentiation between which *physical* devices each
511  * section belongs to...
512  */
513 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
514 {
515         return 0;
516 }
517
518 /*
519  * A reference for the returned object is held and the reference for the
520  * hinted object is released.
521  */
522 struct memory_block *find_memory_block_hinted(struct mem_section *section,
523                                               struct memory_block *hint)
524 {
525         int block_id = base_memory_block_id(__section_nr(section));
526         struct device *hintdev = hint ? &hint->dev : NULL;
527         struct device *dev;
528
529         dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
530         if (hint)
531                 put_device(&hint->dev);
532         if (!dev)
533                 return NULL;
534         return container_of(dev, struct memory_block, dev);
535 }
536
537 /*
538  * For now, we have a linear search to go find the appropriate
539  * memory_block corresponding to a particular phys_index. If
540  * this gets to be a real problem, we can always use a radix
541  * tree or something here.
542  *
543  * This could be made generic for all device subsystems.
544  */
545 struct memory_block *find_memory_block(struct mem_section *section)
546 {
547         return find_memory_block_hinted(section, NULL);
548 }
549
550 static int init_memory_block(struct memory_block **memory,
551                              struct mem_section *section, unsigned long state)
552 {
553         struct memory_block *mem;
554         unsigned long start_pfn;
555         int scn_nr;
556         int ret = 0;
557
558         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
559         if (!mem)
560                 return -ENOMEM;
561
562         scn_nr = __section_nr(section);
563         mem->start_section_nr =
564                         base_memory_block_id(scn_nr) * sections_per_block;
565         mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
566         mem->state = state;
567         mem->section_count++;
568         mutex_init(&mem->state_mutex);
569         start_pfn = section_nr_to_pfn(mem->start_section_nr);
570         mem->phys_device = arch_get_memory_phys_device(start_pfn);
571
572         ret = register_memory(mem);
573         if (!ret)
574                 ret = mem_create_simple_file(mem, phys_index);
575         if (!ret)
576                 ret = mem_create_simple_file(mem, end_phys_index);
577         if (!ret)
578                 ret = mem_create_simple_file(mem, state);
579         if (!ret)
580                 ret = mem_create_simple_file(mem, phys_device);
581         if (!ret)
582                 ret = mem_create_simple_file(mem, removable);
583
584         *memory = mem;
585         return ret;
586 }
587
588 static int add_memory_section(int nid, struct mem_section *section,
589                         struct memory_block **mem_p,
590                         unsigned long state, enum mem_add_context context)
591 {
592         struct memory_block *mem = NULL;
593         int scn_nr = __section_nr(section);
594         int ret = 0;
595
596         mutex_lock(&mem_sysfs_mutex);
597
598         if (context == BOOT) {
599                 /* same memory block ? */
600                 if (mem_p && *mem_p)
601                         if (scn_nr >= (*mem_p)->start_section_nr &&
602                             scn_nr <= (*mem_p)->end_section_nr) {
603                                 mem = *mem_p;
604                                 kobject_get(&mem->dev.kobj);
605                         }
606         } else
607                 mem = find_memory_block(section);
608
609         if (mem) {
610                 mem->section_count++;
611                 kobject_put(&mem->dev.kobj);
612         } else {
613                 ret = init_memory_block(&mem, section, state);
614                 /* store memory_block pointer for next loop */
615                 if (!ret && context == BOOT)
616                         if (mem_p)
617                                 *mem_p = mem;
618         }
619
620         if (!ret) {
621                 if (context == HOTPLUG &&
622                     mem->section_count == sections_per_block)
623                         ret = register_mem_sect_under_node(mem, nid);
624         }
625
626         mutex_unlock(&mem_sysfs_mutex);
627         return ret;
628 }
629
630 /*
631  * need an interface for the VM to add new memory regions,
632  * but without onlining it.
633  */
634 int register_new_memory(int nid, struct mem_section *section)
635 {
636         return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
637 }
638
639 #ifdef CONFIG_MEMORY_HOTREMOVE
640 static void
641 unregister_memory(struct memory_block *memory)
642 {
643         BUG_ON(memory->dev.bus != &memory_subsys);
644
645         /* drop the ref. we got in remove_memory_block() */
646         kobject_put(&memory->dev.kobj);
647         device_unregister(&memory->dev);
648 }
649
650 static int remove_memory_block(unsigned long node_id,
651                                struct mem_section *section, int phys_device)
652 {
653         struct memory_block *mem;
654
655         mutex_lock(&mem_sysfs_mutex);
656         mem = find_memory_block(section);
657         unregister_mem_sect_under_nodes(mem, __section_nr(section));
658
659         mem->section_count--;
660         if (mem->section_count == 0) {
661                 mem_remove_simple_file(mem, phys_index);
662                 mem_remove_simple_file(mem, end_phys_index);
663                 mem_remove_simple_file(mem, state);
664                 mem_remove_simple_file(mem, phys_device);
665                 mem_remove_simple_file(mem, removable);
666                 unregister_memory(mem);
667         } else
668                 kobject_put(&mem->dev.kobj);
669
670         mutex_unlock(&mem_sysfs_mutex);
671         return 0;
672 }
673
674 int unregister_memory_section(struct mem_section *section)
675 {
676         if (!present_section(section))
677                 return -EINVAL;
678
679         return remove_memory_block(0, section, 0);
680 }
681 #endif /* CONFIG_MEMORY_HOTREMOVE */
682
683 /*
684  * offline one memory block. If the memory block has been offlined, do nothing.
685  */
686 int offline_memory_block(struct memory_block *mem)
687 {
688         int ret = 0;
689
690         mutex_lock(&mem->state_mutex);
691         if (mem->state != MEM_OFFLINE)
692                 ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
693         mutex_unlock(&mem->state_mutex);
694
695         return ret;
696 }
697
698 /* return true if the memory block is offlined, otherwise, return false */
699 bool is_memblock_offlined(struct memory_block *mem)
700 {
701         return mem->state == MEM_OFFLINE;
702 }
703
704 /*
705  * Initialize the sysfs support for memory devices...
706  */
707 int __init memory_dev_init(void)
708 {
709         unsigned int i;
710         int ret;
711         int err;
712         unsigned long block_sz;
713         struct memory_block *mem = NULL;
714
715         ret = subsys_system_register(&memory_subsys, NULL);
716         if (ret)
717                 goto out;
718
719         block_sz = get_memory_block_size();
720         sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
721
722         /*
723          * Create entries for memory sections that were found
724          * during boot and have been initialized
725          */
726         for (i = 0; i < NR_MEM_SECTIONS; i++) {
727                 if (!present_section_nr(i))
728                         continue;
729                 /* don't need to reuse memory_block if only one per block */
730                 err = add_memory_section(0, __nr_to_section(i),
731                                  (sections_per_block == 1) ? NULL : &mem,
732                                          MEM_ONLINE,
733                                          BOOT);
734                 if (!ret)
735                         ret = err;
736         }
737
738         err = memory_probe_init();
739         if (!ret)
740                 ret = err;
741         err = memory_fail_init();
742         if (!ret)
743                 ret = err;
744         err = block_size_init();
745         if (!ret)
746                 ret = err;
747 out:
748         if (ret)
749                 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
750         return ret;
751 }