drm/komeda: Computing image enhancer internally
[linux-2.6-block.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31         return ci_cacheinfo(cpu);
32 }
33
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36                                            struct cacheinfo *sib_leaf)
37 {
38         return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43         const char *size_prop;
44         const char *line_size_props[2];
45         const char *nr_sets_prop;
46 };
47
48 static const struct cache_type_info cache_type_info[] = {
49         {
50                 .size_prop       = "cache-size",
51                 .line_size_props = { "cache-line-size",
52                                      "cache-block-size", },
53                 .nr_sets_prop    = "cache-sets",
54         }, {
55                 .size_prop       = "i-cache-size",
56                 .line_size_props = { "i-cache-line-size",
57                                      "i-cache-block-size", },
58                 .nr_sets_prop    = "i-cache-sets",
59         }, {
60                 .size_prop       = "d-cache-size",
61                 .line_size_props = { "d-cache-line-size",
62                                      "d-cache-block-size", },
63                 .nr_sets_prop    = "d-cache-sets",
64         },
65 };
66
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69         if (type == CACHE_TYPE_UNIFIED)
70                 return 0;
71         return type;
72 }
73
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76         const char *propname;
77         int ct_idx;
78
79         ct_idx = get_cacheinfo_idx(this_leaf->type);
80         propname = cache_type_info[ct_idx].size_prop;
81
82         of_property_read_u32(np, propname, &this_leaf->size);
83 }
84
85 /* not cache_line_size() because that's a macro in include/linux/cache.h */
86 static void cache_get_line_size(struct cacheinfo *this_leaf,
87                                 struct device_node *np)
88 {
89         int i, lim, ct_idx;
90
91         ct_idx = get_cacheinfo_idx(this_leaf->type);
92         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
93
94         for (i = 0; i < lim; i++) {
95                 int ret;
96                 u32 line_size;
97                 const char *propname;
98
99                 propname = cache_type_info[ct_idx].line_size_props[i];
100                 ret = of_property_read_u32(np, propname, &line_size);
101                 if (!ret) {
102                         this_leaf->coherency_line_size = line_size;
103                         break;
104                 }
105         }
106 }
107
108 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
109 {
110         const char *propname;
111         int ct_idx;
112
113         ct_idx = get_cacheinfo_idx(this_leaf->type);
114         propname = cache_type_info[ct_idx].nr_sets_prop;
115
116         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
117 }
118
119 static void cache_associativity(struct cacheinfo *this_leaf)
120 {
121         unsigned int line_size = this_leaf->coherency_line_size;
122         unsigned int nr_sets = this_leaf->number_of_sets;
123         unsigned int size = this_leaf->size;
124
125         /*
126          * If the cache is fully associative, there is no need to
127          * check the other properties.
128          */
129         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
130                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
131 }
132
133 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
134                                   struct device_node *np)
135 {
136         return of_property_read_bool(np, "cache-unified");
137 }
138
139 static void cache_of_set_props(struct cacheinfo *this_leaf,
140                                struct device_node *np)
141 {
142         /*
143          * init_cache_level must setup the cache level correctly
144          * overriding the architecturally specified levels, so
145          * if type is NONE at this stage, it should be unified
146          */
147         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
148             cache_node_is_unified(this_leaf, np))
149                 this_leaf->type = CACHE_TYPE_UNIFIED;
150         cache_size(this_leaf, np);
151         cache_get_line_size(this_leaf, np);
152         cache_nr_sets(this_leaf, np);
153         cache_associativity(this_leaf);
154 }
155
156 static int cache_setup_of_node(unsigned int cpu)
157 {
158         struct device_node *np;
159         struct cacheinfo *this_leaf;
160         struct device *cpu_dev = get_cpu_device(cpu);
161         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
162         unsigned int index = 0;
163
164         /* skip if fw_token is already populated */
165         if (this_cpu_ci->info_list->fw_token) {
166                 return 0;
167         }
168
169         if (!cpu_dev) {
170                 pr_err("No cpu device for CPU %d\n", cpu);
171                 return -ENODEV;
172         }
173         np = cpu_dev->of_node;
174         if (!np) {
175                 pr_err("Failed to find cpu%d device node\n", cpu);
176                 return -ENOENT;
177         }
178
179         while (index < cache_leaves(cpu)) {
180                 this_leaf = this_cpu_ci->info_list + index;
181                 if (this_leaf->level != 1)
182                         np = of_find_next_cache_node(np);
183                 else
184                         np = of_node_get(np);/* cpu node itself */
185                 if (!np)
186                         break;
187                 cache_of_set_props(this_leaf, np);
188                 this_leaf->fw_token = np;
189                 index++;
190         }
191
192         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
193                 return -ENOENT;
194
195         return 0;
196 }
197 #else
198 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
199 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
200                                            struct cacheinfo *sib_leaf)
201 {
202         /*
203          * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
204          * shared caches for all other levels. This will be used only if
205          * arch specific code has not populated shared_cpu_map
206          */
207         return !(this_leaf->level == 1);
208 }
209 #endif
210
211 int __weak cache_setup_acpi(unsigned int cpu)
212 {
213         return -ENOTSUPP;
214 }
215
216 static int cache_shared_cpu_map_setup(unsigned int cpu)
217 {
218         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
219         struct cacheinfo *this_leaf, *sib_leaf;
220         unsigned int index;
221         int ret = 0;
222
223         if (this_cpu_ci->cpu_map_populated)
224                 return 0;
225
226         if (of_have_populated_dt())
227                 ret = cache_setup_of_node(cpu);
228         else if (!acpi_disabled)
229                 ret = cache_setup_acpi(cpu);
230
231         if (ret)
232                 return ret;
233
234         for (index = 0; index < cache_leaves(cpu); index++) {
235                 unsigned int i;
236
237                 this_leaf = this_cpu_ci->info_list + index;
238                 /* skip if shared_cpu_map is already populated */
239                 if (!cpumask_empty(&this_leaf->shared_cpu_map))
240                         continue;
241
242                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
243                 for_each_online_cpu(i) {
244                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
245
246                         if (i == cpu || !sib_cpu_ci->info_list)
247                                 continue;/* skip if itself or no cacheinfo */
248                         sib_leaf = sib_cpu_ci->info_list + index;
249                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
250                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
251                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
252                         }
253                 }
254         }
255
256         return 0;
257 }
258
259 static void cache_shared_cpu_map_remove(unsigned int cpu)
260 {
261         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
262         struct cacheinfo *this_leaf, *sib_leaf;
263         unsigned int sibling, index;
264
265         for (index = 0; index < cache_leaves(cpu); index++) {
266                 this_leaf = this_cpu_ci->info_list + index;
267                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
268                         struct cpu_cacheinfo *sib_cpu_ci;
269
270                         if (sibling == cpu) /* skip itself */
271                                 continue;
272
273                         sib_cpu_ci = get_cpu_cacheinfo(sibling);
274                         if (!sib_cpu_ci->info_list)
275                                 continue;
276
277                         sib_leaf = sib_cpu_ci->info_list + index;
278                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
279                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
280                 }
281                 if (of_have_populated_dt())
282                         of_node_put(this_leaf->fw_token);
283         }
284 }
285
286 static void free_cache_attributes(unsigned int cpu)
287 {
288         if (!per_cpu_cacheinfo(cpu))
289                 return;
290
291         cache_shared_cpu_map_remove(cpu);
292
293         kfree(per_cpu_cacheinfo(cpu));
294         per_cpu_cacheinfo(cpu) = NULL;
295 }
296
297 int __weak init_cache_level(unsigned int cpu)
298 {
299         return -ENOENT;
300 }
301
302 int __weak populate_cache_leaves(unsigned int cpu)
303 {
304         return -ENOENT;
305 }
306
307 static int detect_cache_attributes(unsigned int cpu)
308 {
309         int ret;
310
311         if (init_cache_level(cpu) || !cache_leaves(cpu))
312                 return -ENOENT;
313
314         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
315                                          sizeof(struct cacheinfo), GFP_KERNEL);
316         if (per_cpu_cacheinfo(cpu) == NULL)
317                 return -ENOMEM;
318
319         /*
320          * populate_cache_leaves() may completely setup the cache leaves and
321          * shared_cpu_map or it may leave it partially setup.
322          */
323         ret = populate_cache_leaves(cpu);
324         if (ret)
325                 goto free_ci;
326         /*
327          * For systems using DT for cache hierarchy, fw_token
328          * and shared_cpu_map will be set up here only if they are
329          * not populated already
330          */
331         ret = cache_shared_cpu_map_setup(cpu);
332         if (ret) {
333                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
334                 goto free_ci;
335         }
336
337         return 0;
338
339 free_ci:
340         free_cache_attributes(cpu);
341         return ret;
342 }
343
344 /* pointer to cpuX/cache device */
345 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
346 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
347
348 static cpumask_t cache_dev_map;
349
350 /* pointer to array of devices for cpuX/cache/indexY */
351 static DEFINE_PER_CPU(struct device **, ci_index_dev);
352 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
353 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
354
355 #define show_one(file_name, object)                             \
356 static ssize_t file_name##_show(struct device *dev,             \
357                 struct device_attribute *attr, char *buf)       \
358 {                                                               \
359         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
360         return sprintf(buf, "%u\n", this_leaf->object);         \
361 }
362
363 show_one(id, id);
364 show_one(level, level);
365 show_one(coherency_line_size, coherency_line_size);
366 show_one(number_of_sets, number_of_sets);
367 show_one(physical_line_partition, physical_line_partition);
368 show_one(ways_of_associativity, ways_of_associativity);
369
370 static ssize_t size_show(struct device *dev,
371                          struct device_attribute *attr, char *buf)
372 {
373         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
374
375         return sprintf(buf, "%uK\n", this_leaf->size >> 10);
376 }
377
378 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
379 {
380         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
381         const struct cpumask *mask = &this_leaf->shared_cpu_map;
382
383         return cpumap_print_to_pagebuf(list, buf, mask);
384 }
385
386 static ssize_t shared_cpu_map_show(struct device *dev,
387                                    struct device_attribute *attr, char *buf)
388 {
389         return shared_cpumap_show_func(dev, false, buf);
390 }
391
392 static ssize_t shared_cpu_list_show(struct device *dev,
393                                     struct device_attribute *attr, char *buf)
394 {
395         return shared_cpumap_show_func(dev, true, buf);
396 }
397
398 static ssize_t type_show(struct device *dev,
399                          struct device_attribute *attr, char *buf)
400 {
401         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
402
403         switch (this_leaf->type) {
404         case CACHE_TYPE_DATA:
405                 return sprintf(buf, "Data\n");
406         case CACHE_TYPE_INST:
407                 return sprintf(buf, "Instruction\n");
408         case CACHE_TYPE_UNIFIED:
409                 return sprintf(buf, "Unified\n");
410         default:
411                 return -EINVAL;
412         }
413 }
414
415 static ssize_t allocation_policy_show(struct device *dev,
416                                       struct device_attribute *attr, char *buf)
417 {
418         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
419         unsigned int ci_attr = this_leaf->attributes;
420         int n = 0;
421
422         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
423                 n = sprintf(buf, "ReadWriteAllocate\n");
424         else if (ci_attr & CACHE_READ_ALLOCATE)
425                 n = sprintf(buf, "ReadAllocate\n");
426         else if (ci_attr & CACHE_WRITE_ALLOCATE)
427                 n = sprintf(buf, "WriteAllocate\n");
428         return n;
429 }
430
431 static ssize_t write_policy_show(struct device *dev,
432                                  struct device_attribute *attr, char *buf)
433 {
434         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
435         unsigned int ci_attr = this_leaf->attributes;
436         int n = 0;
437
438         if (ci_attr & CACHE_WRITE_THROUGH)
439                 n = sprintf(buf, "WriteThrough\n");
440         else if (ci_attr & CACHE_WRITE_BACK)
441                 n = sprintf(buf, "WriteBack\n");
442         return n;
443 }
444
445 static DEVICE_ATTR_RO(id);
446 static DEVICE_ATTR_RO(level);
447 static DEVICE_ATTR_RO(type);
448 static DEVICE_ATTR_RO(coherency_line_size);
449 static DEVICE_ATTR_RO(ways_of_associativity);
450 static DEVICE_ATTR_RO(number_of_sets);
451 static DEVICE_ATTR_RO(size);
452 static DEVICE_ATTR_RO(allocation_policy);
453 static DEVICE_ATTR_RO(write_policy);
454 static DEVICE_ATTR_RO(shared_cpu_map);
455 static DEVICE_ATTR_RO(shared_cpu_list);
456 static DEVICE_ATTR_RO(physical_line_partition);
457
458 static struct attribute *cache_default_attrs[] = {
459         &dev_attr_id.attr,
460         &dev_attr_type.attr,
461         &dev_attr_level.attr,
462         &dev_attr_shared_cpu_map.attr,
463         &dev_attr_shared_cpu_list.attr,
464         &dev_attr_coherency_line_size.attr,
465         &dev_attr_ways_of_associativity.attr,
466         &dev_attr_number_of_sets.attr,
467         &dev_attr_size.attr,
468         &dev_attr_allocation_policy.attr,
469         &dev_attr_write_policy.attr,
470         &dev_attr_physical_line_partition.attr,
471         NULL
472 };
473
474 static umode_t
475 cache_default_attrs_is_visible(struct kobject *kobj,
476                                struct attribute *attr, int unused)
477 {
478         struct device *dev = kobj_to_dev(kobj);
479         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
480         const struct cpumask *mask = &this_leaf->shared_cpu_map;
481         umode_t mode = attr->mode;
482
483         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
484                 return mode;
485         if ((attr == &dev_attr_type.attr) && this_leaf->type)
486                 return mode;
487         if ((attr == &dev_attr_level.attr) && this_leaf->level)
488                 return mode;
489         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
490                 return mode;
491         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
492                 return mode;
493         if ((attr == &dev_attr_coherency_line_size.attr) &&
494             this_leaf->coherency_line_size)
495                 return mode;
496         if ((attr == &dev_attr_ways_of_associativity.attr) &&
497             this_leaf->size) /* allow 0 = full associativity */
498                 return mode;
499         if ((attr == &dev_attr_number_of_sets.attr) &&
500             this_leaf->number_of_sets)
501                 return mode;
502         if ((attr == &dev_attr_size.attr) && this_leaf->size)
503                 return mode;
504         if ((attr == &dev_attr_write_policy.attr) &&
505             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
506                 return mode;
507         if ((attr == &dev_attr_allocation_policy.attr) &&
508             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
509                 return mode;
510         if ((attr == &dev_attr_physical_line_partition.attr) &&
511             this_leaf->physical_line_partition)
512                 return mode;
513
514         return 0;
515 }
516
517 static const struct attribute_group cache_default_group = {
518         .attrs = cache_default_attrs,
519         .is_visible = cache_default_attrs_is_visible,
520 };
521
522 static const struct attribute_group *cache_default_groups[] = {
523         &cache_default_group,
524         NULL,
525 };
526
527 static const struct attribute_group *cache_private_groups[] = {
528         &cache_default_group,
529         NULL, /* Place holder for private group */
530         NULL,
531 };
532
533 const struct attribute_group *
534 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
535 {
536         return NULL;
537 }
538
539 static const struct attribute_group **
540 cache_get_attribute_groups(struct cacheinfo *this_leaf)
541 {
542         const struct attribute_group *priv_group =
543                         cache_get_priv_group(this_leaf);
544
545         if (!priv_group)
546                 return cache_default_groups;
547
548         if (!cache_private_groups[1])
549                 cache_private_groups[1] = priv_group;
550
551         return cache_private_groups;
552 }
553
554 /* Add/Remove cache interface for CPU device */
555 static void cpu_cache_sysfs_exit(unsigned int cpu)
556 {
557         int i;
558         struct device *ci_dev;
559
560         if (per_cpu_index_dev(cpu)) {
561                 for (i = 0; i < cache_leaves(cpu); i++) {
562                         ci_dev = per_cache_index_dev(cpu, i);
563                         if (!ci_dev)
564                                 continue;
565                         device_unregister(ci_dev);
566                 }
567                 kfree(per_cpu_index_dev(cpu));
568                 per_cpu_index_dev(cpu) = NULL;
569         }
570         device_unregister(per_cpu_cache_dev(cpu));
571         per_cpu_cache_dev(cpu) = NULL;
572 }
573
574 static int cpu_cache_sysfs_init(unsigned int cpu)
575 {
576         struct device *dev = get_cpu_device(cpu);
577
578         if (per_cpu_cacheinfo(cpu) == NULL)
579                 return -ENOENT;
580
581         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
582         if (IS_ERR(per_cpu_cache_dev(cpu)))
583                 return PTR_ERR(per_cpu_cache_dev(cpu));
584
585         /* Allocate all required memory */
586         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
587                                          sizeof(struct device *), GFP_KERNEL);
588         if (unlikely(per_cpu_index_dev(cpu) == NULL))
589                 goto err_out;
590
591         return 0;
592
593 err_out:
594         cpu_cache_sysfs_exit(cpu);
595         return -ENOMEM;
596 }
597
598 static int cache_add_dev(unsigned int cpu)
599 {
600         unsigned int i;
601         int rc;
602         struct device *ci_dev, *parent;
603         struct cacheinfo *this_leaf;
604         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
605         const struct attribute_group **cache_groups;
606
607         rc = cpu_cache_sysfs_init(cpu);
608         if (unlikely(rc < 0))
609                 return rc;
610
611         parent = per_cpu_cache_dev(cpu);
612         for (i = 0; i < cache_leaves(cpu); i++) {
613                 this_leaf = this_cpu_ci->info_list + i;
614                 if (this_leaf->disable_sysfs)
615                         continue;
616                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
617                         break;
618                 cache_groups = cache_get_attribute_groups(this_leaf);
619                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
620                                            "index%1u", i);
621                 if (IS_ERR(ci_dev)) {
622                         rc = PTR_ERR(ci_dev);
623                         goto err;
624                 }
625                 per_cache_index_dev(cpu, i) = ci_dev;
626         }
627         cpumask_set_cpu(cpu, &cache_dev_map);
628
629         return 0;
630 err:
631         cpu_cache_sysfs_exit(cpu);
632         return rc;
633 }
634
635 static int cacheinfo_cpu_online(unsigned int cpu)
636 {
637         int rc = detect_cache_attributes(cpu);
638
639         if (rc)
640                 return rc;
641         rc = cache_add_dev(cpu);
642         if (rc)
643                 free_cache_attributes(cpu);
644         return rc;
645 }
646
647 static int cacheinfo_cpu_pre_down(unsigned int cpu)
648 {
649         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
650                 cpu_cache_sysfs_exit(cpu);
651
652         free_cache_attributes(cpu);
653         return 0;
654 }
655
656 static int __init cacheinfo_sysfs_init(void)
657 {
658         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
659                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
660 }
661 device_initcall(cacheinfo_sysfs_init);