Merge tag 'ceph-for-5.1-rc3' of git://github.com/ceph/ceph-client
[linux-2.6-block.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/arch_topology.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/sched/topology.h>
18 #include <linux/cpuset.h>
19
20 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
21
22 void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
23                          unsigned long max_freq)
24 {
25         unsigned long scale;
26         int i;
27
28         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
29
30         for_each_cpu(i, cpus)
31                 per_cpu(freq_scale, i) = scale;
32 }
33
34 static DEFINE_MUTEX(cpu_scale_mutex);
35 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
36
37 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
38 {
39         per_cpu(cpu_scale, cpu) = capacity;
40 }
41
42 static ssize_t cpu_capacity_show(struct device *dev,
43                                  struct device_attribute *attr,
44                                  char *buf)
45 {
46         struct cpu *cpu = container_of(dev, struct cpu, dev);
47
48         return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
49 }
50
51 static void update_topology_flags_workfn(struct work_struct *work);
52 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
53
54 static ssize_t cpu_capacity_store(struct device *dev,
55                                   struct device_attribute *attr,
56                                   const char *buf,
57                                   size_t count)
58 {
59         struct cpu *cpu = container_of(dev, struct cpu, dev);
60         int this_cpu = cpu->dev.id;
61         int i;
62         unsigned long new_capacity;
63         ssize_t ret;
64
65         if (!count)
66                 return 0;
67
68         ret = kstrtoul(buf, 0, &new_capacity);
69         if (ret)
70                 return ret;
71         if (new_capacity > SCHED_CAPACITY_SCALE)
72                 return -EINVAL;
73
74         mutex_lock(&cpu_scale_mutex);
75         for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
76                 topology_set_cpu_scale(i, new_capacity);
77         mutex_unlock(&cpu_scale_mutex);
78
79         schedule_work(&update_topology_flags_work);
80
81         return count;
82 }
83
84 static DEVICE_ATTR_RW(cpu_capacity);
85
86 static int register_cpu_capacity_sysctl(void)
87 {
88         int i;
89         struct device *cpu;
90
91         for_each_possible_cpu(i) {
92                 cpu = get_cpu_device(i);
93                 if (!cpu) {
94                         pr_err("%s: too early to get CPU%d device!\n",
95                                __func__, i);
96                         continue;
97                 }
98                 device_create_file(cpu, &dev_attr_cpu_capacity);
99         }
100
101         return 0;
102 }
103 subsys_initcall(register_cpu_capacity_sysctl);
104
105 static int update_topology;
106
107 int topology_update_cpu_topology(void)
108 {
109         return update_topology;
110 }
111
112 /*
113  * Updating the sched_domains can't be done directly from cpufreq callbacks
114  * due to locking, so queue the work for later.
115  */
116 static void update_topology_flags_workfn(struct work_struct *work)
117 {
118         update_topology = 1;
119         rebuild_sched_domains();
120         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
121         update_topology = 0;
122 }
123
124 static u32 capacity_scale;
125 static u32 *raw_capacity;
126
127 static int free_raw_capacity(void)
128 {
129         kfree(raw_capacity);
130         raw_capacity = NULL;
131
132         return 0;
133 }
134
135 void topology_normalize_cpu_scale(void)
136 {
137         u64 capacity;
138         int cpu;
139
140         if (!raw_capacity)
141                 return;
142
143         pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
144         mutex_lock(&cpu_scale_mutex);
145         for_each_possible_cpu(cpu) {
146                 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
147                          cpu, raw_capacity[cpu]);
148                 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
149                         / capacity_scale;
150                 topology_set_cpu_scale(cpu, capacity);
151                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
152                         cpu, topology_get_cpu_scale(NULL, cpu));
153         }
154         mutex_unlock(&cpu_scale_mutex);
155 }
156
157 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
158 {
159         static bool cap_parsing_failed;
160         int ret;
161         u32 cpu_capacity;
162
163         if (cap_parsing_failed)
164                 return false;
165
166         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
167                                    &cpu_capacity);
168         if (!ret) {
169                 if (!raw_capacity) {
170                         raw_capacity = kcalloc(num_possible_cpus(),
171                                                sizeof(*raw_capacity),
172                                                GFP_KERNEL);
173                         if (!raw_capacity) {
174                                 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
175                                 cap_parsing_failed = true;
176                                 return false;
177                         }
178                 }
179                 capacity_scale = max(cpu_capacity, capacity_scale);
180                 raw_capacity[cpu] = cpu_capacity;
181                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
182                         cpu_node, raw_capacity[cpu]);
183         } else {
184                 if (raw_capacity) {
185                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
186                                 cpu_node);
187                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
188                 }
189                 cap_parsing_failed = true;
190                 free_raw_capacity();
191         }
192
193         return !ret;
194 }
195
196 #ifdef CONFIG_CPU_FREQ
197 static cpumask_var_t cpus_to_visit;
198 static void parsing_done_workfn(struct work_struct *work);
199 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
200
201 static int
202 init_cpu_capacity_callback(struct notifier_block *nb,
203                            unsigned long val,
204                            void *data)
205 {
206         struct cpufreq_policy *policy = data;
207         int cpu;
208
209         if (!raw_capacity)
210                 return 0;
211
212         if (val != CPUFREQ_NOTIFY)
213                 return 0;
214
215         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
216                  cpumask_pr_args(policy->related_cpus),
217                  cpumask_pr_args(cpus_to_visit));
218
219         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
220
221         for_each_cpu(cpu, policy->related_cpus) {
222                 raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
223                                     policy->cpuinfo.max_freq / 1000UL;
224                 capacity_scale = max(raw_capacity[cpu], capacity_scale);
225         }
226
227         if (cpumask_empty(cpus_to_visit)) {
228                 topology_normalize_cpu_scale();
229                 schedule_work(&update_topology_flags_work);
230                 free_raw_capacity();
231                 pr_debug("cpu_capacity: parsing done\n");
232                 schedule_work(&parsing_done_work);
233         }
234
235         return 0;
236 }
237
238 static struct notifier_block init_cpu_capacity_notifier = {
239         .notifier_call = init_cpu_capacity_callback,
240 };
241
242 static int __init register_cpufreq_notifier(void)
243 {
244         int ret;
245
246         /*
247          * on ACPI-based systems we need to use the default cpu capacity
248          * until we have the necessary code to parse the cpu capacity, so
249          * skip registering cpufreq notifier.
250          */
251         if (!acpi_disabled || !raw_capacity)
252                 return -EINVAL;
253
254         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
255                 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
256                 return -ENOMEM;
257         }
258
259         cpumask_copy(cpus_to_visit, cpu_possible_mask);
260
261         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
262                                         CPUFREQ_POLICY_NOTIFIER);
263
264         if (ret)
265                 free_cpumask_var(cpus_to_visit);
266
267         return ret;
268 }
269 core_initcall(register_cpufreq_notifier);
270
271 static void parsing_done_workfn(struct work_struct *work)
272 {
273         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
274                                          CPUFREQ_POLICY_NOTIFIER);
275         free_cpumask_var(cpus_to_visit);
276 }
277
278 #else
279 core_initcall(free_raw_capacity);
280 #endif