Merge tag 'trace-v5.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-block.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/sched/topology.h>
16 #include <linux/cpuset.h>
17 #include <linux/cpumask.h>
18 #include <linux/init.h>
19 #include <linux/rcupdate.h>
20 #include <linux/sched.h>
21
22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
23 static struct cpumask scale_freq_counters_mask;
24 static bool scale_freq_invariant;
25 static DEFINE_PER_CPU(u32, freq_factor) = 1;
26
27 static bool supports_scale_freq_counters(const struct cpumask *cpus)
28 {
29         return cpumask_subset(cpus, &scale_freq_counters_mask);
30 }
31
32 bool topology_scale_freq_invariant(void)
33 {
34         return cpufreq_supports_freq_invariance() ||
35                supports_scale_freq_counters(cpu_online_mask);
36 }
37
38 static void update_scale_freq_invariant(bool status)
39 {
40         if (scale_freq_invariant == status)
41                 return;
42
43         /*
44          * Task scheduler behavior depends on frequency invariance support,
45          * either cpufreq or counter driven. If the support status changes as
46          * a result of counter initialisation and use, retrigger the build of
47          * scheduling domains to ensure the information is propagated properly.
48          */
49         if (topology_scale_freq_invariant() == status) {
50                 scale_freq_invariant = status;
51                 rebuild_sched_domains_energy();
52         }
53 }
54
55 void topology_set_scale_freq_source(struct scale_freq_data *data,
56                                     const struct cpumask *cpus)
57 {
58         struct scale_freq_data *sfd;
59         int cpu;
60
61         /*
62          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
63          * supported by cpufreq.
64          */
65         if (cpumask_empty(&scale_freq_counters_mask))
66                 scale_freq_invariant = topology_scale_freq_invariant();
67
68         rcu_read_lock();
69
70         for_each_cpu(cpu, cpus) {
71                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
72
73                 /* Use ARCH provided counters whenever possible */
74                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
75                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
76                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
77                 }
78         }
79
80         rcu_read_unlock();
81
82         update_scale_freq_invariant(true);
83 }
84 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
85
86 void topology_clear_scale_freq_source(enum scale_freq_source source,
87                                       const struct cpumask *cpus)
88 {
89         struct scale_freq_data *sfd;
90         int cpu;
91
92         rcu_read_lock();
93
94         for_each_cpu(cpu, cpus) {
95                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
96
97                 if (sfd && sfd->source == source) {
98                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
99                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
100                 }
101         }
102
103         rcu_read_unlock();
104
105         /*
106          * Make sure all references to previous sft_data are dropped to avoid
107          * use-after-free races.
108          */
109         synchronize_rcu();
110
111         update_scale_freq_invariant(false);
112 }
113 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
114
115 void topology_scale_freq_tick(void)
116 {
117         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
118
119         if (sfd)
120                 sfd->set_freq_scale();
121 }
122
123 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
124 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
125
126 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
127                              unsigned long max_freq)
128 {
129         unsigned long scale;
130         int i;
131
132         if (WARN_ON_ONCE(!cur_freq || !max_freq))
133                 return;
134
135         /*
136          * If the use of counters for FIE is enabled, just return as we don't
137          * want to update the scale factor with information from CPUFREQ.
138          * Instead the scale factor will be updated from arch_scale_freq_tick.
139          */
140         if (supports_scale_freq_counters(cpus))
141                 return;
142
143         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
144
145         for_each_cpu(i, cpus)
146                 per_cpu(arch_freq_scale, i) = scale;
147 }
148
149 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
150 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
151
152 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
153 {
154         per_cpu(cpu_scale, cpu) = capacity;
155 }
156
157 DEFINE_PER_CPU(unsigned long, thermal_pressure);
158
159 /**
160  * topology_update_thermal_pressure() - Update thermal pressure for CPUs
161  * @cpus        : The related CPUs for which capacity has been reduced
162  * @capped_freq : The maximum allowed frequency that CPUs can run at
163  *
164  * Update the value of thermal pressure for all @cpus in the mask. The
165  * cpumask should include all (online+offline) affected CPUs, to avoid
166  * operating on stale data when hot-plug is used for some CPUs. The
167  * @capped_freq reflects the currently allowed max CPUs frequency due to
168  * thermal capping. It might be also a boost frequency value, which is bigger
169  * than the internal 'freq_factor' max frequency. In such case the pressure
170  * value should simply be removed, since this is an indication that there is
171  * no thermal throttling. The @capped_freq must be provided in kHz.
172  */
173 void topology_update_thermal_pressure(const struct cpumask *cpus,
174                                       unsigned long capped_freq)
175 {
176         unsigned long max_capacity, capacity, th_pressure;
177         u32 max_freq;
178         int cpu;
179
180         cpu = cpumask_first(cpus);
181         max_capacity = arch_scale_cpu_capacity(cpu);
182         max_freq = per_cpu(freq_factor, cpu);
183
184         /* Convert to MHz scale which is used in 'freq_factor' */
185         capped_freq /= 1000;
186
187         /*
188          * Handle properly the boost frequencies, which should simply clean
189          * the thermal pressure value.
190          */
191         if (max_freq <= capped_freq)
192                 capacity = max_capacity;
193         else
194                 capacity = mult_frac(max_capacity, capped_freq, max_freq);
195
196         th_pressure = max_capacity - capacity;
197
198         for_each_cpu(cpu, cpus)
199                 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
200 }
201 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
202
203 static ssize_t cpu_capacity_show(struct device *dev,
204                                  struct device_attribute *attr,
205                                  char *buf)
206 {
207         struct cpu *cpu = container_of(dev, struct cpu, dev);
208
209         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
210 }
211
212 static void update_topology_flags_workfn(struct work_struct *work);
213 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
214
215 static DEVICE_ATTR_RO(cpu_capacity);
216
217 static int register_cpu_capacity_sysctl(void)
218 {
219         int i;
220         struct device *cpu;
221
222         for_each_possible_cpu(i) {
223                 cpu = get_cpu_device(i);
224                 if (!cpu) {
225                         pr_err("%s: too early to get CPU%d device!\n",
226                                __func__, i);
227                         continue;
228                 }
229                 device_create_file(cpu, &dev_attr_cpu_capacity);
230         }
231
232         return 0;
233 }
234 subsys_initcall(register_cpu_capacity_sysctl);
235
236 static int update_topology;
237
238 int topology_update_cpu_topology(void)
239 {
240         return update_topology;
241 }
242
243 /*
244  * Updating the sched_domains can't be done directly from cpufreq callbacks
245  * due to locking, so queue the work for later.
246  */
247 static void update_topology_flags_workfn(struct work_struct *work)
248 {
249         update_topology = 1;
250         rebuild_sched_domains();
251         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
252         update_topology = 0;
253 }
254
255 static u32 *raw_capacity;
256
257 static int free_raw_capacity(void)
258 {
259         kfree(raw_capacity);
260         raw_capacity = NULL;
261
262         return 0;
263 }
264
265 void topology_normalize_cpu_scale(void)
266 {
267         u64 capacity;
268         u64 capacity_scale;
269         int cpu;
270
271         if (!raw_capacity)
272                 return;
273
274         capacity_scale = 1;
275         for_each_possible_cpu(cpu) {
276                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
277                 capacity_scale = max(capacity, capacity_scale);
278         }
279
280         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
281         for_each_possible_cpu(cpu) {
282                 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
283                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
284                         capacity_scale);
285                 topology_set_cpu_scale(cpu, capacity);
286                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
287                         cpu, topology_get_cpu_scale(cpu));
288         }
289 }
290
291 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
292 {
293         struct clk *cpu_clk;
294         static bool cap_parsing_failed;
295         int ret;
296         u32 cpu_capacity;
297
298         if (cap_parsing_failed)
299                 return false;
300
301         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
302                                    &cpu_capacity);
303         if (!ret) {
304                 if (!raw_capacity) {
305                         raw_capacity = kcalloc(num_possible_cpus(),
306                                                sizeof(*raw_capacity),
307                                                GFP_KERNEL);
308                         if (!raw_capacity) {
309                                 cap_parsing_failed = true;
310                                 return false;
311                         }
312                 }
313                 raw_capacity[cpu] = cpu_capacity;
314                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
315                         cpu_node, raw_capacity[cpu]);
316
317                 /*
318                  * Update freq_factor for calculating early boot cpu capacities.
319                  * For non-clk CPU DVFS mechanism, there's no way to get the
320                  * frequency value now, assuming they are running at the same
321                  * frequency (by keeping the initial freq_factor value).
322                  */
323                 cpu_clk = of_clk_get(cpu_node, 0);
324                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
325                         per_cpu(freq_factor, cpu) =
326                                 clk_get_rate(cpu_clk) / 1000;
327                         clk_put(cpu_clk);
328                 }
329         } else {
330                 if (raw_capacity) {
331                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
332                                 cpu_node);
333                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
334                 }
335                 cap_parsing_failed = true;
336                 free_raw_capacity();
337         }
338
339         return !ret;
340 }
341
342 #ifdef CONFIG_ACPI_CPPC_LIB
343 #include <acpi/cppc_acpi.h>
344
345 void topology_init_cpu_capacity_cppc(void)
346 {
347         struct cppc_perf_caps perf_caps;
348         int cpu;
349
350         if (likely(acpi_disabled || !acpi_cpc_valid()))
351                 return;
352
353         raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
354                                GFP_KERNEL);
355         if (!raw_capacity)
356                 return;
357
358         for_each_possible_cpu(cpu) {
359                 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
360                     (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
361                     (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
362                         raw_capacity[cpu] = perf_caps.highest_perf;
363                         pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
364                                  cpu, raw_capacity[cpu]);
365                         continue;
366                 }
367
368                 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
369                 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
370                 goto exit;
371         }
372
373         topology_normalize_cpu_scale();
374         schedule_work(&update_topology_flags_work);
375         pr_debug("cpu_capacity: cpu_capacity initialization done\n");
376
377 exit:
378         free_raw_capacity();
379 }
380 #endif
381
382 #ifdef CONFIG_CPU_FREQ
383 static cpumask_var_t cpus_to_visit;
384 static void parsing_done_workfn(struct work_struct *work);
385 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
386
387 static int
388 init_cpu_capacity_callback(struct notifier_block *nb,
389                            unsigned long val,
390                            void *data)
391 {
392         struct cpufreq_policy *policy = data;
393         int cpu;
394
395         if (!raw_capacity)
396                 return 0;
397
398         if (val != CPUFREQ_CREATE_POLICY)
399                 return 0;
400
401         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
402                  cpumask_pr_args(policy->related_cpus),
403                  cpumask_pr_args(cpus_to_visit));
404
405         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
406
407         for_each_cpu(cpu, policy->related_cpus)
408                 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
409
410         if (cpumask_empty(cpus_to_visit)) {
411                 topology_normalize_cpu_scale();
412                 schedule_work(&update_topology_flags_work);
413                 free_raw_capacity();
414                 pr_debug("cpu_capacity: parsing done\n");
415                 schedule_work(&parsing_done_work);
416         }
417
418         return 0;
419 }
420
421 static struct notifier_block init_cpu_capacity_notifier = {
422         .notifier_call = init_cpu_capacity_callback,
423 };
424
425 static int __init register_cpufreq_notifier(void)
426 {
427         int ret;
428
429         /*
430          * On ACPI-based systems skip registering cpufreq notifier as cpufreq
431          * information is not needed for cpu capacity initialization.
432          */
433         if (!acpi_disabled || !raw_capacity)
434                 return -EINVAL;
435
436         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
437                 return -ENOMEM;
438
439         cpumask_copy(cpus_to_visit, cpu_possible_mask);
440
441         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
442                                         CPUFREQ_POLICY_NOTIFIER);
443
444         if (ret)
445                 free_cpumask_var(cpus_to_visit);
446
447         return ret;
448 }
449 core_initcall(register_cpufreq_notifier);
450
451 static void parsing_done_workfn(struct work_struct *work)
452 {
453         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
454                                          CPUFREQ_POLICY_NOTIFIER);
455         free_cpumask_var(cpus_to_visit);
456 }
457
458 #else
459 core_initcall(free_raw_capacity);
460 #endif
461
462 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
463 /*
464  * This function returns the logic cpu number of the node.
465  * There are basically three kinds of return values:
466  * (1) logic cpu number which is > 0.
467  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
468  * there is no possible logical CPU in the kernel to match. This happens
469  * when CONFIG_NR_CPUS is configure to be smaller than the number of
470  * CPU nodes in DT. We need to just ignore this case.
471  * (3) -1 if the node does not exist in the device tree
472  */
473 static int __init get_cpu_for_node(struct device_node *node)
474 {
475         struct device_node *cpu_node;
476         int cpu;
477
478         cpu_node = of_parse_phandle(node, "cpu", 0);
479         if (!cpu_node)
480                 return -1;
481
482         cpu = of_cpu_node_to_id(cpu_node);
483         if (cpu >= 0)
484                 topology_parse_cpu_capacity(cpu_node, cpu);
485         else
486                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
487                         cpu_node, cpumask_pr_args(cpu_possible_mask));
488
489         of_node_put(cpu_node);
490         return cpu;
491 }
492
493 static int __init parse_core(struct device_node *core, int package_id,
494                              int core_id)
495 {
496         char name[20];
497         bool leaf = true;
498         int i = 0;
499         int cpu;
500         struct device_node *t;
501
502         do {
503                 snprintf(name, sizeof(name), "thread%d", i);
504                 t = of_get_child_by_name(core, name);
505                 if (t) {
506                         leaf = false;
507                         cpu = get_cpu_for_node(t);
508                         if (cpu >= 0) {
509                                 cpu_topology[cpu].package_id = package_id;
510                                 cpu_topology[cpu].core_id = core_id;
511                                 cpu_topology[cpu].thread_id = i;
512                         } else if (cpu != -ENODEV) {
513                                 pr_err("%pOF: Can't get CPU for thread\n", t);
514                                 of_node_put(t);
515                                 return -EINVAL;
516                         }
517                         of_node_put(t);
518                 }
519                 i++;
520         } while (t);
521
522         cpu = get_cpu_for_node(core);
523         if (cpu >= 0) {
524                 if (!leaf) {
525                         pr_err("%pOF: Core has both threads and CPU\n",
526                                core);
527                         return -EINVAL;
528                 }
529
530                 cpu_topology[cpu].package_id = package_id;
531                 cpu_topology[cpu].core_id = core_id;
532         } else if (leaf && cpu != -ENODEV) {
533                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
534                 return -EINVAL;
535         }
536
537         return 0;
538 }
539
540 static int __init parse_cluster(struct device_node *cluster, int depth)
541 {
542         char name[20];
543         bool leaf = true;
544         bool has_cores = false;
545         struct device_node *c;
546         static int package_id __initdata;
547         int core_id = 0;
548         int i, ret;
549
550         /*
551          * First check for child clusters; we currently ignore any
552          * information about the nesting of clusters and present the
553          * scheduler with a flat list of them.
554          */
555         i = 0;
556         do {
557                 snprintf(name, sizeof(name), "cluster%d", i);
558                 c = of_get_child_by_name(cluster, name);
559                 if (c) {
560                         leaf = false;
561                         ret = parse_cluster(c, depth + 1);
562                         of_node_put(c);
563                         if (ret != 0)
564                                 return ret;
565                 }
566                 i++;
567         } while (c);
568
569         /* Now check for cores */
570         i = 0;
571         do {
572                 snprintf(name, sizeof(name), "core%d", i);
573                 c = of_get_child_by_name(cluster, name);
574                 if (c) {
575                         has_cores = true;
576
577                         if (depth == 0) {
578                                 pr_err("%pOF: cpu-map children should be clusters\n",
579                                        c);
580                                 of_node_put(c);
581                                 return -EINVAL;
582                         }
583
584                         if (leaf) {
585                                 ret = parse_core(c, package_id, core_id++);
586                         } else {
587                                 pr_err("%pOF: Non-leaf cluster with core %s\n",
588                                        cluster, name);
589                                 ret = -EINVAL;
590                         }
591
592                         of_node_put(c);
593                         if (ret != 0)
594                                 return ret;
595                 }
596                 i++;
597         } while (c);
598
599         if (leaf && !has_cores)
600                 pr_warn("%pOF: empty cluster\n", cluster);
601
602         if (leaf)
603                 package_id++;
604
605         return 0;
606 }
607
608 static int __init parse_dt_topology(void)
609 {
610         struct device_node *cn, *map;
611         int ret = 0;
612         int cpu;
613
614         cn = of_find_node_by_path("/cpus");
615         if (!cn) {
616                 pr_err("No CPU information found in DT\n");
617                 return 0;
618         }
619
620         /*
621          * When topology is provided cpu-map is essentially a root
622          * cluster with restricted subnodes.
623          */
624         map = of_get_child_by_name(cn, "cpu-map");
625         if (!map)
626                 goto out;
627
628         ret = parse_cluster(map, 0);
629         if (ret != 0)
630                 goto out_map;
631
632         topology_normalize_cpu_scale();
633
634         /*
635          * Check that all cores are in the topology; the SMP code will
636          * only mark cores described in the DT as possible.
637          */
638         for_each_possible_cpu(cpu)
639                 if (cpu_topology[cpu].package_id == -1)
640                         ret = -EINVAL;
641
642 out_map:
643         of_node_put(map);
644 out:
645         of_node_put(cn);
646         return ret;
647 }
648 #endif
649
650 /*
651  * cpu topology table
652  */
653 struct cpu_topology cpu_topology[NR_CPUS];
654 EXPORT_SYMBOL_GPL(cpu_topology);
655
656 const struct cpumask *cpu_coregroup_mask(int cpu)
657 {
658         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
659
660         /* Find the smaller of NUMA, core or LLC siblings */
661         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
662                 /* not numa in package, lets use the package siblings */
663                 core_mask = &cpu_topology[cpu].core_sibling;
664         }
665         if (cpu_topology[cpu].llc_id != -1) {
666                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
667                         core_mask = &cpu_topology[cpu].llc_sibling;
668         }
669
670         return core_mask;
671 }
672
673 const struct cpumask *cpu_clustergroup_mask(int cpu)
674 {
675         return &cpu_topology[cpu].cluster_sibling;
676 }
677
678 void update_siblings_masks(unsigned int cpuid)
679 {
680         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
681         int cpu;
682
683         /* update core and thread sibling masks */
684         for_each_online_cpu(cpu) {
685                 cpu_topo = &cpu_topology[cpu];
686
687                 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
688                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
689                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
690                 }
691
692                 if (cpuid_topo->package_id != cpu_topo->package_id)
693                         continue;
694
695                 if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
696                     cpuid_topo->cluster_id != -1) {
697                         cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
698                         cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
699                 }
700
701                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
702                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
703
704                 if (cpuid_topo->core_id != cpu_topo->core_id)
705                         continue;
706
707                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
708                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
709         }
710 }
711
712 static void clear_cpu_topology(int cpu)
713 {
714         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
715
716         cpumask_clear(&cpu_topo->llc_sibling);
717         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
718
719         cpumask_clear(&cpu_topo->cluster_sibling);
720         cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
721
722         cpumask_clear(&cpu_topo->core_sibling);
723         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
724         cpumask_clear(&cpu_topo->thread_sibling);
725         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
726 }
727
728 void __init reset_cpu_topology(void)
729 {
730         unsigned int cpu;
731
732         for_each_possible_cpu(cpu) {
733                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
734
735                 cpu_topo->thread_id = -1;
736                 cpu_topo->core_id = -1;
737                 cpu_topo->cluster_id = -1;
738                 cpu_topo->package_id = -1;
739                 cpu_topo->llc_id = -1;
740
741                 clear_cpu_topology(cpu);
742         }
743 }
744
745 void remove_cpu_topology(unsigned int cpu)
746 {
747         int sibling;
748
749         for_each_cpu(sibling, topology_core_cpumask(cpu))
750                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
751         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
752                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
753         for_each_cpu(sibling, topology_cluster_cpumask(cpu))
754                 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
755         for_each_cpu(sibling, topology_llc_cpumask(cpu))
756                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
757
758         clear_cpu_topology(cpu);
759 }
760
761 __weak int __init parse_acpi_topology(void)
762 {
763         return 0;
764 }
765
766 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
767 void __init init_cpu_topology(void)
768 {
769         reset_cpu_topology();
770
771         /*
772          * Discard anything that was parsed if we hit an error so we
773          * don't use partial information.
774          */
775         if (parse_acpi_topology())
776                 reset_cpu_topology();
777         else if (of_have_populated_dt() && parse_dt_topology())
778                 reset_cpu_topology();
779 }
780 #endif