2c2dc559e0f8def8469f3b94f2d7935f2cdb78a4
[linux-2.6-block.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
26
27 #include "internal.h"
28
29 /*
30  * Include the apic definitions for x86 to have the APIC timer related defines
31  * available also for UP (on SMP it gets magically included via linux/smp.h).
32  * asm/acpi.h is not an option, as it would require more include magic. Also
33  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
34  */
35 #ifdef CONFIG_X86
36 #include <asm/apic.h>
37 #include <asm/cpu.h>
38 #endif
39
40 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
41
42 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
43 module_param(max_cstate, uint, 0400);
44 static bool nocst __read_mostly;
45 module_param(nocst, bool, 0400);
46 static bool bm_check_disable __read_mostly;
47 module_param(bm_check_disable, bool, 0400);
48
49 static unsigned int latency_factor __read_mostly = 2;
50 module_param(latency_factor, uint, 0644);
51
52 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
53
54 struct cpuidle_driver acpi_idle_driver = {
55         .name =         "acpi_idle",
56         .owner =        THIS_MODULE,
57 };
58
59 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
60 void acpi_idle_rescan_dead_smt_siblings(void)
61 {
62         if (cpuidle_get_driver() == &acpi_idle_driver)
63                 arch_cpu_rescan_dead_smt_siblings();
64 }
65
66 static
67 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
68
69 static int disabled_by_idle_boot_param(void)
70 {
71         return boot_option_idle_override == IDLE_POLL ||
72                 boot_option_idle_override == IDLE_HALT;
73 }
74
75 /*
76  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
77  * For now disable this. Probably a bug somewhere else.
78  *
79  * To skip this limit, boot/load with a large max_cstate limit.
80  */
81 static int set_max_cstate(const struct dmi_system_id *id)
82 {
83         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
84                 return 0;
85
86         pr_notice("%s detected - limiting to C%ld max_cstate."
87                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
88                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
89
90         max_cstate = (long)id->driver_data;
91
92         return 0;
93 }
94
95 static const struct dmi_system_id processor_power_dmi_table[] = {
96         { set_max_cstate, "Clevo 5600D", {
97           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
98           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
99          (void *)2},
100         { set_max_cstate, "Pavilion zv5000", {
101           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
102           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
103          (void *)1},
104         { set_max_cstate, "Asus L8400B", {
105           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
106           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
107          (void *)1},
108         {},
109 };
110
111
112 /*
113  * Callers should disable interrupts before the call and enable
114  * interrupts after return.
115  */
116 static void __cpuidle acpi_safe_halt(void)
117 {
118         if (!tif_need_resched()) {
119                 raw_safe_halt();
120                 raw_local_irq_disable();
121         }
122 }
123
124 #ifdef ARCH_APICTIMER_STOPS_ON_C3
125
126 /*
127  * Some BIOS implementations switch to C3 in the published C2 state.
128  * This seems to be a common problem on AMD boxen, but other vendors
129  * are affected too. We pick the most conservative approach: we assume
130  * that the local APIC stops in both C2 and C3.
131  */
132 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
133                                    struct acpi_processor_cx *cx)
134 {
135         struct acpi_processor_power *pwr = &pr->power;
136         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
137
138         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
139                 return;
140
141         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
142                 type = ACPI_STATE_C1;
143
144         /*
145          * Check, if one of the previous states already marked the lapic
146          * unstable
147          */
148         if (pwr->timer_broadcast_on_state < state)
149                 return;
150
151         if (cx->type >= type)
152                 pr->power.timer_broadcast_on_state = state;
153 }
154
155 static void __lapic_timer_propagate_broadcast(void *arg)
156 {
157         struct acpi_processor *pr = arg;
158
159         if (pr->power.timer_broadcast_on_state < INT_MAX)
160                 tick_broadcast_enable();
161         else
162                 tick_broadcast_disable();
163 }
164
165 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
166 {
167         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
168                                  (void *)pr, 1);
169 }
170
171 /* Power(C) State timer broadcast control */
172 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
173                                         struct acpi_processor_cx *cx)
174 {
175         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
176 }
177
178 #else
179
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181                                    struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183
184 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
185                                         struct acpi_processor_cx *cx)
186 {
187         return false;
188 }
189
190 #endif
191
192 #if defined(CONFIG_X86)
193 static void tsc_check_state(int state)
194 {
195         switch (boot_cpu_data.x86_vendor) {
196         case X86_VENDOR_HYGON:
197         case X86_VENDOR_AMD:
198         case X86_VENDOR_INTEL:
199         case X86_VENDOR_CENTAUR:
200         case X86_VENDOR_ZHAOXIN:
201                 /*
202                  * AMD Fam10h TSC will tick in all
203                  * C/P/S0/S1 states when this bit is set.
204                  */
205                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
206                         return;
207                 fallthrough;
208         default:
209                 /* TSC could halt in idle, so notify users */
210                 if (state > ACPI_STATE_C1)
211                         mark_tsc_unstable("TSC halts in idle");
212         }
213 }
214 #else
215 static void tsc_check_state(int state) { return; }
216 #endif
217
218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220
221         if (!pr->pblk)
222                 return -ENODEV;
223
224         /* if info is obtained from pblk/fadt, type equals state */
225         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227
228 #ifndef CONFIG_HOTPLUG_CPU
229         /*
230          * Check for P_LVL2_UP flag before entering C2 and above on
231          * an SMP system.
232          */
233         if ((num_online_cpus() > 1) &&
234             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235                 return -ENODEV;
236 #endif
237
238         /* determine C2 and C3 address from pblk */
239         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241
242         /* determine latencies from FADT */
243         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245
246         /*
247          * FADT specified C2 latency must be less than or equal to
248          * 100 microseconds.
249          */
250         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
252                                   acpi_gbl_FADT.c2_latency);
253                 /* invalidate C2 */
254                 pr->power.states[ACPI_STATE_C2].address = 0;
255         }
256
257         /*
258          * FADT supplied C3 latency must be less than or equal to
259          * 1000 microseconds.
260          */
261         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
263                                   acpi_gbl_FADT.c3_latency);
264                 /* invalidate C3 */
265                 pr->power.states[ACPI_STATE_C3].address = 0;
266         }
267
268         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
269                           pr->power.states[ACPI_STATE_C2].address,
270                           pr->power.states[ACPI_STATE_C3].address);
271
272         snprintf(pr->power.states[ACPI_STATE_C2].desc,
273                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274                          pr->power.states[ACPI_STATE_C2].address);
275         snprintf(pr->power.states[ACPI_STATE_C3].desc,
276                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277                          pr->power.states[ACPI_STATE_C3].address);
278
279         if (!pr->power.states[ACPI_STATE_C2].address &&
280             !pr->power.states[ACPI_STATE_C3].address)
281                 return -ENODEV;
282
283         return 0;
284 }
285
286 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
287 {
288         if (!pr->power.states[ACPI_STATE_C1].valid) {
289                 /* set the first C-State to C1 */
290                 /* all processors need to support C1 */
291                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
292                 pr->power.states[ACPI_STATE_C1].valid = 1;
293                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
294
295                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
296                          ACPI_CX_DESC_LEN, "ACPI HLT");
297         }
298         /* the C0 state only exists as a filler in our array */
299         pr->power.states[ACPI_STATE_C0].valid = 1;
300         return 0;
301 }
302
303 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
304 {
305         int ret;
306
307         if (nocst)
308                 return -ENODEV;
309
310         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
311         if (ret)
312                 return ret;
313
314         if (!pr->power.count)
315                 return -EFAULT;
316
317         pr->flags.has_cst = 1;
318         return 0;
319 }
320
321 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
322                                            struct acpi_processor_cx *cx)
323 {
324         static int bm_check_flag = -1;
325         static int bm_control_flag = -1;
326
327
328         if (!cx->address)
329                 return;
330
331         /*
332          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
333          * DMA transfers are used by any ISA device to avoid livelock.
334          * Note that we could disable Type-F DMA (as recommended by
335          * the erratum), but this is known to disrupt certain ISA
336          * devices thus we take the conservative approach.
337          */
338         if (errata.piix4.fdma) {
339                 acpi_handle_debug(pr->handle,
340                                   "C3 not supported on PIIX4 with Type-F DMA\n");
341                 return;
342         }
343
344         /* All the logic here assumes flags.bm_check is same across all CPUs */
345         if (bm_check_flag == -1) {
346                 /* Determine whether bm_check is needed based on CPU  */
347                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
348                 bm_check_flag = pr->flags.bm_check;
349                 bm_control_flag = pr->flags.bm_control;
350         } else {
351                 pr->flags.bm_check = bm_check_flag;
352                 pr->flags.bm_control = bm_control_flag;
353         }
354
355         if (pr->flags.bm_check) {
356                 if (!pr->flags.bm_control) {
357                         if (pr->flags.has_cst != 1) {
358                                 /* bus mastering control is necessary */
359                                 acpi_handle_debug(pr->handle,
360                                                   "C3 support requires BM control\n");
361                                 return;
362                         } else {
363                                 /* Here we enter C3 without bus mastering */
364                                 acpi_handle_debug(pr->handle,
365                                                   "C3 support without BM control\n");
366                         }
367                 }
368         } else {
369                 /*
370                  * WBINVD should be set in fadt, for C3 state to be
371                  * supported on when bm_check is not required.
372                  */
373                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
374                         acpi_handle_debug(pr->handle,
375                                           "Cache invalidation should work properly"
376                                           " for C3 to be enabled on SMP systems\n");
377                         return;
378                 }
379         }
380
381         /*
382          * Otherwise we've met all of our C3 requirements.
383          * Normalize the C3 latency to expidite policy.  Enable
384          * checking of bus mastering status (bm_check) so we can
385          * use this in our C3 policy
386          */
387         cx->valid = 1;
388
389         /*
390          * On older chipsets, BM_RLD needs to be set
391          * in order for Bus Master activity to wake the
392          * system from C3.  Newer chipsets handle DMA
393          * during C3 automatically and BM_RLD is a NOP.
394          * In either case, the proper way to
395          * handle BM_RLD is to set it and leave it set.
396          */
397         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
398 }
399
400 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
401 {
402         int i, j, k;
403
404         for (i = 1; i < length; i++) {
405                 if (!states[i].valid)
406                         continue;
407
408                 for (j = i - 1, k = i; j >= 0; j--) {
409                         if (!states[j].valid)
410                                 continue;
411
412                         if (states[j].latency > states[k].latency)
413                                 swap(states[j].latency, states[k].latency);
414
415                         k = j;
416                 }
417         }
418 }
419
420 static int acpi_processor_power_verify(struct acpi_processor *pr)
421 {
422         unsigned int i;
423         unsigned int working = 0;
424         unsigned int last_latency = 0;
425         unsigned int last_type = 0;
426         bool buggy_latency = false;
427
428         pr->power.timer_broadcast_on_state = INT_MAX;
429
430         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
431                 struct acpi_processor_cx *cx = &pr->power.states[i];
432
433                 switch (cx->type) {
434                 case ACPI_STATE_C1:
435                         cx->valid = 1;
436                         break;
437
438                 case ACPI_STATE_C2:
439                         if (!cx->address)
440                                 break;
441                         cx->valid = 1;
442                         break;
443
444                 case ACPI_STATE_C3:
445                         acpi_processor_power_verify_c3(pr, cx);
446                         break;
447                 }
448                 if (!cx->valid)
449                         continue;
450                 if (cx->type >= last_type && cx->latency < last_latency)
451                         buggy_latency = true;
452                 last_latency = cx->latency;
453                 last_type = cx->type;
454
455                 lapic_timer_check_state(i, pr, cx);
456                 tsc_check_state(cx->type);
457                 working++;
458         }
459
460         if (buggy_latency) {
461                 pr_notice("FW issue: working around C-state latencies out of order\n");
462                 acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
463         }
464
465         lapic_timer_propagate_broadcast(pr);
466
467         return working;
468 }
469
470 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
471 {
472         int result;
473
474         /* NOTE: the idle thread may not be running while calling
475          * this function */
476
477         /* Zero initialize all the C-states info. */
478         memset(pr->power.states, 0, sizeof(pr->power.states));
479
480         result = acpi_processor_get_power_info_cst(pr);
481         if (result == -ENODEV)
482                 result = acpi_processor_get_power_info_fadt(pr);
483
484         if (result)
485                 return result;
486
487         acpi_processor_get_power_info_default(pr);
488
489         pr->power.count = acpi_processor_power_verify(pr);
490         pr->flags.power = 1;
491
492         return 0;
493 }
494
495 /**
496  * acpi_idle_bm_check - checks if bus master activity was detected
497  */
498 static int acpi_idle_bm_check(void)
499 {
500         u32 bm_status = 0;
501
502         if (bm_check_disable)
503                 return 0;
504
505         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
506         if (bm_status)
507                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
508         /*
509          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
510          * the true state of bus mastering activity; forcing us to
511          * manually check the BMIDEA bit of each IDE channel.
512          */
513         else if (errata.piix4.bmisx) {
514                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
515                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
516                         bm_status = 1;
517         }
518         return bm_status;
519 }
520
521 static __cpuidle void io_idle(unsigned long addr)
522 {
523         /* IO port based C-state */
524         inb(addr);
525
526 #ifdef  CONFIG_X86
527         /* No delay is needed if we are in guest */
528         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
529                 return;
530         /*
531          * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
532          * not this code.  Assume that any Intel systems using this
533          * are ancient and may need the dummy wait.  This also assumes
534          * that the motivating chipset issue was Intel-only.
535          */
536         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
537                 return;
538 #endif
539         /*
540          * Dummy wait op - must do something useless after P_LVL2 read
541          * because chipsets cannot guarantee that STPCLK# signal gets
542          * asserted in time to freeze execution properly
543          *
544          * This workaround has been in place since the original ACPI
545          * implementation was merged, circa 2002.
546          *
547          * If a profile is pointing to this instruction, please first
548          * consider moving your system to a more modern idle
549          * mechanism.
550          */
551         inl(acpi_gbl_FADT.xpm_timer_block.address);
552 }
553
554 /**
555  * acpi_idle_do_entry - enter idle state using the appropriate method
556  * @cx: cstate data
557  *
558  * Caller disables interrupt before call and enables interrupt after return.
559  */
560 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
561 {
562         perf_lopwr_cb(true);
563
564         if (cx->entry_method == ACPI_CSTATE_FFH) {
565                 /* Call into architectural FFH based C-state */
566                 acpi_processor_ffh_cstate_enter(cx);
567         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
568                 acpi_safe_halt();
569         } else {
570                 io_idle(cx->address);
571         }
572
573         perf_lopwr_cb(false);
574 }
575
576 /**
577  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
578  * @dev: the target CPU
579  * @index: the index of suggested state
580  */
581 static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
582 {
583         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
584
585         ACPI_FLUSH_CPU_CACHE();
586
587         while (1) {
588
589                 if (cx->entry_method == ACPI_CSTATE_HALT)
590                         raw_safe_halt();
591                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
592                         io_idle(cx->address);
593                 } else if (cx->entry_method == ACPI_CSTATE_FFH) {
594                         acpi_processor_ffh_play_dead(cx);
595                 } else
596                         return;
597         }
598 }
599
600 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
601 {
602         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
603                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
604 }
605
606 static int c3_cpu_count;
607 static DEFINE_RAW_SPINLOCK(c3_lock);
608
609 /**
610  * acpi_idle_enter_bm - enters C3 with proper BM handling
611  * @drv: cpuidle driver
612  * @pr: Target processor
613  * @cx: Target state context
614  * @index: index of target state
615  */
616 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
617                                struct acpi_processor *pr,
618                                struct acpi_processor_cx *cx,
619                                int index)
620 {
621         static struct acpi_processor_cx safe_cx = {
622                 .entry_method = ACPI_CSTATE_HALT,
623         };
624
625         /*
626          * disable bus master
627          * bm_check implies we need ARB_DIS
628          * bm_control implies whether we can do ARB_DIS
629          *
630          * That leaves a case where bm_check is set and bm_control is not set.
631          * In that case we cannot do much, we enter C3 without doing anything.
632          */
633         bool dis_bm = pr->flags.bm_control;
634
635         instrumentation_begin();
636
637         /* If we can skip BM, demote to a safe state. */
638         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
639                 dis_bm = false;
640                 index = drv->safe_state_index;
641                 if (index >= 0) {
642                         cx = this_cpu_read(acpi_cstate[index]);
643                 } else {
644                         cx = &safe_cx;
645                         index = -EBUSY;
646                 }
647         }
648
649         if (dis_bm) {
650                 raw_spin_lock(&c3_lock);
651                 c3_cpu_count++;
652                 /* Disable bus master arbitration when all CPUs are in C3 */
653                 if (c3_cpu_count == num_online_cpus())
654                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
655                 raw_spin_unlock(&c3_lock);
656         }
657
658         ct_cpuidle_enter();
659
660         acpi_idle_do_entry(cx);
661
662         ct_cpuidle_exit();
663
664         /* Re-enable bus master arbitration */
665         if (dis_bm) {
666                 raw_spin_lock(&c3_lock);
667                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
668                 c3_cpu_count--;
669                 raw_spin_unlock(&c3_lock);
670         }
671
672         instrumentation_end();
673
674         return index;
675 }
676
677 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
678                            struct cpuidle_driver *drv, int index)
679 {
680         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
681         struct acpi_processor *pr;
682
683         pr = __this_cpu_read(processors);
684         if (unlikely(!pr))
685                 return -EINVAL;
686
687         if (cx->type != ACPI_STATE_C1) {
688                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
689                         return acpi_idle_enter_bm(drv, pr, cx, index);
690
691                 /* C2 to C1 demotion. */
692                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
693                         index = ACPI_IDLE_STATE_START;
694                         cx = per_cpu(acpi_cstate[index], dev->cpu);
695                 }
696         }
697
698         if (cx->type == ACPI_STATE_C3)
699                 ACPI_FLUSH_CPU_CACHE();
700
701         acpi_idle_do_entry(cx);
702
703         return index;
704 }
705
706 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
707                                   struct cpuidle_driver *drv, int index)
708 {
709         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
710
711         if (cx->type == ACPI_STATE_C3) {
712                 struct acpi_processor *pr = __this_cpu_read(processors);
713
714                 if (unlikely(!pr))
715                         return 0;
716
717                 if (pr->flags.bm_check) {
718                         u8 bm_sts_skip = cx->bm_sts_skip;
719
720                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
721                         cx->bm_sts_skip = 1;
722                         acpi_idle_enter_bm(drv, pr, cx, index);
723                         cx->bm_sts_skip = bm_sts_skip;
724
725                         return 0;
726                 } else {
727                         ACPI_FLUSH_CPU_CACHE();
728                 }
729         }
730         acpi_idle_do_entry(cx);
731
732         return 0;
733 }
734
735 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
736                                            struct cpuidle_device *dev)
737 {
738         int i, count = ACPI_IDLE_STATE_START;
739         struct acpi_processor_cx *cx;
740         struct cpuidle_state *state;
741
742         if (max_cstate == 0)
743                 max_cstate = 1;
744
745         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
746                 state = &acpi_idle_driver.states[count];
747                 cx = &pr->power.states[i];
748
749                 if (!cx->valid)
750                         continue;
751
752                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
753
754                 if (lapic_timer_needs_broadcast(pr, cx))
755                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
756
757                 if (cx->type == ACPI_STATE_C3) {
758                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
759                         if (pr->flags.bm_check)
760                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
761                 }
762
763                 count++;
764                 if (count == CPUIDLE_STATE_MAX)
765                         break;
766         }
767
768         if (!count)
769                 return -EINVAL;
770
771         return 0;
772 }
773
774 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
775 {
776         int i, count;
777         struct acpi_processor_cx *cx;
778         struct cpuidle_state *state;
779         struct cpuidle_driver *drv = &acpi_idle_driver;
780
781         if (max_cstate == 0)
782                 max_cstate = 1;
783
784         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
785                 cpuidle_poll_state_init(drv);
786                 count = 1;
787         } else {
788                 count = 0;
789         }
790
791         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
792                 cx = &pr->power.states[i];
793
794                 if (!cx->valid)
795                         continue;
796
797                 state = &drv->states[count];
798                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
799                 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
800                 state->exit_latency = cx->latency;
801                 state->target_residency = cx->latency * latency_factor;
802                 state->enter = acpi_idle_enter;
803
804                 state->flags = 0;
805
806                 state->enter_dead = acpi_idle_play_dead;
807
808                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
809                         drv->safe_state_index = count;
810
811                 /*
812                  * Halt-induced C1 is not good for ->enter_s2idle, because it
813                  * re-enables interrupts on exit.  Moreover, C1 is generally not
814                  * particularly interesting from the suspend-to-idle angle, so
815                  * avoid C1 and the situations in which we may need to fall back
816                  * to it altogether.
817                  */
818                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
819                         state->enter_s2idle = acpi_idle_enter_s2idle;
820
821                 count++;
822                 if (count == CPUIDLE_STATE_MAX)
823                         break;
824         }
825
826         drv->state_count = count;
827
828         if (!count)
829                 return -EINVAL;
830
831         return 0;
832 }
833
834 static inline void acpi_processor_cstate_first_run_checks(void)
835 {
836         static int first_run;
837
838         if (first_run)
839                 return;
840         dmi_check_system(processor_power_dmi_table);
841         max_cstate = acpi_processor_cstate_check(max_cstate);
842         if (max_cstate < ACPI_C_STATES_MAX)
843                 pr_notice("processor limited to max C-state %d\n", max_cstate);
844
845         first_run++;
846
847         if (nocst)
848                 return;
849
850         acpi_processor_claim_cst_control();
851 }
852 #else
853
854 static inline int disabled_by_idle_boot_param(void) { return 0; }
855 static inline void acpi_processor_cstate_first_run_checks(void) { }
856 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
857 {
858         return -ENODEV;
859 }
860
861 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
862                                            struct cpuidle_device *dev)
863 {
864         return -EINVAL;
865 }
866
867 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
868 {
869         return -EINVAL;
870 }
871
872 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
873
874 struct acpi_lpi_states_array {
875         unsigned int size;
876         unsigned int composite_states_size;
877         struct acpi_lpi_state *entries;
878         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
879 };
880
881 static int obj_get_integer(union acpi_object *obj, u32 *value)
882 {
883         if (obj->type != ACPI_TYPE_INTEGER)
884                 return -EINVAL;
885
886         *value = obj->integer.value;
887         return 0;
888 }
889
890 static int acpi_processor_evaluate_lpi(acpi_handle handle,
891                                        struct acpi_lpi_states_array *info)
892 {
893         acpi_status status;
894         int ret = 0;
895         int pkg_count, state_idx = 1, loop;
896         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
897         union acpi_object *lpi_data;
898         struct acpi_lpi_state *lpi_state;
899
900         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
901         if (ACPI_FAILURE(status)) {
902                 acpi_handle_debug(handle, "No _LPI, giving up\n");
903                 return -ENODEV;
904         }
905
906         lpi_data = buffer.pointer;
907
908         /* There must be at least 4 elements = 3 elements + 1 package */
909         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
910             lpi_data->package.count < 4) {
911                 pr_debug("not enough elements in _LPI\n");
912                 ret = -ENODATA;
913                 goto end;
914         }
915
916         pkg_count = lpi_data->package.elements[2].integer.value;
917
918         /* Validate number of power states. */
919         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
920                 pr_debug("count given by _LPI is not valid\n");
921                 ret = -ENODATA;
922                 goto end;
923         }
924
925         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
926         if (!lpi_state) {
927                 ret = -ENOMEM;
928                 goto end;
929         }
930
931         info->size = pkg_count;
932         info->entries = lpi_state;
933
934         /* LPI States start at index 3 */
935         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
936                 union acpi_object *element, *pkg_elem, *obj;
937
938                 element = &lpi_data->package.elements[loop];
939                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
940                         continue;
941
942                 pkg_elem = element->package.elements;
943
944                 obj = pkg_elem + 6;
945                 if (obj->type == ACPI_TYPE_BUFFER) {
946                         struct acpi_power_register *reg;
947
948                         reg = (struct acpi_power_register *)obj->buffer.pointer;
949                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
950                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
951                                 continue;
952
953                         lpi_state->address = reg->address;
954                         lpi_state->entry_method =
955                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
956                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
957                 } else if (obj->type == ACPI_TYPE_INTEGER) {
958                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
959                         lpi_state->address = obj->integer.value;
960                 } else {
961                         continue;
962                 }
963
964                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
965
966                 obj = pkg_elem + 9;
967                 if (obj->type == ACPI_TYPE_STRING)
968                         strscpy(lpi_state->desc, obj->string.pointer,
969                                 ACPI_CX_DESC_LEN);
970
971                 lpi_state->index = state_idx;
972                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
973                         pr_debug("No min. residency found, assuming 10 us\n");
974                         lpi_state->min_residency = 10;
975                 }
976
977                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
978                         pr_debug("No wakeup residency found, assuming 10 us\n");
979                         lpi_state->wake_latency = 10;
980                 }
981
982                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
983                         lpi_state->flags = 0;
984
985                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
986                         lpi_state->arch_flags = 0;
987
988                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
989                         lpi_state->res_cnt_freq = 1;
990
991                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
992                         lpi_state->enable_parent_state = 0;
993         }
994
995         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
996 end:
997         kfree(buffer.pointer);
998         return ret;
999 }
1000
1001 /*
1002  * flat_state_cnt - the number of composite LPI states after the process of flattening
1003  */
1004 static int flat_state_cnt;
1005
1006 /**
1007  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1008  *
1009  * @local: local LPI state
1010  * @parent: parent LPI state
1011  * @result: composite LPI state
1012  */
1013 static bool combine_lpi_states(struct acpi_lpi_state *local,
1014                                struct acpi_lpi_state *parent,
1015                                struct acpi_lpi_state *result)
1016 {
1017         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1018                 if (!parent->address) /* 0 means autopromotable */
1019                         return false;
1020                 result->address = local->address + parent->address;
1021         } else {
1022                 result->address = parent->address;
1023         }
1024
1025         result->min_residency = max(local->min_residency, parent->min_residency);
1026         result->wake_latency = local->wake_latency + parent->wake_latency;
1027         result->enable_parent_state = parent->enable_parent_state;
1028         result->entry_method = local->entry_method;
1029
1030         result->flags = parent->flags;
1031         result->arch_flags = parent->arch_flags;
1032         result->index = parent->index;
1033
1034         strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1035         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1036         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1037         return true;
1038 }
1039
1040 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1041
1042 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1043                                   struct acpi_lpi_state *t)
1044 {
1045         curr_level->composite_states[curr_level->composite_states_size++] = t;
1046 }
1047
1048 static int flatten_lpi_states(struct acpi_processor *pr,
1049                               struct acpi_lpi_states_array *curr_level,
1050                               struct acpi_lpi_states_array *prev_level)
1051 {
1052         int i, j, state_count = curr_level->size;
1053         struct acpi_lpi_state *p, *t = curr_level->entries;
1054
1055         curr_level->composite_states_size = 0;
1056         for (j = 0; j < state_count; j++, t++) {
1057                 struct acpi_lpi_state *flpi;
1058
1059                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1060                         continue;
1061
1062                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1063                         pr_warn("Limiting number of LPI states to max (%d)\n",
1064                                 ACPI_PROCESSOR_MAX_POWER);
1065                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1066                         break;
1067                 }
1068
1069                 flpi = &pr->power.lpi_states[flat_state_cnt];
1070
1071                 if (!prev_level) { /* leaf/processor node */
1072                         memcpy(flpi, t, sizeof(*t));
1073                         stash_composite_state(curr_level, flpi);
1074                         flat_state_cnt++;
1075                         continue;
1076                 }
1077
1078                 for (i = 0; i < prev_level->composite_states_size; i++) {
1079                         p = prev_level->composite_states[i];
1080                         if (t->index <= p->enable_parent_state &&
1081                             combine_lpi_states(p, t, flpi)) {
1082                                 stash_composite_state(curr_level, flpi);
1083                                 flat_state_cnt++;
1084                                 flpi++;
1085                         }
1086                 }
1087         }
1088
1089         kfree(curr_level->entries);
1090         return 0;
1091 }
1092
1093 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1094 {
1095         return -EOPNOTSUPP;
1096 }
1097
1098 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1099 {
1100         int ret, i;
1101         acpi_status status;
1102         acpi_handle handle = pr->handle, pr_ahandle;
1103         struct acpi_device *d = NULL;
1104         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1105
1106         /* make sure our architecture has support */
1107         ret = acpi_processor_ffh_lpi_probe(pr->id);
1108         if (ret == -EOPNOTSUPP)
1109                 return ret;
1110
1111         if (!osc_pc_lpi_support_confirmed)
1112                 return -EOPNOTSUPP;
1113
1114         if (!acpi_has_method(handle, "_LPI"))
1115                 return -EINVAL;
1116
1117         flat_state_cnt = 0;
1118         prev = &info[0];
1119         curr = &info[1];
1120         handle = pr->handle;
1121         ret = acpi_processor_evaluate_lpi(handle, prev);
1122         if (ret)
1123                 return ret;
1124         flatten_lpi_states(pr, prev, NULL);
1125
1126         status = acpi_get_parent(handle, &pr_ahandle);
1127         while (ACPI_SUCCESS(status)) {
1128                 d = acpi_fetch_acpi_dev(pr_ahandle);
1129                 if (!d)
1130                         break;
1131
1132                 handle = pr_ahandle;
1133
1134                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1135                         break;
1136
1137                 /* can be optional ? */
1138                 if (!acpi_has_method(handle, "_LPI"))
1139                         break;
1140
1141                 ret = acpi_processor_evaluate_lpi(handle, curr);
1142                 if (ret)
1143                         break;
1144
1145                 /* flatten all the LPI states in this level of hierarchy */
1146                 flatten_lpi_states(pr, curr, prev);
1147
1148                 tmp = prev, prev = curr, curr = tmp;
1149
1150                 status = acpi_get_parent(handle, &pr_ahandle);
1151         }
1152
1153         pr->power.count = flat_state_cnt;
1154         /* reset the index after flattening */
1155         for (i = 0; i < pr->power.count; i++)
1156                 pr->power.lpi_states[i].index = i;
1157
1158         /* Tell driver that _LPI is supported. */
1159         pr->flags.has_lpi = 1;
1160         pr->flags.power = 1;
1161
1162         return 0;
1163 }
1164
1165 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1166 {
1167         return -ENODEV;
1168 }
1169
1170 /**
1171  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1172  * @dev: the target CPU
1173  * @drv: cpuidle driver containing cpuidle state info
1174  * @index: index of target state
1175  *
1176  * Return: 0 for success or negative value for error
1177  */
1178 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1179                                struct cpuidle_driver *drv, int index)
1180 {
1181         struct acpi_processor *pr;
1182         struct acpi_lpi_state *lpi;
1183
1184         pr = __this_cpu_read(processors);
1185
1186         if (unlikely(!pr))
1187                 return -EINVAL;
1188
1189         lpi = &pr->power.lpi_states[index];
1190         if (lpi->entry_method == ACPI_CSTATE_FFH)
1191                 return acpi_processor_ffh_lpi_enter(lpi);
1192
1193         return -EINVAL;
1194 }
1195
1196 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1197 {
1198         int i;
1199         struct acpi_lpi_state *lpi;
1200         struct cpuidle_state *state;
1201         struct cpuidle_driver *drv = &acpi_idle_driver;
1202
1203         if (!pr->flags.has_lpi)
1204                 return -EOPNOTSUPP;
1205
1206         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1207                 lpi = &pr->power.lpi_states[i];
1208
1209                 state = &drv->states[i];
1210                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1211                 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1212                 state->exit_latency = lpi->wake_latency;
1213                 state->target_residency = lpi->min_residency;
1214                 state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1215                 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1216                         state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1217                 state->enter = acpi_idle_lpi_enter;
1218                 drv->safe_state_index = i;
1219         }
1220
1221         drv->state_count = i;
1222
1223         return 0;
1224 }
1225
1226 /**
1227  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1228  * global state data i.e. idle routines
1229  *
1230  * @pr: the ACPI processor
1231  */
1232 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1233 {
1234         int i;
1235         struct cpuidle_driver *drv = &acpi_idle_driver;
1236
1237         if (!pr->flags.power_setup_done || !pr->flags.power)
1238                 return -EINVAL;
1239
1240         drv->safe_state_index = -1;
1241         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1242                 drv->states[i].name[0] = '\0';
1243                 drv->states[i].desc[0] = '\0';
1244         }
1245
1246         if (pr->flags.has_lpi)
1247                 return acpi_processor_setup_lpi_states(pr);
1248
1249         return acpi_processor_setup_cstates(pr);
1250 }
1251
1252 /**
1253  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1254  * device i.e. per-cpu data
1255  *
1256  * @pr: the ACPI processor
1257  * @dev : the cpuidle device
1258  */
1259 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1260                                             struct cpuidle_device *dev)
1261 {
1262         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1263                 return -EINVAL;
1264
1265         dev->cpu = pr->id;
1266         if (pr->flags.has_lpi)
1267                 return acpi_processor_ffh_lpi_probe(pr->id);
1268
1269         return acpi_processor_setup_cpuidle_cx(pr, dev);
1270 }
1271
1272 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1273 {
1274         int ret;
1275
1276         ret = acpi_processor_get_lpi_info(pr);
1277         if (ret)
1278                 ret = acpi_processor_get_cstate_info(pr);
1279
1280         return ret;
1281 }
1282
1283 int acpi_processor_hotplug(struct acpi_processor *pr)
1284 {
1285         int ret = 0;
1286         struct cpuidle_device *dev;
1287
1288         if (disabled_by_idle_boot_param())
1289                 return 0;
1290
1291         if (!pr->flags.power_setup_done)
1292                 return -ENODEV;
1293
1294         dev = per_cpu(acpi_cpuidle_device, pr->id);
1295         cpuidle_pause_and_lock();
1296         cpuidle_disable_device(dev);
1297         ret = acpi_processor_get_power_info(pr);
1298         if (!ret && pr->flags.power) {
1299                 acpi_processor_setup_cpuidle_dev(pr, dev);
1300                 ret = cpuidle_enable_device(dev);
1301         }
1302         cpuidle_resume_and_unlock();
1303
1304         return ret;
1305 }
1306
1307 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1308 {
1309         int cpu;
1310         struct acpi_processor *_pr;
1311         struct cpuidle_device *dev;
1312
1313         if (disabled_by_idle_boot_param())
1314                 return 0;
1315
1316         if (!pr->flags.power_setup_done)
1317                 return -ENODEV;
1318
1319         /*
1320          * FIXME:  Design the ACPI notification to make it once per
1321          * system instead of once per-cpu.  This condition is a hack
1322          * to make the code that updates C-States be called once.
1323          */
1324
1325         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1326
1327                 /* Protect against cpu-hotplug */
1328                 cpus_read_lock();
1329                 cpuidle_pause_and_lock();
1330
1331                 /* Disable all cpuidle devices */
1332                 for_each_online_cpu(cpu) {
1333                         _pr = per_cpu(processors, cpu);
1334                         if (!_pr || !_pr->flags.power_setup_done)
1335                                 continue;
1336                         dev = per_cpu(acpi_cpuidle_device, cpu);
1337                         cpuidle_disable_device(dev);
1338                 }
1339
1340                 /* Populate Updated C-state information */
1341                 acpi_processor_get_power_info(pr);
1342                 acpi_processor_setup_cpuidle_states(pr);
1343
1344                 /* Enable all cpuidle devices */
1345                 for_each_online_cpu(cpu) {
1346                         _pr = per_cpu(processors, cpu);
1347                         if (!_pr || !_pr->flags.power_setup_done)
1348                                 continue;
1349                         acpi_processor_get_power_info(_pr);
1350                         if (_pr->flags.power) {
1351                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1352                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1353                                 cpuidle_enable_device(dev);
1354                         }
1355                 }
1356                 cpuidle_resume_and_unlock();
1357                 cpus_read_unlock();
1358         }
1359
1360         return 0;
1361 }
1362
1363 static int acpi_processor_registered;
1364
1365 int acpi_processor_power_init(struct acpi_processor *pr)
1366 {
1367         int retval;
1368         struct cpuidle_device *dev;
1369
1370         if (disabled_by_idle_boot_param())
1371                 return 0;
1372
1373         acpi_processor_cstate_first_run_checks();
1374
1375         if (!acpi_processor_get_power_info(pr))
1376                 pr->flags.power_setup_done = 1;
1377
1378         /*
1379          * Install the idle handler if processor power management is supported.
1380          * Note that we use previously set idle handler will be used on
1381          * platforms that only support C1.
1382          */
1383         if (pr->flags.power) {
1384                 /* Register acpi_idle_driver if not already registered */
1385                 if (!acpi_processor_registered) {
1386                         acpi_processor_setup_cpuidle_states(pr);
1387                         retval = cpuidle_register_driver(&acpi_idle_driver);
1388                         if (retval)
1389                                 return retval;
1390                         pr_debug("%s registered with cpuidle\n",
1391                                  acpi_idle_driver.name);
1392                 }
1393
1394                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1395                 if (!dev)
1396                         return -ENOMEM;
1397                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1398
1399                 acpi_processor_setup_cpuidle_dev(pr, dev);
1400
1401                 /* Register per-cpu cpuidle_device. Cpuidle driver
1402                  * must already be registered before registering device
1403                  */
1404                 retval = cpuidle_register_device(dev);
1405                 if (retval) {
1406                         if (acpi_processor_registered == 0)
1407                                 cpuidle_unregister_driver(&acpi_idle_driver);
1408                         return retval;
1409                 }
1410                 acpi_processor_registered++;
1411         }
1412         return 0;
1413 }
1414
1415 int acpi_processor_power_exit(struct acpi_processor *pr)
1416 {
1417         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1418
1419         if (disabled_by_idle_boot_param())
1420                 return 0;
1421
1422         if (pr->flags.power) {
1423                 cpuidle_unregister_device(dev);
1424                 acpi_processor_registered--;
1425                 if (acpi_processor_registered == 0)
1426                         cpuidle_unregister_driver(&acpi_idle_driver);
1427
1428                 kfree(dev);
1429         }
1430
1431         pr->flags.power_setup_done = 0;
1432         return 0;
1433 }