Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-2.6-block.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
26
27 /*
28  * Include the apic definitions for x86 to have the APIC timer related defines
29  * available also for UP (on SMP it gets magically included via linux/smp.h).
30  * asm/acpi.h is not an option, as it would require more include magic. Also
31  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
32  */
33 #ifdef CONFIG_X86
34 #include <asm/apic.h>
35 #include <asm/cpu.h>
36 #endif
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0400);
42 static bool nocst __read_mostly;
43 module_param(nocst, bool, 0400);
44 static bool bm_check_disable __read_mostly;
45 module_param(bm_check_disable, bool, 0400);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 raw_safe_halt();
112                 raw_local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165                                         struct acpi_processor_cx *cx)
166 {
167         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
168 }
169
170 #else
171
172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173                                    struct acpi_processor_cx *cstate) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175
176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177                                         struct acpi_processor_cx *cx)
178 {
179         return false;
180 }
181
182 #endif
183
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state)
186 {
187         switch (boot_cpu_data.x86_vendor) {
188         case X86_VENDOR_HYGON:
189         case X86_VENDOR_AMD:
190         case X86_VENDOR_INTEL:
191         case X86_VENDOR_CENTAUR:
192         case X86_VENDOR_ZHAOXIN:
193                 /*
194                  * AMD Fam10h TSC will tick in all
195                  * C/P/S0/S1 states when this bit is set.
196                  */
197                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198                         return;
199                 fallthrough;
200         default:
201                 /* TSC could halt in idle, so notify users */
202                 if (state > ACPI_STATE_C1)
203                         mark_tsc_unstable("TSC halts in idle");
204         }
205 }
206 #else
207 static void tsc_check_state(int state) { return; }
208 #endif
209
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
211 {
212
213         if (!pr->pblk)
214                 return -ENODEV;
215
216         /* if info is obtained from pblk/fadt, type equals state */
217         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219
220 #ifndef CONFIG_HOTPLUG_CPU
221         /*
222          * Check for P_LVL2_UP flag before entering C2 and above on
223          * an SMP system.
224          */
225         if ((num_online_cpus() > 1) &&
226             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227                 return -ENODEV;
228 #endif
229
230         /* determine C2 and C3 address from pblk */
231         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233
234         /* determine latencies from FADT */
235         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
237
238         /*
239          * FADT specified C2 latency must be less than or equal to
240          * 100 microseconds.
241          */
242         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
244                                   acpi_gbl_FADT.c2_latency);
245                 /* invalidate C2 */
246                 pr->power.states[ACPI_STATE_C2].address = 0;
247         }
248
249         /*
250          * FADT supplied C3 latency must be less than or equal to
251          * 1000 microseconds.
252          */
253         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
255                                   acpi_gbl_FADT.c3_latency);
256                 /* invalidate C3 */
257                 pr->power.states[ACPI_STATE_C3].address = 0;
258         }
259
260         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
261                           pr->power.states[ACPI_STATE_C2].address,
262                           pr->power.states[ACPI_STATE_C3].address);
263
264         snprintf(pr->power.states[ACPI_STATE_C2].desc,
265                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266                          pr->power.states[ACPI_STATE_C2].address);
267         snprintf(pr->power.states[ACPI_STATE_C3].desc,
268                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269                          pr->power.states[ACPI_STATE_C3].address);
270
271         return 0;
272 }
273
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
275 {
276         if (!pr->power.states[ACPI_STATE_C1].valid) {
277                 /* set the first C-State to C1 */
278                 /* all processors need to support C1 */
279                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280                 pr->power.states[ACPI_STATE_C1].valid = 1;
281                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
282
283                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
284                          ACPI_CX_DESC_LEN, "ACPI HLT");
285         }
286         /* the C0 state only exists as a filler in our array */
287         pr->power.states[ACPI_STATE_C0].valid = 1;
288         return 0;
289 }
290
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
292 {
293         int ret;
294
295         if (nocst)
296                 return -ENODEV;
297
298         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
299         if (ret)
300                 return ret;
301
302         if (!pr->power.count)
303                 return -EFAULT;
304
305         pr->flags.has_cst = 1;
306         return 0;
307 }
308
309 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
310                                            struct acpi_processor_cx *cx)
311 {
312         static int bm_check_flag = -1;
313         static int bm_control_flag = -1;
314
315
316         if (!cx->address)
317                 return;
318
319         /*
320          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
321          * DMA transfers are used by any ISA device to avoid livelock.
322          * Note that we could disable Type-F DMA (as recommended by
323          * the erratum), but this is known to disrupt certain ISA
324          * devices thus we take the conservative approach.
325          */
326         if (errata.piix4.fdma) {
327                 acpi_handle_debug(pr->handle,
328                                   "C3 not supported on PIIX4 with Type-F DMA\n");
329                 return;
330         }
331
332         /* All the logic here assumes flags.bm_check is same across all CPUs */
333         if (bm_check_flag == -1) {
334                 /* Determine whether bm_check is needed based on CPU  */
335                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
336                 bm_check_flag = pr->flags.bm_check;
337                 bm_control_flag = pr->flags.bm_control;
338         } else {
339                 pr->flags.bm_check = bm_check_flag;
340                 pr->flags.bm_control = bm_control_flag;
341         }
342
343         if (pr->flags.bm_check) {
344                 if (!pr->flags.bm_control) {
345                         if (pr->flags.has_cst != 1) {
346                                 /* bus mastering control is necessary */
347                                 acpi_handle_debug(pr->handle,
348                                                   "C3 support requires BM control\n");
349                                 return;
350                         } else {
351                                 /* Here we enter C3 without bus mastering */
352                                 acpi_handle_debug(pr->handle,
353                                                   "C3 support without BM control\n");
354                         }
355                 }
356         } else {
357                 /*
358                  * WBINVD should be set in fadt, for C3 state to be
359                  * supported on when bm_check is not required.
360                  */
361                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
362                         acpi_handle_debug(pr->handle,
363                                           "Cache invalidation should work properly"
364                                           " for C3 to be enabled on SMP systems\n");
365                         return;
366                 }
367         }
368
369         /*
370          * Otherwise we've met all of our C3 requirements.
371          * Normalize the C3 latency to expidite policy.  Enable
372          * checking of bus mastering status (bm_check) so we can
373          * use this in our C3 policy
374          */
375         cx->valid = 1;
376
377         /*
378          * On older chipsets, BM_RLD needs to be set
379          * in order for Bus Master activity to wake the
380          * system from C3.  Newer chipsets handle DMA
381          * during C3 automatically and BM_RLD is a NOP.
382          * In either case, the proper way to
383          * handle BM_RLD is to set it and leave it set.
384          */
385         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
386 }
387
388 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
389 {
390         int i, j, k;
391
392         for (i = 1; i < length; i++) {
393                 if (!states[i].valid)
394                         continue;
395
396                 for (j = i - 1, k = i; j >= 0; j--) {
397                         if (!states[j].valid)
398                                 continue;
399
400                         if (states[j].latency > states[k].latency)
401                                 swap(states[j].latency, states[k].latency);
402
403                         k = j;
404                 }
405         }
406 }
407
408 static int acpi_processor_power_verify(struct acpi_processor *pr)
409 {
410         unsigned int i;
411         unsigned int working = 0;
412         unsigned int last_latency = 0;
413         unsigned int last_type = 0;
414         bool buggy_latency = false;
415
416         pr->power.timer_broadcast_on_state = INT_MAX;
417
418         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
419                 struct acpi_processor_cx *cx = &pr->power.states[i];
420
421                 switch (cx->type) {
422                 case ACPI_STATE_C1:
423                         cx->valid = 1;
424                         break;
425
426                 case ACPI_STATE_C2:
427                         if (!cx->address)
428                                 break;
429                         cx->valid = 1;
430                         break;
431
432                 case ACPI_STATE_C3:
433                         acpi_processor_power_verify_c3(pr, cx);
434                         break;
435                 }
436                 if (!cx->valid)
437                         continue;
438                 if (cx->type >= last_type && cx->latency < last_latency)
439                         buggy_latency = true;
440                 last_latency = cx->latency;
441                 last_type = cx->type;
442
443                 lapic_timer_check_state(i, pr, cx);
444                 tsc_check_state(cx->type);
445                 working++;
446         }
447
448         if (buggy_latency) {
449                 pr_notice("FW issue: working around C-state latencies out of order\n");
450                 acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
451         }
452
453         lapic_timer_propagate_broadcast(pr);
454
455         return working;
456 }
457
458 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
459 {
460         unsigned int i;
461         int result;
462
463
464         /* NOTE: the idle thread may not be running while calling
465          * this function */
466
467         /* Zero initialize all the C-states info. */
468         memset(pr->power.states, 0, sizeof(pr->power.states));
469
470         result = acpi_processor_get_power_info_cst(pr);
471         if (result == -ENODEV)
472                 result = acpi_processor_get_power_info_fadt(pr);
473
474         if (result)
475                 return result;
476
477         acpi_processor_get_power_info_default(pr);
478
479         pr->power.count = acpi_processor_power_verify(pr);
480
481         /*
482          * if one state of type C2 or C3 is available, mark this
483          * CPU as being "idle manageable"
484          */
485         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
486                 if (pr->power.states[i].valid) {
487                         pr->power.count = i;
488                         pr->flags.power = 1;
489                 }
490         }
491
492         return 0;
493 }
494
495 /**
496  * acpi_idle_bm_check - checks if bus master activity was detected
497  */
498 static int acpi_idle_bm_check(void)
499 {
500         u32 bm_status = 0;
501
502         if (bm_check_disable)
503                 return 0;
504
505         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
506         if (bm_status)
507                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
508         /*
509          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
510          * the true state of bus mastering activity; forcing us to
511          * manually check the BMIDEA bit of each IDE channel.
512          */
513         else if (errata.piix4.bmisx) {
514                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
515                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
516                         bm_status = 1;
517         }
518         return bm_status;
519 }
520
521 static __cpuidle void io_idle(unsigned long addr)
522 {
523         /* IO port based C-state */
524         inb(addr);
525
526 #ifdef  CONFIG_X86
527         /* No delay is needed if we are in guest */
528         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
529                 return;
530         /*
531          * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
532          * not this code.  Assume that any Intel systems using this
533          * are ancient and may need the dummy wait.  This also assumes
534          * that the motivating chipset issue was Intel-only.
535          */
536         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
537                 return;
538 #endif
539         /*
540          * Dummy wait op - must do something useless after P_LVL2 read
541          * because chipsets cannot guarantee that STPCLK# signal gets
542          * asserted in time to freeze execution properly
543          *
544          * This workaround has been in place since the original ACPI
545          * implementation was merged, circa 2002.
546          *
547          * If a profile is pointing to this instruction, please first
548          * consider moving your system to a more modern idle
549          * mechanism.
550          */
551         inl(acpi_gbl_FADT.xpm_timer_block.address);
552 }
553
554 /**
555  * acpi_idle_do_entry - enter idle state using the appropriate method
556  * @cx: cstate data
557  *
558  * Caller disables interrupt before call and enables interrupt after return.
559  */
560 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
561 {
562         perf_lopwr_cb(true);
563
564         if (cx->entry_method == ACPI_CSTATE_FFH) {
565                 /* Call into architectural FFH based C-state */
566                 acpi_processor_ffh_cstate_enter(cx);
567         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
568                 acpi_safe_halt();
569         } else {
570                 io_idle(cx->address);
571         }
572
573         perf_lopwr_cb(false);
574 }
575
576 /**
577  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
578  * @dev: the target CPU
579  * @index: the index of suggested state
580  */
581 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
582 {
583         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
584
585         ACPI_FLUSH_CPU_CACHE();
586
587         while (1) {
588
589                 if (cx->entry_method == ACPI_CSTATE_HALT)
590                         raw_safe_halt();
591                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
592                         io_idle(cx->address);
593                 } else
594                         return -ENODEV;
595         }
596
597         /* Never reached */
598         return 0;
599 }
600
601 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
602 {
603         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
604                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
605 }
606
607 static int c3_cpu_count;
608 static DEFINE_RAW_SPINLOCK(c3_lock);
609
610 /**
611  * acpi_idle_enter_bm - enters C3 with proper BM handling
612  * @drv: cpuidle driver
613  * @pr: Target processor
614  * @cx: Target state context
615  * @index: index of target state
616  */
617 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
618                                struct acpi_processor *pr,
619                                struct acpi_processor_cx *cx,
620                                int index)
621 {
622         static struct acpi_processor_cx safe_cx = {
623                 .entry_method = ACPI_CSTATE_HALT,
624         };
625
626         /*
627          * disable bus master
628          * bm_check implies we need ARB_DIS
629          * bm_control implies whether we can do ARB_DIS
630          *
631          * That leaves a case where bm_check is set and bm_control is not set.
632          * In that case we cannot do much, we enter C3 without doing anything.
633          */
634         bool dis_bm = pr->flags.bm_control;
635
636         instrumentation_begin();
637
638         /* If we can skip BM, demote to a safe state. */
639         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
640                 dis_bm = false;
641                 index = drv->safe_state_index;
642                 if (index >= 0) {
643                         cx = this_cpu_read(acpi_cstate[index]);
644                 } else {
645                         cx = &safe_cx;
646                         index = -EBUSY;
647                 }
648         }
649
650         if (dis_bm) {
651                 raw_spin_lock(&c3_lock);
652                 c3_cpu_count++;
653                 /* Disable bus master arbitration when all CPUs are in C3 */
654                 if (c3_cpu_count == num_online_cpus())
655                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
656                 raw_spin_unlock(&c3_lock);
657         }
658
659         ct_cpuidle_enter();
660
661         acpi_idle_do_entry(cx);
662
663         ct_cpuidle_exit();
664
665         /* Re-enable bus master arbitration */
666         if (dis_bm) {
667                 raw_spin_lock(&c3_lock);
668                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
669                 c3_cpu_count--;
670                 raw_spin_unlock(&c3_lock);
671         }
672
673         instrumentation_end();
674
675         return index;
676 }
677
678 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
679                            struct cpuidle_driver *drv, int index)
680 {
681         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
682         struct acpi_processor *pr;
683
684         pr = __this_cpu_read(processors);
685         if (unlikely(!pr))
686                 return -EINVAL;
687
688         if (cx->type != ACPI_STATE_C1) {
689                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
690                         return acpi_idle_enter_bm(drv, pr, cx, index);
691
692                 /* C2 to C1 demotion. */
693                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
694                         index = ACPI_IDLE_STATE_START;
695                         cx = per_cpu(acpi_cstate[index], dev->cpu);
696                 }
697         }
698
699         if (cx->type == ACPI_STATE_C3)
700                 ACPI_FLUSH_CPU_CACHE();
701
702         acpi_idle_do_entry(cx);
703
704         return index;
705 }
706
707 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
708                                   struct cpuidle_driver *drv, int index)
709 {
710         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
711
712         if (cx->type == ACPI_STATE_C3) {
713                 struct acpi_processor *pr = __this_cpu_read(processors);
714
715                 if (unlikely(!pr))
716                         return 0;
717
718                 if (pr->flags.bm_check) {
719                         u8 bm_sts_skip = cx->bm_sts_skip;
720
721                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
722                         cx->bm_sts_skip = 1;
723                         acpi_idle_enter_bm(drv, pr, cx, index);
724                         cx->bm_sts_skip = bm_sts_skip;
725
726                         return 0;
727                 } else {
728                         ACPI_FLUSH_CPU_CACHE();
729                 }
730         }
731         acpi_idle_do_entry(cx);
732
733         return 0;
734 }
735
736 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
737                                            struct cpuidle_device *dev)
738 {
739         int i, count = ACPI_IDLE_STATE_START;
740         struct acpi_processor_cx *cx;
741         struct cpuidle_state *state;
742
743         if (max_cstate == 0)
744                 max_cstate = 1;
745
746         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
747                 state = &acpi_idle_driver.states[count];
748                 cx = &pr->power.states[i];
749
750                 if (!cx->valid)
751                         continue;
752
753                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
754
755                 if (lapic_timer_needs_broadcast(pr, cx))
756                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
757
758                 if (cx->type == ACPI_STATE_C3) {
759                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
760                         if (pr->flags.bm_check)
761                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
762                 }
763
764                 count++;
765                 if (count == CPUIDLE_STATE_MAX)
766                         break;
767         }
768
769         if (!count)
770                 return -EINVAL;
771
772         return 0;
773 }
774
775 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
776 {
777         int i, count;
778         struct acpi_processor_cx *cx;
779         struct cpuidle_state *state;
780         struct cpuidle_driver *drv = &acpi_idle_driver;
781
782         if (max_cstate == 0)
783                 max_cstate = 1;
784
785         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
786                 cpuidle_poll_state_init(drv);
787                 count = 1;
788         } else {
789                 count = 0;
790         }
791
792         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
793                 cx = &pr->power.states[i];
794
795                 if (!cx->valid)
796                         continue;
797
798                 state = &drv->states[count];
799                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
800                 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
801                 state->exit_latency = cx->latency;
802                 state->target_residency = cx->latency * latency_factor;
803                 state->enter = acpi_idle_enter;
804
805                 state->flags = 0;
806                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
807                     cx->type == ACPI_STATE_C3) {
808                         state->enter_dead = acpi_idle_play_dead;
809                         if (cx->type != ACPI_STATE_C3)
810                                 drv->safe_state_index = count;
811                 }
812                 /*
813                  * Halt-induced C1 is not good for ->enter_s2idle, because it
814                  * re-enables interrupts on exit.  Moreover, C1 is generally not
815                  * particularly interesting from the suspend-to-idle angle, so
816                  * avoid C1 and the situations in which we may need to fall back
817                  * to it altogether.
818                  */
819                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
820                         state->enter_s2idle = acpi_idle_enter_s2idle;
821
822                 count++;
823                 if (count == CPUIDLE_STATE_MAX)
824                         break;
825         }
826
827         drv->state_count = count;
828
829         if (!count)
830                 return -EINVAL;
831
832         return 0;
833 }
834
835 static inline void acpi_processor_cstate_first_run_checks(void)
836 {
837         static int first_run;
838
839         if (first_run)
840                 return;
841         dmi_check_system(processor_power_dmi_table);
842         max_cstate = acpi_processor_cstate_check(max_cstate);
843         if (max_cstate < ACPI_C_STATES_MAX)
844                 pr_notice("processor limited to max C-state %d\n", max_cstate);
845
846         first_run++;
847
848         if (nocst)
849                 return;
850
851         acpi_processor_claim_cst_control();
852 }
853 #else
854
855 static inline int disabled_by_idle_boot_param(void) { return 0; }
856 static inline void acpi_processor_cstate_first_run_checks(void) { }
857 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
858 {
859         return -ENODEV;
860 }
861
862 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
863                                            struct cpuidle_device *dev)
864 {
865         return -EINVAL;
866 }
867
868 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
869 {
870         return -EINVAL;
871 }
872
873 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
874
875 struct acpi_lpi_states_array {
876         unsigned int size;
877         unsigned int composite_states_size;
878         struct acpi_lpi_state *entries;
879         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
880 };
881
882 static int obj_get_integer(union acpi_object *obj, u32 *value)
883 {
884         if (obj->type != ACPI_TYPE_INTEGER)
885                 return -EINVAL;
886
887         *value = obj->integer.value;
888         return 0;
889 }
890
891 static int acpi_processor_evaluate_lpi(acpi_handle handle,
892                                        struct acpi_lpi_states_array *info)
893 {
894         acpi_status status;
895         int ret = 0;
896         int pkg_count, state_idx = 1, loop;
897         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
898         union acpi_object *lpi_data;
899         struct acpi_lpi_state *lpi_state;
900
901         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
902         if (ACPI_FAILURE(status)) {
903                 acpi_handle_debug(handle, "No _LPI, giving up\n");
904                 return -ENODEV;
905         }
906
907         lpi_data = buffer.pointer;
908
909         /* There must be at least 4 elements = 3 elements + 1 package */
910         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
911             lpi_data->package.count < 4) {
912                 pr_debug("not enough elements in _LPI\n");
913                 ret = -ENODATA;
914                 goto end;
915         }
916
917         pkg_count = lpi_data->package.elements[2].integer.value;
918
919         /* Validate number of power states. */
920         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
921                 pr_debug("count given by _LPI is not valid\n");
922                 ret = -ENODATA;
923                 goto end;
924         }
925
926         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
927         if (!lpi_state) {
928                 ret = -ENOMEM;
929                 goto end;
930         }
931
932         info->size = pkg_count;
933         info->entries = lpi_state;
934
935         /* LPI States start at index 3 */
936         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
937                 union acpi_object *element, *pkg_elem, *obj;
938
939                 element = &lpi_data->package.elements[loop];
940                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
941                         continue;
942
943                 pkg_elem = element->package.elements;
944
945                 obj = pkg_elem + 6;
946                 if (obj->type == ACPI_TYPE_BUFFER) {
947                         struct acpi_power_register *reg;
948
949                         reg = (struct acpi_power_register *)obj->buffer.pointer;
950                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
951                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
952                                 continue;
953
954                         lpi_state->address = reg->address;
955                         lpi_state->entry_method =
956                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
957                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
958                 } else if (obj->type == ACPI_TYPE_INTEGER) {
959                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
960                         lpi_state->address = obj->integer.value;
961                 } else {
962                         continue;
963                 }
964
965                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
966
967                 obj = pkg_elem + 9;
968                 if (obj->type == ACPI_TYPE_STRING)
969                         strscpy(lpi_state->desc, obj->string.pointer,
970                                 ACPI_CX_DESC_LEN);
971
972                 lpi_state->index = state_idx;
973                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
974                         pr_debug("No min. residency found, assuming 10 us\n");
975                         lpi_state->min_residency = 10;
976                 }
977
978                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
979                         pr_debug("No wakeup residency found, assuming 10 us\n");
980                         lpi_state->wake_latency = 10;
981                 }
982
983                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
984                         lpi_state->flags = 0;
985
986                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
987                         lpi_state->arch_flags = 0;
988
989                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
990                         lpi_state->res_cnt_freq = 1;
991
992                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
993                         lpi_state->enable_parent_state = 0;
994         }
995
996         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
997 end:
998         kfree(buffer.pointer);
999         return ret;
1000 }
1001
1002 /*
1003  * flat_state_cnt - the number of composite LPI states after the process of flattening
1004  */
1005 static int flat_state_cnt;
1006
1007 /**
1008  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1009  *
1010  * @local: local LPI state
1011  * @parent: parent LPI state
1012  * @result: composite LPI state
1013  */
1014 static bool combine_lpi_states(struct acpi_lpi_state *local,
1015                                struct acpi_lpi_state *parent,
1016                                struct acpi_lpi_state *result)
1017 {
1018         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1019                 if (!parent->address) /* 0 means autopromotable */
1020                         return false;
1021                 result->address = local->address + parent->address;
1022         } else {
1023                 result->address = parent->address;
1024         }
1025
1026         result->min_residency = max(local->min_residency, parent->min_residency);
1027         result->wake_latency = local->wake_latency + parent->wake_latency;
1028         result->enable_parent_state = parent->enable_parent_state;
1029         result->entry_method = local->entry_method;
1030
1031         result->flags = parent->flags;
1032         result->arch_flags = parent->arch_flags;
1033         result->index = parent->index;
1034
1035         strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1036         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1037         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1038         return true;
1039 }
1040
1041 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1042
1043 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1044                                   struct acpi_lpi_state *t)
1045 {
1046         curr_level->composite_states[curr_level->composite_states_size++] = t;
1047 }
1048
1049 static int flatten_lpi_states(struct acpi_processor *pr,
1050                               struct acpi_lpi_states_array *curr_level,
1051                               struct acpi_lpi_states_array *prev_level)
1052 {
1053         int i, j, state_count = curr_level->size;
1054         struct acpi_lpi_state *p, *t = curr_level->entries;
1055
1056         curr_level->composite_states_size = 0;
1057         for (j = 0; j < state_count; j++, t++) {
1058                 struct acpi_lpi_state *flpi;
1059
1060                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1061                         continue;
1062
1063                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1064                         pr_warn("Limiting number of LPI states to max (%d)\n",
1065                                 ACPI_PROCESSOR_MAX_POWER);
1066                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1067                         break;
1068                 }
1069
1070                 flpi = &pr->power.lpi_states[flat_state_cnt];
1071
1072                 if (!prev_level) { /* leaf/processor node */
1073                         memcpy(flpi, t, sizeof(*t));
1074                         stash_composite_state(curr_level, flpi);
1075                         flat_state_cnt++;
1076                         continue;
1077                 }
1078
1079                 for (i = 0; i < prev_level->composite_states_size; i++) {
1080                         p = prev_level->composite_states[i];
1081                         if (t->index <= p->enable_parent_state &&
1082                             combine_lpi_states(p, t, flpi)) {
1083                                 stash_composite_state(curr_level, flpi);
1084                                 flat_state_cnt++;
1085                                 flpi++;
1086                         }
1087                 }
1088         }
1089
1090         kfree(curr_level->entries);
1091         return 0;
1092 }
1093
1094 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1095 {
1096         return -EOPNOTSUPP;
1097 }
1098
1099 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1100 {
1101         int ret, i;
1102         acpi_status status;
1103         acpi_handle handle = pr->handle, pr_ahandle;
1104         struct acpi_device *d = NULL;
1105         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1106
1107         /* make sure our architecture has support */
1108         ret = acpi_processor_ffh_lpi_probe(pr->id);
1109         if (ret == -EOPNOTSUPP)
1110                 return ret;
1111
1112         if (!osc_pc_lpi_support_confirmed)
1113                 return -EOPNOTSUPP;
1114
1115         if (!acpi_has_method(handle, "_LPI"))
1116                 return -EINVAL;
1117
1118         flat_state_cnt = 0;
1119         prev = &info[0];
1120         curr = &info[1];
1121         handle = pr->handle;
1122         ret = acpi_processor_evaluate_lpi(handle, prev);
1123         if (ret)
1124                 return ret;
1125         flatten_lpi_states(pr, prev, NULL);
1126
1127         status = acpi_get_parent(handle, &pr_ahandle);
1128         while (ACPI_SUCCESS(status)) {
1129                 d = acpi_fetch_acpi_dev(pr_ahandle);
1130                 if (!d)
1131                         break;
1132
1133                 handle = pr_ahandle;
1134
1135                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1136                         break;
1137
1138                 /* can be optional ? */
1139                 if (!acpi_has_method(handle, "_LPI"))
1140                         break;
1141
1142                 ret = acpi_processor_evaluate_lpi(handle, curr);
1143                 if (ret)
1144                         break;
1145
1146                 /* flatten all the LPI states in this level of hierarchy */
1147                 flatten_lpi_states(pr, curr, prev);
1148
1149                 tmp = prev, prev = curr, curr = tmp;
1150
1151                 status = acpi_get_parent(handle, &pr_ahandle);
1152         }
1153
1154         pr->power.count = flat_state_cnt;
1155         /* reset the index after flattening */
1156         for (i = 0; i < pr->power.count; i++)
1157                 pr->power.lpi_states[i].index = i;
1158
1159         /* Tell driver that _LPI is supported. */
1160         pr->flags.has_lpi = 1;
1161         pr->flags.power = 1;
1162
1163         return 0;
1164 }
1165
1166 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1167 {
1168         return -ENODEV;
1169 }
1170
1171 /**
1172  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1173  * @dev: the target CPU
1174  * @drv: cpuidle driver containing cpuidle state info
1175  * @index: index of target state
1176  *
1177  * Return: 0 for success or negative value for error
1178  */
1179 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1180                                struct cpuidle_driver *drv, int index)
1181 {
1182         struct acpi_processor *pr;
1183         struct acpi_lpi_state *lpi;
1184
1185         pr = __this_cpu_read(processors);
1186
1187         if (unlikely(!pr))
1188                 return -EINVAL;
1189
1190         lpi = &pr->power.lpi_states[index];
1191         if (lpi->entry_method == ACPI_CSTATE_FFH)
1192                 return acpi_processor_ffh_lpi_enter(lpi);
1193
1194         return -EINVAL;
1195 }
1196
1197 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1198 {
1199         int i;
1200         struct acpi_lpi_state *lpi;
1201         struct cpuidle_state *state;
1202         struct cpuidle_driver *drv = &acpi_idle_driver;
1203
1204         if (!pr->flags.has_lpi)
1205                 return -EOPNOTSUPP;
1206
1207         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1208                 lpi = &pr->power.lpi_states[i];
1209
1210                 state = &drv->states[i];
1211                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1212                 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1213                 state->exit_latency = lpi->wake_latency;
1214                 state->target_residency = lpi->min_residency;
1215                 state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1216                 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1217                         state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1218                 state->enter = acpi_idle_lpi_enter;
1219                 drv->safe_state_index = i;
1220         }
1221
1222         drv->state_count = i;
1223
1224         return 0;
1225 }
1226
1227 /**
1228  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1229  * global state data i.e. idle routines
1230  *
1231  * @pr: the ACPI processor
1232  */
1233 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1234 {
1235         int i;
1236         struct cpuidle_driver *drv = &acpi_idle_driver;
1237
1238         if (!pr->flags.power_setup_done || !pr->flags.power)
1239                 return -EINVAL;
1240
1241         drv->safe_state_index = -1;
1242         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1243                 drv->states[i].name[0] = '\0';
1244                 drv->states[i].desc[0] = '\0';
1245         }
1246
1247         if (pr->flags.has_lpi)
1248                 return acpi_processor_setup_lpi_states(pr);
1249
1250         return acpi_processor_setup_cstates(pr);
1251 }
1252
1253 /**
1254  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1255  * device i.e. per-cpu data
1256  *
1257  * @pr: the ACPI processor
1258  * @dev : the cpuidle device
1259  */
1260 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1261                                             struct cpuidle_device *dev)
1262 {
1263         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1264                 return -EINVAL;
1265
1266         dev->cpu = pr->id;
1267         if (pr->flags.has_lpi)
1268                 return acpi_processor_ffh_lpi_probe(pr->id);
1269
1270         return acpi_processor_setup_cpuidle_cx(pr, dev);
1271 }
1272
1273 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1274 {
1275         int ret;
1276
1277         ret = acpi_processor_get_lpi_info(pr);
1278         if (ret)
1279                 ret = acpi_processor_get_cstate_info(pr);
1280
1281         return ret;
1282 }
1283
1284 int acpi_processor_hotplug(struct acpi_processor *pr)
1285 {
1286         int ret = 0;
1287         struct cpuidle_device *dev;
1288
1289         if (disabled_by_idle_boot_param())
1290                 return 0;
1291
1292         if (!pr->flags.power_setup_done)
1293                 return -ENODEV;
1294
1295         dev = per_cpu(acpi_cpuidle_device, pr->id);
1296         cpuidle_pause_and_lock();
1297         cpuidle_disable_device(dev);
1298         ret = acpi_processor_get_power_info(pr);
1299         if (!ret && pr->flags.power) {
1300                 acpi_processor_setup_cpuidle_dev(pr, dev);
1301                 ret = cpuidle_enable_device(dev);
1302         }
1303         cpuidle_resume_and_unlock();
1304
1305         return ret;
1306 }
1307
1308 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1309 {
1310         int cpu;
1311         struct acpi_processor *_pr;
1312         struct cpuidle_device *dev;
1313
1314         if (disabled_by_idle_boot_param())
1315                 return 0;
1316
1317         if (!pr->flags.power_setup_done)
1318                 return -ENODEV;
1319
1320         /*
1321          * FIXME:  Design the ACPI notification to make it once per
1322          * system instead of once per-cpu.  This condition is a hack
1323          * to make the code that updates C-States be called once.
1324          */
1325
1326         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1327
1328                 /* Protect against cpu-hotplug */
1329                 cpus_read_lock();
1330                 cpuidle_pause_and_lock();
1331
1332                 /* Disable all cpuidle devices */
1333                 for_each_online_cpu(cpu) {
1334                         _pr = per_cpu(processors, cpu);
1335                         if (!_pr || !_pr->flags.power_setup_done)
1336                                 continue;
1337                         dev = per_cpu(acpi_cpuidle_device, cpu);
1338                         cpuidle_disable_device(dev);
1339                 }
1340
1341                 /* Populate Updated C-state information */
1342                 acpi_processor_get_power_info(pr);
1343                 acpi_processor_setup_cpuidle_states(pr);
1344
1345                 /* Enable all cpuidle devices */
1346                 for_each_online_cpu(cpu) {
1347                         _pr = per_cpu(processors, cpu);
1348                         if (!_pr || !_pr->flags.power_setup_done)
1349                                 continue;
1350                         acpi_processor_get_power_info(_pr);
1351                         if (_pr->flags.power) {
1352                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1353                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1354                                 cpuidle_enable_device(dev);
1355                         }
1356                 }
1357                 cpuidle_resume_and_unlock();
1358                 cpus_read_unlock();
1359         }
1360
1361         return 0;
1362 }
1363
1364 static int acpi_processor_registered;
1365
1366 int acpi_processor_power_init(struct acpi_processor *pr)
1367 {
1368         int retval;
1369         struct cpuidle_device *dev;
1370
1371         if (disabled_by_idle_boot_param())
1372                 return 0;
1373
1374         acpi_processor_cstate_first_run_checks();
1375
1376         if (!acpi_processor_get_power_info(pr))
1377                 pr->flags.power_setup_done = 1;
1378
1379         /*
1380          * Install the idle handler if processor power management is supported.
1381          * Note that we use previously set idle handler will be used on
1382          * platforms that only support C1.
1383          */
1384         if (pr->flags.power) {
1385                 /* Register acpi_idle_driver if not already registered */
1386                 if (!acpi_processor_registered) {
1387                         acpi_processor_setup_cpuidle_states(pr);
1388                         retval = cpuidle_register_driver(&acpi_idle_driver);
1389                         if (retval)
1390                                 return retval;
1391                         pr_debug("%s registered with cpuidle\n",
1392                                  acpi_idle_driver.name);
1393                 }
1394
1395                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1396                 if (!dev)
1397                         return -ENOMEM;
1398                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1399
1400                 acpi_processor_setup_cpuidle_dev(pr, dev);
1401
1402                 /* Register per-cpu cpuidle_device. Cpuidle driver
1403                  * must already be registered before registering device
1404                  */
1405                 retval = cpuidle_register_device(dev);
1406                 if (retval) {
1407                         if (acpi_processor_registered == 0)
1408                                 cpuidle_unregister_driver(&acpi_idle_driver);
1409                         return retval;
1410                 }
1411                 acpi_processor_registered++;
1412         }
1413         return 0;
1414 }
1415
1416 int acpi_processor_power_exit(struct acpi_processor *pr)
1417 {
1418         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1419
1420         if (disabled_by_idle_boot_param())
1421                 return 0;
1422
1423         if (pr->flags.power) {
1424                 cpuidle_unregister_device(dev);
1425                 acpi_processor_registered--;
1426                 if (acpi_processor_registered == 0)
1427                         cpuidle_unregister_driver(&acpi_idle_driver);
1428
1429                 kfree(dev);
1430         }
1431
1432         pr->flags.power_setup_done = 0;
1433         return 0;
1434 }