Merge branch 'pci/controller/ixp4xx'
[linux-block.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <linux/perf_event.h>
25 #include <acpi/processor.h>
26 #include <linux/context_tracking.h>
27
28 /*
29  * Include the apic definitions for x86 to have the APIC timer related defines
30  * available also for UP (on SMP it gets magically included via linux/smp.h).
31  * asm/acpi.h is not an option, as it would require more include magic. Also
32  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33  */
34 #ifdef CONFIG_X86
35 #include <asm/apic.h>
36 #include <asm/cpu.h>
37 #endif
38
39 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40
41 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42 module_param(max_cstate, uint, 0400);
43 static bool nocst __read_mostly;
44 module_param(nocst, bool, 0400);
45 static bool bm_check_disable __read_mostly;
46 module_param(bm_check_disable, bool, 0400);
47
48 static unsigned int latency_factor __read_mostly = 2;
49 module_param(latency_factor, uint, 0644);
50
51 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52
53 struct cpuidle_driver acpi_idle_driver = {
54         .name =         "acpi_idle",
55         .owner =        THIS_MODULE,
56 };
57
58 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59 static
60 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61
62 static int disabled_by_idle_boot_param(void)
63 {
64         return boot_option_idle_override == IDLE_POLL ||
65                 boot_option_idle_override == IDLE_HALT;
66 }
67
68 /*
69  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70  * For now disable this. Probably a bug somewhere else.
71  *
72  * To skip this limit, boot/load with a large max_cstate limit.
73  */
74 static int set_max_cstate(const struct dmi_system_id *id)
75 {
76         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77                 return 0;
78
79         pr_notice("%s detected - limiting to C%ld max_cstate."
80                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
81                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82
83         max_cstate = (long)id->driver_data;
84
85         return 0;
86 }
87
88 static const struct dmi_system_id processor_power_dmi_table[] = {
89         { set_max_cstate, "Clevo 5600D", {
90           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92          (void *)2},
93         { set_max_cstate, "Pavilion zv5000", {
94           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96          (void *)1},
97         { set_max_cstate, "Asus L8400B", {
98           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100          (void *)1},
101         {},
102 };
103
104
105 /*
106  * Callers should disable interrupts before the call and enable
107  * interrupts after return.
108  */
109 static void __cpuidle acpi_safe_halt(void)
110 {
111         if (!tif_need_resched()) {
112                 raw_safe_halt();
113                 raw_local_irq_disable();
114         }
115 }
116
117 #ifdef ARCH_APICTIMER_STOPS_ON_C3
118
119 /*
120  * Some BIOS implementations switch to C3 in the published C2 state.
121  * This seems to be a common problem on AMD boxen, but other vendors
122  * are affected too. We pick the most conservative approach: we assume
123  * that the local APIC stops in both C2 and C3.
124  */
125 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126                                    struct acpi_processor_cx *cx)
127 {
128         struct acpi_processor_power *pwr = &pr->power;
129         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130
131         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132                 return;
133
134         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135                 type = ACPI_STATE_C1;
136
137         /*
138          * Check, if one of the previous states already marked the lapic
139          * unstable
140          */
141         if (pwr->timer_broadcast_on_state < state)
142                 return;
143
144         if (cx->type >= type)
145                 pr->power.timer_broadcast_on_state = state;
146 }
147
148 static void __lapic_timer_propagate_broadcast(void *arg)
149 {
150         struct acpi_processor *pr = arg;
151
152         if (pr->power.timer_broadcast_on_state < INT_MAX)
153                 tick_broadcast_enable();
154         else
155                 tick_broadcast_disable();
156 }
157
158 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 {
160         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161                                  (void *)pr, 1);
162 }
163
164 /* Power(C) State timer broadcast control */
165 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166                                         struct acpi_processor_cx *cx)
167 {
168         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169 }
170
171 #else
172
173 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174                                    struct acpi_processor_cx *cstate) { }
175 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176
177 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178                                         struct acpi_processor_cx *cx)
179 {
180         return false;
181 }
182
183 #endif
184
185 #if defined(CONFIG_X86)
186 static void tsc_check_state(int state)
187 {
188         switch (boot_cpu_data.x86_vendor) {
189         case X86_VENDOR_HYGON:
190         case X86_VENDOR_AMD:
191         case X86_VENDOR_INTEL:
192         case X86_VENDOR_CENTAUR:
193         case X86_VENDOR_ZHAOXIN:
194                 /*
195                  * AMD Fam10h TSC will tick in all
196                  * C/P/S0/S1 states when this bit is set.
197                  */
198                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199                         return;
200                 fallthrough;
201         default:
202                 /* TSC could halt in idle, so notify users */
203                 if (state > ACPI_STATE_C1)
204                         mark_tsc_unstable("TSC halts in idle");
205         }
206 }
207 #else
208 static void tsc_check_state(int state) { return; }
209 #endif
210
211 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212 {
213
214         if (!pr->pblk)
215                 return -ENODEV;
216
217         /* if info is obtained from pblk/fadt, type equals state */
218         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220
221 #ifndef CONFIG_HOTPLUG_CPU
222         /*
223          * Check for P_LVL2_UP flag before entering C2 and above on
224          * an SMP system.
225          */
226         if ((num_online_cpus() > 1) &&
227             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228                 return -ENODEV;
229 #endif
230
231         /* determine C2 and C3 address from pblk */
232         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234
235         /* determine latencies from FADT */
236         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238
239         /*
240          * FADT specified C2 latency must be less than or equal to
241          * 100 microseconds.
242          */
243         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245                                   acpi_gbl_FADT.c2_latency);
246                 /* invalidate C2 */
247                 pr->power.states[ACPI_STATE_C2].address = 0;
248         }
249
250         /*
251          * FADT supplied C3 latency must be less than or equal to
252          * 1000 microseconds.
253          */
254         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256                                   acpi_gbl_FADT.c3_latency);
257                 /* invalidate C3 */
258                 pr->power.states[ACPI_STATE_C3].address = 0;
259         }
260
261         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262                           pr->power.states[ACPI_STATE_C2].address,
263                           pr->power.states[ACPI_STATE_C3].address);
264
265         snprintf(pr->power.states[ACPI_STATE_C2].desc,
266                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267                          pr->power.states[ACPI_STATE_C2].address);
268         snprintf(pr->power.states[ACPI_STATE_C3].desc,
269                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270                          pr->power.states[ACPI_STATE_C3].address);
271
272         return 0;
273 }
274
275 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 {
277         if (!pr->power.states[ACPI_STATE_C1].valid) {
278                 /* set the first C-State to C1 */
279                 /* all processors need to support C1 */
280                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281                 pr->power.states[ACPI_STATE_C1].valid = 1;
282                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285                          ACPI_CX_DESC_LEN, "ACPI HLT");
286         }
287         /* the C0 state only exists as a filler in our array */
288         pr->power.states[ACPI_STATE_C0].valid = 1;
289         return 0;
290 }
291
292 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 {
294         int ret;
295
296         if (nocst)
297                 return -ENODEV;
298
299         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300         if (ret)
301                 return ret;
302
303         if (!pr->power.count)
304                 return -EFAULT;
305
306         pr->flags.has_cst = 1;
307         return 0;
308 }
309
310 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311                                            struct acpi_processor_cx *cx)
312 {
313         static int bm_check_flag = -1;
314         static int bm_control_flag = -1;
315
316
317         if (!cx->address)
318                 return;
319
320         /*
321          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322          * DMA transfers are used by any ISA device to avoid livelock.
323          * Note that we could disable Type-F DMA (as recommended by
324          * the erratum), but this is known to disrupt certain ISA
325          * devices thus we take the conservative approach.
326          */
327         if (errata.piix4.fdma) {
328                 acpi_handle_debug(pr->handle,
329                                   "C3 not supported on PIIX4 with Type-F DMA\n");
330                 return;
331         }
332
333         /* All the logic here assumes flags.bm_check is same across all CPUs */
334         if (bm_check_flag == -1) {
335                 /* Determine whether bm_check is needed based on CPU  */
336                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337                 bm_check_flag = pr->flags.bm_check;
338                 bm_control_flag = pr->flags.bm_control;
339         } else {
340                 pr->flags.bm_check = bm_check_flag;
341                 pr->flags.bm_control = bm_control_flag;
342         }
343
344         if (pr->flags.bm_check) {
345                 if (!pr->flags.bm_control) {
346                         if (pr->flags.has_cst != 1) {
347                                 /* bus mastering control is necessary */
348                                 acpi_handle_debug(pr->handle,
349                                                   "C3 support requires BM control\n");
350                                 return;
351                         } else {
352                                 /* Here we enter C3 without bus mastering */
353                                 acpi_handle_debug(pr->handle,
354                                                   "C3 support without BM control\n");
355                         }
356                 }
357         } else {
358                 /*
359                  * WBINVD should be set in fadt, for C3 state to be
360                  * supported on when bm_check is not required.
361                  */
362                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363                         acpi_handle_debug(pr->handle,
364                                           "Cache invalidation should work properly"
365                                           " for C3 to be enabled on SMP systems\n");
366                         return;
367                 }
368         }
369
370         /*
371          * Otherwise we've met all of our C3 requirements.
372          * Normalize the C3 latency to expidite policy.  Enable
373          * checking of bus mastering status (bm_check) so we can
374          * use this in our C3 policy
375          */
376         cx->valid = 1;
377
378         /*
379          * On older chipsets, BM_RLD needs to be set
380          * in order for Bus Master activity to wake the
381          * system from C3.  Newer chipsets handle DMA
382          * during C3 automatically and BM_RLD is a NOP.
383          * In either case, the proper way to
384          * handle BM_RLD is to set it and leave it set.
385          */
386         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387 }
388
389 static int acpi_cst_latency_cmp(const void *a, const void *b)
390 {
391         const struct acpi_processor_cx *x = a, *y = b;
392
393         if (!(x->valid && y->valid))
394                 return 0;
395         if (x->latency > y->latency)
396                 return 1;
397         if (x->latency < y->latency)
398                 return -1;
399         return 0;
400 }
401 static void acpi_cst_latency_swap(void *a, void *b, int n)
402 {
403         struct acpi_processor_cx *x = a, *y = b;
404
405         if (!(x->valid && y->valid))
406                 return;
407         swap(x->latency, y->latency);
408 }
409
410 static int acpi_processor_power_verify(struct acpi_processor *pr)
411 {
412         unsigned int i;
413         unsigned int working = 0;
414         unsigned int last_latency = 0;
415         unsigned int last_type = 0;
416         bool buggy_latency = false;
417
418         pr->power.timer_broadcast_on_state = INT_MAX;
419
420         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
421                 struct acpi_processor_cx *cx = &pr->power.states[i];
422
423                 switch (cx->type) {
424                 case ACPI_STATE_C1:
425                         cx->valid = 1;
426                         break;
427
428                 case ACPI_STATE_C2:
429                         if (!cx->address)
430                                 break;
431                         cx->valid = 1;
432                         break;
433
434                 case ACPI_STATE_C3:
435                         acpi_processor_power_verify_c3(pr, cx);
436                         break;
437                 }
438                 if (!cx->valid)
439                         continue;
440                 if (cx->type >= last_type && cx->latency < last_latency)
441                         buggy_latency = true;
442                 last_latency = cx->latency;
443                 last_type = cx->type;
444
445                 lapic_timer_check_state(i, pr, cx);
446                 tsc_check_state(cx->type);
447                 working++;
448         }
449
450         if (buggy_latency) {
451                 pr_notice("FW issue: working around C-state latencies out of order\n");
452                 sort(&pr->power.states[1], max_cstate,
453                      sizeof(struct acpi_processor_cx),
454                      acpi_cst_latency_cmp,
455                      acpi_cst_latency_swap);
456         }
457
458         lapic_timer_propagate_broadcast(pr);
459
460         return working;
461 }
462
463 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
464 {
465         unsigned int i;
466         int result;
467
468
469         /* NOTE: the idle thread may not be running while calling
470          * this function */
471
472         /* Zero initialize all the C-states info. */
473         memset(pr->power.states, 0, sizeof(pr->power.states));
474
475         result = acpi_processor_get_power_info_cst(pr);
476         if (result == -ENODEV)
477                 result = acpi_processor_get_power_info_fadt(pr);
478
479         if (result)
480                 return result;
481
482         acpi_processor_get_power_info_default(pr);
483
484         pr->power.count = acpi_processor_power_verify(pr);
485
486         /*
487          * if one state of type C2 or C3 is available, mark this
488          * CPU as being "idle manageable"
489          */
490         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
491                 if (pr->power.states[i].valid) {
492                         pr->power.count = i;
493                         pr->flags.power = 1;
494                 }
495         }
496
497         return 0;
498 }
499
500 /**
501  * acpi_idle_bm_check - checks if bus master activity was detected
502  */
503 static int acpi_idle_bm_check(void)
504 {
505         u32 bm_status = 0;
506
507         if (bm_check_disable)
508                 return 0;
509
510         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
511         if (bm_status)
512                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
513         /*
514          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
515          * the true state of bus mastering activity; forcing us to
516          * manually check the BMIDEA bit of each IDE channel.
517          */
518         else if (errata.piix4.bmisx) {
519                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
520                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
521                         bm_status = 1;
522         }
523         return bm_status;
524 }
525
526 static __cpuidle void io_idle(unsigned long addr)
527 {
528         /* IO port based C-state */
529         inb(addr);
530
531 #ifdef  CONFIG_X86
532         /* No delay is needed if we are in guest */
533         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
534                 return;
535         /*
536          * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
537          * not this code.  Assume that any Intel systems using this
538          * are ancient and may need the dummy wait.  This also assumes
539          * that the motivating chipset issue was Intel-only.
540          */
541         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
542                 return;
543 #endif
544         /*
545          * Dummy wait op - must do something useless after P_LVL2 read
546          * because chipsets cannot guarantee that STPCLK# signal gets
547          * asserted in time to freeze execution properly
548          *
549          * This workaround has been in place since the original ACPI
550          * implementation was merged, circa 2002.
551          *
552          * If a profile is pointing to this instruction, please first
553          * consider moving your system to a more modern idle
554          * mechanism.
555          */
556         inl(acpi_gbl_FADT.xpm_timer_block.address);
557 }
558
559 /**
560  * acpi_idle_do_entry - enter idle state using the appropriate method
561  * @cx: cstate data
562  *
563  * Caller disables interrupt before call and enables interrupt after return.
564  */
565 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
566 {
567         perf_lopwr_cb(true);
568
569         if (cx->entry_method == ACPI_CSTATE_FFH) {
570                 /* Call into architectural FFH based C-state */
571                 acpi_processor_ffh_cstate_enter(cx);
572         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
573                 acpi_safe_halt();
574         } else {
575                 io_idle(cx->address);
576         }
577
578         perf_lopwr_cb(false);
579 }
580
581 /**
582  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
583  * @dev: the target CPU
584  * @index: the index of suggested state
585  */
586 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
587 {
588         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
589
590         ACPI_FLUSH_CPU_CACHE();
591
592         while (1) {
593
594                 if (cx->entry_method == ACPI_CSTATE_HALT)
595                         safe_halt();
596                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
597                         io_idle(cx->address);
598                 } else
599                         return -ENODEV;
600
601 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
602                 cond_wakeup_cpu0();
603 #endif
604         }
605
606         /* Never reached */
607         return 0;
608 }
609
610 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
611 {
612         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
613                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
614 }
615
616 static int c3_cpu_count;
617 static DEFINE_RAW_SPINLOCK(c3_lock);
618
619 /**
620  * acpi_idle_enter_bm - enters C3 with proper BM handling
621  * @drv: cpuidle driver
622  * @pr: Target processor
623  * @cx: Target state context
624  * @index: index of target state
625  */
626 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
627                                struct acpi_processor *pr,
628                                struct acpi_processor_cx *cx,
629                                int index)
630 {
631         static struct acpi_processor_cx safe_cx = {
632                 .entry_method = ACPI_CSTATE_HALT,
633         };
634
635         /*
636          * disable bus master
637          * bm_check implies we need ARB_DIS
638          * bm_control implies whether we can do ARB_DIS
639          *
640          * That leaves a case where bm_check is set and bm_control is not set.
641          * In that case we cannot do much, we enter C3 without doing anything.
642          */
643         bool dis_bm = pr->flags.bm_control;
644
645         instrumentation_begin();
646
647         /* If we can skip BM, demote to a safe state. */
648         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
649                 dis_bm = false;
650                 index = drv->safe_state_index;
651                 if (index >= 0) {
652                         cx = this_cpu_read(acpi_cstate[index]);
653                 } else {
654                         cx = &safe_cx;
655                         index = -EBUSY;
656                 }
657         }
658
659         if (dis_bm) {
660                 raw_spin_lock(&c3_lock);
661                 c3_cpu_count++;
662                 /* Disable bus master arbitration when all CPUs are in C3 */
663                 if (c3_cpu_count == num_online_cpus())
664                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
665                 raw_spin_unlock(&c3_lock);
666         }
667
668         ct_cpuidle_enter();
669
670         acpi_idle_do_entry(cx);
671
672         ct_cpuidle_exit();
673
674         /* Re-enable bus master arbitration */
675         if (dis_bm) {
676                 raw_spin_lock(&c3_lock);
677                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
678                 c3_cpu_count--;
679                 raw_spin_unlock(&c3_lock);
680         }
681
682         instrumentation_end();
683
684         return index;
685 }
686
687 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
688                            struct cpuidle_driver *drv, int index)
689 {
690         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
691         struct acpi_processor *pr;
692
693         pr = __this_cpu_read(processors);
694         if (unlikely(!pr))
695                 return -EINVAL;
696
697         if (cx->type != ACPI_STATE_C1) {
698                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
699                         return acpi_idle_enter_bm(drv, pr, cx, index);
700
701                 /* C2 to C1 demotion. */
702                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
703                         index = ACPI_IDLE_STATE_START;
704                         cx = per_cpu(acpi_cstate[index], dev->cpu);
705                 }
706         }
707
708         if (cx->type == ACPI_STATE_C3)
709                 ACPI_FLUSH_CPU_CACHE();
710
711         acpi_idle_do_entry(cx);
712
713         return index;
714 }
715
716 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
717                                   struct cpuidle_driver *drv, int index)
718 {
719         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
720
721         if (cx->type == ACPI_STATE_C3) {
722                 struct acpi_processor *pr = __this_cpu_read(processors);
723
724                 if (unlikely(!pr))
725                         return 0;
726
727                 if (pr->flags.bm_check) {
728                         u8 bm_sts_skip = cx->bm_sts_skip;
729
730                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
731                         cx->bm_sts_skip = 1;
732                         acpi_idle_enter_bm(drv, pr, cx, index);
733                         cx->bm_sts_skip = bm_sts_skip;
734
735                         return 0;
736                 } else {
737                         ACPI_FLUSH_CPU_CACHE();
738                 }
739         }
740         acpi_idle_do_entry(cx);
741
742         return 0;
743 }
744
745 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
746                                            struct cpuidle_device *dev)
747 {
748         int i, count = ACPI_IDLE_STATE_START;
749         struct acpi_processor_cx *cx;
750         struct cpuidle_state *state;
751
752         if (max_cstate == 0)
753                 max_cstate = 1;
754
755         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
756                 state = &acpi_idle_driver.states[count];
757                 cx = &pr->power.states[i];
758
759                 if (!cx->valid)
760                         continue;
761
762                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
763
764                 if (lapic_timer_needs_broadcast(pr, cx))
765                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
766
767                 if (cx->type == ACPI_STATE_C3) {
768                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
769                         if (pr->flags.bm_check)
770                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
771                 }
772
773                 count++;
774                 if (count == CPUIDLE_STATE_MAX)
775                         break;
776         }
777
778         if (!count)
779                 return -EINVAL;
780
781         return 0;
782 }
783
784 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
785 {
786         int i, count;
787         struct acpi_processor_cx *cx;
788         struct cpuidle_state *state;
789         struct cpuidle_driver *drv = &acpi_idle_driver;
790
791         if (max_cstate == 0)
792                 max_cstate = 1;
793
794         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
795                 cpuidle_poll_state_init(drv);
796                 count = 1;
797         } else {
798                 count = 0;
799         }
800
801         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
802                 cx = &pr->power.states[i];
803
804                 if (!cx->valid)
805                         continue;
806
807                 state = &drv->states[count];
808                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
809                 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
810                 state->exit_latency = cx->latency;
811                 state->target_residency = cx->latency * latency_factor;
812                 state->enter = acpi_idle_enter;
813
814                 state->flags = 0;
815                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
816                     cx->type == ACPI_STATE_C3) {
817                         state->enter_dead = acpi_idle_play_dead;
818                         if (cx->type != ACPI_STATE_C3)
819                                 drv->safe_state_index = count;
820                 }
821                 /*
822                  * Halt-induced C1 is not good for ->enter_s2idle, because it
823                  * re-enables interrupts on exit.  Moreover, C1 is generally not
824                  * particularly interesting from the suspend-to-idle angle, so
825                  * avoid C1 and the situations in which we may need to fall back
826                  * to it altogether.
827                  */
828                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
829                         state->enter_s2idle = acpi_idle_enter_s2idle;
830
831                 count++;
832                 if (count == CPUIDLE_STATE_MAX)
833                         break;
834         }
835
836         drv->state_count = count;
837
838         if (!count)
839                 return -EINVAL;
840
841         return 0;
842 }
843
844 static inline void acpi_processor_cstate_first_run_checks(void)
845 {
846         static int first_run;
847
848         if (first_run)
849                 return;
850         dmi_check_system(processor_power_dmi_table);
851         max_cstate = acpi_processor_cstate_check(max_cstate);
852         if (max_cstate < ACPI_C_STATES_MAX)
853                 pr_notice("processor limited to max C-state %d\n", max_cstate);
854
855         first_run++;
856
857         if (nocst)
858                 return;
859
860         acpi_processor_claim_cst_control();
861 }
862 #else
863
864 static inline int disabled_by_idle_boot_param(void) { return 0; }
865 static inline void acpi_processor_cstate_first_run_checks(void) { }
866 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
867 {
868         return -ENODEV;
869 }
870
871 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
872                                            struct cpuidle_device *dev)
873 {
874         return -EINVAL;
875 }
876
877 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
878 {
879         return -EINVAL;
880 }
881
882 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
883
884 struct acpi_lpi_states_array {
885         unsigned int size;
886         unsigned int composite_states_size;
887         struct acpi_lpi_state *entries;
888         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
889 };
890
891 static int obj_get_integer(union acpi_object *obj, u32 *value)
892 {
893         if (obj->type != ACPI_TYPE_INTEGER)
894                 return -EINVAL;
895
896         *value = obj->integer.value;
897         return 0;
898 }
899
900 static int acpi_processor_evaluate_lpi(acpi_handle handle,
901                                        struct acpi_lpi_states_array *info)
902 {
903         acpi_status status;
904         int ret = 0;
905         int pkg_count, state_idx = 1, loop;
906         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
907         union acpi_object *lpi_data;
908         struct acpi_lpi_state *lpi_state;
909
910         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
911         if (ACPI_FAILURE(status)) {
912                 acpi_handle_debug(handle, "No _LPI, giving up\n");
913                 return -ENODEV;
914         }
915
916         lpi_data = buffer.pointer;
917
918         /* There must be at least 4 elements = 3 elements + 1 package */
919         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
920             lpi_data->package.count < 4) {
921                 pr_debug("not enough elements in _LPI\n");
922                 ret = -ENODATA;
923                 goto end;
924         }
925
926         pkg_count = lpi_data->package.elements[2].integer.value;
927
928         /* Validate number of power states. */
929         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
930                 pr_debug("count given by _LPI is not valid\n");
931                 ret = -ENODATA;
932                 goto end;
933         }
934
935         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
936         if (!lpi_state) {
937                 ret = -ENOMEM;
938                 goto end;
939         }
940
941         info->size = pkg_count;
942         info->entries = lpi_state;
943
944         /* LPI States start at index 3 */
945         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
946                 union acpi_object *element, *pkg_elem, *obj;
947
948                 element = &lpi_data->package.elements[loop];
949                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
950                         continue;
951
952                 pkg_elem = element->package.elements;
953
954                 obj = pkg_elem + 6;
955                 if (obj->type == ACPI_TYPE_BUFFER) {
956                         struct acpi_power_register *reg;
957
958                         reg = (struct acpi_power_register *)obj->buffer.pointer;
959                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
960                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
961                                 continue;
962
963                         lpi_state->address = reg->address;
964                         lpi_state->entry_method =
965                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
966                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
967                 } else if (obj->type == ACPI_TYPE_INTEGER) {
968                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
969                         lpi_state->address = obj->integer.value;
970                 } else {
971                         continue;
972                 }
973
974                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
975
976                 obj = pkg_elem + 9;
977                 if (obj->type == ACPI_TYPE_STRING)
978                         strscpy(lpi_state->desc, obj->string.pointer,
979                                 ACPI_CX_DESC_LEN);
980
981                 lpi_state->index = state_idx;
982                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
983                         pr_debug("No min. residency found, assuming 10 us\n");
984                         lpi_state->min_residency = 10;
985                 }
986
987                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
988                         pr_debug("No wakeup residency found, assuming 10 us\n");
989                         lpi_state->wake_latency = 10;
990                 }
991
992                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
993                         lpi_state->flags = 0;
994
995                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
996                         lpi_state->arch_flags = 0;
997
998                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
999                         lpi_state->res_cnt_freq = 1;
1000
1001                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1002                         lpi_state->enable_parent_state = 0;
1003         }
1004
1005         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1006 end:
1007         kfree(buffer.pointer);
1008         return ret;
1009 }
1010
1011 /*
1012  * flat_state_cnt - the number of composite LPI states after the process of flattening
1013  */
1014 static int flat_state_cnt;
1015
1016 /**
1017  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1018  *
1019  * @local: local LPI state
1020  * @parent: parent LPI state
1021  * @result: composite LPI state
1022  */
1023 static bool combine_lpi_states(struct acpi_lpi_state *local,
1024                                struct acpi_lpi_state *parent,
1025                                struct acpi_lpi_state *result)
1026 {
1027         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1028                 if (!parent->address) /* 0 means autopromotable */
1029                         return false;
1030                 result->address = local->address + parent->address;
1031         } else {
1032                 result->address = parent->address;
1033         }
1034
1035         result->min_residency = max(local->min_residency, parent->min_residency);
1036         result->wake_latency = local->wake_latency + parent->wake_latency;
1037         result->enable_parent_state = parent->enable_parent_state;
1038         result->entry_method = local->entry_method;
1039
1040         result->flags = parent->flags;
1041         result->arch_flags = parent->arch_flags;
1042         result->index = parent->index;
1043
1044         strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1045         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1046         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1047         return true;
1048 }
1049
1050 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1051
1052 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1053                                   struct acpi_lpi_state *t)
1054 {
1055         curr_level->composite_states[curr_level->composite_states_size++] = t;
1056 }
1057
1058 static int flatten_lpi_states(struct acpi_processor *pr,
1059                               struct acpi_lpi_states_array *curr_level,
1060                               struct acpi_lpi_states_array *prev_level)
1061 {
1062         int i, j, state_count = curr_level->size;
1063         struct acpi_lpi_state *p, *t = curr_level->entries;
1064
1065         curr_level->composite_states_size = 0;
1066         for (j = 0; j < state_count; j++, t++) {
1067                 struct acpi_lpi_state *flpi;
1068
1069                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1070                         continue;
1071
1072                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1073                         pr_warn("Limiting number of LPI states to max (%d)\n",
1074                                 ACPI_PROCESSOR_MAX_POWER);
1075                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1076                         break;
1077                 }
1078
1079                 flpi = &pr->power.lpi_states[flat_state_cnt];
1080
1081                 if (!prev_level) { /* leaf/processor node */
1082                         memcpy(flpi, t, sizeof(*t));
1083                         stash_composite_state(curr_level, flpi);
1084                         flat_state_cnt++;
1085                         continue;
1086                 }
1087
1088                 for (i = 0; i < prev_level->composite_states_size; i++) {
1089                         p = prev_level->composite_states[i];
1090                         if (t->index <= p->enable_parent_state &&
1091                             combine_lpi_states(p, t, flpi)) {
1092                                 stash_composite_state(curr_level, flpi);
1093                                 flat_state_cnt++;
1094                                 flpi++;
1095                         }
1096                 }
1097         }
1098
1099         kfree(curr_level->entries);
1100         return 0;
1101 }
1102
1103 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1104 {
1105         return -EOPNOTSUPP;
1106 }
1107
1108 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1109 {
1110         int ret, i;
1111         acpi_status status;
1112         acpi_handle handle = pr->handle, pr_ahandle;
1113         struct acpi_device *d = NULL;
1114         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1115
1116         /* make sure our architecture has support */
1117         ret = acpi_processor_ffh_lpi_probe(pr->id);
1118         if (ret == -EOPNOTSUPP)
1119                 return ret;
1120
1121         if (!osc_pc_lpi_support_confirmed)
1122                 return -EOPNOTSUPP;
1123
1124         if (!acpi_has_method(handle, "_LPI"))
1125                 return -EINVAL;
1126
1127         flat_state_cnt = 0;
1128         prev = &info[0];
1129         curr = &info[1];
1130         handle = pr->handle;
1131         ret = acpi_processor_evaluate_lpi(handle, prev);
1132         if (ret)
1133                 return ret;
1134         flatten_lpi_states(pr, prev, NULL);
1135
1136         status = acpi_get_parent(handle, &pr_ahandle);
1137         while (ACPI_SUCCESS(status)) {
1138                 d = acpi_fetch_acpi_dev(pr_ahandle);
1139                 if (!d)
1140                         break;
1141
1142                 handle = pr_ahandle;
1143
1144                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1145                         break;
1146
1147                 /* can be optional ? */
1148                 if (!acpi_has_method(handle, "_LPI"))
1149                         break;
1150
1151                 ret = acpi_processor_evaluate_lpi(handle, curr);
1152                 if (ret)
1153                         break;
1154
1155                 /* flatten all the LPI states in this level of hierarchy */
1156                 flatten_lpi_states(pr, curr, prev);
1157
1158                 tmp = prev, prev = curr, curr = tmp;
1159
1160                 status = acpi_get_parent(handle, &pr_ahandle);
1161         }
1162
1163         pr->power.count = flat_state_cnt;
1164         /* reset the index after flattening */
1165         for (i = 0; i < pr->power.count; i++)
1166                 pr->power.lpi_states[i].index = i;
1167
1168         /* Tell driver that _LPI is supported. */
1169         pr->flags.has_lpi = 1;
1170         pr->flags.power = 1;
1171
1172         return 0;
1173 }
1174
1175 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1176 {
1177         return -ENODEV;
1178 }
1179
1180 /**
1181  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1182  * @dev: the target CPU
1183  * @drv: cpuidle driver containing cpuidle state info
1184  * @index: index of target state
1185  *
1186  * Return: 0 for success or negative value for error
1187  */
1188 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1189                                struct cpuidle_driver *drv, int index)
1190 {
1191         struct acpi_processor *pr;
1192         struct acpi_lpi_state *lpi;
1193
1194         pr = __this_cpu_read(processors);
1195
1196         if (unlikely(!pr))
1197                 return -EINVAL;
1198
1199         lpi = &pr->power.lpi_states[index];
1200         if (lpi->entry_method == ACPI_CSTATE_FFH)
1201                 return acpi_processor_ffh_lpi_enter(lpi);
1202
1203         return -EINVAL;
1204 }
1205
1206 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1207 {
1208         int i;
1209         struct acpi_lpi_state *lpi;
1210         struct cpuidle_state *state;
1211         struct cpuidle_driver *drv = &acpi_idle_driver;
1212
1213         if (!pr->flags.has_lpi)
1214                 return -EOPNOTSUPP;
1215
1216         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1217                 lpi = &pr->power.lpi_states[i];
1218
1219                 state = &drv->states[i];
1220                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1221                 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1222                 state->exit_latency = lpi->wake_latency;
1223                 state->target_residency = lpi->min_residency;
1224                 if (lpi->arch_flags)
1225                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1226                 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1227                         state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1228                 state->enter = acpi_idle_lpi_enter;
1229                 drv->safe_state_index = i;
1230         }
1231
1232         drv->state_count = i;
1233
1234         return 0;
1235 }
1236
1237 /**
1238  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1239  * global state data i.e. idle routines
1240  *
1241  * @pr: the ACPI processor
1242  */
1243 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1244 {
1245         int i;
1246         struct cpuidle_driver *drv = &acpi_idle_driver;
1247
1248         if (!pr->flags.power_setup_done || !pr->flags.power)
1249                 return -EINVAL;
1250
1251         drv->safe_state_index = -1;
1252         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1253                 drv->states[i].name[0] = '\0';
1254                 drv->states[i].desc[0] = '\0';
1255         }
1256
1257         if (pr->flags.has_lpi)
1258                 return acpi_processor_setup_lpi_states(pr);
1259
1260         return acpi_processor_setup_cstates(pr);
1261 }
1262
1263 /**
1264  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1265  * device i.e. per-cpu data
1266  *
1267  * @pr: the ACPI processor
1268  * @dev : the cpuidle device
1269  */
1270 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1271                                             struct cpuidle_device *dev)
1272 {
1273         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1274                 return -EINVAL;
1275
1276         dev->cpu = pr->id;
1277         if (pr->flags.has_lpi)
1278                 return acpi_processor_ffh_lpi_probe(pr->id);
1279
1280         return acpi_processor_setup_cpuidle_cx(pr, dev);
1281 }
1282
1283 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1284 {
1285         int ret;
1286
1287         ret = acpi_processor_get_lpi_info(pr);
1288         if (ret)
1289                 ret = acpi_processor_get_cstate_info(pr);
1290
1291         return ret;
1292 }
1293
1294 int acpi_processor_hotplug(struct acpi_processor *pr)
1295 {
1296         int ret = 0;
1297         struct cpuidle_device *dev;
1298
1299         if (disabled_by_idle_boot_param())
1300                 return 0;
1301
1302         if (!pr->flags.power_setup_done)
1303                 return -ENODEV;
1304
1305         dev = per_cpu(acpi_cpuidle_device, pr->id);
1306         cpuidle_pause_and_lock();
1307         cpuidle_disable_device(dev);
1308         ret = acpi_processor_get_power_info(pr);
1309         if (!ret && pr->flags.power) {
1310                 acpi_processor_setup_cpuidle_dev(pr, dev);
1311                 ret = cpuidle_enable_device(dev);
1312         }
1313         cpuidle_resume_and_unlock();
1314
1315         return ret;
1316 }
1317
1318 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1319 {
1320         int cpu;
1321         struct acpi_processor *_pr;
1322         struct cpuidle_device *dev;
1323
1324         if (disabled_by_idle_boot_param())
1325                 return 0;
1326
1327         if (!pr->flags.power_setup_done)
1328                 return -ENODEV;
1329
1330         /*
1331          * FIXME:  Design the ACPI notification to make it once per
1332          * system instead of once per-cpu.  This condition is a hack
1333          * to make the code that updates C-States be called once.
1334          */
1335
1336         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1337
1338                 /* Protect against cpu-hotplug */
1339                 cpus_read_lock();
1340                 cpuidle_pause_and_lock();
1341
1342                 /* Disable all cpuidle devices */
1343                 for_each_online_cpu(cpu) {
1344                         _pr = per_cpu(processors, cpu);
1345                         if (!_pr || !_pr->flags.power_setup_done)
1346                                 continue;
1347                         dev = per_cpu(acpi_cpuidle_device, cpu);
1348                         cpuidle_disable_device(dev);
1349                 }
1350
1351                 /* Populate Updated C-state information */
1352                 acpi_processor_get_power_info(pr);
1353                 acpi_processor_setup_cpuidle_states(pr);
1354
1355                 /* Enable all cpuidle devices */
1356                 for_each_online_cpu(cpu) {
1357                         _pr = per_cpu(processors, cpu);
1358                         if (!_pr || !_pr->flags.power_setup_done)
1359                                 continue;
1360                         acpi_processor_get_power_info(_pr);
1361                         if (_pr->flags.power) {
1362                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1363                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1364                                 cpuidle_enable_device(dev);
1365                         }
1366                 }
1367                 cpuidle_resume_and_unlock();
1368                 cpus_read_unlock();
1369         }
1370
1371         return 0;
1372 }
1373
1374 static int acpi_processor_registered;
1375
1376 int acpi_processor_power_init(struct acpi_processor *pr)
1377 {
1378         int retval;
1379         struct cpuidle_device *dev;
1380
1381         if (disabled_by_idle_boot_param())
1382                 return 0;
1383
1384         acpi_processor_cstate_first_run_checks();
1385
1386         if (!acpi_processor_get_power_info(pr))
1387                 pr->flags.power_setup_done = 1;
1388
1389         /*
1390          * Install the idle handler if processor power management is supported.
1391          * Note that we use previously set idle handler will be used on
1392          * platforms that only support C1.
1393          */
1394         if (pr->flags.power) {
1395                 /* Register acpi_idle_driver if not already registered */
1396                 if (!acpi_processor_registered) {
1397                         acpi_processor_setup_cpuidle_states(pr);
1398                         retval = cpuidle_register_driver(&acpi_idle_driver);
1399                         if (retval)
1400                                 return retval;
1401                         pr_debug("%s registered with cpuidle\n",
1402                                  acpi_idle_driver.name);
1403                 }
1404
1405                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1406                 if (!dev)
1407                         return -ENOMEM;
1408                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1409
1410                 acpi_processor_setup_cpuidle_dev(pr, dev);
1411
1412                 /* Register per-cpu cpuidle_device. Cpuidle driver
1413                  * must already be registered before registering device
1414                  */
1415                 retval = cpuidle_register_device(dev);
1416                 if (retval) {
1417                         if (acpi_processor_registered == 0)
1418                                 cpuidle_unregister_driver(&acpi_idle_driver);
1419                         return retval;
1420                 }
1421                 acpi_processor_registered++;
1422         }
1423         return 0;
1424 }
1425
1426 int acpi_processor_power_exit(struct acpi_processor *pr)
1427 {
1428         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1429
1430         if (disabled_by_idle_boot_param())
1431                 return 0;
1432
1433         if (pr->flags.power) {
1434                 cpuidle_unregister_device(dev);
1435                 acpi_processor_registered--;
1436                 if (acpi_processor_registered == 0)
1437                         cpuidle_unregister_driver(&acpi_idle_driver);
1438         }
1439
1440         pr->flags.power_setup_done = 0;
1441         return 0;
1442 }