libnvdimm/altmap: Track namespace boundaries in altmap
[linux-2.6-block.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/pci.h>
18 #include <linux/interrupt.h>
19 #include <linux/kmod.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/nmi.h>
23 #include <linux/acpi.h>
24 #include <linux/efi.h>
25 #include <linux/ioport.h>
26 #include <linux/list.h>
27 #include <linux/jiffies.h>
28 #include <linux/semaphore.h>
29
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33
34 #include "acpica/accommon.h"
35 #include "acpica/acnamesp.h"
36 #include "internal.h"
37
38 #define _COMPONENT              ACPI_OS_SERVICES
39 ACPI_MODULE_NAME("osl");
40
41 struct acpi_os_dpc {
42         acpi_osd_exec_callback function;
43         void *context;
44         struct work_struct work;
45 };
46
47 #ifdef ENABLE_DEBUGGER
48 #include <linux/kdb.h>
49
50 /* stuff for debugger support */
51 int acpi_in_debugger;
52 EXPORT_SYMBOL(acpi_in_debugger);
53 #endif                          /*ENABLE_DEBUGGER */
54
55 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
56                                       u32 pm1b_ctrl);
57 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
58                                       u32 val_b);
59
60 static acpi_osd_handler acpi_irq_handler;
61 static void *acpi_irq_context;
62 static struct workqueue_struct *kacpid_wq;
63 static struct workqueue_struct *kacpi_notify_wq;
64 static struct workqueue_struct *kacpi_hotplug_wq;
65 static bool acpi_os_initialized;
66 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
67 bool acpi_permanent_mmap = false;
68
69 /*
70  * This list of permanent mappings is for memory that may be accessed from
71  * interrupt context, where we can't do the ioremap().
72  */
73 struct acpi_ioremap {
74         struct list_head list;
75         void __iomem *virt;
76         acpi_physical_address phys;
77         acpi_size size;
78         unsigned long refcount;
79 };
80
81 static LIST_HEAD(acpi_ioremaps);
82 static DEFINE_MUTEX(acpi_ioremap_lock);
83
84 static void __init acpi_request_region (struct acpi_generic_address *gas,
85         unsigned int length, char *desc)
86 {
87         u64 addr;
88
89         /* Handle possible alignment issues */
90         memcpy(&addr, &gas->address, sizeof(addr));
91         if (!addr || !length)
92                 return;
93
94         /* Resources are never freed */
95         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
96                 request_region(addr, length, desc);
97         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
98                 request_mem_region(addr, length, desc);
99 }
100
101 static int __init acpi_reserve_resources(void)
102 {
103         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
104                 "ACPI PM1a_EVT_BLK");
105
106         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
107                 "ACPI PM1b_EVT_BLK");
108
109         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
110                 "ACPI PM1a_CNT_BLK");
111
112         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
113                 "ACPI PM1b_CNT_BLK");
114
115         if (acpi_gbl_FADT.pm_timer_length == 4)
116                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
117
118         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
119                 "ACPI PM2_CNT_BLK");
120
121         /* Length of GPE blocks must be a non-negative multiple of 2 */
122
123         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
124                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
125                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
126
127         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
128                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
129                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
130
131         return 0;
132 }
133 fs_initcall_sync(acpi_reserve_resources);
134
135 void acpi_os_printf(const char *fmt, ...)
136 {
137         va_list args;
138         va_start(args, fmt);
139         acpi_os_vprintf(fmt, args);
140         va_end(args);
141 }
142 EXPORT_SYMBOL(acpi_os_printf);
143
144 void acpi_os_vprintf(const char *fmt, va_list args)
145 {
146         static char buffer[512];
147
148         vsprintf(buffer, fmt, args);
149
150 #ifdef ENABLE_DEBUGGER
151         if (acpi_in_debugger) {
152                 kdb_printf("%s", buffer);
153         } else {
154                 if (printk_get_level(buffer))
155                         printk("%s", buffer);
156                 else
157                         printk(KERN_CONT "%s", buffer);
158         }
159 #else
160         if (acpi_debugger_write_log(buffer) < 0) {
161                 if (printk_get_level(buffer))
162                         printk("%s", buffer);
163                 else
164                         printk(KERN_CONT "%s", buffer);
165         }
166 #endif
167 }
168
169 #ifdef CONFIG_KEXEC
170 static unsigned long acpi_rsdp;
171 static int __init setup_acpi_rsdp(char *arg)
172 {
173         return kstrtoul(arg, 16, &acpi_rsdp);
174 }
175 early_param("acpi_rsdp", setup_acpi_rsdp);
176 #endif
177
178 acpi_physical_address __init acpi_os_get_root_pointer(void)
179 {
180         acpi_physical_address pa;
181
182 #ifdef CONFIG_KEXEC
183         if (acpi_rsdp)
184                 return acpi_rsdp;
185 #endif
186         pa = acpi_arch_get_root_pointer();
187         if (pa)
188                 return pa;
189
190         if (efi_enabled(EFI_CONFIG_TABLES)) {
191                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
192                         return efi.acpi20;
193                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
194                         return efi.acpi;
195                 pr_err(PREFIX "System description tables not found\n");
196         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
197                 acpi_find_root_pointer(&pa);
198         }
199
200         return pa;
201 }
202
203 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
204 static struct acpi_ioremap *
205 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
206 {
207         struct acpi_ioremap *map;
208
209         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
210                 if (map->phys <= phys &&
211                     phys + size <= map->phys + map->size)
212                         return map;
213
214         return NULL;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static void __iomem *
219 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
220 {
221         struct acpi_ioremap *map;
222
223         map = acpi_map_lookup(phys, size);
224         if (map)
225                 return map->virt + (phys - map->phys);
226
227         return NULL;
228 }
229
230 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
231 {
232         struct acpi_ioremap *map;
233         void __iomem *virt = NULL;
234
235         mutex_lock(&acpi_ioremap_lock);
236         map = acpi_map_lookup(phys, size);
237         if (map) {
238                 virt = map->virt + (phys - map->phys);
239                 map->refcount++;
240         }
241         mutex_unlock(&acpi_ioremap_lock);
242         return virt;
243 }
244 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
245
246 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
247 static struct acpi_ioremap *
248 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
249 {
250         struct acpi_ioremap *map;
251
252         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
253                 if (map->virt <= virt &&
254                     virt + size <= map->virt + map->size)
255                         return map;
256
257         return NULL;
258 }
259
260 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
261 /* ioremap will take care of cache attributes */
262 #define should_use_kmap(pfn)   0
263 #else
264 #define should_use_kmap(pfn)   page_is_ram(pfn)
265 #endif
266
267 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
268 {
269         unsigned long pfn;
270
271         pfn = pg_off >> PAGE_SHIFT;
272         if (should_use_kmap(pfn)) {
273                 if (pg_sz > PAGE_SIZE)
274                         return NULL;
275                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
276         } else
277                 return acpi_os_ioremap(pg_off, pg_sz);
278 }
279
280 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
281 {
282         unsigned long pfn;
283
284         pfn = pg_off >> PAGE_SHIFT;
285         if (should_use_kmap(pfn))
286                 kunmap(pfn_to_page(pfn));
287         else
288                 iounmap(vaddr);
289 }
290
291 /**
292  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
293  * @phys: Start of the physical address range to map.
294  * @size: Size of the physical address range to map.
295  *
296  * Look up the given physical address range in the list of existing ACPI memory
297  * mappings.  If found, get a reference to it and return a pointer to it (its
298  * virtual address).  If not found, map it, add it to that list and return a
299  * pointer to it.
300  *
301  * During early init (when acpi_permanent_mmap has not been set yet) this
302  * routine simply calls __acpi_map_table() to get the job done.
303  */
304 void __iomem __ref
305 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
306 {
307         struct acpi_ioremap *map;
308         void __iomem *virt;
309         acpi_physical_address pg_off;
310         acpi_size pg_sz;
311
312         if (phys > ULONG_MAX) {
313                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
314                 return NULL;
315         }
316
317         if (!acpi_permanent_mmap)
318                 return __acpi_map_table((unsigned long)phys, size);
319
320         mutex_lock(&acpi_ioremap_lock);
321         /* Check if there's a suitable mapping already. */
322         map = acpi_map_lookup(phys, size);
323         if (map) {
324                 map->refcount++;
325                 goto out;
326         }
327
328         map = kzalloc(sizeof(*map), GFP_KERNEL);
329         if (!map) {
330                 mutex_unlock(&acpi_ioremap_lock);
331                 return NULL;
332         }
333
334         pg_off = round_down(phys, PAGE_SIZE);
335         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
336         virt = acpi_map(pg_off, pg_sz);
337         if (!virt) {
338                 mutex_unlock(&acpi_ioremap_lock);
339                 kfree(map);
340                 return NULL;
341         }
342
343         INIT_LIST_HEAD(&map->list);
344         map->virt = virt;
345         map->phys = pg_off;
346         map->size = pg_sz;
347         map->refcount = 1;
348
349         list_add_tail_rcu(&map->list, &acpi_ioremaps);
350
351 out:
352         mutex_unlock(&acpi_ioremap_lock);
353         return map->virt + (phys - map->phys);
354 }
355 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
356
357 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
358 {
359         return (void *)acpi_os_map_iomem(phys, size);
360 }
361 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
362
363 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
364 {
365         if (!--map->refcount)
366                 list_del_rcu(&map->list);
367 }
368
369 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
370 {
371         if (!map->refcount) {
372                 synchronize_rcu_expedited();
373                 acpi_unmap(map->phys, map->virt);
374                 kfree(map);
375         }
376 }
377
378 /**
379  * acpi_os_unmap_iomem - Drop a memory mapping reference.
380  * @virt: Start of the address range to drop a reference to.
381  * @size: Size of the address range to drop a reference to.
382  *
383  * Look up the given virtual address range in the list of existing ACPI memory
384  * mappings, drop a reference to it and unmap it if there are no more active
385  * references to it.
386  *
387  * During early init (when acpi_permanent_mmap has not been set yet) this
388  * routine simply calls __acpi_unmap_table() to get the job done.  Since
389  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
390  * here.
391  */
392 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
393 {
394         struct acpi_ioremap *map;
395
396         if (!acpi_permanent_mmap) {
397                 __acpi_unmap_table(virt, size);
398                 return;
399         }
400
401         mutex_lock(&acpi_ioremap_lock);
402         map = acpi_map_lookup_virt(virt, size);
403         if (!map) {
404                 mutex_unlock(&acpi_ioremap_lock);
405                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
406                 return;
407         }
408         acpi_os_drop_map_ref(map);
409         mutex_unlock(&acpi_ioremap_lock);
410
411         acpi_os_map_cleanup(map);
412 }
413 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
414
415 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
416 {
417         return acpi_os_unmap_iomem((void __iomem *)virt, size);
418 }
419 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
420
421 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
422 {
423         u64 addr;
424         void __iomem *virt;
425
426         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
427                 return 0;
428
429         /* Handle possible alignment issues */
430         memcpy(&addr, &gas->address, sizeof(addr));
431         if (!addr || !gas->bit_width)
432                 return -EINVAL;
433
434         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
435         if (!virt)
436                 return -EIO;
437
438         return 0;
439 }
440 EXPORT_SYMBOL(acpi_os_map_generic_address);
441
442 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
443 {
444         u64 addr;
445         struct acpi_ioremap *map;
446
447         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
448                 return;
449
450         /* Handle possible alignment issues */
451         memcpy(&addr, &gas->address, sizeof(addr));
452         if (!addr || !gas->bit_width)
453                 return;
454
455         mutex_lock(&acpi_ioremap_lock);
456         map = acpi_map_lookup(addr, gas->bit_width / 8);
457         if (!map) {
458                 mutex_unlock(&acpi_ioremap_lock);
459                 return;
460         }
461         acpi_os_drop_map_ref(map);
462         mutex_unlock(&acpi_ioremap_lock);
463
464         acpi_os_map_cleanup(map);
465 }
466 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
467
468 #ifdef ACPI_FUTURE_USAGE
469 acpi_status
470 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
471 {
472         if (!phys || !virt)
473                 return AE_BAD_PARAMETER;
474
475         *phys = virt_to_phys(virt);
476
477         return AE_OK;
478 }
479 #endif
480
481 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
482 static bool acpi_rev_override;
483
484 int __init acpi_rev_override_setup(char *str)
485 {
486         acpi_rev_override = true;
487         return 1;
488 }
489 __setup("acpi_rev_override", acpi_rev_override_setup);
490 #else
491 #define acpi_rev_override       false
492 #endif
493
494 #define ACPI_MAX_OVERRIDE_LEN 100
495
496 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
497
498 acpi_status
499 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
500                             acpi_string *new_val)
501 {
502         if (!init_val || !new_val)
503                 return AE_BAD_PARAMETER;
504
505         *new_val = NULL;
506         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
507                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
508                        acpi_os_name);
509                 *new_val = acpi_os_name;
510         }
511
512         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
513                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
514                 *new_val = (char *)5;
515         }
516
517         return AE_OK;
518 }
519
520 static irqreturn_t acpi_irq(int irq, void *dev_id)
521 {
522         u32 handled;
523
524         handled = (*acpi_irq_handler) (acpi_irq_context);
525
526         if (handled) {
527                 acpi_irq_handled++;
528                 return IRQ_HANDLED;
529         } else {
530                 acpi_irq_not_handled++;
531                 return IRQ_NONE;
532         }
533 }
534
535 acpi_status
536 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
537                                   void *context)
538 {
539         unsigned int irq;
540
541         acpi_irq_stats_init();
542
543         /*
544          * ACPI interrupts different from the SCI in our copy of the FADT are
545          * not supported.
546          */
547         if (gsi != acpi_gbl_FADT.sci_interrupt)
548                 return AE_BAD_PARAMETER;
549
550         if (acpi_irq_handler)
551                 return AE_ALREADY_ACQUIRED;
552
553         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
554                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
555                        gsi);
556                 return AE_OK;
557         }
558
559         acpi_irq_handler = handler;
560         acpi_irq_context = context;
561         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
562                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
563                 acpi_irq_handler = NULL;
564                 return AE_NOT_ACQUIRED;
565         }
566         acpi_sci_irq = irq;
567
568         return AE_OK;
569 }
570
571 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
572 {
573         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
574                 return AE_BAD_PARAMETER;
575
576         free_irq(acpi_sci_irq, acpi_irq);
577         acpi_irq_handler = NULL;
578         acpi_sci_irq = INVALID_ACPI_IRQ;
579
580         return AE_OK;
581 }
582
583 /*
584  * Running in interpreter thread context, safe to sleep
585  */
586
587 void acpi_os_sleep(u64 ms)
588 {
589         msleep(ms);
590 }
591
592 void acpi_os_stall(u32 us)
593 {
594         while (us) {
595                 u32 delay = 1000;
596
597                 if (delay > us)
598                         delay = us;
599                 udelay(delay);
600                 touch_nmi_watchdog();
601                 us -= delay;
602         }
603 }
604
605 /*
606  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
607  * monotonically increasing timer with 100ns granularity. Do not use
608  * ktime_get() to implement this function because this function may get
609  * called after timekeeping has been suspended. Note: calling this function
610  * after timekeeping has been suspended may lead to unexpected results
611  * because when timekeeping is suspended the jiffies counter is not
612  * incremented. See also timekeeping_suspend().
613  */
614 u64 acpi_os_get_timer(void)
615 {
616         return (get_jiffies_64() - INITIAL_JIFFIES) *
617                 (ACPI_100NSEC_PER_SEC / HZ);
618 }
619
620 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
621 {
622         u32 dummy;
623
624         if (!value)
625                 value = &dummy;
626
627         *value = 0;
628         if (width <= 8) {
629                 *(u8 *) value = inb(port);
630         } else if (width <= 16) {
631                 *(u16 *) value = inw(port);
632         } else if (width <= 32) {
633                 *(u32 *) value = inl(port);
634         } else {
635                 BUG();
636         }
637
638         return AE_OK;
639 }
640
641 EXPORT_SYMBOL(acpi_os_read_port);
642
643 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
644 {
645         if (width <= 8) {
646                 outb(value, port);
647         } else if (width <= 16) {
648                 outw(value, port);
649         } else if (width <= 32) {
650                 outl(value, port);
651         } else {
652                 BUG();
653         }
654
655         return AE_OK;
656 }
657
658 EXPORT_SYMBOL(acpi_os_write_port);
659
660 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
661 {
662
663         switch (width) {
664         case 8:
665                 *(u8 *) value = readb(virt_addr);
666                 break;
667         case 16:
668                 *(u16 *) value = readw(virt_addr);
669                 break;
670         case 32:
671                 *(u32 *) value = readl(virt_addr);
672                 break;
673         case 64:
674                 *(u64 *) value = readq(virt_addr);
675                 break;
676         default:
677                 return -EINVAL;
678         }
679
680         return 0;
681 }
682
683 acpi_status
684 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
685 {
686         void __iomem *virt_addr;
687         unsigned int size = width / 8;
688         bool unmap = false;
689         u64 dummy;
690         int error;
691
692         rcu_read_lock();
693         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
694         if (!virt_addr) {
695                 rcu_read_unlock();
696                 virt_addr = acpi_os_ioremap(phys_addr, size);
697                 if (!virt_addr)
698                         return AE_BAD_ADDRESS;
699                 unmap = true;
700         }
701
702         if (!value)
703                 value = &dummy;
704
705         error = acpi_os_read_iomem(virt_addr, value, width);
706         BUG_ON(error);
707
708         if (unmap)
709                 iounmap(virt_addr);
710         else
711                 rcu_read_unlock();
712
713         return AE_OK;
714 }
715
716 acpi_status
717 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
718 {
719         void __iomem *virt_addr;
720         unsigned int size = width / 8;
721         bool unmap = false;
722
723         rcu_read_lock();
724         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
725         if (!virt_addr) {
726                 rcu_read_unlock();
727                 virt_addr = acpi_os_ioremap(phys_addr, size);
728                 if (!virt_addr)
729                         return AE_BAD_ADDRESS;
730                 unmap = true;
731         }
732
733         switch (width) {
734         case 8:
735                 writeb(value, virt_addr);
736                 break;
737         case 16:
738                 writew(value, virt_addr);
739                 break;
740         case 32:
741                 writel(value, virt_addr);
742                 break;
743         case 64:
744                 writeq(value, virt_addr);
745                 break;
746         default:
747                 BUG();
748         }
749
750         if (unmap)
751                 iounmap(virt_addr);
752         else
753                 rcu_read_unlock();
754
755         return AE_OK;
756 }
757
758 #ifdef CONFIG_PCI
759 acpi_status
760 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
761                                u64 *value, u32 width)
762 {
763         int result, size;
764         u32 value32;
765
766         if (!value)
767                 return AE_BAD_PARAMETER;
768
769         switch (width) {
770         case 8:
771                 size = 1;
772                 break;
773         case 16:
774                 size = 2;
775                 break;
776         case 32:
777                 size = 4;
778                 break;
779         default:
780                 return AE_ERROR;
781         }
782
783         result = raw_pci_read(pci_id->segment, pci_id->bus,
784                                 PCI_DEVFN(pci_id->device, pci_id->function),
785                                 reg, size, &value32);
786         *value = value32;
787
788         return (result ? AE_ERROR : AE_OK);
789 }
790
791 acpi_status
792 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
793                                 u64 value, u32 width)
794 {
795         int result, size;
796
797         switch (width) {
798         case 8:
799                 size = 1;
800                 break;
801         case 16:
802                 size = 2;
803                 break;
804         case 32:
805                 size = 4;
806                 break;
807         default:
808                 return AE_ERROR;
809         }
810
811         result = raw_pci_write(pci_id->segment, pci_id->bus,
812                                 PCI_DEVFN(pci_id->device, pci_id->function),
813                                 reg, size, value);
814
815         return (result ? AE_ERROR : AE_OK);
816 }
817 #endif
818
819 static void acpi_os_execute_deferred(struct work_struct *work)
820 {
821         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
822
823         dpc->function(dpc->context);
824         kfree(dpc);
825 }
826
827 #ifdef CONFIG_ACPI_DEBUGGER
828 static struct acpi_debugger acpi_debugger;
829 static bool acpi_debugger_initialized;
830
831 int acpi_register_debugger(struct module *owner,
832                            const struct acpi_debugger_ops *ops)
833 {
834         int ret = 0;
835
836         mutex_lock(&acpi_debugger.lock);
837         if (acpi_debugger.ops) {
838                 ret = -EBUSY;
839                 goto err_lock;
840         }
841
842         acpi_debugger.owner = owner;
843         acpi_debugger.ops = ops;
844
845 err_lock:
846         mutex_unlock(&acpi_debugger.lock);
847         return ret;
848 }
849 EXPORT_SYMBOL(acpi_register_debugger);
850
851 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
852 {
853         mutex_lock(&acpi_debugger.lock);
854         if (ops == acpi_debugger.ops) {
855                 acpi_debugger.ops = NULL;
856                 acpi_debugger.owner = NULL;
857         }
858         mutex_unlock(&acpi_debugger.lock);
859 }
860 EXPORT_SYMBOL(acpi_unregister_debugger);
861
862 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
863 {
864         int ret;
865         int (*func)(acpi_osd_exec_callback, void *);
866         struct module *owner;
867
868         if (!acpi_debugger_initialized)
869                 return -ENODEV;
870         mutex_lock(&acpi_debugger.lock);
871         if (!acpi_debugger.ops) {
872                 ret = -ENODEV;
873                 goto err_lock;
874         }
875         if (!try_module_get(acpi_debugger.owner)) {
876                 ret = -ENODEV;
877                 goto err_lock;
878         }
879         func = acpi_debugger.ops->create_thread;
880         owner = acpi_debugger.owner;
881         mutex_unlock(&acpi_debugger.lock);
882
883         ret = func(function, context);
884
885         mutex_lock(&acpi_debugger.lock);
886         module_put(owner);
887 err_lock:
888         mutex_unlock(&acpi_debugger.lock);
889         return ret;
890 }
891
892 ssize_t acpi_debugger_write_log(const char *msg)
893 {
894         ssize_t ret;
895         ssize_t (*func)(const char *);
896         struct module *owner;
897
898         if (!acpi_debugger_initialized)
899                 return -ENODEV;
900         mutex_lock(&acpi_debugger.lock);
901         if (!acpi_debugger.ops) {
902                 ret = -ENODEV;
903                 goto err_lock;
904         }
905         if (!try_module_get(acpi_debugger.owner)) {
906                 ret = -ENODEV;
907                 goto err_lock;
908         }
909         func = acpi_debugger.ops->write_log;
910         owner = acpi_debugger.owner;
911         mutex_unlock(&acpi_debugger.lock);
912
913         ret = func(msg);
914
915         mutex_lock(&acpi_debugger.lock);
916         module_put(owner);
917 err_lock:
918         mutex_unlock(&acpi_debugger.lock);
919         return ret;
920 }
921
922 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
923 {
924         ssize_t ret;
925         ssize_t (*func)(char *, size_t);
926         struct module *owner;
927
928         if (!acpi_debugger_initialized)
929                 return -ENODEV;
930         mutex_lock(&acpi_debugger.lock);
931         if (!acpi_debugger.ops) {
932                 ret = -ENODEV;
933                 goto err_lock;
934         }
935         if (!try_module_get(acpi_debugger.owner)) {
936                 ret = -ENODEV;
937                 goto err_lock;
938         }
939         func = acpi_debugger.ops->read_cmd;
940         owner = acpi_debugger.owner;
941         mutex_unlock(&acpi_debugger.lock);
942
943         ret = func(buffer, buffer_length);
944
945         mutex_lock(&acpi_debugger.lock);
946         module_put(owner);
947 err_lock:
948         mutex_unlock(&acpi_debugger.lock);
949         return ret;
950 }
951
952 int acpi_debugger_wait_command_ready(void)
953 {
954         int ret;
955         int (*func)(bool, char *, size_t);
956         struct module *owner;
957
958         if (!acpi_debugger_initialized)
959                 return -ENODEV;
960         mutex_lock(&acpi_debugger.lock);
961         if (!acpi_debugger.ops) {
962                 ret = -ENODEV;
963                 goto err_lock;
964         }
965         if (!try_module_get(acpi_debugger.owner)) {
966                 ret = -ENODEV;
967                 goto err_lock;
968         }
969         func = acpi_debugger.ops->wait_command_ready;
970         owner = acpi_debugger.owner;
971         mutex_unlock(&acpi_debugger.lock);
972
973         ret = func(acpi_gbl_method_executing,
974                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
975
976         mutex_lock(&acpi_debugger.lock);
977         module_put(owner);
978 err_lock:
979         mutex_unlock(&acpi_debugger.lock);
980         return ret;
981 }
982
983 int acpi_debugger_notify_command_complete(void)
984 {
985         int ret;
986         int (*func)(void);
987         struct module *owner;
988
989         if (!acpi_debugger_initialized)
990                 return -ENODEV;
991         mutex_lock(&acpi_debugger.lock);
992         if (!acpi_debugger.ops) {
993                 ret = -ENODEV;
994                 goto err_lock;
995         }
996         if (!try_module_get(acpi_debugger.owner)) {
997                 ret = -ENODEV;
998                 goto err_lock;
999         }
1000         func = acpi_debugger.ops->notify_command_complete;
1001         owner = acpi_debugger.owner;
1002         mutex_unlock(&acpi_debugger.lock);
1003
1004         ret = func();
1005
1006         mutex_lock(&acpi_debugger.lock);
1007         module_put(owner);
1008 err_lock:
1009         mutex_unlock(&acpi_debugger.lock);
1010         return ret;
1011 }
1012
1013 int __init acpi_debugger_init(void)
1014 {
1015         mutex_init(&acpi_debugger.lock);
1016         acpi_debugger_initialized = true;
1017         return 0;
1018 }
1019 #endif
1020
1021 /*******************************************************************************
1022  *
1023  * FUNCTION:    acpi_os_execute
1024  *
1025  * PARAMETERS:  Type               - Type of the callback
1026  *              Function           - Function to be executed
1027  *              Context            - Function parameters
1028  *
1029  * RETURN:      Status
1030  *
1031  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1032  *              immediately executes function on a separate thread.
1033  *
1034  ******************************************************************************/
1035
1036 acpi_status acpi_os_execute(acpi_execute_type type,
1037                             acpi_osd_exec_callback function, void *context)
1038 {
1039         acpi_status status = AE_OK;
1040         struct acpi_os_dpc *dpc;
1041         struct workqueue_struct *queue;
1042         int ret;
1043         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1044                           "Scheduling function [%p(%p)] for deferred execution.\n",
1045                           function, context));
1046
1047         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1048                 ret = acpi_debugger_create_thread(function, context);
1049                 if (ret) {
1050                         pr_err("Call to kthread_create() failed.\n");
1051                         status = AE_ERROR;
1052                 }
1053                 goto out_thread;
1054         }
1055
1056         /*
1057          * Allocate/initialize DPC structure.  Note that this memory will be
1058          * freed by the callee.  The kernel handles the work_struct list  in a
1059          * way that allows us to also free its memory inside the callee.
1060          * Because we may want to schedule several tasks with different
1061          * parameters we can't use the approach some kernel code uses of
1062          * having a static work_struct.
1063          */
1064
1065         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1066         if (!dpc)
1067                 return AE_NO_MEMORY;
1068
1069         dpc->function = function;
1070         dpc->context = context;
1071
1072         /*
1073          * To prevent lockdep from complaining unnecessarily, make sure that
1074          * there is a different static lockdep key for each workqueue by using
1075          * INIT_WORK() for each of them separately.
1076          */
1077         if (type == OSL_NOTIFY_HANDLER) {
1078                 queue = kacpi_notify_wq;
1079                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1080         } else if (type == OSL_GPE_HANDLER) {
1081                 queue = kacpid_wq;
1082                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1083         } else {
1084                 pr_err("Unsupported os_execute type %d.\n", type);
1085                 status = AE_ERROR;
1086         }
1087
1088         if (ACPI_FAILURE(status))
1089                 goto err_workqueue;
1090
1091         /*
1092          * On some machines, a software-initiated SMI causes corruption unless
1093          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1094          * typically it's done in GPE-related methods that are run via
1095          * workqueues, so we can avoid the known corruption cases by always
1096          * queueing on CPU 0.
1097          */
1098         ret = queue_work_on(0, queue, &dpc->work);
1099         if (!ret) {
1100                 printk(KERN_ERR PREFIX
1101                           "Call to queue_work() failed.\n");
1102                 status = AE_ERROR;
1103         }
1104 err_workqueue:
1105         if (ACPI_FAILURE(status))
1106                 kfree(dpc);
1107 out_thread:
1108         return status;
1109 }
1110 EXPORT_SYMBOL(acpi_os_execute);
1111
1112 void acpi_os_wait_events_complete(void)
1113 {
1114         /*
1115          * Make sure the GPE handler or the fixed event handler is not used
1116          * on another CPU after removal.
1117          */
1118         if (acpi_sci_irq_valid())
1119                 synchronize_hardirq(acpi_sci_irq);
1120         flush_workqueue(kacpid_wq);
1121         flush_workqueue(kacpi_notify_wq);
1122 }
1123 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1124
1125 struct acpi_hp_work {
1126         struct work_struct work;
1127         struct acpi_device *adev;
1128         u32 src;
1129 };
1130
1131 static void acpi_hotplug_work_fn(struct work_struct *work)
1132 {
1133         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1134
1135         acpi_os_wait_events_complete();
1136         acpi_device_hotplug(hpw->adev, hpw->src);
1137         kfree(hpw);
1138 }
1139
1140 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1141 {
1142         struct acpi_hp_work *hpw;
1143
1144         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1145                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1146                   adev, src));
1147
1148         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1149         if (!hpw)
1150                 return AE_NO_MEMORY;
1151
1152         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1153         hpw->adev = adev;
1154         hpw->src = src;
1155         /*
1156          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1157          * the hotplug code may call driver .remove() functions, which may
1158          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1159          * these workqueues.
1160          */
1161         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1162                 kfree(hpw);
1163                 return AE_ERROR;
1164         }
1165         return AE_OK;
1166 }
1167
1168 bool acpi_queue_hotplug_work(struct work_struct *work)
1169 {
1170         return queue_work(kacpi_hotplug_wq, work);
1171 }
1172
1173 acpi_status
1174 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1175 {
1176         struct semaphore *sem = NULL;
1177
1178         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1179         if (!sem)
1180                 return AE_NO_MEMORY;
1181
1182         sema_init(sem, initial_units);
1183
1184         *handle = (acpi_handle *) sem;
1185
1186         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1187                           *handle, initial_units));
1188
1189         return AE_OK;
1190 }
1191
1192 /*
1193  * TODO: A better way to delete semaphores?  Linux doesn't have a
1194  * 'delete_semaphore()' function -- may result in an invalid
1195  * pointer dereference for non-synchronized consumers.  Should
1196  * we at least check for blocked threads and signal/cancel them?
1197  */
1198
1199 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1200 {
1201         struct semaphore *sem = (struct semaphore *)handle;
1202
1203         if (!sem)
1204                 return AE_BAD_PARAMETER;
1205
1206         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1207
1208         BUG_ON(!list_empty(&sem->wait_list));
1209         kfree(sem);
1210         sem = NULL;
1211
1212         return AE_OK;
1213 }
1214
1215 /*
1216  * TODO: Support for units > 1?
1217  */
1218 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1219 {
1220         acpi_status status = AE_OK;
1221         struct semaphore *sem = (struct semaphore *)handle;
1222         long jiffies;
1223         int ret = 0;
1224
1225         if (!acpi_os_initialized)
1226                 return AE_OK;
1227
1228         if (!sem || (units < 1))
1229                 return AE_BAD_PARAMETER;
1230
1231         if (units > 1)
1232                 return AE_SUPPORT;
1233
1234         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1235                           handle, units, timeout));
1236
1237         if (timeout == ACPI_WAIT_FOREVER)
1238                 jiffies = MAX_SCHEDULE_TIMEOUT;
1239         else
1240                 jiffies = msecs_to_jiffies(timeout);
1241
1242         ret = down_timeout(sem, jiffies);
1243         if (ret)
1244                 status = AE_TIME;
1245
1246         if (ACPI_FAILURE(status)) {
1247                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1248                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1249                                   handle, units, timeout,
1250                                   acpi_format_exception(status)));
1251         } else {
1252                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253                                   "Acquired semaphore[%p|%d|%d]", handle,
1254                                   units, timeout));
1255         }
1256
1257         return status;
1258 }
1259
1260 /*
1261  * TODO: Support for units > 1?
1262  */
1263 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1264 {
1265         struct semaphore *sem = (struct semaphore *)handle;
1266
1267         if (!acpi_os_initialized)
1268                 return AE_OK;
1269
1270         if (!sem || (units < 1))
1271                 return AE_BAD_PARAMETER;
1272
1273         if (units > 1)
1274                 return AE_SUPPORT;
1275
1276         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1277                           units));
1278
1279         up(sem);
1280
1281         return AE_OK;
1282 }
1283
1284 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1285 {
1286 #ifdef ENABLE_DEBUGGER
1287         if (acpi_in_debugger) {
1288                 u32 chars;
1289
1290                 kdb_read(buffer, buffer_length);
1291
1292                 /* remove the CR kdb includes */
1293                 chars = strlen(buffer) - 1;
1294                 buffer[chars] = '\0';
1295         }
1296 #else
1297         int ret;
1298
1299         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1300         if (ret < 0)
1301                 return AE_ERROR;
1302         if (bytes_read)
1303                 *bytes_read = ret;
1304 #endif
1305
1306         return AE_OK;
1307 }
1308 EXPORT_SYMBOL(acpi_os_get_line);
1309
1310 acpi_status acpi_os_wait_command_ready(void)
1311 {
1312         int ret;
1313
1314         ret = acpi_debugger_wait_command_ready();
1315         if (ret < 0)
1316                 return AE_ERROR;
1317         return AE_OK;
1318 }
1319
1320 acpi_status acpi_os_notify_command_complete(void)
1321 {
1322         int ret;
1323
1324         ret = acpi_debugger_notify_command_complete();
1325         if (ret < 0)
1326                 return AE_ERROR;
1327         return AE_OK;
1328 }
1329
1330 acpi_status acpi_os_signal(u32 function, void *info)
1331 {
1332         switch (function) {
1333         case ACPI_SIGNAL_FATAL:
1334                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1335                 break;
1336         case ACPI_SIGNAL_BREAKPOINT:
1337                 /*
1338                  * AML Breakpoint
1339                  * ACPI spec. says to treat it as a NOP unless
1340                  * you are debugging.  So if/when we integrate
1341                  * AML debugger into the kernel debugger its
1342                  * hook will go here.  But until then it is
1343                  * not useful to print anything on breakpoints.
1344                  */
1345                 break;
1346         default:
1347                 break;
1348         }
1349
1350         return AE_OK;
1351 }
1352
1353 static int __init acpi_os_name_setup(char *str)
1354 {
1355         char *p = acpi_os_name;
1356         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1357
1358         if (!str || !*str)
1359                 return 0;
1360
1361         for (; count-- && *str; str++) {
1362                 if (isalnum(*str) || *str == ' ' || *str == ':')
1363                         *p++ = *str;
1364                 else if (*str == '\'' || *str == '"')
1365                         continue;
1366                 else
1367                         break;
1368         }
1369         *p = 0;
1370
1371         return 1;
1372
1373 }
1374
1375 __setup("acpi_os_name=", acpi_os_name_setup);
1376
1377 /*
1378  * Disable the auto-serialization of named objects creation methods.
1379  *
1380  * This feature is enabled by default.  It marks the AML control methods
1381  * that contain the opcodes to create named objects as "Serialized".
1382  */
1383 static int __init acpi_no_auto_serialize_setup(char *str)
1384 {
1385         acpi_gbl_auto_serialize_methods = FALSE;
1386         pr_info("ACPI: auto-serialization disabled\n");
1387
1388         return 1;
1389 }
1390
1391 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1392
1393 /* Check of resource interference between native drivers and ACPI
1394  * OperationRegions (SystemIO and System Memory only).
1395  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1396  * in arbitrary AML code and can interfere with legacy drivers.
1397  * acpi_enforce_resources= can be set to:
1398  *
1399  *   - strict (default) (2)
1400  *     -> further driver trying to access the resources will not load
1401  *   - lax              (1)
1402  *     -> further driver trying to access the resources will load, but you
1403  *     get a system message that something might go wrong...
1404  *
1405  *   - no               (0)
1406  *     -> ACPI Operation Region resources will not be registered
1407  *
1408  */
1409 #define ENFORCE_RESOURCES_STRICT 2
1410 #define ENFORCE_RESOURCES_LAX    1
1411 #define ENFORCE_RESOURCES_NO     0
1412
1413 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1414
1415 static int __init acpi_enforce_resources_setup(char *str)
1416 {
1417         if (str == NULL || *str == '\0')
1418                 return 0;
1419
1420         if (!strcmp("strict", str))
1421                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1422         else if (!strcmp("lax", str))
1423                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1424         else if (!strcmp("no", str))
1425                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1426
1427         return 1;
1428 }
1429
1430 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1431
1432 /* Check for resource conflicts between ACPI OperationRegions and native
1433  * drivers */
1434 int acpi_check_resource_conflict(const struct resource *res)
1435 {
1436         acpi_adr_space_type space_id;
1437         acpi_size length;
1438         u8 warn = 0;
1439         int clash = 0;
1440
1441         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1442                 return 0;
1443         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1444                 return 0;
1445
1446         if (res->flags & IORESOURCE_IO)
1447                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1448         else
1449                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1450
1451         length = resource_size(res);
1452         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1453                 warn = 1;
1454         clash = acpi_check_address_range(space_id, res->start, length, warn);
1455
1456         if (clash) {
1457                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1458                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1459                                 printk(KERN_NOTICE "ACPI: This conflict may"
1460                                        " cause random problems and system"
1461                                        " instability\n");
1462                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1463                                " for this device, you should use it instead of"
1464                                " the native driver\n");
1465                 }
1466                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1467                         return -EBUSY;
1468         }
1469         return 0;
1470 }
1471 EXPORT_SYMBOL(acpi_check_resource_conflict);
1472
1473 int acpi_check_region(resource_size_t start, resource_size_t n,
1474                       const char *name)
1475 {
1476         struct resource res = {
1477                 .start = start,
1478                 .end   = start + n - 1,
1479                 .name  = name,
1480                 .flags = IORESOURCE_IO,
1481         };
1482
1483         return acpi_check_resource_conflict(&res);
1484 }
1485 EXPORT_SYMBOL(acpi_check_region);
1486
1487 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1488                                               void *_res, void **return_value)
1489 {
1490         struct acpi_mem_space_context **mem_ctx;
1491         union acpi_operand_object *handler_obj;
1492         union acpi_operand_object *region_obj2;
1493         union acpi_operand_object *region_obj;
1494         struct resource *res = _res;
1495         acpi_status status;
1496
1497         region_obj = acpi_ns_get_attached_object(handle);
1498         if (!region_obj)
1499                 return AE_OK;
1500
1501         handler_obj = region_obj->region.handler;
1502         if (!handler_obj)
1503                 return AE_OK;
1504
1505         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1506                 return AE_OK;
1507
1508         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1509                 return AE_OK;
1510
1511         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1512         if (!region_obj2)
1513                 return AE_OK;
1514
1515         mem_ctx = (void *)&region_obj2->extra.region_context;
1516
1517         if (!(mem_ctx[0]->address >= res->start &&
1518               mem_ctx[0]->address < res->end))
1519                 return AE_OK;
1520
1521         status = handler_obj->address_space.setup(region_obj,
1522                                                   ACPI_REGION_DEACTIVATE,
1523                                                   NULL, (void **)mem_ctx);
1524         if (ACPI_SUCCESS(status))
1525                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1526
1527         return status;
1528 }
1529
1530 /**
1531  * acpi_release_memory - Release any mappings done to a memory region
1532  * @handle: Handle to namespace node
1533  * @res: Memory resource
1534  * @level: A level that terminates the search
1535  *
1536  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1537  * overlap with @res and that have already been activated (mapped).
1538  *
1539  * This is a helper that allows drivers to place special requirements on memory
1540  * region that may overlap with operation regions, primarily allowing them to
1541  * safely map the region as non-cached memory.
1542  *
1543  * The unmapped Operation Regions will be automatically remapped next time they
1544  * are called, so the drivers do not need to do anything else.
1545  */
1546 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1547                                 u32 level)
1548 {
1549         if (!(res->flags & IORESOURCE_MEM))
1550                 return AE_TYPE;
1551
1552         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1553                                    acpi_deactivate_mem_region, NULL, res, NULL);
1554 }
1555 EXPORT_SYMBOL_GPL(acpi_release_memory);
1556
1557 /*
1558  * Let drivers know whether the resource checks are effective
1559  */
1560 int acpi_resources_are_enforced(void)
1561 {
1562         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1563 }
1564 EXPORT_SYMBOL(acpi_resources_are_enforced);
1565
1566 /*
1567  * Deallocate the memory for a spinlock.
1568  */
1569 void acpi_os_delete_lock(acpi_spinlock handle)
1570 {
1571         ACPI_FREE(handle);
1572 }
1573
1574 /*
1575  * Acquire a spinlock.
1576  *
1577  * handle is a pointer to the spinlock_t.
1578  */
1579
1580 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1581 {
1582         acpi_cpu_flags flags;
1583         spin_lock_irqsave(lockp, flags);
1584         return flags;
1585 }
1586
1587 /*
1588  * Release a spinlock. See above.
1589  */
1590
1591 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1592 {
1593         spin_unlock_irqrestore(lockp, flags);
1594 }
1595
1596 #ifndef ACPI_USE_LOCAL_CACHE
1597
1598 /*******************************************************************************
1599  *
1600  * FUNCTION:    acpi_os_create_cache
1601  *
1602  * PARAMETERS:  name      - Ascii name for the cache
1603  *              size      - Size of each cached object
1604  *              depth     - Maximum depth of the cache (in objects) <ignored>
1605  *              cache     - Where the new cache object is returned
1606  *
1607  * RETURN:      status
1608  *
1609  * DESCRIPTION: Create a cache object
1610  *
1611  ******************************************************************************/
1612
1613 acpi_status
1614 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1615 {
1616         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1617         if (*cache == NULL)
1618                 return AE_ERROR;
1619         else
1620                 return AE_OK;
1621 }
1622
1623 /*******************************************************************************
1624  *
1625  * FUNCTION:    acpi_os_purge_cache
1626  *
1627  * PARAMETERS:  Cache           - Handle to cache object
1628  *
1629  * RETURN:      Status
1630  *
1631  * DESCRIPTION: Free all objects within the requested cache.
1632  *
1633  ******************************************************************************/
1634
1635 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1636 {
1637         kmem_cache_shrink(cache);
1638         return (AE_OK);
1639 }
1640
1641 /*******************************************************************************
1642  *
1643  * FUNCTION:    acpi_os_delete_cache
1644  *
1645  * PARAMETERS:  Cache           - Handle to cache object
1646  *
1647  * RETURN:      Status
1648  *
1649  * DESCRIPTION: Free all objects within the requested cache and delete the
1650  *              cache object.
1651  *
1652  ******************************************************************************/
1653
1654 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1655 {
1656         kmem_cache_destroy(cache);
1657         return (AE_OK);
1658 }
1659
1660 /*******************************************************************************
1661  *
1662  * FUNCTION:    acpi_os_release_object
1663  *
1664  * PARAMETERS:  Cache       - Handle to cache object
1665  *              Object      - The object to be released
1666  *
1667  * RETURN:      None
1668  *
1669  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1670  *              the object is deleted.
1671  *
1672  ******************************************************************************/
1673
1674 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1675 {
1676         kmem_cache_free(cache, object);
1677         return (AE_OK);
1678 }
1679 #endif
1680
1681 static int __init acpi_no_static_ssdt_setup(char *s)
1682 {
1683         acpi_gbl_disable_ssdt_table_install = TRUE;
1684         pr_info("ACPI: static SSDT installation disabled\n");
1685
1686         return 0;
1687 }
1688
1689 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1690
1691 static int __init acpi_disable_return_repair(char *s)
1692 {
1693         printk(KERN_NOTICE PREFIX
1694                "ACPI: Predefined validation mechanism disabled\n");
1695         acpi_gbl_disable_auto_repair = TRUE;
1696
1697         return 1;
1698 }
1699
1700 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1701
1702 acpi_status __init acpi_os_initialize(void)
1703 {
1704         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1705         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1706         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1707         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1708         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1709                 /*
1710                  * Use acpi_os_map_generic_address to pre-map the reset
1711                  * register if it's in system memory.
1712                  */
1713                 int rv;
1714
1715                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1716                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1717         }
1718         acpi_os_initialized = true;
1719
1720         return AE_OK;
1721 }
1722
1723 acpi_status __init acpi_os_initialize1(void)
1724 {
1725         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1726         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1727         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1728         BUG_ON(!kacpid_wq);
1729         BUG_ON(!kacpi_notify_wq);
1730         BUG_ON(!kacpi_hotplug_wq);
1731         acpi_osi_init();
1732         return AE_OK;
1733 }
1734
1735 acpi_status acpi_os_terminate(void)
1736 {
1737         if (acpi_irq_handler) {
1738                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1739                                                  acpi_irq_handler);
1740         }
1741
1742         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1743         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1744         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1745         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1746         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1747                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1748
1749         destroy_workqueue(kacpid_wq);
1750         destroy_workqueue(kacpi_notify_wq);
1751         destroy_workqueue(kacpi_hotplug_wq);
1752
1753         return AE_OK;
1754 }
1755
1756 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1757                                   u32 pm1b_control)
1758 {
1759         int rc = 0;
1760         if (__acpi_os_prepare_sleep)
1761                 rc = __acpi_os_prepare_sleep(sleep_state,
1762                                              pm1a_control, pm1b_control);
1763         if (rc < 0)
1764                 return AE_ERROR;
1765         else if (rc > 0)
1766                 return AE_CTRL_TERMINATE;
1767
1768         return AE_OK;
1769 }
1770
1771 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1772                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1773 {
1774         __acpi_os_prepare_sleep = func;
1775 }
1776
1777 #if (ACPI_REDUCED_HARDWARE)
1778 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1779                                   u32 val_b)
1780 {
1781         int rc = 0;
1782         if (__acpi_os_prepare_extended_sleep)
1783                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1784                                              val_a, val_b);
1785         if (rc < 0)
1786                 return AE_ERROR;
1787         else if (rc > 0)
1788                 return AE_CTRL_TERMINATE;
1789
1790         return AE_OK;
1791 }
1792 #else
1793 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1794                                   u32 val_b)
1795 {
1796         return AE_OK;
1797 }
1798 #endif
1799
1800 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1801                                u32 val_a, u32 val_b))
1802 {
1803         __acpi_os_prepare_extended_sleep = func;
1804 }
1805
1806 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1807                                 u32 reg_a_value, u32 reg_b_value)
1808 {
1809         acpi_status status;
1810
1811         if (acpi_gbl_reduced_hardware)
1812                 status = acpi_os_prepare_extended_sleep(sleep_state,
1813                                                         reg_a_value,
1814                                                         reg_b_value);
1815         else
1816                 status = acpi_os_prepare_sleep(sleep_state,
1817                                                reg_a_value, reg_b_value);
1818         return status;
1819 }