Merge tag 'riscv-firmware-fixes-for-v6.8-rc6' of https://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <asm/unaligned.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct pcc_mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         bool pcc_channel_acquired;
52         unsigned int deadline_us;
53         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
56         bool platform_owns_pcc;         /* Ownership of PCC subspace */
57         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
58
59         /*
60          * Lock to provide controlled access to the PCC channel.
61          *
62          * For performance critical usecases(currently cppc_set_perf)
63          *      We need to take read_lock and check if channel belongs to OSPM
64          * before reading or writing to PCC subspace
65          *      We need to take write_lock before transferring the channel
66          * ownership to the platform via a Doorbell
67          *      This allows us to batch a number of CPPC requests if they happen
68          * to originate in about the same time
69          *
70          * For non-performance critical usecases(init)
71          *      Take write_lock for all purposes which gives exclusive access
72          */
73         struct rw_semaphore pcc_lock;
74
75         /* Wait queue for CPUs whose requests were batched */
76         wait_queue_head_t pcc_write_wait_q;
77         ktime_t last_cmd_cmpl_time;
78         ktime_t last_mpar_reset;
79         int mpar_count;
80         int refcount;
81 };
82
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99                                                 0x8 + (offs))
100
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
103                                 (cpc)->cpc_entry.reg.space_id ==        \
104                                 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106 /* Check if a CPC register is in SystemMemory */
107 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
108                                 (cpc)->cpc_entry.reg.space_id ==        \
109                                 ACPI_ADR_SPACE_SYSTEM_MEMORY)
110
111 /* Check if a CPC register is in SystemIo */
112 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&       \
113                                 (cpc)->cpc_entry.reg.space_id ==        \
114                                 ACPI_ADR_SPACE_SYSTEM_IO)
115
116 /* Evaluates to True if reg is a NULL register descriptor */
117 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118                                 (reg)->address == 0 &&                  \
119                                 (reg)->bit_width == 0 &&                \
120                                 (reg)->bit_offset == 0 &&               \
121                                 (reg)->access_width == 0)
122
123 /* Evaluates to True if an optional cpc field is supported */
124 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
125                                 !!(cpc)->cpc_entry.int_value :          \
126                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
127 /*
128  * Arbitrary Retries in case the remote processor is slow to respond
129  * to PCC commands. Keeping it high enough to cover emulators where
130  * the processors run painfully slow.
131  */
132 #define NUM_RETRIES 500ULL
133
134 #define OVER_16BTS_MASK ~0xFFFFULL
135
136 #define define_one_cppc_ro(_name)               \
137 static struct kobj_attribute _name =            \
138 __ATTR(_name, 0444, show_##_name, NULL)
139
140 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141
142 #define show_cppc_data(access_fn, struct_name, member_name)             \
143         static ssize_t show_##member_name(struct kobject *kobj,         \
144                                 struct kobj_attribute *attr, char *buf) \
145         {                                                               \
146                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
147                 struct struct_name st_name = {0};                       \
148                 int ret;                                                \
149                                                                         \
150                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
151                 if (ret)                                                \
152                         return ret;                                     \
153                                                                         \
154                 return sysfs_emit(buf, "%llu\n",                \
155                                 (u64)st_name.member_name);              \
156         }                                                               \
157         define_one_cppc_ro(member_name)
158
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165
166 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168
169 static ssize_t show_feedback_ctrs(struct kobject *kobj,
170                 struct kobj_attribute *attr, char *buf)
171 {
172         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
173         struct cppc_perf_fb_ctrs fb_ctrs = {0};
174         int ret;
175
176         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
177         if (ret)
178                 return ret;
179
180         return sysfs_emit(buf, "ref:%llu del:%llu\n",
181                         fb_ctrs.reference, fb_ctrs.delivered);
182 }
183 define_one_cppc_ro(feedback_ctrs);
184
185 static struct attribute *cppc_attrs[] = {
186         &feedback_ctrs.attr,
187         &reference_perf.attr,
188         &wraparound_time.attr,
189         &highest_perf.attr,
190         &lowest_perf.attr,
191         &lowest_nonlinear_perf.attr,
192         &nominal_perf.attr,
193         &nominal_freq.attr,
194         &lowest_freq.attr,
195         NULL
196 };
197 ATTRIBUTE_GROUPS(cppc);
198
199 static const struct kobj_type cppc_ktype = {
200         .sysfs_ops = &kobj_sysfs_ops,
201         .default_groups = cppc_groups,
202 };
203
204 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
205 {
206         int ret, status;
207         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
208         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
209                 pcc_ss_data->pcc_comm_addr;
210
211         if (!pcc_ss_data->platform_owns_pcc)
212                 return 0;
213
214         /*
215          * Poll PCC status register every 3us(delay_us) for maximum of
216          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
217          */
218         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
219                                         status & PCC_CMD_COMPLETE_MASK, 3,
220                                         pcc_ss_data->deadline_us);
221
222         if (likely(!ret)) {
223                 pcc_ss_data->platform_owns_pcc = false;
224                 if (chk_err_bit && (status & PCC_ERROR_MASK))
225                         ret = -EIO;
226         }
227
228         if (unlikely(ret))
229                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
230                        pcc_ss_id, ret);
231
232         return ret;
233 }
234
235 /*
236  * This function transfers the ownership of the PCC to the platform
237  * So it must be called while holding write_lock(pcc_lock)
238  */
239 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
240 {
241         int ret = -EIO, i;
242         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
244                 pcc_ss_data->pcc_comm_addr;
245         unsigned int time_delta;
246
247         /*
248          * For CMD_WRITE we know for a fact the caller should have checked
249          * the channel before writing to PCC space
250          */
251         if (cmd == CMD_READ) {
252                 /*
253                  * If there are pending cpc_writes, then we stole the channel
254                  * before write completion, so first send a WRITE command to
255                  * platform
256                  */
257                 if (pcc_ss_data->pending_pcc_write_cmd)
258                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
259
260                 ret = check_pcc_chan(pcc_ss_id, false);
261                 if (ret)
262                         goto end;
263         } else /* CMD_WRITE */
264                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
265
266         /*
267          * Handle the Minimum Request Turnaround Time(MRTT)
268          * "The minimum amount of time that OSPM must wait after the completion
269          * of a command before issuing the next command, in microseconds"
270          */
271         if (pcc_ss_data->pcc_mrtt) {
272                 time_delta = ktime_us_delta(ktime_get(),
273                                             pcc_ss_data->last_cmd_cmpl_time);
274                 if (pcc_ss_data->pcc_mrtt > time_delta)
275                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
276         }
277
278         /*
279          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280          * "The maximum number of periodic requests that the subspace channel can
281          * support, reported in commands per minute. 0 indicates no limitation."
282          *
283          * This parameter should be ideally zero or large enough so that it can
284          * handle maximum number of requests that all the cores in the system can
285          * collectively generate. If it is not, we will follow the spec and just
286          * not send the request to the platform after hitting the MPAR limit in
287          * any 60s window
288          */
289         if (pcc_ss_data->pcc_mpar) {
290                 if (pcc_ss_data->mpar_count == 0) {
291                         time_delta = ktime_ms_delta(ktime_get(),
292                                                     pcc_ss_data->last_mpar_reset);
293                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
295                                          pcc_ss_id);
296                                 ret = -EIO;
297                                 goto end;
298                         }
299                         pcc_ss_data->last_mpar_reset = ktime_get();
300                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
301                 }
302                 pcc_ss_data->mpar_count--;
303         }
304
305         /* Write to the shared comm region. */
306         writew_relaxed(cmd, &generic_comm_base->command);
307
308         /* Flip CMD COMPLETE bit */
309         writew_relaxed(0, &generic_comm_base->status);
310
311         pcc_ss_data->platform_owns_pcc = true;
312
313         /* Ring doorbell */
314         ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
315         if (ret < 0) {
316                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
317                        pcc_ss_id, cmd, ret);
318                 goto end;
319         }
320
321         /* wait for completion and check for PCC error bit */
322         ret = check_pcc_chan(pcc_ss_id, true);
323
324         if (pcc_ss_data->pcc_mrtt)
325                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
326
327         if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
328                 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
329         else
330                 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
331
332 end:
333         if (cmd == CMD_WRITE) {
334                 if (unlikely(ret)) {
335                         for_each_possible_cpu(i) {
336                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
337
338                                 if (!desc)
339                                         continue;
340
341                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
342                                         desc->write_cmd_status = ret;
343                         }
344                 }
345                 pcc_ss_data->pcc_write_cnt++;
346                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
347         }
348
349         return ret;
350 }
351
352 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
353 {
354         if (ret < 0)
355                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
356                                 *(u16 *)msg, ret);
357         else
358                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
359                                 *(u16 *)msg, ret);
360 }
361
362 static struct mbox_client cppc_mbox_cl = {
363         .tx_done = cppc_chan_tx_done,
364         .knows_txdone = true,
365 };
366
367 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
368 {
369         int result = -EFAULT;
370         acpi_status status = AE_OK;
371         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
372         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
373         struct acpi_buffer state = {0, NULL};
374         union acpi_object  *psd = NULL;
375         struct acpi_psd_package *pdomain;
376
377         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
378                                             &buffer, ACPI_TYPE_PACKAGE);
379         if (status == AE_NOT_FOUND)     /* _PSD is optional */
380                 return 0;
381         if (ACPI_FAILURE(status))
382                 return -ENODEV;
383
384         psd = buffer.pointer;
385         if (!psd || psd->package.count != 1) {
386                 pr_debug("Invalid _PSD data\n");
387                 goto end;
388         }
389
390         pdomain = &(cpc_ptr->domain_info);
391
392         state.length = sizeof(struct acpi_psd_package);
393         state.pointer = pdomain;
394
395         status = acpi_extract_package(&(psd->package.elements[0]),
396                 &format, &state);
397         if (ACPI_FAILURE(status)) {
398                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
399                 goto end;
400         }
401
402         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
403                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
404                 goto end;
405         }
406
407         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
408                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
409                 goto end;
410         }
411
412         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
413             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
414             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
415                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
416                 goto end;
417         }
418
419         result = 0;
420 end:
421         kfree(buffer.pointer);
422         return result;
423 }
424
425 bool acpi_cpc_valid(void)
426 {
427         struct cpc_desc *cpc_ptr;
428         int cpu;
429
430         if (acpi_disabled)
431                 return false;
432
433         for_each_present_cpu(cpu) {
434                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
435                 if (!cpc_ptr)
436                         return false;
437         }
438
439         return true;
440 }
441 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
442
443 bool cppc_allow_fast_switch(void)
444 {
445         struct cpc_register_resource *desired_reg;
446         struct cpc_desc *cpc_ptr;
447         int cpu;
448
449         for_each_possible_cpu(cpu) {
450                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
451                 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
452                 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
453                                 !CPC_IN_SYSTEM_IO(desired_reg))
454                         return false;
455         }
456
457         return true;
458 }
459 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
460
461 /**
462  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
463  * @cpu: Find all CPUs that share a domain with cpu.
464  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
465  *
466  *      Return: 0 for success or negative value for err.
467  */
468 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
469 {
470         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
471         struct acpi_psd_package *match_pdomain;
472         struct acpi_psd_package *pdomain;
473         int count_target, i;
474
475         /*
476          * Now that we have _PSD data from all CPUs, let's setup P-state
477          * domain info.
478          */
479         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
480         if (!cpc_ptr)
481                 return -EFAULT;
482
483         pdomain = &(cpc_ptr->domain_info);
484         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
485         if (pdomain->num_processors <= 1)
486                 return 0;
487
488         /* Validate the Domain info */
489         count_target = pdomain->num_processors;
490         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
491                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
492         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
493                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
494         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
495                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
496
497         for_each_possible_cpu(i) {
498                 if (i == cpu)
499                         continue;
500
501                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
502                 if (!match_cpc_ptr)
503                         goto err_fault;
504
505                 match_pdomain = &(match_cpc_ptr->domain_info);
506                 if (match_pdomain->domain != pdomain->domain)
507                         continue;
508
509                 /* Here i and cpu are in the same domain */
510                 if (match_pdomain->num_processors != count_target)
511                         goto err_fault;
512
513                 if (pdomain->coord_type != match_pdomain->coord_type)
514                         goto err_fault;
515
516                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
517         }
518
519         return 0;
520
521 err_fault:
522         /* Assume no coordination on any error parsing domain info */
523         cpumask_clear(cpu_data->shared_cpu_map);
524         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
525         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
526
527         return -EFAULT;
528 }
529 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
530
531 static int register_pcc_channel(int pcc_ss_idx)
532 {
533         struct pcc_mbox_chan *pcc_chan;
534         u64 usecs_lat;
535
536         if (pcc_ss_idx >= 0) {
537                 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
538
539                 if (IS_ERR(pcc_chan)) {
540                         pr_err("Failed to find PCC channel for subspace %d\n",
541                                pcc_ss_idx);
542                         return -ENODEV;
543                 }
544
545                 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
546                 /*
547                  * cppc_ss->latency is just a Nominal value. In reality
548                  * the remote processor could be much slower to reply.
549                  * So add an arbitrary amount of wait on top of Nominal.
550                  */
551                 usecs_lat = NUM_RETRIES * pcc_chan->latency;
552                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
553                 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
554                 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
555                 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
556
557                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
558                         acpi_os_ioremap(pcc_chan->shmem_base_addr,
559                                         pcc_chan->shmem_size);
560                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
561                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
562                                pcc_ss_idx);
563                         return -ENOMEM;
564                 }
565
566                 /* Set flag so that we don't come here for each CPU. */
567                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
568         }
569
570         return 0;
571 }
572
573 /**
574  * cpc_ffh_supported() - check if FFH reading supported
575  *
576  * Check if the architecture has support for functional fixed hardware
577  * read/write capability.
578  *
579  * Return: true for supported, false for not supported
580  */
581 bool __weak cpc_ffh_supported(void)
582 {
583         return false;
584 }
585
586 /**
587  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
588  *
589  * Check if the architectural support for CPPC is present even
590  * if the _OSC hasn't prescribed it
591  *
592  * Return: true for supported, false for not supported
593  */
594 bool __weak cpc_supported_by_cpu(void)
595 {
596         return false;
597 }
598
599 /**
600  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
601  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
602  *
603  * Check and allocate the cppc_pcc_data memory.
604  * In some processor configurations it is possible that same subspace
605  * is shared between multiple CPUs. This is seen especially in CPUs
606  * with hardware multi-threading support.
607  *
608  * Return: 0 for success, errno for failure
609  */
610 static int pcc_data_alloc(int pcc_ss_id)
611 {
612         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
613                 return -EINVAL;
614
615         if (pcc_data[pcc_ss_id]) {
616                 pcc_data[pcc_ss_id]->refcount++;
617         } else {
618                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
619                                               GFP_KERNEL);
620                 if (!pcc_data[pcc_ss_id])
621                         return -ENOMEM;
622                 pcc_data[pcc_ss_id]->refcount++;
623         }
624
625         return 0;
626 }
627
628 /*
629  * An example CPC table looks like the following.
630  *
631  *  Name (_CPC, Package() {
632  *      17,                                                     // NumEntries
633  *      1,                                                      // Revision
634  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},    // Highest Performance
635  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},    // Nominal Performance
636  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},    // Lowest Nonlinear Performance
637  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},    // Lowest Performance
638  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},    // Guaranteed Performance Register
639  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},    // Desired Performance Register
640  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
641  *      ...
642  *      ...
643  *      ...
644  *  }
645  * Each Register() encodes how to access that specific register.
646  * e.g. a sample PCC entry has the following encoding:
647  *
648  *  Register (
649  *      PCC,    // AddressSpaceKeyword
650  *      8,      // RegisterBitWidth
651  *      8,      // RegisterBitOffset
652  *      0x30,   // RegisterAddress
653  *      9,      // AccessSize (subspace ID)
654  *  )
655  */
656
657 #ifndef arch_init_invariance_cppc
658 static inline void arch_init_invariance_cppc(void) { }
659 #endif
660
661 /**
662  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
663  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
664  *
665  *      Return: 0 for success or negative value for err.
666  */
667 int acpi_cppc_processor_probe(struct acpi_processor *pr)
668 {
669         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
670         union acpi_object *out_obj, *cpc_obj;
671         struct cpc_desc *cpc_ptr;
672         struct cpc_reg *gas_t;
673         struct device *cpu_dev;
674         acpi_handle handle = pr->handle;
675         unsigned int num_ent, i, cpc_rev;
676         int pcc_subspace_id = -1;
677         acpi_status status;
678         int ret = -ENODATA;
679
680         if (!osc_sb_cppc2_support_acked) {
681                 pr_debug("CPPC v2 _OSC not acked\n");
682                 if (!cpc_supported_by_cpu())
683                         return -ENODEV;
684         }
685
686         /* Parse the ACPI _CPC table for this CPU. */
687         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
688                         ACPI_TYPE_PACKAGE);
689         if (ACPI_FAILURE(status)) {
690                 ret = -ENODEV;
691                 goto out_buf_free;
692         }
693
694         out_obj = (union acpi_object *) output.pointer;
695
696         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
697         if (!cpc_ptr) {
698                 ret = -ENOMEM;
699                 goto out_buf_free;
700         }
701
702         /* First entry is NumEntries. */
703         cpc_obj = &out_obj->package.elements[0];
704         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705                 num_ent = cpc_obj->integer.value;
706                 if (num_ent <= 1) {
707                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
708                                  num_ent, pr->id);
709                         goto out_free;
710                 }
711         } else {
712                 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
713                          cpc_obj->type, pr->id);
714                 goto out_free;
715         }
716
717         /* Second entry should be revision. */
718         cpc_obj = &out_obj->package.elements[1];
719         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720                 cpc_rev = cpc_obj->integer.value;
721         } else {
722                 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
723                          cpc_obj->type, pr->id);
724                 goto out_free;
725         }
726
727         if (cpc_rev < CPPC_V2_REV) {
728                 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
729                          pr->id);
730                 goto out_free;
731         }
732
733         /*
734          * Disregard _CPC if the number of entries in the return pachage is not
735          * as expected, but support future revisions being proper supersets of
736          * the v3 and only causing more entries to be returned by _CPC.
737          */
738         if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
739             (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
740             (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
741                 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
742                          num_ent, pr->id);
743                 goto out_free;
744         }
745         if (cpc_rev > CPPC_V3_REV) {
746                 num_ent = CPPC_V3_NUM_ENT;
747                 cpc_rev = CPPC_V3_REV;
748         }
749
750         cpc_ptr->num_entries = num_ent;
751         cpc_ptr->version = cpc_rev;
752
753         /* Iterate through remaining entries in _CPC */
754         for (i = 2; i < num_ent; i++) {
755                 cpc_obj = &out_obj->package.elements[i];
756
757                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
758                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
759                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
760                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
761                         gas_t = (struct cpc_reg *)
762                                 cpc_obj->buffer.pointer;
763
764                         /*
765                          * The PCC Subspace index is encoded inside
766                          * the CPC table entries. The same PCC index
767                          * will be used for all the PCC entries,
768                          * so extract it only once.
769                          */
770                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
771                                 if (pcc_subspace_id < 0) {
772                                         pcc_subspace_id = gas_t->access_width;
773                                         if (pcc_data_alloc(pcc_subspace_id))
774                                                 goto out_free;
775                                 } else if (pcc_subspace_id != gas_t->access_width) {
776                                         pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
777                                                  pr->id);
778                                         goto out_free;
779                                 }
780                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
781                                 if (gas_t->address) {
782                                         void __iomem *addr;
783
784                                         if (!osc_cpc_flexible_adr_space_confirmed) {
785                                                 pr_debug("Flexible address space capability not supported\n");
786                                                 if (!cpc_supported_by_cpu())
787                                                         goto out_free;
788                                         }
789
790                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
791                                         if (!addr)
792                                                 goto out_free;
793                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
794                                 }
795                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
796                                 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
797                                         /*
798                                          * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
799                                          * SystemIO doesn't implement 64-bit
800                                          * registers.
801                                          */
802                                         pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
803                                                  gas_t->access_width);
804                                         goto out_free;
805                                 }
806                                 if (gas_t->address & OVER_16BTS_MASK) {
807                                         /* SystemIO registers use 16-bit integer addresses */
808                                         pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
809                                                  gas_t->address);
810                                         goto out_free;
811                                 }
812                                 if (!osc_cpc_flexible_adr_space_confirmed) {
813                                         pr_debug("Flexible address space capability not supported\n");
814                                         if (!cpc_supported_by_cpu())
815                                                 goto out_free;
816                                 }
817                         } else {
818                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
819                                         /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
820                                         pr_debug("Unsupported register type (%d) in _CPC\n",
821                                                  gas_t->space_id);
822                                         goto out_free;
823                                 }
824                         }
825
826                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
827                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
828                 } else {
829                         pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
830                                  i, pr->id);
831                         goto out_free;
832                 }
833         }
834         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
835
836         /*
837          * Initialize the remaining cpc_regs as unsupported.
838          * Example: In case FW exposes CPPC v2, the below loop will initialize
839          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
840          */
841         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
842                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
843                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
844         }
845
846
847         /* Store CPU Logical ID */
848         cpc_ptr->cpu_id = pr->id;
849
850         /* Parse PSD data for this CPU */
851         ret = acpi_get_psd(cpc_ptr, handle);
852         if (ret)
853                 goto out_free;
854
855         /* Register PCC channel once for all PCC subspace ID. */
856         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
857                 ret = register_pcc_channel(pcc_subspace_id);
858                 if (ret)
859                         goto out_free;
860
861                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
862                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
863         }
864
865         /* Everything looks okay */
866         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
867
868         /* Add per logical CPU nodes for reading its feedback counters. */
869         cpu_dev = get_cpu_device(pr->id);
870         if (!cpu_dev) {
871                 ret = -EINVAL;
872                 goto out_free;
873         }
874
875         /* Plug PSD data into this CPU's CPC descriptor. */
876         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
877
878         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
879                         "acpi_cppc");
880         if (ret) {
881                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
882                 kobject_put(&cpc_ptr->kobj);
883                 goto out_free;
884         }
885
886         arch_init_invariance_cppc();
887
888         kfree(output.pointer);
889         return 0;
890
891 out_free:
892         /* Free all the mapped sys mem areas for this CPU */
893         for (i = 2; i < cpc_ptr->num_entries; i++) {
894                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
895
896                 if (addr)
897                         iounmap(addr);
898         }
899         kfree(cpc_ptr);
900
901 out_buf_free:
902         kfree(output.pointer);
903         return ret;
904 }
905 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
906
907 /**
908  * acpi_cppc_processor_exit - Cleanup CPC structs.
909  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
910  *
911  * Return: Void
912  */
913 void acpi_cppc_processor_exit(struct acpi_processor *pr)
914 {
915         struct cpc_desc *cpc_ptr;
916         unsigned int i;
917         void __iomem *addr;
918         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
919
920         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
921                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
922                         pcc_data[pcc_ss_id]->refcount--;
923                         if (!pcc_data[pcc_ss_id]->refcount) {
924                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
925                                 kfree(pcc_data[pcc_ss_id]);
926                                 pcc_data[pcc_ss_id] = NULL;
927                         }
928                 }
929         }
930
931         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
932         if (!cpc_ptr)
933                 return;
934
935         /* Free all the mapped sys mem areas for this CPU */
936         for (i = 2; i < cpc_ptr->num_entries; i++) {
937                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
938                 if (addr)
939                         iounmap(addr);
940         }
941
942         kobject_put(&cpc_ptr->kobj);
943         kfree(cpc_ptr);
944 }
945 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
946
947 /**
948  * cpc_read_ffh() - Read FFH register
949  * @cpunum:     CPU number to read
950  * @reg:        cppc register information
951  * @val:        place holder for return value
952  *
953  * Read bit_width bits from a specified address and bit_offset
954  *
955  * Return: 0 for success and error code
956  */
957 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
958 {
959         return -ENOTSUPP;
960 }
961
962 /**
963  * cpc_write_ffh() - Write FFH register
964  * @cpunum:     CPU number to write
965  * @reg:        cppc register information
966  * @val:        value to write
967  *
968  * Write value of bit_width bits to a specified address and bit_offset
969  *
970  * Return: 0 for success and error code
971  */
972 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
973 {
974         return -ENOTSUPP;
975 }
976
977 /*
978  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
979  * as fast as possible. We have already mapped the PCC subspace during init, so
980  * we can directly write to it.
981  */
982
983 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
984 {
985         void __iomem *vaddr = NULL;
986         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
987         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
988
989         if (reg_res->type == ACPI_TYPE_INTEGER) {
990                 *val = reg_res->cpc_entry.int_value;
991                 return 0;
992         }
993
994         *val = 0;
995
996         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
997                 u32 width = 8 << (reg->access_width - 1);
998                 u32 val_u32;
999                 acpi_status status;
1000
1001                 status = acpi_os_read_port((acpi_io_address)reg->address,
1002                                            &val_u32, width);
1003                 if (ACPI_FAILURE(status)) {
1004                         pr_debug("Error: Failed to read SystemIO port %llx\n",
1005                                  reg->address);
1006                         return -EFAULT;
1007                 }
1008
1009                 *val = val_u32;
1010                 return 0;
1011         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1012                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1013         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1014                 vaddr = reg_res->sys_mem_vaddr;
1015         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1016                 return cpc_read_ffh(cpu, reg, val);
1017         else
1018                 return acpi_os_read_memory((acpi_physical_address)reg->address,
1019                                 val, reg->bit_width);
1020
1021         switch (reg->bit_width) {
1022         case 8:
1023                 *val = readb_relaxed(vaddr);
1024                 break;
1025         case 16:
1026                 *val = readw_relaxed(vaddr);
1027                 break;
1028         case 32:
1029                 *val = readl_relaxed(vaddr);
1030                 break;
1031         case 64:
1032                 *val = readq_relaxed(vaddr);
1033                 break;
1034         default:
1035                 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1036                          reg->bit_width, pcc_ss_id);
1037                 return -EFAULT;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1044 {
1045         int ret_val = 0;
1046         void __iomem *vaddr = NULL;
1047         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1048         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1049
1050         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1051                 u32 width = 8 << (reg->access_width - 1);
1052                 acpi_status status;
1053
1054                 status = acpi_os_write_port((acpi_io_address)reg->address,
1055                                             (u32)val, width);
1056                 if (ACPI_FAILURE(status)) {
1057                         pr_debug("Error: Failed to write SystemIO port %llx\n",
1058                                  reg->address);
1059                         return -EFAULT;
1060                 }
1061
1062                 return 0;
1063         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1064                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1065         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1066                 vaddr = reg_res->sys_mem_vaddr;
1067         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1068                 return cpc_write_ffh(cpu, reg, val);
1069         else
1070                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1071                                 val, reg->bit_width);
1072
1073         switch (reg->bit_width) {
1074         case 8:
1075                 writeb_relaxed(val, vaddr);
1076                 break;
1077         case 16:
1078                 writew_relaxed(val, vaddr);
1079                 break;
1080         case 32:
1081                 writel_relaxed(val, vaddr);
1082                 break;
1083         case 64:
1084                 writeq_relaxed(val, vaddr);
1085                 break;
1086         default:
1087                 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1088                          reg->bit_width, pcc_ss_id);
1089                 ret_val = -EFAULT;
1090                 break;
1091         }
1092
1093         return ret_val;
1094 }
1095
1096 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1097 {
1098         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1099         struct cpc_register_resource *reg;
1100
1101         if (!cpc_desc) {
1102                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1103                 return -ENODEV;
1104         }
1105
1106         reg = &cpc_desc->cpc_regs[reg_idx];
1107
1108         if (CPC_IN_PCC(reg)) {
1109                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110                 struct cppc_pcc_data *pcc_ss_data = NULL;
1111                 int ret = 0;
1112
1113                 if (pcc_ss_id < 0)
1114                         return -EIO;
1115
1116                 pcc_ss_data = pcc_data[pcc_ss_id];
1117
1118                 down_write(&pcc_ss_data->pcc_lock);
1119
1120                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1121                         cpc_read(cpunum, reg, perf);
1122                 else
1123                         ret = -EIO;
1124
1125                 up_write(&pcc_ss_data->pcc_lock);
1126
1127                 return ret;
1128         }
1129
1130         cpc_read(cpunum, reg, perf);
1131
1132         return 0;
1133 }
1134
1135 /**
1136  * cppc_get_desired_perf - Get the desired performance register value.
1137  * @cpunum: CPU from which to get desired performance.
1138  * @desired_perf: Return address.
1139  *
1140  * Return: 0 for success, -EIO otherwise.
1141  */
1142 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1143 {
1144         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1145 }
1146 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1147
1148 /**
1149  * cppc_get_nominal_perf - Get the nominal performance register value.
1150  * @cpunum: CPU from which to get nominal performance.
1151  * @nominal_perf: Return address.
1152  *
1153  * Return: 0 for success, -EIO otherwise.
1154  */
1155 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1156 {
1157         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1158 }
1159
1160 /**
1161  * cppc_get_epp_perf - Get the epp register value.
1162  * @cpunum: CPU from which to get epp preference value.
1163  * @epp_perf: Return address.
1164  *
1165  * Return: 0 for success, -EIO otherwise.
1166  */
1167 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1168 {
1169         return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1170 }
1171 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1172
1173 /**
1174  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1175  * @cpunum: CPU from which to get capabilities info.
1176  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1177  *
1178  * Return: 0 for success with perf_caps populated else -ERRNO.
1179  */
1180 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1181 {
1182         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1183         struct cpc_register_resource *highest_reg, *lowest_reg,
1184                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1185                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1186         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1187         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1188         struct cppc_pcc_data *pcc_ss_data = NULL;
1189         int ret = 0, regs_in_pcc = 0;
1190
1191         if (!cpc_desc) {
1192                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193                 return -ENODEV;
1194         }
1195
1196         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1197         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1198         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1199         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1200         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1201         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1202         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1203
1204         /* Are any of the regs PCC ?*/
1205         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1206                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1207                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1208                 if (pcc_ss_id < 0) {
1209                         pr_debug("Invalid pcc_ss_id\n");
1210                         return -ENODEV;
1211                 }
1212                 pcc_ss_data = pcc_data[pcc_ss_id];
1213                 regs_in_pcc = 1;
1214                 down_write(&pcc_ss_data->pcc_lock);
1215                 /* Ring doorbell once to update PCC subspace */
1216                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1217                         ret = -EIO;
1218                         goto out_err;
1219                 }
1220         }
1221
1222         cpc_read(cpunum, highest_reg, &high);
1223         perf_caps->highest_perf = high;
1224
1225         cpc_read(cpunum, lowest_reg, &low);
1226         perf_caps->lowest_perf = low;
1227
1228         cpc_read(cpunum, nominal_reg, &nom);
1229         perf_caps->nominal_perf = nom;
1230
1231         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1232             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1233                 perf_caps->guaranteed_perf = 0;
1234         } else {
1235                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1236                 perf_caps->guaranteed_perf = guaranteed;
1237         }
1238
1239         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1240         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1241
1242         if (!high || !low || !nom || !min_nonlinear)
1243                 ret = -EFAULT;
1244
1245         /* Read optional lowest and nominal frequencies if present */
1246         if (CPC_SUPPORTED(low_freq_reg))
1247                 cpc_read(cpunum, low_freq_reg, &low_f);
1248
1249         if (CPC_SUPPORTED(nom_freq_reg))
1250                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1251
1252         perf_caps->lowest_freq = low_f;
1253         perf_caps->nominal_freq = nom_f;
1254
1255
1256 out_err:
1257         if (regs_in_pcc)
1258                 up_write(&pcc_ss_data->pcc_lock);
1259         return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1262
1263 /**
1264  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1265  *
1266  * CPPC has flexibility about how CPU performance counters are accessed.
1267  * One of the choices is PCC regions, which can have a high access latency. This
1268  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1269  *
1270  * Return: true if any of the counters are in PCC regions, false otherwise
1271  */
1272 bool cppc_perf_ctrs_in_pcc(void)
1273 {
1274         int cpu;
1275
1276         for_each_present_cpu(cpu) {
1277                 struct cpc_register_resource *ref_perf_reg;
1278                 struct cpc_desc *cpc_desc;
1279
1280                 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1281
1282                 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1283                     CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1284                     CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1285                         return true;
1286
1287
1288                 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1289
1290                 /*
1291                  * If reference perf register is not supported then we should
1292                  * use the nominal perf value
1293                  */
1294                 if (!CPC_SUPPORTED(ref_perf_reg))
1295                         ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1296
1297                 if (CPC_IN_PCC(ref_perf_reg))
1298                         return true;
1299         }
1300
1301         return false;
1302 }
1303 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1304
1305 /**
1306  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1307  * @cpunum: CPU from which to read counters.
1308  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1309  *
1310  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1311  */
1312 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1313 {
1314         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1315         struct cpc_register_resource *delivered_reg, *reference_reg,
1316                 *ref_perf_reg, *ctr_wrap_reg;
1317         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1318         struct cppc_pcc_data *pcc_ss_data = NULL;
1319         u64 delivered, reference, ref_perf, ctr_wrap_time;
1320         int ret = 0, regs_in_pcc = 0;
1321
1322         if (!cpc_desc) {
1323                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1324                 return -ENODEV;
1325         }
1326
1327         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1328         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1329         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1330         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1331
1332         /*
1333          * If reference perf register is not supported then we should
1334          * use the nominal perf value
1335          */
1336         if (!CPC_SUPPORTED(ref_perf_reg))
1337                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1338
1339         /* Are any of the regs PCC ?*/
1340         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1341                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1342                 if (pcc_ss_id < 0) {
1343                         pr_debug("Invalid pcc_ss_id\n");
1344                         return -ENODEV;
1345                 }
1346                 pcc_ss_data = pcc_data[pcc_ss_id];
1347                 down_write(&pcc_ss_data->pcc_lock);
1348                 regs_in_pcc = 1;
1349                 /* Ring doorbell once to update PCC subspace */
1350                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1351                         ret = -EIO;
1352                         goto out_err;
1353                 }
1354         }
1355
1356         cpc_read(cpunum, delivered_reg, &delivered);
1357         cpc_read(cpunum, reference_reg, &reference);
1358         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1359
1360         /*
1361          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1362          * performance counters are assumed to never wrap during the lifetime of
1363          * platform
1364          */
1365         ctr_wrap_time = (u64)(~((u64)0));
1366         if (CPC_SUPPORTED(ctr_wrap_reg))
1367                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1368
1369         if (!delivered || !reference || !ref_perf) {
1370                 ret = -EFAULT;
1371                 goto out_err;
1372         }
1373
1374         perf_fb_ctrs->delivered = delivered;
1375         perf_fb_ctrs->reference = reference;
1376         perf_fb_ctrs->reference_perf = ref_perf;
1377         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1378 out_err:
1379         if (regs_in_pcc)
1380                 up_write(&pcc_ss_data->pcc_lock);
1381         return ret;
1382 }
1383 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1384
1385 /*
1386  * Set Energy Performance Preference Register value through
1387  * Performance Controls Interface
1388  */
1389 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1390 {
1391         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1392         struct cpc_register_resource *epp_set_reg;
1393         struct cpc_register_resource *auto_sel_reg;
1394         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1395         struct cppc_pcc_data *pcc_ss_data = NULL;
1396         int ret;
1397
1398         if (!cpc_desc) {
1399                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1400                 return -ENODEV;
1401         }
1402
1403         auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1404         epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1405
1406         if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1407                 if (pcc_ss_id < 0) {
1408                         pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1409                         return -ENODEV;
1410                 }
1411
1412                 if (CPC_SUPPORTED(auto_sel_reg)) {
1413                         ret = cpc_write(cpu, auto_sel_reg, enable);
1414                         if (ret)
1415                                 return ret;
1416                 }
1417
1418                 if (CPC_SUPPORTED(epp_set_reg)) {
1419                         ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1420                         if (ret)
1421                                 return ret;
1422                 }
1423
1424                 pcc_ss_data = pcc_data[pcc_ss_id];
1425
1426                 down_write(&pcc_ss_data->pcc_lock);
1427                 /* after writing CPC, transfer the ownership of PCC to platform */
1428                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1429                 up_write(&pcc_ss_data->pcc_lock);
1430         } else {
1431                 ret = -ENOTSUPP;
1432                 pr_debug("_CPC in PCC is not supported\n");
1433         }
1434
1435         return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1438
1439 /**
1440  * cppc_get_auto_sel_caps - Read autonomous selection register.
1441  * @cpunum : CPU from which to read register.
1442  * @perf_caps : struct where autonomous selection register value is updated.
1443  */
1444 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1445 {
1446         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1447         struct cpc_register_resource *auto_sel_reg;
1448         u64  auto_sel;
1449
1450         if (!cpc_desc) {
1451                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1452                 return -ENODEV;
1453         }
1454
1455         auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1456
1457         if (!CPC_SUPPORTED(auto_sel_reg))
1458                 pr_warn_once("Autonomous mode is not unsupported!\n");
1459
1460         if (CPC_IN_PCC(auto_sel_reg)) {
1461                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1462                 struct cppc_pcc_data *pcc_ss_data = NULL;
1463                 int ret = 0;
1464
1465                 if (pcc_ss_id < 0)
1466                         return -ENODEV;
1467
1468                 pcc_ss_data = pcc_data[pcc_ss_id];
1469
1470                 down_write(&pcc_ss_data->pcc_lock);
1471
1472                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1473                         cpc_read(cpunum, auto_sel_reg, &auto_sel);
1474                         perf_caps->auto_sel = (bool)auto_sel;
1475                 } else {
1476                         ret = -EIO;
1477                 }
1478
1479                 up_write(&pcc_ss_data->pcc_lock);
1480
1481                 return ret;
1482         }
1483
1484         return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1487
1488 /**
1489  * cppc_set_auto_sel - Write autonomous selection register.
1490  * @cpu    : CPU to which to write register.
1491  * @enable : the desired value of autonomous selection resiter to be updated.
1492  */
1493 int cppc_set_auto_sel(int cpu, bool enable)
1494 {
1495         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1496         struct cpc_register_resource *auto_sel_reg;
1497         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1498         struct cppc_pcc_data *pcc_ss_data = NULL;
1499         int ret = -EINVAL;
1500
1501         if (!cpc_desc) {
1502                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1503                 return -ENODEV;
1504         }
1505
1506         auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1507
1508         if (CPC_IN_PCC(auto_sel_reg)) {
1509                 if (pcc_ss_id < 0) {
1510                         pr_debug("Invalid pcc_ss_id\n");
1511                         return -ENODEV;
1512                 }
1513
1514                 if (CPC_SUPPORTED(auto_sel_reg)) {
1515                         ret = cpc_write(cpu, auto_sel_reg, enable);
1516                         if (ret)
1517                                 return ret;
1518                 }
1519
1520                 pcc_ss_data = pcc_data[pcc_ss_id];
1521
1522                 down_write(&pcc_ss_data->pcc_lock);
1523                 /* after writing CPC, transfer the ownership of PCC to platform */
1524                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1525                 up_write(&pcc_ss_data->pcc_lock);
1526         } else {
1527                 ret = -ENOTSUPP;
1528                 pr_debug("_CPC in PCC is not supported\n");
1529         }
1530
1531         return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1534
1535 /**
1536  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1537  * Continuous Performance Control package EnableRegister field.
1538  * @cpu: CPU for which to enable CPPC register.
1539  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1540  *
1541  * Return: 0 for success, -ERRNO or -EIO otherwise.
1542  */
1543 int cppc_set_enable(int cpu, bool enable)
1544 {
1545         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1546         struct cpc_register_resource *enable_reg;
1547         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1548         struct cppc_pcc_data *pcc_ss_data = NULL;
1549         int ret = -EINVAL;
1550
1551         if (!cpc_desc) {
1552                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1553                 return -EINVAL;
1554         }
1555
1556         enable_reg = &cpc_desc->cpc_regs[ENABLE];
1557
1558         if (CPC_IN_PCC(enable_reg)) {
1559
1560                 if (pcc_ss_id < 0)
1561                         return -EIO;
1562
1563                 ret = cpc_write(cpu, enable_reg, enable);
1564                 if (ret)
1565                         return ret;
1566
1567                 pcc_ss_data = pcc_data[pcc_ss_id];
1568
1569                 down_write(&pcc_ss_data->pcc_lock);
1570                 /* after writing CPC, transfer the ownership of PCC to platfrom */
1571                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1572                 up_write(&pcc_ss_data->pcc_lock);
1573                 return ret;
1574         }
1575
1576         return cpc_write(cpu, enable_reg, enable);
1577 }
1578 EXPORT_SYMBOL_GPL(cppc_set_enable);
1579
1580 /**
1581  * cppc_set_perf - Set a CPU's performance controls.
1582  * @cpu: CPU for which to set performance controls.
1583  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1584  *
1585  * Return: 0 for success, -ERRNO otherwise.
1586  */
1587 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1588 {
1589         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1590         struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1591         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1592         struct cppc_pcc_data *pcc_ss_data = NULL;
1593         int ret = 0;
1594
1595         if (!cpc_desc) {
1596                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1597                 return -ENODEV;
1598         }
1599
1600         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1601         min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1602         max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1603
1604         /*
1605          * This is Phase-I where we want to write to CPC registers
1606          * -> We want all CPUs to be able to execute this phase in parallel
1607          *
1608          * Since read_lock can be acquired by multiple CPUs simultaneously we
1609          * achieve that goal here
1610          */
1611         if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1612                 if (pcc_ss_id < 0) {
1613                         pr_debug("Invalid pcc_ss_id\n");
1614                         return -ENODEV;
1615                 }
1616                 pcc_ss_data = pcc_data[pcc_ss_id];
1617                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1618                 if (pcc_ss_data->platform_owns_pcc) {
1619                         ret = check_pcc_chan(pcc_ss_id, false);
1620                         if (ret) {
1621                                 up_read(&pcc_ss_data->pcc_lock);
1622                                 return ret;
1623                         }
1624                 }
1625                 /*
1626                  * Update the pending_write to make sure a PCC CMD_READ will not
1627                  * arrive and steal the channel during the switch to write lock
1628                  */
1629                 pcc_ss_data->pending_pcc_write_cmd = true;
1630                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1631                 cpc_desc->write_cmd_status = 0;
1632         }
1633
1634         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1635
1636         /*
1637          * Only write if min_perf and max_perf not zero. Some drivers pass zero
1638          * value to min and max perf, but they don't mean to set the zero value,
1639          * they just don't want to write to those registers.
1640          */
1641         if (perf_ctrls->min_perf)
1642                 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1643         if (perf_ctrls->max_perf)
1644                 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1645
1646         if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1647                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1648         /*
1649          * This is Phase-II where we transfer the ownership of PCC to Platform
1650          *
1651          * Short Summary: Basically if we think of a group of cppc_set_perf
1652          * requests that happened in short overlapping interval. The last CPU to
1653          * come out of Phase-I will enter Phase-II and ring the doorbell.
1654          *
1655          * We have the following requirements for Phase-II:
1656          *     1. We want to execute Phase-II only when there are no CPUs
1657          * currently executing in Phase-I
1658          *     2. Once we start Phase-II we want to avoid all other CPUs from
1659          * entering Phase-I.
1660          *     3. We want only one CPU among all those who went through Phase-I
1661          * to run phase-II
1662          *
1663          * If write_trylock fails to get the lock and doesn't transfer the
1664          * PCC ownership to the platform, then one of the following will be TRUE
1665          *     1. There is at-least one CPU in Phase-I which will later execute
1666          * write_trylock, so the CPUs in Phase-I will be responsible for
1667          * executing the Phase-II.
1668          *     2. Some other CPU has beaten this CPU to successfully execute the
1669          * write_trylock and has already acquired the write_lock. We know for a
1670          * fact it (other CPU acquiring the write_lock) couldn't have happened
1671          * before this CPU's Phase-I as we held the read_lock.
1672          *     3. Some other CPU executing pcc CMD_READ has stolen the
1673          * down_write, in which case, send_pcc_cmd will check for pending
1674          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1675          * So this CPU can be certain that its request will be delivered
1676          *    So in all cases, this CPU knows that its request will be delivered
1677          * by another CPU and can return
1678          *
1679          * After getting the down_write we still need to check for
1680          * pending_pcc_write_cmd to take care of the following scenario
1681          *    The thread running this code could be scheduled out between
1682          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1683          * could have delivered the request to Platform by triggering the
1684          * doorbell and transferred the ownership of PCC to platform. So this
1685          * avoids triggering an unnecessary doorbell and more importantly before
1686          * triggering the doorbell it makes sure that the PCC channel ownership
1687          * is still with OSPM.
1688          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1689          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1690          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1691          * case during a CMD_READ and if there are pending writes it delivers
1692          * the write command before servicing the read command
1693          */
1694         if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1695                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1696                         /* Update only if there are pending write commands */
1697                         if (pcc_ss_data->pending_pcc_write_cmd)
1698                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1699                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1700                 } else
1701                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1702                         wait_event(pcc_ss_data->pcc_write_wait_q,
1703                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1704
1705                 /* send_pcc_cmd updates the status in case of failure */
1706                 ret = cpc_desc->write_cmd_status;
1707         }
1708         return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(cppc_set_perf);
1711
1712 /**
1713  * cppc_get_transition_latency - returns frequency transition latency in ns
1714  * @cpu_num: CPU number for per_cpu().
1715  *
1716  * ACPI CPPC does not explicitly specify how a platform can specify the
1717  * transition latency for performance change requests. The closest we have
1718  * is the timing information from the PCCT tables which provides the info
1719  * on the number and frequency of PCC commands the platform can handle.
1720  *
1721  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1722  * then assume there is no latency.
1723  */
1724 unsigned int cppc_get_transition_latency(int cpu_num)
1725 {
1726         /*
1727          * Expected transition latency is based on the PCCT timing values
1728          * Below are definition from ACPI spec:
1729          * pcc_nominal- Expected latency to process a command, in microseconds
1730          * pcc_mpar   - The maximum number of periodic requests that the subspace
1731          *              channel can support, reported in commands per minute. 0
1732          *              indicates no limitation.
1733          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1734          *              completion of a command before issuing the next command,
1735          *              in microseconds.
1736          */
1737         unsigned int latency_ns = 0;
1738         struct cpc_desc *cpc_desc;
1739         struct cpc_register_resource *desired_reg;
1740         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1741         struct cppc_pcc_data *pcc_ss_data;
1742
1743         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1744         if (!cpc_desc)
1745                 return CPUFREQ_ETERNAL;
1746
1747         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1748         if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1749                 return 0;
1750         else if (!CPC_IN_PCC(desired_reg))
1751                 return CPUFREQ_ETERNAL;
1752
1753         if (pcc_ss_id < 0)
1754                 return CPUFREQ_ETERNAL;
1755
1756         pcc_ss_data = pcc_data[pcc_ss_id];
1757         if (pcc_ss_data->pcc_mpar)
1758                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1759
1760         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1761         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1762
1763         return latency_ns;
1764 }
1765 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1766
1767 /* Minimum struct length needed for the DMI processor entry we want */
1768 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
1769
1770 /* Offset in the DMI processor structure for the max frequency */
1771 #define DMI_PROCESSOR_MAX_SPEED         0x14
1772
1773 /* Callback function used to retrieve the max frequency from DMI */
1774 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1775 {
1776         const u8 *dmi_data = (const u8 *)dm;
1777         u16 *mhz = (u16 *)private;
1778
1779         if (dm->type == DMI_ENTRY_PROCESSOR &&
1780             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1781                 u16 val = (u16)get_unaligned((const u16 *)
1782                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1783                 *mhz = val > *mhz ? val : *mhz;
1784         }
1785 }
1786
1787 /* Look up the max frequency in DMI */
1788 static u64 cppc_get_dmi_max_khz(void)
1789 {
1790         u16 mhz = 0;
1791
1792         dmi_walk(cppc_find_dmi_mhz, &mhz);
1793
1794         /*
1795          * Real stupid fallback value, just in case there is no
1796          * actual value set.
1797          */
1798         mhz = mhz ? mhz : 1;
1799
1800         return KHZ_PER_MHZ * mhz;
1801 }
1802
1803 /*
1804  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1805  * use them to convert perf to freq and vice versa. The conversion is
1806  * extrapolated as an affine function passing by the 2 points:
1807  *  - (Low perf, Low freq)
1808  *  - (Nominal perf, Nominal freq)
1809  */
1810 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1811 {
1812         s64 retval, offset = 0;
1813         static u64 max_khz;
1814         u64 mul, div;
1815
1816         if (caps->lowest_freq && caps->nominal_freq) {
1817                 mul = caps->nominal_freq - caps->lowest_freq;
1818                 mul *= KHZ_PER_MHZ;
1819                 div = caps->nominal_perf - caps->lowest_perf;
1820                 offset = caps->nominal_freq * KHZ_PER_MHZ -
1821                          div64_u64(caps->nominal_perf * mul, div);
1822         } else {
1823                 if (!max_khz)
1824                         max_khz = cppc_get_dmi_max_khz();
1825                 mul = max_khz;
1826                 div = caps->highest_perf;
1827         }
1828
1829         retval = offset + div64_u64(perf * mul, div);
1830         if (retval >= 0)
1831                 return retval;
1832         return 0;
1833 }
1834 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1835
1836 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1837 {
1838         s64 retval, offset = 0;
1839         static u64 max_khz;
1840         u64  mul, div;
1841
1842         if (caps->lowest_freq && caps->nominal_freq) {
1843                 mul = caps->nominal_perf - caps->lowest_perf;
1844                 div = caps->nominal_freq - caps->lowest_freq;
1845                 /*
1846                  * We don't need to convert to kHz for computing offset and can
1847                  * directly use nominal_freq and lowest_freq as the div64_u64
1848                  * will remove the frequency unit.
1849                  */
1850                 offset = caps->nominal_perf -
1851                          div64_u64(caps->nominal_freq * mul, div);
1852                 /* But we need it for computing the perf level. */
1853                 div *= KHZ_PER_MHZ;
1854         } else {
1855                 if (!max_khz)
1856                         max_khz = cppc_get_dmi_max_khz();
1857                 mul = caps->highest_perf;
1858                 div = max_khz;
1859         }
1860
1861         retval = offset + div64_u64(freq * mul, div);
1862         if (retval >= 0)
1863                 return retval;
1864         return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);