Merge tag 'kvm-riscv-6.4-1' of https://github.com/kvm-riscv/linux into HEAD
[linux-block.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         u64 uid;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         u64 uid;
187
188         /* Expected to always be successfull, but better safe then sorry */
189         if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192                 if (ACPI_SUCCESS(status) && shared_host)
193                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194         }
195
196         lpss_deassert_reset(pdata);
197
198         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199                 pdata->fixed_clk_rate = 133000000;
200
201         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208                                "pwm-lpss-platform"),
209 };
210
211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213         u64 uid;
214
215         /* Only call pwm_add_table for the first PWM controller */
216         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
217                 return;
218
219         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct property_entry lpt_spi_properties[] = {
223         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224         { }
225 };
226
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229                         | LPSS_SAVE_CTX,
230         .prv_offset = 0x800,
231         .properties = lpt_spi_properties,
232 };
233
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236         .prv_offset = 0x800,
237 };
238
239 static struct property_entry uart_properties[] = {
240         PROPERTY_ENTRY_U32("reg-io-width", 4),
241         PROPERTY_ENTRY_U32("reg-shift", 2),
242         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243         { },
244 };
245
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248                         | LPSS_SAVE_CTX,
249         .clk_con_id = "baudclk",
250         .prv_offset = 0x800,
251         .setup = lpss_uart_setup,
252         .properties = uart_properties,
253 };
254
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256         .flags = LPSS_LTR,
257         .prv_offset = 0x1000,
258         .prv_size_override = 0x1018,
259 };
260
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262         .flags = LPSS_SAVE_CTX,
263         .prv_offset = 0x800,
264         .setup = byt_pwm_setup,
265 };
266
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269         .prv_offset = 0x800,
270         .setup = bsw_pwm_setup,
271         .resume_from_noirq = true,
272 };
273
274 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276         .prv_offset = 0x800,
277         .resume_from_noirq = true,
278 };
279
280 static const struct lpss_device_desc byt_uart_dev_desc = {
281         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282         .clk_con_id = "baudclk",
283         .prv_offset = 0x800,
284         .setup = lpss_uart_setup,
285         .properties = uart_properties,
286 };
287
288 static const struct lpss_device_desc bsw_uart_dev_desc = {
289         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290                         | LPSS_NO_D3_DELAY,
291         .clk_con_id = "baudclk",
292         .prv_offset = 0x800,
293         .setup = lpss_uart_setup,
294         .properties = uart_properties,
295 };
296
297 static const struct property_entry byt_spi_properties[] = {
298         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299         { }
300 };
301
302 static const struct lpss_device_desc byt_spi_dev_desc = {
303         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304         .prv_offset = 0x400,
305         .properties = byt_spi_properties,
306 };
307
308 static const struct lpss_device_desc byt_sdio_dev_desc = {
309         .flags = LPSS_CLK,
310 };
311
312 static const struct lpss_device_desc byt_i2c_dev_desc = {
313         .flags = LPSS_CLK | LPSS_SAVE_CTX,
314         .prv_offset = 0x800,
315         .setup = byt_i2c_setup,
316         .resume_from_noirq = true,
317 };
318
319 static const struct lpss_device_desc bsw_i2c_dev_desc = {
320         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321         .prv_offset = 0x800,
322         .setup = byt_i2c_setup,
323         .resume_from_noirq = true,
324 };
325
326 static const struct property_entry bsw_spi_properties[] = {
327         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328         { }
329 };
330
331 static const struct lpss_device_desc bsw_spi_dev_desc = {
332         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
333                         | LPSS_NO_D3_DELAY,
334         .prv_offset = 0x400,
335         .setup = lpss_deassert_reset,
336         .properties = bsw_spi_properties,
337 };
338
339 static const struct x86_cpu_id lpss_cpu_ids[] = {
340         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
341         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
342         {}
343 };
344
345 #else
346
347 #define LPSS_ADDR(desc) (0UL)
348
349 #endif /* CONFIG_X86_INTEL_LPSS */
350
351 static const struct acpi_device_id acpi_lpss_device_ids[] = {
352         /* Generic LPSS devices */
353         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
354
355         /* Lynxpoint LPSS devices */
356         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
357         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
358         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
359         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
360         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
361         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
362         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
363         { "INT33C7", },
364
365         /* BayTrail LPSS devices */
366         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
367         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
368         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
369         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
370         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
371         { "INT33B2", },
372         { "INT33FC", },
373
374         /* Braswell LPSS devices */
375         { "80862286", LPSS_ADDR(lpss_dma_desc) },
376         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
377         { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
378         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
379         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
380         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
381         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
382
383         /* Broadwell LPSS devices */
384         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
385         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
386         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
387         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
388         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
389         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
390         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
391         { "INT3437", },
392
393         /* Wildcat Point LPSS devices */
394         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
395
396         { }
397 };
398
399 #ifdef CONFIG_X86_INTEL_LPSS
400
401 /* LPSS main clock device. */
402 static struct platform_device *lpss_clk_dev;
403
404 static inline void lpt_register_clock_device(void)
405 {
406         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
407                                                        PLATFORM_DEVID_NONE,
408                                                        NULL, 0);
409 }
410
411 static int register_device_clock(struct acpi_device *adev,
412                                  struct lpss_private_data *pdata)
413 {
414         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
415         const char *devname = dev_name(&adev->dev);
416         struct clk *clk;
417         struct lpss_clk_data *clk_data;
418         const char *parent, *clk_name;
419         void __iomem *prv_base;
420
421         if (!lpss_clk_dev)
422                 lpt_register_clock_device();
423
424         if (IS_ERR(lpss_clk_dev))
425                 return PTR_ERR(lpss_clk_dev);
426
427         clk_data = platform_get_drvdata(lpss_clk_dev);
428         if (!clk_data)
429                 return -ENODEV;
430         clk = clk_data->clk;
431
432         if (!pdata->mmio_base
433             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
434                 return -ENODATA;
435
436         parent = clk_data->name;
437         prv_base = pdata->mmio_base + dev_desc->prv_offset;
438
439         if (pdata->fixed_clk_rate) {
440                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
441                                               pdata->fixed_clk_rate);
442                 goto out;
443         }
444
445         if (dev_desc->flags & LPSS_CLK_GATE) {
446                 clk = clk_register_gate(NULL, devname, parent, 0,
447                                         prv_base, 0, 0, NULL);
448                 parent = devname;
449         }
450
451         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
452                 /* Prevent division by zero */
453                 if (!readl(prv_base))
454                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
455
456                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
457                 if (!clk_name)
458                         return -ENOMEM;
459                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
460                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
461                                                       prv_base, 1, 15, 16, 15, 0, NULL);
462                 parent = clk_name;
463
464                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
465                 if (!clk_name) {
466                         kfree(parent);
467                         return -ENOMEM;
468                 }
469                 clk = clk_register_gate(NULL, clk_name, parent,
470                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
471                                         prv_base, 31, 0, NULL);
472                 kfree(parent);
473                 kfree(clk_name);
474         }
475 out:
476         if (IS_ERR(clk))
477                 return PTR_ERR(clk);
478
479         pdata->clk = clk;
480         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
481         return 0;
482 }
483
484 struct lpss_device_links {
485         const char *supplier_hid;
486         const char *supplier_uid;
487         const char *consumer_hid;
488         const char *consumer_uid;
489         u32 flags;
490         const struct dmi_system_id *dep_missing_ids;
491 };
492
493 /* Please keep this list sorted alphabetically by vendor and model */
494 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
495         {
496                 .matches = {
497                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
498                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
499                 },
500         },
501         {}
502 };
503
504 /*
505  * The _DEP method is used to identify dependencies but instead of creating
506  * device links for every handle in _DEP, only links in the following list are
507  * created. That is necessary because, in the general case, _DEP can refer to
508  * devices that might not have drivers, or that are on different buses, or where
509  * the supplier is not enumerated until after the consumer is probed.
510  */
511 static const struct lpss_device_links lpss_device_links[] = {
512         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
513         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
514         /* CHT iGPU depends on PMIC I2C controller */
515         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
516         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
517         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
518          i2c1_dep_missing_dmi_ids},
519         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
520         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
521         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
522         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
523 };
524
525 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
526                                   const struct lpss_device_links *link)
527 {
528         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
529 }
530
531 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
532                                   const struct lpss_device_links *link)
533 {
534         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
535 }
536
537 struct hid_uid {
538         const char *hid;
539         const char *uid;
540 };
541
542 static int match_hid_uid(struct device *dev, const void *data)
543 {
544         struct acpi_device *adev = ACPI_COMPANION(dev);
545         const struct hid_uid *id = data;
546
547         if (!adev)
548                 return 0;
549
550         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
551 }
552
553 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
554 {
555         struct device *dev;
556
557         struct hid_uid data = {
558                 .hid = hid,
559                 .uid = uid,
560         };
561
562         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
563         if (dev)
564                 return dev;
565
566         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
567 }
568
569 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
570 {
571         struct acpi_handle_list dep_devices;
572         acpi_status status;
573         int i;
574
575         if (!acpi_has_method(adev->handle, "_DEP"))
576                 return false;
577
578         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
579                                          &dep_devices);
580         if (ACPI_FAILURE(status)) {
581                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
582                 return false;
583         }
584
585         for (i = 0; i < dep_devices.count; i++) {
586                 if (dep_devices.handles[i] == handle)
587                         return true;
588         }
589
590         return false;
591 }
592
593 static void acpi_lpss_link_consumer(struct device *dev1,
594                                     const struct lpss_device_links *link)
595 {
596         struct device *dev2;
597
598         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
599         if (!dev2)
600                 return;
601
602         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
603             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
604                 device_link_add(dev2, dev1, link->flags);
605
606         put_device(dev2);
607 }
608
609 static void acpi_lpss_link_supplier(struct device *dev1,
610                                     const struct lpss_device_links *link)
611 {
612         struct device *dev2;
613
614         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
615         if (!dev2)
616                 return;
617
618         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
619             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
620                 device_link_add(dev1, dev2, link->flags);
621
622         put_device(dev2);
623 }
624
625 static void acpi_lpss_create_device_links(struct acpi_device *adev,
626                                           struct platform_device *pdev)
627 {
628         int i;
629
630         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
631                 const struct lpss_device_links *link = &lpss_device_links[i];
632
633                 if (acpi_lpss_is_supplier(adev, link))
634                         acpi_lpss_link_consumer(&pdev->dev, link);
635
636                 if (acpi_lpss_is_consumer(adev, link))
637                         acpi_lpss_link_supplier(&pdev->dev, link);
638         }
639 }
640
641 static int acpi_lpss_create_device(struct acpi_device *adev,
642                                    const struct acpi_device_id *id)
643 {
644         const struct lpss_device_desc *dev_desc;
645         struct lpss_private_data *pdata;
646         struct resource_entry *rentry;
647         struct list_head resource_list;
648         struct platform_device *pdev;
649         int ret;
650
651         dev_desc = (const struct lpss_device_desc *)id->driver_data;
652         if (!dev_desc) {
653                 pdev = acpi_create_platform_device(adev, NULL);
654                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
655         }
656         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
657         if (!pdata)
658                 return -ENOMEM;
659
660         INIT_LIST_HEAD(&resource_list);
661         ret = acpi_dev_get_memory_resources(adev, &resource_list);
662         if (ret < 0)
663                 goto err_out;
664
665         rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
666         if (rentry) {
667                 if (dev_desc->prv_size_override)
668                         pdata->mmio_size = dev_desc->prv_size_override;
669                 else
670                         pdata->mmio_size = resource_size(rentry->res);
671                 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
672         }
673
674         acpi_dev_free_resource_list(&resource_list);
675
676         if (!pdata->mmio_base) {
677                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
678                 adev->pnp.type.platform_id = 0;
679                 goto out_free;
680         }
681
682         pdata->adev = adev;
683         pdata->dev_desc = dev_desc;
684
685         if (dev_desc->setup)
686                 dev_desc->setup(pdata);
687
688         if (dev_desc->flags & LPSS_CLK) {
689                 ret = register_device_clock(adev, pdata);
690                 if (ret)
691                         goto out_free;
692         }
693
694         /*
695          * This works around a known issue in ACPI tables where LPSS devices
696          * have _PS0 and _PS3 without _PSC (and no power resources), so
697          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
698          */
699         acpi_device_fix_up_power(adev);
700
701         adev->driver_data = pdata;
702         pdev = acpi_create_platform_device(adev, dev_desc->properties);
703         if (IS_ERR_OR_NULL(pdev)) {
704                 adev->driver_data = NULL;
705                 ret = PTR_ERR(pdev);
706                 goto err_out;
707         }
708
709         acpi_lpss_create_device_links(adev, pdev);
710         return 1;
711
712 out_free:
713         /* Skip the device, but continue the namespace scan */
714         ret = 0;
715 err_out:
716         kfree(pdata);
717         return ret;
718 }
719
720 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
721 {
722         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
723 }
724
725 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
726                              unsigned int reg)
727 {
728         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
729 }
730
731 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
732 {
733         struct acpi_device *adev = ACPI_COMPANION(dev);
734         struct lpss_private_data *pdata;
735         unsigned long flags;
736         int ret;
737
738         if (WARN_ON(!adev))
739                 return -ENODEV;
740
741         spin_lock_irqsave(&dev->power.lock, flags);
742         if (pm_runtime_suspended(dev)) {
743                 ret = -EAGAIN;
744                 goto out;
745         }
746         pdata = acpi_driver_data(adev);
747         if (WARN_ON(!pdata || !pdata->mmio_base)) {
748                 ret = -ENODEV;
749                 goto out;
750         }
751         *val = __lpss_reg_read(pdata, reg);
752         ret = 0;
753
754  out:
755         spin_unlock_irqrestore(&dev->power.lock, flags);
756         return ret;
757 }
758
759 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
760                              char *buf)
761 {
762         u32 ltr_value = 0;
763         unsigned int reg;
764         int ret;
765
766         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
767         ret = lpss_reg_read(dev, reg, &ltr_value);
768         if (ret)
769                 return ret;
770
771         return sysfs_emit(buf, "%08x\n", ltr_value);
772 }
773
774 static ssize_t lpss_ltr_mode_show(struct device *dev,
775                                   struct device_attribute *attr, char *buf)
776 {
777         u32 ltr_mode = 0;
778         char *outstr;
779         int ret;
780
781         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
782         if (ret)
783                 return ret;
784
785         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
786         return sprintf(buf, "%s\n", outstr);
787 }
788
789 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
790 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
791 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
792
793 static struct attribute *lpss_attrs[] = {
794         &dev_attr_auto_ltr.attr,
795         &dev_attr_sw_ltr.attr,
796         &dev_attr_ltr_mode.attr,
797         NULL,
798 };
799
800 static const struct attribute_group lpss_attr_group = {
801         .attrs = lpss_attrs,
802         .name = "lpss_ltr",
803 };
804
805 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
806 {
807         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
808         u32 ltr_mode, ltr_val;
809
810         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
811         if (val < 0) {
812                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
813                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
814                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
815                 }
816                 return;
817         }
818         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
819         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
820                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
821                 val = LPSS_LTR_MAX_VAL;
822         } else if (val > LPSS_LTR_MAX_VAL) {
823                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
824                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
825         } else {
826                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
827         }
828         ltr_val |= val;
829         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
830         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
831                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
832                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
833         }
834 }
835
836 #ifdef CONFIG_PM
837 /**
838  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
839  * @dev: LPSS device
840  * @pdata: pointer to the private data of the LPSS device
841  *
842  * Most LPSS devices have private registers which may loose their context when
843  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
844  * prv_reg_ctx array.
845  */
846 static void acpi_lpss_save_ctx(struct device *dev,
847                                struct lpss_private_data *pdata)
848 {
849         unsigned int i;
850
851         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
852                 unsigned long offset = i * sizeof(u32);
853
854                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
855                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
856                         pdata->prv_reg_ctx[i], offset);
857         }
858 }
859
860 /**
861  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
862  * @dev: LPSS device
863  * @pdata: pointer to the private data of the LPSS device
864  *
865  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
866  */
867 static void acpi_lpss_restore_ctx(struct device *dev,
868                                   struct lpss_private_data *pdata)
869 {
870         unsigned int i;
871
872         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
873                 unsigned long offset = i * sizeof(u32);
874
875                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
876                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
877                         pdata->prv_reg_ctx[i], offset);
878         }
879 }
880
881 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
882 {
883         /*
884          * The following delay is needed or the subsequent write operations may
885          * fail. The LPSS devices are actually PCI devices and the PCI spec
886          * expects 10ms delay before the device can be accessed after D3 to D0
887          * transition. However some platforms like BSW does not need this delay.
888          */
889         unsigned int delay = 10;        /* default 10ms delay */
890
891         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
892                 delay = 0;
893
894         msleep(delay);
895 }
896
897 static int acpi_lpss_activate(struct device *dev)
898 {
899         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
900         int ret;
901
902         ret = acpi_dev_resume(dev);
903         if (ret)
904                 return ret;
905
906         acpi_lpss_d3_to_d0_delay(pdata);
907
908         /*
909          * This is called only on ->probe() stage where a device is either in
910          * known state defined by BIOS or most likely powered off. Due to this
911          * we have to deassert reset line to be sure that ->probe() will
912          * recognize the device.
913          */
914         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
915                 lpss_deassert_reset(pdata);
916
917 #ifdef CONFIG_PM
918         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
919                 acpi_lpss_save_ctx(dev, pdata);
920 #endif
921
922         return 0;
923 }
924
925 static void acpi_lpss_dismiss(struct device *dev)
926 {
927         acpi_dev_suspend(dev, false);
928 }
929
930 /* IOSF SB for LPSS island */
931 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
932 #define LPSS_IOSF_UNIT_LPIO1            0xAB
933 #define LPSS_IOSF_UNIT_LPIO2            0xAC
934
935 #define LPSS_IOSF_PMCSR                 0x84
936 #define LPSS_PMCSR_D0                   0
937 #define LPSS_PMCSR_D3hot                3
938 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
939
940 #define LPSS_IOSF_GPIODEF0              0x154
941 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
942 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
943 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
944 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
945
946 static DEFINE_MUTEX(lpss_iosf_mutex);
947 static bool lpss_iosf_d3_entered = true;
948
949 static void lpss_iosf_enter_d3_state(void)
950 {
951         u32 value1 = 0;
952         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
953         u32 value2 = LPSS_PMCSR_D3hot;
954         u32 mask2 = LPSS_PMCSR_Dx_MASK;
955         /*
956          * PMC provides an information about actual status of the LPSS devices.
957          * Here we read the values related to LPSS power island, i.e. LPSS
958          * devices, excluding both LPSS DMA controllers, along with SCC domain.
959          */
960         u32 func_dis, d3_sts_0, pmc_status;
961         int ret;
962
963         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
964         if (ret)
965                 return;
966
967         mutex_lock(&lpss_iosf_mutex);
968
969         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
970         if (ret)
971                 goto exit;
972
973         /*
974          * Get the status of entire LPSS power island per device basis.
975          * Shutdown both LPSS DMA controllers if and only if all other devices
976          * are already in D3hot.
977          */
978         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
979         if (pmc_status)
980                 goto exit;
981
982         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
983                         LPSS_IOSF_PMCSR, value2, mask2);
984
985         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
986                         LPSS_IOSF_PMCSR, value2, mask2);
987
988         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
989                         LPSS_IOSF_GPIODEF0, value1, mask1);
990
991         lpss_iosf_d3_entered = true;
992
993 exit:
994         mutex_unlock(&lpss_iosf_mutex);
995 }
996
997 static void lpss_iosf_exit_d3_state(void)
998 {
999         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1000                      LPSS_GPIODEF0_DMA_LLP;
1001         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1002         u32 value2 = LPSS_PMCSR_D0;
1003         u32 mask2 = LPSS_PMCSR_Dx_MASK;
1004
1005         mutex_lock(&lpss_iosf_mutex);
1006
1007         if (!lpss_iosf_d3_entered)
1008                 goto exit;
1009
1010         lpss_iosf_d3_entered = false;
1011
1012         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1013                         LPSS_IOSF_GPIODEF0, value1, mask1);
1014
1015         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1016                         LPSS_IOSF_PMCSR, value2, mask2);
1017
1018         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1019                         LPSS_IOSF_PMCSR, value2, mask2);
1020
1021 exit:
1022         mutex_unlock(&lpss_iosf_mutex);
1023 }
1024
1025 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1026 {
1027         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1028         int ret;
1029
1030         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1031                 acpi_lpss_save_ctx(dev, pdata);
1032
1033         ret = acpi_dev_suspend(dev, wakeup);
1034
1035         /*
1036          * This call must be last in the sequence, otherwise PMC will return
1037          * wrong status for devices being about to be powered off. See
1038          * lpss_iosf_enter_d3_state() for further information.
1039          */
1040         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1041             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1042                 lpss_iosf_enter_d3_state();
1043
1044         return ret;
1045 }
1046
1047 static int acpi_lpss_resume(struct device *dev)
1048 {
1049         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1050         int ret;
1051
1052         /*
1053          * This call is kept first to be in symmetry with
1054          * acpi_lpss_runtime_suspend() one.
1055          */
1056         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1057                 lpss_iosf_exit_d3_state();
1058
1059         ret = acpi_dev_resume(dev);
1060         if (ret)
1061                 return ret;
1062
1063         acpi_lpss_d3_to_d0_delay(pdata);
1064
1065         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1066                 acpi_lpss_restore_ctx(dev, pdata);
1067
1068         return 0;
1069 }
1070
1071 #ifdef CONFIG_PM_SLEEP
1072 static int acpi_lpss_do_suspend_late(struct device *dev)
1073 {
1074         int ret;
1075
1076         if (dev_pm_skip_suspend(dev))
1077                 return 0;
1078
1079         ret = pm_generic_suspend_late(dev);
1080         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1081 }
1082
1083 static int acpi_lpss_suspend_late(struct device *dev)
1084 {
1085         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1086
1087         if (pdata->dev_desc->resume_from_noirq)
1088                 return 0;
1089
1090         return acpi_lpss_do_suspend_late(dev);
1091 }
1092
1093 static int acpi_lpss_suspend_noirq(struct device *dev)
1094 {
1095         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1096         int ret;
1097
1098         if (pdata->dev_desc->resume_from_noirq) {
1099                 /*
1100                  * The driver's ->suspend_late callback will be invoked by
1101                  * acpi_lpss_do_suspend_late(), with the assumption that the
1102                  * driver really wanted to run that code in ->suspend_noirq, but
1103                  * it could not run after acpi_dev_suspend() and the driver
1104                  * expected the latter to be called in the "late" phase.
1105                  */
1106                 ret = acpi_lpss_do_suspend_late(dev);
1107                 if (ret)
1108                         return ret;
1109         }
1110
1111         return acpi_subsys_suspend_noirq(dev);
1112 }
1113
1114 static int acpi_lpss_do_resume_early(struct device *dev)
1115 {
1116         int ret = acpi_lpss_resume(dev);
1117
1118         return ret ? ret : pm_generic_resume_early(dev);
1119 }
1120
1121 static int acpi_lpss_resume_early(struct device *dev)
1122 {
1123         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1124
1125         if (pdata->dev_desc->resume_from_noirq)
1126                 return 0;
1127
1128         if (dev_pm_skip_resume(dev))
1129                 return 0;
1130
1131         return acpi_lpss_do_resume_early(dev);
1132 }
1133
1134 static int acpi_lpss_resume_noirq(struct device *dev)
1135 {
1136         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1137         int ret;
1138
1139         /* Follow acpi_subsys_resume_noirq(). */
1140         if (dev_pm_skip_resume(dev))
1141                 return 0;
1142
1143         ret = pm_generic_resume_noirq(dev);
1144         if (ret)
1145                 return ret;
1146
1147         if (!pdata->dev_desc->resume_from_noirq)
1148                 return 0;
1149
1150         /*
1151          * The driver's ->resume_early callback will be invoked by
1152          * acpi_lpss_do_resume_early(), with the assumption that the driver
1153          * really wanted to run that code in ->resume_noirq, but it could not
1154          * run before acpi_dev_resume() and the driver expected the latter to be
1155          * called in the "early" phase.
1156          */
1157         return acpi_lpss_do_resume_early(dev);
1158 }
1159
1160 static int acpi_lpss_do_restore_early(struct device *dev)
1161 {
1162         int ret = acpi_lpss_resume(dev);
1163
1164         return ret ? ret : pm_generic_restore_early(dev);
1165 }
1166
1167 static int acpi_lpss_restore_early(struct device *dev)
1168 {
1169         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170
1171         if (pdata->dev_desc->resume_from_noirq)
1172                 return 0;
1173
1174         return acpi_lpss_do_restore_early(dev);
1175 }
1176
1177 static int acpi_lpss_restore_noirq(struct device *dev)
1178 {
1179         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1180         int ret;
1181
1182         ret = pm_generic_restore_noirq(dev);
1183         if (ret)
1184                 return ret;
1185
1186         if (!pdata->dev_desc->resume_from_noirq)
1187                 return 0;
1188
1189         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1190         return acpi_lpss_do_restore_early(dev);
1191 }
1192
1193 static int acpi_lpss_do_poweroff_late(struct device *dev)
1194 {
1195         int ret = pm_generic_poweroff_late(dev);
1196
1197         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1198 }
1199
1200 static int acpi_lpss_poweroff_late(struct device *dev)
1201 {
1202         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1203
1204         if (dev_pm_skip_suspend(dev))
1205                 return 0;
1206
1207         if (pdata->dev_desc->resume_from_noirq)
1208                 return 0;
1209
1210         return acpi_lpss_do_poweroff_late(dev);
1211 }
1212
1213 static int acpi_lpss_poweroff_noirq(struct device *dev)
1214 {
1215         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1216
1217         if (dev_pm_skip_suspend(dev))
1218                 return 0;
1219
1220         if (pdata->dev_desc->resume_from_noirq) {
1221                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1222                 int ret = acpi_lpss_do_poweroff_late(dev);
1223
1224                 if (ret)
1225                         return ret;
1226         }
1227
1228         return pm_generic_poweroff_noirq(dev);
1229 }
1230 #endif /* CONFIG_PM_SLEEP */
1231
1232 static int acpi_lpss_runtime_suspend(struct device *dev)
1233 {
1234         int ret = pm_generic_runtime_suspend(dev);
1235
1236         return ret ? ret : acpi_lpss_suspend(dev, true);
1237 }
1238
1239 static int acpi_lpss_runtime_resume(struct device *dev)
1240 {
1241         int ret = acpi_lpss_resume(dev);
1242
1243         return ret ? ret : pm_generic_runtime_resume(dev);
1244 }
1245 #endif /* CONFIG_PM */
1246
1247 static struct dev_pm_domain acpi_lpss_pm_domain = {
1248 #ifdef CONFIG_PM
1249         .activate = acpi_lpss_activate,
1250         .dismiss = acpi_lpss_dismiss,
1251 #endif
1252         .ops = {
1253 #ifdef CONFIG_PM
1254 #ifdef CONFIG_PM_SLEEP
1255                 .prepare = acpi_subsys_prepare,
1256                 .complete = acpi_subsys_complete,
1257                 .suspend = acpi_subsys_suspend,
1258                 .suspend_late = acpi_lpss_suspend_late,
1259                 .suspend_noirq = acpi_lpss_suspend_noirq,
1260                 .resume_noirq = acpi_lpss_resume_noirq,
1261                 .resume_early = acpi_lpss_resume_early,
1262                 .freeze = acpi_subsys_freeze,
1263                 .poweroff = acpi_subsys_poweroff,
1264                 .poweroff_late = acpi_lpss_poweroff_late,
1265                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1266                 .restore_noirq = acpi_lpss_restore_noirq,
1267                 .restore_early = acpi_lpss_restore_early,
1268 #endif
1269                 .runtime_suspend = acpi_lpss_runtime_suspend,
1270                 .runtime_resume = acpi_lpss_runtime_resume,
1271 #endif
1272         },
1273 };
1274
1275 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1276                                      unsigned long action, void *data)
1277 {
1278         struct platform_device *pdev = to_platform_device(data);
1279         struct lpss_private_data *pdata;
1280         struct acpi_device *adev;
1281         const struct acpi_device_id *id;
1282
1283         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1284         if (!id || !id->driver_data)
1285                 return 0;
1286
1287         adev = ACPI_COMPANION(&pdev->dev);
1288         if (!adev)
1289                 return 0;
1290
1291         pdata = acpi_driver_data(adev);
1292         if (!pdata)
1293                 return 0;
1294
1295         if (pdata->mmio_base &&
1296             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1297                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1298                 return 0;
1299         }
1300
1301         switch (action) {
1302         case BUS_NOTIFY_BIND_DRIVER:
1303                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1304                 break;
1305         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1306         case BUS_NOTIFY_UNBOUND_DRIVER:
1307                 dev_pm_domain_set(&pdev->dev, NULL);
1308                 break;
1309         case BUS_NOTIFY_ADD_DEVICE:
1310                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1311                 if (pdata->dev_desc->flags & LPSS_LTR)
1312                         return sysfs_create_group(&pdev->dev.kobj,
1313                                                   &lpss_attr_group);
1314                 break;
1315         case BUS_NOTIFY_DEL_DEVICE:
1316                 if (pdata->dev_desc->flags & LPSS_LTR)
1317                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1318                 dev_pm_domain_set(&pdev->dev, NULL);
1319                 break;
1320         default:
1321                 break;
1322         }
1323
1324         return 0;
1325 }
1326
1327 static struct notifier_block acpi_lpss_nb = {
1328         .notifier_call = acpi_lpss_platform_notify,
1329 };
1330
1331 static void acpi_lpss_bind(struct device *dev)
1332 {
1333         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1334
1335         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1336                 return;
1337
1338         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1339                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1340         else
1341                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1342 }
1343
1344 static void acpi_lpss_unbind(struct device *dev)
1345 {
1346         dev->power.set_latency_tolerance = NULL;
1347 }
1348
1349 static struct acpi_scan_handler lpss_handler = {
1350         .ids = acpi_lpss_device_ids,
1351         .attach = acpi_lpss_create_device,
1352         .bind = acpi_lpss_bind,
1353         .unbind = acpi_lpss_unbind,
1354 };
1355
1356 void __init acpi_lpss_init(void)
1357 {
1358         const struct x86_cpu_id *id;
1359         int ret;
1360
1361         ret = lpss_atom_clk_init();
1362         if (ret)
1363                 return;
1364
1365         id = x86_match_cpu(lpss_cpu_ids);
1366         if (id)
1367                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1368
1369         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1370         acpi_scan_add_handler(&lpss_handler);
1371 }
1372
1373 #else
1374
1375 static struct acpi_scan_handler lpss_handler = {
1376         .ids = acpi_lpss_device_ids,
1377 };
1378
1379 void __init acpi_lpss_init(void)
1380 {
1381         acpi_scan_add_handler(&lpss_handler);
1382 }
1383
1384 #endif /* CONFIG_X86_INTEL_LPSS */