blkcg: move blkio_group_stats_cpu and friends to blk-throttle.c
[linux-2.6-block.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 static struct blkio_policy_type blkio_policy_cfq;
21
22 /*
23  * tunables
24  */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const int cfq_slice_sync = HZ / 10;
33 static int cfq_slice_async = HZ / 25;
34 static const int cfq_slice_async_rq = 2;
35 static int cfq_slice_idle = HZ / 125;
36 static int cfq_group_idle = HZ / 125;
37 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41  * offset from end of service tree
42  */
43 #define CFQ_IDLE_DELAY          (HZ / 5)
44
45 /*
46  * below this threshold, we consider thinktime immediate
47  */
48 #define CFQ_MIN_TT              (2)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52 #define CFQ_SERVICE_SHIFT       12
53
54 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
58
59 #define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
62
63 static struct kmem_cache *cfq_pool;
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 struct cfq_ttime {
73         unsigned long last_end_request;
74
75         unsigned long ttime_total;
76         unsigned long ttime_samples;
77         unsigned long ttime_mean;
78 };
79
80 /*
81  * Most of our rbtree usage is for sorting with min extraction, so
82  * if we cache the leftmost node we don't have to walk down the tree
83  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84  * move this into the elevator for the rq sorting as well.
85  */
86 struct cfq_rb_root {
87         struct rb_root rb;
88         struct rb_node *left;
89         unsigned count;
90         unsigned total_weight;
91         u64 min_vdisktime;
92         struct cfq_ttime ttime;
93 };
94 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
95                         .ttime = {.last_end_request = jiffies,},}
96
97 /*
98  * Per process-grouping structure
99  */
100 struct cfq_queue {
101         /* reference count */
102         int ref;
103         /* various state flags, see below */
104         unsigned int flags;
105         /* parent cfq_data */
106         struct cfq_data *cfqd;
107         /* service_tree member */
108         struct rb_node rb_node;
109         /* service_tree key */
110         unsigned long rb_key;
111         /* prio tree member */
112         struct rb_node p_node;
113         /* prio tree root we belong to, if any */
114         struct rb_root *p_root;
115         /* sorted list of pending requests */
116         struct rb_root sort_list;
117         /* if fifo isn't expired, next request to serve */
118         struct request *next_rq;
119         /* requests queued in sort_list */
120         int queued[2];
121         /* currently allocated requests */
122         int allocated[2];
123         /* fifo list of requests in sort_list */
124         struct list_head fifo;
125
126         /* time when queue got scheduled in to dispatch first request. */
127         unsigned long dispatch_start;
128         unsigned int allocated_slice;
129         unsigned int slice_dispatch;
130         /* time when first request from queue completed and slice started. */
131         unsigned long slice_start;
132         unsigned long slice_end;
133         long slice_resid;
134
135         /* pending priority requests */
136         int prio_pending;
137         /* number of requests that are on the dispatch list or inside driver */
138         int dispatched;
139
140         /* io prio of this group */
141         unsigned short ioprio, org_ioprio;
142         unsigned short ioprio_class;
143
144         pid_t pid;
145
146         u32 seek_history;
147         sector_t last_request_pos;
148
149         struct cfq_rb_root *service_tree;
150         struct cfq_queue *new_cfqq;
151         struct cfq_group *cfqg;
152         /* Number of sectors dispatched from queue in single dispatch round */
153         unsigned long nr_sectors;
154 };
155
156 /*
157  * First index in the service_trees.
158  * IDLE is handled separately, so it has negative index
159  */
160 enum wl_prio_t {
161         BE_WORKLOAD = 0,
162         RT_WORKLOAD = 1,
163         IDLE_WORKLOAD = 2,
164         CFQ_PRIO_NR,
165 };
166
167 /*
168  * Second index in the service_trees.
169  */
170 enum wl_type_t {
171         ASYNC_WORKLOAD = 0,
172         SYNC_NOIDLE_WORKLOAD = 1,
173         SYNC_WORKLOAD = 2
174 };
175
176 struct cfqg_stats {
177 #ifdef CONFIG_CFQ_GROUP_IOSCHED
178         /* total bytes transferred */
179         struct blkg_rwstat              service_bytes;
180         /* total IOs serviced, post merge */
181         struct blkg_rwstat              serviced;
182         /* number of ios merged */
183         struct blkg_rwstat              merged;
184         /* total time spent on device in ns, may not be accurate w/ queueing */
185         struct blkg_rwstat              service_time;
186         /* total time spent waiting in scheduler queue in ns */
187         struct blkg_rwstat              wait_time;
188         /* number of IOs queued up */
189         struct blkg_rwstat              queued;
190         /* total sectors transferred */
191         struct blkg_stat                sectors;
192         /* total disk time and nr sectors dispatched by this group */
193         struct blkg_stat                time;
194 #ifdef CONFIG_DEBUG_BLK_CGROUP
195         /* time not charged to this cgroup */
196         struct blkg_stat                unaccounted_time;
197         /* sum of number of ios queued across all samples */
198         struct blkg_stat                avg_queue_size_sum;
199         /* count of samples taken for average */
200         struct blkg_stat                avg_queue_size_samples;
201         /* how many times this group has been removed from service tree */
202         struct blkg_stat                dequeue;
203         /* total time spent waiting for it to be assigned a timeslice. */
204         struct blkg_stat                group_wait_time;
205         /* time spent idling for this blkio_group */
206         struct blkg_stat                idle_time;
207         /* total time with empty current active q with other requests queued */
208         struct blkg_stat                empty_time;
209         /* fields after this shouldn't be cleared on stat reset */
210         uint64_t                        start_group_wait_time;
211         uint64_t                        start_idle_time;
212         uint64_t                        start_empty_time;
213         uint16_t                        flags;
214 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
215 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
216 };
217
218 /* This is per cgroup per device grouping structure */
219 struct cfq_group {
220         /* group service_tree member */
221         struct rb_node rb_node;
222
223         /* group service_tree key */
224         u64 vdisktime;
225         unsigned int weight;
226         unsigned int new_weight;
227         bool needs_update;
228
229         /* number of cfqq currently on this group */
230         int nr_cfqq;
231
232         /*
233          * Per group busy queues average. Useful for workload slice calc. We
234          * create the array for each prio class but at run time it is used
235          * only for RT and BE class and slot for IDLE class remains unused.
236          * This is primarily done to avoid confusion and a gcc warning.
237          */
238         unsigned int busy_queues_avg[CFQ_PRIO_NR];
239         /*
240          * rr lists of queues with requests. We maintain service trees for
241          * RT and BE classes. These trees are subdivided in subclasses
242          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
243          * class there is no subclassification and all the cfq queues go on
244          * a single tree service_tree_idle.
245          * Counts are embedded in the cfq_rb_root
246          */
247         struct cfq_rb_root service_trees[2][3];
248         struct cfq_rb_root service_tree_idle;
249
250         unsigned long saved_workload_slice;
251         enum wl_type_t saved_workload;
252         enum wl_prio_t saved_serving_prio;
253
254         /* number of requests that are on the dispatch list or inside driver */
255         int dispatched;
256         struct cfq_ttime ttime;
257         struct cfqg_stats stats;
258 };
259
260 struct cfq_io_cq {
261         struct io_cq            icq;            /* must be the first member */
262         struct cfq_queue        *cfqq[2];
263         struct cfq_ttime        ttime;
264         int                     ioprio;         /* the current ioprio */
265 #ifdef CONFIG_CFQ_GROUP_IOSCHED
266         uint64_t                blkcg_id;       /* the current blkcg ID */
267 #endif
268 };
269
270 /*
271  * Per block device queue structure
272  */
273 struct cfq_data {
274         struct request_queue *queue;
275         /* Root service tree for cfq_groups */
276         struct cfq_rb_root grp_service_tree;
277         struct cfq_group *root_group;
278
279         /*
280          * The priority currently being served
281          */
282         enum wl_prio_t serving_prio;
283         enum wl_type_t serving_type;
284         unsigned long workload_expires;
285         struct cfq_group *serving_group;
286
287         /*
288          * Each priority tree is sorted by next_request position.  These
289          * trees are used when determining if two or more queues are
290          * interleaving requests (see cfq_close_cooperator).
291          */
292         struct rb_root prio_trees[CFQ_PRIO_LISTS];
293
294         unsigned int busy_queues;
295         unsigned int busy_sync_queues;
296
297         int rq_in_driver;
298         int rq_in_flight[2];
299
300         /*
301          * queue-depth detection
302          */
303         int rq_queued;
304         int hw_tag;
305         /*
306          * hw_tag can be
307          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
308          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
309          *  0 => no NCQ
310          */
311         int hw_tag_est_depth;
312         unsigned int hw_tag_samples;
313
314         /*
315          * idle window management
316          */
317         struct timer_list idle_slice_timer;
318         struct work_struct unplug_work;
319
320         struct cfq_queue *active_queue;
321         struct cfq_io_cq *active_cic;
322
323         /*
324          * async queue for each priority case
325          */
326         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
327         struct cfq_queue *async_idle_cfqq;
328
329         sector_t last_position;
330
331         /*
332          * tunables, see top of file
333          */
334         unsigned int cfq_quantum;
335         unsigned int cfq_fifo_expire[2];
336         unsigned int cfq_back_penalty;
337         unsigned int cfq_back_max;
338         unsigned int cfq_slice[2];
339         unsigned int cfq_slice_async_rq;
340         unsigned int cfq_slice_idle;
341         unsigned int cfq_group_idle;
342         unsigned int cfq_latency;
343
344         /*
345          * Fallback dummy cfqq for extreme OOM conditions
346          */
347         struct cfq_queue oom_cfqq;
348
349         unsigned long last_delayed_sync;
350 };
351
352 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
353
354 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
355                                             enum wl_prio_t prio,
356                                             enum wl_type_t type)
357 {
358         if (!cfqg)
359                 return NULL;
360
361         if (prio == IDLE_WORKLOAD)
362                 return &cfqg->service_tree_idle;
363
364         return &cfqg->service_trees[prio][type];
365 }
366
367 enum cfqq_state_flags {
368         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
369         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
370         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
371         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
372         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
373         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
374         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
375         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
376         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
377         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
378         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
379         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
380         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
381 };
382
383 #define CFQ_CFQQ_FNS(name)                                              \
384 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
385 {                                                                       \
386         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
387 }                                                                       \
388 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
389 {                                                                       \
390         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
391 }                                                                       \
392 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
393 {                                                                       \
394         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
395 }
396
397 CFQ_CFQQ_FNS(on_rr);
398 CFQ_CFQQ_FNS(wait_request);
399 CFQ_CFQQ_FNS(must_dispatch);
400 CFQ_CFQQ_FNS(must_alloc_slice);
401 CFQ_CFQQ_FNS(fifo_expire);
402 CFQ_CFQQ_FNS(idle_window);
403 CFQ_CFQQ_FNS(prio_changed);
404 CFQ_CFQQ_FNS(slice_new);
405 CFQ_CFQQ_FNS(sync);
406 CFQ_CFQQ_FNS(coop);
407 CFQ_CFQQ_FNS(split_coop);
408 CFQ_CFQQ_FNS(deep);
409 CFQ_CFQQ_FNS(wait_busy);
410 #undef CFQ_CFQQ_FNS
411
412 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
413
414 /* cfqg stats flags */
415 enum cfqg_stats_flags {
416         CFQG_stats_waiting = 0,
417         CFQG_stats_idling,
418         CFQG_stats_empty,
419 };
420
421 #define CFQG_FLAG_FNS(name)                                             \
422 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)     \
423 {                                                                       \
424         stats->flags |= (1 << CFQG_stats_##name);                       \
425 }                                                                       \
426 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)    \
427 {                                                                       \
428         stats->flags &= ~(1 << CFQG_stats_##name);                      \
429 }                                                                       \
430 static inline int cfqg_stats_##name(struct cfqg_stats *stats)           \
431 {                                                                       \
432         return (stats->flags & (1 << CFQG_stats_##name)) != 0;          \
433 }                                                                       \
434
435 CFQG_FLAG_FNS(waiting)
436 CFQG_FLAG_FNS(idling)
437 CFQG_FLAG_FNS(empty)
438 #undef CFQG_FLAG_FNS
439
440 /* This should be called with the queue_lock held. */
441 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
442 {
443         unsigned long long now;
444
445         if (!cfqg_stats_waiting(stats))
446                 return;
447
448         now = sched_clock();
449         if (time_after64(now, stats->start_group_wait_time))
450                 blkg_stat_add(&stats->group_wait_time,
451                               now - stats->start_group_wait_time);
452         cfqg_stats_clear_waiting(stats);
453 }
454
455 /* This should be called with the queue_lock held. */
456 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
457                                                  struct cfq_group *curr_cfqg)
458 {
459         struct cfqg_stats *stats = &cfqg->stats;
460
461         if (cfqg_stats_waiting(stats))
462                 return;
463         if (cfqg == curr_cfqg)
464                 return;
465         stats->start_group_wait_time = sched_clock();
466         cfqg_stats_mark_waiting(stats);
467 }
468
469 /* This should be called with the queue_lock held. */
470 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
471 {
472         unsigned long long now;
473
474         if (!cfqg_stats_empty(stats))
475                 return;
476
477         now = sched_clock();
478         if (time_after64(now, stats->start_empty_time))
479                 blkg_stat_add(&stats->empty_time,
480                               now - stats->start_empty_time);
481         cfqg_stats_clear_empty(stats);
482 }
483
484 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
485 {
486         blkg_stat_add(&cfqg->stats.dequeue, 1);
487 }
488
489 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
490 {
491         struct cfqg_stats *stats = &cfqg->stats;
492
493         if (blkg_rwstat_sum(&stats->queued))
494                 return;
495
496         /*
497          * group is already marked empty. This can happen if cfqq got new
498          * request in parent group and moved to this group while being added
499          * to service tree. Just ignore the event and move on.
500          */
501         if (cfqg_stats_empty(stats))
502                 return;
503
504         stats->start_empty_time = sched_clock();
505         cfqg_stats_mark_empty(stats);
506 }
507
508 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
509 {
510         struct cfqg_stats *stats = &cfqg->stats;
511
512         if (cfqg_stats_idling(stats)) {
513                 unsigned long long now = sched_clock();
514
515                 if (time_after64(now, stats->start_idle_time))
516                         blkg_stat_add(&stats->idle_time,
517                                       now - stats->start_idle_time);
518                 cfqg_stats_clear_idling(stats);
519         }
520 }
521
522 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
523 {
524         struct cfqg_stats *stats = &cfqg->stats;
525
526         BUG_ON(cfqg_stats_idling(stats));
527
528         stats->start_idle_time = sched_clock();
529         cfqg_stats_mark_idling(stats);
530 }
531
532 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
533 {
534         struct cfqg_stats *stats = &cfqg->stats;
535
536         blkg_stat_add(&stats->avg_queue_size_sum,
537                       blkg_rwstat_sum(&stats->queued));
538         blkg_stat_add(&stats->avg_queue_size_samples, 1);
539         cfqg_stats_update_group_wait_time(stats);
540 }
541
542 #else   /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
543
544 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
545                                                  struct cfq_group *curr_cfqg) { }
546 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
547 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
548 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
549 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
550 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
551 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
552
553 #endif  /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
554
555 #ifdef CONFIG_CFQ_GROUP_IOSCHED
556
557 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
558 {
559         return blkg_to_pdata(blkg, &blkio_policy_cfq);
560 }
561
562 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
563 {
564         return pdata_to_blkg(cfqg);
565 }
566
567 static inline void cfqg_get(struct cfq_group *cfqg)
568 {
569         return blkg_get(cfqg_to_blkg(cfqg));
570 }
571
572 static inline void cfqg_put(struct cfq_group *cfqg)
573 {
574         return blkg_put(cfqg_to_blkg(cfqg));
575 }
576
577 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
578         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
579                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
580                         blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
581
582 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
583         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
584                         blkg_path(cfqg_to_blkg((cfqg))), ##args)        \
585
586 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
587                                             struct cfq_group *curr_cfqg, int rw)
588 {
589         blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
590         cfqg_stats_end_empty_time(&cfqg->stats);
591         cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
592 }
593
594 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
595                         unsigned long time, unsigned long unaccounted_time)
596 {
597         blkg_stat_add(&cfqg->stats.time, time);
598 #ifdef CONFIG_DEBUG_BLK_CGROUP
599         blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
600 #endif
601 }
602
603 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
604 {
605         blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
606 }
607
608 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
609 {
610         blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
611 }
612
613 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
614                                               uint64_t bytes, int rw)
615 {
616         blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
617         blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
618         blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
619 }
620
621 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
622                         uint64_t start_time, uint64_t io_start_time, int rw)
623 {
624         struct cfqg_stats *stats = &cfqg->stats;
625         unsigned long long now = sched_clock();
626
627         if (time_after64(now, io_start_time))
628                 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
629         if (time_after64(io_start_time, start_time))
630                 blkg_rwstat_add(&stats->wait_time, rw,
631                                 io_start_time - start_time);
632 }
633
634 static void cfqg_stats_reset(struct blkio_group *blkg)
635 {
636         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
637         struct cfqg_stats *stats = &cfqg->stats;
638
639         /* queued stats shouldn't be cleared */
640         blkg_rwstat_reset(&stats->service_bytes);
641         blkg_rwstat_reset(&stats->serviced);
642         blkg_rwstat_reset(&stats->merged);
643         blkg_rwstat_reset(&stats->service_time);
644         blkg_rwstat_reset(&stats->wait_time);
645         blkg_stat_reset(&stats->time);
646 #ifdef CONFIG_DEBUG_BLK_CGROUP
647         blkg_stat_reset(&stats->unaccounted_time);
648         blkg_stat_reset(&stats->avg_queue_size_sum);
649         blkg_stat_reset(&stats->avg_queue_size_samples);
650         blkg_stat_reset(&stats->dequeue);
651         blkg_stat_reset(&stats->group_wait_time);
652         blkg_stat_reset(&stats->idle_time);
653         blkg_stat_reset(&stats->empty_time);
654 #endif
655 }
656
657 #else   /* CONFIG_CFQ_GROUP_IOSCHED */
658
659 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
660 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
661 static inline void cfqg_get(struct cfq_group *cfqg) { }
662 static inline void cfqg_put(struct cfq_group *cfqg) { }
663
664 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
665         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
666 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
667
668 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
669                         struct cfq_group *curr_cfqg, int rw) { }
670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671                         unsigned long time, unsigned long unaccounted_time) { }
672 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
673 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
674 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
675                                               uint64_t bytes, int rw) { }
676 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
677                         uint64_t start_time, uint64_t io_start_time, int rw) { }
678
679 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
680
681 #define cfq_log(cfqd, fmt, args...)     \
682         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
683
684 /* Traverses through cfq group service trees */
685 #define for_each_cfqg_st(cfqg, i, j, st) \
686         for (i = 0; i <= IDLE_WORKLOAD; i++) \
687                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
688                         : &cfqg->service_tree_idle; \
689                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
690                         (i == IDLE_WORKLOAD && j == 0); \
691                         j++, st = i < IDLE_WORKLOAD ? \
692                         &cfqg->service_trees[i][j]: NULL) \
693
694 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
695         struct cfq_ttime *ttime, bool group_idle)
696 {
697         unsigned long slice;
698         if (!sample_valid(ttime->ttime_samples))
699                 return false;
700         if (group_idle)
701                 slice = cfqd->cfq_group_idle;
702         else
703                 slice = cfqd->cfq_slice_idle;
704         return ttime->ttime_mean > slice;
705 }
706
707 static inline bool iops_mode(struct cfq_data *cfqd)
708 {
709         /*
710          * If we are not idling on queues and it is a NCQ drive, parallel
711          * execution of requests is on and measuring time is not possible
712          * in most of the cases until and unless we drive shallower queue
713          * depths and that becomes a performance bottleneck. In such cases
714          * switch to start providing fairness in terms of number of IOs.
715          */
716         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
717                 return true;
718         else
719                 return false;
720 }
721
722 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
723 {
724         if (cfq_class_idle(cfqq))
725                 return IDLE_WORKLOAD;
726         if (cfq_class_rt(cfqq))
727                 return RT_WORKLOAD;
728         return BE_WORKLOAD;
729 }
730
731
732 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
733 {
734         if (!cfq_cfqq_sync(cfqq))
735                 return ASYNC_WORKLOAD;
736         if (!cfq_cfqq_idle_window(cfqq))
737                 return SYNC_NOIDLE_WORKLOAD;
738         return SYNC_WORKLOAD;
739 }
740
741 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
742                                         struct cfq_data *cfqd,
743                                         struct cfq_group *cfqg)
744 {
745         if (wl == IDLE_WORKLOAD)
746                 return cfqg->service_tree_idle.count;
747
748         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
749                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
750                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
751 }
752
753 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
754                                         struct cfq_group *cfqg)
755 {
756         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
757                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
758 }
759
760 static void cfq_dispatch_insert(struct request_queue *, struct request *);
761 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
762                                        struct cfq_io_cq *cic, struct bio *bio,
763                                        gfp_t gfp_mask);
764
765 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
766 {
767         /* cic->icq is the first member, %NULL will convert to %NULL */
768         return container_of(icq, struct cfq_io_cq, icq);
769 }
770
771 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
772                                                struct io_context *ioc)
773 {
774         if (ioc)
775                 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
776         return NULL;
777 }
778
779 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
780 {
781         return cic->cfqq[is_sync];
782 }
783
784 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
785                                 bool is_sync)
786 {
787         cic->cfqq[is_sync] = cfqq;
788 }
789
790 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
791 {
792         return cic->icq.q->elevator->elevator_data;
793 }
794
795 /*
796  * We regard a request as SYNC, if it's either a read or has the SYNC bit
797  * set (in which case it could also be direct WRITE).
798  */
799 static inline bool cfq_bio_sync(struct bio *bio)
800 {
801         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
802 }
803
804 /*
805  * scheduler run of queue, if there are requests pending and no one in the
806  * driver that will restart queueing
807  */
808 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
809 {
810         if (cfqd->busy_queues) {
811                 cfq_log(cfqd, "schedule dispatch");
812                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
813         }
814 }
815
816 /*
817  * Scale schedule slice based on io priority. Use the sync time slice only
818  * if a queue is marked sync and has sync io queued. A sync queue with async
819  * io only, should not get full sync slice length.
820  */
821 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
822                                  unsigned short prio)
823 {
824         const int base_slice = cfqd->cfq_slice[sync];
825
826         WARN_ON(prio >= IOPRIO_BE_NR);
827
828         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
829 }
830
831 static inline int
832 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
833 {
834         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
835 }
836
837 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
838 {
839         u64 d = delta << CFQ_SERVICE_SHIFT;
840
841         d = d * BLKIO_WEIGHT_DEFAULT;
842         do_div(d, cfqg->weight);
843         return d;
844 }
845
846 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
847 {
848         s64 delta = (s64)(vdisktime - min_vdisktime);
849         if (delta > 0)
850                 min_vdisktime = vdisktime;
851
852         return min_vdisktime;
853 }
854
855 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
856 {
857         s64 delta = (s64)(vdisktime - min_vdisktime);
858         if (delta < 0)
859                 min_vdisktime = vdisktime;
860
861         return min_vdisktime;
862 }
863
864 static void update_min_vdisktime(struct cfq_rb_root *st)
865 {
866         struct cfq_group *cfqg;
867
868         if (st->left) {
869                 cfqg = rb_entry_cfqg(st->left);
870                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
871                                                   cfqg->vdisktime);
872         }
873 }
874
875 /*
876  * get averaged number of queues of RT/BE priority.
877  * average is updated, with a formula that gives more weight to higher numbers,
878  * to quickly follows sudden increases and decrease slowly
879  */
880
881 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
882                                         struct cfq_group *cfqg, bool rt)
883 {
884         unsigned min_q, max_q;
885         unsigned mult  = cfq_hist_divisor - 1;
886         unsigned round = cfq_hist_divisor / 2;
887         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
888
889         min_q = min(cfqg->busy_queues_avg[rt], busy);
890         max_q = max(cfqg->busy_queues_avg[rt], busy);
891         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
892                 cfq_hist_divisor;
893         return cfqg->busy_queues_avg[rt];
894 }
895
896 static inline unsigned
897 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
898 {
899         struct cfq_rb_root *st = &cfqd->grp_service_tree;
900
901         return cfq_target_latency * cfqg->weight / st->total_weight;
902 }
903
904 static inline unsigned
905 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
906 {
907         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
908         if (cfqd->cfq_latency) {
909                 /*
910                  * interested queues (we consider only the ones with the same
911                  * priority class in the cfq group)
912                  */
913                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
914                                                 cfq_class_rt(cfqq));
915                 unsigned sync_slice = cfqd->cfq_slice[1];
916                 unsigned expect_latency = sync_slice * iq;
917                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
918
919                 if (expect_latency > group_slice) {
920                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
921                         /* scale low_slice according to IO priority
922                          * and sync vs async */
923                         unsigned low_slice =
924                                 min(slice, base_low_slice * slice / sync_slice);
925                         /* the adapted slice value is scaled to fit all iqs
926                          * into the target latency */
927                         slice = max(slice * group_slice / expect_latency,
928                                     low_slice);
929                 }
930         }
931         return slice;
932 }
933
934 static inline void
935 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
936 {
937         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
938
939         cfqq->slice_start = jiffies;
940         cfqq->slice_end = jiffies + slice;
941         cfqq->allocated_slice = slice;
942         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
943 }
944
945 /*
946  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
947  * isn't valid until the first request from the dispatch is activated
948  * and the slice time set.
949  */
950 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
951 {
952         if (cfq_cfqq_slice_new(cfqq))
953                 return false;
954         if (time_before(jiffies, cfqq->slice_end))
955                 return false;
956
957         return true;
958 }
959
960 /*
961  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
962  * We choose the request that is closest to the head right now. Distance
963  * behind the head is penalized and only allowed to a certain extent.
964  */
965 static struct request *
966 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
967 {
968         sector_t s1, s2, d1 = 0, d2 = 0;
969         unsigned long back_max;
970 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
971 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
972         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
973
974         if (rq1 == NULL || rq1 == rq2)
975                 return rq2;
976         if (rq2 == NULL)
977                 return rq1;
978
979         if (rq_is_sync(rq1) != rq_is_sync(rq2))
980                 return rq_is_sync(rq1) ? rq1 : rq2;
981
982         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
983                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
984
985         s1 = blk_rq_pos(rq1);
986         s2 = blk_rq_pos(rq2);
987
988         /*
989          * by definition, 1KiB is 2 sectors
990          */
991         back_max = cfqd->cfq_back_max * 2;
992
993         /*
994          * Strict one way elevator _except_ in the case where we allow
995          * short backward seeks which are biased as twice the cost of a
996          * similar forward seek.
997          */
998         if (s1 >= last)
999                 d1 = s1 - last;
1000         else if (s1 + back_max >= last)
1001                 d1 = (last - s1) * cfqd->cfq_back_penalty;
1002         else
1003                 wrap |= CFQ_RQ1_WRAP;
1004
1005         if (s2 >= last)
1006                 d2 = s2 - last;
1007         else if (s2 + back_max >= last)
1008                 d2 = (last - s2) * cfqd->cfq_back_penalty;
1009         else
1010                 wrap |= CFQ_RQ2_WRAP;
1011
1012         /* Found required data */
1013
1014         /*
1015          * By doing switch() on the bit mask "wrap" we avoid having to
1016          * check two variables for all permutations: --> faster!
1017          */
1018         switch (wrap) {
1019         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1020                 if (d1 < d2)
1021                         return rq1;
1022                 else if (d2 < d1)
1023                         return rq2;
1024                 else {
1025                         if (s1 >= s2)
1026                                 return rq1;
1027                         else
1028                                 return rq2;
1029                 }
1030
1031         case CFQ_RQ2_WRAP:
1032                 return rq1;
1033         case CFQ_RQ1_WRAP:
1034                 return rq2;
1035         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1036         default:
1037                 /*
1038                  * Since both rqs are wrapped,
1039                  * start with the one that's further behind head
1040                  * (--> only *one* back seek required),
1041                  * since back seek takes more time than forward.
1042                  */
1043                 if (s1 <= s2)
1044                         return rq1;
1045                 else
1046                         return rq2;
1047         }
1048 }
1049
1050 /*
1051  * The below is leftmost cache rbtree addon
1052  */
1053 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1054 {
1055         /* Service tree is empty */
1056         if (!root->count)
1057                 return NULL;
1058
1059         if (!root->left)
1060                 root->left = rb_first(&root->rb);
1061
1062         if (root->left)
1063                 return rb_entry(root->left, struct cfq_queue, rb_node);
1064
1065         return NULL;
1066 }
1067
1068 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1069 {
1070         if (!root->left)
1071                 root->left = rb_first(&root->rb);
1072
1073         if (root->left)
1074                 return rb_entry_cfqg(root->left);
1075
1076         return NULL;
1077 }
1078
1079 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1080 {
1081         rb_erase(n, root);
1082         RB_CLEAR_NODE(n);
1083 }
1084
1085 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1086 {
1087         if (root->left == n)
1088                 root->left = NULL;
1089         rb_erase_init(n, &root->rb);
1090         --root->count;
1091 }
1092
1093 /*
1094  * would be nice to take fifo expire time into account as well
1095  */
1096 static struct request *
1097 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1098                   struct request *last)
1099 {
1100         struct rb_node *rbnext = rb_next(&last->rb_node);
1101         struct rb_node *rbprev = rb_prev(&last->rb_node);
1102         struct request *next = NULL, *prev = NULL;
1103
1104         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1105
1106         if (rbprev)
1107                 prev = rb_entry_rq(rbprev);
1108
1109         if (rbnext)
1110                 next = rb_entry_rq(rbnext);
1111         else {
1112                 rbnext = rb_first(&cfqq->sort_list);
1113                 if (rbnext && rbnext != &last->rb_node)
1114                         next = rb_entry_rq(rbnext);
1115         }
1116
1117         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1118 }
1119
1120 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1121                                       struct cfq_queue *cfqq)
1122 {
1123         /*
1124          * just an approximation, should be ok.
1125          */
1126         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1127                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1128 }
1129
1130 static inline s64
1131 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1132 {
1133         return cfqg->vdisktime - st->min_vdisktime;
1134 }
1135
1136 static void
1137 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1138 {
1139         struct rb_node **node = &st->rb.rb_node;
1140         struct rb_node *parent = NULL;
1141         struct cfq_group *__cfqg;
1142         s64 key = cfqg_key(st, cfqg);
1143         int left = 1;
1144
1145         while (*node != NULL) {
1146                 parent = *node;
1147                 __cfqg = rb_entry_cfqg(parent);
1148
1149                 if (key < cfqg_key(st, __cfqg))
1150                         node = &parent->rb_left;
1151                 else {
1152                         node = &parent->rb_right;
1153                         left = 0;
1154                 }
1155         }
1156
1157         if (left)
1158                 st->left = &cfqg->rb_node;
1159
1160         rb_link_node(&cfqg->rb_node, parent, node);
1161         rb_insert_color(&cfqg->rb_node, &st->rb);
1162 }
1163
1164 static void
1165 cfq_update_group_weight(struct cfq_group *cfqg)
1166 {
1167         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1168         if (cfqg->needs_update) {
1169                 cfqg->weight = cfqg->new_weight;
1170                 cfqg->needs_update = false;
1171         }
1172 }
1173
1174 static void
1175 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1176 {
1177         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1178
1179         cfq_update_group_weight(cfqg);
1180         __cfq_group_service_tree_add(st, cfqg);
1181         st->total_weight += cfqg->weight;
1182 }
1183
1184 static void
1185 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1186 {
1187         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1188         struct cfq_group *__cfqg;
1189         struct rb_node *n;
1190
1191         cfqg->nr_cfqq++;
1192         if (!RB_EMPTY_NODE(&cfqg->rb_node))
1193                 return;
1194
1195         /*
1196          * Currently put the group at the end. Later implement something
1197          * so that groups get lesser vtime based on their weights, so that
1198          * if group does not loose all if it was not continuously backlogged.
1199          */
1200         n = rb_last(&st->rb);
1201         if (n) {
1202                 __cfqg = rb_entry_cfqg(n);
1203                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1204         } else
1205                 cfqg->vdisktime = st->min_vdisktime;
1206         cfq_group_service_tree_add(st, cfqg);
1207 }
1208
1209 static void
1210 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1211 {
1212         st->total_weight -= cfqg->weight;
1213         if (!RB_EMPTY_NODE(&cfqg->rb_node))
1214                 cfq_rb_erase(&cfqg->rb_node, st);
1215 }
1216
1217 static void
1218 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1219 {
1220         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1221
1222         BUG_ON(cfqg->nr_cfqq < 1);
1223         cfqg->nr_cfqq--;
1224
1225         /* If there are other cfq queues under this group, don't delete it */
1226         if (cfqg->nr_cfqq)
1227                 return;
1228
1229         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1230         cfq_group_service_tree_del(st, cfqg);
1231         cfqg->saved_workload_slice = 0;
1232         cfqg_stats_update_dequeue(cfqg);
1233 }
1234
1235 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1236                                                 unsigned int *unaccounted_time)
1237 {
1238         unsigned int slice_used;
1239
1240         /*
1241          * Queue got expired before even a single request completed or
1242          * got expired immediately after first request completion.
1243          */
1244         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1245                 /*
1246                  * Also charge the seek time incurred to the group, otherwise
1247                  * if there are mutiple queues in the group, each can dispatch
1248                  * a single request on seeky media and cause lots of seek time
1249                  * and group will never know it.
1250                  */
1251                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1252                                         1);
1253         } else {
1254                 slice_used = jiffies - cfqq->slice_start;
1255                 if (slice_used > cfqq->allocated_slice) {
1256                         *unaccounted_time = slice_used - cfqq->allocated_slice;
1257                         slice_used = cfqq->allocated_slice;
1258                 }
1259                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1260                         *unaccounted_time += cfqq->slice_start -
1261                                         cfqq->dispatch_start;
1262         }
1263
1264         return slice_used;
1265 }
1266
1267 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1268                                 struct cfq_queue *cfqq)
1269 {
1270         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1271         unsigned int used_sl, charge, unaccounted_sl = 0;
1272         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1273                         - cfqg->service_tree_idle.count;
1274
1275         BUG_ON(nr_sync < 0);
1276         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1277
1278         if (iops_mode(cfqd))
1279                 charge = cfqq->slice_dispatch;
1280         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1281                 charge = cfqq->allocated_slice;
1282
1283         /* Can't update vdisktime while group is on service tree */
1284         cfq_group_service_tree_del(st, cfqg);
1285         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1286         /* If a new weight was requested, update now, off tree */
1287         cfq_group_service_tree_add(st, cfqg);
1288
1289         /* This group is being expired. Save the context */
1290         if (time_after(cfqd->workload_expires, jiffies)) {
1291                 cfqg->saved_workload_slice = cfqd->workload_expires
1292                                                 - jiffies;
1293                 cfqg->saved_workload = cfqd->serving_type;
1294                 cfqg->saved_serving_prio = cfqd->serving_prio;
1295         } else
1296                 cfqg->saved_workload_slice = 0;
1297
1298         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1299                                         st->min_vdisktime);
1300         cfq_log_cfqq(cfqq->cfqd, cfqq,
1301                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1302                      used_sl, cfqq->slice_dispatch, charge,
1303                      iops_mode(cfqd), cfqq->nr_sectors);
1304         cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1305         cfqg_stats_set_start_empty_time(cfqg);
1306 }
1307
1308 /**
1309  * cfq_init_cfqg_base - initialize base part of a cfq_group
1310  * @cfqg: cfq_group to initialize
1311  *
1312  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1313  * is enabled or not.
1314  */
1315 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1316 {
1317         struct cfq_rb_root *st;
1318         int i, j;
1319
1320         for_each_cfqg_st(cfqg, i, j, st)
1321                 *st = CFQ_RB_ROOT;
1322         RB_CLEAR_NODE(&cfqg->rb_node);
1323
1324         cfqg->ttime.last_end_request = jiffies;
1325 }
1326
1327 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1328 static void cfq_update_blkio_group_weight(struct blkio_group *blkg,
1329                                           unsigned int weight)
1330 {
1331         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1332
1333         cfqg->new_weight = weight;
1334         cfqg->needs_update = true;
1335 }
1336
1337 static void cfq_init_blkio_group(struct blkio_group *blkg)
1338 {
1339         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1340
1341         cfq_init_cfqg_base(cfqg);
1342         cfqg->weight = blkg->blkcg->weight;
1343 }
1344
1345 /*
1346  * Search for the cfq group current task belongs to. request_queue lock must
1347  * be held.
1348  */
1349 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1350                                                 struct blkio_cgroup *blkcg)
1351 {
1352         struct request_queue *q = cfqd->queue;
1353         struct cfq_group *cfqg = NULL;
1354
1355         /* avoid lookup for the common case where there's no blkio cgroup */
1356         if (blkcg == &blkio_root_cgroup) {
1357                 cfqg = cfqd->root_group;
1358         } else {
1359                 struct blkio_group *blkg;
1360
1361                 blkg = blkg_lookup_create(blkcg, q, false);
1362                 if (!IS_ERR(blkg))
1363                         cfqg = blkg_to_cfqg(blkg);
1364         }
1365
1366         return cfqg;
1367 }
1368
1369 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1370 {
1371         /* Currently, all async queues are mapped to root group */
1372         if (!cfq_cfqq_sync(cfqq))
1373                 cfqg = cfqq->cfqd->root_group;
1374
1375         cfqq->cfqg = cfqg;
1376         /* cfqq reference on cfqg */
1377         cfqg_get(cfqg);
1378 }
1379
1380 static u64 blkg_prfill_weight_device(struct seq_file *sf,
1381                                      struct blkg_policy_data *pd, int off)
1382 {
1383         if (!pd->conf.weight)
1384                 return 0;
1385         return __blkg_prfill_u64(sf, pd, pd->conf.weight);
1386 }
1387
1388 static int blkcg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1389                                      struct seq_file *sf)
1390 {
1391         blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
1392                           blkg_prfill_weight_device, BLKIO_POLICY_PROP, 0,
1393                           false);
1394         return 0;
1395 }
1396
1397 static int blkcg_print_weight(struct cgroup *cgrp, struct cftype *cft,
1398                               struct seq_file *sf)
1399 {
1400         seq_printf(sf, "%u\n", cgroup_to_blkio_cgroup(cgrp)->weight);
1401         return 0;
1402 }
1403
1404 static int blkcg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1405                                    const char *buf)
1406 {
1407         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1408         struct blkg_policy_data *pd;
1409         struct blkg_conf_ctx ctx;
1410         int ret;
1411
1412         ret = blkg_conf_prep(blkcg, buf, &ctx);
1413         if (ret)
1414                 return ret;
1415
1416         ret = -EINVAL;
1417         pd = ctx.blkg->pd[BLKIO_POLICY_PROP];
1418         if (pd && (!ctx.v || (ctx.v >= BLKIO_WEIGHT_MIN &&
1419                               ctx.v <= BLKIO_WEIGHT_MAX))) {
1420                 pd->conf.weight = ctx.v;
1421                 cfq_update_blkio_group_weight(ctx.blkg, ctx.v ?: blkcg->weight);
1422                 ret = 0;
1423         }
1424
1425         blkg_conf_finish(&ctx);
1426         return ret;
1427 }
1428
1429 static int blkcg_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1430 {
1431         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1432         struct blkio_group *blkg;
1433         struct hlist_node *n;
1434
1435         if (val < BLKIO_WEIGHT_MIN || val > BLKIO_WEIGHT_MAX)
1436                 return -EINVAL;
1437
1438         spin_lock_irq(&blkcg->lock);
1439         blkcg->weight = (unsigned int)val;
1440
1441         hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1442                 struct blkg_policy_data *pd = blkg->pd[BLKIO_POLICY_PROP];
1443
1444                 if (pd && !pd->conf.weight)
1445                         cfq_update_blkio_group_weight(blkg, blkcg->weight);
1446         }
1447
1448         spin_unlock_irq(&blkcg->lock);
1449         return 0;
1450 }
1451
1452 #ifdef CONFIG_DEBUG_BLK_CGROUP
1453 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1454                                       struct blkg_policy_data *pd, int off)
1455 {
1456         struct cfq_group *cfqg = (void *)pd->pdata;
1457         u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1458         u64 v = 0;
1459
1460         if (samples) {
1461                 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1462                 do_div(v, samples);
1463         }
1464         __blkg_prfill_u64(sf, pd, v);
1465         return 0;
1466 }
1467
1468 /* print avg_queue_size */
1469 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1470                                      struct seq_file *sf)
1471 {
1472         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1473
1474         blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1475                           BLKIO_POLICY_PROP, 0, false);
1476         return 0;
1477 }
1478 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
1479
1480 static struct cftype cfq_blkcg_files[] = {
1481         {
1482                 .name = "weight_device",
1483                 .read_seq_string = blkcg_print_weight_device,
1484                 .write_string = blkcg_set_weight_device,
1485                 .max_write_len = 256,
1486         },
1487         {
1488                 .name = "weight",
1489                 .read_seq_string = blkcg_print_weight,
1490                 .write_u64 = blkcg_set_weight,
1491         },
1492         {
1493                 .name = "time",
1494                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1495                                 offsetof(struct cfq_group, stats.time)),
1496                 .read_seq_string = blkcg_print_stat,
1497         },
1498         {
1499                 .name = "sectors",
1500                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1501                                 offsetof(struct cfq_group, stats.sectors)),
1502                 .read_seq_string = blkcg_print_stat,
1503         },
1504         {
1505                 .name = "io_service_bytes",
1506                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1507                                 offsetof(struct cfq_group, stats.service_bytes)),
1508                 .read_seq_string = blkcg_print_rwstat,
1509         },
1510         {
1511                 .name = "io_serviced",
1512                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1513                                 offsetof(struct cfq_group, stats.serviced)),
1514                 .read_seq_string = blkcg_print_rwstat,
1515         },
1516         {
1517                 .name = "io_service_time",
1518                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1519                                 offsetof(struct cfq_group, stats.service_time)),
1520                 .read_seq_string = blkcg_print_rwstat,
1521         },
1522         {
1523                 .name = "io_wait_time",
1524                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1525                                 offsetof(struct cfq_group, stats.wait_time)),
1526                 .read_seq_string = blkcg_print_rwstat,
1527         },
1528         {
1529                 .name = "io_merged",
1530                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1531                                 offsetof(struct cfq_group, stats.merged)),
1532                 .read_seq_string = blkcg_print_rwstat,
1533         },
1534         {
1535                 .name = "io_queued",
1536                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1537                                 offsetof(struct cfq_group, stats.queued)),
1538                 .read_seq_string = blkcg_print_rwstat,
1539         },
1540 #ifdef CONFIG_DEBUG_BLK_CGROUP
1541         {
1542                 .name = "avg_queue_size",
1543                 .read_seq_string = cfqg_print_avg_queue_size,
1544         },
1545         {
1546                 .name = "group_wait_time",
1547                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1548                                 offsetof(struct cfq_group, stats.group_wait_time)),
1549                 .read_seq_string = blkcg_print_stat,
1550         },
1551         {
1552                 .name = "idle_time",
1553                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1554                                 offsetof(struct cfq_group, stats.idle_time)),
1555                 .read_seq_string = blkcg_print_stat,
1556         },
1557         {
1558                 .name = "empty_time",
1559                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1560                                 offsetof(struct cfq_group, stats.empty_time)),
1561                 .read_seq_string = blkcg_print_stat,
1562         },
1563         {
1564                 .name = "dequeue",
1565                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1566                                 offsetof(struct cfq_group, stats.dequeue)),
1567                 .read_seq_string = blkcg_print_stat,
1568         },
1569         {
1570                 .name = "unaccounted_time",
1571                 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
1572                                 offsetof(struct cfq_group, stats.unaccounted_time)),
1573                 .read_seq_string = blkcg_print_stat,
1574         },
1575 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
1576         { }     /* terminate */
1577 };
1578 #else /* GROUP_IOSCHED */
1579 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1580                                                 struct blkio_cgroup *blkcg)
1581 {
1582         return cfqd->root_group;
1583 }
1584
1585 static inline void
1586 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1587         cfqq->cfqg = cfqg;
1588 }
1589
1590 #endif /* GROUP_IOSCHED */
1591
1592 /*
1593  * The cfqd->service_trees holds all pending cfq_queue's that have
1594  * requests waiting to be processed. It is sorted in the order that
1595  * we will service the queues.
1596  */
1597 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1598                                  bool add_front)
1599 {
1600         struct rb_node **p, *parent;
1601         struct cfq_queue *__cfqq;
1602         unsigned long rb_key;
1603         struct cfq_rb_root *service_tree;
1604         int left;
1605         int new_cfqq = 1;
1606
1607         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1608                                                 cfqq_type(cfqq));
1609         if (cfq_class_idle(cfqq)) {
1610                 rb_key = CFQ_IDLE_DELAY;
1611                 parent = rb_last(&service_tree->rb);
1612                 if (parent && parent != &cfqq->rb_node) {
1613                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1614                         rb_key += __cfqq->rb_key;
1615                 } else
1616                         rb_key += jiffies;
1617         } else if (!add_front) {
1618                 /*
1619                  * Get our rb key offset. Subtract any residual slice
1620                  * value carried from last service. A negative resid
1621                  * count indicates slice overrun, and this should position
1622                  * the next service time further away in the tree.
1623                  */
1624                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1625                 rb_key -= cfqq->slice_resid;
1626                 cfqq->slice_resid = 0;
1627         } else {
1628                 rb_key = -HZ;
1629                 __cfqq = cfq_rb_first(service_tree);
1630                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1631         }
1632
1633         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1634                 new_cfqq = 0;
1635                 /*
1636                  * same position, nothing more to do
1637                  */
1638                 if (rb_key == cfqq->rb_key &&
1639                     cfqq->service_tree == service_tree)
1640                         return;
1641
1642                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1643                 cfqq->service_tree = NULL;
1644         }
1645
1646         left = 1;
1647         parent = NULL;
1648         cfqq->service_tree = service_tree;
1649         p = &service_tree->rb.rb_node;
1650         while (*p) {
1651                 struct rb_node **n;
1652
1653                 parent = *p;
1654                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1655
1656                 /*
1657                  * sort by key, that represents service time.
1658                  */
1659                 if (time_before(rb_key, __cfqq->rb_key))
1660                         n = &(*p)->rb_left;
1661                 else {
1662                         n = &(*p)->rb_right;
1663                         left = 0;
1664                 }
1665
1666                 p = n;
1667         }
1668
1669         if (left)
1670                 service_tree->left = &cfqq->rb_node;
1671
1672         cfqq->rb_key = rb_key;
1673         rb_link_node(&cfqq->rb_node, parent, p);
1674         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1675         service_tree->count++;
1676         if (add_front || !new_cfqq)
1677                 return;
1678         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1679 }
1680
1681 static struct cfq_queue *
1682 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1683                      sector_t sector, struct rb_node **ret_parent,
1684                      struct rb_node ***rb_link)
1685 {
1686         struct rb_node **p, *parent;
1687         struct cfq_queue *cfqq = NULL;
1688
1689         parent = NULL;
1690         p = &root->rb_node;
1691         while (*p) {
1692                 struct rb_node **n;
1693
1694                 parent = *p;
1695                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1696
1697                 /*
1698                  * Sort strictly based on sector.  Smallest to the left,
1699                  * largest to the right.
1700                  */
1701                 if (sector > blk_rq_pos(cfqq->next_rq))
1702                         n = &(*p)->rb_right;
1703                 else if (sector < blk_rq_pos(cfqq->next_rq))
1704                         n = &(*p)->rb_left;
1705                 else
1706                         break;
1707                 p = n;
1708                 cfqq = NULL;
1709         }
1710
1711         *ret_parent = parent;
1712         if (rb_link)
1713                 *rb_link = p;
1714         return cfqq;
1715 }
1716
1717 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1718 {
1719         struct rb_node **p, *parent;
1720         struct cfq_queue *__cfqq;
1721
1722         if (cfqq->p_root) {
1723                 rb_erase(&cfqq->p_node, cfqq->p_root);
1724                 cfqq->p_root = NULL;
1725         }
1726
1727         if (cfq_class_idle(cfqq))
1728                 return;
1729         if (!cfqq->next_rq)
1730                 return;
1731
1732         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1733         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1734                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1735         if (!__cfqq) {
1736                 rb_link_node(&cfqq->p_node, parent, p);
1737                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1738         } else
1739                 cfqq->p_root = NULL;
1740 }
1741
1742 /*
1743  * Update cfqq's position in the service tree.
1744  */
1745 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1746 {
1747         /*
1748          * Resorting requires the cfqq to be on the RR list already.
1749          */
1750         if (cfq_cfqq_on_rr(cfqq)) {
1751                 cfq_service_tree_add(cfqd, cfqq, 0);
1752                 cfq_prio_tree_add(cfqd, cfqq);
1753         }
1754 }
1755
1756 /*
1757  * add to busy list of queues for service, trying to be fair in ordering
1758  * the pending list according to last request service
1759  */
1760 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1761 {
1762         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1763         BUG_ON(cfq_cfqq_on_rr(cfqq));
1764         cfq_mark_cfqq_on_rr(cfqq);
1765         cfqd->busy_queues++;
1766         if (cfq_cfqq_sync(cfqq))
1767                 cfqd->busy_sync_queues++;
1768
1769         cfq_resort_rr_list(cfqd, cfqq);
1770 }
1771
1772 /*
1773  * Called when the cfqq no longer has requests pending, remove it from
1774  * the service tree.
1775  */
1776 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1777 {
1778         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1779         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1780         cfq_clear_cfqq_on_rr(cfqq);
1781
1782         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1783                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1784                 cfqq->service_tree = NULL;
1785         }
1786         if (cfqq->p_root) {
1787                 rb_erase(&cfqq->p_node, cfqq->p_root);
1788                 cfqq->p_root = NULL;
1789         }
1790
1791         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1792         BUG_ON(!cfqd->busy_queues);
1793         cfqd->busy_queues--;
1794         if (cfq_cfqq_sync(cfqq))
1795                 cfqd->busy_sync_queues--;
1796 }
1797
1798 /*
1799  * rb tree support functions
1800  */
1801 static void cfq_del_rq_rb(struct request *rq)
1802 {
1803         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1804         const int sync = rq_is_sync(rq);
1805
1806         BUG_ON(!cfqq->queued[sync]);
1807         cfqq->queued[sync]--;
1808
1809         elv_rb_del(&cfqq->sort_list, rq);
1810
1811         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1812                 /*
1813                  * Queue will be deleted from service tree when we actually
1814                  * expire it later. Right now just remove it from prio tree
1815                  * as it is empty.
1816                  */
1817                 if (cfqq->p_root) {
1818                         rb_erase(&cfqq->p_node, cfqq->p_root);
1819                         cfqq->p_root = NULL;
1820                 }
1821         }
1822 }
1823
1824 static void cfq_add_rq_rb(struct request *rq)
1825 {
1826         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1827         struct cfq_data *cfqd = cfqq->cfqd;
1828         struct request *prev;
1829
1830         cfqq->queued[rq_is_sync(rq)]++;
1831
1832         elv_rb_add(&cfqq->sort_list, rq);
1833
1834         if (!cfq_cfqq_on_rr(cfqq))
1835                 cfq_add_cfqq_rr(cfqd, cfqq);
1836
1837         /*
1838          * check if this request is a better next-serve candidate
1839          */
1840         prev = cfqq->next_rq;
1841         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1842
1843         /*
1844          * adjust priority tree position, if ->next_rq changes
1845          */
1846         if (prev != cfqq->next_rq)
1847                 cfq_prio_tree_add(cfqd, cfqq);
1848
1849         BUG_ON(!cfqq->next_rq);
1850 }
1851
1852 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1853 {
1854         elv_rb_del(&cfqq->sort_list, rq);
1855         cfqq->queued[rq_is_sync(rq)]--;
1856         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1857         cfq_add_rq_rb(rq);
1858         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1859                                  rq->cmd_flags);
1860 }
1861
1862 static struct request *
1863 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1864 {
1865         struct task_struct *tsk = current;
1866         struct cfq_io_cq *cic;
1867         struct cfq_queue *cfqq;
1868
1869         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1870         if (!cic)
1871                 return NULL;
1872
1873         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1874         if (cfqq) {
1875                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1876
1877                 return elv_rb_find(&cfqq->sort_list, sector);
1878         }
1879
1880         return NULL;
1881 }
1882
1883 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1884 {
1885         struct cfq_data *cfqd = q->elevator->elevator_data;
1886
1887         cfqd->rq_in_driver++;
1888         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1889                                                 cfqd->rq_in_driver);
1890
1891         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1892 }
1893
1894 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1895 {
1896         struct cfq_data *cfqd = q->elevator->elevator_data;
1897
1898         WARN_ON(!cfqd->rq_in_driver);
1899         cfqd->rq_in_driver--;
1900         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1901                                                 cfqd->rq_in_driver);
1902 }
1903
1904 static void cfq_remove_request(struct request *rq)
1905 {
1906         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1907
1908         if (cfqq->next_rq == rq)
1909                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1910
1911         list_del_init(&rq->queuelist);
1912         cfq_del_rq_rb(rq);
1913
1914         cfqq->cfqd->rq_queued--;
1915         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1916         if (rq->cmd_flags & REQ_PRIO) {
1917                 WARN_ON(!cfqq->prio_pending);
1918                 cfqq->prio_pending--;
1919         }
1920 }
1921
1922 static int cfq_merge(struct request_queue *q, struct request **req,
1923                      struct bio *bio)
1924 {
1925         struct cfq_data *cfqd = q->elevator->elevator_data;
1926         struct request *__rq;
1927
1928         __rq = cfq_find_rq_fmerge(cfqd, bio);
1929         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1930                 *req = __rq;
1931                 return ELEVATOR_FRONT_MERGE;
1932         }
1933
1934         return ELEVATOR_NO_MERGE;
1935 }
1936
1937 static void cfq_merged_request(struct request_queue *q, struct request *req,
1938                                int type)
1939 {
1940         if (type == ELEVATOR_FRONT_MERGE) {
1941                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1942
1943                 cfq_reposition_rq_rb(cfqq, req);
1944         }
1945 }
1946
1947 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1948                                 struct bio *bio)
1949 {
1950         cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1951 }
1952
1953 static void
1954 cfq_merged_requests(struct request_queue *q, struct request *rq,
1955                     struct request *next)
1956 {
1957         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1958         struct cfq_data *cfqd = q->elevator->elevator_data;
1959
1960         /*
1961          * reposition in fifo if next is older than rq
1962          */
1963         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1964             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1965                 list_move(&rq->queuelist, &next->queuelist);
1966                 rq_set_fifo_time(rq, rq_fifo_time(next));
1967         }
1968
1969         if (cfqq->next_rq == next)
1970                 cfqq->next_rq = rq;
1971         cfq_remove_request(next);
1972         cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1973
1974         cfqq = RQ_CFQQ(next);
1975         /*
1976          * all requests of this queue are merged to other queues, delete it
1977          * from the service tree. If it's the active_queue,
1978          * cfq_dispatch_requests() will choose to expire it or do idle
1979          */
1980         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1981             cfqq != cfqd->active_queue)
1982                 cfq_del_cfqq_rr(cfqd, cfqq);
1983 }
1984
1985 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1986                            struct bio *bio)
1987 {
1988         struct cfq_data *cfqd = q->elevator->elevator_data;
1989         struct cfq_io_cq *cic;
1990         struct cfq_queue *cfqq;
1991
1992         /*
1993          * Disallow merge of a sync bio into an async request.
1994          */
1995         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1996                 return false;
1997
1998         /*
1999          * Lookup the cfqq that this bio will be queued with and allow
2000          * merge only if rq is queued there.
2001          */
2002         cic = cfq_cic_lookup(cfqd, current->io_context);
2003         if (!cic)
2004                 return false;
2005
2006         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2007         return cfqq == RQ_CFQQ(rq);
2008 }
2009
2010 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2011 {
2012         del_timer(&cfqd->idle_slice_timer);
2013         cfqg_stats_update_idle_time(cfqq->cfqg);
2014 }
2015
2016 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2017                                    struct cfq_queue *cfqq)
2018 {
2019         if (cfqq) {
2020                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
2021                                 cfqd->serving_prio, cfqd->serving_type);
2022                 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2023                 cfqq->slice_start = 0;
2024                 cfqq->dispatch_start = jiffies;
2025                 cfqq->allocated_slice = 0;
2026                 cfqq->slice_end = 0;
2027                 cfqq->slice_dispatch = 0;
2028                 cfqq->nr_sectors = 0;
2029
2030                 cfq_clear_cfqq_wait_request(cfqq);
2031                 cfq_clear_cfqq_must_dispatch(cfqq);
2032                 cfq_clear_cfqq_must_alloc_slice(cfqq);
2033                 cfq_clear_cfqq_fifo_expire(cfqq);
2034                 cfq_mark_cfqq_slice_new(cfqq);
2035
2036                 cfq_del_timer(cfqd, cfqq);
2037         }
2038
2039         cfqd->active_queue = cfqq;
2040 }
2041
2042 /*
2043  * current cfqq expired its slice (or was too idle), select new one
2044  */
2045 static void
2046 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2047                     bool timed_out)
2048 {
2049         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2050
2051         if (cfq_cfqq_wait_request(cfqq))
2052                 cfq_del_timer(cfqd, cfqq);
2053
2054         cfq_clear_cfqq_wait_request(cfqq);
2055         cfq_clear_cfqq_wait_busy(cfqq);
2056
2057         /*
2058          * If this cfqq is shared between multiple processes, check to
2059          * make sure that those processes are still issuing I/Os within
2060          * the mean seek distance.  If not, it may be time to break the
2061          * queues apart again.
2062          */
2063         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2064                 cfq_mark_cfqq_split_coop(cfqq);
2065
2066         /*
2067          * store what was left of this slice, if the queue idled/timed out
2068          */
2069         if (timed_out) {
2070                 if (cfq_cfqq_slice_new(cfqq))
2071                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2072                 else
2073                         cfqq->slice_resid = cfqq->slice_end - jiffies;
2074                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2075         }
2076
2077         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2078
2079         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2080                 cfq_del_cfqq_rr(cfqd, cfqq);
2081
2082         cfq_resort_rr_list(cfqd, cfqq);
2083
2084         if (cfqq == cfqd->active_queue)
2085                 cfqd->active_queue = NULL;
2086
2087         if (cfqd->active_cic) {
2088                 put_io_context(cfqd->active_cic->icq.ioc);
2089                 cfqd->active_cic = NULL;
2090         }
2091 }
2092
2093 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2094 {
2095         struct cfq_queue *cfqq = cfqd->active_queue;
2096
2097         if (cfqq)
2098                 __cfq_slice_expired(cfqd, cfqq, timed_out);
2099 }
2100
2101 /*
2102  * Get next queue for service. Unless we have a queue preemption,
2103  * we'll simply select the first cfqq in the service tree.
2104  */
2105 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2106 {
2107         struct cfq_rb_root *service_tree =
2108                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2109                                         cfqd->serving_type);
2110
2111         if (!cfqd->rq_queued)
2112                 return NULL;
2113
2114         /* There is nothing to dispatch */
2115         if (!service_tree)
2116                 return NULL;
2117         if (RB_EMPTY_ROOT(&service_tree->rb))
2118                 return NULL;
2119         return cfq_rb_first(service_tree);
2120 }
2121
2122 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2123 {
2124         struct cfq_group *cfqg;
2125         struct cfq_queue *cfqq;
2126         int i, j;
2127         struct cfq_rb_root *st;
2128
2129         if (!cfqd->rq_queued)
2130                 return NULL;
2131
2132         cfqg = cfq_get_next_cfqg(cfqd);
2133         if (!cfqg)
2134                 return NULL;
2135
2136         for_each_cfqg_st(cfqg, i, j, st)
2137                 if ((cfqq = cfq_rb_first(st)) != NULL)
2138                         return cfqq;
2139         return NULL;
2140 }
2141
2142 /*
2143  * Get and set a new active queue for service.
2144  */
2145 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2146                                               struct cfq_queue *cfqq)
2147 {
2148         if (!cfqq)
2149                 cfqq = cfq_get_next_queue(cfqd);
2150
2151         __cfq_set_active_queue(cfqd, cfqq);
2152         return cfqq;
2153 }
2154
2155 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2156                                           struct request *rq)
2157 {
2158         if (blk_rq_pos(rq) >= cfqd->last_position)
2159                 return blk_rq_pos(rq) - cfqd->last_position;
2160         else
2161                 return cfqd->last_position - blk_rq_pos(rq);
2162 }
2163
2164 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2165                                struct request *rq)
2166 {
2167         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2168 }
2169
2170 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2171                                     struct cfq_queue *cur_cfqq)
2172 {
2173         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2174         struct rb_node *parent, *node;
2175         struct cfq_queue *__cfqq;
2176         sector_t sector = cfqd->last_position;
2177
2178         if (RB_EMPTY_ROOT(root))
2179                 return NULL;
2180
2181         /*
2182          * First, if we find a request starting at the end of the last
2183          * request, choose it.
2184          */
2185         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2186         if (__cfqq)
2187                 return __cfqq;
2188
2189         /*
2190          * If the exact sector wasn't found, the parent of the NULL leaf
2191          * will contain the closest sector.
2192          */
2193         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2194         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2195                 return __cfqq;
2196
2197         if (blk_rq_pos(__cfqq->next_rq) < sector)
2198                 node = rb_next(&__cfqq->p_node);
2199         else
2200                 node = rb_prev(&__cfqq->p_node);
2201         if (!node)
2202                 return NULL;
2203
2204         __cfqq = rb_entry(node, struct cfq_queue, p_node);
2205         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2206                 return __cfqq;
2207
2208         return NULL;
2209 }
2210
2211 /*
2212  * cfqd - obvious
2213  * cur_cfqq - passed in so that we don't decide that the current queue is
2214  *            closely cooperating with itself.
2215  *
2216  * So, basically we're assuming that that cur_cfqq has dispatched at least
2217  * one request, and that cfqd->last_position reflects a position on the disk
2218  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2219  * assumption.
2220  */
2221 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2222                                               struct cfq_queue *cur_cfqq)
2223 {
2224         struct cfq_queue *cfqq;
2225
2226         if (cfq_class_idle(cur_cfqq))
2227                 return NULL;
2228         if (!cfq_cfqq_sync(cur_cfqq))
2229                 return NULL;
2230         if (CFQQ_SEEKY(cur_cfqq))
2231                 return NULL;
2232
2233         /*
2234          * Don't search priority tree if it's the only queue in the group.
2235          */
2236         if (cur_cfqq->cfqg->nr_cfqq == 1)
2237                 return NULL;
2238
2239         /*
2240          * We should notice if some of the queues are cooperating, eg
2241          * working closely on the same area of the disk. In that case,
2242          * we can group them together and don't waste time idling.
2243          */
2244         cfqq = cfqq_close(cfqd, cur_cfqq);
2245         if (!cfqq)
2246                 return NULL;
2247
2248         /* If new queue belongs to different cfq_group, don't choose it */
2249         if (cur_cfqq->cfqg != cfqq->cfqg)
2250                 return NULL;
2251
2252         /*
2253          * It only makes sense to merge sync queues.
2254          */
2255         if (!cfq_cfqq_sync(cfqq))
2256                 return NULL;
2257         if (CFQQ_SEEKY(cfqq))
2258                 return NULL;
2259
2260         /*
2261          * Do not merge queues of different priority classes
2262          */
2263         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2264                 return NULL;
2265
2266         return cfqq;
2267 }
2268
2269 /*
2270  * Determine whether we should enforce idle window for this queue.
2271  */
2272
2273 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2274 {
2275         enum wl_prio_t prio = cfqq_prio(cfqq);
2276         struct cfq_rb_root *service_tree = cfqq->service_tree;
2277
2278         BUG_ON(!service_tree);
2279         BUG_ON(!service_tree->count);
2280
2281         if (!cfqd->cfq_slice_idle)
2282                 return false;
2283
2284         /* We never do for idle class queues. */
2285         if (prio == IDLE_WORKLOAD)
2286                 return false;
2287
2288         /* We do for queues that were marked with idle window flag. */
2289         if (cfq_cfqq_idle_window(cfqq) &&
2290            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2291                 return true;
2292
2293         /*
2294          * Otherwise, we do only if they are the last ones
2295          * in their service tree.
2296          */
2297         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2298            !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2299                 return true;
2300         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2301                         service_tree->count);
2302         return false;
2303 }
2304
2305 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2306 {
2307         struct cfq_queue *cfqq = cfqd->active_queue;
2308         struct cfq_io_cq *cic;
2309         unsigned long sl, group_idle = 0;
2310
2311         /*
2312          * SSD device without seek penalty, disable idling. But only do so
2313          * for devices that support queuing, otherwise we still have a problem
2314          * with sync vs async workloads.
2315          */
2316         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2317                 return;
2318
2319         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2320         WARN_ON(cfq_cfqq_slice_new(cfqq));
2321
2322         /*
2323          * idle is disabled, either manually or by past process history
2324          */
2325         if (!cfq_should_idle(cfqd, cfqq)) {
2326                 /* no queue idling. Check for group idling */
2327                 if (cfqd->cfq_group_idle)
2328                         group_idle = cfqd->cfq_group_idle;
2329                 else
2330                         return;
2331         }
2332
2333         /*
2334          * still active requests from this queue, don't idle
2335          */
2336         if (cfqq->dispatched)
2337                 return;
2338
2339         /*
2340          * task has exited, don't wait
2341          */
2342         cic = cfqd->active_cic;
2343         if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2344                 return;
2345
2346         /*
2347          * If our average think time is larger than the remaining time
2348          * slice, then don't idle. This avoids overrunning the allotted
2349          * time slice.
2350          */
2351         if (sample_valid(cic->ttime.ttime_samples) &&
2352             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2353                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2354                              cic->ttime.ttime_mean);
2355                 return;
2356         }
2357
2358         /* There are other queues in the group, don't do group idle */
2359         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2360                 return;
2361
2362         cfq_mark_cfqq_wait_request(cfqq);
2363
2364         if (group_idle)
2365                 sl = cfqd->cfq_group_idle;
2366         else
2367                 sl = cfqd->cfq_slice_idle;
2368
2369         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2370         cfqg_stats_set_start_idle_time(cfqq->cfqg);
2371         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2372                         group_idle ? 1 : 0);
2373 }
2374
2375 /*
2376  * Move request from internal lists to the request queue dispatch list.
2377  */
2378 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2379 {
2380         struct cfq_data *cfqd = q->elevator->elevator_data;
2381         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2382
2383         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2384
2385         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2386         cfq_remove_request(rq);
2387         cfqq->dispatched++;
2388         (RQ_CFQG(rq))->dispatched++;
2389         elv_dispatch_sort(q, rq);
2390
2391         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2392         cfqq->nr_sectors += blk_rq_sectors(rq);
2393         cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2394 }
2395
2396 /*
2397  * return expired entry, or NULL to just start from scratch in rbtree
2398  */
2399 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2400 {
2401         struct request *rq = NULL;
2402
2403         if (cfq_cfqq_fifo_expire(cfqq))
2404                 return NULL;
2405
2406         cfq_mark_cfqq_fifo_expire(cfqq);
2407
2408         if (list_empty(&cfqq->fifo))
2409                 return NULL;
2410
2411         rq = rq_entry_fifo(cfqq->fifo.next);
2412         if (time_before(jiffies, rq_fifo_time(rq)))
2413                 rq = NULL;
2414
2415         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2416         return rq;
2417 }
2418
2419 static inline int
2420 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2421 {
2422         const int base_rq = cfqd->cfq_slice_async_rq;
2423
2424         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2425
2426         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2427 }
2428
2429 /*
2430  * Must be called with the queue_lock held.
2431  */
2432 static int cfqq_process_refs(struct cfq_queue *cfqq)
2433 {
2434         int process_refs, io_refs;
2435
2436         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2437         process_refs = cfqq->ref - io_refs;
2438         BUG_ON(process_refs < 0);
2439         return process_refs;
2440 }
2441
2442 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2443 {
2444         int process_refs, new_process_refs;
2445         struct cfq_queue *__cfqq;
2446
2447         /*
2448          * If there are no process references on the new_cfqq, then it is
2449          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2450          * chain may have dropped their last reference (not just their
2451          * last process reference).
2452          */
2453         if (!cfqq_process_refs(new_cfqq))
2454                 return;
2455
2456         /* Avoid a circular list and skip interim queue merges */
2457         while ((__cfqq = new_cfqq->new_cfqq)) {
2458                 if (__cfqq == cfqq)
2459                         return;
2460                 new_cfqq = __cfqq;
2461         }
2462
2463         process_refs = cfqq_process_refs(cfqq);
2464         new_process_refs = cfqq_process_refs(new_cfqq);
2465         /*
2466          * If the process for the cfqq has gone away, there is no
2467          * sense in merging the queues.
2468          */
2469         if (process_refs == 0 || new_process_refs == 0)
2470                 return;
2471
2472         /*
2473          * Merge in the direction of the lesser amount of work.
2474          */
2475         if (new_process_refs >= process_refs) {
2476                 cfqq->new_cfqq = new_cfqq;
2477                 new_cfqq->ref += process_refs;
2478         } else {
2479                 new_cfqq->new_cfqq = cfqq;
2480                 cfqq->ref += new_process_refs;
2481         }
2482 }
2483
2484 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2485                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2486 {
2487         struct cfq_queue *queue;
2488         int i;
2489         bool key_valid = false;
2490         unsigned long lowest_key = 0;
2491         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2492
2493         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2494                 /* select the one with lowest rb_key */
2495                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2496                 if (queue &&
2497                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2498                         lowest_key = queue->rb_key;
2499                         cur_best = i;
2500                         key_valid = true;
2501                 }
2502         }
2503
2504         return cur_best;
2505 }
2506
2507 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2508 {
2509         unsigned slice;
2510         unsigned count;
2511         struct cfq_rb_root *st;
2512         unsigned group_slice;
2513         enum wl_prio_t original_prio = cfqd->serving_prio;
2514
2515         /* Choose next priority. RT > BE > IDLE */
2516         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2517                 cfqd->serving_prio = RT_WORKLOAD;
2518         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2519                 cfqd->serving_prio = BE_WORKLOAD;
2520         else {
2521                 cfqd->serving_prio = IDLE_WORKLOAD;
2522                 cfqd->workload_expires = jiffies + 1;
2523                 return;
2524         }
2525
2526         if (original_prio != cfqd->serving_prio)
2527                 goto new_workload;
2528
2529         /*
2530          * For RT and BE, we have to choose also the type
2531          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2532          * expiration time
2533          */
2534         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2535         count = st->count;
2536
2537         /*
2538          * check workload expiration, and that we still have other queues ready
2539          */
2540         if (count && !time_after(jiffies, cfqd->workload_expires))
2541                 return;
2542
2543 new_workload:
2544         /* otherwise select new workload type */
2545         cfqd->serving_type =
2546                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2547         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2548         count = st->count;
2549
2550         /*
2551          * the workload slice is computed as a fraction of target latency
2552          * proportional to the number of queues in that workload, over
2553          * all the queues in the same priority class
2554          */
2555         group_slice = cfq_group_slice(cfqd, cfqg);
2556
2557         slice = group_slice * count /
2558                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2559                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2560
2561         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2562                 unsigned int tmp;
2563
2564                 /*
2565                  * Async queues are currently system wide. Just taking
2566                  * proportion of queues with-in same group will lead to higher
2567                  * async ratio system wide as generally root group is going
2568                  * to have higher weight. A more accurate thing would be to
2569                  * calculate system wide asnc/sync ratio.
2570                  */
2571                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2572                 tmp = tmp/cfqd->busy_queues;
2573                 slice = min_t(unsigned, slice, tmp);
2574
2575                 /* async workload slice is scaled down according to
2576                  * the sync/async slice ratio. */
2577                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2578         } else
2579                 /* sync workload slice is at least 2 * cfq_slice_idle */
2580                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2581
2582         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2583         cfq_log(cfqd, "workload slice:%d", slice);
2584         cfqd->workload_expires = jiffies + slice;
2585 }
2586
2587 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2588 {
2589         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2590         struct cfq_group *cfqg;
2591
2592         if (RB_EMPTY_ROOT(&st->rb))
2593                 return NULL;
2594         cfqg = cfq_rb_first_group(st);
2595         update_min_vdisktime(st);
2596         return cfqg;
2597 }
2598
2599 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2600 {
2601         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2602
2603         cfqd->serving_group = cfqg;
2604
2605         /* Restore the workload type data */
2606         if (cfqg->saved_workload_slice) {
2607                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2608                 cfqd->serving_type = cfqg->saved_workload;
2609                 cfqd->serving_prio = cfqg->saved_serving_prio;
2610         } else
2611                 cfqd->workload_expires = jiffies - 1;
2612
2613         choose_service_tree(cfqd, cfqg);
2614 }
2615
2616 /*
2617  * Select a queue for service. If we have a current active queue,
2618  * check whether to continue servicing it, or retrieve and set a new one.
2619  */
2620 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2621 {
2622         struct cfq_queue *cfqq, *new_cfqq = NULL;
2623
2624         cfqq = cfqd->active_queue;
2625         if (!cfqq)
2626                 goto new_queue;
2627
2628         if (!cfqd->rq_queued)
2629                 return NULL;
2630
2631         /*
2632          * We were waiting for group to get backlogged. Expire the queue
2633          */
2634         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2635                 goto expire;
2636
2637         /*
2638          * The active queue has run out of time, expire it and select new.
2639          */
2640         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2641                 /*
2642                  * If slice had not expired at the completion of last request
2643                  * we might not have turned on wait_busy flag. Don't expire
2644                  * the queue yet. Allow the group to get backlogged.
2645                  *
2646                  * The very fact that we have used the slice, that means we
2647                  * have been idling all along on this queue and it should be
2648                  * ok to wait for this request to complete.
2649                  */
2650                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2651                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2652                         cfqq = NULL;
2653                         goto keep_queue;
2654                 } else
2655                         goto check_group_idle;
2656         }
2657
2658         /*
2659          * The active queue has requests and isn't expired, allow it to
2660          * dispatch.
2661          */
2662         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2663                 goto keep_queue;
2664
2665         /*
2666          * If another queue has a request waiting within our mean seek
2667          * distance, let it run.  The expire code will check for close
2668          * cooperators and put the close queue at the front of the service
2669          * tree.  If possible, merge the expiring queue with the new cfqq.
2670          */
2671         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2672         if (new_cfqq) {
2673                 if (!cfqq->new_cfqq)
2674                         cfq_setup_merge(cfqq, new_cfqq);
2675                 goto expire;
2676         }
2677
2678         /*
2679          * No requests pending. If the active queue still has requests in
2680          * flight or is idling for a new request, allow either of these
2681          * conditions to happen (or time out) before selecting a new queue.
2682          */
2683         if (timer_pending(&cfqd->idle_slice_timer)) {
2684                 cfqq = NULL;
2685                 goto keep_queue;
2686         }
2687
2688         /*
2689          * This is a deep seek queue, but the device is much faster than
2690          * the queue can deliver, don't idle
2691          **/
2692         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2693             (cfq_cfqq_slice_new(cfqq) ||
2694             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2695                 cfq_clear_cfqq_deep(cfqq);
2696                 cfq_clear_cfqq_idle_window(cfqq);
2697         }
2698
2699         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2700                 cfqq = NULL;
2701                 goto keep_queue;
2702         }
2703
2704         /*
2705          * If group idle is enabled and there are requests dispatched from
2706          * this group, wait for requests to complete.
2707          */
2708 check_group_idle:
2709         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2710             cfqq->cfqg->dispatched &&
2711             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2712                 cfqq = NULL;
2713                 goto keep_queue;
2714         }
2715
2716 expire:
2717         cfq_slice_expired(cfqd, 0);
2718 new_queue:
2719         /*
2720          * Current queue expired. Check if we have to switch to a new
2721          * service tree
2722          */
2723         if (!new_cfqq)
2724                 cfq_choose_cfqg(cfqd);
2725
2726         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2727 keep_queue:
2728         return cfqq;
2729 }
2730
2731 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2732 {
2733         int dispatched = 0;
2734
2735         while (cfqq->next_rq) {
2736                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2737                 dispatched++;
2738         }
2739
2740         BUG_ON(!list_empty(&cfqq->fifo));
2741
2742         /* By default cfqq is not expired if it is empty. Do it explicitly */
2743         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2744         return dispatched;
2745 }
2746
2747 /*
2748  * Drain our current requests. Used for barriers and when switching
2749  * io schedulers on-the-fly.
2750  */
2751 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2752 {
2753         struct cfq_queue *cfqq;
2754         int dispatched = 0;
2755
2756         /* Expire the timeslice of the current active queue first */
2757         cfq_slice_expired(cfqd, 0);
2758         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2759                 __cfq_set_active_queue(cfqd, cfqq);
2760                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2761         }
2762
2763         BUG_ON(cfqd->busy_queues);
2764
2765         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2766         return dispatched;
2767 }
2768
2769 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2770         struct cfq_queue *cfqq)
2771 {
2772         /* the queue hasn't finished any request, can't estimate */
2773         if (cfq_cfqq_slice_new(cfqq))
2774                 return true;
2775         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2776                 cfqq->slice_end))
2777                 return true;
2778
2779         return false;
2780 }
2781
2782 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2783 {
2784         unsigned int max_dispatch;
2785
2786         /*
2787          * Drain async requests before we start sync IO
2788          */
2789         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2790                 return false;
2791
2792         /*
2793          * If this is an async queue and we have sync IO in flight, let it wait
2794          */
2795         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2796                 return false;
2797
2798         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2799         if (cfq_class_idle(cfqq))
2800                 max_dispatch = 1;
2801
2802         /*
2803          * Does this cfqq already have too much IO in flight?
2804          */
2805         if (cfqq->dispatched >= max_dispatch) {
2806                 bool promote_sync = false;
2807                 /*
2808                  * idle queue must always only have a single IO in flight
2809                  */
2810                 if (cfq_class_idle(cfqq))
2811                         return false;
2812
2813                 /*
2814                  * If there is only one sync queue
2815                  * we can ignore async queue here and give the sync
2816                  * queue no dispatch limit. The reason is a sync queue can
2817                  * preempt async queue, limiting the sync queue doesn't make
2818                  * sense. This is useful for aiostress test.
2819                  */
2820                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2821                         promote_sync = true;
2822
2823                 /*
2824                  * We have other queues, don't allow more IO from this one
2825                  */
2826                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2827                                 !promote_sync)
2828                         return false;
2829
2830                 /*
2831                  * Sole queue user, no limit
2832                  */
2833                 if (cfqd->busy_queues == 1 || promote_sync)
2834                         max_dispatch = -1;
2835                 else
2836                         /*
2837                          * Normally we start throttling cfqq when cfq_quantum/2
2838                          * requests have been dispatched. But we can drive
2839                          * deeper queue depths at the beginning of slice
2840                          * subjected to upper limit of cfq_quantum.
2841                          * */
2842                         max_dispatch = cfqd->cfq_quantum;
2843         }
2844
2845         /*
2846          * Async queues must wait a bit before being allowed dispatch.
2847          * We also ramp up the dispatch depth gradually for async IO,
2848          * based on the last sync IO we serviced
2849          */
2850         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2851                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2852                 unsigned int depth;
2853
2854                 depth = last_sync / cfqd->cfq_slice[1];
2855                 if (!depth && !cfqq->dispatched)
2856                         depth = 1;
2857                 if (depth < max_dispatch)
2858                         max_dispatch = depth;
2859         }
2860
2861         /*
2862          * If we're below the current max, allow a dispatch
2863          */
2864         return cfqq->dispatched < max_dispatch;
2865 }
2866
2867 /*
2868  * Dispatch a request from cfqq, moving them to the request queue
2869  * dispatch list.
2870  */
2871 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2872 {
2873         struct request *rq;
2874
2875         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2876
2877         if (!cfq_may_dispatch(cfqd, cfqq))
2878                 return false;
2879
2880         /*
2881          * follow expired path, else get first next available
2882          */
2883         rq = cfq_check_fifo(cfqq);
2884         if (!rq)
2885                 rq = cfqq->next_rq;
2886
2887         /*
2888          * insert request into driver dispatch list
2889          */
2890         cfq_dispatch_insert(cfqd->queue, rq);
2891
2892         if (!cfqd->active_cic) {
2893                 struct cfq_io_cq *cic = RQ_CIC(rq);
2894
2895                 atomic_long_inc(&cic->icq.ioc->refcount);
2896                 cfqd->active_cic = cic;
2897         }
2898
2899         return true;
2900 }
2901
2902 /*
2903  * Find the cfqq that we need to service and move a request from that to the
2904  * dispatch list
2905  */
2906 static int cfq_dispatch_requests(struct request_queue *q, int force)
2907 {
2908         struct cfq_data *cfqd = q->elevator->elevator_data;
2909         struct cfq_queue *cfqq;
2910
2911         if (!cfqd->busy_queues)
2912                 return 0;
2913
2914         if (unlikely(force))
2915                 return cfq_forced_dispatch(cfqd);
2916
2917         cfqq = cfq_select_queue(cfqd);
2918         if (!cfqq)
2919                 return 0;
2920
2921         /*
2922          * Dispatch a request from this cfqq, if it is allowed
2923          */
2924         if (!cfq_dispatch_request(cfqd, cfqq))
2925                 return 0;
2926
2927         cfqq->slice_dispatch++;
2928         cfq_clear_cfqq_must_dispatch(cfqq);
2929
2930         /*
2931          * expire an async queue immediately if it has used up its slice. idle
2932          * queue always expire after 1 dispatch round.
2933          */
2934         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2935             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2936             cfq_class_idle(cfqq))) {
2937                 cfqq->slice_end = jiffies + 1;
2938                 cfq_slice_expired(cfqd, 0);
2939         }
2940
2941         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2942         return 1;
2943 }
2944
2945 /*
2946  * task holds one reference to the queue, dropped when task exits. each rq
2947  * in-flight on this queue also holds a reference, dropped when rq is freed.
2948  *
2949  * Each cfq queue took a reference on the parent group. Drop it now.
2950  * queue lock must be held here.
2951  */
2952 static void cfq_put_queue(struct cfq_queue *cfqq)
2953 {
2954         struct cfq_data *cfqd = cfqq->cfqd;
2955         struct cfq_group *cfqg;
2956
2957         BUG_ON(cfqq->ref <= 0);
2958
2959         cfqq->ref--;
2960         if (cfqq->ref)
2961                 return;
2962
2963         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2964         BUG_ON(rb_first(&cfqq->sort_list));
2965         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2966         cfqg = cfqq->cfqg;
2967
2968         if (unlikely(cfqd->active_queue == cfqq)) {
2969                 __cfq_slice_expired(cfqd, cfqq, 0);
2970                 cfq_schedule_dispatch(cfqd);
2971         }
2972
2973         BUG_ON(cfq_cfqq_on_rr(cfqq));
2974         kmem_cache_free(cfq_pool, cfqq);
2975         cfqg_put(cfqg);
2976 }
2977
2978 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2979 {
2980         struct cfq_queue *__cfqq, *next;
2981
2982         /*
2983          * If this queue was scheduled to merge with another queue, be
2984          * sure to drop the reference taken on that queue (and others in
2985          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2986          */
2987         __cfqq = cfqq->new_cfqq;
2988         while (__cfqq) {
2989                 if (__cfqq == cfqq) {
2990                         WARN(1, "cfqq->new_cfqq loop detected\n");
2991                         break;
2992                 }
2993                 next = __cfqq->new_cfqq;
2994                 cfq_put_queue(__cfqq);
2995                 __cfqq = next;
2996         }
2997 }
2998
2999 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3000 {
3001         if (unlikely(cfqq == cfqd->active_queue)) {
3002                 __cfq_slice_expired(cfqd, cfqq, 0);
3003                 cfq_schedule_dispatch(cfqd);
3004         }
3005
3006         cfq_put_cooperator(cfqq);
3007
3008         cfq_put_queue(cfqq);
3009 }
3010
3011 static void cfq_init_icq(struct io_cq *icq)
3012 {
3013         struct cfq_io_cq *cic = icq_to_cic(icq);
3014
3015         cic->ttime.last_end_request = jiffies;
3016 }
3017
3018 static void cfq_exit_icq(struct io_cq *icq)
3019 {
3020         struct cfq_io_cq *cic = icq_to_cic(icq);
3021         struct cfq_data *cfqd = cic_to_cfqd(cic);
3022
3023         if (cic->cfqq[BLK_RW_ASYNC]) {
3024                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3025                 cic->cfqq[BLK_RW_ASYNC] = NULL;
3026         }
3027
3028         if (cic->cfqq[BLK_RW_SYNC]) {
3029                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3030                 cic->cfqq[BLK_RW_SYNC] = NULL;
3031         }
3032 }
3033
3034 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3035 {
3036         struct task_struct *tsk = current;
3037         int ioprio_class;
3038
3039         if (!cfq_cfqq_prio_changed(cfqq))
3040                 return;
3041
3042         ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3043         switch (ioprio_class) {
3044         default:
3045                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3046         case IOPRIO_CLASS_NONE:
3047                 /*
3048                  * no prio set, inherit CPU scheduling settings
3049                  */
3050                 cfqq->ioprio = task_nice_ioprio(tsk);
3051                 cfqq->ioprio_class = task_nice_ioclass(tsk);
3052                 break;
3053         case IOPRIO_CLASS_RT:
3054                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3055                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3056                 break;
3057         case IOPRIO_CLASS_BE:
3058                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3059                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3060                 break;
3061         case IOPRIO_CLASS_IDLE:
3062                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3063                 cfqq->ioprio = 7;
3064                 cfq_clear_cfqq_idle_window(cfqq);
3065                 break;
3066         }
3067
3068         /*
3069          * keep track of original prio settings in case we have to temporarily
3070          * elevate the priority of this queue
3071          */
3072         cfqq->org_ioprio = cfqq->ioprio;
3073         cfq_clear_cfqq_prio_changed(cfqq);
3074 }
3075
3076 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3077 {
3078         int ioprio = cic->icq.ioc->ioprio;
3079         struct cfq_data *cfqd = cic_to_cfqd(cic);
3080         struct cfq_queue *cfqq;
3081
3082         /*
3083          * Check whether ioprio has changed.  The condition may trigger
3084          * spuriously on a newly created cic but there's no harm.
3085          */
3086         if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3087                 return;
3088
3089         cfqq = cic->cfqq[BLK_RW_ASYNC];
3090         if (cfqq) {
3091                 struct cfq_queue *new_cfqq;
3092                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3093                                          GFP_ATOMIC);
3094                 if (new_cfqq) {
3095                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3096                         cfq_put_queue(cfqq);
3097                 }
3098         }
3099
3100         cfqq = cic->cfqq[BLK_RW_SYNC];
3101         if (cfqq)
3102                 cfq_mark_cfqq_prio_changed(cfqq);
3103
3104         cic->ioprio = ioprio;
3105 }
3106
3107 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3108                           pid_t pid, bool is_sync)
3109 {
3110         RB_CLEAR_NODE(&cfqq->rb_node);
3111         RB_CLEAR_NODE(&cfqq->p_node);
3112         INIT_LIST_HEAD(&cfqq->fifo);
3113
3114         cfqq->ref = 0;
3115         cfqq->cfqd = cfqd;
3116
3117         cfq_mark_cfqq_prio_changed(cfqq);
3118
3119         if (is_sync) {
3120                 if (!cfq_class_idle(cfqq))
3121                         cfq_mark_cfqq_idle_window(cfqq);
3122                 cfq_mark_cfqq_sync(cfqq);
3123         }
3124         cfqq->pid = pid;
3125 }
3126
3127 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3128 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3129 {
3130         struct cfq_data *cfqd = cic_to_cfqd(cic);
3131         struct cfq_queue *sync_cfqq;
3132         uint64_t id;
3133
3134         rcu_read_lock();
3135         id = bio_blkio_cgroup(bio)->id;
3136         rcu_read_unlock();
3137
3138         /*
3139          * Check whether blkcg has changed.  The condition may trigger
3140          * spuriously on a newly created cic but there's no harm.
3141          */
3142         if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3143                 return;
3144
3145         sync_cfqq = cic_to_cfqq(cic, 1);
3146         if (sync_cfqq) {
3147                 /*
3148                  * Drop reference to sync queue. A new sync queue will be
3149                  * assigned in new group upon arrival of a fresh request.
3150                  */
3151                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3152                 cic_set_cfqq(cic, NULL, 1);
3153                 cfq_put_queue(sync_cfqq);
3154         }
3155
3156         cic->blkcg_id = id;
3157 }
3158 #else
3159 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3160 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3161
3162 static struct cfq_queue *
3163 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3164                      struct bio *bio, gfp_t gfp_mask)
3165 {
3166         struct blkio_cgroup *blkcg;
3167         struct cfq_queue *cfqq, *new_cfqq = NULL;
3168         struct cfq_group *cfqg;
3169
3170 retry:
3171         rcu_read_lock();
3172
3173         blkcg = bio_blkio_cgroup(bio);
3174         cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3175         cfqq = cic_to_cfqq(cic, is_sync);
3176
3177         /*
3178          * Always try a new alloc if we fell back to the OOM cfqq
3179          * originally, since it should just be a temporary situation.
3180          */
3181         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3182                 cfqq = NULL;
3183                 if (new_cfqq) {
3184                         cfqq = new_cfqq;
3185                         new_cfqq = NULL;
3186                 } else if (gfp_mask & __GFP_WAIT) {
3187                         rcu_read_unlock();
3188                         spin_unlock_irq(cfqd->queue->queue_lock);
3189                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
3190                                         gfp_mask | __GFP_ZERO,
3191                                         cfqd->queue->node);
3192                         spin_lock_irq(cfqd->queue->queue_lock);
3193                         if (new_cfqq)
3194                                 goto retry;
3195                 } else {
3196                         cfqq = kmem_cache_alloc_node(cfq_pool,
3197                                         gfp_mask | __GFP_ZERO,
3198                                         cfqd->queue->node);
3199                 }
3200
3201                 if (cfqq) {
3202                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3203                         cfq_init_prio_data(cfqq, cic);
3204                         cfq_link_cfqq_cfqg(cfqq, cfqg);
3205                         cfq_log_cfqq(cfqd, cfqq, "alloced");
3206                 } else
3207                         cfqq = &cfqd->oom_cfqq;
3208         }
3209
3210         if (new_cfqq)
3211                 kmem_cache_free(cfq_pool, new_cfqq);
3212
3213         rcu_read_unlock();
3214         return cfqq;
3215 }
3216
3217 static struct cfq_queue **
3218 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3219 {
3220         switch (ioprio_class) {
3221         case IOPRIO_CLASS_RT:
3222                 return &cfqd->async_cfqq[0][ioprio];
3223         case IOPRIO_CLASS_NONE:
3224                 ioprio = IOPRIO_NORM;
3225                 /* fall through */
3226         case IOPRIO_CLASS_BE:
3227                 return &cfqd->async_cfqq[1][ioprio];
3228         case IOPRIO_CLASS_IDLE:
3229                 return &cfqd->async_idle_cfqq;
3230         default:
3231                 BUG();
3232         }
3233 }
3234
3235 static struct cfq_queue *
3236 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3237               struct bio *bio, gfp_t gfp_mask)
3238 {
3239         const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3240         const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3241         struct cfq_queue **async_cfqq = NULL;
3242         struct cfq_queue *cfqq = NULL;
3243
3244         if (!is_sync) {
3245                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3246                 cfqq = *async_cfqq;
3247         }
3248
3249         if (!cfqq)
3250                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3251
3252         /*
3253          * pin the queue now that it's allocated, scheduler exit will prune it
3254          */
3255         if (!is_sync && !(*async_cfqq)) {
3256                 cfqq->ref++;
3257                 *async_cfqq = cfqq;
3258         }
3259
3260         cfqq->ref++;
3261         return cfqq;
3262 }
3263
3264 static void
3265 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3266 {
3267         unsigned long elapsed = jiffies - ttime->last_end_request;
3268         elapsed = min(elapsed, 2UL * slice_idle);
3269
3270         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3271         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3272         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3273 }
3274
3275 static void
3276 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3277                         struct cfq_io_cq *cic)
3278 {
3279         if (cfq_cfqq_sync(cfqq)) {
3280                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3281                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3282                         cfqd->cfq_slice_idle);
3283         }
3284 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3285         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3286 #endif
3287 }
3288
3289 static void
3290 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3291                        struct request *rq)
3292 {
3293         sector_t sdist = 0;
3294         sector_t n_sec = blk_rq_sectors(rq);
3295         if (cfqq->last_request_pos) {
3296                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3297                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3298                 else
3299                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3300         }
3301
3302         cfqq->seek_history <<= 1;
3303         if (blk_queue_nonrot(cfqd->queue))
3304                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3305         else
3306                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3307 }
3308
3309 /*
3310  * Disable idle window if the process thinks too long or seeks so much that
3311  * it doesn't matter
3312  */
3313 static void
3314 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3315                        struct cfq_io_cq *cic)
3316 {
3317         int old_idle, enable_idle;
3318
3319         /*
3320          * Don't idle for async or idle io prio class
3321          */
3322         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3323                 return;
3324
3325         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3326
3327         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3328                 cfq_mark_cfqq_deep(cfqq);
3329
3330         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3331                 enable_idle = 0;
3332         else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3333                  !cfqd->cfq_slice_idle ||
3334                  (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3335                 enable_idle = 0;
3336         else if (sample_valid(cic->ttime.ttime_samples)) {
3337                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3338                         enable_idle = 0;
3339                 else
3340                         enable_idle = 1;
3341         }
3342
3343         if (old_idle != enable_idle) {
3344                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3345                 if (enable_idle)
3346                         cfq_mark_cfqq_idle_window(cfqq);
3347                 else
3348                         cfq_clear_cfqq_idle_window(cfqq);
3349         }
3350 }
3351
3352 /*
3353  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3354  * no or if we aren't sure, a 1 will cause a preempt.
3355  */
3356 static bool
3357 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3358                    struct request *rq)
3359 {
3360         struct cfq_queue *cfqq;
3361
3362         cfqq = cfqd->active_queue;
3363         if (!cfqq)
3364                 return false;
3365
3366         if (cfq_class_idle(new_cfqq))
3367                 return false;
3368
3369         if (cfq_class_idle(cfqq))
3370                 return true;
3371
3372         /*
3373          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3374          */
3375         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3376                 return false;
3377
3378         /*
3379          * if the new request is sync, but the currently running queue is
3380          * not, let the sync request have priority.
3381          */
3382         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3383                 return true;
3384
3385         if (new_cfqq->cfqg != cfqq->cfqg)
3386                 return false;
3387
3388         if (cfq_slice_used(cfqq))
3389                 return true;
3390
3391         /* Allow preemption only if we are idling on sync-noidle tree */
3392         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3393             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3394             new_cfqq->service_tree->count == 2 &&
3395             RB_EMPTY_ROOT(&cfqq->sort_list))
3396                 return true;
3397
3398         /*
3399          * So both queues are sync. Let the new request get disk time if
3400          * it's a metadata request and the current queue is doing regular IO.
3401          */
3402         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3403                 return true;
3404
3405         /*
3406          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3407          */
3408         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3409                 return true;
3410
3411         /* An idle queue should not be idle now for some reason */
3412         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3413                 return true;
3414
3415         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3416                 return false;
3417
3418         /*
3419          * if this request is as-good as one we would expect from the
3420          * current cfqq, let it preempt
3421          */
3422         if (cfq_rq_close(cfqd, cfqq, rq))
3423                 return true;
3424
3425         return false;
3426 }
3427
3428 /*
3429  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3430  * let it have half of its nominal slice.
3431  */
3432 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3433 {
3434         enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3435
3436         cfq_log_cfqq(cfqd, cfqq, "preempt");
3437         cfq_slice_expired(cfqd, 1);
3438
3439         /*
3440          * workload type is changed, don't save slice, otherwise preempt
3441          * doesn't happen
3442          */
3443         if (old_type != cfqq_type(cfqq))
3444                 cfqq->cfqg->saved_workload_slice = 0;
3445
3446         /*
3447          * Put the new queue at the front of the of the current list,
3448          * so we know that it will be selected next.
3449          */
3450         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3451
3452         cfq_service_tree_add(cfqd, cfqq, 1);
3453
3454         cfqq->slice_end = 0;
3455         cfq_mark_cfqq_slice_new(cfqq);
3456 }
3457
3458 /*
3459  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3460  * something we should do about it
3461  */
3462 static void
3463 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3464                 struct request *rq)
3465 {
3466         struct cfq_io_cq *cic = RQ_CIC(rq);
3467
3468         cfqd->rq_queued++;
3469         if (rq->cmd_flags & REQ_PRIO)
3470                 cfqq->prio_pending++;
3471
3472         cfq_update_io_thinktime(cfqd, cfqq, cic);
3473         cfq_update_io_seektime(cfqd, cfqq, rq);
3474         cfq_update_idle_window(cfqd, cfqq, cic);
3475
3476         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3477
3478         if (cfqq == cfqd->active_queue) {
3479                 /*
3480                  * Remember that we saw a request from this process, but
3481                  * don't start queuing just yet. Otherwise we risk seeing lots
3482                  * of tiny requests, because we disrupt the normal plugging
3483                  * and merging. If the request is already larger than a single
3484                  * page, let it rip immediately. For that case we assume that
3485                  * merging is already done. Ditto for a busy system that
3486                  * has other work pending, don't risk delaying until the
3487                  * idle timer unplug to continue working.
3488                  */
3489                 if (cfq_cfqq_wait_request(cfqq)) {
3490                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3491                             cfqd->busy_queues > 1) {
3492                                 cfq_del_timer(cfqd, cfqq);
3493                                 cfq_clear_cfqq_wait_request(cfqq);
3494                                 __blk_run_queue(cfqd->queue);
3495                         } else {
3496                                 cfqg_stats_update_idle_time(cfqq->cfqg);
3497                                 cfq_mark_cfqq_must_dispatch(cfqq);
3498                         }
3499                 }
3500         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3501                 /*
3502                  * not the active queue - expire current slice if it is
3503                  * idle and has expired it's mean thinktime or this new queue
3504                  * has some old slice time left and is of higher priority or
3505                  * this new queue is RT and the current one is BE
3506                  */
3507                 cfq_preempt_queue(cfqd, cfqq);
3508                 __blk_run_queue(cfqd->queue);
3509         }
3510 }
3511
3512 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3513 {
3514         struct cfq_data *cfqd = q->elevator->elevator_data;
3515         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3516
3517         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3518         cfq_init_prio_data(cfqq, RQ_CIC(rq));
3519
3520         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3521         list_add_tail(&rq->queuelist, &cfqq->fifo);
3522         cfq_add_rq_rb(rq);
3523         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3524                                  rq->cmd_flags);
3525         cfq_rq_enqueued(cfqd, cfqq, rq);
3526 }
3527
3528 /*
3529  * Update hw_tag based on peak queue depth over 50 samples under
3530  * sufficient load.
3531  */
3532 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3533 {
3534         struct cfq_queue *cfqq = cfqd->active_queue;
3535
3536         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3537                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3538
3539         if (cfqd->hw_tag == 1)
3540                 return;
3541
3542         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3543             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3544                 return;
3545
3546         /*
3547          * If active queue hasn't enough requests and can idle, cfq might not
3548          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3549          * case
3550          */
3551         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3552             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3553             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3554                 return;
3555
3556         if (cfqd->hw_tag_samples++ < 50)
3557                 return;
3558
3559         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3560                 cfqd->hw_tag = 1;
3561         else
3562                 cfqd->hw_tag = 0;
3563 }
3564
3565 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3566 {
3567         struct cfq_io_cq *cic = cfqd->active_cic;
3568
3569         /* If the queue already has requests, don't wait */
3570         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3571                 return false;
3572
3573         /* If there are other queues in the group, don't wait */
3574         if (cfqq->cfqg->nr_cfqq > 1)
3575                 return false;
3576
3577         /* the only queue in the group, but think time is big */
3578         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3579                 return false;
3580
3581         if (cfq_slice_used(cfqq))
3582                 return true;
3583
3584         /* if slice left is less than think time, wait busy */
3585         if (cic && sample_valid(cic->ttime.ttime_samples)
3586             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3587                 return true;
3588
3589         /*
3590          * If think times is less than a jiffy than ttime_mean=0 and above
3591          * will not be true. It might happen that slice has not expired yet
3592          * but will expire soon (4-5 ns) during select_queue(). To cover the
3593          * case where think time is less than a jiffy, mark the queue wait
3594          * busy if only 1 jiffy is left in the slice.
3595          */
3596         if (cfqq->slice_end - jiffies == 1)
3597                 return true;
3598
3599         return false;
3600 }
3601
3602 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3603 {
3604         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3605         struct cfq_data *cfqd = cfqq->cfqd;
3606         const int sync = rq_is_sync(rq);
3607         unsigned long now;
3608
3609         now = jiffies;
3610         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3611                      !!(rq->cmd_flags & REQ_NOIDLE));
3612
3613         cfq_update_hw_tag(cfqd);
3614
3615         WARN_ON(!cfqd->rq_in_driver);
3616         WARN_ON(!cfqq->dispatched);
3617         cfqd->rq_in_driver--;
3618         cfqq->dispatched--;
3619         (RQ_CFQG(rq))->dispatched--;
3620         cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3621                                      rq_io_start_time_ns(rq), rq->cmd_flags);
3622
3623         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3624
3625         if (sync) {
3626                 struct cfq_rb_root *service_tree;
3627
3628                 RQ_CIC(rq)->ttime.last_end_request = now;
3629
3630                 if (cfq_cfqq_on_rr(cfqq))
3631                         service_tree = cfqq->service_tree;
3632                 else
3633                         service_tree = service_tree_for(cfqq->cfqg,
3634                                 cfqq_prio(cfqq), cfqq_type(cfqq));
3635                 service_tree->ttime.last_end_request = now;
3636                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3637                         cfqd->last_delayed_sync = now;
3638         }
3639
3640 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3641         cfqq->cfqg->ttime.last_end_request = now;
3642 #endif
3643
3644         /*
3645          * If this is the active queue, check if it needs to be expired,
3646          * or if we want to idle in case it has no pending requests.
3647          */
3648         if (cfqd->active_queue == cfqq) {
3649                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3650
3651                 if (cfq_cfqq_slice_new(cfqq)) {
3652                         cfq_set_prio_slice(cfqd, cfqq);
3653                         cfq_clear_cfqq_slice_new(cfqq);
3654                 }
3655
3656                 /*
3657                  * Should we wait for next request to come in before we expire
3658                  * the queue.
3659                  */
3660                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3661                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3662                         if (!cfqd->cfq_slice_idle)
3663                                 extend_sl = cfqd->cfq_group_idle;
3664                         cfqq->slice_end = jiffies + extend_sl;
3665                         cfq_mark_cfqq_wait_busy(cfqq);
3666                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3667                 }
3668
3669                 /*
3670                  * Idling is not enabled on:
3671                  * - expired queues
3672                  * - idle-priority queues
3673                  * - async queues
3674                  * - queues with still some requests queued
3675                  * - when there is a close cooperator
3676                  */
3677                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3678                         cfq_slice_expired(cfqd, 1);
3679                 else if (sync && cfqq_empty &&
3680                          !cfq_close_cooperator(cfqd, cfqq)) {
3681                         cfq_arm_slice_timer(cfqd);
3682                 }
3683         }
3684
3685         if (!cfqd->rq_in_driver)
3686                 cfq_schedule_dispatch(cfqd);
3687 }
3688
3689 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3690 {
3691         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3692                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3693                 return ELV_MQUEUE_MUST;
3694         }
3695
3696         return ELV_MQUEUE_MAY;
3697 }
3698
3699 static int cfq_may_queue(struct request_queue *q, int rw)
3700 {
3701         struct cfq_data *cfqd = q->elevator->elevator_data;
3702         struct task_struct *tsk = current;
3703         struct cfq_io_cq *cic;
3704         struct cfq_queue *cfqq;
3705
3706         /*
3707          * don't force setup of a queue from here, as a call to may_queue
3708          * does not necessarily imply that a request actually will be queued.
3709          * so just lookup a possibly existing queue, or return 'may queue'
3710          * if that fails
3711          */
3712         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3713         if (!cic)
3714                 return ELV_MQUEUE_MAY;
3715
3716         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3717         if (cfqq) {
3718                 cfq_init_prio_data(cfqq, cic);
3719
3720                 return __cfq_may_queue(cfqq);
3721         }
3722
3723         return ELV_MQUEUE_MAY;
3724 }
3725
3726 /*
3727  * queue lock held here
3728  */
3729 static void cfq_put_request(struct request *rq)
3730 {
3731         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3732
3733         if (cfqq) {
3734                 const int rw = rq_data_dir(rq);
3735
3736                 BUG_ON(!cfqq->allocated[rw]);
3737                 cfqq->allocated[rw]--;
3738
3739                 /* Put down rq reference on cfqg */
3740                 cfqg_put(RQ_CFQG(rq));
3741                 rq->elv.priv[0] = NULL;
3742                 rq->elv.priv[1] = NULL;
3743
3744                 cfq_put_queue(cfqq);
3745         }
3746 }
3747
3748 static struct cfq_queue *
3749 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3750                 struct cfq_queue *cfqq)
3751 {
3752         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3753         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3754         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3755         cfq_put_queue(cfqq);
3756         return cic_to_cfqq(cic, 1);
3757 }
3758
3759 /*
3760  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3761  * was the last process referring to said cfqq.
3762  */
3763 static struct cfq_queue *
3764 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3765 {
3766         if (cfqq_process_refs(cfqq) == 1) {
3767                 cfqq->pid = current->pid;
3768                 cfq_clear_cfqq_coop(cfqq);
3769                 cfq_clear_cfqq_split_coop(cfqq);
3770                 return cfqq;
3771         }
3772
3773         cic_set_cfqq(cic, NULL, 1);
3774
3775         cfq_put_cooperator(cfqq);
3776
3777         cfq_put_queue(cfqq);
3778         return NULL;
3779 }
3780 /*
3781  * Allocate cfq data structures associated with this request.
3782  */
3783 static int
3784 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3785                 gfp_t gfp_mask)
3786 {
3787         struct cfq_data *cfqd = q->elevator->elevator_data;
3788         struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3789         const int rw = rq_data_dir(rq);
3790         const bool is_sync = rq_is_sync(rq);
3791         struct cfq_queue *cfqq;
3792
3793         might_sleep_if(gfp_mask & __GFP_WAIT);
3794
3795         spin_lock_irq(q->queue_lock);
3796
3797         check_ioprio_changed(cic, bio);
3798         check_blkcg_changed(cic, bio);
3799 new_queue:
3800         cfqq = cic_to_cfqq(cic, is_sync);
3801         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3802                 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3803                 cic_set_cfqq(cic, cfqq, is_sync);
3804         } else {
3805                 /*
3806                  * If the queue was seeky for too long, break it apart.
3807                  */
3808                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3809                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3810                         cfqq = split_cfqq(cic, cfqq);
3811                         if (!cfqq)
3812                                 goto new_queue;
3813                 }
3814
3815                 /*
3816                  * Check to see if this queue is scheduled to merge with
3817                  * another, closely cooperating queue.  The merging of
3818                  * queues happens here as it must be done in process context.
3819                  * The reference on new_cfqq was taken in merge_cfqqs.
3820                  */
3821                 if (cfqq->new_cfqq)
3822                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3823         }
3824
3825         cfqq->allocated[rw]++;
3826
3827         cfqq->ref++;
3828         cfqg_get(cfqq->cfqg);
3829         rq->elv.priv[0] = cfqq;
3830         rq->elv.priv[1] = cfqq->cfqg;
3831         spin_unlock_irq(q->queue_lock);
3832         return 0;
3833 }
3834
3835 static void cfq_kick_queue(struct work_struct *work)
3836 {
3837         struct cfq_data *cfqd =
3838                 container_of(work, struct cfq_data, unplug_work);
3839         struct request_queue *q = cfqd->queue;
3840
3841         spin_lock_irq(q->queue_lock);
3842         __blk_run_queue(cfqd->queue);
3843         spin_unlock_irq(q->queue_lock);
3844 }
3845
3846 /*
3847  * Timer running if the active_queue is currently idling inside its time slice
3848  */
3849 static void cfq_idle_slice_timer(unsigned long data)
3850 {
3851         struct cfq_data *cfqd = (struct cfq_data *) data;
3852         struct cfq_queue *cfqq;
3853         unsigned long flags;
3854         int timed_out = 1;
3855
3856         cfq_log(cfqd, "idle timer fired");
3857
3858         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3859
3860         cfqq = cfqd->active_queue;
3861         if (cfqq) {
3862                 timed_out = 0;
3863
3864                 /*
3865                  * We saw a request before the queue expired, let it through
3866                  */
3867                 if (cfq_cfqq_must_dispatch(cfqq))
3868                         goto out_kick;
3869
3870                 /*
3871                  * expired
3872                  */
3873                 if (cfq_slice_used(cfqq))
3874                         goto expire;
3875
3876                 /*
3877                  * only expire and reinvoke request handler, if there are
3878                  * other queues with pending requests
3879                  */
3880                 if (!cfqd->busy_queues)
3881                         goto out_cont;
3882
3883                 /*
3884                  * not expired and it has a request pending, let it dispatch
3885                  */
3886                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3887                         goto out_kick;
3888
3889                 /*
3890                  * Queue depth flag is reset only when the idle didn't succeed
3891                  */
3892                 cfq_clear_cfqq_deep(cfqq);
3893         }
3894 expire:
3895         cfq_slice_expired(cfqd, timed_out);
3896 out_kick:
3897         cfq_schedule_dispatch(cfqd);
3898 out_cont:
3899         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3900 }
3901
3902 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3903 {
3904         del_timer_sync(&cfqd->idle_slice_timer);
3905         cancel_work_sync(&cfqd->unplug_work);
3906 }
3907
3908 static void cfq_put_async_queues(struct cfq_data *cfqd)
3909 {
3910         int i;
3911
3912         for (i = 0; i < IOPRIO_BE_NR; i++) {
3913                 if (cfqd->async_cfqq[0][i])
3914                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3915                 if (cfqd->async_cfqq[1][i])
3916                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3917         }
3918
3919         if (cfqd->async_idle_cfqq)
3920                 cfq_put_queue(cfqd->async_idle_cfqq);
3921 }
3922
3923 static void cfq_exit_queue(struct elevator_queue *e)
3924 {
3925         struct cfq_data *cfqd = e->elevator_data;
3926         struct request_queue *q = cfqd->queue;
3927
3928         cfq_shutdown_timer_wq(cfqd);
3929
3930         spin_lock_irq(q->queue_lock);
3931
3932         if (cfqd->active_queue)
3933                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3934
3935         cfq_put_async_queues(cfqd);
3936
3937         spin_unlock_irq(q->queue_lock);
3938
3939         cfq_shutdown_timer_wq(cfqd);
3940
3941 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3942         kfree(cfqd->root_group);
3943 #endif
3944         update_root_blkg_pd(q, BLKIO_POLICY_PROP);
3945         kfree(cfqd);
3946 }
3947
3948 static int cfq_init_queue(struct request_queue *q)
3949 {
3950         struct cfq_data *cfqd;
3951         struct blkio_group *blkg __maybe_unused;
3952         int i;
3953
3954         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3955         if (!cfqd)
3956                 return -ENOMEM;
3957
3958         cfqd->queue = q;
3959         q->elevator->elevator_data = cfqd;
3960
3961         /* Init root service tree */
3962         cfqd->grp_service_tree = CFQ_RB_ROOT;
3963
3964         /* Init root group and prefer root group over other groups by default */
3965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3966         rcu_read_lock();
3967         spin_lock_irq(q->queue_lock);
3968
3969         blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
3970         if (!IS_ERR(blkg))
3971                 cfqd->root_group = blkg_to_cfqg(blkg);
3972
3973         spin_unlock_irq(q->queue_lock);
3974         rcu_read_unlock();
3975 #else
3976         cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3977                                         GFP_KERNEL, cfqd->queue->node);
3978         if (cfqd->root_group)
3979                 cfq_init_cfqg_base(cfqd->root_group);
3980 #endif
3981         if (!cfqd->root_group) {
3982                 kfree(cfqd);
3983                 return -ENOMEM;
3984         }
3985
3986         cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
3987
3988         /*
3989          * Not strictly needed (since RB_ROOT just clears the node and we
3990          * zeroed cfqd on alloc), but better be safe in case someone decides
3991          * to add magic to the rb code
3992          */
3993         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3994                 cfqd->prio_trees[i] = RB_ROOT;
3995
3996         /*
3997          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3998          * Grab a permanent reference to it, so that the normal code flow
3999          * will not attempt to free it.  oom_cfqq is linked to root_group
4000          * but shouldn't hold a reference as it'll never be unlinked.  Lose
4001          * the reference from linking right away.
4002          */
4003         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4004         cfqd->oom_cfqq.ref++;
4005
4006         spin_lock_irq(q->queue_lock);
4007         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4008         cfqg_put(cfqd->root_group);
4009         spin_unlock_irq(q->queue_lock);
4010
4011         init_timer(&cfqd->idle_slice_timer);
4012         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4013         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4014
4015         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4016
4017         cfqd->cfq_quantum = cfq_quantum;
4018         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4019         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4020         cfqd->cfq_back_max = cfq_back_max;
4021         cfqd->cfq_back_penalty = cfq_back_penalty;
4022         cfqd->cfq_slice[0] = cfq_slice_async;
4023         cfqd->cfq_slice[1] = cfq_slice_sync;
4024         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4025         cfqd->cfq_slice_idle = cfq_slice_idle;
4026         cfqd->cfq_group_idle = cfq_group_idle;
4027         cfqd->cfq_latency = 1;
4028         cfqd->hw_tag = -1;
4029         /*
4030          * we optimistically start assuming sync ops weren't delayed in last
4031          * second, in order to have larger depth for async operations.
4032          */
4033         cfqd->last_delayed_sync = jiffies - HZ;
4034         return 0;
4035 }
4036
4037 /*
4038  * sysfs parts below -->
4039  */
4040 static ssize_t
4041 cfq_var_show(unsigned int var, char *page)
4042 {
4043         return sprintf(page, "%d\n", var);
4044 }
4045
4046 static ssize_t
4047 cfq_var_store(unsigned int *var, const char *page, size_t count)
4048 {
4049         char *p = (char *) page;
4050
4051         *var = simple_strtoul(p, &p, 10);
4052         return count;
4053 }
4054
4055 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4056 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4057 {                                                                       \
4058         struct cfq_data *cfqd = e->elevator_data;                       \
4059         unsigned int __data = __VAR;                                    \
4060         if (__CONV)                                                     \
4061                 __data = jiffies_to_msecs(__data);                      \
4062         return cfq_var_show(__data, (page));                            \
4063 }
4064 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4065 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4066 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4067 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4068 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4069 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4070 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4071 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4072 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4073 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4074 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4075 #undef SHOW_FUNCTION
4076
4077 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4078 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4079 {                                                                       \
4080         struct cfq_data *cfqd = e->elevator_data;                       \
4081         unsigned int __data;                                            \
4082         int ret = cfq_var_store(&__data, (page), count);                \
4083         if (__data < (MIN))                                             \
4084                 __data = (MIN);                                         \
4085         else if (__data > (MAX))                                        \
4086                 __data = (MAX);                                         \
4087         if (__CONV)                                                     \
4088                 *(__PTR) = msecs_to_jiffies(__data);                    \
4089         else                                                            \
4090                 *(__PTR) = __data;                                      \
4091         return ret;                                                     \
4092 }
4093 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4094 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4095                 UINT_MAX, 1);
4096 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4097                 UINT_MAX, 1);
4098 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4099 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4100                 UINT_MAX, 0);
4101 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4102 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4103 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4104 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4105 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4106                 UINT_MAX, 0);
4107 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4108 #undef STORE_FUNCTION
4109
4110 #define CFQ_ATTR(name) \
4111         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4112
4113 static struct elv_fs_entry cfq_attrs[] = {
4114         CFQ_ATTR(quantum),
4115         CFQ_ATTR(fifo_expire_sync),
4116         CFQ_ATTR(fifo_expire_async),
4117         CFQ_ATTR(back_seek_max),
4118         CFQ_ATTR(back_seek_penalty),
4119         CFQ_ATTR(slice_sync),
4120         CFQ_ATTR(slice_async),
4121         CFQ_ATTR(slice_async_rq),
4122         CFQ_ATTR(slice_idle),
4123         CFQ_ATTR(group_idle),
4124         CFQ_ATTR(low_latency),
4125         __ATTR_NULL
4126 };
4127
4128 static struct elevator_type iosched_cfq = {
4129         .ops = {
4130                 .elevator_merge_fn =            cfq_merge,
4131                 .elevator_merged_fn =           cfq_merged_request,
4132                 .elevator_merge_req_fn =        cfq_merged_requests,
4133                 .elevator_allow_merge_fn =      cfq_allow_merge,
4134                 .elevator_bio_merged_fn =       cfq_bio_merged,
4135                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4136                 .elevator_add_req_fn =          cfq_insert_request,
4137                 .elevator_activate_req_fn =     cfq_activate_request,
4138                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4139                 .elevator_completed_req_fn =    cfq_completed_request,
4140                 .elevator_former_req_fn =       elv_rb_former_request,
4141                 .elevator_latter_req_fn =       elv_rb_latter_request,
4142                 .elevator_init_icq_fn =         cfq_init_icq,
4143                 .elevator_exit_icq_fn =         cfq_exit_icq,
4144                 .elevator_set_req_fn =          cfq_set_request,
4145                 .elevator_put_req_fn =          cfq_put_request,
4146                 .elevator_may_queue_fn =        cfq_may_queue,
4147                 .elevator_init_fn =             cfq_init_queue,
4148                 .elevator_exit_fn =             cfq_exit_queue,
4149         },
4150         .icq_size       =       sizeof(struct cfq_io_cq),
4151         .icq_align      =       __alignof__(struct cfq_io_cq),
4152         .elevator_attrs =       cfq_attrs,
4153         .elevator_name  =       "cfq",
4154         .elevator_owner =       THIS_MODULE,
4155 };
4156
4157 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4158 static struct blkio_policy_type blkio_policy_cfq = {
4159         .ops = {
4160                 .blkio_init_group_fn =          cfq_init_blkio_group,
4161                 .blkio_reset_group_stats_fn =   cfqg_stats_reset,
4162         },
4163         .plid = BLKIO_POLICY_PROP,
4164         .pdata_size = sizeof(struct cfq_group),
4165         .cftypes = cfq_blkcg_files,
4166 };
4167 #endif
4168
4169 static int __init cfq_init(void)
4170 {
4171         int ret;
4172
4173         /*
4174          * could be 0 on HZ < 1000 setups
4175          */
4176         if (!cfq_slice_async)
4177                 cfq_slice_async = 1;
4178         if (!cfq_slice_idle)
4179                 cfq_slice_idle = 1;
4180
4181 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4182         if (!cfq_group_idle)
4183                 cfq_group_idle = 1;
4184 #else
4185                 cfq_group_idle = 0;
4186 #endif
4187         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4188         if (!cfq_pool)
4189                 return -ENOMEM;
4190
4191         ret = elv_register(&iosched_cfq);
4192         if (ret) {
4193                 kmem_cache_destroy(cfq_pool);
4194                 return ret;
4195         }
4196
4197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4198         blkio_policy_register(&blkio_policy_cfq);
4199 #endif
4200         return 0;
4201 }
4202
4203 static void __exit cfq_exit(void)
4204 {
4205 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4206         blkio_policy_unregister(&blkio_policy_cfq);
4207 #endif
4208         elv_unregister(&iosched_cfq);
4209         kmem_cache_destroy(cfq_pool);
4210 }
4211
4212 module_init(cfq_init);
4213 module_exit(cfq_exit);
4214
4215 MODULE_AUTHOR("Jens Axboe");
4216 MODULE_LICENSE("GPL");
4217 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");