block, cfq: fix race condition in cic creation path and tighten locking
[linux-2.6-block.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 /*
21  * tunables
22  */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39  * offset from end of service tree
40  */
41 #define CFQ_IDLE_DELAY          (HZ / 5)
42
43 /*
44  * below this threshold, we consider thinktime immediate
45  */
46 #define CFQ_MIN_TT              (2)
47
48 #define CFQ_SLICE_SCALE         (5)
49 #define CFQ_HW_QUEUE_MIN        (5)
50 #define CFQ_SERVICE_SHIFT       12
51
52 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq)              \
58         ((struct cfq_io_context *) (rq)->elevator_private[0])
59 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private[1])
60 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private[2])
61
62 static struct kmem_cache *cfq_pool;
63 static struct kmem_cache *cfq_ioc_pool;
64
65 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
66 static struct completion *ioc_gone;
67 static DEFINE_SPINLOCK(ioc_gone_lock);
68
69 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73 #define sample_valid(samples)   ((samples) > 80)
74 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
75
76 /*
77  * Most of our rbtree usage is for sorting with min extraction, so
78  * if we cache the leftmost node we don't have to walk down the tree
79  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
80  * move this into the elevator for the rq sorting as well.
81  */
82 struct cfq_rb_root {
83         struct rb_root rb;
84         struct rb_node *left;
85         unsigned count;
86         unsigned total_weight;
87         u64 min_vdisktime;
88         struct cfq_ttime ttime;
89 };
90 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
91                         .ttime = {.last_end_request = jiffies,},}
92
93 /*
94  * Per process-grouping structure
95  */
96 struct cfq_queue {
97         /* reference count */
98         int ref;
99         /* various state flags, see below */
100         unsigned int flags;
101         /* parent cfq_data */
102         struct cfq_data *cfqd;
103         /* service_tree member */
104         struct rb_node rb_node;
105         /* service_tree key */
106         unsigned long rb_key;
107         /* prio tree member */
108         struct rb_node p_node;
109         /* prio tree root we belong to, if any */
110         struct rb_root *p_root;
111         /* sorted list of pending requests */
112         struct rb_root sort_list;
113         /* if fifo isn't expired, next request to serve */
114         struct request *next_rq;
115         /* requests queued in sort_list */
116         int queued[2];
117         /* currently allocated requests */
118         int allocated[2];
119         /* fifo list of requests in sort_list */
120         struct list_head fifo;
121
122         /* time when queue got scheduled in to dispatch first request. */
123         unsigned long dispatch_start;
124         unsigned int allocated_slice;
125         unsigned int slice_dispatch;
126         /* time when first request from queue completed and slice started. */
127         unsigned long slice_start;
128         unsigned long slice_end;
129         long slice_resid;
130
131         /* pending priority requests */
132         int prio_pending;
133         /* number of requests that are on the dispatch list or inside driver */
134         int dispatched;
135
136         /* io prio of this group */
137         unsigned short ioprio, org_ioprio;
138         unsigned short ioprio_class;
139
140         pid_t pid;
141
142         u32 seek_history;
143         sector_t last_request_pos;
144
145         struct cfq_rb_root *service_tree;
146         struct cfq_queue *new_cfqq;
147         struct cfq_group *cfqg;
148         /* Number of sectors dispatched from queue in single dispatch round */
149         unsigned long nr_sectors;
150 };
151
152 /*
153  * First index in the service_trees.
154  * IDLE is handled separately, so it has negative index
155  */
156 enum wl_prio_t {
157         BE_WORKLOAD = 0,
158         RT_WORKLOAD = 1,
159         IDLE_WORKLOAD = 2,
160         CFQ_PRIO_NR,
161 };
162
163 /*
164  * Second index in the service_trees.
165  */
166 enum wl_type_t {
167         ASYNC_WORKLOAD = 0,
168         SYNC_NOIDLE_WORKLOAD = 1,
169         SYNC_WORKLOAD = 2
170 };
171
172 /* This is per cgroup per device grouping structure */
173 struct cfq_group {
174         /* group service_tree member */
175         struct rb_node rb_node;
176
177         /* group service_tree key */
178         u64 vdisktime;
179         unsigned int weight;
180         unsigned int new_weight;
181         bool needs_update;
182
183         /* number of cfqq currently on this group */
184         int nr_cfqq;
185
186         /*
187          * Per group busy queues average. Useful for workload slice calc. We
188          * create the array for each prio class but at run time it is used
189          * only for RT and BE class and slot for IDLE class remains unused.
190          * This is primarily done to avoid confusion and a gcc warning.
191          */
192         unsigned int busy_queues_avg[CFQ_PRIO_NR];
193         /*
194          * rr lists of queues with requests. We maintain service trees for
195          * RT and BE classes. These trees are subdivided in subclasses
196          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197          * class there is no subclassification and all the cfq queues go on
198          * a single tree service_tree_idle.
199          * Counts are embedded in the cfq_rb_root
200          */
201         struct cfq_rb_root service_trees[2][3];
202         struct cfq_rb_root service_tree_idle;
203
204         unsigned long saved_workload_slice;
205         enum wl_type_t saved_workload;
206         enum wl_prio_t saved_serving_prio;
207         struct blkio_group blkg;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209         struct hlist_node cfqd_node;
210         int ref;
211 #endif
212         /* number of requests that are on the dispatch list or inside driver */
213         int dispatched;
214         struct cfq_ttime ttime;
215 };
216
217 /*
218  * Per block device queue structure
219  */
220 struct cfq_data {
221         struct request_queue *queue;
222         /* Root service tree for cfq_groups */
223         struct cfq_rb_root grp_service_tree;
224         struct cfq_group root_group;
225
226         /*
227          * The priority currently being served
228          */
229         enum wl_prio_t serving_prio;
230         enum wl_type_t serving_type;
231         unsigned long workload_expires;
232         struct cfq_group *serving_group;
233
234         /*
235          * Each priority tree is sorted by next_request position.  These
236          * trees are used when determining if two or more queues are
237          * interleaving requests (see cfq_close_cooperator).
238          */
239         struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241         unsigned int busy_queues;
242         unsigned int busy_sync_queues;
243
244         int rq_in_driver;
245         int rq_in_flight[2];
246
247         /*
248          * queue-depth detection
249          */
250         int rq_queued;
251         int hw_tag;
252         /*
253          * hw_tag can be
254          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256          *  0 => no NCQ
257          */
258         int hw_tag_est_depth;
259         unsigned int hw_tag_samples;
260
261         /*
262          * idle window management
263          */
264         struct timer_list idle_slice_timer;
265         struct work_struct unplug_work;
266
267         struct cfq_queue *active_queue;
268         struct cfq_io_context *active_cic;
269
270         /*
271          * async queue for each priority case
272          */
273         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274         struct cfq_queue *async_idle_cfqq;
275
276         sector_t last_position;
277
278         /*
279          * tunables, see top of file
280          */
281         unsigned int cfq_quantum;
282         unsigned int cfq_fifo_expire[2];
283         unsigned int cfq_back_penalty;
284         unsigned int cfq_back_max;
285         unsigned int cfq_slice[2];
286         unsigned int cfq_slice_async_rq;
287         unsigned int cfq_slice_idle;
288         unsigned int cfq_group_idle;
289         unsigned int cfq_latency;
290
291         struct list_head cic_list;
292
293         /*
294          * Fallback dummy cfqq for extreme OOM conditions
295          */
296         struct cfq_queue oom_cfqq;
297
298         unsigned long last_delayed_sync;
299
300         /* List of cfq groups being managed on this device*/
301         struct hlist_head cfqg_list;
302
303         /* Number of groups which are on blkcg->blkg_list */
304         unsigned int nr_blkcg_linked_grps;
305 };
306
307 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
308
309 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
310                                             enum wl_prio_t prio,
311                                             enum wl_type_t type)
312 {
313         if (!cfqg)
314                 return NULL;
315
316         if (prio == IDLE_WORKLOAD)
317                 return &cfqg->service_tree_idle;
318
319         return &cfqg->service_trees[prio][type];
320 }
321
322 enum cfqq_state_flags {
323         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
324         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
325         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
326         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
327         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
328         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
329         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
330         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
331         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
332         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
333         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
334         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
335         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
336 };
337
338 #define CFQ_CFQQ_FNS(name)                                              \
339 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
340 {                                                                       \
341         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
342 }                                                                       \
343 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
344 {                                                                       \
345         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
346 }                                                                       \
347 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
348 {                                                                       \
349         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
350 }
351
352 CFQ_CFQQ_FNS(on_rr);
353 CFQ_CFQQ_FNS(wait_request);
354 CFQ_CFQQ_FNS(must_dispatch);
355 CFQ_CFQQ_FNS(must_alloc_slice);
356 CFQ_CFQQ_FNS(fifo_expire);
357 CFQ_CFQQ_FNS(idle_window);
358 CFQ_CFQQ_FNS(prio_changed);
359 CFQ_CFQQ_FNS(slice_new);
360 CFQ_CFQQ_FNS(sync);
361 CFQ_CFQQ_FNS(coop);
362 CFQ_CFQQ_FNS(split_coop);
363 CFQ_CFQQ_FNS(deep);
364 CFQ_CFQQ_FNS(wait_busy);
365 #undef CFQ_CFQQ_FNS
366
367 #ifdef CONFIG_CFQ_GROUP_IOSCHED
368 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
369         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
371                         blkg_path(&(cfqq)->cfqg->blkg), ##args)
372
373 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
374         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
375                                 blkg_path(&(cfqg)->blkg), ##args)       \
376
377 #else
378 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
379         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
381 #endif
382 #define cfq_log(cfqd, fmt, args...)     \
383         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384
385 /* Traverses through cfq group service trees */
386 #define for_each_cfqg_st(cfqg, i, j, st) \
387         for (i = 0; i <= IDLE_WORKLOAD; i++) \
388                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389                         : &cfqg->service_tree_idle; \
390                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391                         (i == IDLE_WORKLOAD && j == 0); \
392                         j++, st = i < IDLE_WORKLOAD ? \
393                         &cfqg->service_trees[i][j]: NULL) \
394
395 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
396         struct cfq_ttime *ttime, bool group_idle)
397 {
398         unsigned long slice;
399         if (!sample_valid(ttime->ttime_samples))
400                 return false;
401         if (group_idle)
402                 slice = cfqd->cfq_group_idle;
403         else
404                 slice = cfqd->cfq_slice_idle;
405         return ttime->ttime_mean > slice;
406 }
407
408 static inline bool iops_mode(struct cfq_data *cfqd)
409 {
410         /*
411          * If we are not idling on queues and it is a NCQ drive, parallel
412          * execution of requests is on and measuring time is not possible
413          * in most of the cases until and unless we drive shallower queue
414          * depths and that becomes a performance bottleneck. In such cases
415          * switch to start providing fairness in terms of number of IOs.
416          */
417         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
418                 return true;
419         else
420                 return false;
421 }
422
423 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
424 {
425         if (cfq_class_idle(cfqq))
426                 return IDLE_WORKLOAD;
427         if (cfq_class_rt(cfqq))
428                 return RT_WORKLOAD;
429         return BE_WORKLOAD;
430 }
431
432
433 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
434 {
435         if (!cfq_cfqq_sync(cfqq))
436                 return ASYNC_WORKLOAD;
437         if (!cfq_cfqq_idle_window(cfqq))
438                 return SYNC_NOIDLE_WORKLOAD;
439         return SYNC_WORKLOAD;
440 }
441
442 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
443                                         struct cfq_data *cfqd,
444                                         struct cfq_group *cfqg)
445 {
446         if (wl == IDLE_WORKLOAD)
447                 return cfqg->service_tree_idle.count;
448
449         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
450                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
451                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
452 }
453
454 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
455                                         struct cfq_group *cfqg)
456 {
457         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
458                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
459 }
460
461 static void cfq_dispatch_insert(struct request_queue *, struct request *);
462 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
463                                        struct io_context *, gfp_t);
464 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
465                                                 struct io_context *);
466
467 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
468                                             bool is_sync)
469 {
470         return cic->cfqq[is_sync];
471 }
472
473 static inline void cic_set_cfqq(struct cfq_io_context *cic,
474                                 struct cfq_queue *cfqq, bool is_sync)
475 {
476         cic->cfqq[is_sync] = cfqq;
477 }
478
479 #define CIC_DEAD_KEY    1ul
480 #define CIC_DEAD_INDEX_SHIFT    1
481
482 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
483 {
484         return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
485 }
486
487 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
488 {
489         struct cfq_data *cfqd = cic->key;
490
491         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
492                 return NULL;
493
494         return cfqd;
495 }
496
497 /*
498  * We regard a request as SYNC, if it's either a read or has the SYNC bit
499  * set (in which case it could also be direct WRITE).
500  */
501 static inline bool cfq_bio_sync(struct bio *bio)
502 {
503         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
504 }
505
506 /*
507  * scheduler run of queue, if there are requests pending and no one in the
508  * driver that will restart queueing
509  */
510 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
511 {
512         if (cfqd->busy_queues) {
513                 cfq_log(cfqd, "schedule dispatch");
514                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
515         }
516 }
517
518 /*
519  * Scale schedule slice based on io priority. Use the sync time slice only
520  * if a queue is marked sync and has sync io queued. A sync queue with async
521  * io only, should not get full sync slice length.
522  */
523 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
524                                  unsigned short prio)
525 {
526         const int base_slice = cfqd->cfq_slice[sync];
527
528         WARN_ON(prio >= IOPRIO_BE_NR);
529
530         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
531 }
532
533 static inline int
534 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
535 {
536         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
537 }
538
539 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
540 {
541         u64 d = delta << CFQ_SERVICE_SHIFT;
542
543         d = d * BLKIO_WEIGHT_DEFAULT;
544         do_div(d, cfqg->weight);
545         return d;
546 }
547
548 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
549 {
550         s64 delta = (s64)(vdisktime - min_vdisktime);
551         if (delta > 0)
552                 min_vdisktime = vdisktime;
553
554         return min_vdisktime;
555 }
556
557 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
558 {
559         s64 delta = (s64)(vdisktime - min_vdisktime);
560         if (delta < 0)
561                 min_vdisktime = vdisktime;
562
563         return min_vdisktime;
564 }
565
566 static void update_min_vdisktime(struct cfq_rb_root *st)
567 {
568         struct cfq_group *cfqg;
569
570         if (st->left) {
571                 cfqg = rb_entry_cfqg(st->left);
572                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
573                                                   cfqg->vdisktime);
574         }
575 }
576
577 /*
578  * get averaged number of queues of RT/BE priority.
579  * average is updated, with a formula that gives more weight to higher numbers,
580  * to quickly follows sudden increases and decrease slowly
581  */
582
583 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
584                                         struct cfq_group *cfqg, bool rt)
585 {
586         unsigned min_q, max_q;
587         unsigned mult  = cfq_hist_divisor - 1;
588         unsigned round = cfq_hist_divisor / 2;
589         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
590
591         min_q = min(cfqg->busy_queues_avg[rt], busy);
592         max_q = max(cfqg->busy_queues_avg[rt], busy);
593         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
594                 cfq_hist_divisor;
595         return cfqg->busy_queues_avg[rt];
596 }
597
598 static inline unsigned
599 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
600 {
601         struct cfq_rb_root *st = &cfqd->grp_service_tree;
602
603         return cfq_target_latency * cfqg->weight / st->total_weight;
604 }
605
606 static inline unsigned
607 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
608 {
609         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
610         if (cfqd->cfq_latency) {
611                 /*
612                  * interested queues (we consider only the ones with the same
613                  * priority class in the cfq group)
614                  */
615                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
616                                                 cfq_class_rt(cfqq));
617                 unsigned sync_slice = cfqd->cfq_slice[1];
618                 unsigned expect_latency = sync_slice * iq;
619                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
620
621                 if (expect_latency > group_slice) {
622                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
623                         /* scale low_slice according to IO priority
624                          * and sync vs async */
625                         unsigned low_slice =
626                                 min(slice, base_low_slice * slice / sync_slice);
627                         /* the adapted slice value is scaled to fit all iqs
628                          * into the target latency */
629                         slice = max(slice * group_slice / expect_latency,
630                                     low_slice);
631                 }
632         }
633         return slice;
634 }
635
636 static inline void
637 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
638 {
639         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
640
641         cfqq->slice_start = jiffies;
642         cfqq->slice_end = jiffies + slice;
643         cfqq->allocated_slice = slice;
644         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
645 }
646
647 /*
648  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
649  * isn't valid until the first request from the dispatch is activated
650  * and the slice time set.
651  */
652 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
653 {
654         if (cfq_cfqq_slice_new(cfqq))
655                 return false;
656         if (time_before(jiffies, cfqq->slice_end))
657                 return false;
658
659         return true;
660 }
661
662 /*
663  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
664  * We choose the request that is closest to the head right now. Distance
665  * behind the head is penalized and only allowed to a certain extent.
666  */
667 static struct request *
668 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
669 {
670         sector_t s1, s2, d1 = 0, d2 = 0;
671         unsigned long back_max;
672 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
673 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
674         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
675
676         if (rq1 == NULL || rq1 == rq2)
677                 return rq2;
678         if (rq2 == NULL)
679                 return rq1;
680
681         if (rq_is_sync(rq1) != rq_is_sync(rq2))
682                 return rq_is_sync(rq1) ? rq1 : rq2;
683
684         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
685                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
686
687         s1 = blk_rq_pos(rq1);
688         s2 = blk_rq_pos(rq2);
689
690         /*
691          * by definition, 1KiB is 2 sectors
692          */
693         back_max = cfqd->cfq_back_max * 2;
694
695         /*
696          * Strict one way elevator _except_ in the case where we allow
697          * short backward seeks which are biased as twice the cost of a
698          * similar forward seek.
699          */
700         if (s1 >= last)
701                 d1 = s1 - last;
702         else if (s1 + back_max >= last)
703                 d1 = (last - s1) * cfqd->cfq_back_penalty;
704         else
705                 wrap |= CFQ_RQ1_WRAP;
706
707         if (s2 >= last)
708                 d2 = s2 - last;
709         else if (s2 + back_max >= last)
710                 d2 = (last - s2) * cfqd->cfq_back_penalty;
711         else
712                 wrap |= CFQ_RQ2_WRAP;
713
714         /* Found required data */
715
716         /*
717          * By doing switch() on the bit mask "wrap" we avoid having to
718          * check two variables for all permutations: --> faster!
719          */
720         switch (wrap) {
721         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
722                 if (d1 < d2)
723                         return rq1;
724                 else if (d2 < d1)
725                         return rq2;
726                 else {
727                         if (s1 >= s2)
728                                 return rq1;
729                         else
730                                 return rq2;
731                 }
732
733         case CFQ_RQ2_WRAP:
734                 return rq1;
735         case CFQ_RQ1_WRAP:
736                 return rq2;
737         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
738         default:
739                 /*
740                  * Since both rqs are wrapped,
741                  * start with the one that's further behind head
742                  * (--> only *one* back seek required),
743                  * since back seek takes more time than forward.
744                  */
745                 if (s1 <= s2)
746                         return rq1;
747                 else
748                         return rq2;
749         }
750 }
751
752 /*
753  * The below is leftmost cache rbtree addon
754  */
755 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
756 {
757         /* Service tree is empty */
758         if (!root->count)
759                 return NULL;
760
761         if (!root->left)
762                 root->left = rb_first(&root->rb);
763
764         if (root->left)
765                 return rb_entry(root->left, struct cfq_queue, rb_node);
766
767         return NULL;
768 }
769
770 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
771 {
772         if (!root->left)
773                 root->left = rb_first(&root->rb);
774
775         if (root->left)
776                 return rb_entry_cfqg(root->left);
777
778         return NULL;
779 }
780
781 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
782 {
783         rb_erase(n, root);
784         RB_CLEAR_NODE(n);
785 }
786
787 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
788 {
789         if (root->left == n)
790                 root->left = NULL;
791         rb_erase_init(n, &root->rb);
792         --root->count;
793 }
794
795 /*
796  * would be nice to take fifo expire time into account as well
797  */
798 static struct request *
799 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
800                   struct request *last)
801 {
802         struct rb_node *rbnext = rb_next(&last->rb_node);
803         struct rb_node *rbprev = rb_prev(&last->rb_node);
804         struct request *next = NULL, *prev = NULL;
805
806         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
807
808         if (rbprev)
809                 prev = rb_entry_rq(rbprev);
810
811         if (rbnext)
812                 next = rb_entry_rq(rbnext);
813         else {
814                 rbnext = rb_first(&cfqq->sort_list);
815                 if (rbnext && rbnext != &last->rb_node)
816                         next = rb_entry_rq(rbnext);
817         }
818
819         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
820 }
821
822 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
823                                       struct cfq_queue *cfqq)
824 {
825         /*
826          * just an approximation, should be ok.
827          */
828         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
829                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
830 }
831
832 static inline s64
833 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
834 {
835         return cfqg->vdisktime - st->min_vdisktime;
836 }
837
838 static void
839 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
840 {
841         struct rb_node **node = &st->rb.rb_node;
842         struct rb_node *parent = NULL;
843         struct cfq_group *__cfqg;
844         s64 key = cfqg_key(st, cfqg);
845         int left = 1;
846
847         while (*node != NULL) {
848                 parent = *node;
849                 __cfqg = rb_entry_cfqg(parent);
850
851                 if (key < cfqg_key(st, __cfqg))
852                         node = &parent->rb_left;
853                 else {
854                         node = &parent->rb_right;
855                         left = 0;
856                 }
857         }
858
859         if (left)
860                 st->left = &cfqg->rb_node;
861
862         rb_link_node(&cfqg->rb_node, parent, node);
863         rb_insert_color(&cfqg->rb_node, &st->rb);
864 }
865
866 static void
867 cfq_update_group_weight(struct cfq_group *cfqg)
868 {
869         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
870         if (cfqg->needs_update) {
871                 cfqg->weight = cfqg->new_weight;
872                 cfqg->needs_update = false;
873         }
874 }
875
876 static void
877 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
878 {
879         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
880
881         cfq_update_group_weight(cfqg);
882         __cfq_group_service_tree_add(st, cfqg);
883         st->total_weight += cfqg->weight;
884 }
885
886 static void
887 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
888 {
889         struct cfq_rb_root *st = &cfqd->grp_service_tree;
890         struct cfq_group *__cfqg;
891         struct rb_node *n;
892
893         cfqg->nr_cfqq++;
894         if (!RB_EMPTY_NODE(&cfqg->rb_node))
895                 return;
896
897         /*
898          * Currently put the group at the end. Later implement something
899          * so that groups get lesser vtime based on their weights, so that
900          * if group does not loose all if it was not continuously backlogged.
901          */
902         n = rb_last(&st->rb);
903         if (n) {
904                 __cfqg = rb_entry_cfqg(n);
905                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
906         } else
907                 cfqg->vdisktime = st->min_vdisktime;
908         cfq_group_service_tree_add(st, cfqg);
909 }
910
911 static void
912 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
913 {
914         st->total_weight -= cfqg->weight;
915         if (!RB_EMPTY_NODE(&cfqg->rb_node))
916                 cfq_rb_erase(&cfqg->rb_node, st);
917 }
918
919 static void
920 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
921 {
922         struct cfq_rb_root *st = &cfqd->grp_service_tree;
923
924         BUG_ON(cfqg->nr_cfqq < 1);
925         cfqg->nr_cfqq--;
926
927         /* If there are other cfq queues under this group, don't delete it */
928         if (cfqg->nr_cfqq)
929                 return;
930
931         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
932         cfq_group_service_tree_del(st, cfqg);
933         cfqg->saved_workload_slice = 0;
934         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
935 }
936
937 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
938                                                 unsigned int *unaccounted_time)
939 {
940         unsigned int slice_used;
941
942         /*
943          * Queue got expired before even a single request completed or
944          * got expired immediately after first request completion.
945          */
946         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
947                 /*
948                  * Also charge the seek time incurred to the group, otherwise
949                  * if there are mutiple queues in the group, each can dispatch
950                  * a single request on seeky media and cause lots of seek time
951                  * and group will never know it.
952                  */
953                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
954                                         1);
955         } else {
956                 slice_used = jiffies - cfqq->slice_start;
957                 if (slice_used > cfqq->allocated_slice) {
958                         *unaccounted_time = slice_used - cfqq->allocated_slice;
959                         slice_used = cfqq->allocated_slice;
960                 }
961                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
962                         *unaccounted_time += cfqq->slice_start -
963                                         cfqq->dispatch_start;
964         }
965
966         return slice_used;
967 }
968
969 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
970                                 struct cfq_queue *cfqq)
971 {
972         struct cfq_rb_root *st = &cfqd->grp_service_tree;
973         unsigned int used_sl, charge, unaccounted_sl = 0;
974         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
975                         - cfqg->service_tree_idle.count;
976
977         BUG_ON(nr_sync < 0);
978         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
979
980         if (iops_mode(cfqd))
981                 charge = cfqq->slice_dispatch;
982         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
983                 charge = cfqq->allocated_slice;
984
985         /* Can't update vdisktime while group is on service tree */
986         cfq_group_service_tree_del(st, cfqg);
987         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
988         /* If a new weight was requested, update now, off tree */
989         cfq_group_service_tree_add(st, cfqg);
990
991         /* This group is being expired. Save the context */
992         if (time_after(cfqd->workload_expires, jiffies)) {
993                 cfqg->saved_workload_slice = cfqd->workload_expires
994                                                 - jiffies;
995                 cfqg->saved_workload = cfqd->serving_type;
996                 cfqg->saved_serving_prio = cfqd->serving_prio;
997         } else
998                 cfqg->saved_workload_slice = 0;
999
1000         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1001                                         st->min_vdisktime);
1002         cfq_log_cfqq(cfqq->cfqd, cfqq,
1003                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1004                      used_sl, cfqq->slice_dispatch, charge,
1005                      iops_mode(cfqd), cfqq->nr_sectors);
1006         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1007                                           unaccounted_sl);
1008         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1009 }
1010
1011 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1012 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1013 {
1014         if (blkg)
1015                 return container_of(blkg, struct cfq_group, blkg);
1016         return NULL;
1017 }
1018
1019 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1020                                           unsigned int weight)
1021 {
1022         struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1023         cfqg->new_weight = weight;
1024         cfqg->needs_update = true;
1025 }
1026
1027 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1028                         struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1029 {
1030         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1031         unsigned int major, minor;
1032
1033         /*
1034          * Add group onto cgroup list. It might happen that bdi->dev is
1035          * not initialized yet. Initialize this new group without major
1036          * and minor info and this info will be filled in once a new thread
1037          * comes for IO.
1038          */
1039         if (bdi->dev) {
1040                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1041                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1042                                         (void *)cfqd, MKDEV(major, minor));
1043         } else
1044                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045                                         (void *)cfqd, 0);
1046
1047         cfqd->nr_blkcg_linked_grps++;
1048         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1049
1050         /* Add group on cfqd list */
1051         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1052 }
1053
1054 /*
1055  * Should be called from sleepable context. No request queue lock as per
1056  * cpu stats are allocated dynamically and alloc_percpu needs to be called
1057  * from sleepable context.
1058  */
1059 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1060 {
1061         struct cfq_group *cfqg = NULL;
1062         int i, j, ret;
1063         struct cfq_rb_root *st;
1064
1065         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1066         if (!cfqg)
1067                 return NULL;
1068
1069         for_each_cfqg_st(cfqg, i, j, st)
1070                 *st = CFQ_RB_ROOT;
1071         RB_CLEAR_NODE(&cfqg->rb_node);
1072
1073         cfqg->ttime.last_end_request = jiffies;
1074
1075         /*
1076          * Take the initial reference that will be released on destroy
1077          * This can be thought of a joint reference by cgroup and
1078          * elevator which will be dropped by either elevator exit
1079          * or cgroup deletion path depending on who is exiting first.
1080          */
1081         cfqg->ref = 1;
1082
1083         ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1084         if (ret) {
1085                 kfree(cfqg);
1086                 return NULL;
1087         }
1088
1089         return cfqg;
1090 }
1091
1092 static struct cfq_group *
1093 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1094 {
1095         struct cfq_group *cfqg = NULL;
1096         void *key = cfqd;
1097         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1098         unsigned int major, minor;
1099
1100         /*
1101          * This is the common case when there are no blkio cgroups.
1102          * Avoid lookup in this case
1103          */
1104         if (blkcg == &blkio_root_cgroup)
1105                 cfqg = &cfqd->root_group;
1106         else
1107                 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1108
1109         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1110                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1111                 cfqg->blkg.dev = MKDEV(major, minor);
1112         }
1113
1114         return cfqg;
1115 }
1116
1117 /*
1118  * Search for the cfq group current task belongs to. request_queue lock must
1119  * be held.
1120  */
1121 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1122 {
1123         struct blkio_cgroup *blkcg;
1124         struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1125         struct request_queue *q = cfqd->queue;
1126
1127         rcu_read_lock();
1128         blkcg = task_blkio_cgroup(current);
1129         cfqg = cfq_find_cfqg(cfqd, blkcg);
1130         if (cfqg) {
1131                 rcu_read_unlock();
1132                 return cfqg;
1133         }
1134
1135         /*
1136          * Need to allocate a group. Allocation of group also needs allocation
1137          * of per cpu stats which in-turn takes a mutex() and can block. Hence
1138          * we need to drop rcu lock and queue_lock before we call alloc.
1139          *
1140          * Not taking any queue reference here and assuming that queue is
1141          * around by the time we return. CFQ queue allocation code does
1142          * the same. It might be racy though.
1143          */
1144
1145         rcu_read_unlock();
1146         spin_unlock_irq(q->queue_lock);
1147
1148         cfqg = cfq_alloc_cfqg(cfqd);
1149
1150         spin_lock_irq(q->queue_lock);
1151
1152         rcu_read_lock();
1153         blkcg = task_blkio_cgroup(current);
1154
1155         /*
1156          * If some other thread already allocated the group while we were
1157          * not holding queue lock, free up the group
1158          */
1159         __cfqg = cfq_find_cfqg(cfqd, blkcg);
1160
1161         if (__cfqg) {
1162                 kfree(cfqg);
1163                 rcu_read_unlock();
1164                 return __cfqg;
1165         }
1166
1167         if (!cfqg)
1168                 cfqg = &cfqd->root_group;
1169
1170         cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1171         rcu_read_unlock();
1172         return cfqg;
1173 }
1174
1175 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1176 {
1177         cfqg->ref++;
1178         return cfqg;
1179 }
1180
1181 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1182 {
1183         /* Currently, all async queues are mapped to root group */
1184         if (!cfq_cfqq_sync(cfqq))
1185                 cfqg = &cfqq->cfqd->root_group;
1186
1187         cfqq->cfqg = cfqg;
1188         /* cfqq reference on cfqg */
1189         cfqq->cfqg->ref++;
1190 }
1191
1192 static void cfq_put_cfqg(struct cfq_group *cfqg)
1193 {
1194         struct cfq_rb_root *st;
1195         int i, j;
1196
1197         BUG_ON(cfqg->ref <= 0);
1198         cfqg->ref--;
1199         if (cfqg->ref)
1200                 return;
1201         for_each_cfqg_st(cfqg, i, j, st)
1202                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1203         free_percpu(cfqg->blkg.stats_cpu);
1204         kfree(cfqg);
1205 }
1206
1207 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1208 {
1209         /* Something wrong if we are trying to remove same group twice */
1210         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1211
1212         hlist_del_init(&cfqg->cfqd_node);
1213
1214         BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1215         cfqd->nr_blkcg_linked_grps--;
1216
1217         /*
1218          * Put the reference taken at the time of creation so that when all
1219          * queues are gone, group can be destroyed.
1220          */
1221         cfq_put_cfqg(cfqg);
1222 }
1223
1224 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1225 {
1226         struct hlist_node *pos, *n;
1227         struct cfq_group *cfqg;
1228
1229         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1230                 /*
1231                  * If cgroup removal path got to blk_group first and removed
1232                  * it from cgroup list, then it will take care of destroying
1233                  * cfqg also.
1234                  */
1235                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1236                         cfq_destroy_cfqg(cfqd, cfqg);
1237         }
1238 }
1239
1240 /*
1241  * Blk cgroup controller notification saying that blkio_group object is being
1242  * delinked as associated cgroup object is going away. That also means that
1243  * no new IO will come in this group. So get rid of this group as soon as
1244  * any pending IO in the group is finished.
1245  *
1246  * This function is called under rcu_read_lock(). key is the rcu protected
1247  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1248  * read lock.
1249  *
1250  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1251  * it should not be NULL as even if elevator was exiting, cgroup deltion
1252  * path got to it first.
1253  */
1254 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1255 {
1256         unsigned long  flags;
1257         struct cfq_data *cfqd = key;
1258
1259         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1260         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1261         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1262 }
1263
1264 #else /* GROUP_IOSCHED */
1265 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1266 {
1267         return &cfqd->root_group;
1268 }
1269
1270 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1271 {
1272         return cfqg;
1273 }
1274
1275 static inline void
1276 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1277         cfqq->cfqg = cfqg;
1278 }
1279
1280 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1281 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1282
1283 #endif /* GROUP_IOSCHED */
1284
1285 /*
1286  * The cfqd->service_trees holds all pending cfq_queue's that have
1287  * requests waiting to be processed. It is sorted in the order that
1288  * we will service the queues.
1289  */
1290 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1291                                  bool add_front)
1292 {
1293         struct rb_node **p, *parent;
1294         struct cfq_queue *__cfqq;
1295         unsigned long rb_key;
1296         struct cfq_rb_root *service_tree;
1297         int left;
1298         int new_cfqq = 1;
1299
1300         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1301                                                 cfqq_type(cfqq));
1302         if (cfq_class_idle(cfqq)) {
1303                 rb_key = CFQ_IDLE_DELAY;
1304                 parent = rb_last(&service_tree->rb);
1305                 if (parent && parent != &cfqq->rb_node) {
1306                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1307                         rb_key += __cfqq->rb_key;
1308                 } else
1309                         rb_key += jiffies;
1310         } else if (!add_front) {
1311                 /*
1312                  * Get our rb key offset. Subtract any residual slice
1313                  * value carried from last service. A negative resid
1314                  * count indicates slice overrun, and this should position
1315                  * the next service time further away in the tree.
1316                  */
1317                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1318                 rb_key -= cfqq->slice_resid;
1319                 cfqq->slice_resid = 0;
1320         } else {
1321                 rb_key = -HZ;
1322                 __cfqq = cfq_rb_first(service_tree);
1323                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1324         }
1325
1326         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327                 new_cfqq = 0;
1328                 /*
1329                  * same position, nothing more to do
1330                  */
1331                 if (rb_key == cfqq->rb_key &&
1332                     cfqq->service_tree == service_tree)
1333                         return;
1334
1335                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1336                 cfqq->service_tree = NULL;
1337         }
1338
1339         left = 1;
1340         parent = NULL;
1341         cfqq->service_tree = service_tree;
1342         p = &service_tree->rb.rb_node;
1343         while (*p) {
1344                 struct rb_node **n;
1345
1346                 parent = *p;
1347                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1348
1349                 /*
1350                  * sort by key, that represents service time.
1351                  */
1352                 if (time_before(rb_key, __cfqq->rb_key))
1353                         n = &(*p)->rb_left;
1354                 else {
1355                         n = &(*p)->rb_right;
1356                         left = 0;
1357                 }
1358
1359                 p = n;
1360         }
1361
1362         if (left)
1363                 service_tree->left = &cfqq->rb_node;
1364
1365         cfqq->rb_key = rb_key;
1366         rb_link_node(&cfqq->rb_node, parent, p);
1367         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1368         service_tree->count++;
1369         if (add_front || !new_cfqq)
1370                 return;
1371         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1372 }
1373
1374 static struct cfq_queue *
1375 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1376                      sector_t sector, struct rb_node **ret_parent,
1377                      struct rb_node ***rb_link)
1378 {
1379         struct rb_node **p, *parent;
1380         struct cfq_queue *cfqq = NULL;
1381
1382         parent = NULL;
1383         p = &root->rb_node;
1384         while (*p) {
1385                 struct rb_node **n;
1386
1387                 parent = *p;
1388                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1389
1390                 /*
1391                  * Sort strictly based on sector.  Smallest to the left,
1392                  * largest to the right.
1393                  */
1394                 if (sector > blk_rq_pos(cfqq->next_rq))
1395                         n = &(*p)->rb_right;
1396                 else if (sector < blk_rq_pos(cfqq->next_rq))
1397                         n = &(*p)->rb_left;
1398                 else
1399                         break;
1400                 p = n;
1401                 cfqq = NULL;
1402         }
1403
1404         *ret_parent = parent;
1405         if (rb_link)
1406                 *rb_link = p;
1407         return cfqq;
1408 }
1409
1410 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1411 {
1412         struct rb_node **p, *parent;
1413         struct cfq_queue *__cfqq;
1414
1415         if (cfqq->p_root) {
1416                 rb_erase(&cfqq->p_node, cfqq->p_root);
1417                 cfqq->p_root = NULL;
1418         }
1419
1420         if (cfq_class_idle(cfqq))
1421                 return;
1422         if (!cfqq->next_rq)
1423                 return;
1424
1425         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1426         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1427                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1428         if (!__cfqq) {
1429                 rb_link_node(&cfqq->p_node, parent, p);
1430                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1431         } else
1432                 cfqq->p_root = NULL;
1433 }
1434
1435 /*
1436  * Update cfqq's position in the service tree.
1437  */
1438 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1439 {
1440         /*
1441          * Resorting requires the cfqq to be on the RR list already.
1442          */
1443         if (cfq_cfqq_on_rr(cfqq)) {
1444                 cfq_service_tree_add(cfqd, cfqq, 0);
1445                 cfq_prio_tree_add(cfqd, cfqq);
1446         }
1447 }
1448
1449 /*
1450  * add to busy list of queues for service, trying to be fair in ordering
1451  * the pending list according to last request service
1452  */
1453 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1454 {
1455         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1456         BUG_ON(cfq_cfqq_on_rr(cfqq));
1457         cfq_mark_cfqq_on_rr(cfqq);
1458         cfqd->busy_queues++;
1459         if (cfq_cfqq_sync(cfqq))
1460                 cfqd->busy_sync_queues++;
1461
1462         cfq_resort_rr_list(cfqd, cfqq);
1463 }
1464
1465 /*
1466  * Called when the cfqq no longer has requests pending, remove it from
1467  * the service tree.
1468  */
1469 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1470 {
1471         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1472         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1473         cfq_clear_cfqq_on_rr(cfqq);
1474
1475         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1476                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1477                 cfqq->service_tree = NULL;
1478         }
1479         if (cfqq->p_root) {
1480                 rb_erase(&cfqq->p_node, cfqq->p_root);
1481                 cfqq->p_root = NULL;
1482         }
1483
1484         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1485         BUG_ON(!cfqd->busy_queues);
1486         cfqd->busy_queues--;
1487         if (cfq_cfqq_sync(cfqq))
1488                 cfqd->busy_sync_queues--;
1489 }
1490
1491 /*
1492  * rb tree support functions
1493  */
1494 static void cfq_del_rq_rb(struct request *rq)
1495 {
1496         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497         const int sync = rq_is_sync(rq);
1498
1499         BUG_ON(!cfqq->queued[sync]);
1500         cfqq->queued[sync]--;
1501
1502         elv_rb_del(&cfqq->sort_list, rq);
1503
1504         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1505                 /*
1506                  * Queue will be deleted from service tree when we actually
1507                  * expire it later. Right now just remove it from prio tree
1508                  * as it is empty.
1509                  */
1510                 if (cfqq->p_root) {
1511                         rb_erase(&cfqq->p_node, cfqq->p_root);
1512                         cfqq->p_root = NULL;
1513                 }
1514         }
1515 }
1516
1517 static void cfq_add_rq_rb(struct request *rq)
1518 {
1519         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1520         struct cfq_data *cfqd = cfqq->cfqd;
1521         struct request *prev;
1522
1523         cfqq->queued[rq_is_sync(rq)]++;
1524
1525         elv_rb_add(&cfqq->sort_list, rq);
1526
1527         if (!cfq_cfqq_on_rr(cfqq))
1528                 cfq_add_cfqq_rr(cfqd, cfqq);
1529
1530         /*
1531          * check if this request is a better next-serve candidate
1532          */
1533         prev = cfqq->next_rq;
1534         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1535
1536         /*
1537          * adjust priority tree position, if ->next_rq changes
1538          */
1539         if (prev != cfqq->next_rq)
1540                 cfq_prio_tree_add(cfqd, cfqq);
1541
1542         BUG_ON(!cfqq->next_rq);
1543 }
1544
1545 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1546 {
1547         elv_rb_del(&cfqq->sort_list, rq);
1548         cfqq->queued[rq_is_sync(rq)]--;
1549         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1550                                         rq_data_dir(rq), rq_is_sync(rq));
1551         cfq_add_rq_rb(rq);
1552         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1553                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1554                         rq_is_sync(rq));
1555 }
1556
1557 static struct request *
1558 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1559 {
1560         struct task_struct *tsk = current;
1561         struct cfq_io_context *cic;
1562         struct cfq_queue *cfqq;
1563
1564         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1565         if (!cic)
1566                 return NULL;
1567
1568         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1569         if (cfqq) {
1570                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1571
1572                 return elv_rb_find(&cfqq->sort_list, sector);
1573         }
1574
1575         return NULL;
1576 }
1577
1578 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1579 {
1580         struct cfq_data *cfqd = q->elevator->elevator_data;
1581
1582         cfqd->rq_in_driver++;
1583         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1584                                                 cfqd->rq_in_driver);
1585
1586         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1587 }
1588
1589 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1590 {
1591         struct cfq_data *cfqd = q->elevator->elevator_data;
1592
1593         WARN_ON(!cfqd->rq_in_driver);
1594         cfqd->rq_in_driver--;
1595         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1596                                                 cfqd->rq_in_driver);
1597 }
1598
1599 static void cfq_remove_request(struct request *rq)
1600 {
1601         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1602
1603         if (cfqq->next_rq == rq)
1604                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1605
1606         list_del_init(&rq->queuelist);
1607         cfq_del_rq_rb(rq);
1608
1609         cfqq->cfqd->rq_queued--;
1610         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1611                                         rq_data_dir(rq), rq_is_sync(rq));
1612         if (rq->cmd_flags & REQ_PRIO) {
1613                 WARN_ON(!cfqq->prio_pending);
1614                 cfqq->prio_pending--;
1615         }
1616 }
1617
1618 static int cfq_merge(struct request_queue *q, struct request **req,
1619                      struct bio *bio)
1620 {
1621         struct cfq_data *cfqd = q->elevator->elevator_data;
1622         struct request *__rq;
1623
1624         __rq = cfq_find_rq_fmerge(cfqd, bio);
1625         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1626                 *req = __rq;
1627                 return ELEVATOR_FRONT_MERGE;
1628         }
1629
1630         return ELEVATOR_NO_MERGE;
1631 }
1632
1633 static void cfq_merged_request(struct request_queue *q, struct request *req,
1634                                int type)
1635 {
1636         if (type == ELEVATOR_FRONT_MERGE) {
1637                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1638
1639                 cfq_reposition_rq_rb(cfqq, req);
1640         }
1641 }
1642
1643 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1644                                 struct bio *bio)
1645 {
1646         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1647                                         bio_data_dir(bio), cfq_bio_sync(bio));
1648 }
1649
1650 static void
1651 cfq_merged_requests(struct request_queue *q, struct request *rq,
1652                     struct request *next)
1653 {
1654         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1655         /*
1656          * reposition in fifo if next is older than rq
1657          */
1658         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1659             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1660                 list_move(&rq->queuelist, &next->queuelist);
1661                 rq_set_fifo_time(rq, rq_fifo_time(next));
1662         }
1663
1664         if (cfqq->next_rq == next)
1665                 cfqq->next_rq = rq;
1666         cfq_remove_request(next);
1667         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1668                                         rq_data_dir(next), rq_is_sync(next));
1669 }
1670
1671 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1672                            struct bio *bio)
1673 {
1674         struct cfq_data *cfqd = q->elevator->elevator_data;
1675         struct cfq_io_context *cic;
1676         struct cfq_queue *cfqq;
1677
1678         /*
1679          * Disallow merge of a sync bio into an async request.
1680          */
1681         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1682                 return false;
1683
1684         /*
1685          * Lookup the cfqq that this bio will be queued with. Allow
1686          * merge only if rq is queued there.
1687          */
1688         cic = cfq_cic_lookup(cfqd, current->io_context);
1689         if (!cic)
1690                 return false;
1691
1692         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1693         return cfqq == RQ_CFQQ(rq);
1694 }
1695
1696 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1697 {
1698         del_timer(&cfqd->idle_slice_timer);
1699         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1700 }
1701
1702 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1703                                    struct cfq_queue *cfqq)
1704 {
1705         if (cfqq) {
1706                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1707                                 cfqd->serving_prio, cfqd->serving_type);
1708                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1709                 cfqq->slice_start = 0;
1710                 cfqq->dispatch_start = jiffies;
1711                 cfqq->allocated_slice = 0;
1712                 cfqq->slice_end = 0;
1713                 cfqq->slice_dispatch = 0;
1714                 cfqq->nr_sectors = 0;
1715
1716                 cfq_clear_cfqq_wait_request(cfqq);
1717                 cfq_clear_cfqq_must_dispatch(cfqq);
1718                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1719                 cfq_clear_cfqq_fifo_expire(cfqq);
1720                 cfq_mark_cfqq_slice_new(cfqq);
1721
1722                 cfq_del_timer(cfqd, cfqq);
1723         }
1724
1725         cfqd->active_queue = cfqq;
1726 }
1727
1728 /*
1729  * current cfqq expired its slice (or was too idle), select new one
1730  */
1731 static void
1732 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1733                     bool timed_out)
1734 {
1735         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1736
1737         if (cfq_cfqq_wait_request(cfqq))
1738                 cfq_del_timer(cfqd, cfqq);
1739
1740         cfq_clear_cfqq_wait_request(cfqq);
1741         cfq_clear_cfqq_wait_busy(cfqq);
1742
1743         /*
1744          * If this cfqq is shared between multiple processes, check to
1745          * make sure that those processes are still issuing I/Os within
1746          * the mean seek distance.  If not, it may be time to break the
1747          * queues apart again.
1748          */
1749         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1750                 cfq_mark_cfqq_split_coop(cfqq);
1751
1752         /*
1753          * store what was left of this slice, if the queue idled/timed out
1754          */
1755         if (timed_out) {
1756                 if (cfq_cfqq_slice_new(cfqq))
1757                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1758                 else
1759                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1760                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1761         }
1762
1763         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1764
1765         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1766                 cfq_del_cfqq_rr(cfqd, cfqq);
1767
1768         cfq_resort_rr_list(cfqd, cfqq);
1769
1770         if (cfqq == cfqd->active_queue)
1771                 cfqd->active_queue = NULL;
1772
1773         if (cfqd->active_cic) {
1774                 put_io_context(cfqd->active_cic->ioc);
1775                 cfqd->active_cic = NULL;
1776         }
1777 }
1778
1779 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1780 {
1781         struct cfq_queue *cfqq = cfqd->active_queue;
1782
1783         if (cfqq)
1784                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1785 }
1786
1787 /*
1788  * Get next queue for service. Unless we have a queue preemption,
1789  * we'll simply select the first cfqq in the service tree.
1790  */
1791 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1792 {
1793         struct cfq_rb_root *service_tree =
1794                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1795                                         cfqd->serving_type);
1796
1797         if (!cfqd->rq_queued)
1798                 return NULL;
1799
1800         /* There is nothing to dispatch */
1801         if (!service_tree)
1802                 return NULL;
1803         if (RB_EMPTY_ROOT(&service_tree->rb))
1804                 return NULL;
1805         return cfq_rb_first(service_tree);
1806 }
1807
1808 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1809 {
1810         struct cfq_group *cfqg;
1811         struct cfq_queue *cfqq;
1812         int i, j;
1813         struct cfq_rb_root *st;
1814
1815         if (!cfqd->rq_queued)
1816                 return NULL;
1817
1818         cfqg = cfq_get_next_cfqg(cfqd);
1819         if (!cfqg)
1820                 return NULL;
1821
1822         for_each_cfqg_st(cfqg, i, j, st)
1823                 if ((cfqq = cfq_rb_first(st)) != NULL)
1824                         return cfqq;
1825         return NULL;
1826 }
1827
1828 /*
1829  * Get and set a new active queue for service.
1830  */
1831 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1832                                               struct cfq_queue *cfqq)
1833 {
1834         if (!cfqq)
1835                 cfqq = cfq_get_next_queue(cfqd);
1836
1837         __cfq_set_active_queue(cfqd, cfqq);
1838         return cfqq;
1839 }
1840
1841 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1842                                           struct request *rq)
1843 {
1844         if (blk_rq_pos(rq) >= cfqd->last_position)
1845                 return blk_rq_pos(rq) - cfqd->last_position;
1846         else
1847                 return cfqd->last_position - blk_rq_pos(rq);
1848 }
1849
1850 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1851                                struct request *rq)
1852 {
1853         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1854 }
1855
1856 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1857                                     struct cfq_queue *cur_cfqq)
1858 {
1859         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1860         struct rb_node *parent, *node;
1861         struct cfq_queue *__cfqq;
1862         sector_t sector = cfqd->last_position;
1863
1864         if (RB_EMPTY_ROOT(root))
1865                 return NULL;
1866
1867         /*
1868          * First, if we find a request starting at the end of the last
1869          * request, choose it.
1870          */
1871         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1872         if (__cfqq)
1873                 return __cfqq;
1874
1875         /*
1876          * If the exact sector wasn't found, the parent of the NULL leaf
1877          * will contain the closest sector.
1878          */
1879         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1880         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1881                 return __cfqq;
1882
1883         if (blk_rq_pos(__cfqq->next_rq) < sector)
1884                 node = rb_next(&__cfqq->p_node);
1885         else
1886                 node = rb_prev(&__cfqq->p_node);
1887         if (!node)
1888                 return NULL;
1889
1890         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1891         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1892                 return __cfqq;
1893
1894         return NULL;
1895 }
1896
1897 /*
1898  * cfqd - obvious
1899  * cur_cfqq - passed in so that we don't decide that the current queue is
1900  *            closely cooperating with itself.
1901  *
1902  * So, basically we're assuming that that cur_cfqq has dispatched at least
1903  * one request, and that cfqd->last_position reflects a position on the disk
1904  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1905  * assumption.
1906  */
1907 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1908                                               struct cfq_queue *cur_cfqq)
1909 {
1910         struct cfq_queue *cfqq;
1911
1912         if (cfq_class_idle(cur_cfqq))
1913                 return NULL;
1914         if (!cfq_cfqq_sync(cur_cfqq))
1915                 return NULL;
1916         if (CFQQ_SEEKY(cur_cfqq))
1917                 return NULL;
1918
1919         /*
1920          * Don't search priority tree if it's the only queue in the group.
1921          */
1922         if (cur_cfqq->cfqg->nr_cfqq == 1)
1923                 return NULL;
1924
1925         /*
1926          * We should notice if some of the queues are cooperating, eg
1927          * working closely on the same area of the disk. In that case,
1928          * we can group them together and don't waste time idling.
1929          */
1930         cfqq = cfqq_close(cfqd, cur_cfqq);
1931         if (!cfqq)
1932                 return NULL;
1933
1934         /* If new queue belongs to different cfq_group, don't choose it */
1935         if (cur_cfqq->cfqg != cfqq->cfqg)
1936                 return NULL;
1937
1938         /*
1939          * It only makes sense to merge sync queues.
1940          */
1941         if (!cfq_cfqq_sync(cfqq))
1942                 return NULL;
1943         if (CFQQ_SEEKY(cfqq))
1944                 return NULL;
1945
1946         /*
1947          * Do not merge queues of different priority classes
1948          */
1949         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1950                 return NULL;
1951
1952         return cfqq;
1953 }
1954
1955 /*
1956  * Determine whether we should enforce idle window for this queue.
1957  */
1958
1959 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1960 {
1961         enum wl_prio_t prio = cfqq_prio(cfqq);
1962         struct cfq_rb_root *service_tree = cfqq->service_tree;
1963
1964         BUG_ON(!service_tree);
1965         BUG_ON(!service_tree->count);
1966
1967         if (!cfqd->cfq_slice_idle)
1968                 return false;
1969
1970         /* We never do for idle class queues. */
1971         if (prio == IDLE_WORKLOAD)
1972                 return false;
1973
1974         /* We do for queues that were marked with idle window flag. */
1975         if (cfq_cfqq_idle_window(cfqq) &&
1976            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1977                 return true;
1978
1979         /*
1980          * Otherwise, we do only if they are the last ones
1981          * in their service tree.
1982          */
1983         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1984            !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1985                 return true;
1986         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1987                         service_tree->count);
1988         return false;
1989 }
1990
1991 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1992 {
1993         struct cfq_queue *cfqq = cfqd->active_queue;
1994         struct cfq_io_context *cic;
1995         unsigned long sl, group_idle = 0;
1996
1997         /*
1998          * SSD device without seek penalty, disable idling. But only do so
1999          * for devices that support queuing, otherwise we still have a problem
2000          * with sync vs async workloads.
2001          */
2002         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2003                 return;
2004
2005         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2006         WARN_ON(cfq_cfqq_slice_new(cfqq));
2007
2008         /*
2009          * idle is disabled, either manually or by past process history
2010          */
2011         if (!cfq_should_idle(cfqd, cfqq)) {
2012                 /* no queue idling. Check for group idling */
2013                 if (cfqd->cfq_group_idle)
2014                         group_idle = cfqd->cfq_group_idle;
2015                 else
2016                         return;
2017         }
2018
2019         /*
2020          * still active requests from this queue, don't idle
2021          */
2022         if (cfqq->dispatched)
2023                 return;
2024
2025         /*
2026          * task has exited, don't wait
2027          */
2028         cic = cfqd->active_cic;
2029         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2030                 return;
2031
2032         /*
2033          * If our average think time is larger than the remaining time
2034          * slice, then don't idle. This avoids overrunning the allotted
2035          * time slice.
2036          */
2037         if (sample_valid(cic->ttime.ttime_samples) &&
2038             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2039                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2040                              cic->ttime.ttime_mean);
2041                 return;
2042         }
2043
2044         /* There are other queues in the group, don't do group idle */
2045         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2046                 return;
2047
2048         cfq_mark_cfqq_wait_request(cfqq);
2049
2050         if (group_idle)
2051                 sl = cfqd->cfq_group_idle;
2052         else
2053                 sl = cfqd->cfq_slice_idle;
2054
2055         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2056         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2057         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2058                         group_idle ? 1 : 0);
2059 }
2060
2061 /*
2062  * Move request from internal lists to the request queue dispatch list.
2063  */
2064 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2065 {
2066         struct cfq_data *cfqd = q->elevator->elevator_data;
2067         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2068
2069         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2070
2071         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2072         cfq_remove_request(rq);
2073         cfqq->dispatched++;
2074         (RQ_CFQG(rq))->dispatched++;
2075         elv_dispatch_sort(q, rq);
2076
2077         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2078         cfqq->nr_sectors += blk_rq_sectors(rq);
2079         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2080                                         rq_data_dir(rq), rq_is_sync(rq));
2081 }
2082
2083 /*
2084  * return expired entry, or NULL to just start from scratch in rbtree
2085  */
2086 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2087 {
2088         struct request *rq = NULL;
2089
2090         if (cfq_cfqq_fifo_expire(cfqq))
2091                 return NULL;
2092
2093         cfq_mark_cfqq_fifo_expire(cfqq);
2094
2095         if (list_empty(&cfqq->fifo))
2096                 return NULL;
2097
2098         rq = rq_entry_fifo(cfqq->fifo.next);
2099         if (time_before(jiffies, rq_fifo_time(rq)))
2100                 rq = NULL;
2101
2102         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2103         return rq;
2104 }
2105
2106 static inline int
2107 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2108 {
2109         const int base_rq = cfqd->cfq_slice_async_rq;
2110
2111         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2112
2113         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2114 }
2115
2116 /*
2117  * Must be called with the queue_lock held.
2118  */
2119 static int cfqq_process_refs(struct cfq_queue *cfqq)
2120 {
2121         int process_refs, io_refs;
2122
2123         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2124         process_refs = cfqq->ref - io_refs;
2125         BUG_ON(process_refs < 0);
2126         return process_refs;
2127 }
2128
2129 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2130 {
2131         int process_refs, new_process_refs;
2132         struct cfq_queue *__cfqq;
2133
2134         /*
2135          * If there are no process references on the new_cfqq, then it is
2136          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2137          * chain may have dropped their last reference (not just their
2138          * last process reference).
2139          */
2140         if (!cfqq_process_refs(new_cfqq))
2141                 return;
2142
2143         /* Avoid a circular list and skip interim queue merges */
2144         while ((__cfqq = new_cfqq->new_cfqq)) {
2145                 if (__cfqq == cfqq)
2146                         return;
2147                 new_cfqq = __cfqq;
2148         }
2149
2150         process_refs = cfqq_process_refs(cfqq);
2151         new_process_refs = cfqq_process_refs(new_cfqq);
2152         /*
2153          * If the process for the cfqq has gone away, there is no
2154          * sense in merging the queues.
2155          */
2156         if (process_refs == 0 || new_process_refs == 0)
2157                 return;
2158
2159         /*
2160          * Merge in the direction of the lesser amount of work.
2161          */
2162         if (new_process_refs >= process_refs) {
2163                 cfqq->new_cfqq = new_cfqq;
2164                 new_cfqq->ref += process_refs;
2165         } else {
2166                 new_cfqq->new_cfqq = cfqq;
2167                 cfqq->ref += new_process_refs;
2168         }
2169 }
2170
2171 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2172                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2173 {
2174         struct cfq_queue *queue;
2175         int i;
2176         bool key_valid = false;
2177         unsigned long lowest_key = 0;
2178         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2179
2180         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2181                 /* select the one with lowest rb_key */
2182                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2183                 if (queue &&
2184                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2185                         lowest_key = queue->rb_key;
2186                         cur_best = i;
2187                         key_valid = true;
2188                 }
2189         }
2190
2191         return cur_best;
2192 }
2193
2194 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2195 {
2196         unsigned slice;
2197         unsigned count;
2198         struct cfq_rb_root *st;
2199         unsigned group_slice;
2200         enum wl_prio_t original_prio = cfqd->serving_prio;
2201
2202         /* Choose next priority. RT > BE > IDLE */
2203         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2204                 cfqd->serving_prio = RT_WORKLOAD;
2205         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2206                 cfqd->serving_prio = BE_WORKLOAD;
2207         else {
2208                 cfqd->serving_prio = IDLE_WORKLOAD;
2209                 cfqd->workload_expires = jiffies + 1;
2210                 return;
2211         }
2212
2213         if (original_prio != cfqd->serving_prio)
2214                 goto new_workload;
2215
2216         /*
2217          * For RT and BE, we have to choose also the type
2218          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2219          * expiration time
2220          */
2221         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2222         count = st->count;
2223
2224         /*
2225          * check workload expiration, and that we still have other queues ready
2226          */
2227         if (count && !time_after(jiffies, cfqd->workload_expires))
2228                 return;
2229
2230 new_workload:
2231         /* otherwise select new workload type */
2232         cfqd->serving_type =
2233                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2234         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2235         count = st->count;
2236
2237         /*
2238          * the workload slice is computed as a fraction of target latency
2239          * proportional to the number of queues in that workload, over
2240          * all the queues in the same priority class
2241          */
2242         group_slice = cfq_group_slice(cfqd, cfqg);
2243
2244         slice = group_slice * count /
2245                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2246                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2247
2248         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2249                 unsigned int tmp;
2250
2251                 /*
2252                  * Async queues are currently system wide. Just taking
2253                  * proportion of queues with-in same group will lead to higher
2254                  * async ratio system wide as generally root group is going
2255                  * to have higher weight. A more accurate thing would be to
2256                  * calculate system wide asnc/sync ratio.
2257                  */
2258                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2259                 tmp = tmp/cfqd->busy_queues;
2260                 slice = min_t(unsigned, slice, tmp);
2261
2262                 /* async workload slice is scaled down according to
2263                  * the sync/async slice ratio. */
2264                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2265         } else
2266                 /* sync workload slice is at least 2 * cfq_slice_idle */
2267                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2268
2269         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2270         cfq_log(cfqd, "workload slice:%d", slice);
2271         cfqd->workload_expires = jiffies + slice;
2272 }
2273
2274 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2275 {
2276         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2277         struct cfq_group *cfqg;
2278
2279         if (RB_EMPTY_ROOT(&st->rb))
2280                 return NULL;
2281         cfqg = cfq_rb_first_group(st);
2282         update_min_vdisktime(st);
2283         return cfqg;
2284 }
2285
2286 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2287 {
2288         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2289
2290         cfqd->serving_group = cfqg;
2291
2292         /* Restore the workload type data */
2293         if (cfqg->saved_workload_slice) {
2294                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2295                 cfqd->serving_type = cfqg->saved_workload;
2296                 cfqd->serving_prio = cfqg->saved_serving_prio;
2297         } else
2298                 cfqd->workload_expires = jiffies - 1;
2299
2300         choose_service_tree(cfqd, cfqg);
2301 }
2302
2303 /*
2304  * Select a queue for service. If we have a current active queue,
2305  * check whether to continue servicing it, or retrieve and set a new one.
2306  */
2307 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2308 {
2309         struct cfq_queue *cfqq, *new_cfqq = NULL;
2310
2311         cfqq = cfqd->active_queue;
2312         if (!cfqq)
2313                 goto new_queue;
2314
2315         if (!cfqd->rq_queued)
2316                 return NULL;
2317
2318         /*
2319          * We were waiting for group to get backlogged. Expire the queue
2320          */
2321         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2322                 goto expire;
2323
2324         /*
2325          * The active queue has run out of time, expire it and select new.
2326          */
2327         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2328                 /*
2329                  * If slice had not expired at the completion of last request
2330                  * we might not have turned on wait_busy flag. Don't expire
2331                  * the queue yet. Allow the group to get backlogged.
2332                  *
2333                  * The very fact that we have used the slice, that means we
2334                  * have been idling all along on this queue and it should be
2335                  * ok to wait for this request to complete.
2336                  */
2337                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2338                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2339                         cfqq = NULL;
2340                         goto keep_queue;
2341                 } else
2342                         goto check_group_idle;
2343         }
2344
2345         /*
2346          * The active queue has requests and isn't expired, allow it to
2347          * dispatch.
2348          */
2349         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2350                 goto keep_queue;
2351
2352         /*
2353          * If another queue has a request waiting within our mean seek
2354          * distance, let it run.  The expire code will check for close
2355          * cooperators and put the close queue at the front of the service
2356          * tree.  If possible, merge the expiring queue with the new cfqq.
2357          */
2358         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2359         if (new_cfqq) {
2360                 if (!cfqq->new_cfqq)
2361                         cfq_setup_merge(cfqq, new_cfqq);
2362                 goto expire;
2363         }
2364
2365         /*
2366          * No requests pending. If the active queue still has requests in
2367          * flight or is idling for a new request, allow either of these
2368          * conditions to happen (or time out) before selecting a new queue.
2369          */
2370         if (timer_pending(&cfqd->idle_slice_timer)) {
2371                 cfqq = NULL;
2372                 goto keep_queue;
2373         }
2374
2375         /*
2376          * This is a deep seek queue, but the device is much faster than
2377          * the queue can deliver, don't idle
2378          **/
2379         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2380             (cfq_cfqq_slice_new(cfqq) ||
2381             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2382                 cfq_clear_cfqq_deep(cfqq);
2383                 cfq_clear_cfqq_idle_window(cfqq);
2384         }
2385
2386         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2387                 cfqq = NULL;
2388                 goto keep_queue;
2389         }
2390
2391         /*
2392          * If group idle is enabled and there are requests dispatched from
2393          * this group, wait for requests to complete.
2394          */
2395 check_group_idle:
2396         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2397             cfqq->cfqg->dispatched &&
2398             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2399                 cfqq = NULL;
2400                 goto keep_queue;
2401         }
2402
2403 expire:
2404         cfq_slice_expired(cfqd, 0);
2405 new_queue:
2406         /*
2407          * Current queue expired. Check if we have to switch to a new
2408          * service tree
2409          */
2410         if (!new_cfqq)
2411                 cfq_choose_cfqg(cfqd);
2412
2413         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2414 keep_queue:
2415         return cfqq;
2416 }
2417
2418 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2419 {
2420         int dispatched = 0;
2421
2422         while (cfqq->next_rq) {
2423                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2424                 dispatched++;
2425         }
2426
2427         BUG_ON(!list_empty(&cfqq->fifo));
2428
2429         /* By default cfqq is not expired if it is empty. Do it explicitly */
2430         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2431         return dispatched;
2432 }
2433
2434 /*
2435  * Drain our current requests. Used for barriers and when switching
2436  * io schedulers on-the-fly.
2437  */
2438 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2439 {
2440         struct cfq_queue *cfqq;
2441         int dispatched = 0;
2442
2443         /* Expire the timeslice of the current active queue first */
2444         cfq_slice_expired(cfqd, 0);
2445         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2446                 __cfq_set_active_queue(cfqd, cfqq);
2447                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2448         }
2449
2450         BUG_ON(cfqd->busy_queues);
2451
2452         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2453         return dispatched;
2454 }
2455
2456 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2457         struct cfq_queue *cfqq)
2458 {
2459         /* the queue hasn't finished any request, can't estimate */
2460         if (cfq_cfqq_slice_new(cfqq))
2461                 return true;
2462         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2463                 cfqq->slice_end))
2464                 return true;
2465
2466         return false;
2467 }
2468
2469 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2470 {
2471         unsigned int max_dispatch;
2472
2473         /*
2474          * Drain async requests before we start sync IO
2475          */
2476         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2477                 return false;
2478
2479         /*
2480          * If this is an async queue and we have sync IO in flight, let it wait
2481          */
2482         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2483                 return false;
2484
2485         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2486         if (cfq_class_idle(cfqq))
2487                 max_dispatch = 1;
2488
2489         /*
2490          * Does this cfqq already have too much IO in flight?
2491          */
2492         if (cfqq->dispatched >= max_dispatch) {
2493                 bool promote_sync = false;
2494                 /*
2495                  * idle queue must always only have a single IO in flight
2496                  */
2497                 if (cfq_class_idle(cfqq))
2498                         return false;
2499
2500                 /*
2501                  * If there is only one sync queue
2502                  * we can ignore async queue here and give the sync
2503                  * queue no dispatch limit. The reason is a sync queue can
2504                  * preempt async queue, limiting the sync queue doesn't make
2505                  * sense. This is useful for aiostress test.
2506                  */
2507                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2508                         promote_sync = true;
2509
2510                 /*
2511                  * We have other queues, don't allow more IO from this one
2512                  */
2513                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2514                                 !promote_sync)
2515                         return false;
2516
2517                 /*
2518                  * Sole queue user, no limit
2519                  */
2520                 if (cfqd->busy_queues == 1 || promote_sync)
2521                         max_dispatch = -1;
2522                 else
2523                         /*
2524                          * Normally we start throttling cfqq when cfq_quantum/2
2525                          * requests have been dispatched. But we can drive
2526                          * deeper queue depths at the beginning of slice
2527                          * subjected to upper limit of cfq_quantum.
2528                          * */
2529                         max_dispatch = cfqd->cfq_quantum;
2530         }
2531
2532         /*
2533          * Async queues must wait a bit before being allowed dispatch.
2534          * We also ramp up the dispatch depth gradually for async IO,
2535          * based on the last sync IO we serviced
2536          */
2537         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2538                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2539                 unsigned int depth;
2540
2541                 depth = last_sync / cfqd->cfq_slice[1];
2542                 if (!depth && !cfqq->dispatched)
2543                         depth = 1;
2544                 if (depth < max_dispatch)
2545                         max_dispatch = depth;
2546         }
2547
2548         /*
2549          * If we're below the current max, allow a dispatch
2550          */
2551         return cfqq->dispatched < max_dispatch;
2552 }
2553
2554 /*
2555  * Dispatch a request from cfqq, moving them to the request queue
2556  * dispatch list.
2557  */
2558 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2559 {
2560         struct request *rq;
2561
2562         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2563
2564         if (!cfq_may_dispatch(cfqd, cfqq))
2565                 return false;
2566
2567         /*
2568          * follow expired path, else get first next available
2569          */
2570         rq = cfq_check_fifo(cfqq);
2571         if (!rq)
2572                 rq = cfqq->next_rq;
2573
2574         /*
2575          * insert request into driver dispatch list
2576          */
2577         cfq_dispatch_insert(cfqd->queue, rq);
2578
2579         if (!cfqd->active_cic) {
2580                 struct cfq_io_context *cic = RQ_CIC(rq);
2581
2582                 atomic_long_inc(&cic->ioc->refcount);
2583                 cfqd->active_cic = cic;
2584         }
2585
2586         return true;
2587 }
2588
2589 /*
2590  * Find the cfqq that we need to service and move a request from that to the
2591  * dispatch list
2592  */
2593 static int cfq_dispatch_requests(struct request_queue *q, int force)
2594 {
2595         struct cfq_data *cfqd = q->elevator->elevator_data;
2596         struct cfq_queue *cfqq;
2597
2598         if (!cfqd->busy_queues)
2599                 return 0;
2600
2601         if (unlikely(force))
2602                 return cfq_forced_dispatch(cfqd);
2603
2604         cfqq = cfq_select_queue(cfqd);
2605         if (!cfqq)
2606                 return 0;
2607
2608         /*
2609          * Dispatch a request from this cfqq, if it is allowed
2610          */
2611         if (!cfq_dispatch_request(cfqd, cfqq))
2612                 return 0;
2613
2614         cfqq->slice_dispatch++;
2615         cfq_clear_cfqq_must_dispatch(cfqq);
2616
2617         /*
2618          * expire an async queue immediately if it has used up its slice. idle
2619          * queue always expire after 1 dispatch round.
2620          */
2621         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2622             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2623             cfq_class_idle(cfqq))) {
2624                 cfqq->slice_end = jiffies + 1;
2625                 cfq_slice_expired(cfqd, 0);
2626         }
2627
2628         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2629         return 1;
2630 }
2631
2632 /*
2633  * task holds one reference to the queue, dropped when task exits. each rq
2634  * in-flight on this queue also holds a reference, dropped when rq is freed.
2635  *
2636  * Each cfq queue took a reference on the parent group. Drop it now.
2637  * queue lock must be held here.
2638  */
2639 static void cfq_put_queue(struct cfq_queue *cfqq)
2640 {
2641         struct cfq_data *cfqd = cfqq->cfqd;
2642         struct cfq_group *cfqg;
2643
2644         BUG_ON(cfqq->ref <= 0);
2645
2646         cfqq->ref--;
2647         if (cfqq->ref)
2648                 return;
2649
2650         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2651         BUG_ON(rb_first(&cfqq->sort_list));
2652         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2653         cfqg = cfqq->cfqg;
2654
2655         if (unlikely(cfqd->active_queue == cfqq)) {
2656                 __cfq_slice_expired(cfqd, cfqq, 0);
2657                 cfq_schedule_dispatch(cfqd);
2658         }
2659
2660         BUG_ON(cfq_cfqq_on_rr(cfqq));
2661         kmem_cache_free(cfq_pool, cfqq);
2662         cfq_put_cfqg(cfqg);
2663 }
2664
2665 /*
2666  * Call func for each cic attached to this ioc.
2667  */
2668 static void
2669 call_for_each_cic(struct io_context *ioc,
2670                   void (*func)(struct io_context *, struct cfq_io_context *))
2671 {
2672         struct cfq_io_context *cic;
2673         struct hlist_node *n;
2674
2675         rcu_read_lock();
2676
2677         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2678                 func(ioc, cic);
2679
2680         rcu_read_unlock();
2681 }
2682
2683 static void cfq_cic_free_rcu(struct rcu_head *head)
2684 {
2685         struct cfq_io_context *cic;
2686
2687         cic = container_of(head, struct cfq_io_context, rcu_head);
2688
2689         kmem_cache_free(cfq_ioc_pool, cic);
2690         elv_ioc_count_dec(cfq_ioc_count);
2691
2692         if (ioc_gone) {
2693                 /*
2694                  * CFQ scheduler is exiting, grab exit lock and check
2695                  * the pending io context count. If it hits zero,
2696                  * complete ioc_gone and set it back to NULL
2697                  */
2698                 spin_lock(&ioc_gone_lock);
2699                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2700                         complete(ioc_gone);
2701                         ioc_gone = NULL;
2702                 }
2703                 spin_unlock(&ioc_gone_lock);
2704         }
2705 }
2706
2707 static void cfq_cic_free(struct cfq_io_context *cic)
2708 {
2709         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2710 }
2711
2712 static void cfq_release_cic(struct cfq_io_context *cic)
2713 {
2714         struct io_context *ioc = cic->ioc;
2715         unsigned long dead_key = (unsigned long) cic->key;
2716
2717         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2718         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2719         hlist_del_rcu(&cic->cic_list);
2720         cfq_cic_free(cic);
2721 }
2722
2723 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2724 {
2725         unsigned long flags;
2726
2727         spin_lock_irqsave(&ioc->lock, flags);
2728         cfq_release_cic(cic);
2729         spin_unlock_irqrestore(&ioc->lock, flags);
2730 }
2731
2732 /*
2733  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2734  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2735  * and ->trim() which is called with the task lock held
2736  */
2737 static void cfq_free_io_context(struct io_context *ioc)
2738 {
2739         /*
2740          * ioc->refcount is zero here, or we are called from elv_unregister(),
2741          * so no more cic's are allowed to be linked into this ioc.  So it
2742          * should be ok to iterate over the known list, we will see all cic's
2743          * since no new ones are added.
2744          */
2745         call_for_each_cic(ioc, cic_free_func);
2746 }
2747
2748 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2749 {
2750         struct cfq_queue *__cfqq, *next;
2751
2752         /*
2753          * If this queue was scheduled to merge with another queue, be
2754          * sure to drop the reference taken on that queue (and others in
2755          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2756          */
2757         __cfqq = cfqq->new_cfqq;
2758         while (__cfqq) {
2759                 if (__cfqq == cfqq) {
2760                         WARN(1, "cfqq->new_cfqq loop detected\n");
2761                         break;
2762                 }
2763                 next = __cfqq->new_cfqq;
2764                 cfq_put_queue(__cfqq);
2765                 __cfqq = next;
2766         }
2767 }
2768
2769 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2770 {
2771         if (unlikely(cfqq == cfqd->active_queue)) {
2772                 __cfq_slice_expired(cfqd, cfqq, 0);
2773                 cfq_schedule_dispatch(cfqd);
2774         }
2775
2776         cfq_put_cooperator(cfqq);
2777
2778         cfq_put_queue(cfqq);
2779 }
2780
2781 static void cfq_exit_cic(struct cfq_io_context *cic)
2782 {
2783         struct cfq_data *cfqd = cic_to_cfqd(cic);
2784         struct io_context *ioc = cic->ioc;
2785
2786         list_del_init(&cic->queue_list);
2787
2788         /*
2789          * Make sure dead mark is seen for dead queues
2790          */
2791         smp_wmb();
2792         cic->key = cfqd_dead_key(cfqd);
2793
2794         rcu_read_lock();
2795         if (rcu_dereference(ioc->ioc_data) == cic) {
2796                 rcu_read_unlock();
2797                 spin_lock(&ioc->lock);
2798                 rcu_assign_pointer(ioc->ioc_data, NULL);
2799                 spin_unlock(&ioc->lock);
2800         } else
2801                 rcu_read_unlock();
2802
2803         if (cic->cfqq[BLK_RW_ASYNC]) {
2804                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2805                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2806         }
2807
2808         if (cic->cfqq[BLK_RW_SYNC]) {
2809                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2810                 cic->cfqq[BLK_RW_SYNC] = NULL;
2811         }
2812 }
2813
2814 static void cfq_exit_single_io_context(struct io_context *ioc,
2815                                        struct cfq_io_context *cic)
2816 {
2817         struct cfq_data *cfqd = cic_to_cfqd(cic);
2818
2819         if (cfqd) {
2820                 struct request_queue *q = cfqd->queue;
2821                 unsigned long flags;
2822
2823                 spin_lock_irqsave(q->queue_lock, flags);
2824
2825                 /*
2826                  * Ensure we get a fresh copy of the ->key to prevent
2827                  * race between exiting task and queue
2828                  */
2829                 smp_read_barrier_depends();
2830                 if (cic->key == cfqd)
2831                         cfq_exit_cic(cic);
2832
2833                 spin_unlock_irqrestore(q->queue_lock, flags);
2834         }
2835 }
2836
2837 /*
2838  * The process that ioc belongs to has exited, we need to clean up
2839  * and put the internal structures we have that belongs to that process.
2840  */
2841 static void cfq_exit_io_context(struct io_context *ioc)
2842 {
2843         call_for_each_cic(ioc, cfq_exit_single_io_context);
2844 }
2845
2846 static struct cfq_io_context *
2847 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2848 {
2849         struct cfq_io_context *cic;
2850
2851         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2852                                                         cfqd->queue->node);
2853         if (cic) {
2854                 cic->ttime.last_end_request = jiffies;
2855                 INIT_LIST_HEAD(&cic->queue_list);
2856                 INIT_HLIST_NODE(&cic->cic_list);
2857                 cic->dtor = cfq_free_io_context;
2858                 cic->exit = cfq_exit_io_context;
2859                 elv_ioc_count_inc(cfq_ioc_count);
2860         }
2861
2862         return cic;
2863 }
2864
2865 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2866 {
2867         struct task_struct *tsk = current;
2868         int ioprio_class;
2869
2870         if (!cfq_cfqq_prio_changed(cfqq))
2871                 return;
2872
2873         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2874         switch (ioprio_class) {
2875         default:
2876                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2877         case IOPRIO_CLASS_NONE:
2878                 /*
2879                  * no prio set, inherit CPU scheduling settings
2880                  */
2881                 cfqq->ioprio = task_nice_ioprio(tsk);
2882                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2883                 break;
2884         case IOPRIO_CLASS_RT:
2885                 cfqq->ioprio = task_ioprio(ioc);
2886                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2887                 break;
2888         case IOPRIO_CLASS_BE:
2889                 cfqq->ioprio = task_ioprio(ioc);
2890                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2891                 break;
2892         case IOPRIO_CLASS_IDLE:
2893                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2894                 cfqq->ioprio = 7;
2895                 cfq_clear_cfqq_idle_window(cfqq);
2896                 break;
2897         }
2898
2899         /*
2900          * keep track of original prio settings in case we have to temporarily
2901          * elevate the priority of this queue
2902          */
2903         cfqq->org_ioprio = cfqq->ioprio;
2904         cfq_clear_cfqq_prio_changed(cfqq);
2905 }
2906
2907 static void changed_ioprio(struct cfq_io_context *cic)
2908 {
2909         struct cfq_data *cfqd = cic_to_cfqd(cic);
2910         struct cfq_queue *cfqq;
2911
2912         if (unlikely(!cfqd))
2913                 return;
2914
2915         cfqq = cic->cfqq[BLK_RW_ASYNC];
2916         if (cfqq) {
2917                 struct cfq_queue *new_cfqq;
2918                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2919                                                 GFP_ATOMIC);
2920                 if (new_cfqq) {
2921                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2922                         cfq_put_queue(cfqq);
2923                 }
2924         }
2925
2926         cfqq = cic->cfqq[BLK_RW_SYNC];
2927         if (cfqq)
2928                 cfq_mark_cfqq_prio_changed(cfqq);
2929 }
2930
2931 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2932                           pid_t pid, bool is_sync)
2933 {
2934         RB_CLEAR_NODE(&cfqq->rb_node);
2935         RB_CLEAR_NODE(&cfqq->p_node);
2936         INIT_LIST_HEAD(&cfqq->fifo);
2937
2938         cfqq->ref = 0;
2939         cfqq->cfqd = cfqd;
2940
2941         cfq_mark_cfqq_prio_changed(cfqq);
2942
2943         if (is_sync) {
2944                 if (!cfq_class_idle(cfqq))
2945                         cfq_mark_cfqq_idle_window(cfqq);
2946                 cfq_mark_cfqq_sync(cfqq);
2947         }
2948         cfqq->pid = pid;
2949 }
2950
2951 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2952 static void changed_cgroup(struct cfq_io_context *cic)
2953 {
2954         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2955         struct cfq_data *cfqd = cic_to_cfqd(cic);
2956         struct request_queue *q;
2957
2958         if (unlikely(!cfqd))
2959                 return;
2960
2961         q = cfqd->queue;
2962
2963         if (sync_cfqq) {
2964                 /*
2965                  * Drop reference to sync queue. A new sync queue will be
2966                  * assigned in new group upon arrival of a fresh request.
2967                  */
2968                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2969                 cic_set_cfqq(cic, NULL, 1);
2970                 cfq_put_queue(sync_cfqq);
2971         }
2972 }
2973 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2974
2975 static struct cfq_queue *
2976 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2977                      struct io_context *ioc, gfp_t gfp_mask)
2978 {
2979         struct cfq_queue *cfqq, *new_cfqq = NULL;
2980         struct cfq_io_context *cic;
2981         struct cfq_group *cfqg;
2982
2983 retry:
2984         cfqg = cfq_get_cfqg(cfqd);
2985         cic = cfq_cic_lookup(cfqd, ioc);
2986         /* cic always exists here */
2987         cfqq = cic_to_cfqq(cic, is_sync);
2988
2989         /*
2990          * Always try a new alloc if we fell back to the OOM cfqq
2991          * originally, since it should just be a temporary situation.
2992          */
2993         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2994                 cfqq = NULL;
2995                 if (new_cfqq) {
2996                         cfqq = new_cfqq;
2997                         new_cfqq = NULL;
2998                 } else if (gfp_mask & __GFP_WAIT) {
2999                         spin_unlock_irq(cfqd->queue->queue_lock);
3000                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
3001                                         gfp_mask | __GFP_ZERO,
3002                                         cfqd->queue->node);
3003                         spin_lock_irq(cfqd->queue->queue_lock);
3004                         if (new_cfqq)
3005                                 goto retry;
3006                 } else {
3007                         cfqq = kmem_cache_alloc_node(cfq_pool,
3008                                         gfp_mask | __GFP_ZERO,
3009                                         cfqd->queue->node);
3010                 }
3011
3012                 if (cfqq) {
3013                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3014                         cfq_init_prio_data(cfqq, ioc);
3015                         cfq_link_cfqq_cfqg(cfqq, cfqg);
3016                         cfq_log_cfqq(cfqd, cfqq, "alloced");
3017                 } else
3018                         cfqq = &cfqd->oom_cfqq;
3019         }
3020
3021         if (new_cfqq)
3022                 kmem_cache_free(cfq_pool, new_cfqq);
3023
3024         return cfqq;
3025 }
3026
3027 static struct cfq_queue **
3028 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3029 {
3030         switch (ioprio_class) {
3031         case IOPRIO_CLASS_RT:
3032                 return &cfqd->async_cfqq[0][ioprio];
3033         case IOPRIO_CLASS_BE:
3034                 return &cfqd->async_cfqq[1][ioprio];
3035         case IOPRIO_CLASS_IDLE:
3036                 return &cfqd->async_idle_cfqq;
3037         default:
3038                 BUG();
3039         }
3040 }
3041
3042 static struct cfq_queue *
3043 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3044               gfp_t gfp_mask)
3045 {
3046         const int ioprio = task_ioprio(ioc);
3047         const int ioprio_class = task_ioprio_class(ioc);
3048         struct cfq_queue **async_cfqq = NULL;
3049         struct cfq_queue *cfqq = NULL;
3050
3051         if (!is_sync) {
3052                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3053                 cfqq = *async_cfqq;
3054         }
3055
3056         if (!cfqq)
3057                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3058
3059         /*
3060          * pin the queue now that it's allocated, scheduler exit will prune it
3061          */
3062         if (!is_sync && !(*async_cfqq)) {
3063                 cfqq->ref++;
3064                 *async_cfqq = cfqq;
3065         }
3066
3067         cfqq->ref++;
3068         return cfqq;
3069 }
3070
3071 /*
3072  * We drop cfq io contexts lazily, so we may find a dead one.
3073  */
3074 static void
3075 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3076                   struct cfq_io_context *cic)
3077 {
3078         unsigned long flags;
3079
3080         WARN_ON(!list_empty(&cic->queue_list));
3081         BUG_ON(cic->key != cfqd_dead_key(cfqd));
3082
3083         spin_lock_irqsave(&ioc->lock, flags);
3084
3085         BUG_ON(rcu_dereference_check(ioc->ioc_data,
3086                 lockdep_is_held(&ioc->lock)) == cic);
3087
3088         radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
3089         hlist_del_rcu(&cic->cic_list);
3090         spin_unlock_irqrestore(&ioc->lock, flags);
3091
3092         cfq_cic_free(cic);
3093 }
3094
3095 static struct cfq_io_context *
3096 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3097 {
3098         struct cfq_io_context *cic;
3099         unsigned long flags;
3100
3101         if (unlikely(!ioc))
3102                 return NULL;
3103
3104         rcu_read_lock();
3105
3106         /*
3107          * we maintain a last-hit cache, to avoid browsing over the tree
3108          */
3109         cic = rcu_dereference(ioc->ioc_data);
3110         if (cic && cic->key == cfqd) {
3111                 rcu_read_unlock();
3112                 return cic;
3113         }
3114
3115         do {
3116                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
3117                 rcu_read_unlock();
3118                 if (!cic)
3119                         break;
3120                 if (unlikely(cic->key != cfqd)) {
3121                         cfq_drop_dead_cic(cfqd, ioc, cic);
3122                         rcu_read_lock();
3123                         continue;
3124                 }
3125
3126                 spin_lock_irqsave(&ioc->lock, flags);
3127                 rcu_assign_pointer(ioc->ioc_data, cic);
3128                 spin_unlock_irqrestore(&ioc->lock, flags);
3129                 break;
3130         } while (1);
3131
3132         return cic;
3133 }
3134
3135 /**
3136  * cfq_create_cic - create and link a cfq_io_context
3137  * @cfqd: cfqd of interest
3138  * @gfp_mask: allocation mask
3139  *
3140  * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
3141  * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
3142  */
3143 static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
3144 {
3145         struct request_queue *q = cfqd->queue;
3146         struct cfq_io_context *cic = NULL;
3147         struct io_context *ioc;
3148         int ret = -ENOMEM;
3149
3150         might_sleep_if(gfp_mask & __GFP_WAIT);
3151
3152         /* allocate stuff */
3153         ioc = current_io_context(gfp_mask, q->node);
3154         if (!ioc)
3155                 goto out;
3156
3157         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3158         if (!cic)
3159                 goto out;
3160
3161         ret = radix_tree_preload(gfp_mask);
3162         if (ret)
3163                 goto out;
3164
3165         cic->ioc = ioc;
3166         cic->key = cfqd;
3167         cic->q = cfqd->queue;
3168
3169         /* lock both q and ioc and try to link @cic */
3170         spin_lock_irq(q->queue_lock);
3171         spin_lock(&ioc->lock);
3172
3173         ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
3174         if (likely(!ret)) {
3175                 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3176                 list_add(&cic->queue_list, &cfqd->cic_list);
3177                 cic = NULL;
3178         } else if (ret == -EEXIST) {
3179                 /* someone else already did it */
3180                 ret = 0;
3181         }
3182
3183         spin_unlock(&ioc->lock);
3184         spin_unlock_irq(q->queue_lock);
3185
3186         radix_tree_preload_end();
3187 out:
3188         if (ret)
3189                 printk(KERN_ERR "cfq: cic link failed!\n");
3190         if (cic)
3191                 cfq_cic_free(cic);
3192         return ret;
3193 }
3194
3195 /**
3196  * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
3197  * @cfqd: cfqd to setup cic for
3198  * @gfp_mask: allocation mask
3199  *
3200  * Return cfq_io_context associating @cfqd and %current->io_context and
3201  * bump refcnt on io_context.  If ioc or cic doesn't exist, they're created
3202  * using @gfp_mask.
3203  *
3204  * Must be called under queue_lock which may be released and re-acquired.
3205  * This function also may sleep depending on @gfp_mask.
3206  */
3207 static struct cfq_io_context *
3208 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3209 {
3210         struct request_queue *q = cfqd->queue;
3211         struct cfq_io_context *cic = NULL;
3212         struct io_context *ioc;
3213         int err;
3214
3215         lockdep_assert_held(q->queue_lock);
3216
3217         while (true) {
3218                 /* fast path */
3219                 ioc = current->io_context;
3220                 if (likely(ioc)) {
3221                         cic = cfq_cic_lookup(cfqd, ioc);
3222                         if (likely(cic))
3223                                 break;
3224                 }
3225
3226                 /* slow path - unlock, create missing ones and retry */
3227                 spin_unlock_irq(q->queue_lock);
3228                 err = cfq_create_cic(cfqd, gfp_mask);
3229                 spin_lock_irq(q->queue_lock);
3230                 if (err)
3231                         return NULL;
3232         }
3233
3234         /* bump @ioc's refcnt and handle changed notifications */
3235         get_io_context(ioc);
3236
3237         if (unlikely(cic->changed)) {
3238                 if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
3239                         changed_ioprio(cic);
3240 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3241                 if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
3242                         changed_cgroup(cic);
3243 #endif
3244         }
3245
3246         return cic;
3247 }
3248
3249 static void
3250 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3251 {
3252         unsigned long elapsed = jiffies - ttime->last_end_request;
3253         elapsed = min(elapsed, 2UL * slice_idle);
3254
3255         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3256         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3257         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3258 }
3259
3260 static void
3261 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3262         struct cfq_io_context *cic)
3263 {
3264         if (cfq_cfqq_sync(cfqq)) {
3265                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3266                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3267                         cfqd->cfq_slice_idle);
3268         }
3269 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3270         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3271 #endif
3272 }
3273
3274 static void
3275 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3276                        struct request *rq)
3277 {
3278         sector_t sdist = 0;
3279         sector_t n_sec = blk_rq_sectors(rq);
3280         if (cfqq->last_request_pos) {
3281                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3282                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3283                 else
3284                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3285         }
3286
3287         cfqq->seek_history <<= 1;
3288         if (blk_queue_nonrot(cfqd->queue))
3289                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3290         else
3291                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3292 }
3293
3294 /*
3295  * Disable idle window if the process thinks too long or seeks so much that
3296  * it doesn't matter
3297  */
3298 static void
3299 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3300                        struct cfq_io_context *cic)
3301 {
3302         int old_idle, enable_idle;
3303
3304         /*
3305          * Don't idle for async or idle io prio class
3306          */
3307         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3308                 return;
3309
3310         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3311
3312         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3313                 cfq_mark_cfqq_deep(cfqq);
3314
3315         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3316                 enable_idle = 0;
3317         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3318             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3319                 enable_idle = 0;
3320         else if (sample_valid(cic->ttime.ttime_samples)) {
3321                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3322                         enable_idle = 0;
3323                 else
3324                         enable_idle = 1;
3325         }
3326
3327         if (old_idle != enable_idle) {
3328                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3329                 if (enable_idle)
3330                         cfq_mark_cfqq_idle_window(cfqq);
3331                 else
3332                         cfq_clear_cfqq_idle_window(cfqq);
3333         }
3334 }
3335
3336 /*
3337  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3338  * no or if we aren't sure, a 1 will cause a preempt.
3339  */
3340 static bool
3341 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3342                    struct request *rq)
3343 {
3344         struct cfq_queue *cfqq;
3345
3346         cfqq = cfqd->active_queue;
3347         if (!cfqq)
3348                 return false;
3349
3350         if (cfq_class_idle(new_cfqq))
3351                 return false;
3352
3353         if (cfq_class_idle(cfqq))
3354                 return true;
3355
3356         /*
3357          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3358          */
3359         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3360                 return false;
3361
3362         /*
3363          * if the new request is sync, but the currently running queue is
3364          * not, let the sync request have priority.
3365          */
3366         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3367                 return true;
3368
3369         if (new_cfqq->cfqg != cfqq->cfqg)
3370                 return false;
3371
3372         if (cfq_slice_used(cfqq))
3373                 return true;
3374
3375         /* Allow preemption only if we are idling on sync-noidle tree */
3376         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3377             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3378             new_cfqq->service_tree->count == 2 &&
3379             RB_EMPTY_ROOT(&cfqq->sort_list))
3380                 return true;
3381
3382         /*
3383          * So both queues are sync. Let the new request get disk time if
3384          * it's a metadata request and the current queue is doing regular IO.
3385          */
3386         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3387                 return true;
3388
3389         /*
3390          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3391          */
3392         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3393                 return true;
3394
3395         /* An idle queue should not be idle now for some reason */
3396         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3397                 return true;
3398
3399         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3400                 return false;
3401
3402         /*
3403          * if this request is as-good as one we would expect from the
3404          * current cfqq, let it preempt
3405          */
3406         if (cfq_rq_close(cfqd, cfqq, rq))
3407                 return true;
3408
3409         return false;
3410 }
3411
3412 /*
3413  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3414  * let it have half of its nominal slice.
3415  */
3416 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3417 {
3418         struct cfq_queue *old_cfqq = cfqd->active_queue;
3419
3420         cfq_log_cfqq(cfqd, cfqq, "preempt");
3421         cfq_slice_expired(cfqd, 1);
3422
3423         /*
3424          * workload type is changed, don't save slice, otherwise preempt
3425          * doesn't happen
3426          */
3427         if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3428                 cfqq->cfqg->saved_workload_slice = 0;
3429
3430         /*
3431          * Put the new queue at the front of the of the current list,
3432          * so we know that it will be selected next.
3433          */
3434         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3435
3436         cfq_service_tree_add(cfqd, cfqq, 1);
3437
3438         cfqq->slice_end = 0;
3439         cfq_mark_cfqq_slice_new(cfqq);
3440 }
3441
3442 /*
3443  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3444  * something we should do about it
3445  */
3446 static void
3447 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3448                 struct request *rq)
3449 {
3450         struct cfq_io_context *cic = RQ_CIC(rq);
3451
3452         cfqd->rq_queued++;
3453         if (rq->cmd_flags & REQ_PRIO)
3454                 cfqq->prio_pending++;
3455
3456         cfq_update_io_thinktime(cfqd, cfqq, cic);
3457         cfq_update_io_seektime(cfqd, cfqq, rq);
3458         cfq_update_idle_window(cfqd, cfqq, cic);
3459
3460         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3461
3462         if (cfqq == cfqd->active_queue) {
3463                 /*
3464                  * Remember that we saw a request from this process, but
3465                  * don't start queuing just yet. Otherwise we risk seeing lots
3466                  * of tiny requests, because we disrupt the normal plugging
3467                  * and merging. If the request is already larger than a single
3468                  * page, let it rip immediately. For that case we assume that
3469                  * merging is already done. Ditto for a busy system that
3470                  * has other work pending, don't risk delaying until the
3471                  * idle timer unplug to continue working.
3472                  */
3473                 if (cfq_cfqq_wait_request(cfqq)) {
3474                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3475                             cfqd->busy_queues > 1) {
3476                                 cfq_del_timer(cfqd, cfqq);
3477                                 cfq_clear_cfqq_wait_request(cfqq);
3478                                 __blk_run_queue(cfqd->queue);
3479                         } else {
3480                                 cfq_blkiocg_update_idle_time_stats(
3481                                                 &cfqq->cfqg->blkg);
3482                                 cfq_mark_cfqq_must_dispatch(cfqq);
3483                         }
3484                 }
3485         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3486                 /*
3487                  * not the active queue - expire current slice if it is
3488                  * idle and has expired it's mean thinktime or this new queue
3489                  * has some old slice time left and is of higher priority or
3490                  * this new queue is RT and the current one is BE
3491                  */
3492                 cfq_preempt_queue(cfqd, cfqq);
3493                 __blk_run_queue(cfqd->queue);
3494         }
3495 }
3496
3497 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3498 {
3499         struct cfq_data *cfqd = q->elevator->elevator_data;
3500         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3501
3502         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3503         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3504
3505         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3506         list_add_tail(&rq->queuelist, &cfqq->fifo);
3507         cfq_add_rq_rb(rq);
3508         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3509                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3510                         rq_is_sync(rq));
3511         cfq_rq_enqueued(cfqd, cfqq, rq);
3512 }
3513
3514 /*
3515  * Update hw_tag based on peak queue depth over 50 samples under
3516  * sufficient load.
3517  */
3518 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3519 {
3520         struct cfq_queue *cfqq = cfqd->active_queue;
3521
3522         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3523                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3524
3525         if (cfqd->hw_tag == 1)
3526                 return;
3527
3528         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3529             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3530                 return;
3531
3532         /*
3533          * If active queue hasn't enough requests and can idle, cfq might not
3534          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3535          * case
3536          */
3537         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3538             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3539             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3540                 return;
3541
3542         if (cfqd->hw_tag_samples++ < 50)
3543                 return;
3544
3545         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3546                 cfqd->hw_tag = 1;
3547         else
3548                 cfqd->hw_tag = 0;
3549 }
3550
3551 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3552 {
3553         struct cfq_io_context *cic = cfqd->active_cic;
3554
3555         /* If the queue already has requests, don't wait */
3556         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3557                 return false;
3558
3559         /* If there are other queues in the group, don't wait */
3560         if (cfqq->cfqg->nr_cfqq > 1)
3561                 return false;
3562
3563         /* the only queue in the group, but think time is big */
3564         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3565                 return false;
3566
3567         if (cfq_slice_used(cfqq))
3568                 return true;
3569
3570         /* if slice left is less than think time, wait busy */
3571         if (cic && sample_valid(cic->ttime.ttime_samples)
3572             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3573                 return true;
3574
3575         /*
3576          * If think times is less than a jiffy than ttime_mean=0 and above
3577          * will not be true. It might happen that slice has not expired yet
3578          * but will expire soon (4-5 ns) during select_queue(). To cover the
3579          * case where think time is less than a jiffy, mark the queue wait
3580          * busy if only 1 jiffy is left in the slice.
3581          */
3582         if (cfqq->slice_end - jiffies == 1)
3583                 return true;
3584
3585         return false;
3586 }
3587
3588 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3589 {
3590         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3591         struct cfq_data *cfqd = cfqq->cfqd;
3592         const int sync = rq_is_sync(rq);
3593         unsigned long now;
3594
3595         now = jiffies;
3596         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3597                      !!(rq->cmd_flags & REQ_NOIDLE));
3598
3599         cfq_update_hw_tag(cfqd);
3600
3601         WARN_ON(!cfqd->rq_in_driver);
3602         WARN_ON(!cfqq->dispatched);
3603         cfqd->rq_in_driver--;
3604         cfqq->dispatched--;
3605         (RQ_CFQG(rq))->dispatched--;
3606         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3607                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3608                         rq_data_dir(rq), rq_is_sync(rq));
3609
3610         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3611
3612         if (sync) {
3613                 struct cfq_rb_root *service_tree;
3614
3615                 RQ_CIC(rq)->ttime.last_end_request = now;
3616
3617                 if (cfq_cfqq_on_rr(cfqq))
3618                         service_tree = cfqq->service_tree;
3619                 else
3620                         service_tree = service_tree_for(cfqq->cfqg,
3621                                 cfqq_prio(cfqq), cfqq_type(cfqq));
3622                 service_tree->ttime.last_end_request = now;
3623                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3624                         cfqd->last_delayed_sync = now;
3625         }
3626
3627 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3628         cfqq->cfqg->ttime.last_end_request = now;
3629 #endif
3630
3631         /*
3632          * If this is the active queue, check if it needs to be expired,
3633          * or if we want to idle in case it has no pending requests.
3634          */
3635         if (cfqd->active_queue == cfqq) {
3636                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3637
3638                 if (cfq_cfqq_slice_new(cfqq)) {
3639                         cfq_set_prio_slice(cfqd, cfqq);
3640                         cfq_clear_cfqq_slice_new(cfqq);
3641                 }
3642
3643                 /*
3644                  * Should we wait for next request to come in before we expire
3645                  * the queue.
3646                  */
3647                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3648                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3649                         if (!cfqd->cfq_slice_idle)
3650                                 extend_sl = cfqd->cfq_group_idle;
3651                         cfqq->slice_end = jiffies + extend_sl;
3652                         cfq_mark_cfqq_wait_busy(cfqq);
3653                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3654                 }
3655
3656                 /*
3657                  * Idling is not enabled on:
3658                  * - expired queues
3659                  * - idle-priority queues
3660                  * - async queues
3661                  * - queues with still some requests queued
3662                  * - when there is a close cooperator
3663                  */
3664                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3665                         cfq_slice_expired(cfqd, 1);
3666                 else if (sync && cfqq_empty &&
3667                          !cfq_close_cooperator(cfqd, cfqq)) {
3668                         cfq_arm_slice_timer(cfqd);
3669                 }
3670         }
3671
3672         if (!cfqd->rq_in_driver)
3673                 cfq_schedule_dispatch(cfqd);
3674 }
3675
3676 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3677 {
3678         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3679                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3680                 return ELV_MQUEUE_MUST;
3681         }
3682
3683         return ELV_MQUEUE_MAY;
3684 }
3685
3686 static int cfq_may_queue(struct request_queue *q, int rw)
3687 {
3688         struct cfq_data *cfqd = q->elevator->elevator_data;
3689         struct task_struct *tsk = current;
3690         struct cfq_io_context *cic;
3691         struct cfq_queue *cfqq;
3692
3693         /*
3694          * don't force setup of a queue from here, as a call to may_queue
3695          * does not necessarily imply that a request actually will be queued.
3696          * so just lookup a possibly existing queue, or return 'may queue'
3697          * if that fails
3698          */
3699         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3700         if (!cic)
3701                 return ELV_MQUEUE_MAY;
3702
3703         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3704         if (cfqq) {
3705                 cfq_init_prio_data(cfqq, cic->ioc);
3706
3707                 return __cfq_may_queue(cfqq);
3708         }
3709
3710         return ELV_MQUEUE_MAY;
3711 }
3712
3713 /*
3714  * queue lock held here
3715  */
3716 static void cfq_put_request(struct request *rq)
3717 {
3718         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3719
3720         if (cfqq) {
3721                 const int rw = rq_data_dir(rq);
3722
3723                 BUG_ON(!cfqq->allocated[rw]);
3724                 cfqq->allocated[rw]--;
3725
3726                 put_io_context(RQ_CIC(rq)->ioc);
3727
3728                 rq->elevator_private[0] = NULL;
3729                 rq->elevator_private[1] = NULL;
3730
3731                 /* Put down rq reference on cfqg */
3732                 cfq_put_cfqg(RQ_CFQG(rq));
3733                 rq->elevator_private[2] = NULL;
3734
3735                 cfq_put_queue(cfqq);
3736         }
3737 }
3738
3739 static struct cfq_queue *
3740 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3741                 struct cfq_queue *cfqq)
3742 {
3743         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3744         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3745         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3746         cfq_put_queue(cfqq);
3747         return cic_to_cfqq(cic, 1);
3748 }
3749
3750 /*
3751  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3752  * was the last process referring to said cfqq.
3753  */
3754 static struct cfq_queue *
3755 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3756 {
3757         if (cfqq_process_refs(cfqq) == 1) {
3758                 cfqq->pid = current->pid;
3759                 cfq_clear_cfqq_coop(cfqq);
3760                 cfq_clear_cfqq_split_coop(cfqq);
3761                 return cfqq;
3762         }
3763
3764         cic_set_cfqq(cic, NULL, 1);
3765
3766         cfq_put_cooperator(cfqq);
3767
3768         cfq_put_queue(cfqq);
3769         return NULL;
3770 }
3771 /*
3772  * Allocate cfq data structures associated with this request.
3773  */
3774 static int
3775 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3776 {
3777         struct cfq_data *cfqd = q->elevator->elevator_data;
3778         struct cfq_io_context *cic;
3779         const int rw = rq_data_dir(rq);
3780         const bool is_sync = rq_is_sync(rq);
3781         struct cfq_queue *cfqq;
3782
3783         might_sleep_if(gfp_mask & __GFP_WAIT);
3784
3785         spin_lock_irq(q->queue_lock);
3786         cic = cfq_get_io_context(cfqd, gfp_mask);
3787         if (!cic)
3788                 goto queue_fail;
3789
3790 new_queue:
3791         cfqq = cic_to_cfqq(cic, is_sync);
3792         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3793                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3794                 cic_set_cfqq(cic, cfqq, is_sync);
3795         } else {
3796                 /*
3797                  * If the queue was seeky for too long, break it apart.
3798                  */
3799                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3800                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3801                         cfqq = split_cfqq(cic, cfqq);
3802                         if (!cfqq)
3803                                 goto new_queue;
3804                 }
3805
3806                 /*
3807                  * Check to see if this queue is scheduled to merge with
3808                  * another, closely cooperating queue.  The merging of
3809                  * queues happens here as it must be done in process context.
3810                  * The reference on new_cfqq was taken in merge_cfqqs.
3811                  */
3812                 if (cfqq->new_cfqq)
3813                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3814         }
3815
3816         cfqq->allocated[rw]++;
3817
3818         cfqq->ref++;
3819         rq->elevator_private[0] = cic;
3820         rq->elevator_private[1] = cfqq;
3821         rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3822         spin_unlock_irq(q->queue_lock);
3823         return 0;
3824
3825 queue_fail:
3826         cfq_schedule_dispatch(cfqd);
3827         spin_unlock_irq(q->queue_lock);
3828         cfq_log(cfqd, "set_request fail");
3829         return 1;
3830 }
3831
3832 static void cfq_kick_queue(struct work_struct *work)
3833 {
3834         struct cfq_data *cfqd =
3835                 container_of(work, struct cfq_data, unplug_work);
3836         struct request_queue *q = cfqd->queue;
3837
3838         spin_lock_irq(q->queue_lock);
3839         __blk_run_queue(cfqd->queue);
3840         spin_unlock_irq(q->queue_lock);
3841 }
3842
3843 /*
3844  * Timer running if the active_queue is currently idling inside its time slice
3845  */
3846 static void cfq_idle_slice_timer(unsigned long data)
3847 {
3848         struct cfq_data *cfqd = (struct cfq_data *) data;
3849         struct cfq_queue *cfqq;
3850         unsigned long flags;
3851         int timed_out = 1;
3852
3853         cfq_log(cfqd, "idle timer fired");
3854
3855         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3856
3857         cfqq = cfqd->active_queue;
3858         if (cfqq) {
3859                 timed_out = 0;
3860
3861                 /*
3862                  * We saw a request before the queue expired, let it through
3863                  */
3864                 if (cfq_cfqq_must_dispatch(cfqq))
3865                         goto out_kick;
3866
3867                 /*
3868                  * expired
3869                  */
3870                 if (cfq_slice_used(cfqq))
3871                         goto expire;
3872
3873                 /*
3874                  * only expire and reinvoke request handler, if there are
3875                  * other queues with pending requests
3876                  */
3877                 if (!cfqd->busy_queues)
3878                         goto out_cont;
3879
3880                 /*
3881                  * not expired and it has a request pending, let it dispatch
3882                  */
3883                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3884                         goto out_kick;
3885
3886                 /*
3887                  * Queue depth flag is reset only when the idle didn't succeed
3888                  */
3889                 cfq_clear_cfqq_deep(cfqq);
3890         }
3891 expire:
3892         cfq_slice_expired(cfqd, timed_out);
3893 out_kick:
3894         cfq_schedule_dispatch(cfqd);
3895 out_cont:
3896         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3897 }
3898
3899 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3900 {
3901         del_timer_sync(&cfqd->idle_slice_timer);
3902         cancel_work_sync(&cfqd->unplug_work);
3903 }
3904
3905 static void cfq_put_async_queues(struct cfq_data *cfqd)
3906 {
3907         int i;
3908
3909         for (i = 0; i < IOPRIO_BE_NR; i++) {
3910                 if (cfqd->async_cfqq[0][i])
3911                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3912                 if (cfqd->async_cfqq[1][i])
3913                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3914         }
3915
3916         if (cfqd->async_idle_cfqq)
3917                 cfq_put_queue(cfqd->async_idle_cfqq);
3918 }
3919
3920 static void cfq_exit_queue(struct elevator_queue *e)
3921 {
3922         struct cfq_data *cfqd = e->elevator_data;
3923         struct request_queue *q = cfqd->queue;
3924         bool wait = false;
3925
3926         cfq_shutdown_timer_wq(cfqd);
3927
3928         spin_lock_irq(q->queue_lock);
3929
3930         if (cfqd->active_queue)
3931                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3932
3933         while (!list_empty(&cfqd->cic_list)) {
3934                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3935                                                         struct cfq_io_context,
3936                                                         queue_list);
3937
3938                 cfq_exit_cic(cic);
3939         }
3940
3941         cfq_put_async_queues(cfqd);
3942         cfq_release_cfq_groups(cfqd);
3943
3944         /*
3945          * If there are groups which we could not unlink from blkcg list,
3946          * wait for a rcu period for them to be freed.
3947          */
3948         if (cfqd->nr_blkcg_linked_grps)
3949                 wait = true;
3950
3951         spin_unlock_irq(q->queue_lock);
3952
3953         cfq_shutdown_timer_wq(cfqd);
3954
3955         /*
3956          * Wait for cfqg->blkg->key accessors to exit their grace periods.
3957          * Do this wait only if there are other unlinked groups out
3958          * there. This can happen if cgroup deletion path claimed the
3959          * responsibility of cleaning up a group before queue cleanup code
3960          * get to the group.
3961          *
3962          * Do not call synchronize_rcu() unconditionally as there are drivers
3963          * which create/delete request queue hundreds of times during scan/boot
3964          * and synchronize_rcu() can take significant time and slow down boot.
3965          */
3966         if (wait)
3967                 synchronize_rcu();
3968
3969 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3970         /* Free up per cpu stats for root group */
3971         free_percpu(cfqd->root_group.blkg.stats_cpu);
3972 #endif
3973         kfree(cfqd);
3974 }
3975
3976 static void *cfq_init_queue(struct request_queue *q)
3977 {
3978         struct cfq_data *cfqd;
3979         int i, j;
3980         struct cfq_group *cfqg;
3981         struct cfq_rb_root *st;
3982
3983         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3984         if (!cfqd)
3985                 return NULL;
3986
3987         /* Init root service tree */
3988         cfqd->grp_service_tree = CFQ_RB_ROOT;
3989
3990         /* Init root group */
3991         cfqg = &cfqd->root_group;
3992         for_each_cfqg_st(cfqg, i, j, st)
3993                 *st = CFQ_RB_ROOT;
3994         RB_CLEAR_NODE(&cfqg->rb_node);
3995
3996         /* Give preference to root group over other groups */
3997         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3998
3999 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4000         /*
4001          * Set root group reference to 2. One reference will be dropped when
4002          * all groups on cfqd->cfqg_list are being deleted during queue exit.
4003          * Other reference will remain there as we don't want to delete this
4004          * group as it is statically allocated and gets destroyed when
4005          * throtl_data goes away.
4006          */
4007         cfqg->ref = 2;
4008
4009         if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4010                 kfree(cfqg);
4011                 kfree(cfqd);
4012                 return NULL;
4013         }
4014
4015         rcu_read_lock();
4016
4017         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4018                                         (void *)cfqd, 0);
4019         rcu_read_unlock();
4020         cfqd->nr_blkcg_linked_grps++;
4021
4022         /* Add group on cfqd->cfqg_list */
4023         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4024 #endif
4025         /*
4026          * Not strictly needed (since RB_ROOT just clears the node and we
4027          * zeroed cfqd on alloc), but better be safe in case someone decides
4028          * to add magic to the rb code
4029          */
4030         for (i = 0; i < CFQ_PRIO_LISTS; i++)
4031                 cfqd->prio_trees[i] = RB_ROOT;
4032
4033         /*
4034          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4035          * Grab a permanent reference to it, so that the normal code flow
4036          * will not attempt to free it.
4037          */
4038         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4039         cfqd->oom_cfqq.ref++;
4040         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4041
4042         INIT_LIST_HEAD(&cfqd->cic_list);
4043
4044         cfqd->queue = q;
4045
4046         init_timer(&cfqd->idle_slice_timer);
4047         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4048         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4049
4050         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4051
4052         cfqd->cfq_quantum = cfq_quantum;
4053         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4054         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4055         cfqd->cfq_back_max = cfq_back_max;
4056         cfqd->cfq_back_penalty = cfq_back_penalty;
4057         cfqd->cfq_slice[0] = cfq_slice_async;
4058         cfqd->cfq_slice[1] = cfq_slice_sync;
4059         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4060         cfqd->cfq_slice_idle = cfq_slice_idle;
4061         cfqd->cfq_group_idle = cfq_group_idle;
4062         cfqd->cfq_latency = 1;
4063         cfqd->hw_tag = -1;
4064         /*
4065          * we optimistically start assuming sync ops weren't delayed in last
4066          * second, in order to have larger depth for async operations.
4067          */
4068         cfqd->last_delayed_sync = jiffies - HZ;
4069         return cfqd;
4070 }
4071
4072 static void cfq_slab_kill(void)
4073 {
4074         /*
4075          * Caller already ensured that pending RCU callbacks are completed,
4076          * so we should have no busy allocations at this point.
4077          */
4078         if (cfq_pool)
4079                 kmem_cache_destroy(cfq_pool);
4080         if (cfq_ioc_pool)
4081                 kmem_cache_destroy(cfq_ioc_pool);
4082 }
4083
4084 static int __init cfq_slab_setup(void)
4085 {
4086         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4087         if (!cfq_pool)
4088                 goto fail;
4089
4090         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4091         if (!cfq_ioc_pool)
4092                 goto fail;
4093
4094         return 0;
4095 fail:
4096         cfq_slab_kill();
4097         return -ENOMEM;
4098 }
4099
4100 /*
4101  * sysfs parts below -->
4102  */
4103 static ssize_t
4104 cfq_var_show(unsigned int var, char *page)
4105 {
4106         return sprintf(page, "%d\n", var);
4107 }
4108
4109 static ssize_t
4110 cfq_var_store(unsigned int *var, const char *page, size_t count)
4111 {
4112         char *p = (char *) page;
4113
4114         *var = simple_strtoul(p, &p, 10);
4115         return count;
4116 }
4117
4118 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4119 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4120 {                                                                       \
4121         struct cfq_data *cfqd = e->elevator_data;                       \
4122         unsigned int __data = __VAR;                                    \
4123         if (__CONV)                                                     \
4124                 __data = jiffies_to_msecs(__data);                      \
4125         return cfq_var_show(__data, (page));                            \
4126 }
4127 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4128 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4129 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4130 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4131 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4132 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4133 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4134 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4135 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4136 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4137 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4138 #undef SHOW_FUNCTION
4139
4140 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4141 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4142 {                                                                       \
4143         struct cfq_data *cfqd = e->elevator_data;                       \
4144         unsigned int __data;                                            \
4145         int ret = cfq_var_store(&__data, (page), count);                \
4146         if (__data < (MIN))                                             \
4147                 __data = (MIN);                                         \
4148         else if (__data > (MAX))                                        \
4149                 __data = (MAX);                                         \
4150         if (__CONV)                                                     \
4151                 *(__PTR) = msecs_to_jiffies(__data);                    \
4152         else                                                            \
4153                 *(__PTR) = __data;                                      \
4154         return ret;                                                     \
4155 }
4156 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4157 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4158                 UINT_MAX, 1);
4159 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4160                 UINT_MAX, 1);
4161 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4162 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4163                 UINT_MAX, 0);
4164 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4165 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4166 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4167 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4168 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4169                 UINT_MAX, 0);
4170 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4171 #undef STORE_FUNCTION
4172
4173 #define CFQ_ATTR(name) \
4174         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4175
4176 static struct elv_fs_entry cfq_attrs[] = {
4177         CFQ_ATTR(quantum),
4178         CFQ_ATTR(fifo_expire_sync),
4179         CFQ_ATTR(fifo_expire_async),
4180         CFQ_ATTR(back_seek_max),
4181         CFQ_ATTR(back_seek_penalty),
4182         CFQ_ATTR(slice_sync),
4183         CFQ_ATTR(slice_async),
4184         CFQ_ATTR(slice_async_rq),
4185         CFQ_ATTR(slice_idle),
4186         CFQ_ATTR(group_idle),
4187         CFQ_ATTR(low_latency),
4188         __ATTR_NULL
4189 };
4190
4191 static struct elevator_type iosched_cfq = {
4192         .ops = {
4193                 .elevator_merge_fn =            cfq_merge,
4194                 .elevator_merged_fn =           cfq_merged_request,
4195                 .elevator_merge_req_fn =        cfq_merged_requests,
4196                 .elevator_allow_merge_fn =      cfq_allow_merge,
4197                 .elevator_bio_merged_fn =       cfq_bio_merged,
4198                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4199                 .elevator_add_req_fn =          cfq_insert_request,
4200                 .elevator_activate_req_fn =     cfq_activate_request,
4201                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4202                 .elevator_completed_req_fn =    cfq_completed_request,
4203                 .elevator_former_req_fn =       elv_rb_former_request,
4204                 .elevator_latter_req_fn =       elv_rb_latter_request,
4205                 .elevator_set_req_fn =          cfq_set_request,
4206                 .elevator_put_req_fn =          cfq_put_request,
4207                 .elevator_may_queue_fn =        cfq_may_queue,
4208                 .elevator_init_fn =             cfq_init_queue,
4209                 .elevator_exit_fn =             cfq_exit_queue,
4210                 .trim =                         cfq_free_io_context,
4211         },
4212         .elevator_attrs =       cfq_attrs,
4213         .elevator_name =        "cfq",
4214         .elevator_owner =       THIS_MODULE,
4215 };
4216
4217 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4218 static struct blkio_policy_type blkio_policy_cfq = {
4219         .ops = {
4220                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4221                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4222         },
4223         .plid = BLKIO_POLICY_PROP,
4224 };
4225 #else
4226 static struct blkio_policy_type blkio_policy_cfq;
4227 #endif
4228
4229 static int __init cfq_init(void)
4230 {
4231         /*
4232          * could be 0 on HZ < 1000 setups
4233          */
4234         if (!cfq_slice_async)
4235                 cfq_slice_async = 1;
4236         if (!cfq_slice_idle)
4237                 cfq_slice_idle = 1;
4238
4239 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4240         if (!cfq_group_idle)
4241                 cfq_group_idle = 1;
4242 #else
4243                 cfq_group_idle = 0;
4244 #endif
4245         if (cfq_slab_setup())
4246                 return -ENOMEM;
4247
4248         elv_register(&iosched_cfq);
4249         blkio_policy_register(&blkio_policy_cfq);
4250
4251         return 0;
4252 }
4253
4254 static void __exit cfq_exit(void)
4255 {
4256         DECLARE_COMPLETION_ONSTACK(all_gone);
4257         blkio_policy_unregister(&blkio_policy_cfq);
4258         elv_unregister(&iosched_cfq);
4259         ioc_gone = &all_gone;
4260         /* ioc_gone's update must be visible before reading ioc_count */
4261         smp_wmb();
4262
4263         /*
4264          * this also protects us from entering cfq_slab_kill() with
4265          * pending RCU callbacks
4266          */
4267         if (elv_ioc_count_read(cfq_ioc_count))
4268                 wait_for_completion(&all_gone);
4269         cfq_slab_kill();
4270 }
4271
4272 module_init(cfq_init);
4273 module_exit(cfq_exit);
4274
4275 MODULE_AUTHOR("Jens Axboe");
4276 MODULE_LICENSE("GPL");
4277 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");