block: fixup plugging stubs for !CONFIG_BLOCK
[linux-2.6-block.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38  * offset from end of service tree
39  */
40 #define CFQ_IDLE_DELAY          (HZ / 5)
41
42 /*
43  * below this threshold, we consider thinktime immediate
44  */
45 #define CFQ_MIN_TT              (2)
46
47 #define CFQ_SLICE_SCALE         (5)
48 #define CFQ_HW_QUEUE_MIN        (5)
49 #define CFQ_SERVICE_SHIFT       12
50
51 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq)              \
57         ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples)   ((samples) > 80)
76 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85         struct rb_root rb;
86         struct rb_node *left;
87         unsigned count;
88         unsigned total_weight;
89         u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92                         .count = 0, .min_vdisktime = 0, }
93
94 /*
95  * Per process-grouping structure
96  */
97 struct cfq_queue {
98         /* reference count */
99         int ref;
100         /* various state flags, see below */
101         unsigned int flags;
102         /* parent cfq_data */
103         struct cfq_data *cfqd;
104         /* service_tree member */
105         struct rb_node rb_node;
106         /* service_tree key */
107         unsigned long rb_key;
108         /* prio tree member */
109         struct rb_node p_node;
110         /* prio tree root we belong to, if any */
111         struct rb_root *p_root;
112         /* sorted list of pending requests */
113         struct rb_root sort_list;
114         /* if fifo isn't expired, next request to serve */
115         struct request *next_rq;
116         /* requests queued in sort_list */
117         int queued[2];
118         /* currently allocated requests */
119         int allocated[2];
120         /* fifo list of requests in sort_list */
121         struct list_head fifo;
122
123         /* time when queue got scheduled in to dispatch first request. */
124         unsigned long dispatch_start;
125         unsigned int allocated_slice;
126         unsigned int slice_dispatch;
127         /* time when first request from queue completed and slice started. */
128         unsigned long slice_start;
129         unsigned long slice_end;
130         long slice_resid;
131
132         /* pending metadata requests */
133         int meta_pending;
134         /* number of requests that are on the dispatch list or inside driver */
135         int dispatched;
136
137         /* io prio of this group */
138         unsigned short ioprio, org_ioprio;
139         unsigned short ioprio_class, org_ioprio_class;
140
141         pid_t pid;
142
143         u32 seek_history;
144         sector_t last_request_pos;
145
146         struct cfq_rb_root *service_tree;
147         struct cfq_queue *new_cfqq;
148         struct cfq_group *cfqg;
149         /* Number of sectors dispatched from queue in single dispatch round */
150         unsigned long nr_sectors;
151 };
152
153 /*
154  * First index in the service_trees.
155  * IDLE is handled separately, so it has negative index
156  */
157 enum wl_prio_t {
158         BE_WORKLOAD = 0,
159         RT_WORKLOAD = 1,
160         IDLE_WORKLOAD = 2,
161         CFQ_PRIO_NR,
162 };
163
164 /*
165  * Second index in the service_trees.
166  */
167 enum wl_type_t {
168         ASYNC_WORKLOAD = 0,
169         SYNC_NOIDLE_WORKLOAD = 1,
170         SYNC_WORKLOAD = 2
171 };
172
173 /* This is per cgroup per device grouping structure */
174 struct cfq_group {
175         /* group service_tree member */
176         struct rb_node rb_node;
177
178         /* group service_tree key */
179         u64 vdisktime;
180         unsigned int weight;
181
182         /* number of cfqq currently on this group */
183         int nr_cfqq;
184
185         /*
186          * Per group busy queus average. Useful for workload slice calc. We
187          * create the array for each prio class but at run time it is used
188          * only for RT and BE class and slot for IDLE class remains unused.
189          * This is primarily done to avoid confusion and a gcc warning.
190          */
191         unsigned int busy_queues_avg[CFQ_PRIO_NR];
192         /*
193          * rr lists of queues with requests. We maintain service trees for
194          * RT and BE classes. These trees are subdivided in subclasses
195          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196          * class there is no subclassification and all the cfq queues go on
197          * a single tree service_tree_idle.
198          * Counts are embedded in the cfq_rb_root
199          */
200         struct cfq_rb_root service_trees[2][3];
201         struct cfq_rb_root service_tree_idle;
202
203         unsigned long saved_workload_slice;
204         enum wl_type_t saved_workload;
205         enum wl_prio_t saved_serving_prio;
206         struct blkio_group blkg;
207 #ifdef CONFIG_CFQ_GROUP_IOSCHED
208         struct hlist_node cfqd_node;
209         int ref;
210 #endif
211         /* number of requests that are on the dispatch list or inside driver */
212         int dispatched;
213 };
214
215 /*
216  * Per block device queue structure
217  */
218 struct cfq_data {
219         struct request_queue *queue;
220         /* Root service tree for cfq_groups */
221         struct cfq_rb_root grp_service_tree;
222         struct cfq_group root_group;
223
224         /*
225          * The priority currently being served
226          */
227         enum wl_prio_t serving_prio;
228         enum wl_type_t serving_type;
229         unsigned long workload_expires;
230         struct cfq_group *serving_group;
231
232         /*
233          * Each priority tree is sorted by next_request position.  These
234          * trees are used when determining if two or more queues are
235          * interleaving requests (see cfq_close_cooperator).
236          */
237         struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
239         unsigned int busy_queues;
240         unsigned int busy_sync_queues;
241
242         int rq_in_driver;
243         int rq_in_flight[2];
244
245         /*
246          * queue-depth detection
247          */
248         int rq_queued;
249         int hw_tag;
250         /*
251          * hw_tag can be
252          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254          *  0 => no NCQ
255          */
256         int hw_tag_est_depth;
257         unsigned int hw_tag_samples;
258
259         /*
260          * idle window management
261          */
262         struct timer_list idle_slice_timer;
263         struct work_struct unplug_work;
264
265         struct cfq_queue *active_queue;
266         struct cfq_io_context *active_cic;
267
268         /*
269          * async queue for each priority case
270          */
271         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272         struct cfq_queue *async_idle_cfqq;
273
274         sector_t last_position;
275
276         /*
277          * tunables, see top of file
278          */
279         unsigned int cfq_quantum;
280         unsigned int cfq_fifo_expire[2];
281         unsigned int cfq_back_penalty;
282         unsigned int cfq_back_max;
283         unsigned int cfq_slice[2];
284         unsigned int cfq_slice_async_rq;
285         unsigned int cfq_slice_idle;
286         unsigned int cfq_group_idle;
287         unsigned int cfq_latency;
288
289         unsigned int cic_index;
290         struct list_head cic_list;
291
292         /*
293          * Fallback dummy cfqq for extreme OOM conditions
294          */
295         struct cfq_queue oom_cfqq;
296
297         unsigned long last_delayed_sync;
298
299         /* List of cfq groups being managed on this device*/
300         struct hlist_head cfqg_list;
301         struct rcu_head rcu;
302 };
303
304 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
305
306 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
307                                             enum wl_prio_t prio,
308                                             enum wl_type_t type)
309 {
310         if (!cfqg)
311                 return NULL;
312
313         if (prio == IDLE_WORKLOAD)
314                 return &cfqg->service_tree_idle;
315
316         return &cfqg->service_trees[prio][type];
317 }
318
319 enum cfqq_state_flags {
320         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
321         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
322         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
323         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
324         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
325         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
326         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
327         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
328         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
329         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
330         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
331         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
332         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
333 };
334
335 #define CFQ_CFQQ_FNS(name)                                              \
336 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
337 {                                                                       \
338         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
339 }                                                                       \
340 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
341 {                                                                       \
342         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
343 }                                                                       \
344 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
345 {                                                                       \
346         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
347 }
348
349 CFQ_CFQQ_FNS(on_rr);
350 CFQ_CFQQ_FNS(wait_request);
351 CFQ_CFQQ_FNS(must_dispatch);
352 CFQ_CFQQ_FNS(must_alloc_slice);
353 CFQ_CFQQ_FNS(fifo_expire);
354 CFQ_CFQQ_FNS(idle_window);
355 CFQ_CFQQ_FNS(prio_changed);
356 CFQ_CFQQ_FNS(slice_new);
357 CFQ_CFQQ_FNS(sync);
358 CFQ_CFQQ_FNS(coop);
359 CFQ_CFQQ_FNS(split_coop);
360 CFQ_CFQQ_FNS(deep);
361 CFQ_CFQQ_FNS(wait_busy);
362 #undef CFQ_CFQQ_FNS
363
364 #ifdef CONFIG_CFQ_GROUP_IOSCHED
365 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
366         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
367                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
368                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
369
370 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
371         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
372                                 blkg_path(&(cfqg)->blkg), ##args);      \
373
374 #else
375 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
376         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
377 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
378 #endif
379 #define cfq_log(cfqd, fmt, args...)     \
380         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
381
382 /* Traverses through cfq group service trees */
383 #define for_each_cfqg_st(cfqg, i, j, st) \
384         for (i = 0; i <= IDLE_WORKLOAD; i++) \
385                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
386                         : &cfqg->service_tree_idle; \
387                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
388                         (i == IDLE_WORKLOAD && j == 0); \
389                         j++, st = i < IDLE_WORKLOAD ? \
390                         &cfqg->service_trees[i][j]: NULL) \
391
392
393 static inline bool iops_mode(struct cfq_data *cfqd)
394 {
395         /*
396          * If we are not idling on queues and it is a NCQ drive, parallel
397          * execution of requests is on and measuring time is not possible
398          * in most of the cases until and unless we drive shallower queue
399          * depths and that becomes a performance bottleneck. In such cases
400          * switch to start providing fairness in terms of number of IOs.
401          */
402         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
403                 return true;
404         else
405                 return false;
406 }
407
408 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
409 {
410         if (cfq_class_idle(cfqq))
411                 return IDLE_WORKLOAD;
412         if (cfq_class_rt(cfqq))
413                 return RT_WORKLOAD;
414         return BE_WORKLOAD;
415 }
416
417
418 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
419 {
420         if (!cfq_cfqq_sync(cfqq))
421                 return ASYNC_WORKLOAD;
422         if (!cfq_cfqq_idle_window(cfqq))
423                 return SYNC_NOIDLE_WORKLOAD;
424         return SYNC_WORKLOAD;
425 }
426
427 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
428                                         struct cfq_data *cfqd,
429                                         struct cfq_group *cfqg)
430 {
431         if (wl == IDLE_WORKLOAD)
432                 return cfqg->service_tree_idle.count;
433
434         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
435                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
436                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
437 }
438
439 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
440                                         struct cfq_group *cfqg)
441 {
442         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
443                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
444 }
445
446 static void cfq_dispatch_insert(struct request_queue *, struct request *);
447 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
448                                        struct io_context *, gfp_t);
449 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
450                                                 struct io_context *);
451
452 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
453                                             bool is_sync)
454 {
455         return cic->cfqq[is_sync];
456 }
457
458 static inline void cic_set_cfqq(struct cfq_io_context *cic,
459                                 struct cfq_queue *cfqq, bool is_sync)
460 {
461         cic->cfqq[is_sync] = cfqq;
462 }
463
464 #define CIC_DEAD_KEY    1ul
465 #define CIC_DEAD_INDEX_SHIFT    1
466
467 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
468 {
469         return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
470 }
471
472 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
473 {
474         struct cfq_data *cfqd = cic->key;
475
476         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
477                 return NULL;
478
479         return cfqd;
480 }
481
482 /*
483  * We regard a request as SYNC, if it's either a read or has the SYNC bit
484  * set (in which case it could also be direct WRITE).
485  */
486 static inline bool cfq_bio_sync(struct bio *bio)
487 {
488         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
489 }
490
491 /*
492  * scheduler run of queue, if there are requests pending and no one in the
493  * driver that will restart queueing
494  */
495 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
496 {
497         if (cfqd->busy_queues) {
498                 cfq_log(cfqd, "schedule dispatch");
499                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
500         }
501 }
502
503 /*
504  * Scale schedule slice based on io priority. Use the sync time slice only
505  * if a queue is marked sync and has sync io queued. A sync queue with async
506  * io only, should not get full sync slice length.
507  */
508 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
509                                  unsigned short prio)
510 {
511         const int base_slice = cfqd->cfq_slice[sync];
512
513         WARN_ON(prio >= IOPRIO_BE_NR);
514
515         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
516 }
517
518 static inline int
519 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
520 {
521         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
522 }
523
524 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
525 {
526         u64 d = delta << CFQ_SERVICE_SHIFT;
527
528         d = d * BLKIO_WEIGHT_DEFAULT;
529         do_div(d, cfqg->weight);
530         return d;
531 }
532
533 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
534 {
535         s64 delta = (s64)(vdisktime - min_vdisktime);
536         if (delta > 0)
537                 min_vdisktime = vdisktime;
538
539         return min_vdisktime;
540 }
541
542 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
543 {
544         s64 delta = (s64)(vdisktime - min_vdisktime);
545         if (delta < 0)
546                 min_vdisktime = vdisktime;
547
548         return min_vdisktime;
549 }
550
551 static void update_min_vdisktime(struct cfq_rb_root *st)
552 {
553         struct cfq_group *cfqg;
554
555         if (st->left) {
556                 cfqg = rb_entry_cfqg(st->left);
557                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
558                                                   cfqg->vdisktime);
559         }
560 }
561
562 /*
563  * get averaged number of queues of RT/BE priority.
564  * average is updated, with a formula that gives more weight to higher numbers,
565  * to quickly follows sudden increases and decrease slowly
566  */
567
568 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
569                                         struct cfq_group *cfqg, bool rt)
570 {
571         unsigned min_q, max_q;
572         unsigned mult  = cfq_hist_divisor - 1;
573         unsigned round = cfq_hist_divisor / 2;
574         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
575
576         min_q = min(cfqg->busy_queues_avg[rt], busy);
577         max_q = max(cfqg->busy_queues_avg[rt], busy);
578         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
579                 cfq_hist_divisor;
580         return cfqg->busy_queues_avg[rt];
581 }
582
583 static inline unsigned
584 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
585 {
586         struct cfq_rb_root *st = &cfqd->grp_service_tree;
587
588         return cfq_target_latency * cfqg->weight / st->total_weight;
589 }
590
591 static inline unsigned
592 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
593 {
594         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
595         if (cfqd->cfq_latency) {
596                 /*
597                  * interested queues (we consider only the ones with the same
598                  * priority class in the cfq group)
599                  */
600                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
601                                                 cfq_class_rt(cfqq));
602                 unsigned sync_slice = cfqd->cfq_slice[1];
603                 unsigned expect_latency = sync_slice * iq;
604                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
605
606                 if (expect_latency > group_slice) {
607                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
608                         /* scale low_slice according to IO priority
609                          * and sync vs async */
610                         unsigned low_slice =
611                                 min(slice, base_low_slice * slice / sync_slice);
612                         /* the adapted slice value is scaled to fit all iqs
613                          * into the target latency */
614                         slice = max(slice * group_slice / expect_latency,
615                                     low_slice);
616                 }
617         }
618         return slice;
619 }
620
621 static inline void
622 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
623 {
624         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
625
626         cfqq->slice_start = jiffies;
627         cfqq->slice_end = jiffies + slice;
628         cfqq->allocated_slice = slice;
629         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
630 }
631
632 /*
633  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634  * isn't valid until the first request from the dispatch is activated
635  * and the slice time set.
636  */
637 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
638 {
639         if (cfq_cfqq_slice_new(cfqq))
640                 return false;
641         if (time_before(jiffies, cfqq->slice_end))
642                 return false;
643
644         return true;
645 }
646
647 /*
648  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
649  * We choose the request that is closest to the head right now. Distance
650  * behind the head is penalized and only allowed to a certain extent.
651  */
652 static struct request *
653 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
654 {
655         sector_t s1, s2, d1 = 0, d2 = 0;
656         unsigned long back_max;
657 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
658 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
659         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
660
661         if (rq1 == NULL || rq1 == rq2)
662                 return rq2;
663         if (rq2 == NULL)
664                 return rq1;
665
666         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
667                 return rq1;
668         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
669                 return rq2;
670         if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
671                 return rq1;
672         else if ((rq2->cmd_flags & REQ_META) &&
673                  !(rq1->cmd_flags & REQ_META))
674                 return rq2;
675
676         s1 = blk_rq_pos(rq1);
677         s2 = blk_rq_pos(rq2);
678
679         /*
680          * by definition, 1KiB is 2 sectors
681          */
682         back_max = cfqd->cfq_back_max * 2;
683
684         /*
685          * Strict one way elevator _except_ in the case where we allow
686          * short backward seeks which are biased as twice the cost of a
687          * similar forward seek.
688          */
689         if (s1 >= last)
690                 d1 = s1 - last;
691         else if (s1 + back_max >= last)
692                 d1 = (last - s1) * cfqd->cfq_back_penalty;
693         else
694                 wrap |= CFQ_RQ1_WRAP;
695
696         if (s2 >= last)
697                 d2 = s2 - last;
698         else if (s2 + back_max >= last)
699                 d2 = (last - s2) * cfqd->cfq_back_penalty;
700         else
701                 wrap |= CFQ_RQ2_WRAP;
702
703         /* Found required data */
704
705         /*
706          * By doing switch() on the bit mask "wrap" we avoid having to
707          * check two variables for all permutations: --> faster!
708          */
709         switch (wrap) {
710         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711                 if (d1 < d2)
712                         return rq1;
713                 else if (d2 < d1)
714                         return rq2;
715                 else {
716                         if (s1 >= s2)
717                                 return rq1;
718                         else
719                                 return rq2;
720                 }
721
722         case CFQ_RQ2_WRAP:
723                 return rq1;
724         case CFQ_RQ1_WRAP:
725                 return rq2;
726         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727         default:
728                 /*
729                  * Since both rqs are wrapped,
730                  * start with the one that's further behind head
731                  * (--> only *one* back seek required),
732                  * since back seek takes more time than forward.
733                  */
734                 if (s1 <= s2)
735                         return rq1;
736                 else
737                         return rq2;
738         }
739 }
740
741 /*
742  * The below is leftmost cache rbtree addon
743  */
744 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
745 {
746         /* Service tree is empty */
747         if (!root->count)
748                 return NULL;
749
750         if (!root->left)
751                 root->left = rb_first(&root->rb);
752
753         if (root->left)
754                 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756         return NULL;
757 }
758
759 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760 {
761         if (!root->left)
762                 root->left = rb_first(&root->rb);
763
764         if (root->left)
765                 return rb_entry_cfqg(root->left);
766
767         return NULL;
768 }
769
770 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771 {
772         rb_erase(n, root);
773         RB_CLEAR_NODE(n);
774 }
775
776 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777 {
778         if (root->left == n)
779                 root->left = NULL;
780         rb_erase_init(n, &root->rb);
781         --root->count;
782 }
783
784 /*
785  * would be nice to take fifo expire time into account as well
786  */
787 static struct request *
788 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789                   struct request *last)
790 {
791         struct rb_node *rbnext = rb_next(&last->rb_node);
792         struct rb_node *rbprev = rb_prev(&last->rb_node);
793         struct request *next = NULL, *prev = NULL;
794
795         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
796
797         if (rbprev)
798                 prev = rb_entry_rq(rbprev);
799
800         if (rbnext)
801                 next = rb_entry_rq(rbnext);
802         else {
803                 rbnext = rb_first(&cfqq->sort_list);
804                 if (rbnext && rbnext != &last->rb_node)
805                         next = rb_entry_rq(rbnext);
806         }
807
808         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
809 }
810
811 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812                                       struct cfq_queue *cfqq)
813 {
814         /*
815          * just an approximation, should be ok.
816          */
817         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
819 }
820
821 static inline s64
822 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823 {
824         return cfqg->vdisktime - st->min_vdisktime;
825 }
826
827 static void
828 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829 {
830         struct rb_node **node = &st->rb.rb_node;
831         struct rb_node *parent = NULL;
832         struct cfq_group *__cfqg;
833         s64 key = cfqg_key(st, cfqg);
834         int left = 1;
835
836         while (*node != NULL) {
837                 parent = *node;
838                 __cfqg = rb_entry_cfqg(parent);
839
840                 if (key < cfqg_key(st, __cfqg))
841                         node = &parent->rb_left;
842                 else {
843                         node = &parent->rb_right;
844                         left = 0;
845                 }
846         }
847
848         if (left)
849                 st->left = &cfqg->rb_node;
850
851         rb_link_node(&cfqg->rb_node, parent, node);
852         rb_insert_color(&cfqg->rb_node, &st->rb);
853 }
854
855 static void
856 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
857 {
858         struct cfq_rb_root *st = &cfqd->grp_service_tree;
859         struct cfq_group *__cfqg;
860         struct rb_node *n;
861
862         cfqg->nr_cfqq++;
863         if (!RB_EMPTY_NODE(&cfqg->rb_node))
864                 return;
865
866         /*
867          * Currently put the group at the end. Later implement something
868          * so that groups get lesser vtime based on their weights, so that
869          * if group does not loose all if it was not continously backlogged.
870          */
871         n = rb_last(&st->rb);
872         if (n) {
873                 __cfqg = rb_entry_cfqg(n);
874                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
875         } else
876                 cfqg->vdisktime = st->min_vdisktime;
877
878         __cfq_group_service_tree_add(st, cfqg);
879         st->total_weight += cfqg->weight;
880 }
881
882 static void
883 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
884 {
885         struct cfq_rb_root *st = &cfqd->grp_service_tree;
886
887         BUG_ON(cfqg->nr_cfqq < 1);
888         cfqg->nr_cfqq--;
889
890         /* If there are other cfq queues under this group, don't delete it */
891         if (cfqg->nr_cfqq)
892                 return;
893
894         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
895         st->total_weight -= cfqg->weight;
896         if (!RB_EMPTY_NODE(&cfqg->rb_node))
897                 cfq_rb_erase(&cfqg->rb_node, st);
898         cfqg->saved_workload_slice = 0;
899         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
900 }
901
902 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
903 {
904         unsigned int slice_used;
905
906         /*
907          * Queue got expired before even a single request completed or
908          * got expired immediately after first request completion.
909          */
910         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
911                 /*
912                  * Also charge the seek time incurred to the group, otherwise
913                  * if there are mutiple queues in the group, each can dispatch
914                  * a single request on seeky media and cause lots of seek time
915                  * and group will never know it.
916                  */
917                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
918                                         1);
919         } else {
920                 slice_used = jiffies - cfqq->slice_start;
921                 if (slice_used > cfqq->allocated_slice)
922                         slice_used = cfqq->allocated_slice;
923         }
924
925         return slice_used;
926 }
927
928 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
929                                 struct cfq_queue *cfqq)
930 {
931         struct cfq_rb_root *st = &cfqd->grp_service_tree;
932         unsigned int used_sl, charge;
933         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
934                         - cfqg->service_tree_idle.count;
935
936         BUG_ON(nr_sync < 0);
937         used_sl = charge = cfq_cfqq_slice_usage(cfqq);
938
939         if (iops_mode(cfqd))
940                 charge = cfqq->slice_dispatch;
941         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
942                 charge = cfqq->allocated_slice;
943
944         /* Can't update vdisktime while group is on service tree */
945         cfq_rb_erase(&cfqg->rb_node, st);
946         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
947         __cfq_group_service_tree_add(st, cfqg);
948
949         /* This group is being expired. Save the context */
950         if (time_after(cfqd->workload_expires, jiffies)) {
951                 cfqg->saved_workload_slice = cfqd->workload_expires
952                                                 - jiffies;
953                 cfqg->saved_workload = cfqd->serving_type;
954                 cfqg->saved_serving_prio = cfqd->serving_prio;
955         } else
956                 cfqg->saved_workload_slice = 0;
957
958         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
959                                         st->min_vdisktime);
960         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
961                         " sect=%u", used_sl, cfqq->slice_dispatch, charge,
962                         iops_mode(cfqd), cfqq->nr_sectors);
963         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
964         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
965 }
966
967 #ifdef CONFIG_CFQ_GROUP_IOSCHED
968 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
969 {
970         if (blkg)
971                 return container_of(blkg, struct cfq_group, blkg);
972         return NULL;
973 }
974
975 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
976                                         unsigned int weight)
977 {
978         cfqg_of_blkg(blkg)->weight = weight;
979 }
980
981 static struct cfq_group *
982 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
983 {
984         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
985         struct cfq_group *cfqg = NULL;
986         void *key = cfqd;
987         int i, j;
988         struct cfq_rb_root *st;
989         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
990         unsigned int major, minor;
991
992         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
993         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
994                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
995                 cfqg->blkg.dev = MKDEV(major, minor);
996                 goto done;
997         }
998         if (cfqg || !create)
999                 goto done;
1000
1001         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1002         if (!cfqg)
1003                 goto done;
1004
1005         for_each_cfqg_st(cfqg, i, j, st)
1006                 *st = CFQ_RB_ROOT;
1007         RB_CLEAR_NODE(&cfqg->rb_node);
1008
1009         /*
1010          * Take the initial reference that will be released on destroy
1011          * This can be thought of a joint reference by cgroup and
1012          * elevator which will be dropped by either elevator exit
1013          * or cgroup deletion path depending on who is exiting first.
1014          */
1015         cfqg->ref = 1;
1016
1017         /*
1018          * Add group onto cgroup list. It might happen that bdi->dev is
1019          * not initialized yet. Initialize this new group without major
1020          * and minor info and this info will be filled in once a new thread
1021          * comes for IO. See code above.
1022          */
1023         if (bdi->dev) {
1024                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1025                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1026                                         MKDEV(major, minor));
1027         } else
1028                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1029                                         0);
1030
1031         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1032
1033         /* Add group on cfqd list */
1034         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1035
1036 done:
1037         return cfqg;
1038 }
1039
1040 /*
1041  * Search for the cfq group current task belongs to. If create = 1, then also
1042  * create the cfq group if it does not exist. request_queue lock must be held.
1043  */
1044 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1045 {
1046         struct cgroup *cgroup;
1047         struct cfq_group *cfqg = NULL;
1048
1049         rcu_read_lock();
1050         cgroup = task_cgroup(current, blkio_subsys_id);
1051         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1052         if (!cfqg && create)
1053                 cfqg = &cfqd->root_group;
1054         rcu_read_unlock();
1055         return cfqg;
1056 }
1057
1058 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1059 {
1060         cfqg->ref++;
1061         return cfqg;
1062 }
1063
1064 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1065 {
1066         /* Currently, all async queues are mapped to root group */
1067         if (!cfq_cfqq_sync(cfqq))
1068                 cfqg = &cfqq->cfqd->root_group;
1069
1070         cfqq->cfqg = cfqg;
1071         /* cfqq reference on cfqg */
1072         cfqq->cfqg->ref++;
1073 }
1074
1075 static void cfq_put_cfqg(struct cfq_group *cfqg)
1076 {
1077         struct cfq_rb_root *st;
1078         int i, j;
1079
1080         BUG_ON(cfqg->ref <= 0);
1081         cfqg->ref--;
1082         if (cfqg->ref)
1083                 return;
1084         for_each_cfqg_st(cfqg, i, j, st)
1085                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1086         kfree(cfqg);
1087 }
1088
1089 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1090 {
1091         /* Something wrong if we are trying to remove same group twice */
1092         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1093
1094         hlist_del_init(&cfqg->cfqd_node);
1095
1096         /*
1097          * Put the reference taken at the time of creation so that when all
1098          * queues are gone, group can be destroyed.
1099          */
1100         cfq_put_cfqg(cfqg);
1101 }
1102
1103 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1104 {
1105         struct hlist_node *pos, *n;
1106         struct cfq_group *cfqg;
1107
1108         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1109                 /*
1110                  * If cgroup removal path got to blk_group first and removed
1111                  * it from cgroup list, then it will take care of destroying
1112                  * cfqg also.
1113                  */
1114                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1115                         cfq_destroy_cfqg(cfqd, cfqg);
1116         }
1117 }
1118
1119 /*
1120  * Blk cgroup controller notification saying that blkio_group object is being
1121  * delinked as associated cgroup object is going away. That also means that
1122  * no new IO will come in this group. So get rid of this group as soon as
1123  * any pending IO in the group is finished.
1124  *
1125  * This function is called under rcu_read_lock(). key is the rcu protected
1126  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1127  * read lock.
1128  *
1129  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1130  * it should not be NULL as even if elevator was exiting, cgroup deltion
1131  * path got to it first.
1132  */
1133 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1134 {
1135         unsigned long  flags;
1136         struct cfq_data *cfqd = key;
1137
1138         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1139         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1140         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1141 }
1142
1143 #else /* GROUP_IOSCHED */
1144 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1145 {
1146         return &cfqd->root_group;
1147 }
1148
1149 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1150 {
1151         return cfqg;
1152 }
1153
1154 static inline void
1155 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1156         cfqq->cfqg = cfqg;
1157 }
1158
1159 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1160 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1161
1162 #endif /* GROUP_IOSCHED */
1163
1164 /*
1165  * The cfqd->service_trees holds all pending cfq_queue's that have
1166  * requests waiting to be processed. It is sorted in the order that
1167  * we will service the queues.
1168  */
1169 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1170                                  bool add_front)
1171 {
1172         struct rb_node **p, *parent;
1173         struct cfq_queue *__cfqq;
1174         unsigned long rb_key;
1175         struct cfq_rb_root *service_tree;
1176         int left;
1177         int new_cfqq = 1;
1178         int group_changed = 0;
1179
1180         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1181                                                 cfqq_type(cfqq));
1182         if (cfq_class_idle(cfqq)) {
1183                 rb_key = CFQ_IDLE_DELAY;
1184                 parent = rb_last(&service_tree->rb);
1185                 if (parent && parent != &cfqq->rb_node) {
1186                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1187                         rb_key += __cfqq->rb_key;
1188                 } else
1189                         rb_key += jiffies;
1190         } else if (!add_front) {
1191                 /*
1192                  * Get our rb key offset. Subtract any residual slice
1193                  * value carried from last service. A negative resid
1194                  * count indicates slice overrun, and this should position
1195                  * the next service time further away in the tree.
1196                  */
1197                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1198                 rb_key -= cfqq->slice_resid;
1199                 cfqq->slice_resid = 0;
1200         } else {
1201                 rb_key = -HZ;
1202                 __cfqq = cfq_rb_first(service_tree);
1203                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1204         }
1205
1206         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1207                 new_cfqq = 0;
1208                 /*
1209                  * same position, nothing more to do
1210                  */
1211                 if (rb_key == cfqq->rb_key &&
1212                     cfqq->service_tree == service_tree)
1213                         return;
1214
1215                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1216                 cfqq->service_tree = NULL;
1217         }
1218
1219         left = 1;
1220         parent = NULL;
1221         cfqq->service_tree = service_tree;
1222         p = &service_tree->rb.rb_node;
1223         while (*p) {
1224                 struct rb_node **n;
1225
1226                 parent = *p;
1227                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1228
1229                 /*
1230                  * sort by key, that represents service time.
1231                  */
1232                 if (time_before(rb_key, __cfqq->rb_key))
1233                         n = &(*p)->rb_left;
1234                 else {
1235                         n = &(*p)->rb_right;
1236                         left = 0;
1237                 }
1238
1239                 p = n;
1240         }
1241
1242         if (left)
1243                 service_tree->left = &cfqq->rb_node;
1244
1245         cfqq->rb_key = rb_key;
1246         rb_link_node(&cfqq->rb_node, parent, p);
1247         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1248         service_tree->count++;
1249         if ((add_front || !new_cfqq) && !group_changed)
1250                 return;
1251         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1252 }
1253
1254 static struct cfq_queue *
1255 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1256                      sector_t sector, struct rb_node **ret_parent,
1257                      struct rb_node ***rb_link)
1258 {
1259         struct rb_node **p, *parent;
1260         struct cfq_queue *cfqq = NULL;
1261
1262         parent = NULL;
1263         p = &root->rb_node;
1264         while (*p) {
1265                 struct rb_node **n;
1266
1267                 parent = *p;
1268                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1269
1270                 /*
1271                  * Sort strictly based on sector.  Smallest to the left,
1272                  * largest to the right.
1273                  */
1274                 if (sector > blk_rq_pos(cfqq->next_rq))
1275                         n = &(*p)->rb_right;
1276                 else if (sector < blk_rq_pos(cfqq->next_rq))
1277                         n = &(*p)->rb_left;
1278                 else
1279                         break;
1280                 p = n;
1281                 cfqq = NULL;
1282         }
1283
1284         *ret_parent = parent;
1285         if (rb_link)
1286                 *rb_link = p;
1287         return cfqq;
1288 }
1289
1290 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1291 {
1292         struct rb_node **p, *parent;
1293         struct cfq_queue *__cfqq;
1294
1295         if (cfqq->p_root) {
1296                 rb_erase(&cfqq->p_node, cfqq->p_root);
1297                 cfqq->p_root = NULL;
1298         }
1299
1300         if (cfq_class_idle(cfqq))
1301                 return;
1302         if (!cfqq->next_rq)
1303                 return;
1304
1305         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1306         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1307                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1308         if (!__cfqq) {
1309                 rb_link_node(&cfqq->p_node, parent, p);
1310                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1311         } else
1312                 cfqq->p_root = NULL;
1313 }
1314
1315 /*
1316  * Update cfqq's position in the service tree.
1317  */
1318 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1319 {
1320         /*
1321          * Resorting requires the cfqq to be on the RR list already.
1322          */
1323         if (cfq_cfqq_on_rr(cfqq)) {
1324                 cfq_service_tree_add(cfqd, cfqq, 0);
1325                 cfq_prio_tree_add(cfqd, cfqq);
1326         }
1327 }
1328
1329 /*
1330  * add to busy list of queues for service, trying to be fair in ordering
1331  * the pending list according to last request service
1332  */
1333 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1334 {
1335         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1336         BUG_ON(cfq_cfqq_on_rr(cfqq));
1337         cfq_mark_cfqq_on_rr(cfqq);
1338         cfqd->busy_queues++;
1339         if (cfq_cfqq_sync(cfqq))
1340                 cfqd->busy_sync_queues++;
1341
1342         cfq_resort_rr_list(cfqd, cfqq);
1343 }
1344
1345 /*
1346  * Called when the cfqq no longer has requests pending, remove it from
1347  * the service tree.
1348  */
1349 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1350 {
1351         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1352         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1353         cfq_clear_cfqq_on_rr(cfqq);
1354
1355         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1356                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1357                 cfqq->service_tree = NULL;
1358         }
1359         if (cfqq->p_root) {
1360                 rb_erase(&cfqq->p_node, cfqq->p_root);
1361                 cfqq->p_root = NULL;
1362         }
1363
1364         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1365         BUG_ON(!cfqd->busy_queues);
1366         cfqd->busy_queues--;
1367         if (cfq_cfqq_sync(cfqq))
1368                 cfqd->busy_sync_queues--;
1369 }
1370
1371 /*
1372  * rb tree support functions
1373  */
1374 static void cfq_del_rq_rb(struct request *rq)
1375 {
1376         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1377         const int sync = rq_is_sync(rq);
1378
1379         BUG_ON(!cfqq->queued[sync]);
1380         cfqq->queued[sync]--;
1381
1382         elv_rb_del(&cfqq->sort_list, rq);
1383
1384         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1385                 /*
1386                  * Queue will be deleted from service tree when we actually
1387                  * expire it later. Right now just remove it from prio tree
1388                  * as it is empty.
1389                  */
1390                 if (cfqq->p_root) {
1391                         rb_erase(&cfqq->p_node, cfqq->p_root);
1392                         cfqq->p_root = NULL;
1393                 }
1394         }
1395 }
1396
1397 static void cfq_add_rq_rb(struct request *rq)
1398 {
1399         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1400         struct cfq_data *cfqd = cfqq->cfqd;
1401         struct request *__alias, *prev;
1402
1403         cfqq->queued[rq_is_sync(rq)]++;
1404
1405         /*
1406          * looks a little odd, but the first insert might return an alias.
1407          * if that happens, put the alias on the dispatch list
1408          */
1409         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1410                 cfq_dispatch_insert(cfqd->queue, __alias);
1411
1412         if (!cfq_cfqq_on_rr(cfqq))
1413                 cfq_add_cfqq_rr(cfqd, cfqq);
1414
1415         /*
1416          * check if this request is a better next-serve candidate
1417          */
1418         prev = cfqq->next_rq;
1419         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1420
1421         /*
1422          * adjust priority tree position, if ->next_rq changes
1423          */
1424         if (prev != cfqq->next_rq)
1425                 cfq_prio_tree_add(cfqd, cfqq);
1426
1427         BUG_ON(!cfqq->next_rq);
1428 }
1429
1430 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1431 {
1432         elv_rb_del(&cfqq->sort_list, rq);
1433         cfqq->queued[rq_is_sync(rq)]--;
1434         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1435                                         rq_data_dir(rq), rq_is_sync(rq));
1436         cfq_add_rq_rb(rq);
1437         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1438                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1439                         rq_is_sync(rq));
1440 }
1441
1442 static struct request *
1443 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1444 {
1445         struct task_struct *tsk = current;
1446         struct cfq_io_context *cic;
1447         struct cfq_queue *cfqq;
1448
1449         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1450         if (!cic)
1451                 return NULL;
1452
1453         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1454         if (cfqq) {
1455                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1456
1457                 return elv_rb_find(&cfqq->sort_list, sector);
1458         }
1459
1460         return NULL;
1461 }
1462
1463 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1464 {
1465         struct cfq_data *cfqd = q->elevator->elevator_data;
1466
1467         cfqd->rq_in_driver++;
1468         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1469                                                 cfqd->rq_in_driver);
1470
1471         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1472 }
1473
1474 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1475 {
1476         struct cfq_data *cfqd = q->elevator->elevator_data;
1477
1478         WARN_ON(!cfqd->rq_in_driver);
1479         cfqd->rq_in_driver--;
1480         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1481                                                 cfqd->rq_in_driver);
1482 }
1483
1484 static void cfq_remove_request(struct request *rq)
1485 {
1486         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1487
1488         if (cfqq->next_rq == rq)
1489                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1490
1491         list_del_init(&rq->queuelist);
1492         cfq_del_rq_rb(rq);
1493
1494         cfqq->cfqd->rq_queued--;
1495         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1496                                         rq_data_dir(rq), rq_is_sync(rq));
1497         if (rq->cmd_flags & REQ_META) {
1498                 WARN_ON(!cfqq->meta_pending);
1499                 cfqq->meta_pending--;
1500         }
1501 }
1502
1503 static int cfq_merge(struct request_queue *q, struct request **req,
1504                      struct bio *bio)
1505 {
1506         struct cfq_data *cfqd = q->elevator->elevator_data;
1507         struct request *__rq;
1508
1509         __rq = cfq_find_rq_fmerge(cfqd, bio);
1510         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1511                 *req = __rq;
1512                 return ELEVATOR_FRONT_MERGE;
1513         }
1514
1515         return ELEVATOR_NO_MERGE;
1516 }
1517
1518 static void cfq_merged_request(struct request_queue *q, struct request *req,
1519                                int type)
1520 {
1521         if (type == ELEVATOR_FRONT_MERGE) {
1522                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1523
1524                 cfq_reposition_rq_rb(cfqq, req);
1525         }
1526 }
1527
1528 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1529                                 struct bio *bio)
1530 {
1531         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1532                                         bio_data_dir(bio), cfq_bio_sync(bio));
1533 }
1534
1535 static void
1536 cfq_merged_requests(struct request_queue *q, struct request *rq,
1537                     struct request *next)
1538 {
1539         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1540         /*
1541          * reposition in fifo if next is older than rq
1542          */
1543         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1544             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1545                 list_move(&rq->queuelist, &next->queuelist);
1546                 rq_set_fifo_time(rq, rq_fifo_time(next));
1547         }
1548
1549         if (cfqq->next_rq == next)
1550                 cfqq->next_rq = rq;
1551         cfq_remove_request(next);
1552         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1553                                         rq_data_dir(next), rq_is_sync(next));
1554 }
1555
1556 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1557                            struct bio *bio)
1558 {
1559         struct cfq_data *cfqd = q->elevator->elevator_data;
1560         struct cfq_io_context *cic;
1561         struct cfq_queue *cfqq;
1562
1563         /*
1564          * Disallow merge of a sync bio into an async request.
1565          */
1566         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1567                 return false;
1568
1569         /*
1570          * Lookup the cfqq that this bio will be queued with. Allow
1571          * merge only if rq is queued there.
1572          */
1573         cic = cfq_cic_lookup(cfqd, current->io_context);
1574         if (!cic)
1575                 return false;
1576
1577         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1578         return cfqq == RQ_CFQQ(rq);
1579 }
1580
1581 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1582 {
1583         del_timer(&cfqd->idle_slice_timer);
1584         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1585 }
1586
1587 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1588                                    struct cfq_queue *cfqq)
1589 {
1590         if (cfqq) {
1591                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1592                                 cfqd->serving_prio, cfqd->serving_type);
1593                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1594                 cfqq->slice_start = 0;
1595                 cfqq->dispatch_start = jiffies;
1596                 cfqq->allocated_slice = 0;
1597                 cfqq->slice_end = 0;
1598                 cfqq->slice_dispatch = 0;
1599                 cfqq->nr_sectors = 0;
1600
1601                 cfq_clear_cfqq_wait_request(cfqq);
1602                 cfq_clear_cfqq_must_dispatch(cfqq);
1603                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1604                 cfq_clear_cfqq_fifo_expire(cfqq);
1605                 cfq_mark_cfqq_slice_new(cfqq);
1606
1607                 cfq_del_timer(cfqd, cfqq);
1608         }
1609
1610         cfqd->active_queue = cfqq;
1611 }
1612
1613 /*
1614  * current cfqq expired its slice (or was too idle), select new one
1615  */
1616 static void
1617 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1618                     bool timed_out)
1619 {
1620         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1621
1622         if (cfq_cfqq_wait_request(cfqq))
1623                 cfq_del_timer(cfqd, cfqq);
1624
1625         cfq_clear_cfqq_wait_request(cfqq);
1626         cfq_clear_cfqq_wait_busy(cfqq);
1627
1628         /*
1629          * If this cfqq is shared between multiple processes, check to
1630          * make sure that those processes are still issuing I/Os within
1631          * the mean seek distance.  If not, it may be time to break the
1632          * queues apart again.
1633          */
1634         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1635                 cfq_mark_cfqq_split_coop(cfqq);
1636
1637         /*
1638          * store what was left of this slice, if the queue idled/timed out
1639          */
1640         if (timed_out) {
1641                 if (cfq_cfqq_slice_new(cfqq))
1642                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1643                 else
1644                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1645                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1646         }
1647
1648         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1649
1650         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1651                 cfq_del_cfqq_rr(cfqd, cfqq);
1652
1653         cfq_resort_rr_list(cfqd, cfqq);
1654
1655         if (cfqq == cfqd->active_queue)
1656                 cfqd->active_queue = NULL;
1657
1658         if (cfqd->active_cic) {
1659                 put_io_context(cfqd->active_cic->ioc);
1660                 cfqd->active_cic = NULL;
1661         }
1662 }
1663
1664 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1665 {
1666         struct cfq_queue *cfqq = cfqd->active_queue;
1667
1668         if (cfqq)
1669                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1670 }
1671
1672 /*
1673  * Get next queue for service. Unless we have a queue preemption,
1674  * we'll simply select the first cfqq in the service tree.
1675  */
1676 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1677 {
1678         struct cfq_rb_root *service_tree =
1679                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1680                                         cfqd->serving_type);
1681
1682         if (!cfqd->rq_queued)
1683                 return NULL;
1684
1685         /* There is nothing to dispatch */
1686         if (!service_tree)
1687                 return NULL;
1688         if (RB_EMPTY_ROOT(&service_tree->rb))
1689                 return NULL;
1690         return cfq_rb_first(service_tree);
1691 }
1692
1693 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1694 {
1695         struct cfq_group *cfqg;
1696         struct cfq_queue *cfqq;
1697         int i, j;
1698         struct cfq_rb_root *st;
1699
1700         if (!cfqd->rq_queued)
1701                 return NULL;
1702
1703         cfqg = cfq_get_next_cfqg(cfqd);
1704         if (!cfqg)
1705                 return NULL;
1706
1707         for_each_cfqg_st(cfqg, i, j, st)
1708                 if ((cfqq = cfq_rb_first(st)) != NULL)
1709                         return cfqq;
1710         return NULL;
1711 }
1712
1713 /*
1714  * Get and set a new active queue for service.
1715  */
1716 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1717                                               struct cfq_queue *cfqq)
1718 {
1719         if (!cfqq)
1720                 cfqq = cfq_get_next_queue(cfqd);
1721
1722         __cfq_set_active_queue(cfqd, cfqq);
1723         return cfqq;
1724 }
1725
1726 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1727                                           struct request *rq)
1728 {
1729         if (blk_rq_pos(rq) >= cfqd->last_position)
1730                 return blk_rq_pos(rq) - cfqd->last_position;
1731         else
1732                 return cfqd->last_position - blk_rq_pos(rq);
1733 }
1734
1735 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1736                                struct request *rq)
1737 {
1738         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1739 }
1740
1741 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1742                                     struct cfq_queue *cur_cfqq)
1743 {
1744         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1745         struct rb_node *parent, *node;
1746         struct cfq_queue *__cfqq;
1747         sector_t sector = cfqd->last_position;
1748
1749         if (RB_EMPTY_ROOT(root))
1750                 return NULL;
1751
1752         /*
1753          * First, if we find a request starting at the end of the last
1754          * request, choose it.
1755          */
1756         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1757         if (__cfqq)
1758                 return __cfqq;
1759
1760         /*
1761          * If the exact sector wasn't found, the parent of the NULL leaf
1762          * will contain the closest sector.
1763          */
1764         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1765         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1766                 return __cfqq;
1767
1768         if (blk_rq_pos(__cfqq->next_rq) < sector)
1769                 node = rb_next(&__cfqq->p_node);
1770         else
1771                 node = rb_prev(&__cfqq->p_node);
1772         if (!node)
1773                 return NULL;
1774
1775         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1776         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1777                 return __cfqq;
1778
1779         return NULL;
1780 }
1781
1782 /*
1783  * cfqd - obvious
1784  * cur_cfqq - passed in so that we don't decide that the current queue is
1785  *            closely cooperating with itself.
1786  *
1787  * So, basically we're assuming that that cur_cfqq has dispatched at least
1788  * one request, and that cfqd->last_position reflects a position on the disk
1789  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1790  * assumption.
1791  */
1792 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1793                                               struct cfq_queue *cur_cfqq)
1794 {
1795         struct cfq_queue *cfqq;
1796
1797         if (cfq_class_idle(cur_cfqq))
1798                 return NULL;
1799         if (!cfq_cfqq_sync(cur_cfqq))
1800                 return NULL;
1801         if (CFQQ_SEEKY(cur_cfqq))
1802                 return NULL;
1803
1804         /*
1805          * Don't search priority tree if it's the only queue in the group.
1806          */
1807         if (cur_cfqq->cfqg->nr_cfqq == 1)
1808                 return NULL;
1809
1810         /*
1811          * We should notice if some of the queues are cooperating, eg
1812          * working closely on the same area of the disk. In that case,
1813          * we can group them together and don't waste time idling.
1814          */
1815         cfqq = cfqq_close(cfqd, cur_cfqq);
1816         if (!cfqq)
1817                 return NULL;
1818
1819         /* If new queue belongs to different cfq_group, don't choose it */
1820         if (cur_cfqq->cfqg != cfqq->cfqg)
1821                 return NULL;
1822
1823         /*
1824          * It only makes sense to merge sync queues.
1825          */
1826         if (!cfq_cfqq_sync(cfqq))
1827                 return NULL;
1828         if (CFQQ_SEEKY(cfqq))
1829                 return NULL;
1830
1831         /*
1832          * Do not merge queues of different priority classes
1833          */
1834         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1835                 return NULL;
1836
1837         return cfqq;
1838 }
1839
1840 /*
1841  * Determine whether we should enforce idle window for this queue.
1842  */
1843
1844 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1845 {
1846         enum wl_prio_t prio = cfqq_prio(cfqq);
1847         struct cfq_rb_root *service_tree = cfqq->service_tree;
1848
1849         BUG_ON(!service_tree);
1850         BUG_ON(!service_tree->count);
1851
1852         if (!cfqd->cfq_slice_idle)
1853                 return false;
1854
1855         /* We never do for idle class queues. */
1856         if (prio == IDLE_WORKLOAD)
1857                 return false;
1858
1859         /* We do for queues that were marked with idle window flag. */
1860         if (cfq_cfqq_idle_window(cfqq) &&
1861            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1862                 return true;
1863
1864         /*
1865          * Otherwise, we do only if they are the last ones
1866          * in their service tree.
1867          */
1868         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1869                 return true;
1870         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1871                         service_tree->count);
1872         return false;
1873 }
1874
1875 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1876 {
1877         struct cfq_queue *cfqq = cfqd->active_queue;
1878         struct cfq_io_context *cic;
1879         unsigned long sl, group_idle = 0;
1880
1881         /*
1882          * SSD device without seek penalty, disable idling. But only do so
1883          * for devices that support queuing, otherwise we still have a problem
1884          * with sync vs async workloads.
1885          */
1886         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1887                 return;
1888
1889         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1890         WARN_ON(cfq_cfqq_slice_new(cfqq));
1891
1892         /*
1893          * idle is disabled, either manually or by past process history
1894          */
1895         if (!cfq_should_idle(cfqd, cfqq)) {
1896                 /* no queue idling. Check for group idling */
1897                 if (cfqd->cfq_group_idle)
1898                         group_idle = cfqd->cfq_group_idle;
1899                 else
1900                         return;
1901         }
1902
1903         /*
1904          * still active requests from this queue, don't idle
1905          */
1906         if (cfqq->dispatched)
1907                 return;
1908
1909         /*
1910          * task has exited, don't wait
1911          */
1912         cic = cfqd->active_cic;
1913         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1914                 return;
1915
1916         /*
1917          * If our average think time is larger than the remaining time
1918          * slice, then don't idle. This avoids overrunning the allotted
1919          * time slice.
1920          */
1921         if (sample_valid(cic->ttime_samples) &&
1922             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1923                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1924                                 cic->ttime_mean);
1925                 return;
1926         }
1927
1928         /* There are other queues in the group, don't do group idle */
1929         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1930                 return;
1931
1932         cfq_mark_cfqq_wait_request(cfqq);
1933
1934         if (group_idle)
1935                 sl = cfqd->cfq_group_idle;
1936         else
1937                 sl = cfqd->cfq_slice_idle;
1938
1939         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1940         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1941         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1942                         group_idle ? 1 : 0);
1943 }
1944
1945 /*
1946  * Move request from internal lists to the request queue dispatch list.
1947  */
1948 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1949 {
1950         struct cfq_data *cfqd = q->elevator->elevator_data;
1951         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1952
1953         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1954
1955         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1956         cfq_remove_request(rq);
1957         cfqq->dispatched++;
1958         (RQ_CFQG(rq))->dispatched++;
1959         elv_dispatch_sort(q, rq);
1960
1961         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1962         cfqq->nr_sectors += blk_rq_sectors(rq);
1963         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1964                                         rq_data_dir(rq), rq_is_sync(rq));
1965 }
1966
1967 /*
1968  * return expired entry, or NULL to just start from scratch in rbtree
1969  */
1970 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1971 {
1972         struct request *rq = NULL;
1973
1974         if (cfq_cfqq_fifo_expire(cfqq))
1975                 return NULL;
1976
1977         cfq_mark_cfqq_fifo_expire(cfqq);
1978
1979         if (list_empty(&cfqq->fifo))
1980                 return NULL;
1981
1982         rq = rq_entry_fifo(cfqq->fifo.next);
1983         if (time_before(jiffies, rq_fifo_time(rq)))
1984                 rq = NULL;
1985
1986         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1987         return rq;
1988 }
1989
1990 static inline int
1991 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1992 {
1993         const int base_rq = cfqd->cfq_slice_async_rq;
1994
1995         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1996
1997         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1998 }
1999
2000 /*
2001  * Must be called with the queue_lock held.
2002  */
2003 static int cfqq_process_refs(struct cfq_queue *cfqq)
2004 {
2005         int process_refs, io_refs;
2006
2007         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2008         process_refs = cfqq->ref - io_refs;
2009         BUG_ON(process_refs < 0);
2010         return process_refs;
2011 }
2012
2013 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2014 {
2015         int process_refs, new_process_refs;
2016         struct cfq_queue *__cfqq;
2017
2018         /*
2019          * If there are no process references on the new_cfqq, then it is
2020          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2021          * chain may have dropped their last reference (not just their
2022          * last process reference).
2023          */
2024         if (!cfqq_process_refs(new_cfqq))
2025                 return;
2026
2027         /* Avoid a circular list and skip interim queue merges */
2028         while ((__cfqq = new_cfqq->new_cfqq)) {
2029                 if (__cfqq == cfqq)
2030                         return;
2031                 new_cfqq = __cfqq;
2032         }
2033
2034         process_refs = cfqq_process_refs(cfqq);
2035         new_process_refs = cfqq_process_refs(new_cfqq);
2036         /*
2037          * If the process for the cfqq has gone away, there is no
2038          * sense in merging the queues.
2039          */
2040         if (process_refs == 0 || new_process_refs == 0)
2041                 return;
2042
2043         /*
2044          * Merge in the direction of the lesser amount of work.
2045          */
2046         if (new_process_refs >= process_refs) {
2047                 cfqq->new_cfqq = new_cfqq;
2048                 new_cfqq->ref += process_refs;
2049         } else {
2050                 new_cfqq->new_cfqq = cfqq;
2051                 cfqq->ref += new_process_refs;
2052         }
2053 }
2054
2055 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2056                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2057 {
2058         struct cfq_queue *queue;
2059         int i;
2060         bool key_valid = false;
2061         unsigned long lowest_key = 0;
2062         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2063
2064         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2065                 /* select the one with lowest rb_key */
2066                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2067                 if (queue &&
2068                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2069                         lowest_key = queue->rb_key;
2070                         cur_best = i;
2071                         key_valid = true;
2072                 }
2073         }
2074
2075         return cur_best;
2076 }
2077
2078 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2079 {
2080         unsigned slice;
2081         unsigned count;
2082         struct cfq_rb_root *st;
2083         unsigned group_slice;
2084         enum wl_prio_t original_prio = cfqd->serving_prio;
2085
2086         /* Choose next priority. RT > BE > IDLE */
2087         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2088                 cfqd->serving_prio = RT_WORKLOAD;
2089         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2090                 cfqd->serving_prio = BE_WORKLOAD;
2091         else {
2092                 cfqd->serving_prio = IDLE_WORKLOAD;
2093                 cfqd->workload_expires = jiffies + 1;
2094                 return;
2095         }
2096
2097         if (original_prio != cfqd->serving_prio)
2098                 goto new_workload;
2099
2100         /*
2101          * For RT and BE, we have to choose also the type
2102          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2103          * expiration time
2104          */
2105         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2106         count = st->count;
2107
2108         /*
2109          * check workload expiration, and that we still have other queues ready
2110          */
2111         if (count && !time_after(jiffies, cfqd->workload_expires))
2112                 return;
2113
2114 new_workload:
2115         /* otherwise select new workload type */
2116         cfqd->serving_type =
2117                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2118         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2119         count = st->count;
2120
2121         /*
2122          * the workload slice is computed as a fraction of target latency
2123          * proportional to the number of queues in that workload, over
2124          * all the queues in the same priority class
2125          */
2126         group_slice = cfq_group_slice(cfqd, cfqg);
2127
2128         slice = group_slice * count /
2129                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2130                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2131
2132         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2133                 unsigned int tmp;
2134
2135                 /*
2136                  * Async queues are currently system wide. Just taking
2137                  * proportion of queues with-in same group will lead to higher
2138                  * async ratio system wide as generally root group is going
2139                  * to have higher weight. A more accurate thing would be to
2140                  * calculate system wide asnc/sync ratio.
2141                  */
2142                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2143                 tmp = tmp/cfqd->busy_queues;
2144                 slice = min_t(unsigned, slice, tmp);
2145
2146                 /* async workload slice is scaled down according to
2147                  * the sync/async slice ratio. */
2148                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2149         } else
2150                 /* sync workload slice is at least 2 * cfq_slice_idle */
2151                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2152
2153         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2154         cfq_log(cfqd, "workload slice:%d", slice);
2155         cfqd->workload_expires = jiffies + slice;
2156 }
2157
2158 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2159 {
2160         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2161         struct cfq_group *cfqg;
2162
2163         if (RB_EMPTY_ROOT(&st->rb))
2164                 return NULL;
2165         cfqg = cfq_rb_first_group(st);
2166         update_min_vdisktime(st);
2167         return cfqg;
2168 }
2169
2170 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2171 {
2172         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2173
2174         cfqd->serving_group = cfqg;
2175
2176         /* Restore the workload type data */
2177         if (cfqg->saved_workload_slice) {
2178                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2179                 cfqd->serving_type = cfqg->saved_workload;
2180                 cfqd->serving_prio = cfqg->saved_serving_prio;
2181         } else
2182                 cfqd->workload_expires = jiffies - 1;
2183
2184         choose_service_tree(cfqd, cfqg);
2185 }
2186
2187 /*
2188  * Select a queue for service. If we have a current active queue,
2189  * check whether to continue servicing it, or retrieve and set a new one.
2190  */
2191 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2192 {
2193         struct cfq_queue *cfqq, *new_cfqq = NULL;
2194
2195         cfqq = cfqd->active_queue;
2196         if (!cfqq)
2197                 goto new_queue;
2198
2199         if (!cfqd->rq_queued)
2200                 return NULL;
2201
2202         /*
2203          * We were waiting for group to get backlogged. Expire the queue
2204          */
2205         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2206                 goto expire;
2207
2208         /*
2209          * The active queue has run out of time, expire it and select new.
2210          */
2211         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2212                 /*
2213                  * If slice had not expired at the completion of last request
2214                  * we might not have turned on wait_busy flag. Don't expire
2215                  * the queue yet. Allow the group to get backlogged.
2216                  *
2217                  * The very fact that we have used the slice, that means we
2218                  * have been idling all along on this queue and it should be
2219                  * ok to wait for this request to complete.
2220                  */
2221                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2222                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2223                         cfqq = NULL;
2224                         goto keep_queue;
2225                 } else
2226                         goto check_group_idle;
2227         }
2228
2229         /*
2230          * The active queue has requests and isn't expired, allow it to
2231          * dispatch.
2232          */
2233         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2234                 goto keep_queue;
2235
2236         /*
2237          * If another queue has a request waiting within our mean seek
2238          * distance, let it run.  The expire code will check for close
2239          * cooperators and put the close queue at the front of the service
2240          * tree.  If possible, merge the expiring queue with the new cfqq.
2241          */
2242         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2243         if (new_cfqq) {
2244                 if (!cfqq->new_cfqq)
2245                         cfq_setup_merge(cfqq, new_cfqq);
2246                 goto expire;
2247         }
2248
2249         /*
2250          * No requests pending. If the active queue still has requests in
2251          * flight or is idling for a new request, allow either of these
2252          * conditions to happen (or time out) before selecting a new queue.
2253          */
2254         if (timer_pending(&cfqd->idle_slice_timer)) {
2255                 cfqq = NULL;
2256                 goto keep_queue;
2257         }
2258
2259         /*
2260          * This is a deep seek queue, but the device is much faster than
2261          * the queue can deliver, don't idle
2262          **/
2263         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2264             (cfq_cfqq_slice_new(cfqq) ||
2265             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2266                 cfq_clear_cfqq_deep(cfqq);
2267                 cfq_clear_cfqq_idle_window(cfqq);
2268         }
2269
2270         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2271                 cfqq = NULL;
2272                 goto keep_queue;
2273         }
2274
2275         /*
2276          * If group idle is enabled and there are requests dispatched from
2277          * this group, wait for requests to complete.
2278          */
2279 check_group_idle:
2280         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2281             && cfqq->cfqg->dispatched) {
2282                 cfqq = NULL;
2283                 goto keep_queue;
2284         }
2285
2286 expire:
2287         cfq_slice_expired(cfqd, 0);
2288 new_queue:
2289         /*
2290          * Current queue expired. Check if we have to switch to a new
2291          * service tree
2292          */
2293         if (!new_cfqq)
2294                 cfq_choose_cfqg(cfqd);
2295
2296         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2297 keep_queue:
2298         return cfqq;
2299 }
2300
2301 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2302 {
2303         int dispatched = 0;
2304
2305         while (cfqq->next_rq) {
2306                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2307                 dispatched++;
2308         }
2309
2310         BUG_ON(!list_empty(&cfqq->fifo));
2311
2312         /* By default cfqq is not expired if it is empty. Do it explicitly */
2313         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2314         return dispatched;
2315 }
2316
2317 /*
2318  * Drain our current requests. Used for barriers and when switching
2319  * io schedulers on-the-fly.
2320  */
2321 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2322 {
2323         struct cfq_queue *cfqq;
2324         int dispatched = 0;
2325
2326         /* Expire the timeslice of the current active queue first */
2327         cfq_slice_expired(cfqd, 0);
2328         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2329                 __cfq_set_active_queue(cfqd, cfqq);
2330                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2331         }
2332
2333         BUG_ON(cfqd->busy_queues);
2334
2335         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2336         return dispatched;
2337 }
2338
2339 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2340         struct cfq_queue *cfqq)
2341 {
2342         /* the queue hasn't finished any request, can't estimate */
2343         if (cfq_cfqq_slice_new(cfqq))
2344                 return true;
2345         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2346                 cfqq->slice_end))
2347                 return true;
2348
2349         return false;
2350 }
2351
2352 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2353 {
2354         unsigned int max_dispatch;
2355
2356         /*
2357          * Drain async requests before we start sync IO
2358          */
2359         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2360                 return false;
2361
2362         /*
2363          * If this is an async queue and we have sync IO in flight, let it wait
2364          */
2365         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2366                 return false;
2367
2368         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2369         if (cfq_class_idle(cfqq))
2370                 max_dispatch = 1;
2371
2372         /*
2373          * Does this cfqq already have too much IO in flight?
2374          */
2375         if (cfqq->dispatched >= max_dispatch) {
2376                 bool promote_sync = false;
2377                 /*
2378                  * idle queue must always only have a single IO in flight
2379                  */
2380                 if (cfq_class_idle(cfqq))
2381                         return false;
2382
2383                 /*
2384                  * If there is only one sync queue, and its think time is
2385                  * small, we can ignore async queue here and give the sync
2386                  * queue no dispatch limit. The reason is a sync queue can
2387                  * preempt async queue, limiting the sync queue doesn't make
2388                  * sense. This is useful for aiostress test.
2389                  */
2390                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) {
2391                         struct cfq_io_context *cic = RQ_CIC(cfqq->next_rq);
2392
2393                         if (sample_valid(cic->ttime_samples) &&
2394                                 cic->ttime_mean < cfqd->cfq_slice_idle)
2395                                 promote_sync = true;
2396                 }
2397
2398                 /*
2399                  * We have other queues, don't allow more IO from this one
2400                  */
2401                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2402                                 !promote_sync)
2403                         return false;
2404
2405                 /*
2406                  * Sole queue user, no limit
2407                  */
2408                 if (cfqd->busy_queues == 1 || promote_sync)
2409                         max_dispatch = -1;
2410                 else
2411                         /*
2412                          * Normally we start throttling cfqq when cfq_quantum/2
2413                          * requests have been dispatched. But we can drive
2414                          * deeper queue depths at the beginning of slice
2415                          * subjected to upper limit of cfq_quantum.
2416                          * */
2417                         max_dispatch = cfqd->cfq_quantum;
2418         }
2419
2420         /*
2421          * Async queues must wait a bit before being allowed dispatch.
2422          * We also ramp up the dispatch depth gradually for async IO,
2423          * based on the last sync IO we serviced
2424          */
2425         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2426                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2427                 unsigned int depth;
2428
2429                 depth = last_sync / cfqd->cfq_slice[1];
2430                 if (!depth && !cfqq->dispatched)
2431                         depth = 1;
2432                 if (depth < max_dispatch)
2433                         max_dispatch = depth;
2434         }
2435
2436         /*
2437          * If we're below the current max, allow a dispatch
2438          */
2439         return cfqq->dispatched < max_dispatch;
2440 }
2441
2442 /*
2443  * Dispatch a request from cfqq, moving them to the request queue
2444  * dispatch list.
2445  */
2446 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2447 {
2448         struct request *rq;
2449
2450         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2451
2452         if (!cfq_may_dispatch(cfqd, cfqq))
2453                 return false;
2454
2455         /*
2456          * follow expired path, else get first next available
2457          */
2458         rq = cfq_check_fifo(cfqq);
2459         if (!rq)
2460                 rq = cfqq->next_rq;
2461
2462         /*
2463          * insert request into driver dispatch list
2464          */
2465         cfq_dispatch_insert(cfqd->queue, rq);
2466
2467         if (!cfqd->active_cic) {
2468                 struct cfq_io_context *cic = RQ_CIC(rq);
2469
2470                 atomic_long_inc(&cic->ioc->refcount);
2471                 cfqd->active_cic = cic;
2472         }
2473
2474         return true;
2475 }
2476
2477 /*
2478  * Find the cfqq that we need to service and move a request from that to the
2479  * dispatch list
2480  */
2481 static int cfq_dispatch_requests(struct request_queue *q, int force)
2482 {
2483         struct cfq_data *cfqd = q->elevator->elevator_data;
2484         struct cfq_queue *cfqq;
2485
2486         if (!cfqd->busy_queues)
2487                 return 0;
2488
2489         if (unlikely(force))
2490                 return cfq_forced_dispatch(cfqd);
2491
2492         cfqq = cfq_select_queue(cfqd);
2493         if (!cfqq)
2494                 return 0;
2495
2496         /*
2497          * Dispatch a request from this cfqq, if it is allowed
2498          */
2499         if (!cfq_dispatch_request(cfqd, cfqq))
2500                 return 0;
2501
2502         cfqq->slice_dispatch++;
2503         cfq_clear_cfqq_must_dispatch(cfqq);
2504
2505         /*
2506          * expire an async queue immediately if it has used up its slice. idle
2507          * queue always expire after 1 dispatch round.
2508          */
2509         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2510             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2511             cfq_class_idle(cfqq))) {
2512                 cfqq->slice_end = jiffies + 1;
2513                 cfq_slice_expired(cfqd, 0);
2514         }
2515
2516         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2517         return 1;
2518 }
2519
2520 /*
2521  * task holds one reference to the queue, dropped when task exits. each rq
2522  * in-flight on this queue also holds a reference, dropped when rq is freed.
2523  *
2524  * Each cfq queue took a reference on the parent group. Drop it now.
2525  * queue lock must be held here.
2526  */
2527 static void cfq_put_queue(struct cfq_queue *cfqq)
2528 {
2529         struct cfq_data *cfqd = cfqq->cfqd;
2530         struct cfq_group *cfqg;
2531
2532         BUG_ON(cfqq->ref <= 0);
2533
2534         cfqq->ref--;
2535         if (cfqq->ref)
2536                 return;
2537
2538         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2539         BUG_ON(rb_first(&cfqq->sort_list));
2540         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2541         cfqg = cfqq->cfqg;
2542
2543         if (unlikely(cfqd->active_queue == cfqq)) {
2544                 __cfq_slice_expired(cfqd, cfqq, 0);
2545                 cfq_schedule_dispatch(cfqd);
2546         }
2547
2548         BUG_ON(cfq_cfqq_on_rr(cfqq));
2549         kmem_cache_free(cfq_pool, cfqq);
2550         cfq_put_cfqg(cfqg);
2551 }
2552
2553 /*
2554  * Must always be called with the rcu_read_lock() held
2555  */
2556 static void
2557 __call_for_each_cic(struct io_context *ioc,
2558                     void (*func)(struct io_context *, struct cfq_io_context *))
2559 {
2560         struct cfq_io_context *cic;
2561         struct hlist_node *n;
2562
2563         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2564                 func(ioc, cic);
2565 }
2566
2567 /*
2568  * Call func for each cic attached to this ioc.
2569  */
2570 static void
2571 call_for_each_cic(struct io_context *ioc,
2572                   void (*func)(struct io_context *, struct cfq_io_context *))
2573 {
2574         rcu_read_lock();
2575         __call_for_each_cic(ioc, func);
2576         rcu_read_unlock();
2577 }
2578
2579 static void cfq_cic_free_rcu(struct rcu_head *head)
2580 {
2581         struct cfq_io_context *cic;
2582
2583         cic = container_of(head, struct cfq_io_context, rcu_head);
2584
2585         kmem_cache_free(cfq_ioc_pool, cic);
2586         elv_ioc_count_dec(cfq_ioc_count);
2587
2588         if (ioc_gone) {
2589                 /*
2590                  * CFQ scheduler is exiting, grab exit lock and check
2591                  * the pending io context count. If it hits zero,
2592                  * complete ioc_gone and set it back to NULL
2593                  */
2594                 spin_lock(&ioc_gone_lock);
2595                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2596                         complete(ioc_gone);
2597                         ioc_gone = NULL;
2598                 }
2599                 spin_unlock(&ioc_gone_lock);
2600         }
2601 }
2602
2603 static void cfq_cic_free(struct cfq_io_context *cic)
2604 {
2605         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2606 }
2607
2608 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2609 {
2610         unsigned long flags;
2611         unsigned long dead_key = (unsigned long) cic->key;
2612
2613         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2614
2615         spin_lock_irqsave(&ioc->lock, flags);
2616         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2617         hlist_del_rcu(&cic->cic_list);
2618         spin_unlock_irqrestore(&ioc->lock, flags);
2619
2620         cfq_cic_free(cic);
2621 }
2622
2623 /*
2624  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2625  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2626  * and ->trim() which is called with the task lock held
2627  */
2628 static void cfq_free_io_context(struct io_context *ioc)
2629 {
2630         /*
2631          * ioc->refcount is zero here, or we are called from elv_unregister(),
2632          * so no more cic's are allowed to be linked into this ioc.  So it
2633          * should be ok to iterate over the known list, we will see all cic's
2634          * since no new ones are added.
2635          */
2636         __call_for_each_cic(ioc, cic_free_func);
2637 }
2638
2639 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2640 {
2641         struct cfq_queue *__cfqq, *next;
2642
2643         /*
2644          * If this queue was scheduled to merge with another queue, be
2645          * sure to drop the reference taken on that queue (and others in
2646          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2647          */
2648         __cfqq = cfqq->new_cfqq;
2649         while (__cfqq) {
2650                 if (__cfqq == cfqq) {
2651                         WARN(1, "cfqq->new_cfqq loop detected\n");
2652                         break;
2653                 }
2654                 next = __cfqq->new_cfqq;
2655                 cfq_put_queue(__cfqq);
2656                 __cfqq = next;
2657         }
2658 }
2659
2660 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2661 {
2662         if (unlikely(cfqq == cfqd->active_queue)) {
2663                 __cfq_slice_expired(cfqd, cfqq, 0);
2664                 cfq_schedule_dispatch(cfqd);
2665         }
2666
2667         cfq_put_cooperator(cfqq);
2668
2669         cfq_put_queue(cfqq);
2670 }
2671
2672 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2673                                          struct cfq_io_context *cic)
2674 {
2675         struct io_context *ioc = cic->ioc;
2676
2677         list_del_init(&cic->queue_list);
2678
2679         /*
2680          * Make sure dead mark is seen for dead queues
2681          */
2682         smp_wmb();
2683         cic->key = cfqd_dead_key(cfqd);
2684
2685         if (ioc->ioc_data == cic)
2686                 rcu_assign_pointer(ioc->ioc_data, NULL);
2687
2688         if (cic->cfqq[BLK_RW_ASYNC]) {
2689                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2690                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2691         }
2692
2693         if (cic->cfqq[BLK_RW_SYNC]) {
2694                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2695                 cic->cfqq[BLK_RW_SYNC] = NULL;
2696         }
2697 }
2698
2699 static void cfq_exit_single_io_context(struct io_context *ioc,
2700                                        struct cfq_io_context *cic)
2701 {
2702         struct cfq_data *cfqd = cic_to_cfqd(cic);
2703
2704         if (cfqd) {
2705                 struct request_queue *q = cfqd->queue;
2706                 unsigned long flags;
2707
2708                 spin_lock_irqsave(q->queue_lock, flags);
2709
2710                 /*
2711                  * Ensure we get a fresh copy of the ->key to prevent
2712                  * race between exiting task and queue
2713                  */
2714                 smp_read_barrier_depends();
2715                 if (cic->key == cfqd)
2716                         __cfq_exit_single_io_context(cfqd, cic);
2717
2718                 spin_unlock_irqrestore(q->queue_lock, flags);
2719         }
2720 }
2721
2722 /*
2723  * The process that ioc belongs to has exited, we need to clean up
2724  * and put the internal structures we have that belongs to that process.
2725  */
2726 static void cfq_exit_io_context(struct io_context *ioc)
2727 {
2728         call_for_each_cic(ioc, cfq_exit_single_io_context);
2729 }
2730
2731 static struct cfq_io_context *
2732 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2733 {
2734         struct cfq_io_context *cic;
2735
2736         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2737                                                         cfqd->queue->node);
2738         if (cic) {
2739                 cic->last_end_request = jiffies;
2740                 INIT_LIST_HEAD(&cic->queue_list);
2741                 INIT_HLIST_NODE(&cic->cic_list);
2742                 cic->dtor = cfq_free_io_context;
2743                 cic->exit = cfq_exit_io_context;
2744                 elv_ioc_count_inc(cfq_ioc_count);
2745         }
2746
2747         return cic;
2748 }
2749
2750 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2751 {
2752         struct task_struct *tsk = current;
2753         int ioprio_class;
2754
2755         if (!cfq_cfqq_prio_changed(cfqq))
2756                 return;
2757
2758         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2759         switch (ioprio_class) {
2760         default:
2761                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2762         case IOPRIO_CLASS_NONE:
2763                 /*
2764                  * no prio set, inherit CPU scheduling settings
2765                  */
2766                 cfqq->ioprio = task_nice_ioprio(tsk);
2767                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2768                 break;
2769         case IOPRIO_CLASS_RT:
2770                 cfqq->ioprio = task_ioprio(ioc);
2771                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2772                 break;
2773         case IOPRIO_CLASS_BE:
2774                 cfqq->ioprio = task_ioprio(ioc);
2775                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2776                 break;
2777         case IOPRIO_CLASS_IDLE:
2778                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2779                 cfqq->ioprio = 7;
2780                 cfq_clear_cfqq_idle_window(cfqq);
2781                 break;
2782         }
2783
2784         /*
2785          * keep track of original prio settings in case we have to temporarily
2786          * elevate the priority of this queue
2787          */
2788         cfqq->org_ioprio = cfqq->ioprio;
2789         cfqq->org_ioprio_class = cfqq->ioprio_class;
2790         cfq_clear_cfqq_prio_changed(cfqq);
2791 }
2792
2793 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2794 {
2795         struct cfq_data *cfqd = cic_to_cfqd(cic);
2796         struct cfq_queue *cfqq;
2797         unsigned long flags;
2798
2799         if (unlikely(!cfqd))
2800                 return;
2801
2802         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2803
2804         cfqq = cic->cfqq[BLK_RW_ASYNC];
2805         if (cfqq) {
2806                 struct cfq_queue *new_cfqq;
2807                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2808                                                 GFP_ATOMIC);
2809                 if (new_cfqq) {
2810                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2811                         cfq_put_queue(cfqq);
2812                 }
2813         }
2814
2815         cfqq = cic->cfqq[BLK_RW_SYNC];
2816         if (cfqq)
2817                 cfq_mark_cfqq_prio_changed(cfqq);
2818
2819         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2820 }
2821
2822 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2823 {
2824         call_for_each_cic(ioc, changed_ioprio);
2825         ioc->ioprio_changed = 0;
2826 }
2827
2828 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2829                           pid_t pid, bool is_sync)
2830 {
2831         RB_CLEAR_NODE(&cfqq->rb_node);
2832         RB_CLEAR_NODE(&cfqq->p_node);
2833         INIT_LIST_HEAD(&cfqq->fifo);
2834
2835         cfqq->ref = 0;
2836         cfqq->cfqd = cfqd;
2837
2838         cfq_mark_cfqq_prio_changed(cfqq);
2839
2840         if (is_sync) {
2841                 if (!cfq_class_idle(cfqq))
2842                         cfq_mark_cfqq_idle_window(cfqq);
2843                 cfq_mark_cfqq_sync(cfqq);
2844         }
2845         cfqq->pid = pid;
2846 }
2847
2848 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2849 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2850 {
2851         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2852         struct cfq_data *cfqd = cic_to_cfqd(cic);
2853         unsigned long flags;
2854         struct request_queue *q;
2855
2856         if (unlikely(!cfqd))
2857                 return;
2858
2859         q = cfqd->queue;
2860
2861         spin_lock_irqsave(q->queue_lock, flags);
2862
2863         if (sync_cfqq) {
2864                 /*
2865                  * Drop reference to sync queue. A new sync queue will be
2866                  * assigned in new group upon arrival of a fresh request.
2867                  */
2868                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2869                 cic_set_cfqq(cic, NULL, 1);
2870                 cfq_put_queue(sync_cfqq);
2871         }
2872
2873         spin_unlock_irqrestore(q->queue_lock, flags);
2874 }
2875
2876 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2877 {
2878         call_for_each_cic(ioc, changed_cgroup);
2879         ioc->cgroup_changed = 0;
2880 }
2881 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2882
2883 static struct cfq_queue *
2884 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2885                      struct io_context *ioc, gfp_t gfp_mask)
2886 {
2887         struct cfq_queue *cfqq, *new_cfqq = NULL;
2888         struct cfq_io_context *cic;
2889         struct cfq_group *cfqg;
2890
2891 retry:
2892         cfqg = cfq_get_cfqg(cfqd, 1);
2893         cic = cfq_cic_lookup(cfqd, ioc);
2894         /* cic always exists here */
2895         cfqq = cic_to_cfqq(cic, is_sync);
2896
2897         /*
2898          * Always try a new alloc if we fell back to the OOM cfqq
2899          * originally, since it should just be a temporary situation.
2900          */
2901         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2902                 cfqq = NULL;
2903                 if (new_cfqq) {
2904                         cfqq = new_cfqq;
2905                         new_cfqq = NULL;
2906                 } else if (gfp_mask & __GFP_WAIT) {
2907                         spin_unlock_irq(cfqd->queue->queue_lock);
2908                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2909                                         gfp_mask | __GFP_ZERO,
2910                                         cfqd->queue->node);
2911                         spin_lock_irq(cfqd->queue->queue_lock);
2912                         if (new_cfqq)
2913                                 goto retry;
2914                 } else {
2915                         cfqq = kmem_cache_alloc_node(cfq_pool,
2916                                         gfp_mask | __GFP_ZERO,
2917                                         cfqd->queue->node);
2918                 }
2919
2920                 if (cfqq) {
2921                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2922                         cfq_init_prio_data(cfqq, ioc);
2923                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2924                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2925                 } else
2926                         cfqq = &cfqd->oom_cfqq;
2927         }
2928
2929         if (new_cfqq)
2930                 kmem_cache_free(cfq_pool, new_cfqq);
2931
2932         return cfqq;
2933 }
2934
2935 static struct cfq_queue **
2936 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2937 {
2938         switch (ioprio_class) {
2939         case IOPRIO_CLASS_RT:
2940                 return &cfqd->async_cfqq[0][ioprio];
2941         case IOPRIO_CLASS_BE:
2942                 return &cfqd->async_cfqq[1][ioprio];
2943         case IOPRIO_CLASS_IDLE:
2944                 return &cfqd->async_idle_cfqq;
2945         default:
2946                 BUG();
2947         }
2948 }
2949
2950 static struct cfq_queue *
2951 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2952               gfp_t gfp_mask)
2953 {
2954         const int ioprio = task_ioprio(ioc);
2955         const int ioprio_class = task_ioprio_class(ioc);
2956         struct cfq_queue **async_cfqq = NULL;
2957         struct cfq_queue *cfqq = NULL;
2958
2959         if (!is_sync) {
2960                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2961                 cfqq = *async_cfqq;
2962         }
2963
2964         if (!cfqq)
2965                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2966
2967         /*
2968          * pin the queue now that it's allocated, scheduler exit will prune it
2969          */
2970         if (!is_sync && !(*async_cfqq)) {
2971                 cfqq->ref++;
2972                 *async_cfqq = cfqq;
2973         }
2974
2975         cfqq->ref++;
2976         return cfqq;
2977 }
2978
2979 /*
2980  * We drop cfq io contexts lazily, so we may find a dead one.
2981  */
2982 static void
2983 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2984                   struct cfq_io_context *cic)
2985 {
2986         unsigned long flags;
2987
2988         WARN_ON(!list_empty(&cic->queue_list));
2989         BUG_ON(cic->key != cfqd_dead_key(cfqd));
2990
2991         spin_lock_irqsave(&ioc->lock, flags);
2992
2993         BUG_ON(ioc->ioc_data == cic);
2994
2995         radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2996         hlist_del_rcu(&cic->cic_list);
2997         spin_unlock_irqrestore(&ioc->lock, flags);
2998
2999         cfq_cic_free(cic);
3000 }
3001
3002 static struct cfq_io_context *
3003 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3004 {
3005         struct cfq_io_context *cic;
3006         unsigned long flags;
3007
3008         if (unlikely(!ioc))
3009                 return NULL;
3010
3011         rcu_read_lock();
3012
3013         /*
3014          * we maintain a last-hit cache, to avoid browsing over the tree
3015          */
3016         cic = rcu_dereference(ioc->ioc_data);
3017         if (cic && cic->key == cfqd) {
3018                 rcu_read_unlock();
3019                 return cic;
3020         }
3021
3022         do {
3023                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3024                 rcu_read_unlock();
3025                 if (!cic)
3026                         break;
3027                 if (unlikely(cic->key != cfqd)) {
3028                         cfq_drop_dead_cic(cfqd, ioc, cic);
3029                         rcu_read_lock();
3030                         continue;
3031                 }
3032
3033                 spin_lock_irqsave(&ioc->lock, flags);
3034                 rcu_assign_pointer(ioc->ioc_data, cic);
3035                 spin_unlock_irqrestore(&ioc->lock, flags);
3036                 break;
3037         } while (1);
3038
3039         return cic;
3040 }
3041
3042 /*
3043  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3044  * the process specific cfq io context when entered from the block layer.
3045  * Also adds the cic to a per-cfqd list, used when this queue is removed.
3046  */
3047 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3048                         struct cfq_io_context *cic, gfp_t gfp_mask)
3049 {
3050         unsigned long flags;
3051         int ret;
3052
3053         ret = radix_tree_preload(gfp_mask);
3054         if (!ret) {
3055                 cic->ioc = ioc;
3056                 cic->key = cfqd;
3057
3058                 spin_lock_irqsave(&ioc->lock, flags);
3059                 ret = radix_tree_insert(&ioc->radix_root,
3060                                                 cfqd->cic_index, cic);
3061                 if (!ret)
3062                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3063                 spin_unlock_irqrestore(&ioc->lock, flags);
3064
3065                 radix_tree_preload_end();
3066
3067                 if (!ret) {
3068                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3069                         list_add(&cic->queue_list, &cfqd->cic_list);
3070                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3071                 }
3072         }
3073
3074         if (ret)
3075                 printk(KERN_ERR "cfq: cic link failed!\n");
3076
3077         return ret;
3078 }
3079
3080 /*
3081  * Setup general io context and cfq io context. There can be several cfq
3082  * io contexts per general io context, if this process is doing io to more
3083  * than one device managed by cfq.
3084  */
3085 static struct cfq_io_context *
3086 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3087 {
3088         struct io_context *ioc = NULL;
3089         struct cfq_io_context *cic;
3090
3091         might_sleep_if(gfp_mask & __GFP_WAIT);
3092
3093         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3094         if (!ioc)
3095                 return NULL;
3096
3097         cic = cfq_cic_lookup(cfqd, ioc);
3098         if (cic)
3099                 goto out;
3100
3101         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3102         if (cic == NULL)
3103                 goto err;
3104
3105         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3106                 goto err_free;
3107
3108 out:
3109         smp_read_barrier_depends();
3110         if (unlikely(ioc->ioprio_changed))
3111                 cfq_ioc_set_ioprio(ioc);
3112
3113 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3114         if (unlikely(ioc->cgroup_changed))
3115                 cfq_ioc_set_cgroup(ioc);
3116 #endif
3117         return cic;
3118 err_free:
3119         cfq_cic_free(cic);
3120 err:
3121         put_io_context(ioc);
3122         return NULL;
3123 }
3124
3125 static void
3126 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3127 {
3128         unsigned long elapsed = jiffies - cic->last_end_request;
3129         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3130
3131         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3132         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3133         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3134 }
3135
3136 static void
3137 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3138                        struct request *rq)
3139 {
3140         sector_t sdist = 0;
3141         sector_t n_sec = blk_rq_sectors(rq);
3142         if (cfqq->last_request_pos) {
3143                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3144                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3145                 else
3146                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3147         }
3148
3149         cfqq->seek_history <<= 1;
3150         if (blk_queue_nonrot(cfqd->queue))
3151                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3152         else
3153                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3154 }
3155
3156 /*
3157  * Disable idle window if the process thinks too long or seeks so much that
3158  * it doesn't matter
3159  */
3160 static void
3161 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3162                        struct cfq_io_context *cic)
3163 {
3164         int old_idle, enable_idle;
3165
3166         /*
3167          * Don't idle for async or idle io prio class
3168          */
3169         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3170                 return;
3171
3172         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3173
3174         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3175                 cfq_mark_cfqq_deep(cfqq);
3176
3177         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3178                 enable_idle = 0;
3179         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3180             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3181                 enable_idle = 0;
3182         else if (sample_valid(cic->ttime_samples)) {
3183                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3184                         enable_idle = 0;
3185                 else
3186                         enable_idle = 1;
3187         }
3188
3189         if (old_idle != enable_idle) {
3190                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3191                 if (enable_idle)
3192                         cfq_mark_cfqq_idle_window(cfqq);
3193                 else
3194                         cfq_clear_cfqq_idle_window(cfqq);
3195         }
3196 }
3197
3198 /*
3199  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3200  * no or if we aren't sure, a 1 will cause a preempt.
3201  */
3202 static bool
3203 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3204                    struct request *rq)
3205 {
3206         struct cfq_queue *cfqq;
3207
3208         cfqq = cfqd->active_queue;
3209         if (!cfqq)
3210                 return false;
3211
3212         if (cfq_class_idle(new_cfqq))
3213                 return false;
3214
3215         if (cfq_class_idle(cfqq))
3216                 return true;
3217
3218         /*
3219          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3220          */
3221         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3222                 return false;
3223
3224         /*
3225          * if the new request is sync, but the currently running queue is
3226          * not, let the sync request have priority.
3227          */
3228         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3229                 return true;
3230
3231         if (new_cfqq->cfqg != cfqq->cfqg)
3232                 return false;
3233
3234         if (cfq_slice_used(cfqq))
3235                 return true;
3236
3237         /* Allow preemption only if we are idling on sync-noidle tree */
3238         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3239             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3240             new_cfqq->service_tree->count == 2 &&
3241             RB_EMPTY_ROOT(&cfqq->sort_list))
3242                 return true;
3243
3244         /*
3245          * So both queues are sync. Let the new request get disk time if
3246          * it's a metadata request and the current queue is doing regular IO.
3247          */
3248         if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3249                 return true;
3250
3251         /*
3252          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3253          */
3254         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3255                 return true;
3256
3257         /* An idle queue should not be idle now for some reason */
3258         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3259                 return true;
3260
3261         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3262                 return false;
3263
3264         /*
3265          * if this request is as-good as one we would expect from the
3266          * current cfqq, let it preempt
3267          */
3268         if (cfq_rq_close(cfqd, cfqq, rq))
3269                 return true;
3270
3271         return false;
3272 }
3273
3274 /*
3275  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3276  * let it have half of its nominal slice.
3277  */
3278 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3279 {
3280         struct cfq_queue *old_cfqq = cfqd->active_queue;
3281
3282         cfq_log_cfqq(cfqd, cfqq, "preempt");
3283         cfq_slice_expired(cfqd, 1);
3284
3285         /*
3286          * workload type is changed, don't save slice, otherwise preempt
3287          * doesn't happen
3288          */
3289         if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3290                 cfqq->cfqg->saved_workload_slice = 0;
3291
3292         /*
3293          * Put the new queue at the front of the of the current list,
3294          * so we know that it will be selected next.
3295          */
3296         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3297
3298         cfq_service_tree_add(cfqd, cfqq, 1);
3299
3300         cfqq->slice_end = 0;
3301         cfq_mark_cfqq_slice_new(cfqq);
3302 }
3303
3304 /*
3305  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3306  * something we should do about it
3307  */
3308 static void
3309 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3310                 struct request *rq)
3311 {
3312         struct cfq_io_context *cic = RQ_CIC(rq);
3313
3314         cfqd->rq_queued++;
3315         if (rq->cmd_flags & REQ_META)
3316                 cfqq->meta_pending++;
3317
3318         cfq_update_io_thinktime(cfqd, cic);
3319         cfq_update_io_seektime(cfqd, cfqq, rq);
3320         cfq_update_idle_window(cfqd, cfqq, cic);
3321
3322         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3323
3324         if (cfqq == cfqd->active_queue) {
3325                 /*
3326                  * Remember that we saw a request from this process, but
3327                  * don't start queuing just yet. Otherwise we risk seeing lots
3328                  * of tiny requests, because we disrupt the normal plugging
3329                  * and merging. If the request is already larger than a single
3330                  * page, let it rip immediately. For that case we assume that
3331                  * merging is already done. Ditto for a busy system that
3332                  * has other work pending, don't risk delaying until the
3333                  * idle timer unplug to continue working.
3334                  */
3335                 if (cfq_cfqq_wait_request(cfqq)) {
3336                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3337                             cfqd->busy_queues > 1) {
3338                                 cfq_del_timer(cfqd, cfqq);
3339                                 cfq_clear_cfqq_wait_request(cfqq);
3340                                 __blk_run_queue(cfqd->queue, false);
3341                         } else {
3342                                 cfq_blkiocg_update_idle_time_stats(
3343                                                 &cfqq->cfqg->blkg);
3344                                 cfq_mark_cfqq_must_dispatch(cfqq);
3345                         }
3346                 }
3347         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3348                 /*
3349                  * not the active queue - expire current slice if it is
3350                  * idle and has expired it's mean thinktime or this new queue
3351                  * has some old slice time left and is of higher priority or
3352                  * this new queue is RT and the current one is BE
3353                  */
3354                 cfq_preempt_queue(cfqd, cfqq);
3355                 __blk_run_queue(cfqd->queue, false);
3356         }
3357 }
3358
3359 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3360 {
3361         struct cfq_data *cfqd = q->elevator->elevator_data;
3362         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3363
3364         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3365         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3366
3367         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3368         list_add_tail(&rq->queuelist, &cfqq->fifo);
3369         cfq_add_rq_rb(rq);
3370         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3371                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3372                         rq_is_sync(rq));
3373         cfq_rq_enqueued(cfqd, cfqq, rq);
3374 }
3375
3376 /*
3377  * Update hw_tag based on peak queue depth over 50 samples under
3378  * sufficient load.
3379  */
3380 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3381 {
3382         struct cfq_queue *cfqq = cfqd->active_queue;
3383
3384         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3385                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3386
3387         if (cfqd->hw_tag == 1)
3388                 return;
3389
3390         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3391             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3392                 return;
3393
3394         /*
3395          * If active queue hasn't enough requests and can idle, cfq might not
3396          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3397          * case
3398          */
3399         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3400             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3401             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3402                 return;
3403
3404         if (cfqd->hw_tag_samples++ < 50)
3405                 return;
3406
3407         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3408                 cfqd->hw_tag = 1;
3409         else
3410                 cfqd->hw_tag = 0;
3411 }
3412
3413 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3414 {
3415         struct cfq_io_context *cic = cfqd->active_cic;
3416
3417         /* If the queue already has requests, don't wait */
3418         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3419                 return false;
3420
3421         /* If there are other queues in the group, don't wait */
3422         if (cfqq->cfqg->nr_cfqq > 1)
3423                 return false;
3424
3425         if (cfq_slice_used(cfqq))
3426                 return true;
3427
3428         /* if slice left is less than think time, wait busy */
3429         if (cic && sample_valid(cic->ttime_samples)
3430             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3431                 return true;
3432
3433         /*
3434          * If think times is less than a jiffy than ttime_mean=0 and above
3435          * will not be true. It might happen that slice has not expired yet
3436          * but will expire soon (4-5 ns) during select_queue(). To cover the
3437          * case where think time is less than a jiffy, mark the queue wait
3438          * busy if only 1 jiffy is left in the slice.
3439          */
3440         if (cfqq->slice_end - jiffies == 1)
3441                 return true;
3442
3443         return false;
3444 }
3445
3446 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3447 {
3448         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3449         struct cfq_data *cfqd = cfqq->cfqd;
3450         const int sync = rq_is_sync(rq);
3451         unsigned long now;
3452
3453         now = jiffies;
3454         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3455                      !!(rq->cmd_flags & REQ_NOIDLE));
3456
3457         cfq_update_hw_tag(cfqd);
3458
3459         WARN_ON(!cfqd->rq_in_driver);
3460         WARN_ON(!cfqq->dispatched);
3461         cfqd->rq_in_driver--;
3462         cfqq->dispatched--;
3463         (RQ_CFQG(rq))->dispatched--;
3464         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3465                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3466                         rq_data_dir(rq), rq_is_sync(rq));
3467
3468         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3469
3470         if (sync) {
3471                 RQ_CIC(rq)->last_end_request = now;
3472                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3473                         cfqd->last_delayed_sync = now;
3474         }
3475
3476         /*
3477          * If this is the active queue, check if it needs to be expired,
3478          * or if we want to idle in case it has no pending requests.
3479          */
3480         if (cfqd->active_queue == cfqq) {
3481                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3482
3483                 if (cfq_cfqq_slice_new(cfqq)) {
3484                         cfq_set_prio_slice(cfqd, cfqq);
3485                         cfq_clear_cfqq_slice_new(cfqq);
3486                 }
3487
3488                 /*
3489                  * Should we wait for next request to come in before we expire
3490                  * the queue.
3491                  */
3492                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3493                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3494                         if (!cfqd->cfq_slice_idle)
3495                                 extend_sl = cfqd->cfq_group_idle;
3496                         cfqq->slice_end = jiffies + extend_sl;
3497                         cfq_mark_cfqq_wait_busy(cfqq);
3498                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3499                 }
3500
3501                 /*
3502                  * Idling is not enabled on:
3503                  * - expired queues
3504                  * - idle-priority queues
3505                  * - async queues
3506                  * - queues with still some requests queued
3507                  * - when there is a close cooperator
3508                  */
3509                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3510                         cfq_slice_expired(cfqd, 1);
3511                 else if (sync && cfqq_empty &&
3512                          !cfq_close_cooperator(cfqd, cfqq)) {
3513                         cfq_arm_slice_timer(cfqd);
3514                 }
3515         }
3516
3517         if (!cfqd->rq_in_driver)
3518                 cfq_schedule_dispatch(cfqd);
3519 }
3520
3521 /*
3522  * we temporarily boost lower priority queues if they are holding fs exclusive
3523  * resources. they are boosted to normal prio (CLASS_BE/4)
3524  */
3525 static void cfq_prio_boost(struct cfq_queue *cfqq)
3526 {
3527         if (has_fs_excl()) {
3528                 /*
3529                  * boost idle prio on transactions that would lock out other
3530                  * users of the filesystem
3531                  */
3532                 if (cfq_class_idle(cfqq))
3533                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3534                 if (cfqq->ioprio > IOPRIO_NORM)
3535                         cfqq->ioprio = IOPRIO_NORM;
3536         } else {
3537                 /*
3538                  * unboost the queue (if needed)
3539                  */
3540                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3541                 cfqq->ioprio = cfqq->org_ioprio;
3542         }
3543 }
3544
3545 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3546 {
3547         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3548                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3549                 return ELV_MQUEUE_MUST;
3550         }
3551
3552         return ELV_MQUEUE_MAY;
3553 }
3554
3555 static int cfq_may_queue(struct request_queue *q, int rw)
3556 {
3557         struct cfq_data *cfqd = q->elevator->elevator_data;
3558         struct task_struct *tsk = current;
3559         struct cfq_io_context *cic;
3560         struct cfq_queue *cfqq;
3561
3562         /*
3563          * don't force setup of a queue from here, as a call to may_queue
3564          * does not necessarily imply that a request actually will be queued.
3565          * so just lookup a possibly existing queue, or return 'may queue'
3566          * if that fails
3567          */
3568         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3569         if (!cic)
3570                 return ELV_MQUEUE_MAY;
3571
3572         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3573         if (cfqq) {
3574                 cfq_init_prio_data(cfqq, cic->ioc);
3575                 cfq_prio_boost(cfqq);
3576
3577                 return __cfq_may_queue(cfqq);
3578         }
3579
3580         return ELV_MQUEUE_MAY;
3581 }
3582
3583 /*
3584  * queue lock held here
3585  */
3586 static void cfq_put_request(struct request *rq)
3587 {
3588         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3589
3590         if (cfqq) {
3591                 const int rw = rq_data_dir(rq);
3592
3593                 BUG_ON(!cfqq->allocated[rw]);
3594                 cfqq->allocated[rw]--;
3595
3596                 put_io_context(RQ_CIC(rq)->ioc);
3597
3598                 rq->elevator_private[0] = NULL;
3599                 rq->elevator_private[1] = NULL;
3600
3601                 /* Put down rq reference on cfqg */
3602                 cfq_put_cfqg(RQ_CFQG(rq));
3603                 rq->elevator_private[2] = NULL;
3604
3605                 cfq_put_queue(cfqq);
3606         }
3607 }
3608
3609 static struct cfq_queue *
3610 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3611                 struct cfq_queue *cfqq)
3612 {
3613         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3614         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3615         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3616         cfq_put_queue(cfqq);
3617         return cic_to_cfqq(cic, 1);
3618 }
3619
3620 /*
3621  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3622  * was the last process referring to said cfqq.
3623  */
3624 static struct cfq_queue *
3625 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3626 {
3627         if (cfqq_process_refs(cfqq) == 1) {
3628                 cfqq->pid = current->pid;
3629                 cfq_clear_cfqq_coop(cfqq);
3630                 cfq_clear_cfqq_split_coop(cfqq);
3631                 return cfqq;
3632         }
3633
3634         cic_set_cfqq(cic, NULL, 1);
3635
3636         cfq_put_cooperator(cfqq);
3637
3638         cfq_put_queue(cfqq);
3639         return NULL;
3640 }
3641 /*
3642  * Allocate cfq data structures associated with this request.
3643  */
3644 static int
3645 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3646 {
3647         struct cfq_data *cfqd = q->elevator->elevator_data;
3648         struct cfq_io_context *cic;
3649         const int rw = rq_data_dir(rq);
3650         const bool is_sync = rq_is_sync(rq);
3651         struct cfq_queue *cfqq;
3652         unsigned long flags;
3653
3654         might_sleep_if(gfp_mask & __GFP_WAIT);
3655
3656         cic = cfq_get_io_context(cfqd, gfp_mask);
3657
3658         spin_lock_irqsave(q->queue_lock, flags);
3659
3660         if (!cic)
3661                 goto queue_fail;
3662
3663 new_queue:
3664         cfqq = cic_to_cfqq(cic, is_sync);
3665         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3666                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3667                 cic_set_cfqq(cic, cfqq, is_sync);
3668         } else {
3669                 /*
3670                  * If the queue was seeky for too long, break it apart.
3671                  */
3672                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3673                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3674                         cfqq = split_cfqq(cic, cfqq);
3675                         if (!cfqq)
3676                                 goto new_queue;
3677                 }
3678
3679                 /*
3680                  * Check to see if this queue is scheduled to merge with
3681                  * another, closely cooperating queue.  The merging of
3682                  * queues happens here as it must be done in process context.
3683                  * The reference on new_cfqq was taken in merge_cfqqs.
3684                  */
3685                 if (cfqq->new_cfqq)
3686                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3687         }
3688
3689         cfqq->allocated[rw]++;
3690
3691         cfqq->ref++;
3692         rq->elevator_private[0] = cic;
3693         rq->elevator_private[1] = cfqq;
3694         rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3695         spin_unlock_irqrestore(q->queue_lock, flags);
3696         return 0;
3697
3698 queue_fail:
3699         if (cic)
3700                 put_io_context(cic->ioc);
3701
3702         cfq_schedule_dispatch(cfqd);
3703         spin_unlock_irqrestore(q->queue_lock, flags);
3704         cfq_log(cfqd, "set_request fail");
3705         return 1;
3706 }
3707
3708 static void cfq_kick_queue(struct work_struct *work)
3709 {
3710         struct cfq_data *cfqd =
3711                 container_of(work, struct cfq_data, unplug_work);
3712         struct request_queue *q = cfqd->queue;
3713
3714         spin_lock_irq(q->queue_lock);
3715         __blk_run_queue(cfqd->queue, false);
3716         spin_unlock_irq(q->queue_lock);
3717 }
3718
3719 /*
3720  * Timer running if the active_queue is currently idling inside its time slice
3721  */
3722 static void cfq_idle_slice_timer(unsigned long data)
3723 {
3724         struct cfq_data *cfqd = (struct cfq_data *) data;
3725         struct cfq_queue *cfqq;
3726         unsigned long flags;
3727         int timed_out = 1;
3728
3729         cfq_log(cfqd, "idle timer fired");
3730
3731         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3732
3733         cfqq = cfqd->active_queue;
3734         if (cfqq) {
3735                 timed_out = 0;
3736
3737                 /*
3738                  * We saw a request before the queue expired, let it through
3739                  */
3740                 if (cfq_cfqq_must_dispatch(cfqq))
3741                         goto out_kick;
3742
3743                 /*
3744                  * expired
3745                  */
3746                 if (cfq_slice_used(cfqq))
3747                         goto expire;
3748
3749                 /*
3750                  * only expire and reinvoke request handler, if there are
3751                  * other queues with pending requests
3752                  */
3753                 if (!cfqd->busy_queues)
3754                         goto out_cont;
3755
3756                 /*
3757                  * not expired and it has a request pending, let it dispatch
3758                  */
3759                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3760                         goto out_kick;
3761
3762                 /*
3763                  * Queue depth flag is reset only when the idle didn't succeed
3764                  */
3765                 cfq_clear_cfqq_deep(cfqq);
3766         }
3767 expire:
3768         cfq_slice_expired(cfqd, timed_out);
3769 out_kick:
3770         cfq_schedule_dispatch(cfqd);
3771 out_cont:
3772         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3773 }
3774
3775 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3776 {
3777         del_timer_sync(&cfqd->idle_slice_timer);
3778         cancel_work_sync(&cfqd->unplug_work);
3779 }
3780
3781 static void cfq_put_async_queues(struct cfq_data *cfqd)
3782 {
3783         int i;
3784
3785         for (i = 0; i < IOPRIO_BE_NR; i++) {
3786                 if (cfqd->async_cfqq[0][i])
3787                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3788                 if (cfqd->async_cfqq[1][i])
3789                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3790         }
3791
3792         if (cfqd->async_idle_cfqq)
3793                 cfq_put_queue(cfqd->async_idle_cfqq);
3794 }
3795
3796 static void cfq_cfqd_free(struct rcu_head *head)
3797 {
3798         kfree(container_of(head, struct cfq_data, rcu));
3799 }
3800
3801 static void cfq_exit_queue(struct elevator_queue *e)
3802 {
3803         struct cfq_data *cfqd = e->elevator_data;
3804         struct request_queue *q = cfqd->queue;
3805
3806         cfq_shutdown_timer_wq(cfqd);
3807
3808         spin_lock_irq(q->queue_lock);
3809
3810         if (cfqd->active_queue)
3811                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3812
3813         while (!list_empty(&cfqd->cic_list)) {
3814                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3815                                                         struct cfq_io_context,
3816                                                         queue_list);
3817
3818                 __cfq_exit_single_io_context(cfqd, cic);
3819         }
3820
3821         cfq_put_async_queues(cfqd);
3822         cfq_release_cfq_groups(cfqd);
3823         cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3824
3825         spin_unlock_irq(q->queue_lock);
3826
3827         cfq_shutdown_timer_wq(cfqd);
3828
3829         spin_lock(&cic_index_lock);
3830         ida_remove(&cic_index_ida, cfqd->cic_index);
3831         spin_unlock(&cic_index_lock);
3832
3833         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3834         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3835 }
3836
3837 static int cfq_alloc_cic_index(void)
3838 {
3839         int index, error;
3840
3841         do {
3842                 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3843                         return -ENOMEM;
3844
3845                 spin_lock(&cic_index_lock);
3846                 error = ida_get_new(&cic_index_ida, &index);
3847                 spin_unlock(&cic_index_lock);
3848                 if (error && error != -EAGAIN)
3849                         return error;
3850         } while (error);
3851
3852         return index;
3853 }
3854
3855 static void *cfq_init_queue(struct request_queue *q)
3856 {
3857         struct cfq_data *cfqd;
3858         int i, j;
3859         struct cfq_group *cfqg;
3860         struct cfq_rb_root *st;
3861
3862         i = cfq_alloc_cic_index();
3863         if (i < 0)
3864                 return NULL;
3865
3866         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3867         if (!cfqd)
3868                 return NULL;
3869
3870         /*
3871          * Don't need take queue_lock in the routine, since we are
3872          * initializing the ioscheduler, and nobody is using cfqd
3873          */
3874         cfqd->cic_index = i;
3875
3876         /* Init root service tree */
3877         cfqd->grp_service_tree = CFQ_RB_ROOT;
3878
3879         /* Init root group */
3880         cfqg = &cfqd->root_group;
3881         for_each_cfqg_st(cfqg, i, j, st)
3882                 *st = CFQ_RB_ROOT;
3883         RB_CLEAR_NODE(&cfqg->rb_node);
3884
3885         /* Give preference to root group over other groups */
3886         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3887
3888 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3889         /*
3890          * Take a reference to root group which we never drop. This is just
3891          * to make sure that cfq_put_cfqg() does not try to kfree root group
3892          */
3893         cfqg->ref = 1;
3894         rcu_read_lock();
3895         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3896                                         (void *)cfqd, 0);
3897         rcu_read_unlock();
3898 #endif
3899         /*
3900          * Not strictly needed (since RB_ROOT just clears the node and we
3901          * zeroed cfqd on alloc), but better be safe in case someone decides
3902          * to add magic to the rb code
3903          */
3904         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3905                 cfqd->prio_trees[i] = RB_ROOT;
3906
3907         /*
3908          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3909          * Grab a permanent reference to it, so that the normal code flow
3910          * will not attempt to free it.
3911          */
3912         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3913         cfqd->oom_cfqq.ref++;
3914         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3915
3916         INIT_LIST_HEAD(&cfqd->cic_list);
3917
3918         cfqd->queue = q;
3919
3920         init_timer(&cfqd->idle_slice_timer);
3921         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3922         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3923
3924         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3925
3926         cfqd->cfq_quantum = cfq_quantum;
3927         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3928         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3929         cfqd->cfq_back_max = cfq_back_max;
3930         cfqd->cfq_back_penalty = cfq_back_penalty;
3931         cfqd->cfq_slice[0] = cfq_slice_async;
3932         cfqd->cfq_slice[1] = cfq_slice_sync;
3933         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3934         cfqd->cfq_slice_idle = cfq_slice_idle;
3935         cfqd->cfq_group_idle = cfq_group_idle;
3936         cfqd->cfq_latency = 1;
3937         cfqd->hw_tag = -1;
3938         /*
3939          * we optimistically start assuming sync ops weren't delayed in last
3940          * second, in order to have larger depth for async operations.
3941          */
3942         cfqd->last_delayed_sync = jiffies - HZ;
3943         return cfqd;
3944 }
3945
3946 static void cfq_slab_kill(void)
3947 {
3948         /*
3949          * Caller already ensured that pending RCU callbacks are completed,
3950          * so we should have no busy allocations at this point.
3951          */
3952         if (cfq_pool)
3953                 kmem_cache_destroy(cfq_pool);
3954         if (cfq_ioc_pool)
3955                 kmem_cache_destroy(cfq_ioc_pool);
3956 }
3957
3958 static int __init cfq_slab_setup(void)
3959 {
3960         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3961         if (!cfq_pool)
3962                 goto fail;
3963
3964         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3965         if (!cfq_ioc_pool)
3966                 goto fail;
3967
3968         return 0;
3969 fail:
3970         cfq_slab_kill();
3971         return -ENOMEM;
3972 }
3973
3974 /*
3975  * sysfs parts below -->
3976  */
3977 static ssize_t
3978 cfq_var_show(unsigned int var, char *page)
3979 {
3980         return sprintf(page, "%d\n", var);
3981 }
3982
3983 static ssize_t
3984 cfq_var_store(unsigned int *var, const char *page, size_t count)
3985 {
3986         char *p = (char *) page;
3987
3988         *var = simple_strtoul(p, &p, 10);
3989         return count;
3990 }
3991
3992 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3993 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3994 {                                                                       \
3995         struct cfq_data *cfqd = e->elevator_data;                       \
3996         unsigned int __data = __VAR;                                    \
3997         if (__CONV)                                                     \
3998                 __data = jiffies_to_msecs(__data);                      \
3999         return cfq_var_show(__data, (page));                            \
4000 }
4001 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4002 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4003 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4004 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4005 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4006 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4007 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4008 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4009 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4010 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4011 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4012 #undef SHOW_FUNCTION
4013
4014 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4015 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4016 {                                                                       \
4017         struct cfq_data *cfqd = e->elevator_data;                       \
4018         unsigned int __data;                                            \
4019         int ret = cfq_var_store(&__data, (page), count);                \
4020         if (__data < (MIN))                                             \
4021                 __data = (MIN);                                         \
4022         else if (__data > (MAX))                                        \
4023                 __data = (MAX);                                         \
4024         if (__CONV)                                                     \
4025                 *(__PTR) = msecs_to_jiffies(__data);                    \
4026         else                                                            \
4027                 *(__PTR) = __data;                                      \
4028         return ret;                                                     \
4029 }
4030 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4031 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4032                 UINT_MAX, 1);
4033 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4034                 UINT_MAX, 1);
4035 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4036 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4037                 UINT_MAX, 0);
4038 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4039 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4040 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4041 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4042 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4043                 UINT_MAX, 0);
4044 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4045 #undef STORE_FUNCTION
4046
4047 #define CFQ_ATTR(name) \
4048         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4049
4050 static struct elv_fs_entry cfq_attrs[] = {
4051         CFQ_ATTR(quantum),
4052         CFQ_ATTR(fifo_expire_sync),
4053         CFQ_ATTR(fifo_expire_async),
4054         CFQ_ATTR(back_seek_max),
4055         CFQ_ATTR(back_seek_penalty),
4056         CFQ_ATTR(slice_sync),
4057         CFQ_ATTR(slice_async),
4058         CFQ_ATTR(slice_async_rq),
4059         CFQ_ATTR(slice_idle),
4060         CFQ_ATTR(group_idle),
4061         CFQ_ATTR(low_latency),
4062         __ATTR_NULL
4063 };
4064
4065 static struct elevator_type iosched_cfq = {
4066         .ops = {
4067                 .elevator_merge_fn =            cfq_merge,
4068                 .elevator_merged_fn =           cfq_merged_request,
4069                 .elevator_merge_req_fn =        cfq_merged_requests,
4070                 .elevator_allow_merge_fn =      cfq_allow_merge,
4071                 .elevator_bio_merged_fn =       cfq_bio_merged,
4072                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4073                 .elevator_add_req_fn =          cfq_insert_request,
4074                 .elevator_activate_req_fn =     cfq_activate_request,
4075                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4076                 .elevator_completed_req_fn =    cfq_completed_request,
4077                 .elevator_former_req_fn =       elv_rb_former_request,
4078                 .elevator_latter_req_fn =       elv_rb_latter_request,
4079                 .elevator_set_req_fn =          cfq_set_request,
4080                 .elevator_put_req_fn =          cfq_put_request,
4081                 .elevator_may_queue_fn =        cfq_may_queue,
4082                 .elevator_init_fn =             cfq_init_queue,
4083                 .elevator_exit_fn =             cfq_exit_queue,
4084                 .trim =                         cfq_free_io_context,
4085         },
4086         .elevator_attrs =       cfq_attrs,
4087         .elevator_name =        "cfq",
4088         .elevator_owner =       THIS_MODULE,
4089 };
4090
4091 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4092 static struct blkio_policy_type blkio_policy_cfq = {
4093         .ops = {
4094                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4095                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4096         },
4097         .plid = BLKIO_POLICY_PROP,
4098 };
4099 #else
4100 static struct blkio_policy_type blkio_policy_cfq;
4101 #endif
4102
4103 static int __init cfq_init(void)
4104 {
4105         /*
4106          * could be 0 on HZ < 1000 setups
4107          */
4108         if (!cfq_slice_async)
4109                 cfq_slice_async = 1;
4110         if (!cfq_slice_idle)
4111                 cfq_slice_idle = 1;
4112
4113 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4114         if (!cfq_group_idle)
4115                 cfq_group_idle = 1;
4116 #else
4117                 cfq_group_idle = 0;
4118 #endif
4119         if (cfq_slab_setup())
4120                 return -ENOMEM;
4121
4122         elv_register(&iosched_cfq);
4123         blkio_policy_register(&blkio_policy_cfq);
4124
4125         return 0;
4126 }
4127
4128 static void __exit cfq_exit(void)
4129 {
4130         DECLARE_COMPLETION_ONSTACK(all_gone);
4131         blkio_policy_unregister(&blkio_policy_cfq);
4132         elv_unregister(&iosched_cfq);
4133         ioc_gone = &all_gone;
4134         /* ioc_gone's update must be visible before reading ioc_count */
4135         smp_wmb();
4136
4137         /*
4138          * this also protects us from entering cfq_slab_kill() with
4139          * pending RCU callbacks
4140          */
4141         if (elv_ioc_count_read(cfq_ioc_count))
4142                 wait_for_completion(&all_gone);
4143         ida_destroy(&cic_index_ida);
4144         cfq_slab_kill();
4145 }
4146
4147 module_init(cfq_init);
4148 module_exit(cfq_exit);
4149
4150 MODULE_AUTHOR("Jens Axboe");
4151 MODULE_LICENSE("GPL");
4152 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");