1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/lockdep.h>
8 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
9 #include <linux/sched/sysctl.h>
10 #include <linux/timekeeping.h>
12 #include "blk-crypto-internal.h"
16 #define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9)
17 #define BLK_MIN_SEGMENT_SIZE 4096
19 /* Max future timer expiry for timeouts */
20 #define BLK_MAX_TIMEOUT (5 * HZ)
22 extern struct dentry *blk_debugfs_root;
24 struct blk_flush_queue {
25 spinlock_t mq_flush_lock;
26 unsigned int flush_pending_idx:1;
27 unsigned int flush_running_idx:1;
28 blk_status_t rq_status;
29 unsigned long flush_pending_since;
30 struct list_head flush_queue[2];
31 unsigned long flush_data_in_flight;
32 struct request *flush_rq;
35 bool is_flush_rq(struct request *req);
37 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
39 void blk_free_flush_queue(struct blk_flush_queue *q);
41 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
42 bool blk_queue_start_drain(struct request_queue *q);
43 bool __blk_freeze_queue_start(struct request_queue *q,
44 struct task_struct *owner);
45 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
46 void submit_bio_noacct_nocheck(struct bio *bio);
47 void bio_await_chain(struct bio *bio);
49 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
52 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
56 * The code that increments the pm_only counter must ensure that the
57 * counter is globally visible before the queue is unfrozen.
59 if (blk_queue_pm_only(q) &&
60 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
73 static inline int bio_queue_enter(struct bio *bio)
75 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
77 if (blk_try_enter_queue(q, false)) {
78 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
79 rwsem_release(&q->io_lockdep_map, _RET_IP_);
82 return __bio_queue_enter(q, bio);
85 static inline void blk_wait_io(struct completion *done)
87 /* Prevent hang_check timer from firing at us during very long I/O */
88 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
91 while (!wait_for_completion_io_timeout(done, timeout))
94 wait_for_completion_io(done);
97 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload);
98 void blkdev_put_no_open(struct block_device *bdev);
100 #define BIO_INLINE_VECS 4
101 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
103 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
105 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
106 struct page *page, unsigned len, unsigned offset);
108 static inline bool biovec_phys_mergeable(struct request_queue *q,
109 struct bio_vec *vec1, struct bio_vec *vec2)
111 unsigned long mask = queue_segment_boundary(q);
112 phys_addr_t addr1 = bvec_phys(vec1);
113 phys_addr_t addr2 = bvec_phys(vec2);
116 * Merging adjacent physical pages may not work correctly under KMSAN
117 * if their metadata pages aren't adjacent. Just disable merging.
119 if (IS_ENABLED(CONFIG_KMSAN))
122 if (addr1 + vec1->bv_len != addr2)
124 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
126 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
131 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
132 struct bio_vec *bprv, unsigned int offset)
134 return (offset & lim->virt_boundary_mask) ||
135 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
139 * Check if adding a bio_vec after bprv with offset would create a gap in
140 * the SG list. Most drivers don't care about this, but some do.
142 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
143 struct bio_vec *bprv, unsigned int offset)
145 if (!lim->virt_boundary_mask)
147 return __bvec_gap_to_prev(lim, bprv, offset);
150 static inline bool rq_mergeable(struct request *rq)
152 if (blk_rq_is_passthrough(rq))
155 if (req_op(rq) == REQ_OP_FLUSH)
158 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
161 if (req_op(rq) == REQ_OP_ZONE_APPEND)
164 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
166 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
173 * There are two different ways to handle DISCARD merges:
174 * 1) If max_discard_segments > 1, the driver treats every bio as a range and
175 * send the bios to controller together. The ranges don't need to be
177 * 2) Otherwise, the request will be normal read/write requests. The ranges
178 * need to be contiguous.
180 static inline bool blk_discard_mergable(struct request *req)
182 if (req_op(req) == REQ_OP_DISCARD &&
183 queue_max_discard_segments(req->q) > 1)
188 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
190 if (req_op(rq) == REQ_OP_DISCARD)
191 return queue_max_discard_segments(rq->q);
192 return queue_max_segments(rq->q);
195 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
197 struct request_queue *q = rq->q;
198 enum req_op op = req_op(rq);
200 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
201 return min(q->limits.max_discard_sectors,
202 UINT_MAX >> SECTOR_SHIFT);
204 if (unlikely(op == REQ_OP_WRITE_ZEROES))
205 return q->limits.max_write_zeroes_sectors;
207 if (rq->cmd_flags & REQ_ATOMIC)
208 return q->limits.atomic_write_max_sectors;
210 return q->limits.max_sectors;
213 #ifdef CONFIG_BLK_DEV_INTEGRITY
214 void blk_flush_integrity(void);
215 void bio_integrity_free(struct bio *bio);
218 * Integrity payloads can either be owned by the submitter, in which case
219 * bio_uninit will free them, or owned and generated by the block layer,
220 * in which case we'll verify them here (for reads) and free them before
221 * the bio is handed back to the submitted.
223 bool __bio_integrity_endio(struct bio *bio);
224 static inline bool bio_integrity_endio(struct bio *bio)
226 struct bio_integrity_payload *bip = bio_integrity(bio);
228 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
229 return __bio_integrity_endio(bio);
233 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
235 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
238 static inline bool integrity_req_gap_back_merge(struct request *req,
241 struct bio_integrity_payload *bip = bio_integrity(req->bio);
242 struct bio_integrity_payload *bip_next = bio_integrity(next);
244 return bvec_gap_to_prev(&req->q->limits,
245 &bip->bip_vec[bip->bip_vcnt - 1],
246 bip_next->bip_vec[0].bv_offset);
249 static inline bool integrity_req_gap_front_merge(struct request *req,
252 struct bio_integrity_payload *bip = bio_integrity(bio);
253 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
255 return bvec_gap_to_prev(&req->q->limits,
256 &bip->bip_vec[bip->bip_vcnt - 1],
257 bip_next->bip_vec[0].bv_offset);
260 extern const struct attribute_group blk_integrity_attr_group;
261 #else /* CONFIG_BLK_DEV_INTEGRITY */
262 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
263 struct request *r1, struct request *r2)
267 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
268 struct request *r, struct bio *b)
272 static inline bool integrity_req_gap_back_merge(struct request *req,
277 static inline bool integrity_req_gap_front_merge(struct request *req,
283 static inline void blk_flush_integrity(void)
286 static inline bool bio_integrity_endio(struct bio *bio)
290 static inline void bio_integrity_free(struct bio *bio)
293 #endif /* CONFIG_BLK_DEV_INTEGRITY */
295 unsigned long blk_rq_timeout(unsigned long timeout);
296 void blk_add_timer(struct request *req);
298 enum bio_merge_status {
304 enum bio_merge_status bio_attempt_back_merge(struct request *req,
305 struct bio *bio, unsigned int nr_segs);
306 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
307 unsigned int nr_segs);
308 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
309 struct bio *bio, unsigned int nr_segs);
314 #define BLK_MAX_REQUEST_COUNT 32
315 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
318 * Internal elevator interface
320 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
322 bool blk_insert_flush(struct request *rq);
324 void elv_update_nr_hw_queues(struct request_queue *q);
325 void elevator_set_default(struct request_queue *q);
326 void elevator_set_none(struct request_queue *q);
328 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
330 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
332 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
334 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
336 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
337 const char *buf, size_t count);
338 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
339 ssize_t part_timeout_store(struct device *, struct device_attribute *,
340 const char *, size_t);
342 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
344 struct bio *bio_split_write_zeroes(struct bio *bio,
345 const struct queue_limits *lim, unsigned *nsegs);
346 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
348 struct bio *bio_split_zone_append(struct bio *bio,
349 const struct queue_limits *lim, unsigned *nr_segs);
352 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
354 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
355 * always valid if a bio has data. The check might lead to occasional false
356 * positives when bios are cloned, but compared to the performance impact of
357 * cloned bios themselves the loop below doesn't matter anyway.
359 static inline bool bio_may_need_split(struct bio *bio,
360 const struct queue_limits *lim)
362 if (lim->chunk_sectors)
364 if (bio->bi_vcnt != 1)
366 return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset >
367 lim->min_segment_size;
371 * __bio_split_to_limits - split a bio to fit the queue limits
372 * @bio: bio to be split
373 * @lim: queue limits to split based on
374 * @nr_segs: returns the number of segments in the returned bio
376 * Check if @bio needs splitting based on the queue limits, and if so split off
377 * a bio fitting the limits from the beginning of @bio and return it. @bio is
378 * shortened to the remainder and re-submitted.
380 * The split bio is allocated from @q->bio_split, which is provided by the
383 static inline struct bio *__bio_split_to_limits(struct bio *bio,
384 const struct queue_limits *lim, unsigned int *nr_segs)
386 switch (bio_op(bio)) {
389 if (bio_may_need_split(bio, lim))
390 return bio_split_rw(bio, lim, nr_segs);
393 case REQ_OP_ZONE_APPEND:
394 return bio_split_zone_append(bio, lim, nr_segs);
396 case REQ_OP_SECURE_ERASE:
397 return bio_split_discard(bio, lim, nr_segs);
398 case REQ_OP_WRITE_ZEROES:
399 return bio_split_write_zeroes(bio, lim, nr_segs);
401 /* other operations can't be split */
408 * get_max_segment_size() - maximum number of bytes to add as a single segment
409 * @lim: Request queue limits.
410 * @paddr: address of the range to add
411 * @len: maximum length available to add at @paddr
413 * Returns the maximum number of bytes of the range starting at @paddr that can
414 * be added to a single segment.
416 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
417 phys_addr_t paddr, unsigned int len)
420 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
421 * after having calculated the minimum.
423 return min_t(unsigned long, len,
424 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
425 (unsigned long)lim->max_segment_size - 1) + 1);
428 int ll_back_merge_fn(struct request *req, struct bio *bio,
429 unsigned int nr_segs);
430 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
431 struct request *next);
432 unsigned int blk_recalc_rq_segments(struct request *rq);
433 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
434 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
436 int blk_set_default_limits(struct queue_limits *lim);
437 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
438 struct queue_limits *lim);
439 int blk_dev_init(void);
441 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
443 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
445 req->cmd_flags |= REQ_NOMERGE;
446 if (req == q->last_merge)
447 q->last_merge = NULL;
451 * Internal io_context interface
453 struct io_cq *ioc_find_get_icq(struct request_queue *q);
454 struct io_cq *ioc_lookup_icq(struct request_queue *q);
455 #ifdef CONFIG_BLK_ICQ
456 void ioc_clear_queue(struct request_queue *q);
458 static inline void ioc_clear_queue(struct request_queue *q)
461 #endif /* CONFIG_BLK_ICQ */
463 #ifdef CONFIG_BLK_DEV_ZONED
464 void disk_init_zone_resources(struct gendisk *disk);
465 void disk_free_zone_resources(struct gendisk *disk);
466 static inline bool bio_zone_write_plugging(struct bio *bio)
468 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
470 void blk_zone_write_plug_bio_merged(struct bio *bio);
471 void blk_zone_write_plug_init_request(struct request *rq);
472 static inline void blk_zone_update_request_bio(struct request *rq,
476 * For zone append requests, the request sector indicates the location
477 * at which the BIO data was written. Return this value to the BIO
478 * issuer through the BIO iter sector.
479 * For plugged zone writes, which include emulated zone append, we need
480 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
481 * lookup the zone write plug.
483 if (req_op(rq) == REQ_OP_ZONE_APPEND ||
484 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND))
485 bio->bi_iter.bi_sector = rq->__sector;
487 void blk_zone_write_plug_bio_endio(struct bio *bio);
488 static inline void blk_zone_bio_endio(struct bio *bio)
491 * For write BIOs to zoned devices, signal the completion of the BIO so
492 * that the next write BIO can be submitted by zone write plugging.
494 if (bio_zone_write_plugging(bio))
495 blk_zone_write_plug_bio_endio(bio);
498 void blk_zone_write_plug_finish_request(struct request *rq);
499 static inline void blk_zone_finish_request(struct request *rq)
501 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
502 blk_zone_write_plug_finish_request(rq);
504 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
506 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
507 unsigned int cmd, unsigned long arg);
508 #else /* CONFIG_BLK_DEV_ZONED */
509 static inline void disk_init_zone_resources(struct gendisk *disk)
512 static inline void disk_free_zone_resources(struct gendisk *disk)
515 static inline bool bio_zone_write_plugging(struct bio *bio)
519 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
522 static inline void blk_zone_write_plug_init_request(struct request *rq)
525 static inline void blk_zone_update_request_bio(struct request *rq,
529 static inline void blk_zone_bio_endio(struct bio *bio)
532 static inline void blk_zone_finish_request(struct request *rq)
535 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
536 unsigned int cmd, unsigned long arg)
540 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
541 blk_mode_t mode, unsigned int cmd, unsigned long arg)
545 #endif /* CONFIG_BLK_DEV_ZONED */
547 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
548 void bdev_add(struct block_device *bdev, dev_t dev);
549 void bdev_unhash(struct block_device *bdev);
550 void bdev_drop(struct block_device *bdev);
552 int blk_alloc_ext_minor(void);
553 void blk_free_ext_minor(unsigned int minor);
554 #define ADDPART_FLAG_NONE 0
555 #define ADDPART_FLAG_RAID 1
556 #define ADDPART_FLAG_WHOLEDISK 2
557 #define ADDPART_FLAG_READONLY 4
558 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
560 int bdev_del_partition(struct gendisk *disk, int partno);
561 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
563 void drop_partition(struct block_device *part);
565 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
567 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
568 struct lock_class_key *lkclass);
571 * Clean up a page appropriately, where the page may be pinned, may have a
572 * ref taken on it or neither.
574 static inline void bio_release_page(struct bio *bio, struct page *page)
576 if (bio_flagged(bio, BIO_PAGE_PINNED))
577 unpin_user_page(page);
580 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
582 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
584 int disk_alloc_events(struct gendisk *disk);
585 void disk_add_events(struct gendisk *disk);
586 void disk_del_events(struct gendisk *disk);
587 void disk_release_events(struct gendisk *disk);
588 void disk_block_events(struct gendisk *disk);
589 void disk_unblock_events(struct gendisk *disk);
590 void disk_flush_events(struct gendisk *disk, unsigned int mask);
591 extern struct device_attribute dev_attr_events;
592 extern struct device_attribute dev_attr_events_async;
593 extern struct device_attribute dev_attr_events_poll_msecs;
595 extern struct attribute_group blk_trace_attr_group;
597 blk_mode_t file_to_blk_mode(struct file *file);
598 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
599 loff_t lstart, loff_t lend);
600 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
601 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
602 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
604 extern const struct address_space_operations def_blk_aops;
606 int disk_register_independent_access_ranges(struct gendisk *disk);
607 void disk_unregister_independent_access_ranges(struct gendisk *disk);
609 #ifdef CONFIG_FAIL_MAKE_REQUEST
610 bool should_fail_request(struct block_device *part, unsigned int bytes);
611 #else /* CONFIG_FAIL_MAKE_REQUEST */
612 static inline bool should_fail_request(struct block_device *part,
617 #endif /* CONFIG_FAIL_MAKE_REQUEST */
620 * Optimized request reference counting. Ideally we'd make timeouts be more
621 * clever, as that's the only reason we need references at all... But until
622 * this happens, this is faster than using refcount_t. Also see:
624 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
626 #define req_ref_zero_or_close_to_overflow(req) \
627 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
629 static inline bool req_ref_inc_not_zero(struct request *req)
631 return atomic_inc_not_zero(&req->ref);
634 static inline bool req_ref_put_and_test(struct request *req)
636 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
637 return atomic_dec_and_test(&req->ref);
640 static inline void req_ref_set(struct request *req, int value)
642 atomic_set(&req->ref, value);
645 static inline int req_ref_read(struct request *req)
647 return atomic_read(&req->ref);
650 static inline u64 blk_time_get_ns(void)
652 struct blk_plug *plug = current->plug;
654 if (!plug || !in_task())
655 return ktime_get_ns();
658 * 0 could very well be a valid time, but rather than flag "this is
659 * a valid timestamp" separately, just accept that we'll do an extra
660 * ktime_get_ns() if we just happen to get 0 as the current time.
662 if (!plug->cur_ktime) {
663 plug->cur_ktime = ktime_get_ns();
664 current->flags |= PF_BLOCK_TS;
666 return plug->cur_ktime;
669 static inline ktime_t blk_time_get(void)
671 return ns_to_ktime(blk_time_get_ns());
675 * From most significant bit:
676 * 1 bit: reserved for other usage, see below
677 * 12 bits: original size of bio
678 * 51 bits: issue time of bio
680 #define BIO_ISSUE_RES_BITS 1
681 #define BIO_ISSUE_SIZE_BITS 12
682 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
683 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
684 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
685 #define BIO_ISSUE_SIZE_MASK \
686 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
687 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
689 /* Reserved bit for blk-throtl */
690 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
692 static inline u64 __bio_issue_time(u64 time)
694 return time & BIO_ISSUE_TIME_MASK;
697 static inline u64 bio_issue_time(struct bio_issue *issue)
699 return __bio_issue_time(issue->value);
702 static inline sector_t bio_issue_size(struct bio_issue *issue)
704 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
707 static inline void bio_issue_init(struct bio_issue *issue,
710 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
711 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
712 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
713 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
716 void bdev_release(struct file *bdev_file);
717 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
718 const struct blk_holder_ops *hops, struct file *bdev_file);
719 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
721 void blk_integrity_generate(struct bio *bio);
722 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter);
723 void blk_integrity_prepare(struct request *rq);
724 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
726 #ifdef CONFIG_LOCKDEP
727 static inline void blk_freeze_acquire_lock(struct request_queue *q)
729 if (!q->mq_freeze_disk_dead)
730 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
731 if (!q->mq_freeze_queue_dying)
732 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
735 static inline void blk_unfreeze_release_lock(struct request_queue *q)
737 if (!q->mq_freeze_queue_dying)
738 rwsem_release(&q->q_lockdep_map, _RET_IP_);
739 if (!q->mq_freeze_disk_dead)
740 rwsem_release(&q->io_lockdep_map, _RET_IP_);
743 static inline void blk_freeze_acquire_lock(struct request_queue *q)
746 static inline void blk_unfreeze_release_lock(struct request_queue *q)
751 #endif /* BLK_INTERNAL_H */