blk-throttle: factor out code to calculate ios/bytes_allowed
[linux-block.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50         unsigned long total_latency; /* ns / 1024 */
51         int samples;
52 };
53
54 struct avg_latency_bucket {
55         unsigned long latency; /* ns / 1024 */
56         bool valid;
57 };
58
59 struct throtl_data
60 {
61         /* service tree for active throtl groups */
62         struct throtl_service_queue service_queue;
63
64         struct request_queue *queue;
65
66         /* Total Number of queued bios on READ and WRITE lists */
67         unsigned int nr_queued[2];
68
69         unsigned int throtl_slice;
70
71         /* Work for dispatching throttled bios */
72         struct work_struct dispatch_work;
73         unsigned int limit_index;
74         bool limit_valid[LIMIT_CNT];
75
76         unsigned long low_upgrade_time;
77         unsigned long low_downgrade_time;
78
79         unsigned int scale;
80
81         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83         struct latency_bucket __percpu *latency_buckets[2];
84         unsigned long last_calculate_time;
85         unsigned long filtered_latency;
86
87         bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94         return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106         if (sq && sq->parent_sq)
107                 return container_of(sq, struct throtl_grp, service_queue);
108         else
109                 return NULL;
110 }
111
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121         struct throtl_grp *tg = sq_to_tg(sq);
122
123         if (tg)
124                 return tg->td;
125         else
126                 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to lapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139         /* arbitrary value to avoid too big scale */
140         if (td->scale < 4096 && time_after_eq(jiffies,
141             td->low_upgrade_time + td->scale * td->throtl_slice))
142                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144         return low + (low >> 1) * td->scale;
145 }
146
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149         struct blkcg_gq *blkg = tg_to_blkg(tg);
150         struct throtl_data *td;
151         uint64_t ret;
152
153         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154                 return U64_MAX;
155
156         td = tg->td;
157         ret = tg->bps[rw][td->limit_index];
158         if (ret == 0 && td->limit_index == LIMIT_LOW) {
159                 /* intermediate node or iops isn't 0 */
160                 if (!list_empty(&blkg->blkcg->css.children) ||
161                     tg->iops[rw][td->limit_index])
162                         return U64_MAX;
163                 else
164                         return MIN_THROTL_BPS;
165         }
166
167         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169                 uint64_t adjusted;
170
171                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173         }
174         return ret;
175 }
176
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179         struct blkcg_gq *blkg = tg_to_blkg(tg);
180         struct throtl_data *td;
181         unsigned int ret;
182
183         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184                 return UINT_MAX;
185
186         td = tg->td;
187         ret = tg->iops[rw][td->limit_index];
188         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189                 /* intermediate node or bps isn't 0 */
190                 if (!list_empty(&blkg->blkcg->css.children) ||
191                     tg->bps[rw][td->limit_index])
192                         return UINT_MAX;
193                 else
194                         return MIN_THROTL_IOPS;
195         }
196
197         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199                 uint64_t adjusted;
200
201                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202                 if (adjusted > UINT_MAX)
203                         adjusted = UINT_MAX;
204                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205         }
206         return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)    do {                            \
222         struct throtl_grp *__tg = sq_to_tg((sq));                       \
223         struct throtl_data *__td = sq_to_td((sq));                      \
224                                                                         \
225         (void)__td;                                                     \
226         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
227                 break;                                                  \
228         if ((__tg)) {                                                   \
229                 blk_add_cgroup_trace_msg(__td->queue,                   \
230                         &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231         } else {                                                        \
232                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
233         }                                                               \
234 } while (0)
235
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238         /* assume it's one sector */
239         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240                 return 512;
241         return bio->bi_iter.bi_size;
242 }
243
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246         INIT_LIST_HEAD(&qn->node);
247         bio_list_init(&qn->bios);
248         qn->tg = tg;
249 }
250
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262                                  struct list_head *queued)
263 {
264         bio_list_add(&qn->bios, bio);
265         if (list_empty(&qn->node)) {
266                 list_add_tail(&qn->node, queued);
267                 blkg_get(tg_to_blkg(qn->tg));
268         }
269 }
270
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277         struct throtl_qnode *qn;
278         struct bio *bio;
279
280         if (list_empty(queued))
281                 return NULL;
282
283         qn = list_first_entry(queued, struct throtl_qnode, node);
284         bio = bio_list_peek(&qn->bios);
285         WARN_ON_ONCE(!bio);
286         return bio;
287 }
288
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304                                      struct throtl_grp **tg_to_put)
305 {
306         struct throtl_qnode *qn;
307         struct bio *bio;
308
309         if (list_empty(queued))
310                 return NULL;
311
312         qn = list_first_entry(queued, struct throtl_qnode, node);
313         bio = bio_list_pop(&qn->bios);
314         WARN_ON_ONCE(!bio);
315
316         if (bio_list_empty(&qn->bios)) {
317                 list_del_init(&qn->node);
318                 if (tg_to_put)
319                         *tg_to_put = qn->tg;
320                 else
321                         blkg_put(tg_to_blkg(qn->tg));
322         } else {
323                 list_move_tail(&qn->node, queued);
324         }
325
326         return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332         INIT_LIST_HEAD(&sq->queued[0]);
333         INIT_LIST_HEAD(&sq->queued[1]);
334         sq->pending_tree = RB_ROOT_CACHED;
335         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339                                                 struct request_queue *q,
340                                                 struct blkcg *blkcg)
341 {
342         struct throtl_grp *tg;
343         int rw;
344
345         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346         if (!tg)
347                 return NULL;
348
349         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350                 goto err_free_tg;
351
352         if (blkg_rwstat_init(&tg->stat_ios, gfp))
353                 goto err_exit_stat_bytes;
354
355         throtl_service_queue_init(&tg->service_queue);
356
357         for (rw = READ; rw <= WRITE; rw++) {
358                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360         }
361
362         RB_CLEAR_NODE(&tg->rb_node);
363         tg->bps[READ][LIMIT_MAX] = U64_MAX;
364         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371         /* LIMIT_LOW will have default value 0 */
372
373         tg->latency_target = DFL_LATENCY_TARGET;
374         tg->latency_target_conf = DFL_LATENCY_TARGET;
375         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377
378         return &tg->pd;
379
380 err_exit_stat_bytes:
381         blkg_rwstat_exit(&tg->stat_bytes);
382 err_free_tg:
383         kfree(tg);
384         return NULL;
385 }
386
387 static void throtl_pd_init(struct blkg_policy_data *pd)
388 {
389         struct throtl_grp *tg = pd_to_tg(pd);
390         struct blkcg_gq *blkg = tg_to_blkg(tg);
391         struct throtl_data *td = blkg->q->td;
392         struct throtl_service_queue *sq = &tg->service_queue;
393
394         /*
395          * If on the default hierarchy, we switch to properly hierarchical
396          * behavior where limits on a given throtl_grp are applied to the
397          * whole subtree rather than just the group itself.  e.g. If 16M
398          * read_bps limit is set on the root group, the whole system can't
399          * exceed 16M for the device.
400          *
401          * If not on the default hierarchy, the broken flat hierarchy
402          * behavior is retained where all throtl_grps are treated as if
403          * they're all separate root groups right below throtl_data.
404          * Limits of a group don't interact with limits of other groups
405          * regardless of the position of the group in the hierarchy.
406          */
407         sq->parent_sq = &td->service_queue;
408         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410         tg->td = td;
411 }
412
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421         struct throtl_data *td = tg->td;
422         int rw;
423         int has_iops_limit = 0;
424
425         for (rw = READ; rw <= WRITE; rw++) {
426                 unsigned int iops_limit = tg_iops_limit(tg, rw);
427
428                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
429                         (td->limit_valid[td->limit_index] &&
430                          (tg_bps_limit(tg, rw) != U64_MAX ||
431                           iops_limit != UINT_MAX));
432
433                 if (iops_limit != UINT_MAX)
434                         has_iops_limit = 1;
435         }
436
437         if (has_iops_limit)
438                 tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
439         else
440                 tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
441 }
442
443 static void throtl_pd_online(struct blkg_policy_data *pd)
444 {
445         struct throtl_grp *tg = pd_to_tg(pd);
446         /*
447          * We don't want new groups to escape the limits of its ancestors.
448          * Update has_rules[] after a new group is brought online.
449          */
450         tg_update_has_rules(tg);
451 }
452
453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
454 static void blk_throtl_update_limit_valid(struct throtl_data *td)
455 {
456         struct cgroup_subsys_state *pos_css;
457         struct blkcg_gq *blkg;
458         bool low_valid = false;
459
460         rcu_read_lock();
461         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
462                 struct throtl_grp *tg = blkg_to_tg(blkg);
463
464                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
465                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466                         low_valid = true;
467                         break;
468                 }
469         }
470         rcu_read_unlock();
471
472         td->limit_valid[LIMIT_LOW] = low_valid;
473 }
474 #else
475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
476 {
477 }
478 #endif
479
480 static void throtl_upgrade_state(struct throtl_data *td);
481 static void throtl_pd_offline(struct blkg_policy_data *pd)
482 {
483         struct throtl_grp *tg = pd_to_tg(pd);
484
485         tg->bps[READ][LIMIT_LOW] = 0;
486         tg->bps[WRITE][LIMIT_LOW] = 0;
487         tg->iops[READ][LIMIT_LOW] = 0;
488         tg->iops[WRITE][LIMIT_LOW] = 0;
489
490         blk_throtl_update_limit_valid(tg->td);
491
492         if (!tg->td->limit_valid[tg->td->limit_index])
493                 throtl_upgrade_state(tg->td);
494 }
495
496 static void throtl_pd_free(struct blkg_policy_data *pd)
497 {
498         struct throtl_grp *tg = pd_to_tg(pd);
499
500         del_timer_sync(&tg->service_queue.pending_timer);
501         blkg_rwstat_exit(&tg->stat_bytes);
502         blkg_rwstat_exit(&tg->stat_ios);
503         kfree(tg);
504 }
505
506 static struct throtl_grp *
507 throtl_rb_first(struct throtl_service_queue *parent_sq)
508 {
509         struct rb_node *n;
510
511         n = rb_first_cached(&parent_sq->pending_tree);
512         WARN_ON_ONCE(!n);
513         if (!n)
514                 return NULL;
515         return rb_entry_tg(n);
516 }
517
518 static void throtl_rb_erase(struct rb_node *n,
519                             struct throtl_service_queue *parent_sq)
520 {
521         rb_erase_cached(n, &parent_sq->pending_tree);
522         RB_CLEAR_NODE(n);
523         --parent_sq->nr_pending;
524 }
525
526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 {
528         struct throtl_grp *tg;
529
530         tg = throtl_rb_first(parent_sq);
531         if (!tg)
532                 return;
533
534         parent_sq->first_pending_disptime = tg->disptime;
535 }
536
537 static void tg_service_queue_add(struct throtl_grp *tg)
538 {
539         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
541         struct rb_node *parent = NULL;
542         struct throtl_grp *__tg;
543         unsigned long key = tg->disptime;
544         bool leftmost = true;
545
546         while (*node != NULL) {
547                 parent = *node;
548                 __tg = rb_entry_tg(parent);
549
550                 if (time_before(key, __tg->disptime))
551                         node = &parent->rb_left;
552                 else {
553                         node = &parent->rb_right;
554                         leftmost = false;
555                 }
556         }
557
558         rb_link_node(&tg->rb_node, parent, node);
559         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
560                                leftmost);
561 }
562
563 static void throtl_enqueue_tg(struct throtl_grp *tg)
564 {
565         if (!(tg->flags & THROTL_TG_PENDING)) {
566                 tg_service_queue_add(tg);
567                 tg->flags |= THROTL_TG_PENDING;
568                 tg->service_queue.parent_sq->nr_pending++;
569         }
570 }
571
572 static void throtl_dequeue_tg(struct throtl_grp *tg)
573 {
574         if (tg->flags & THROTL_TG_PENDING) {
575                 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
576                 tg->flags &= ~THROTL_TG_PENDING;
577         }
578 }
579
580 /* Call with queue lock held */
581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
582                                           unsigned long expires)
583 {
584         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
585
586         /*
587          * Since we are adjusting the throttle limit dynamically, the sleep
588          * time calculated according to previous limit might be invalid. It's
589          * possible the cgroup sleep time is very long and no other cgroups
590          * have IO running so notify the limit changes. Make sure the cgroup
591          * doesn't sleep too long to avoid the missed notification.
592          */
593         if (time_after(expires, max_expire))
594                 expires = max_expire;
595         mod_timer(&sq->pending_timer, expires);
596         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
597                    expires - jiffies, jiffies);
598 }
599
600 /**
601  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
602  * @sq: the service_queue to schedule dispatch for
603  * @force: force scheduling
604  *
605  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
606  * dispatch time of the first pending child.  Returns %true if either timer
607  * is armed or there's no pending child left.  %false if the current
608  * dispatch window is still open and the caller should continue
609  * dispatching.
610  *
611  * If @force is %true, the dispatch timer is always scheduled and this
612  * function is guaranteed to return %true.  This is to be used when the
613  * caller can't dispatch itself and needs to invoke pending_timer
614  * unconditionally.  Note that forced scheduling is likely to induce short
615  * delay before dispatch starts even if @sq->first_pending_disptime is not
616  * in the future and thus shouldn't be used in hot paths.
617  */
618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
619                                           bool force)
620 {
621         /* any pending children left? */
622         if (!sq->nr_pending)
623                 return true;
624
625         update_min_dispatch_time(sq);
626
627         /* is the next dispatch time in the future? */
628         if (force || time_after(sq->first_pending_disptime, jiffies)) {
629                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
630                 return true;
631         }
632
633         /* tell the caller to continue dispatching */
634         return false;
635 }
636
637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
638                 bool rw, unsigned long start)
639 {
640         tg->bytes_disp[rw] = 0;
641         tg->io_disp[rw] = 0;
642
643         /*
644          * Previous slice has expired. We must have trimmed it after last
645          * bio dispatch. That means since start of last slice, we never used
646          * that bandwidth. Do try to make use of that bandwidth while giving
647          * credit.
648          */
649         if (time_after_eq(start, tg->slice_start[rw]))
650                 tg->slice_start[rw] = start;
651
652         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
653         throtl_log(&tg->service_queue,
654                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
655                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
656                    tg->slice_end[rw], jiffies);
657 }
658
659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
660 {
661         tg->bytes_disp[rw] = 0;
662         tg->io_disp[rw] = 0;
663         tg->slice_start[rw] = jiffies;
664         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665
666         throtl_log(&tg->service_queue,
667                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
668                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
669                    tg->slice_end[rw], jiffies);
670 }
671
672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
673                                         unsigned long jiffy_end)
674 {
675         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
676 }
677
678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
679                                        unsigned long jiffy_end)
680 {
681         throtl_set_slice_end(tg, rw, jiffy_end);
682         throtl_log(&tg->service_queue,
683                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
684                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
685                    tg->slice_end[rw], jiffies);
686 }
687
688 /* Determine if previously allocated or extended slice is complete or not */
689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
690 {
691         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
692                 return false;
693
694         return true;
695 }
696
697 /* Trim the used slices and adjust slice start accordingly */
698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
699 {
700         unsigned long nr_slices, time_elapsed, io_trim;
701         u64 bytes_trim, tmp;
702
703         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704
705         /*
706          * If bps are unlimited (-1), then time slice don't get
707          * renewed. Don't try to trim the slice if slice is used. A new
708          * slice will start when appropriate.
709          */
710         if (throtl_slice_used(tg, rw))
711                 return;
712
713         /*
714          * A bio has been dispatched. Also adjust slice_end. It might happen
715          * that initially cgroup limit was very low resulting in high
716          * slice_end, but later limit was bumped up and bio was dispatched
717          * sooner, then we need to reduce slice_end. A high bogus slice_end
718          * is bad because it does not allow new slice to start.
719          */
720
721         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
722
723         time_elapsed = jiffies - tg->slice_start[rw];
724
725         nr_slices = time_elapsed / tg->td->throtl_slice;
726
727         if (!nr_slices)
728                 return;
729         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
730         do_div(tmp, HZ);
731         bytes_trim = tmp;
732
733         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734                 HZ;
735
736         if (!bytes_trim && !io_trim)
737                 return;
738
739         if (tg->bytes_disp[rw] >= bytes_trim)
740                 tg->bytes_disp[rw] -= bytes_trim;
741         else
742                 tg->bytes_disp[rw] = 0;
743
744         if (tg->io_disp[rw] >= io_trim)
745                 tg->io_disp[rw] -= io_trim;
746         else
747                 tg->io_disp[rw] = 0;
748
749         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
750
751         throtl_log(&tg->service_queue,
752                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
753                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
754                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
755 }
756
757 static unsigned int calculate_io_allowed(u32 iops_limit,
758                                          unsigned long jiffy_elapsed)
759 {
760         unsigned int io_allowed;
761         u64 tmp;
762
763         /*
764          * jiffy_elapsed should not be a big value as minimum iops can be
765          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
766          * will allow dispatch after 1 second and after that slice should
767          * have been trimmed.
768          */
769
770         tmp = (u64)iops_limit * jiffy_elapsed;
771         do_div(tmp, HZ);
772
773         if (tmp > UINT_MAX)
774                 io_allowed = UINT_MAX;
775         else
776                 io_allowed = tmp;
777
778         return io_allowed;
779 }
780
781 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
782 {
783         return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
784 }
785
786 static bool tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
787                                  u32 iops_limit, unsigned long *wait)
788 {
789         bool rw = bio_data_dir(bio);
790         unsigned int io_allowed;
791         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
792
793         if (iops_limit == UINT_MAX) {
794                 if (wait)
795                         *wait = 0;
796                 return true;
797         }
798
799         jiffy_elapsed = jiffies - tg->slice_start[rw];
800
801         /* Round up to the next throttle slice, wait time must be nonzero */
802         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
803         io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd);
804         if (tg->io_disp[rw] + 1 <= io_allowed) {
805                 if (wait)
806                         *wait = 0;
807                 return true;
808         }
809
810         /* Calc approx time to dispatch */
811         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
812
813         if (wait)
814                 *wait = jiffy_wait;
815         return false;
816 }
817
818 static bool tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
819                                 u64 bps_limit, unsigned long *wait)
820 {
821         bool rw = bio_data_dir(bio);
822         u64 bytes_allowed, extra_bytes;
823         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
824         unsigned int bio_size = throtl_bio_data_size(bio);
825
826         /* no need to throttle if this bio's bytes have been accounted */
827         if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
828                 if (wait)
829                         *wait = 0;
830                 return true;
831         }
832
833         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
834
835         /* Slice has just started. Consider one slice interval */
836         if (!jiffy_elapsed)
837                 jiffy_elapsed_rnd = tg->td->throtl_slice;
838
839         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
840         bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd);
841         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
842                 if (wait)
843                         *wait = 0;
844                 return true;
845         }
846
847         /* Calc approx time to dispatch */
848         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
849         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
850
851         if (!jiffy_wait)
852                 jiffy_wait = 1;
853
854         /*
855          * This wait time is without taking into consideration the rounding
856          * up we did. Add that time also.
857          */
858         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
859         if (wait)
860                 *wait = jiffy_wait;
861         return false;
862 }
863
864 /*
865  * Returns whether one can dispatch a bio or not. Also returns approx number
866  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
867  */
868 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
869                             unsigned long *wait)
870 {
871         bool rw = bio_data_dir(bio);
872         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
873         u64 bps_limit = tg_bps_limit(tg, rw);
874         u32 iops_limit = tg_iops_limit(tg, rw);
875
876         /*
877          * Currently whole state machine of group depends on first bio
878          * queued in the group bio list. So one should not be calling
879          * this function with a different bio if there are other bios
880          * queued.
881          */
882         BUG_ON(tg->service_queue.nr_queued[rw] &&
883                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
884
885         /* If tg->bps = -1, then BW is unlimited */
886         if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
887             tg->flags & THROTL_TG_CANCELING) {
888                 if (wait)
889                         *wait = 0;
890                 return true;
891         }
892
893         /*
894          * If previous slice expired, start a new one otherwise renew/extend
895          * existing slice to make sure it is at least throtl_slice interval
896          * long since now. New slice is started only for empty throttle group.
897          * If there is queued bio, that means there should be an active
898          * slice and it should be extended instead.
899          */
900         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
901                 throtl_start_new_slice(tg, rw);
902         else {
903                 if (time_before(tg->slice_end[rw],
904                     jiffies + tg->td->throtl_slice))
905                         throtl_extend_slice(tg, rw,
906                                 jiffies + tg->td->throtl_slice);
907         }
908
909         if (tg_within_bps_limit(tg, bio, bps_limit, &bps_wait) &&
910             tg_within_iops_limit(tg, bio, iops_limit, &iops_wait)) {
911                 if (wait)
912                         *wait = 0;
913                 return true;
914         }
915
916         max_wait = max(bps_wait, iops_wait);
917
918         if (wait)
919                 *wait = max_wait;
920
921         if (time_before(tg->slice_end[rw], jiffies + max_wait))
922                 throtl_extend_slice(tg, rw, jiffies + max_wait);
923
924         return false;
925 }
926
927 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
928 {
929         bool rw = bio_data_dir(bio);
930         unsigned int bio_size = throtl_bio_data_size(bio);
931
932         /* Charge the bio to the group */
933         if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
934                 tg->bytes_disp[rw] += bio_size;
935                 tg->last_bytes_disp[rw] += bio_size;
936         }
937
938         tg->io_disp[rw]++;
939         tg->last_io_disp[rw]++;
940 }
941
942 /**
943  * throtl_add_bio_tg - add a bio to the specified throtl_grp
944  * @bio: bio to add
945  * @qn: qnode to use
946  * @tg: the target throtl_grp
947  *
948  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
949  * tg->qnode_on_self[] is used.
950  */
951 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
952                               struct throtl_grp *tg)
953 {
954         struct throtl_service_queue *sq = &tg->service_queue;
955         bool rw = bio_data_dir(bio);
956
957         if (!qn)
958                 qn = &tg->qnode_on_self[rw];
959
960         /*
961          * If @tg doesn't currently have any bios queued in the same
962          * direction, queueing @bio can change when @tg should be
963          * dispatched.  Mark that @tg was empty.  This is automatically
964          * cleared on the next tg_update_disptime().
965          */
966         if (!sq->nr_queued[rw])
967                 tg->flags |= THROTL_TG_WAS_EMPTY;
968
969         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
970
971         sq->nr_queued[rw]++;
972         throtl_enqueue_tg(tg);
973 }
974
975 static void tg_update_disptime(struct throtl_grp *tg)
976 {
977         struct throtl_service_queue *sq = &tg->service_queue;
978         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
979         struct bio *bio;
980
981         bio = throtl_peek_queued(&sq->queued[READ]);
982         if (bio)
983                 tg_may_dispatch(tg, bio, &read_wait);
984
985         bio = throtl_peek_queued(&sq->queued[WRITE]);
986         if (bio)
987                 tg_may_dispatch(tg, bio, &write_wait);
988
989         min_wait = min(read_wait, write_wait);
990         disptime = jiffies + min_wait;
991
992         /* Update dispatch time */
993         throtl_dequeue_tg(tg);
994         tg->disptime = disptime;
995         throtl_enqueue_tg(tg);
996
997         /* see throtl_add_bio_tg() */
998         tg->flags &= ~THROTL_TG_WAS_EMPTY;
999 }
1000
1001 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1002                                         struct throtl_grp *parent_tg, bool rw)
1003 {
1004         if (throtl_slice_used(parent_tg, rw)) {
1005                 throtl_start_new_slice_with_credit(parent_tg, rw,
1006                                 child_tg->slice_start[rw]);
1007         }
1008
1009 }
1010
1011 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1012 {
1013         struct throtl_service_queue *sq = &tg->service_queue;
1014         struct throtl_service_queue *parent_sq = sq->parent_sq;
1015         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1016         struct throtl_grp *tg_to_put = NULL;
1017         struct bio *bio;
1018
1019         /*
1020          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1021          * from @tg may put its reference and @parent_sq might end up
1022          * getting released prematurely.  Remember the tg to put and put it
1023          * after @bio is transferred to @parent_sq.
1024          */
1025         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1026         sq->nr_queued[rw]--;
1027
1028         throtl_charge_bio(tg, bio);
1029         bio_set_flag(bio, BIO_BPS_THROTTLED);
1030
1031         /*
1032          * If our parent is another tg, we just need to transfer @bio to
1033          * the parent using throtl_add_bio_tg().  If our parent is
1034          * @td->service_queue, @bio is ready to be issued.  Put it on its
1035          * bio_lists[] and decrease total number queued.  The caller is
1036          * responsible for issuing these bios.
1037          */
1038         if (parent_tg) {
1039                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1040                 start_parent_slice_with_credit(tg, parent_tg, rw);
1041         } else {
1042                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1043                                      &parent_sq->queued[rw]);
1044                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1045                 tg->td->nr_queued[rw]--;
1046         }
1047
1048         throtl_trim_slice(tg, rw);
1049
1050         if (tg_to_put)
1051                 blkg_put(tg_to_blkg(tg_to_put));
1052 }
1053
1054 static int throtl_dispatch_tg(struct throtl_grp *tg)
1055 {
1056         struct throtl_service_queue *sq = &tg->service_queue;
1057         unsigned int nr_reads = 0, nr_writes = 0;
1058         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1059         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1060         struct bio *bio;
1061
1062         /* Try to dispatch 75% READS and 25% WRITES */
1063
1064         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1065                tg_may_dispatch(tg, bio, NULL)) {
1066
1067                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1068                 nr_reads++;
1069
1070                 if (nr_reads >= max_nr_reads)
1071                         break;
1072         }
1073
1074         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1075                tg_may_dispatch(tg, bio, NULL)) {
1076
1077                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1078                 nr_writes++;
1079
1080                 if (nr_writes >= max_nr_writes)
1081                         break;
1082         }
1083
1084         return nr_reads + nr_writes;
1085 }
1086
1087 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1088 {
1089         unsigned int nr_disp = 0;
1090
1091         while (1) {
1092                 struct throtl_grp *tg;
1093                 struct throtl_service_queue *sq;
1094
1095                 if (!parent_sq->nr_pending)
1096                         break;
1097
1098                 tg = throtl_rb_first(parent_sq);
1099                 if (!tg)
1100                         break;
1101
1102                 if (time_before(jiffies, tg->disptime))
1103                         break;
1104
1105                 throtl_dequeue_tg(tg);
1106
1107                 nr_disp += throtl_dispatch_tg(tg);
1108
1109                 sq = &tg->service_queue;
1110                 if (sq->nr_queued[0] || sq->nr_queued[1])
1111                         tg_update_disptime(tg);
1112
1113                 if (nr_disp >= THROTL_QUANTUM)
1114                         break;
1115         }
1116
1117         return nr_disp;
1118 }
1119
1120 static bool throtl_can_upgrade(struct throtl_data *td,
1121         struct throtl_grp *this_tg);
1122 /**
1123  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1124  * @t: the pending_timer member of the throtl_service_queue being serviced
1125  *
1126  * This timer is armed when a child throtl_grp with active bio's become
1127  * pending and queued on the service_queue's pending_tree and expires when
1128  * the first child throtl_grp should be dispatched.  This function
1129  * dispatches bio's from the children throtl_grps to the parent
1130  * service_queue.
1131  *
1132  * If the parent's parent is another throtl_grp, dispatching is propagated
1133  * by either arming its pending_timer or repeating dispatch directly.  If
1134  * the top-level service_tree is reached, throtl_data->dispatch_work is
1135  * kicked so that the ready bio's are issued.
1136  */
1137 static void throtl_pending_timer_fn(struct timer_list *t)
1138 {
1139         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1140         struct throtl_grp *tg = sq_to_tg(sq);
1141         struct throtl_data *td = sq_to_td(sq);
1142         struct throtl_service_queue *parent_sq;
1143         struct request_queue *q;
1144         bool dispatched;
1145         int ret;
1146
1147         /* throtl_data may be gone, so figure out request queue by blkg */
1148         if (tg)
1149                 q = tg->pd.blkg->q;
1150         else
1151                 q = td->queue;
1152
1153         spin_lock_irq(&q->queue_lock);
1154
1155         if (!q->root_blkg)
1156                 goto out_unlock;
1157
1158         if (throtl_can_upgrade(td, NULL))
1159                 throtl_upgrade_state(td);
1160
1161 again:
1162         parent_sq = sq->parent_sq;
1163         dispatched = false;
1164
1165         while (true) {
1166                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1167                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1168                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1169
1170                 ret = throtl_select_dispatch(sq);
1171                 if (ret) {
1172                         throtl_log(sq, "bios disp=%u", ret);
1173                         dispatched = true;
1174                 }
1175
1176                 if (throtl_schedule_next_dispatch(sq, false))
1177                         break;
1178
1179                 /* this dispatch windows is still open, relax and repeat */
1180                 spin_unlock_irq(&q->queue_lock);
1181                 cpu_relax();
1182                 spin_lock_irq(&q->queue_lock);
1183         }
1184
1185         if (!dispatched)
1186                 goto out_unlock;
1187
1188         if (parent_sq) {
1189                 /* @parent_sq is another throl_grp, propagate dispatch */
1190                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1191                         tg_update_disptime(tg);
1192                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1193                                 /* window is already open, repeat dispatching */
1194                                 sq = parent_sq;
1195                                 tg = sq_to_tg(sq);
1196                                 goto again;
1197                         }
1198                 }
1199         } else {
1200                 /* reached the top-level, queue issuing */
1201                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1202         }
1203 out_unlock:
1204         spin_unlock_irq(&q->queue_lock);
1205 }
1206
1207 /**
1208  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1209  * @work: work item being executed
1210  *
1211  * This function is queued for execution when bios reach the bio_lists[]
1212  * of throtl_data->service_queue.  Those bios are ready and issued by this
1213  * function.
1214  */
1215 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1216 {
1217         struct throtl_data *td = container_of(work, struct throtl_data,
1218                                               dispatch_work);
1219         struct throtl_service_queue *td_sq = &td->service_queue;
1220         struct request_queue *q = td->queue;
1221         struct bio_list bio_list_on_stack;
1222         struct bio *bio;
1223         struct blk_plug plug;
1224         int rw;
1225
1226         bio_list_init(&bio_list_on_stack);
1227
1228         spin_lock_irq(&q->queue_lock);
1229         for (rw = READ; rw <= WRITE; rw++)
1230                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1231                         bio_list_add(&bio_list_on_stack, bio);
1232         spin_unlock_irq(&q->queue_lock);
1233
1234         if (!bio_list_empty(&bio_list_on_stack)) {
1235                 blk_start_plug(&plug);
1236                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1237                         submit_bio_noacct_nocheck(bio);
1238                 blk_finish_plug(&plug);
1239         }
1240 }
1241
1242 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1243                               int off)
1244 {
1245         struct throtl_grp *tg = pd_to_tg(pd);
1246         u64 v = *(u64 *)((void *)tg + off);
1247
1248         if (v == U64_MAX)
1249                 return 0;
1250         return __blkg_prfill_u64(sf, pd, v);
1251 }
1252
1253 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1254                                int off)
1255 {
1256         struct throtl_grp *tg = pd_to_tg(pd);
1257         unsigned int v = *(unsigned int *)((void *)tg + off);
1258
1259         if (v == UINT_MAX)
1260                 return 0;
1261         return __blkg_prfill_u64(sf, pd, v);
1262 }
1263
1264 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1265 {
1266         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1267                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1268         return 0;
1269 }
1270
1271 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1272 {
1273         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1274                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1275         return 0;
1276 }
1277
1278 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1279 {
1280         struct throtl_service_queue *sq = &tg->service_queue;
1281         struct cgroup_subsys_state *pos_css;
1282         struct blkcg_gq *blkg;
1283
1284         throtl_log(&tg->service_queue,
1285                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1286                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1287                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1288
1289         /*
1290          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1291          * considered to have rules if either the tg itself or any of its
1292          * ancestors has rules.  This identifies groups without any
1293          * restrictions in the whole hierarchy and allows them to bypass
1294          * blk-throttle.
1295          */
1296         blkg_for_each_descendant_pre(blkg, pos_css,
1297                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1298                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1299                 struct throtl_grp *parent_tg;
1300
1301                 tg_update_has_rules(this_tg);
1302                 /* ignore root/second level */
1303                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1304                     !blkg->parent->parent)
1305                         continue;
1306                 parent_tg = blkg_to_tg(blkg->parent);
1307                 /*
1308                  * make sure all children has lower idle time threshold and
1309                  * higher latency target
1310                  */
1311                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1312                                 parent_tg->idletime_threshold);
1313                 this_tg->latency_target = max(this_tg->latency_target,
1314                                 parent_tg->latency_target);
1315         }
1316
1317         /*
1318          * We're already holding queue_lock and know @tg is valid.  Let's
1319          * apply the new config directly.
1320          *
1321          * Restart the slices for both READ and WRITES. It might happen
1322          * that a group's limit are dropped suddenly and we don't want to
1323          * account recently dispatched IO with new low rate.
1324          */
1325         throtl_start_new_slice(tg, READ);
1326         throtl_start_new_slice(tg, WRITE);
1327
1328         if (tg->flags & THROTL_TG_PENDING) {
1329                 tg_update_disptime(tg);
1330                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1331         }
1332 }
1333
1334 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1335                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1336 {
1337         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1338         struct blkg_conf_ctx ctx;
1339         struct throtl_grp *tg;
1340         int ret;
1341         u64 v;
1342
1343         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1344         if (ret)
1345                 return ret;
1346
1347         ret = -EINVAL;
1348         if (sscanf(ctx.body, "%llu", &v) != 1)
1349                 goto out_finish;
1350         if (!v)
1351                 v = U64_MAX;
1352
1353         tg = blkg_to_tg(ctx.blkg);
1354
1355         if (is_u64)
1356                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1357         else
1358                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1359
1360         tg_conf_updated(tg, false);
1361         ret = 0;
1362 out_finish:
1363         blkg_conf_finish(&ctx);
1364         return ret ?: nbytes;
1365 }
1366
1367 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1368                                char *buf, size_t nbytes, loff_t off)
1369 {
1370         return tg_set_conf(of, buf, nbytes, off, true);
1371 }
1372
1373 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1374                                 char *buf, size_t nbytes, loff_t off)
1375 {
1376         return tg_set_conf(of, buf, nbytes, off, false);
1377 }
1378
1379 static int tg_print_rwstat(struct seq_file *sf, void *v)
1380 {
1381         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1382                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1383                           seq_cft(sf)->private, true);
1384         return 0;
1385 }
1386
1387 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1388                                       struct blkg_policy_data *pd, int off)
1389 {
1390         struct blkg_rwstat_sample sum;
1391
1392         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1393                                   &sum);
1394         return __blkg_prfill_rwstat(sf, pd, &sum);
1395 }
1396
1397 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1398 {
1399         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1400                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1401                           seq_cft(sf)->private, true);
1402         return 0;
1403 }
1404
1405 static struct cftype throtl_legacy_files[] = {
1406         {
1407                 .name = "throttle.read_bps_device",
1408                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1409                 .seq_show = tg_print_conf_u64,
1410                 .write = tg_set_conf_u64,
1411         },
1412         {
1413                 .name = "throttle.write_bps_device",
1414                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1415                 .seq_show = tg_print_conf_u64,
1416                 .write = tg_set_conf_u64,
1417         },
1418         {
1419                 .name = "throttle.read_iops_device",
1420                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1421                 .seq_show = tg_print_conf_uint,
1422                 .write = tg_set_conf_uint,
1423         },
1424         {
1425                 .name = "throttle.write_iops_device",
1426                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1427                 .seq_show = tg_print_conf_uint,
1428                 .write = tg_set_conf_uint,
1429         },
1430         {
1431                 .name = "throttle.io_service_bytes",
1432                 .private = offsetof(struct throtl_grp, stat_bytes),
1433                 .seq_show = tg_print_rwstat,
1434         },
1435         {
1436                 .name = "throttle.io_service_bytes_recursive",
1437                 .private = offsetof(struct throtl_grp, stat_bytes),
1438                 .seq_show = tg_print_rwstat_recursive,
1439         },
1440         {
1441                 .name = "throttle.io_serviced",
1442                 .private = offsetof(struct throtl_grp, stat_ios),
1443                 .seq_show = tg_print_rwstat,
1444         },
1445         {
1446                 .name = "throttle.io_serviced_recursive",
1447                 .private = offsetof(struct throtl_grp, stat_ios),
1448                 .seq_show = tg_print_rwstat_recursive,
1449         },
1450         { }     /* terminate */
1451 };
1452
1453 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1454                          int off)
1455 {
1456         struct throtl_grp *tg = pd_to_tg(pd);
1457         const char *dname = blkg_dev_name(pd->blkg);
1458         char bufs[4][21] = { "max", "max", "max", "max" };
1459         u64 bps_dft;
1460         unsigned int iops_dft;
1461         char idle_time[26] = "";
1462         char latency_time[26] = "";
1463
1464         if (!dname)
1465                 return 0;
1466
1467         if (off == LIMIT_LOW) {
1468                 bps_dft = 0;
1469                 iops_dft = 0;
1470         } else {
1471                 bps_dft = U64_MAX;
1472                 iops_dft = UINT_MAX;
1473         }
1474
1475         if (tg->bps_conf[READ][off] == bps_dft &&
1476             tg->bps_conf[WRITE][off] == bps_dft &&
1477             tg->iops_conf[READ][off] == iops_dft &&
1478             tg->iops_conf[WRITE][off] == iops_dft &&
1479             (off != LIMIT_LOW ||
1480              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1481               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1482                 return 0;
1483
1484         if (tg->bps_conf[READ][off] != U64_MAX)
1485                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1486                         tg->bps_conf[READ][off]);
1487         if (tg->bps_conf[WRITE][off] != U64_MAX)
1488                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1489                         tg->bps_conf[WRITE][off]);
1490         if (tg->iops_conf[READ][off] != UINT_MAX)
1491                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1492                         tg->iops_conf[READ][off]);
1493         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1494                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1495                         tg->iops_conf[WRITE][off]);
1496         if (off == LIMIT_LOW) {
1497                 if (tg->idletime_threshold_conf == ULONG_MAX)
1498                         strcpy(idle_time, " idle=max");
1499                 else
1500                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1501                                 tg->idletime_threshold_conf);
1502
1503                 if (tg->latency_target_conf == ULONG_MAX)
1504                         strcpy(latency_time, " latency=max");
1505                 else
1506                         snprintf(latency_time, sizeof(latency_time),
1507                                 " latency=%lu", tg->latency_target_conf);
1508         }
1509
1510         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1511                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1512                    latency_time);
1513         return 0;
1514 }
1515
1516 static int tg_print_limit(struct seq_file *sf, void *v)
1517 {
1518         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1519                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1520         return 0;
1521 }
1522
1523 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1524                           char *buf, size_t nbytes, loff_t off)
1525 {
1526         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1527         struct blkg_conf_ctx ctx;
1528         struct throtl_grp *tg;
1529         u64 v[4];
1530         unsigned long idle_time;
1531         unsigned long latency_time;
1532         int ret;
1533         int index = of_cft(of)->private;
1534
1535         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1536         if (ret)
1537                 return ret;
1538
1539         tg = blkg_to_tg(ctx.blkg);
1540
1541         v[0] = tg->bps_conf[READ][index];
1542         v[1] = tg->bps_conf[WRITE][index];
1543         v[2] = tg->iops_conf[READ][index];
1544         v[3] = tg->iops_conf[WRITE][index];
1545
1546         idle_time = tg->idletime_threshold_conf;
1547         latency_time = tg->latency_target_conf;
1548         while (true) {
1549                 char tok[27];   /* wiops=18446744073709551616 */
1550                 char *p;
1551                 u64 val = U64_MAX;
1552                 int len;
1553
1554                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1555                         break;
1556                 if (tok[0] == '\0')
1557                         break;
1558                 ctx.body += len;
1559
1560                 ret = -EINVAL;
1561                 p = tok;
1562                 strsep(&p, "=");
1563                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1564                         goto out_finish;
1565
1566                 ret = -ERANGE;
1567                 if (!val)
1568                         goto out_finish;
1569
1570                 ret = -EINVAL;
1571                 if (!strcmp(tok, "rbps") && val > 1)
1572                         v[0] = val;
1573                 else if (!strcmp(tok, "wbps") && val > 1)
1574                         v[1] = val;
1575                 else if (!strcmp(tok, "riops") && val > 1)
1576                         v[2] = min_t(u64, val, UINT_MAX);
1577                 else if (!strcmp(tok, "wiops") && val > 1)
1578                         v[3] = min_t(u64, val, UINT_MAX);
1579                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1580                         idle_time = val;
1581                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1582                         latency_time = val;
1583                 else
1584                         goto out_finish;
1585         }
1586
1587         tg->bps_conf[READ][index] = v[0];
1588         tg->bps_conf[WRITE][index] = v[1];
1589         tg->iops_conf[READ][index] = v[2];
1590         tg->iops_conf[WRITE][index] = v[3];
1591
1592         if (index == LIMIT_MAX) {
1593                 tg->bps[READ][index] = v[0];
1594                 tg->bps[WRITE][index] = v[1];
1595                 tg->iops[READ][index] = v[2];
1596                 tg->iops[WRITE][index] = v[3];
1597         }
1598         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1599                 tg->bps_conf[READ][LIMIT_MAX]);
1600         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1601                 tg->bps_conf[WRITE][LIMIT_MAX]);
1602         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1603                 tg->iops_conf[READ][LIMIT_MAX]);
1604         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1605                 tg->iops_conf[WRITE][LIMIT_MAX]);
1606         tg->idletime_threshold_conf = idle_time;
1607         tg->latency_target_conf = latency_time;
1608
1609         /* force user to configure all settings for low limit  */
1610         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1611               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1612             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1613             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1614                 tg->bps[READ][LIMIT_LOW] = 0;
1615                 tg->bps[WRITE][LIMIT_LOW] = 0;
1616                 tg->iops[READ][LIMIT_LOW] = 0;
1617                 tg->iops[WRITE][LIMIT_LOW] = 0;
1618                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1619                 tg->latency_target = DFL_LATENCY_TARGET;
1620         } else if (index == LIMIT_LOW) {
1621                 tg->idletime_threshold = tg->idletime_threshold_conf;
1622                 tg->latency_target = tg->latency_target_conf;
1623         }
1624
1625         blk_throtl_update_limit_valid(tg->td);
1626         if (tg->td->limit_valid[LIMIT_LOW]) {
1627                 if (index == LIMIT_LOW)
1628                         tg->td->limit_index = LIMIT_LOW;
1629         } else
1630                 tg->td->limit_index = LIMIT_MAX;
1631         tg_conf_updated(tg, index == LIMIT_LOW &&
1632                 tg->td->limit_valid[LIMIT_LOW]);
1633         ret = 0;
1634 out_finish:
1635         blkg_conf_finish(&ctx);
1636         return ret ?: nbytes;
1637 }
1638
1639 static struct cftype throtl_files[] = {
1640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1641         {
1642                 .name = "low",
1643                 .flags = CFTYPE_NOT_ON_ROOT,
1644                 .seq_show = tg_print_limit,
1645                 .write = tg_set_limit,
1646                 .private = LIMIT_LOW,
1647         },
1648 #endif
1649         {
1650                 .name = "max",
1651                 .flags = CFTYPE_NOT_ON_ROOT,
1652                 .seq_show = tg_print_limit,
1653                 .write = tg_set_limit,
1654                 .private = LIMIT_MAX,
1655         },
1656         { }     /* terminate */
1657 };
1658
1659 static void throtl_shutdown_wq(struct request_queue *q)
1660 {
1661         struct throtl_data *td = q->td;
1662
1663         cancel_work_sync(&td->dispatch_work);
1664 }
1665
1666 struct blkcg_policy blkcg_policy_throtl = {
1667         .dfl_cftypes            = throtl_files,
1668         .legacy_cftypes         = throtl_legacy_files,
1669
1670         .pd_alloc_fn            = throtl_pd_alloc,
1671         .pd_init_fn             = throtl_pd_init,
1672         .pd_online_fn           = throtl_pd_online,
1673         .pd_offline_fn          = throtl_pd_offline,
1674         .pd_free_fn             = throtl_pd_free,
1675 };
1676
1677 void blk_throtl_cancel_bios(struct request_queue *q)
1678 {
1679         struct cgroup_subsys_state *pos_css;
1680         struct blkcg_gq *blkg;
1681
1682         spin_lock_irq(&q->queue_lock);
1683         /*
1684          * queue_lock is held, rcu lock is not needed here technically.
1685          * However, rcu lock is still held to emphasize that following
1686          * path need RCU protection and to prevent warning from lockdep.
1687          */
1688         rcu_read_lock();
1689         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1690                 struct throtl_grp *tg = blkg_to_tg(blkg);
1691                 struct throtl_service_queue *sq = &tg->service_queue;
1692
1693                 /*
1694                  * Set the flag to make sure throtl_pending_timer_fn() won't
1695                  * stop until all throttled bios are dispatched.
1696                  */
1697                 blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
1698                 /*
1699                  * Update disptime after setting the above flag to make sure
1700                  * throtl_select_dispatch() won't exit without dispatching.
1701                  */
1702                 tg_update_disptime(tg);
1703
1704                 throtl_schedule_pending_timer(sq, jiffies + 1);
1705         }
1706         rcu_read_unlock();
1707         spin_unlock_irq(&q->queue_lock);
1708 }
1709
1710 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1711 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1712 {
1713         unsigned long rtime = jiffies, wtime = jiffies;
1714
1715         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1716                 rtime = tg->last_low_overflow_time[READ];
1717         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1718                 wtime = tg->last_low_overflow_time[WRITE];
1719         return min(rtime, wtime);
1720 }
1721
1722 /* tg should not be an intermediate node */
1723 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1724 {
1725         struct throtl_service_queue *parent_sq;
1726         struct throtl_grp *parent = tg;
1727         unsigned long ret = __tg_last_low_overflow_time(tg);
1728
1729         while (true) {
1730                 parent_sq = parent->service_queue.parent_sq;
1731                 parent = sq_to_tg(parent_sq);
1732                 if (!parent)
1733                         break;
1734
1735                 /*
1736                  * The parent doesn't have low limit, it always reaches low
1737                  * limit. Its overflow time is useless for children
1738                  */
1739                 if (!parent->bps[READ][LIMIT_LOW] &&
1740                     !parent->iops[READ][LIMIT_LOW] &&
1741                     !parent->bps[WRITE][LIMIT_LOW] &&
1742                     !parent->iops[WRITE][LIMIT_LOW])
1743                         continue;
1744                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1745                         ret = __tg_last_low_overflow_time(parent);
1746         }
1747         return ret;
1748 }
1749
1750 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1751 {
1752         /*
1753          * cgroup is idle if:
1754          * - single idle is too long, longer than a fixed value (in case user
1755          *   configure a too big threshold) or 4 times of idletime threshold
1756          * - average think time is more than threshold
1757          * - IO latency is largely below threshold
1758          */
1759         unsigned long time;
1760         bool ret;
1761
1762         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1763         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1764               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1765               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1766               tg->avg_idletime > tg->idletime_threshold ||
1767               (tg->latency_target && tg->bio_cnt &&
1768                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1769         throtl_log(&tg->service_queue,
1770                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1771                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1772                 tg->bio_cnt, ret, tg->td->scale);
1773         return ret;
1774 }
1775
1776 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1777 {
1778         struct throtl_service_queue *sq = &tg->service_queue;
1779         bool read_limit, write_limit;
1780
1781         /*
1782          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1783          * reaches), it's ok to upgrade to next limit
1784          */
1785         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1786         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1787         if (!read_limit && !write_limit)
1788                 return true;
1789         if (read_limit && sq->nr_queued[READ] &&
1790             (!write_limit || sq->nr_queued[WRITE]))
1791                 return true;
1792         if (write_limit && sq->nr_queued[WRITE] &&
1793             (!read_limit || sq->nr_queued[READ]))
1794                 return true;
1795
1796         if (time_after_eq(jiffies,
1797                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1798             throtl_tg_is_idle(tg))
1799                 return true;
1800         return false;
1801 }
1802
1803 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1804 {
1805         while (true) {
1806                 if (throtl_tg_can_upgrade(tg))
1807                         return true;
1808                 tg = sq_to_tg(tg->service_queue.parent_sq);
1809                 if (!tg || !tg_to_blkg(tg)->parent)
1810                         return false;
1811         }
1812         return false;
1813 }
1814
1815 static bool throtl_can_upgrade(struct throtl_data *td,
1816         struct throtl_grp *this_tg)
1817 {
1818         struct cgroup_subsys_state *pos_css;
1819         struct blkcg_gq *blkg;
1820
1821         if (td->limit_index != LIMIT_LOW)
1822                 return false;
1823
1824         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1825                 return false;
1826
1827         rcu_read_lock();
1828         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1829                 struct throtl_grp *tg = blkg_to_tg(blkg);
1830
1831                 if (tg == this_tg)
1832                         continue;
1833                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1834                         continue;
1835                 if (!throtl_hierarchy_can_upgrade(tg)) {
1836                         rcu_read_unlock();
1837                         return false;
1838                 }
1839         }
1840         rcu_read_unlock();
1841         return true;
1842 }
1843
1844 static void throtl_upgrade_check(struct throtl_grp *tg)
1845 {
1846         unsigned long now = jiffies;
1847
1848         if (tg->td->limit_index != LIMIT_LOW)
1849                 return;
1850
1851         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1852                 return;
1853
1854         tg->last_check_time = now;
1855
1856         if (!time_after_eq(now,
1857              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1858                 return;
1859
1860         if (throtl_can_upgrade(tg->td, NULL))
1861                 throtl_upgrade_state(tg->td);
1862 }
1863
1864 static void throtl_upgrade_state(struct throtl_data *td)
1865 {
1866         struct cgroup_subsys_state *pos_css;
1867         struct blkcg_gq *blkg;
1868
1869         throtl_log(&td->service_queue, "upgrade to max");
1870         td->limit_index = LIMIT_MAX;
1871         td->low_upgrade_time = jiffies;
1872         td->scale = 0;
1873         rcu_read_lock();
1874         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1875                 struct throtl_grp *tg = blkg_to_tg(blkg);
1876                 struct throtl_service_queue *sq = &tg->service_queue;
1877
1878                 tg->disptime = jiffies - 1;
1879                 throtl_select_dispatch(sq);
1880                 throtl_schedule_next_dispatch(sq, true);
1881         }
1882         rcu_read_unlock();
1883         throtl_select_dispatch(&td->service_queue);
1884         throtl_schedule_next_dispatch(&td->service_queue, true);
1885         queue_work(kthrotld_workqueue, &td->dispatch_work);
1886 }
1887
1888 static void throtl_downgrade_state(struct throtl_data *td)
1889 {
1890         td->scale /= 2;
1891
1892         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1893         if (td->scale) {
1894                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1895                 return;
1896         }
1897
1898         td->limit_index = LIMIT_LOW;
1899         td->low_downgrade_time = jiffies;
1900 }
1901
1902 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1903 {
1904         struct throtl_data *td = tg->td;
1905         unsigned long now = jiffies;
1906
1907         /*
1908          * If cgroup is below low limit, consider downgrade and throttle other
1909          * cgroups
1910          */
1911         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1912             time_after_eq(now, tg_last_low_overflow_time(tg) +
1913                                         td->throtl_slice) &&
1914             (!throtl_tg_is_idle(tg) ||
1915              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1916                 return true;
1917         return false;
1918 }
1919
1920 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1921 {
1922         while (true) {
1923                 if (!throtl_tg_can_downgrade(tg))
1924                         return false;
1925                 tg = sq_to_tg(tg->service_queue.parent_sq);
1926                 if (!tg || !tg_to_blkg(tg)->parent)
1927                         break;
1928         }
1929         return true;
1930 }
1931
1932 static void throtl_downgrade_check(struct throtl_grp *tg)
1933 {
1934         uint64_t bps;
1935         unsigned int iops;
1936         unsigned long elapsed_time;
1937         unsigned long now = jiffies;
1938
1939         if (tg->td->limit_index != LIMIT_MAX ||
1940             !tg->td->limit_valid[LIMIT_LOW])
1941                 return;
1942         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1943                 return;
1944         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1945                 return;
1946
1947         elapsed_time = now - tg->last_check_time;
1948         tg->last_check_time = now;
1949
1950         if (time_before(now, tg_last_low_overflow_time(tg) +
1951                         tg->td->throtl_slice))
1952                 return;
1953
1954         if (tg->bps[READ][LIMIT_LOW]) {
1955                 bps = tg->last_bytes_disp[READ] * HZ;
1956                 do_div(bps, elapsed_time);
1957                 if (bps >= tg->bps[READ][LIMIT_LOW])
1958                         tg->last_low_overflow_time[READ] = now;
1959         }
1960
1961         if (tg->bps[WRITE][LIMIT_LOW]) {
1962                 bps = tg->last_bytes_disp[WRITE] * HZ;
1963                 do_div(bps, elapsed_time);
1964                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1965                         tg->last_low_overflow_time[WRITE] = now;
1966         }
1967
1968         if (tg->iops[READ][LIMIT_LOW]) {
1969                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1970                 if (iops >= tg->iops[READ][LIMIT_LOW])
1971                         tg->last_low_overflow_time[READ] = now;
1972         }
1973
1974         if (tg->iops[WRITE][LIMIT_LOW]) {
1975                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1976                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1977                         tg->last_low_overflow_time[WRITE] = now;
1978         }
1979
1980         /*
1981          * If cgroup is below low limit, consider downgrade and throttle other
1982          * cgroups
1983          */
1984         if (throtl_hierarchy_can_downgrade(tg))
1985                 throtl_downgrade_state(tg->td);
1986
1987         tg->last_bytes_disp[READ] = 0;
1988         tg->last_bytes_disp[WRITE] = 0;
1989         tg->last_io_disp[READ] = 0;
1990         tg->last_io_disp[WRITE] = 0;
1991 }
1992
1993 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1994 {
1995         unsigned long now;
1996         unsigned long last_finish_time = tg->last_finish_time;
1997
1998         if (last_finish_time == 0)
1999                 return;
2000
2001         now = ktime_get_ns() >> 10;
2002         if (now <= last_finish_time ||
2003             last_finish_time == tg->checked_last_finish_time)
2004                 return;
2005
2006         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2007         tg->checked_last_finish_time = last_finish_time;
2008 }
2009
2010 static void throtl_update_latency_buckets(struct throtl_data *td)
2011 {
2012         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2013         int i, cpu, rw;
2014         unsigned long last_latency[2] = { 0 };
2015         unsigned long latency[2];
2016
2017         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2018                 return;
2019         if (time_before(jiffies, td->last_calculate_time + HZ))
2020                 return;
2021         td->last_calculate_time = jiffies;
2022
2023         memset(avg_latency, 0, sizeof(avg_latency));
2024         for (rw = READ; rw <= WRITE; rw++) {
2025                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2026                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2027
2028                         for_each_possible_cpu(cpu) {
2029                                 struct latency_bucket *bucket;
2030
2031                                 /* this isn't race free, but ok in practice */
2032                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2033                                         cpu);
2034                                 tmp->total_latency += bucket[i].total_latency;
2035                                 tmp->samples += bucket[i].samples;
2036                                 bucket[i].total_latency = 0;
2037                                 bucket[i].samples = 0;
2038                         }
2039
2040                         if (tmp->samples >= 32) {
2041                                 int samples = tmp->samples;
2042
2043                                 latency[rw] = tmp->total_latency;
2044
2045                                 tmp->total_latency = 0;
2046                                 tmp->samples = 0;
2047                                 latency[rw] /= samples;
2048                                 if (latency[rw] == 0)
2049                                         continue;
2050                                 avg_latency[rw][i].latency = latency[rw];
2051                         }
2052                 }
2053         }
2054
2055         for (rw = READ; rw <= WRITE; rw++) {
2056                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2057                         if (!avg_latency[rw][i].latency) {
2058                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2059                                         td->avg_buckets[rw][i].latency =
2060                                                 last_latency[rw];
2061                                 continue;
2062                         }
2063
2064                         if (!td->avg_buckets[rw][i].valid)
2065                                 latency[rw] = avg_latency[rw][i].latency;
2066                         else
2067                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2068                                         avg_latency[rw][i].latency) >> 3;
2069
2070                         td->avg_buckets[rw][i].latency = max(latency[rw],
2071                                 last_latency[rw]);
2072                         td->avg_buckets[rw][i].valid = true;
2073                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2074                 }
2075         }
2076
2077         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2078                 throtl_log(&td->service_queue,
2079                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2080                         "write latency=%ld, write valid=%d", i,
2081                         td->avg_buckets[READ][i].latency,
2082                         td->avg_buckets[READ][i].valid,
2083                         td->avg_buckets[WRITE][i].latency,
2084                         td->avg_buckets[WRITE][i].valid);
2085 }
2086 #else
2087 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2088 {
2089 }
2090
2091 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2092 {
2093 }
2094
2095 static void throtl_downgrade_check(struct throtl_grp *tg)
2096 {
2097 }
2098
2099 static void throtl_upgrade_check(struct throtl_grp *tg)
2100 {
2101 }
2102
2103 static bool throtl_can_upgrade(struct throtl_data *td,
2104         struct throtl_grp *this_tg)
2105 {
2106         return false;
2107 }
2108
2109 static void throtl_upgrade_state(struct throtl_data *td)
2110 {
2111 }
2112 #endif
2113
2114 bool __blk_throtl_bio(struct bio *bio)
2115 {
2116         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2117         struct blkcg_gq *blkg = bio->bi_blkg;
2118         struct throtl_qnode *qn = NULL;
2119         struct throtl_grp *tg = blkg_to_tg(blkg);
2120         struct throtl_service_queue *sq;
2121         bool rw = bio_data_dir(bio);
2122         bool throttled = false;
2123         struct throtl_data *td = tg->td;
2124
2125         rcu_read_lock();
2126
2127         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2128                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2129                                 bio->bi_iter.bi_size);
2130                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2131         }
2132
2133         spin_lock_irq(&q->queue_lock);
2134
2135         throtl_update_latency_buckets(td);
2136
2137         blk_throtl_update_idletime(tg);
2138
2139         sq = &tg->service_queue;
2140
2141 again:
2142         while (true) {
2143                 if (tg->last_low_overflow_time[rw] == 0)
2144                         tg->last_low_overflow_time[rw] = jiffies;
2145                 throtl_downgrade_check(tg);
2146                 throtl_upgrade_check(tg);
2147                 /* throtl is FIFO - if bios are already queued, should queue */
2148                 if (sq->nr_queued[rw])
2149                         break;
2150
2151                 /* if above limits, break to queue */
2152                 if (!tg_may_dispatch(tg, bio, NULL)) {
2153                         tg->last_low_overflow_time[rw] = jiffies;
2154                         if (throtl_can_upgrade(td, tg)) {
2155                                 throtl_upgrade_state(td);
2156                                 goto again;
2157                         }
2158                         break;
2159                 }
2160
2161                 /* within limits, let's charge and dispatch directly */
2162                 throtl_charge_bio(tg, bio);
2163
2164                 /*
2165                  * We need to trim slice even when bios are not being queued
2166                  * otherwise it might happen that a bio is not queued for
2167                  * a long time and slice keeps on extending and trim is not
2168                  * called for a long time. Now if limits are reduced suddenly
2169                  * we take into account all the IO dispatched so far at new
2170                  * low rate and * newly queued IO gets a really long dispatch
2171                  * time.
2172                  *
2173                  * So keep on trimming slice even if bio is not queued.
2174                  */
2175                 throtl_trim_slice(tg, rw);
2176
2177                 /*
2178                  * @bio passed through this layer without being throttled.
2179                  * Climb up the ladder.  If we're already at the top, it
2180                  * can be executed directly.
2181                  */
2182                 qn = &tg->qnode_on_parent[rw];
2183                 sq = sq->parent_sq;
2184                 tg = sq_to_tg(sq);
2185                 if (!tg) {
2186                         bio_set_flag(bio, BIO_BPS_THROTTLED);
2187                         goto out_unlock;
2188                 }
2189         }
2190
2191         /* out-of-limit, queue to @tg */
2192         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2193                    rw == READ ? 'R' : 'W',
2194                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2195                    tg_bps_limit(tg, rw),
2196                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2197                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2198
2199         tg->last_low_overflow_time[rw] = jiffies;
2200
2201         td->nr_queued[rw]++;
2202         throtl_add_bio_tg(bio, qn, tg);
2203         throttled = true;
2204
2205         /*
2206          * Update @tg's dispatch time and force schedule dispatch if @tg
2207          * was empty before @bio.  The forced scheduling isn't likely to
2208          * cause undue delay as @bio is likely to be dispatched directly if
2209          * its @tg's disptime is not in the future.
2210          */
2211         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2212                 tg_update_disptime(tg);
2213                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2214         }
2215
2216 out_unlock:
2217 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2218         if (throttled || !td->track_bio_latency)
2219                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2220 #endif
2221         spin_unlock_irq(&q->queue_lock);
2222
2223         rcu_read_unlock();
2224         return throttled;
2225 }
2226
2227 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2228 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2229                                  enum req_op op, unsigned long time)
2230 {
2231         const bool rw = op_is_write(op);
2232         struct latency_bucket *latency;
2233         int index;
2234
2235         if (!td || td->limit_index != LIMIT_LOW ||
2236             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2237             !blk_queue_nonrot(td->queue))
2238                 return;
2239
2240         index = request_bucket_index(size);
2241
2242         latency = get_cpu_ptr(td->latency_buckets[rw]);
2243         latency[index].total_latency += time;
2244         latency[index].samples++;
2245         put_cpu_ptr(td->latency_buckets[rw]);
2246 }
2247
2248 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2249 {
2250         struct request_queue *q = rq->q;
2251         struct throtl_data *td = q->td;
2252
2253         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2254                              time_ns >> 10);
2255 }
2256
2257 void blk_throtl_bio_endio(struct bio *bio)
2258 {
2259         struct blkcg_gq *blkg;
2260         struct throtl_grp *tg;
2261         u64 finish_time_ns;
2262         unsigned long finish_time;
2263         unsigned long start_time;
2264         unsigned long lat;
2265         int rw = bio_data_dir(bio);
2266
2267         blkg = bio->bi_blkg;
2268         if (!blkg)
2269                 return;
2270         tg = blkg_to_tg(blkg);
2271         if (!tg->td->limit_valid[LIMIT_LOW])
2272                 return;
2273
2274         finish_time_ns = ktime_get_ns();
2275         tg->last_finish_time = finish_time_ns >> 10;
2276
2277         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2278         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2279         if (!start_time || finish_time <= start_time)
2280                 return;
2281
2282         lat = finish_time - start_time;
2283         /* this is only for bio based driver */
2284         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2285                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2286                                      bio_op(bio), lat);
2287
2288         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2289                 int bucket;
2290                 unsigned int threshold;
2291
2292                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2293                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2294                         tg->latency_target;
2295                 if (lat > threshold)
2296                         tg->bad_bio_cnt++;
2297                 /*
2298                  * Not race free, could get wrong count, which means cgroups
2299                  * will be throttled
2300                  */
2301                 tg->bio_cnt++;
2302         }
2303
2304         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2305                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2306                 tg->bio_cnt /= 2;
2307                 tg->bad_bio_cnt /= 2;
2308         }
2309 }
2310 #endif
2311
2312 int blk_throtl_init(struct request_queue *q)
2313 {
2314         struct throtl_data *td;
2315         int ret;
2316
2317         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2318         if (!td)
2319                 return -ENOMEM;
2320         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2321                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2322         if (!td->latency_buckets[READ]) {
2323                 kfree(td);
2324                 return -ENOMEM;
2325         }
2326         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2327                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2328         if (!td->latency_buckets[WRITE]) {
2329                 free_percpu(td->latency_buckets[READ]);
2330                 kfree(td);
2331                 return -ENOMEM;
2332         }
2333
2334         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2335         throtl_service_queue_init(&td->service_queue);
2336
2337         q->td = td;
2338         td->queue = q;
2339
2340         td->limit_valid[LIMIT_MAX] = true;
2341         td->limit_index = LIMIT_MAX;
2342         td->low_upgrade_time = jiffies;
2343         td->low_downgrade_time = jiffies;
2344
2345         /* activate policy */
2346         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2347         if (ret) {
2348                 free_percpu(td->latency_buckets[READ]);
2349                 free_percpu(td->latency_buckets[WRITE]);
2350                 kfree(td);
2351         }
2352         return ret;
2353 }
2354
2355 void blk_throtl_exit(struct request_queue *q)
2356 {
2357         BUG_ON(!q->td);
2358         del_timer_sync(&q->td->service_queue.pending_timer);
2359         throtl_shutdown_wq(q);
2360         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2361         free_percpu(q->td->latency_buckets[READ]);
2362         free_percpu(q->td->latency_buckets[WRITE]);
2363         kfree(q->td);
2364 }
2365
2366 void blk_throtl_register_queue(struct request_queue *q)
2367 {
2368         struct throtl_data *td;
2369         int i;
2370
2371         td = q->td;
2372         BUG_ON(!td);
2373
2374         if (blk_queue_nonrot(q)) {
2375                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2376                 td->filtered_latency = LATENCY_FILTERED_SSD;
2377         } else {
2378                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2379                 td->filtered_latency = LATENCY_FILTERED_HD;
2380                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2381                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2382                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2383                 }
2384         }
2385 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2386         /* if no low limit, use previous default */
2387         td->throtl_slice = DFL_THROTL_SLICE_HD;
2388 #endif
2389
2390         td->track_bio_latency = !queue_is_mq(q);
2391         if (!td->track_bio_latency)
2392                 blk_stat_enable_accounting(q);
2393 }
2394
2395 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2396 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2397 {
2398         if (!q->td)
2399                 return -EINVAL;
2400         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2401 }
2402
2403 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2404         const char *page, size_t count)
2405 {
2406         unsigned long v;
2407         unsigned long t;
2408
2409         if (!q->td)
2410                 return -EINVAL;
2411         if (kstrtoul(page, 10, &v))
2412                 return -EINVAL;
2413         t = msecs_to_jiffies(v);
2414         if (t == 0 || t > MAX_THROTL_SLICE)
2415                 return -EINVAL;
2416         q->td->throtl_slice = t;
2417         return count;
2418 }
2419 #endif
2420
2421 static int __init throtl_init(void)
2422 {
2423         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2424         if (!kthrotld_workqueue)
2425                 panic("Failed to create kthrotld\n");
2426
2427         return blkcg_policy_register(&blkcg_policy_throtl);
2428 }
2429
2430 module_init(throtl_init);