a3b3ebc72dd47a8bb6f32b07572f54cbf1103b2e
[linux-block.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50         unsigned long total_latency; /* ns / 1024 */
51         int samples;
52 };
53
54 struct avg_latency_bucket {
55         unsigned long latency; /* ns / 1024 */
56         bool valid;
57 };
58
59 struct throtl_data
60 {
61         /* service tree for active throtl groups */
62         struct throtl_service_queue service_queue;
63
64         struct request_queue *queue;
65
66         /* Total Number of queued bios on READ and WRITE lists */
67         unsigned int nr_queued[2];
68
69         unsigned int throtl_slice;
70
71         /* Work for dispatching throttled bios */
72         struct work_struct dispatch_work;
73         unsigned int limit_index;
74         bool limit_valid[LIMIT_CNT];
75
76         unsigned long low_upgrade_time;
77         unsigned long low_downgrade_time;
78
79         unsigned int scale;
80
81         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83         struct latency_bucket __percpu *latency_buckets[2];
84         unsigned long last_calculate_time;
85         unsigned long filtered_latency;
86
87         bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94         return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106         if (sq && sq->parent_sq)
107                 return container_of(sq, struct throtl_grp, service_queue);
108         else
109                 return NULL;
110 }
111
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121         struct throtl_grp *tg = sq_to_tg(sq);
122
123         if (tg)
124                 return tg->td;
125         else
126                 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to lapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139         /* arbitrary value to avoid too big scale */
140         if (td->scale < 4096 && time_after_eq(jiffies,
141             td->low_upgrade_time + td->scale * td->throtl_slice))
142                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144         return low + (low >> 1) * td->scale;
145 }
146
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149         struct blkcg_gq *blkg = tg_to_blkg(tg);
150         struct throtl_data *td;
151         uint64_t ret;
152
153         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154                 return U64_MAX;
155
156         td = tg->td;
157         ret = tg->bps[rw][td->limit_index];
158         if (ret == 0 && td->limit_index == LIMIT_LOW) {
159                 /* intermediate node or iops isn't 0 */
160                 if (!list_empty(&blkg->blkcg->css.children) ||
161                     tg->iops[rw][td->limit_index])
162                         return U64_MAX;
163                 else
164                         return MIN_THROTL_BPS;
165         }
166
167         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169                 uint64_t adjusted;
170
171                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173         }
174         return ret;
175 }
176
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179         struct blkcg_gq *blkg = tg_to_blkg(tg);
180         struct throtl_data *td;
181         unsigned int ret;
182
183         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184                 return UINT_MAX;
185
186         td = tg->td;
187         ret = tg->iops[rw][td->limit_index];
188         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189                 /* intermediate node or bps isn't 0 */
190                 if (!list_empty(&blkg->blkcg->css.children) ||
191                     tg->bps[rw][td->limit_index])
192                         return UINT_MAX;
193                 else
194                         return MIN_THROTL_IOPS;
195         }
196
197         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199                 uint64_t adjusted;
200
201                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202                 if (adjusted > UINT_MAX)
203                         adjusted = UINT_MAX;
204                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205         }
206         return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)    do {                            \
222         struct throtl_grp *__tg = sq_to_tg((sq));                       \
223         struct throtl_data *__td = sq_to_td((sq));                      \
224                                                                         \
225         (void)__td;                                                     \
226         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
227                 break;                                                  \
228         if ((__tg)) {                                                   \
229                 blk_add_cgroup_trace_msg(__td->queue,                   \
230                         tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
231         } else {                                                        \
232                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
233         }                                                               \
234 } while (0)
235
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238         /* assume it's one sector */
239         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240                 return 512;
241         return bio->bi_iter.bi_size;
242 }
243
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246         INIT_LIST_HEAD(&qn->node);
247         bio_list_init(&qn->bios);
248         qn->tg = tg;
249 }
250
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262                                  struct list_head *queued)
263 {
264         bio_list_add(&qn->bios, bio);
265         if (list_empty(&qn->node)) {
266                 list_add_tail(&qn->node, queued);
267                 blkg_get(tg_to_blkg(qn->tg));
268         }
269 }
270
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277         struct throtl_qnode *qn;
278         struct bio *bio;
279
280         if (list_empty(queued))
281                 return NULL;
282
283         qn = list_first_entry(queued, struct throtl_qnode, node);
284         bio = bio_list_peek(&qn->bios);
285         WARN_ON_ONCE(!bio);
286         return bio;
287 }
288
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304                                      struct throtl_grp **tg_to_put)
305 {
306         struct throtl_qnode *qn;
307         struct bio *bio;
308
309         if (list_empty(queued))
310                 return NULL;
311
312         qn = list_first_entry(queued, struct throtl_qnode, node);
313         bio = bio_list_pop(&qn->bios);
314         WARN_ON_ONCE(!bio);
315
316         if (bio_list_empty(&qn->bios)) {
317                 list_del_init(&qn->node);
318                 if (tg_to_put)
319                         *tg_to_put = qn->tg;
320                 else
321                         blkg_put(tg_to_blkg(qn->tg));
322         } else {
323                 list_move_tail(&qn->node, queued);
324         }
325
326         return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332         INIT_LIST_HEAD(&sq->queued[0]);
333         INIT_LIST_HEAD(&sq->queued[1]);
334         sq->pending_tree = RB_ROOT_CACHED;
335         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339                                                 struct request_queue *q,
340                                                 struct blkcg *blkcg)
341 {
342         struct throtl_grp *tg;
343         int rw;
344
345         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346         if (!tg)
347                 return NULL;
348
349         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350                 goto err_free_tg;
351
352         if (blkg_rwstat_init(&tg->stat_ios, gfp))
353                 goto err_exit_stat_bytes;
354
355         throtl_service_queue_init(&tg->service_queue);
356
357         for (rw = READ; rw <= WRITE; rw++) {
358                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360         }
361
362         RB_CLEAR_NODE(&tg->rb_node);
363         tg->bps[READ][LIMIT_MAX] = U64_MAX;
364         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371         /* LIMIT_LOW will have default value 0 */
372
373         tg->latency_target = DFL_LATENCY_TARGET;
374         tg->latency_target_conf = DFL_LATENCY_TARGET;
375         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377
378         return &tg->pd;
379
380 err_exit_stat_bytes:
381         blkg_rwstat_exit(&tg->stat_bytes);
382 err_free_tg:
383         kfree(tg);
384         return NULL;
385 }
386
387 static void throtl_pd_init(struct blkg_policy_data *pd)
388 {
389         struct throtl_grp *tg = pd_to_tg(pd);
390         struct blkcg_gq *blkg = tg_to_blkg(tg);
391         struct throtl_data *td = blkg->q->td;
392         struct throtl_service_queue *sq = &tg->service_queue;
393
394         /*
395          * If on the default hierarchy, we switch to properly hierarchical
396          * behavior where limits on a given throtl_grp are applied to the
397          * whole subtree rather than just the group itself.  e.g. If 16M
398          * read_bps limit is set on the root group, the whole system can't
399          * exceed 16M for the device.
400          *
401          * If not on the default hierarchy, the broken flat hierarchy
402          * behavior is retained where all throtl_grps are treated as if
403          * they're all separate root groups right below throtl_data.
404          * Limits of a group don't interact with limits of other groups
405          * regardless of the position of the group in the hierarchy.
406          */
407         sq->parent_sq = &td->service_queue;
408         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410         tg->td = td;
411 }
412
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421         struct throtl_data *td = tg->td;
422         int rw;
423         int has_iops_limit = 0;
424
425         for (rw = READ; rw <= WRITE; rw++) {
426                 unsigned int iops_limit = tg_iops_limit(tg, rw);
427
428                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
429                         (td->limit_valid[td->limit_index] &&
430                          (tg_bps_limit(tg, rw) != U64_MAX ||
431                           iops_limit != UINT_MAX));
432
433                 if (iops_limit != UINT_MAX)
434                         has_iops_limit = 1;
435         }
436
437         if (has_iops_limit)
438                 tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
439         else
440                 tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
441 }
442
443 static void throtl_pd_online(struct blkg_policy_data *pd)
444 {
445         struct throtl_grp *tg = pd_to_tg(pd);
446         /*
447          * We don't want new groups to escape the limits of its ancestors.
448          * Update has_rules[] after a new group is brought online.
449          */
450         tg_update_has_rules(tg);
451 }
452
453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
454 static void blk_throtl_update_limit_valid(struct throtl_data *td)
455 {
456         struct cgroup_subsys_state *pos_css;
457         struct blkcg_gq *blkg;
458         bool low_valid = false;
459
460         rcu_read_lock();
461         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
462                 struct throtl_grp *tg = blkg_to_tg(blkg);
463
464                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
465                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466                         low_valid = true;
467                         break;
468                 }
469         }
470         rcu_read_unlock();
471
472         td->limit_valid[LIMIT_LOW] = low_valid;
473 }
474 #else
475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
476 {
477 }
478 #endif
479
480 static void throtl_upgrade_state(struct throtl_data *td);
481 static void throtl_pd_offline(struct blkg_policy_data *pd)
482 {
483         struct throtl_grp *tg = pd_to_tg(pd);
484
485         tg->bps[READ][LIMIT_LOW] = 0;
486         tg->bps[WRITE][LIMIT_LOW] = 0;
487         tg->iops[READ][LIMIT_LOW] = 0;
488         tg->iops[WRITE][LIMIT_LOW] = 0;
489
490         blk_throtl_update_limit_valid(tg->td);
491
492         if (!tg->td->limit_valid[tg->td->limit_index])
493                 throtl_upgrade_state(tg->td);
494 }
495
496 static void throtl_pd_free(struct blkg_policy_data *pd)
497 {
498         struct throtl_grp *tg = pd_to_tg(pd);
499
500         del_timer_sync(&tg->service_queue.pending_timer);
501         blkg_rwstat_exit(&tg->stat_bytes);
502         blkg_rwstat_exit(&tg->stat_ios);
503         kfree(tg);
504 }
505
506 static struct throtl_grp *
507 throtl_rb_first(struct throtl_service_queue *parent_sq)
508 {
509         struct rb_node *n;
510
511         n = rb_first_cached(&parent_sq->pending_tree);
512         WARN_ON_ONCE(!n);
513         if (!n)
514                 return NULL;
515         return rb_entry_tg(n);
516 }
517
518 static void throtl_rb_erase(struct rb_node *n,
519                             struct throtl_service_queue *parent_sq)
520 {
521         rb_erase_cached(n, &parent_sq->pending_tree);
522         RB_CLEAR_NODE(n);
523         --parent_sq->nr_pending;
524 }
525
526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 {
528         struct throtl_grp *tg;
529
530         tg = throtl_rb_first(parent_sq);
531         if (!tg)
532                 return;
533
534         parent_sq->first_pending_disptime = tg->disptime;
535 }
536
537 static void tg_service_queue_add(struct throtl_grp *tg)
538 {
539         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
541         struct rb_node *parent = NULL;
542         struct throtl_grp *__tg;
543         unsigned long key = tg->disptime;
544         bool leftmost = true;
545
546         while (*node != NULL) {
547                 parent = *node;
548                 __tg = rb_entry_tg(parent);
549
550                 if (time_before(key, __tg->disptime))
551                         node = &parent->rb_left;
552                 else {
553                         node = &parent->rb_right;
554                         leftmost = false;
555                 }
556         }
557
558         rb_link_node(&tg->rb_node, parent, node);
559         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
560                                leftmost);
561 }
562
563 static void throtl_enqueue_tg(struct throtl_grp *tg)
564 {
565         if (!(tg->flags & THROTL_TG_PENDING)) {
566                 tg_service_queue_add(tg);
567                 tg->flags |= THROTL_TG_PENDING;
568                 tg->service_queue.parent_sq->nr_pending++;
569         }
570 }
571
572 static void throtl_dequeue_tg(struct throtl_grp *tg)
573 {
574         if (tg->flags & THROTL_TG_PENDING) {
575                 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
576                 tg->flags &= ~THROTL_TG_PENDING;
577         }
578 }
579
580 /* Call with queue lock held */
581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
582                                           unsigned long expires)
583 {
584         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
585
586         /*
587          * Since we are adjusting the throttle limit dynamically, the sleep
588          * time calculated according to previous limit might be invalid. It's
589          * possible the cgroup sleep time is very long and no other cgroups
590          * have IO running so notify the limit changes. Make sure the cgroup
591          * doesn't sleep too long to avoid the missed notification.
592          */
593         if (time_after(expires, max_expire))
594                 expires = max_expire;
595         mod_timer(&sq->pending_timer, expires);
596         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
597                    expires - jiffies, jiffies);
598 }
599
600 /**
601  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
602  * @sq: the service_queue to schedule dispatch for
603  * @force: force scheduling
604  *
605  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
606  * dispatch time of the first pending child.  Returns %true if either timer
607  * is armed or there's no pending child left.  %false if the current
608  * dispatch window is still open and the caller should continue
609  * dispatching.
610  *
611  * If @force is %true, the dispatch timer is always scheduled and this
612  * function is guaranteed to return %true.  This is to be used when the
613  * caller can't dispatch itself and needs to invoke pending_timer
614  * unconditionally.  Note that forced scheduling is likely to induce short
615  * delay before dispatch starts even if @sq->first_pending_disptime is not
616  * in the future and thus shouldn't be used in hot paths.
617  */
618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
619                                           bool force)
620 {
621         /* any pending children left? */
622         if (!sq->nr_pending)
623                 return true;
624
625         update_min_dispatch_time(sq);
626
627         /* is the next dispatch time in the future? */
628         if (force || time_after(sq->first_pending_disptime, jiffies)) {
629                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
630                 return true;
631         }
632
633         /* tell the caller to continue dispatching */
634         return false;
635 }
636
637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
638                 bool rw, unsigned long start)
639 {
640         tg->bytes_disp[rw] = 0;
641         tg->io_disp[rw] = 0;
642
643         /*
644          * Previous slice has expired. We must have trimmed it after last
645          * bio dispatch. That means since start of last slice, we never used
646          * that bandwidth. Do try to make use of that bandwidth while giving
647          * credit.
648          */
649         if (time_after_eq(start, tg->slice_start[rw]))
650                 tg->slice_start[rw] = start;
651
652         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
653         throtl_log(&tg->service_queue,
654                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
655                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
656                    tg->slice_end[rw], jiffies);
657 }
658
659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
660 {
661         tg->bytes_disp[rw] = 0;
662         tg->io_disp[rw] = 0;
663         tg->slice_start[rw] = jiffies;
664         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665
666         throtl_log(&tg->service_queue,
667                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
668                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
669                    tg->slice_end[rw], jiffies);
670 }
671
672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
673                                         unsigned long jiffy_end)
674 {
675         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
676 }
677
678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
679                                        unsigned long jiffy_end)
680 {
681         throtl_set_slice_end(tg, rw, jiffy_end);
682         throtl_log(&tg->service_queue,
683                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
684                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
685                    tg->slice_end[rw], jiffies);
686 }
687
688 /* Determine if previously allocated or extended slice is complete or not */
689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
690 {
691         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
692                 return false;
693
694         return true;
695 }
696
697 /* Trim the used slices and adjust slice start accordingly */
698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
699 {
700         unsigned long nr_slices, time_elapsed, io_trim;
701         u64 bytes_trim, tmp;
702
703         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704
705         /*
706          * If bps are unlimited (-1), then time slice don't get
707          * renewed. Don't try to trim the slice if slice is used. A new
708          * slice will start when appropriate.
709          */
710         if (throtl_slice_used(tg, rw))
711                 return;
712
713         /*
714          * A bio has been dispatched. Also adjust slice_end. It might happen
715          * that initially cgroup limit was very low resulting in high
716          * slice_end, but later limit was bumped up and bio was dispatched
717          * sooner, then we need to reduce slice_end. A high bogus slice_end
718          * is bad because it does not allow new slice to start.
719          */
720
721         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
722
723         time_elapsed = jiffies - tg->slice_start[rw];
724
725         nr_slices = time_elapsed / tg->td->throtl_slice;
726
727         if (!nr_slices)
728                 return;
729         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
730         do_div(tmp, HZ);
731         bytes_trim = tmp;
732
733         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734                 HZ;
735
736         if (!bytes_trim && !io_trim)
737                 return;
738
739         if (tg->bytes_disp[rw] >= bytes_trim)
740                 tg->bytes_disp[rw] -= bytes_trim;
741         else
742                 tg->bytes_disp[rw] = 0;
743
744         if (tg->io_disp[rw] >= io_trim)
745                 tg->io_disp[rw] -= io_trim;
746         else
747                 tg->io_disp[rw] = 0;
748
749         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
750
751         throtl_log(&tg->service_queue,
752                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
753                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
754                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
755 }
756
757 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
758                                   u32 iops_limit, unsigned long *wait)
759 {
760         bool rw = bio_data_dir(bio);
761         unsigned int io_allowed;
762         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
763         u64 tmp;
764
765         if (iops_limit == UINT_MAX) {
766                 if (wait)
767                         *wait = 0;
768                 return true;
769         }
770
771         jiffy_elapsed = jiffies - tg->slice_start[rw];
772
773         /* Round up to the next throttle slice, wait time must be nonzero */
774         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
775
776         /*
777          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
778          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
779          * will allow dispatch after 1 second and after that slice should
780          * have been trimmed.
781          */
782
783         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
784         do_div(tmp, HZ);
785
786         if (tmp > UINT_MAX)
787                 io_allowed = UINT_MAX;
788         else
789                 io_allowed = tmp;
790
791         if (tg->io_disp[rw] + 1 <= io_allowed) {
792                 if (wait)
793                         *wait = 0;
794                 return true;
795         }
796
797         /* Calc approx time to dispatch */
798         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
799
800         if (wait)
801                 *wait = jiffy_wait;
802         return false;
803 }
804
805 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
806                                  u64 bps_limit, unsigned long *wait)
807 {
808         bool rw = bio_data_dir(bio);
809         u64 bytes_allowed, extra_bytes, tmp;
810         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
811         unsigned int bio_size = throtl_bio_data_size(bio);
812
813         /* no need to throttle if this bio's bytes have been accounted */
814         if (bps_limit == U64_MAX || bio_flagged(bio, BIO_THROTTLED)) {
815                 if (wait)
816                         *wait = 0;
817                 return true;
818         }
819
820         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
821
822         /* Slice has just started. Consider one slice interval */
823         if (!jiffy_elapsed)
824                 jiffy_elapsed_rnd = tg->td->throtl_slice;
825
826         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
827
828         tmp = bps_limit * jiffy_elapsed_rnd;
829         do_div(tmp, HZ);
830         bytes_allowed = tmp;
831
832         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
833                 if (wait)
834                         *wait = 0;
835                 return true;
836         }
837
838         /* Calc approx time to dispatch */
839         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
840         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
841
842         if (!jiffy_wait)
843                 jiffy_wait = 1;
844
845         /*
846          * This wait time is without taking into consideration the rounding
847          * up we did. Add that time also.
848          */
849         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
850         if (wait)
851                 *wait = jiffy_wait;
852         return false;
853 }
854
855 /*
856  * Returns whether one can dispatch a bio or not. Also returns approx number
857  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
858  */
859 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
860                             unsigned long *wait)
861 {
862         bool rw = bio_data_dir(bio);
863         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
864         u64 bps_limit = tg_bps_limit(tg, rw);
865         u32 iops_limit = tg_iops_limit(tg, rw);
866
867         /*
868          * Currently whole state machine of group depends on first bio
869          * queued in the group bio list. So one should not be calling
870          * this function with a different bio if there are other bios
871          * queued.
872          */
873         BUG_ON(tg->service_queue.nr_queued[rw] &&
874                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
875
876         /* If tg->bps = -1, then BW is unlimited */
877         if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
878                 if (wait)
879                         *wait = 0;
880                 return true;
881         }
882
883         /*
884          * If previous slice expired, start a new one otherwise renew/extend
885          * existing slice to make sure it is at least throtl_slice interval
886          * long since now. New slice is started only for empty throttle group.
887          * If there is queued bio, that means there should be an active
888          * slice and it should be extended instead.
889          */
890         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
891                 throtl_start_new_slice(tg, rw);
892         else {
893                 if (time_before(tg->slice_end[rw],
894                     jiffies + tg->td->throtl_slice))
895                         throtl_extend_slice(tg, rw,
896                                 jiffies + tg->td->throtl_slice);
897         }
898
899         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
900             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
901                 if (wait)
902                         *wait = 0;
903                 return true;
904         }
905
906         max_wait = max(bps_wait, iops_wait);
907
908         if (wait)
909                 *wait = max_wait;
910
911         if (time_before(tg->slice_end[rw], jiffies + max_wait))
912                 throtl_extend_slice(tg, rw, jiffies + max_wait);
913
914         return false;
915 }
916
917 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
918 {
919         bool rw = bio_data_dir(bio);
920         unsigned int bio_size = throtl_bio_data_size(bio);
921
922         /* Charge the bio to the group */
923         if (!bio_flagged(bio, BIO_THROTTLED)) {
924                 tg->bytes_disp[rw] += bio_size;
925                 tg->last_bytes_disp[rw] += bio_size;
926         }
927
928         tg->io_disp[rw]++;
929         tg->last_io_disp[rw]++;
930
931         /*
932          * BIO_THROTTLED is used to prevent the same bio to be throttled
933          * more than once as a throttled bio will go through blk-throtl the
934          * second time when it eventually gets issued.  Set it when a bio
935          * is being charged to a tg.
936          */
937         if (!bio_flagged(bio, BIO_THROTTLED))
938                 bio_set_flag(bio, BIO_THROTTLED);
939 }
940
941 /**
942  * throtl_add_bio_tg - add a bio to the specified throtl_grp
943  * @bio: bio to add
944  * @qn: qnode to use
945  * @tg: the target throtl_grp
946  *
947  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
948  * tg->qnode_on_self[] is used.
949  */
950 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
951                               struct throtl_grp *tg)
952 {
953         struct throtl_service_queue *sq = &tg->service_queue;
954         bool rw = bio_data_dir(bio);
955
956         if (!qn)
957                 qn = &tg->qnode_on_self[rw];
958
959         /*
960          * If @tg doesn't currently have any bios queued in the same
961          * direction, queueing @bio can change when @tg should be
962          * dispatched.  Mark that @tg was empty.  This is automatically
963          * cleared on the next tg_update_disptime().
964          */
965         if (!sq->nr_queued[rw])
966                 tg->flags |= THROTL_TG_WAS_EMPTY;
967
968         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
969
970         sq->nr_queued[rw]++;
971         throtl_enqueue_tg(tg);
972 }
973
974 static void tg_update_disptime(struct throtl_grp *tg)
975 {
976         struct throtl_service_queue *sq = &tg->service_queue;
977         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
978         struct bio *bio;
979
980         bio = throtl_peek_queued(&sq->queued[READ]);
981         if (bio)
982                 tg_may_dispatch(tg, bio, &read_wait);
983
984         bio = throtl_peek_queued(&sq->queued[WRITE]);
985         if (bio)
986                 tg_may_dispatch(tg, bio, &write_wait);
987
988         min_wait = min(read_wait, write_wait);
989         disptime = jiffies + min_wait;
990
991         /* Update dispatch time */
992         throtl_dequeue_tg(tg);
993         tg->disptime = disptime;
994         throtl_enqueue_tg(tg);
995
996         /* see throtl_add_bio_tg() */
997         tg->flags &= ~THROTL_TG_WAS_EMPTY;
998 }
999
1000 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1001                                         struct throtl_grp *parent_tg, bool rw)
1002 {
1003         if (throtl_slice_used(parent_tg, rw)) {
1004                 throtl_start_new_slice_with_credit(parent_tg, rw,
1005                                 child_tg->slice_start[rw]);
1006         }
1007
1008 }
1009
1010 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1011 {
1012         struct throtl_service_queue *sq = &tg->service_queue;
1013         struct throtl_service_queue *parent_sq = sq->parent_sq;
1014         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1015         struct throtl_grp *tg_to_put = NULL;
1016         struct bio *bio;
1017
1018         /*
1019          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1020          * from @tg may put its reference and @parent_sq might end up
1021          * getting released prematurely.  Remember the tg to put and put it
1022          * after @bio is transferred to @parent_sq.
1023          */
1024         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1025         sq->nr_queued[rw]--;
1026
1027         throtl_charge_bio(tg, bio);
1028
1029         /*
1030          * If our parent is another tg, we just need to transfer @bio to
1031          * the parent using throtl_add_bio_tg().  If our parent is
1032          * @td->service_queue, @bio is ready to be issued.  Put it on its
1033          * bio_lists[] and decrease total number queued.  The caller is
1034          * responsible for issuing these bios.
1035          */
1036         if (parent_tg) {
1037                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1038                 start_parent_slice_with_credit(tg, parent_tg, rw);
1039         } else {
1040                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1041                                      &parent_sq->queued[rw]);
1042                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1043                 tg->td->nr_queued[rw]--;
1044         }
1045
1046         throtl_trim_slice(tg, rw);
1047
1048         if (tg_to_put)
1049                 blkg_put(tg_to_blkg(tg_to_put));
1050 }
1051
1052 static int throtl_dispatch_tg(struct throtl_grp *tg)
1053 {
1054         struct throtl_service_queue *sq = &tg->service_queue;
1055         unsigned int nr_reads = 0, nr_writes = 0;
1056         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1057         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1058         struct bio *bio;
1059
1060         /* Try to dispatch 75% READS and 25% WRITES */
1061
1062         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1063                tg_may_dispatch(tg, bio, NULL)) {
1064
1065                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1066                 nr_reads++;
1067
1068                 if (nr_reads >= max_nr_reads)
1069                         break;
1070         }
1071
1072         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1073                tg_may_dispatch(tg, bio, NULL)) {
1074
1075                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1076                 nr_writes++;
1077
1078                 if (nr_writes >= max_nr_writes)
1079                         break;
1080         }
1081
1082         return nr_reads + nr_writes;
1083 }
1084
1085 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1086 {
1087         unsigned int nr_disp = 0;
1088
1089         while (1) {
1090                 struct throtl_grp *tg;
1091                 struct throtl_service_queue *sq;
1092
1093                 if (!parent_sq->nr_pending)
1094                         break;
1095
1096                 tg = throtl_rb_first(parent_sq);
1097                 if (!tg)
1098                         break;
1099
1100                 if (time_before(jiffies, tg->disptime))
1101                         break;
1102
1103                 throtl_dequeue_tg(tg);
1104
1105                 nr_disp += throtl_dispatch_tg(tg);
1106
1107                 sq = &tg->service_queue;
1108                 if (sq->nr_queued[0] || sq->nr_queued[1])
1109                         tg_update_disptime(tg);
1110
1111                 if (nr_disp >= THROTL_QUANTUM)
1112                         break;
1113         }
1114
1115         return nr_disp;
1116 }
1117
1118 static bool throtl_can_upgrade(struct throtl_data *td,
1119         struct throtl_grp *this_tg);
1120 /**
1121  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1122  * @t: the pending_timer member of the throtl_service_queue being serviced
1123  *
1124  * This timer is armed when a child throtl_grp with active bio's become
1125  * pending and queued on the service_queue's pending_tree and expires when
1126  * the first child throtl_grp should be dispatched.  This function
1127  * dispatches bio's from the children throtl_grps to the parent
1128  * service_queue.
1129  *
1130  * If the parent's parent is another throtl_grp, dispatching is propagated
1131  * by either arming its pending_timer or repeating dispatch directly.  If
1132  * the top-level service_tree is reached, throtl_data->dispatch_work is
1133  * kicked so that the ready bio's are issued.
1134  */
1135 static void throtl_pending_timer_fn(struct timer_list *t)
1136 {
1137         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1138         struct throtl_grp *tg = sq_to_tg(sq);
1139         struct throtl_data *td = sq_to_td(sq);
1140         struct request_queue *q = td->queue;
1141         struct throtl_service_queue *parent_sq;
1142         bool dispatched;
1143         int ret;
1144
1145         spin_lock_irq(&q->queue_lock);
1146         if (throtl_can_upgrade(td, NULL))
1147                 throtl_upgrade_state(td);
1148
1149 again:
1150         parent_sq = sq->parent_sq;
1151         dispatched = false;
1152
1153         while (true) {
1154                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1155                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1156                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1157
1158                 ret = throtl_select_dispatch(sq);
1159                 if (ret) {
1160                         throtl_log(sq, "bios disp=%u", ret);
1161                         dispatched = true;
1162                 }
1163
1164                 if (throtl_schedule_next_dispatch(sq, false))
1165                         break;
1166
1167                 /* this dispatch windows is still open, relax and repeat */
1168                 spin_unlock_irq(&q->queue_lock);
1169                 cpu_relax();
1170                 spin_lock_irq(&q->queue_lock);
1171         }
1172
1173         if (!dispatched)
1174                 goto out_unlock;
1175
1176         if (parent_sq) {
1177                 /* @parent_sq is another throl_grp, propagate dispatch */
1178                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1179                         tg_update_disptime(tg);
1180                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1181                                 /* window is already open, repeat dispatching */
1182                                 sq = parent_sq;
1183                                 tg = sq_to_tg(sq);
1184                                 goto again;
1185                         }
1186                 }
1187         } else {
1188                 /* reached the top-level, queue issuing */
1189                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1190         }
1191 out_unlock:
1192         spin_unlock_irq(&q->queue_lock);
1193 }
1194
1195 /**
1196  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1197  * @work: work item being executed
1198  *
1199  * This function is queued for execution when bios reach the bio_lists[]
1200  * of throtl_data->service_queue.  Those bios are ready and issued by this
1201  * function.
1202  */
1203 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1204 {
1205         struct throtl_data *td = container_of(work, struct throtl_data,
1206                                               dispatch_work);
1207         struct throtl_service_queue *td_sq = &td->service_queue;
1208         struct request_queue *q = td->queue;
1209         struct bio_list bio_list_on_stack;
1210         struct bio *bio;
1211         struct blk_plug plug;
1212         int rw;
1213
1214         bio_list_init(&bio_list_on_stack);
1215
1216         spin_lock_irq(&q->queue_lock);
1217         for (rw = READ; rw <= WRITE; rw++)
1218                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1219                         bio_list_add(&bio_list_on_stack, bio);
1220         spin_unlock_irq(&q->queue_lock);
1221
1222         if (!bio_list_empty(&bio_list_on_stack)) {
1223                 blk_start_plug(&plug);
1224                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1225                         submit_bio_noacct_nocheck(bio);
1226                 blk_finish_plug(&plug);
1227         }
1228 }
1229
1230 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1231                               int off)
1232 {
1233         struct throtl_grp *tg = pd_to_tg(pd);
1234         u64 v = *(u64 *)((void *)tg + off);
1235
1236         if (v == U64_MAX)
1237                 return 0;
1238         return __blkg_prfill_u64(sf, pd, v);
1239 }
1240
1241 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1242                                int off)
1243 {
1244         struct throtl_grp *tg = pd_to_tg(pd);
1245         unsigned int v = *(unsigned int *)((void *)tg + off);
1246
1247         if (v == UINT_MAX)
1248                 return 0;
1249         return __blkg_prfill_u64(sf, pd, v);
1250 }
1251
1252 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1253 {
1254         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1255                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1256         return 0;
1257 }
1258
1259 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1260 {
1261         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1262                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1263         return 0;
1264 }
1265
1266 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1267 {
1268         struct throtl_service_queue *sq = &tg->service_queue;
1269         struct cgroup_subsys_state *pos_css;
1270         struct blkcg_gq *blkg;
1271
1272         throtl_log(&tg->service_queue,
1273                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1274                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1275                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1276
1277         /*
1278          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1279          * considered to have rules if either the tg itself or any of its
1280          * ancestors has rules.  This identifies groups without any
1281          * restrictions in the whole hierarchy and allows them to bypass
1282          * blk-throttle.
1283          */
1284         blkg_for_each_descendant_pre(blkg, pos_css,
1285                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1286                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1287                 struct throtl_grp *parent_tg;
1288
1289                 tg_update_has_rules(this_tg);
1290                 /* ignore root/second level */
1291                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1292                     !blkg->parent->parent)
1293                         continue;
1294                 parent_tg = blkg_to_tg(blkg->parent);
1295                 /*
1296                  * make sure all children has lower idle time threshold and
1297                  * higher latency target
1298                  */
1299                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1300                                 parent_tg->idletime_threshold);
1301                 this_tg->latency_target = max(this_tg->latency_target,
1302                                 parent_tg->latency_target);
1303         }
1304
1305         /*
1306          * We're already holding queue_lock and know @tg is valid.  Let's
1307          * apply the new config directly.
1308          *
1309          * Restart the slices for both READ and WRITES. It might happen
1310          * that a group's limit are dropped suddenly and we don't want to
1311          * account recently dispatched IO with new low rate.
1312          */
1313         throtl_start_new_slice(tg, READ);
1314         throtl_start_new_slice(tg, WRITE);
1315
1316         if (tg->flags & THROTL_TG_PENDING) {
1317                 tg_update_disptime(tg);
1318                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1319         }
1320 }
1321
1322 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1323                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1324 {
1325         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1326         struct blkg_conf_ctx ctx;
1327         struct throtl_grp *tg;
1328         int ret;
1329         u64 v;
1330
1331         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1332         if (ret)
1333                 return ret;
1334
1335         ret = -EINVAL;
1336         if (sscanf(ctx.body, "%llu", &v) != 1)
1337                 goto out_finish;
1338         if (!v)
1339                 v = U64_MAX;
1340
1341         tg = blkg_to_tg(ctx.blkg);
1342
1343         if (is_u64)
1344                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1345         else
1346                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1347
1348         tg_conf_updated(tg, false);
1349         ret = 0;
1350 out_finish:
1351         blkg_conf_finish(&ctx);
1352         return ret ?: nbytes;
1353 }
1354
1355 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1356                                char *buf, size_t nbytes, loff_t off)
1357 {
1358         return tg_set_conf(of, buf, nbytes, off, true);
1359 }
1360
1361 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1362                                 char *buf, size_t nbytes, loff_t off)
1363 {
1364         return tg_set_conf(of, buf, nbytes, off, false);
1365 }
1366
1367 static int tg_print_rwstat(struct seq_file *sf, void *v)
1368 {
1369         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1370                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1371                           seq_cft(sf)->private, true);
1372         return 0;
1373 }
1374
1375 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1376                                       struct blkg_policy_data *pd, int off)
1377 {
1378         struct blkg_rwstat_sample sum;
1379
1380         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1381                                   &sum);
1382         return __blkg_prfill_rwstat(sf, pd, &sum);
1383 }
1384
1385 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1386 {
1387         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1388                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1389                           seq_cft(sf)->private, true);
1390         return 0;
1391 }
1392
1393 static struct cftype throtl_legacy_files[] = {
1394         {
1395                 .name = "throttle.read_bps_device",
1396                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1397                 .seq_show = tg_print_conf_u64,
1398                 .write = tg_set_conf_u64,
1399         },
1400         {
1401                 .name = "throttle.write_bps_device",
1402                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1403                 .seq_show = tg_print_conf_u64,
1404                 .write = tg_set_conf_u64,
1405         },
1406         {
1407                 .name = "throttle.read_iops_device",
1408                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1409                 .seq_show = tg_print_conf_uint,
1410                 .write = tg_set_conf_uint,
1411         },
1412         {
1413                 .name = "throttle.write_iops_device",
1414                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1415                 .seq_show = tg_print_conf_uint,
1416                 .write = tg_set_conf_uint,
1417         },
1418         {
1419                 .name = "throttle.io_service_bytes",
1420                 .private = offsetof(struct throtl_grp, stat_bytes),
1421                 .seq_show = tg_print_rwstat,
1422         },
1423         {
1424                 .name = "throttle.io_service_bytes_recursive",
1425                 .private = offsetof(struct throtl_grp, stat_bytes),
1426                 .seq_show = tg_print_rwstat_recursive,
1427         },
1428         {
1429                 .name = "throttle.io_serviced",
1430                 .private = offsetof(struct throtl_grp, stat_ios),
1431                 .seq_show = tg_print_rwstat,
1432         },
1433         {
1434                 .name = "throttle.io_serviced_recursive",
1435                 .private = offsetof(struct throtl_grp, stat_ios),
1436                 .seq_show = tg_print_rwstat_recursive,
1437         },
1438         { }     /* terminate */
1439 };
1440
1441 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1442                          int off)
1443 {
1444         struct throtl_grp *tg = pd_to_tg(pd);
1445         const char *dname = blkg_dev_name(pd->blkg);
1446         char bufs[4][21] = { "max", "max", "max", "max" };
1447         u64 bps_dft;
1448         unsigned int iops_dft;
1449         char idle_time[26] = "";
1450         char latency_time[26] = "";
1451
1452         if (!dname)
1453                 return 0;
1454
1455         if (off == LIMIT_LOW) {
1456                 bps_dft = 0;
1457                 iops_dft = 0;
1458         } else {
1459                 bps_dft = U64_MAX;
1460                 iops_dft = UINT_MAX;
1461         }
1462
1463         if (tg->bps_conf[READ][off] == bps_dft &&
1464             tg->bps_conf[WRITE][off] == bps_dft &&
1465             tg->iops_conf[READ][off] == iops_dft &&
1466             tg->iops_conf[WRITE][off] == iops_dft &&
1467             (off != LIMIT_LOW ||
1468              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1469               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1470                 return 0;
1471
1472         if (tg->bps_conf[READ][off] != U64_MAX)
1473                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1474                         tg->bps_conf[READ][off]);
1475         if (tg->bps_conf[WRITE][off] != U64_MAX)
1476                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1477                         tg->bps_conf[WRITE][off]);
1478         if (tg->iops_conf[READ][off] != UINT_MAX)
1479                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1480                         tg->iops_conf[READ][off]);
1481         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1482                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1483                         tg->iops_conf[WRITE][off]);
1484         if (off == LIMIT_LOW) {
1485                 if (tg->idletime_threshold_conf == ULONG_MAX)
1486                         strcpy(idle_time, " idle=max");
1487                 else
1488                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1489                                 tg->idletime_threshold_conf);
1490
1491                 if (tg->latency_target_conf == ULONG_MAX)
1492                         strcpy(latency_time, " latency=max");
1493                 else
1494                         snprintf(latency_time, sizeof(latency_time),
1495                                 " latency=%lu", tg->latency_target_conf);
1496         }
1497
1498         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1499                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1500                    latency_time);
1501         return 0;
1502 }
1503
1504 static int tg_print_limit(struct seq_file *sf, void *v)
1505 {
1506         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1507                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1508         return 0;
1509 }
1510
1511 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1512                           char *buf, size_t nbytes, loff_t off)
1513 {
1514         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1515         struct blkg_conf_ctx ctx;
1516         struct throtl_grp *tg;
1517         u64 v[4];
1518         unsigned long idle_time;
1519         unsigned long latency_time;
1520         int ret;
1521         int index = of_cft(of)->private;
1522
1523         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1524         if (ret)
1525                 return ret;
1526
1527         tg = blkg_to_tg(ctx.blkg);
1528
1529         v[0] = tg->bps_conf[READ][index];
1530         v[1] = tg->bps_conf[WRITE][index];
1531         v[2] = tg->iops_conf[READ][index];
1532         v[3] = tg->iops_conf[WRITE][index];
1533
1534         idle_time = tg->idletime_threshold_conf;
1535         latency_time = tg->latency_target_conf;
1536         while (true) {
1537                 char tok[27];   /* wiops=18446744073709551616 */
1538                 char *p;
1539                 u64 val = U64_MAX;
1540                 int len;
1541
1542                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1543                         break;
1544                 if (tok[0] == '\0')
1545                         break;
1546                 ctx.body += len;
1547
1548                 ret = -EINVAL;
1549                 p = tok;
1550                 strsep(&p, "=");
1551                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1552                         goto out_finish;
1553
1554                 ret = -ERANGE;
1555                 if (!val)
1556                         goto out_finish;
1557
1558                 ret = -EINVAL;
1559                 if (!strcmp(tok, "rbps") && val > 1)
1560                         v[0] = val;
1561                 else if (!strcmp(tok, "wbps") && val > 1)
1562                         v[1] = val;
1563                 else if (!strcmp(tok, "riops") && val > 1)
1564                         v[2] = min_t(u64, val, UINT_MAX);
1565                 else if (!strcmp(tok, "wiops") && val > 1)
1566                         v[3] = min_t(u64, val, UINT_MAX);
1567                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1568                         idle_time = val;
1569                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1570                         latency_time = val;
1571                 else
1572                         goto out_finish;
1573         }
1574
1575         tg->bps_conf[READ][index] = v[0];
1576         tg->bps_conf[WRITE][index] = v[1];
1577         tg->iops_conf[READ][index] = v[2];
1578         tg->iops_conf[WRITE][index] = v[3];
1579
1580         if (index == LIMIT_MAX) {
1581                 tg->bps[READ][index] = v[0];
1582                 tg->bps[WRITE][index] = v[1];
1583                 tg->iops[READ][index] = v[2];
1584                 tg->iops[WRITE][index] = v[3];
1585         }
1586         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1587                 tg->bps_conf[READ][LIMIT_MAX]);
1588         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1589                 tg->bps_conf[WRITE][LIMIT_MAX]);
1590         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1591                 tg->iops_conf[READ][LIMIT_MAX]);
1592         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1593                 tg->iops_conf[WRITE][LIMIT_MAX]);
1594         tg->idletime_threshold_conf = idle_time;
1595         tg->latency_target_conf = latency_time;
1596
1597         /* force user to configure all settings for low limit  */
1598         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1599               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1600             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1601             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1602                 tg->bps[READ][LIMIT_LOW] = 0;
1603                 tg->bps[WRITE][LIMIT_LOW] = 0;
1604                 tg->iops[READ][LIMIT_LOW] = 0;
1605                 tg->iops[WRITE][LIMIT_LOW] = 0;
1606                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1607                 tg->latency_target = DFL_LATENCY_TARGET;
1608         } else if (index == LIMIT_LOW) {
1609                 tg->idletime_threshold = tg->idletime_threshold_conf;
1610                 tg->latency_target = tg->latency_target_conf;
1611         }
1612
1613         blk_throtl_update_limit_valid(tg->td);
1614         if (tg->td->limit_valid[LIMIT_LOW]) {
1615                 if (index == LIMIT_LOW)
1616                         tg->td->limit_index = LIMIT_LOW;
1617         } else
1618                 tg->td->limit_index = LIMIT_MAX;
1619         tg_conf_updated(tg, index == LIMIT_LOW &&
1620                 tg->td->limit_valid[LIMIT_LOW]);
1621         ret = 0;
1622 out_finish:
1623         blkg_conf_finish(&ctx);
1624         return ret ?: nbytes;
1625 }
1626
1627 static struct cftype throtl_files[] = {
1628 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1629         {
1630                 .name = "low",
1631                 .flags = CFTYPE_NOT_ON_ROOT,
1632                 .seq_show = tg_print_limit,
1633                 .write = tg_set_limit,
1634                 .private = LIMIT_LOW,
1635         },
1636 #endif
1637         {
1638                 .name = "max",
1639                 .flags = CFTYPE_NOT_ON_ROOT,
1640                 .seq_show = tg_print_limit,
1641                 .write = tg_set_limit,
1642                 .private = LIMIT_MAX,
1643         },
1644         { }     /* terminate */
1645 };
1646
1647 static void throtl_shutdown_wq(struct request_queue *q)
1648 {
1649         struct throtl_data *td = q->td;
1650
1651         cancel_work_sync(&td->dispatch_work);
1652 }
1653
1654 struct blkcg_policy blkcg_policy_throtl = {
1655         .dfl_cftypes            = throtl_files,
1656         .legacy_cftypes         = throtl_legacy_files,
1657
1658         .pd_alloc_fn            = throtl_pd_alloc,
1659         .pd_init_fn             = throtl_pd_init,
1660         .pd_online_fn           = throtl_pd_online,
1661         .pd_offline_fn          = throtl_pd_offline,
1662         .pd_free_fn             = throtl_pd_free,
1663 };
1664
1665 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1666 {
1667         unsigned long rtime = jiffies, wtime = jiffies;
1668
1669         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1670                 rtime = tg->last_low_overflow_time[READ];
1671         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1672                 wtime = tg->last_low_overflow_time[WRITE];
1673         return min(rtime, wtime);
1674 }
1675
1676 /* tg should not be an intermediate node */
1677 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1678 {
1679         struct throtl_service_queue *parent_sq;
1680         struct throtl_grp *parent = tg;
1681         unsigned long ret = __tg_last_low_overflow_time(tg);
1682
1683         while (true) {
1684                 parent_sq = parent->service_queue.parent_sq;
1685                 parent = sq_to_tg(parent_sq);
1686                 if (!parent)
1687                         break;
1688
1689                 /*
1690                  * The parent doesn't have low limit, it always reaches low
1691                  * limit. Its overflow time is useless for children
1692                  */
1693                 if (!parent->bps[READ][LIMIT_LOW] &&
1694                     !parent->iops[READ][LIMIT_LOW] &&
1695                     !parent->bps[WRITE][LIMIT_LOW] &&
1696                     !parent->iops[WRITE][LIMIT_LOW])
1697                         continue;
1698                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1699                         ret = __tg_last_low_overflow_time(parent);
1700         }
1701         return ret;
1702 }
1703
1704 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1705 {
1706         /*
1707          * cgroup is idle if:
1708          * - single idle is too long, longer than a fixed value (in case user
1709          *   configure a too big threshold) or 4 times of idletime threshold
1710          * - average think time is more than threshold
1711          * - IO latency is largely below threshold
1712          */
1713         unsigned long time;
1714         bool ret;
1715
1716         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1717         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1718               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1719               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1720               tg->avg_idletime > tg->idletime_threshold ||
1721               (tg->latency_target && tg->bio_cnt &&
1722                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1723         throtl_log(&tg->service_queue,
1724                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1725                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1726                 tg->bio_cnt, ret, tg->td->scale);
1727         return ret;
1728 }
1729
1730 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1731 {
1732         struct throtl_service_queue *sq = &tg->service_queue;
1733         bool read_limit, write_limit;
1734
1735         /*
1736          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1737          * reaches), it's ok to upgrade to next limit
1738          */
1739         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1740         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1741         if (!read_limit && !write_limit)
1742                 return true;
1743         if (read_limit && sq->nr_queued[READ] &&
1744             (!write_limit || sq->nr_queued[WRITE]))
1745                 return true;
1746         if (write_limit && sq->nr_queued[WRITE] &&
1747             (!read_limit || sq->nr_queued[READ]))
1748                 return true;
1749
1750         if (time_after_eq(jiffies,
1751                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1752             throtl_tg_is_idle(tg))
1753                 return true;
1754         return false;
1755 }
1756
1757 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1758 {
1759         while (true) {
1760                 if (throtl_tg_can_upgrade(tg))
1761                         return true;
1762                 tg = sq_to_tg(tg->service_queue.parent_sq);
1763                 if (!tg || !tg_to_blkg(tg)->parent)
1764                         return false;
1765         }
1766         return false;
1767 }
1768
1769 static bool throtl_can_upgrade(struct throtl_data *td,
1770         struct throtl_grp *this_tg)
1771 {
1772         struct cgroup_subsys_state *pos_css;
1773         struct blkcg_gq *blkg;
1774
1775         if (td->limit_index != LIMIT_LOW)
1776                 return false;
1777
1778         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1779                 return false;
1780
1781         rcu_read_lock();
1782         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1783                 struct throtl_grp *tg = blkg_to_tg(blkg);
1784
1785                 if (tg == this_tg)
1786                         continue;
1787                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1788                         continue;
1789                 if (!throtl_hierarchy_can_upgrade(tg)) {
1790                         rcu_read_unlock();
1791                         return false;
1792                 }
1793         }
1794         rcu_read_unlock();
1795         return true;
1796 }
1797
1798 static void throtl_upgrade_check(struct throtl_grp *tg)
1799 {
1800         unsigned long now = jiffies;
1801
1802         if (tg->td->limit_index != LIMIT_LOW)
1803                 return;
1804
1805         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1806                 return;
1807
1808         tg->last_check_time = now;
1809
1810         if (!time_after_eq(now,
1811              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1812                 return;
1813
1814         if (throtl_can_upgrade(tg->td, NULL))
1815                 throtl_upgrade_state(tg->td);
1816 }
1817
1818 static void throtl_upgrade_state(struct throtl_data *td)
1819 {
1820         struct cgroup_subsys_state *pos_css;
1821         struct blkcg_gq *blkg;
1822
1823         throtl_log(&td->service_queue, "upgrade to max");
1824         td->limit_index = LIMIT_MAX;
1825         td->low_upgrade_time = jiffies;
1826         td->scale = 0;
1827         rcu_read_lock();
1828         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1829                 struct throtl_grp *tg = blkg_to_tg(blkg);
1830                 struct throtl_service_queue *sq = &tg->service_queue;
1831
1832                 tg->disptime = jiffies - 1;
1833                 throtl_select_dispatch(sq);
1834                 throtl_schedule_next_dispatch(sq, true);
1835         }
1836         rcu_read_unlock();
1837         throtl_select_dispatch(&td->service_queue);
1838         throtl_schedule_next_dispatch(&td->service_queue, true);
1839         queue_work(kthrotld_workqueue, &td->dispatch_work);
1840 }
1841
1842 static void throtl_downgrade_state(struct throtl_data *td)
1843 {
1844         td->scale /= 2;
1845
1846         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1847         if (td->scale) {
1848                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1849                 return;
1850         }
1851
1852         td->limit_index = LIMIT_LOW;
1853         td->low_downgrade_time = jiffies;
1854 }
1855
1856 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1857 {
1858         struct throtl_data *td = tg->td;
1859         unsigned long now = jiffies;
1860
1861         /*
1862          * If cgroup is below low limit, consider downgrade and throttle other
1863          * cgroups
1864          */
1865         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1866             time_after_eq(now, tg_last_low_overflow_time(tg) +
1867                                         td->throtl_slice) &&
1868             (!throtl_tg_is_idle(tg) ||
1869              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1870                 return true;
1871         return false;
1872 }
1873
1874 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1875 {
1876         while (true) {
1877                 if (!throtl_tg_can_downgrade(tg))
1878                         return false;
1879                 tg = sq_to_tg(tg->service_queue.parent_sq);
1880                 if (!tg || !tg_to_blkg(tg)->parent)
1881                         break;
1882         }
1883         return true;
1884 }
1885
1886 static void throtl_downgrade_check(struct throtl_grp *tg)
1887 {
1888         uint64_t bps;
1889         unsigned int iops;
1890         unsigned long elapsed_time;
1891         unsigned long now = jiffies;
1892
1893         if (tg->td->limit_index != LIMIT_MAX ||
1894             !tg->td->limit_valid[LIMIT_LOW])
1895                 return;
1896         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1897                 return;
1898         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1899                 return;
1900
1901         elapsed_time = now - tg->last_check_time;
1902         tg->last_check_time = now;
1903
1904         if (time_before(now, tg_last_low_overflow_time(tg) +
1905                         tg->td->throtl_slice))
1906                 return;
1907
1908         if (tg->bps[READ][LIMIT_LOW]) {
1909                 bps = tg->last_bytes_disp[READ] * HZ;
1910                 do_div(bps, elapsed_time);
1911                 if (bps >= tg->bps[READ][LIMIT_LOW])
1912                         tg->last_low_overflow_time[READ] = now;
1913         }
1914
1915         if (tg->bps[WRITE][LIMIT_LOW]) {
1916                 bps = tg->last_bytes_disp[WRITE] * HZ;
1917                 do_div(bps, elapsed_time);
1918                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1919                         tg->last_low_overflow_time[WRITE] = now;
1920         }
1921
1922         if (tg->iops[READ][LIMIT_LOW]) {
1923                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1924                 if (iops >= tg->iops[READ][LIMIT_LOW])
1925                         tg->last_low_overflow_time[READ] = now;
1926         }
1927
1928         if (tg->iops[WRITE][LIMIT_LOW]) {
1929                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1930                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1931                         tg->last_low_overflow_time[WRITE] = now;
1932         }
1933
1934         /*
1935          * If cgroup is below low limit, consider downgrade and throttle other
1936          * cgroups
1937          */
1938         if (throtl_hierarchy_can_downgrade(tg))
1939                 throtl_downgrade_state(tg->td);
1940
1941         tg->last_bytes_disp[READ] = 0;
1942         tg->last_bytes_disp[WRITE] = 0;
1943         tg->last_io_disp[READ] = 0;
1944         tg->last_io_disp[WRITE] = 0;
1945 }
1946
1947 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1948 {
1949         unsigned long now;
1950         unsigned long last_finish_time = tg->last_finish_time;
1951
1952         if (last_finish_time == 0)
1953                 return;
1954
1955         now = ktime_get_ns() >> 10;
1956         if (now <= last_finish_time ||
1957             last_finish_time == tg->checked_last_finish_time)
1958                 return;
1959
1960         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1961         tg->checked_last_finish_time = last_finish_time;
1962 }
1963
1964 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1965 static void throtl_update_latency_buckets(struct throtl_data *td)
1966 {
1967         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
1968         int i, cpu, rw;
1969         unsigned long last_latency[2] = { 0 };
1970         unsigned long latency[2];
1971
1972         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
1973                 return;
1974         if (time_before(jiffies, td->last_calculate_time + HZ))
1975                 return;
1976         td->last_calculate_time = jiffies;
1977
1978         memset(avg_latency, 0, sizeof(avg_latency));
1979         for (rw = READ; rw <= WRITE; rw++) {
1980                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1981                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
1982
1983                         for_each_possible_cpu(cpu) {
1984                                 struct latency_bucket *bucket;
1985
1986                                 /* this isn't race free, but ok in practice */
1987                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
1988                                         cpu);
1989                                 tmp->total_latency += bucket[i].total_latency;
1990                                 tmp->samples += bucket[i].samples;
1991                                 bucket[i].total_latency = 0;
1992                                 bucket[i].samples = 0;
1993                         }
1994
1995                         if (tmp->samples >= 32) {
1996                                 int samples = tmp->samples;
1997
1998                                 latency[rw] = tmp->total_latency;
1999
2000                                 tmp->total_latency = 0;
2001                                 tmp->samples = 0;
2002                                 latency[rw] /= samples;
2003                                 if (latency[rw] == 0)
2004                                         continue;
2005                                 avg_latency[rw][i].latency = latency[rw];
2006                         }
2007                 }
2008         }
2009
2010         for (rw = READ; rw <= WRITE; rw++) {
2011                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2012                         if (!avg_latency[rw][i].latency) {
2013                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2014                                         td->avg_buckets[rw][i].latency =
2015                                                 last_latency[rw];
2016                                 continue;
2017                         }
2018
2019                         if (!td->avg_buckets[rw][i].valid)
2020                                 latency[rw] = avg_latency[rw][i].latency;
2021                         else
2022                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2023                                         avg_latency[rw][i].latency) >> 3;
2024
2025                         td->avg_buckets[rw][i].latency = max(latency[rw],
2026                                 last_latency[rw]);
2027                         td->avg_buckets[rw][i].valid = true;
2028                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2029                 }
2030         }
2031
2032         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2033                 throtl_log(&td->service_queue,
2034                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2035                         "write latency=%ld, write valid=%d", i,
2036                         td->avg_buckets[READ][i].latency,
2037                         td->avg_buckets[READ][i].valid,
2038                         td->avg_buckets[WRITE][i].latency,
2039                         td->avg_buckets[WRITE][i].valid);
2040 }
2041 #else
2042 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2043 {
2044 }
2045 #endif
2046
2047 bool __blk_throtl_bio(struct bio *bio)
2048 {
2049         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2050         struct blkcg_gq *blkg = bio->bi_blkg;
2051         struct throtl_qnode *qn = NULL;
2052         struct throtl_grp *tg = blkg_to_tg(blkg);
2053         struct throtl_service_queue *sq;
2054         bool rw = bio_data_dir(bio);
2055         bool throttled = false;
2056         struct throtl_data *td = tg->td;
2057
2058         rcu_read_lock();
2059
2060         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2061                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2062                                 bio->bi_iter.bi_size);
2063                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2064         }
2065
2066         spin_lock_irq(&q->queue_lock);
2067
2068         throtl_update_latency_buckets(td);
2069
2070         blk_throtl_update_idletime(tg);
2071
2072         sq = &tg->service_queue;
2073
2074 again:
2075         while (true) {
2076                 if (tg->last_low_overflow_time[rw] == 0)
2077                         tg->last_low_overflow_time[rw] = jiffies;
2078                 throtl_downgrade_check(tg);
2079                 throtl_upgrade_check(tg);
2080                 /* throtl is FIFO - if bios are already queued, should queue */
2081                 if (sq->nr_queued[rw])
2082                         break;
2083
2084                 /* if above limits, break to queue */
2085                 if (!tg_may_dispatch(tg, bio, NULL)) {
2086                         tg->last_low_overflow_time[rw] = jiffies;
2087                         if (throtl_can_upgrade(td, tg)) {
2088                                 throtl_upgrade_state(td);
2089                                 goto again;
2090                         }
2091                         break;
2092                 }
2093
2094                 /* within limits, let's charge and dispatch directly */
2095                 throtl_charge_bio(tg, bio);
2096
2097                 /*
2098                  * We need to trim slice even when bios are not being queued
2099                  * otherwise it might happen that a bio is not queued for
2100                  * a long time and slice keeps on extending and trim is not
2101                  * called for a long time. Now if limits are reduced suddenly
2102                  * we take into account all the IO dispatched so far at new
2103                  * low rate and * newly queued IO gets a really long dispatch
2104                  * time.
2105                  *
2106                  * So keep on trimming slice even if bio is not queued.
2107                  */
2108                 throtl_trim_slice(tg, rw);
2109
2110                 /*
2111                  * @bio passed through this layer without being throttled.
2112                  * Climb up the ladder.  If we're already at the top, it
2113                  * can be executed directly.
2114                  */
2115                 qn = &tg->qnode_on_parent[rw];
2116                 sq = sq->parent_sq;
2117                 tg = sq_to_tg(sq);
2118                 if (!tg)
2119                         goto out_unlock;
2120         }
2121
2122         /* out-of-limit, queue to @tg */
2123         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2124                    rw == READ ? 'R' : 'W',
2125                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2126                    tg_bps_limit(tg, rw),
2127                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2128                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2129
2130         tg->last_low_overflow_time[rw] = jiffies;
2131
2132         td->nr_queued[rw]++;
2133         throtl_add_bio_tg(bio, qn, tg);
2134         throttled = true;
2135
2136         /*
2137          * Update @tg's dispatch time and force schedule dispatch if @tg
2138          * was empty before @bio.  The forced scheduling isn't likely to
2139          * cause undue delay as @bio is likely to be dispatched directly if
2140          * its @tg's disptime is not in the future.
2141          */
2142         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2143                 tg_update_disptime(tg);
2144                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2145         }
2146
2147 out_unlock:
2148         spin_unlock_irq(&q->queue_lock);
2149         bio_set_flag(bio, BIO_THROTTLED);
2150
2151 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2152         if (throttled || !td->track_bio_latency)
2153                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2154 #endif
2155         rcu_read_unlock();
2156         return throttled;
2157 }
2158
2159 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2160 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2161         int op, unsigned long time)
2162 {
2163         struct latency_bucket *latency;
2164         int index;
2165
2166         if (!td || td->limit_index != LIMIT_LOW ||
2167             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2168             !blk_queue_nonrot(td->queue))
2169                 return;
2170
2171         index = request_bucket_index(size);
2172
2173         latency = get_cpu_ptr(td->latency_buckets[op]);
2174         latency[index].total_latency += time;
2175         latency[index].samples++;
2176         put_cpu_ptr(td->latency_buckets[op]);
2177 }
2178
2179 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2180 {
2181         struct request_queue *q = rq->q;
2182         struct throtl_data *td = q->td;
2183
2184         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2185                              time_ns >> 10);
2186 }
2187
2188 void blk_throtl_bio_endio(struct bio *bio)
2189 {
2190         struct blkcg_gq *blkg;
2191         struct throtl_grp *tg;
2192         u64 finish_time_ns;
2193         unsigned long finish_time;
2194         unsigned long start_time;
2195         unsigned long lat;
2196         int rw = bio_data_dir(bio);
2197
2198         blkg = bio->bi_blkg;
2199         if (!blkg)
2200                 return;
2201         tg = blkg_to_tg(blkg);
2202         if (!tg->td->limit_valid[LIMIT_LOW])
2203                 return;
2204
2205         finish_time_ns = ktime_get_ns();
2206         tg->last_finish_time = finish_time_ns >> 10;
2207
2208         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2209         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2210         if (!start_time || finish_time <= start_time)
2211                 return;
2212
2213         lat = finish_time - start_time;
2214         /* this is only for bio based driver */
2215         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2216                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2217                                      bio_op(bio), lat);
2218
2219         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2220                 int bucket;
2221                 unsigned int threshold;
2222
2223                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2224                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2225                         tg->latency_target;
2226                 if (lat > threshold)
2227                         tg->bad_bio_cnt++;
2228                 /*
2229                  * Not race free, could get wrong count, which means cgroups
2230                  * will be throttled
2231                  */
2232                 tg->bio_cnt++;
2233         }
2234
2235         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2236                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2237                 tg->bio_cnt /= 2;
2238                 tg->bad_bio_cnt /= 2;
2239         }
2240 }
2241 #endif
2242
2243 int blk_throtl_init(struct request_queue *q)
2244 {
2245         struct throtl_data *td;
2246         int ret;
2247
2248         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2249         if (!td)
2250                 return -ENOMEM;
2251         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2252                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2253         if (!td->latency_buckets[READ]) {
2254                 kfree(td);
2255                 return -ENOMEM;
2256         }
2257         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2258                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2259         if (!td->latency_buckets[WRITE]) {
2260                 free_percpu(td->latency_buckets[READ]);
2261                 kfree(td);
2262                 return -ENOMEM;
2263         }
2264
2265         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2266         throtl_service_queue_init(&td->service_queue);
2267
2268         q->td = td;
2269         td->queue = q;
2270
2271         td->limit_valid[LIMIT_MAX] = true;
2272         td->limit_index = LIMIT_MAX;
2273         td->low_upgrade_time = jiffies;
2274         td->low_downgrade_time = jiffies;
2275
2276         /* activate policy */
2277         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2278         if (ret) {
2279                 free_percpu(td->latency_buckets[READ]);
2280                 free_percpu(td->latency_buckets[WRITE]);
2281                 kfree(td);
2282         }
2283         return ret;
2284 }
2285
2286 void blk_throtl_exit(struct request_queue *q)
2287 {
2288         BUG_ON(!q->td);
2289         del_timer_sync(&q->td->service_queue.pending_timer);
2290         throtl_shutdown_wq(q);
2291         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2292         free_percpu(q->td->latency_buckets[READ]);
2293         free_percpu(q->td->latency_buckets[WRITE]);
2294         kfree(q->td);
2295 }
2296
2297 void blk_throtl_register_queue(struct request_queue *q)
2298 {
2299         struct throtl_data *td;
2300         int i;
2301
2302         td = q->td;
2303         BUG_ON(!td);
2304
2305         if (blk_queue_nonrot(q)) {
2306                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2307                 td->filtered_latency = LATENCY_FILTERED_SSD;
2308         } else {
2309                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2310                 td->filtered_latency = LATENCY_FILTERED_HD;
2311                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2312                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2313                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2314                 }
2315         }
2316 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2317         /* if no low limit, use previous default */
2318         td->throtl_slice = DFL_THROTL_SLICE_HD;
2319 #endif
2320
2321         td->track_bio_latency = !queue_is_mq(q);
2322         if (!td->track_bio_latency)
2323                 blk_stat_enable_accounting(q);
2324 }
2325
2326 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2327 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2328 {
2329         if (!q->td)
2330                 return -EINVAL;
2331         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2332 }
2333
2334 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2335         const char *page, size_t count)
2336 {
2337         unsigned long v;
2338         unsigned long t;
2339
2340         if (!q->td)
2341                 return -EINVAL;
2342         if (kstrtoul(page, 10, &v))
2343                 return -EINVAL;
2344         t = msecs_to_jiffies(v);
2345         if (t == 0 || t > MAX_THROTL_SLICE)
2346                 return -EINVAL;
2347         q->td->throtl_slice = t;
2348         return count;
2349 }
2350 #endif
2351
2352 static int __init throtl_init(void)
2353 {
2354         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2355         if (!kthrotld_workqueue)
2356                 panic("Failed to create kthrotld\n");
2357
2358         return blkcg_policy_register(&blkcg_policy_throtl);
2359 }
2360
2361 module_init(throtl_init);