Merge branch 'for-6.4/amd-sfh' into for-linus
[linux-block.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50         unsigned long total_latency; /* ns / 1024 */
51         int samples;
52 };
53
54 struct avg_latency_bucket {
55         unsigned long latency; /* ns / 1024 */
56         bool valid;
57 };
58
59 struct throtl_data
60 {
61         /* service tree for active throtl groups */
62         struct throtl_service_queue service_queue;
63
64         struct request_queue *queue;
65
66         /* Total Number of queued bios on READ and WRITE lists */
67         unsigned int nr_queued[2];
68
69         unsigned int throtl_slice;
70
71         /* Work for dispatching throttled bios */
72         struct work_struct dispatch_work;
73         unsigned int limit_index;
74         bool limit_valid[LIMIT_CNT];
75
76         unsigned long low_upgrade_time;
77         unsigned long low_downgrade_time;
78
79         unsigned int scale;
80
81         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83         struct latency_bucket __percpu *latency_buckets[2];
84         unsigned long last_calculate_time;
85         unsigned long filtered_latency;
86
87         bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94         return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106         if (sq && sq->parent_sq)
107                 return container_of(sq, struct throtl_grp, service_queue);
108         else
109                 return NULL;
110 }
111
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121         struct throtl_grp *tg = sq_to_tg(sq);
122
123         if (tg)
124                 return tg->td;
125         else
126                 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to elapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139         /* arbitrary value to avoid too big scale */
140         if (td->scale < 4096 && time_after_eq(jiffies,
141             td->low_upgrade_time + td->scale * td->throtl_slice))
142                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144         return low + (low >> 1) * td->scale;
145 }
146
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149         struct blkcg_gq *blkg = tg_to_blkg(tg);
150         struct throtl_data *td;
151         uint64_t ret;
152
153         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154                 return U64_MAX;
155
156         td = tg->td;
157         ret = tg->bps[rw][td->limit_index];
158         if (ret == 0 && td->limit_index == LIMIT_LOW) {
159                 /* intermediate node or iops isn't 0 */
160                 if (!list_empty(&blkg->blkcg->css.children) ||
161                     tg->iops[rw][td->limit_index])
162                         return U64_MAX;
163                 else
164                         return MIN_THROTL_BPS;
165         }
166
167         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169                 uint64_t adjusted;
170
171                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173         }
174         return ret;
175 }
176
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179         struct blkcg_gq *blkg = tg_to_blkg(tg);
180         struct throtl_data *td;
181         unsigned int ret;
182
183         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184                 return UINT_MAX;
185
186         td = tg->td;
187         ret = tg->iops[rw][td->limit_index];
188         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189                 /* intermediate node or bps isn't 0 */
190                 if (!list_empty(&blkg->blkcg->css.children) ||
191                     tg->bps[rw][td->limit_index])
192                         return UINT_MAX;
193                 else
194                         return MIN_THROTL_IOPS;
195         }
196
197         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199                 uint64_t adjusted;
200
201                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202                 if (adjusted > UINT_MAX)
203                         adjusted = UINT_MAX;
204                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205         }
206         return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)    do {                            \
222         struct throtl_grp *__tg = sq_to_tg((sq));                       \
223         struct throtl_data *__td = sq_to_td((sq));                      \
224                                                                         \
225         (void)__td;                                                     \
226         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
227                 break;                                                  \
228         if ((__tg)) {                                                   \
229                 blk_add_cgroup_trace_msg(__td->queue,                   \
230                         &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231         } else {                                                        \
232                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
233         }                                                               \
234 } while (0)
235
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238         /* assume it's one sector */
239         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240                 return 512;
241         return bio->bi_iter.bi_size;
242 }
243
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246         INIT_LIST_HEAD(&qn->node);
247         bio_list_init(&qn->bios);
248         qn->tg = tg;
249 }
250
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262                                  struct list_head *queued)
263 {
264         bio_list_add(&qn->bios, bio);
265         if (list_empty(&qn->node)) {
266                 list_add_tail(&qn->node, queued);
267                 blkg_get(tg_to_blkg(qn->tg));
268         }
269 }
270
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277         struct throtl_qnode *qn;
278         struct bio *bio;
279
280         if (list_empty(queued))
281                 return NULL;
282
283         qn = list_first_entry(queued, struct throtl_qnode, node);
284         bio = bio_list_peek(&qn->bios);
285         WARN_ON_ONCE(!bio);
286         return bio;
287 }
288
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304                                      struct throtl_grp **tg_to_put)
305 {
306         struct throtl_qnode *qn;
307         struct bio *bio;
308
309         if (list_empty(queued))
310                 return NULL;
311
312         qn = list_first_entry(queued, struct throtl_qnode, node);
313         bio = bio_list_pop(&qn->bios);
314         WARN_ON_ONCE(!bio);
315
316         if (bio_list_empty(&qn->bios)) {
317                 list_del_init(&qn->node);
318                 if (tg_to_put)
319                         *tg_to_put = qn->tg;
320                 else
321                         blkg_put(tg_to_blkg(qn->tg));
322         } else {
323                 list_move_tail(&qn->node, queued);
324         }
325
326         return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332         INIT_LIST_HEAD(&sq->queued[READ]);
333         INIT_LIST_HEAD(&sq->queued[WRITE]);
334         sq->pending_tree = RB_ROOT_CACHED;
335         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339                 struct blkcg *blkcg, gfp_t gfp)
340 {
341         struct throtl_grp *tg;
342         int rw;
343
344         tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
345         if (!tg)
346                 return NULL;
347
348         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349                 goto err_free_tg;
350
351         if (blkg_rwstat_init(&tg->stat_ios, gfp))
352                 goto err_exit_stat_bytes;
353
354         throtl_service_queue_init(&tg->service_queue);
355
356         for (rw = READ; rw <= WRITE; rw++) {
357                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359         }
360
361         RB_CLEAR_NODE(&tg->rb_node);
362         tg->bps[READ][LIMIT_MAX] = U64_MAX;
363         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370         /* LIMIT_LOW will have default value 0 */
371
372         tg->latency_target = DFL_LATENCY_TARGET;
373         tg->latency_target_conf = DFL_LATENCY_TARGET;
374         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
376
377         return &tg->pd;
378
379 err_exit_stat_bytes:
380         blkg_rwstat_exit(&tg->stat_bytes);
381 err_free_tg:
382         kfree(tg);
383         return NULL;
384 }
385
386 static void throtl_pd_init(struct blkg_policy_data *pd)
387 {
388         struct throtl_grp *tg = pd_to_tg(pd);
389         struct blkcg_gq *blkg = tg_to_blkg(tg);
390         struct throtl_data *td = blkg->q->td;
391         struct throtl_service_queue *sq = &tg->service_queue;
392
393         /*
394          * If on the default hierarchy, we switch to properly hierarchical
395          * behavior where limits on a given throtl_grp are applied to the
396          * whole subtree rather than just the group itself.  e.g. If 16M
397          * read_bps limit is set on a parent group, summary bps of
398          * parent group and its subtree groups can't exceed 16M for the
399          * device.
400          *
401          * If not on the default hierarchy, the broken flat hierarchy
402          * behavior is retained where all throtl_grps are treated as if
403          * they're all separate root groups right below throtl_data.
404          * Limits of a group don't interact with limits of other groups
405          * regardless of the position of the group in the hierarchy.
406          */
407         sq->parent_sq = &td->service_queue;
408         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410         tg->td = td;
411 }
412
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421         struct throtl_data *td = tg->td;
422         int rw;
423
424         for (rw = READ; rw <= WRITE; rw++) {
425                 tg->has_rules_iops[rw] =
426                         (parent_tg && parent_tg->has_rules_iops[rw]) ||
427                         (td->limit_valid[td->limit_index] &&
428                           tg_iops_limit(tg, rw) != UINT_MAX);
429                 tg->has_rules_bps[rw] =
430                         (parent_tg && parent_tg->has_rules_bps[rw]) ||
431                         (td->limit_valid[td->limit_index] &&
432                          (tg_bps_limit(tg, rw) != U64_MAX));
433         }
434 }
435
436 static void throtl_pd_online(struct blkg_policy_data *pd)
437 {
438         struct throtl_grp *tg = pd_to_tg(pd);
439         /*
440          * We don't want new groups to escape the limits of its ancestors.
441          * Update has_rules[] after a new group is brought online.
442          */
443         tg_update_has_rules(tg);
444 }
445
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
448 {
449         struct cgroup_subsys_state *pos_css;
450         struct blkcg_gq *blkg;
451         bool low_valid = false;
452
453         rcu_read_lock();
454         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455                 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459                         low_valid = true;
460                         break;
461                 }
462         }
463         rcu_read_unlock();
464
465         td->limit_valid[LIMIT_LOW] = low_valid;
466 }
467 #else
468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469 {
470 }
471 #endif
472
473 static void throtl_upgrade_state(struct throtl_data *td);
474 static void throtl_pd_offline(struct blkg_policy_data *pd)
475 {
476         struct throtl_grp *tg = pd_to_tg(pd);
477
478         tg->bps[READ][LIMIT_LOW] = 0;
479         tg->bps[WRITE][LIMIT_LOW] = 0;
480         tg->iops[READ][LIMIT_LOW] = 0;
481         tg->iops[WRITE][LIMIT_LOW] = 0;
482
483         blk_throtl_update_limit_valid(tg->td);
484
485         if (!tg->td->limit_valid[tg->td->limit_index])
486                 throtl_upgrade_state(tg->td);
487 }
488
489 static void throtl_pd_free(struct blkg_policy_data *pd)
490 {
491         struct throtl_grp *tg = pd_to_tg(pd);
492
493         del_timer_sync(&tg->service_queue.pending_timer);
494         blkg_rwstat_exit(&tg->stat_bytes);
495         blkg_rwstat_exit(&tg->stat_ios);
496         kfree(tg);
497 }
498
499 static struct throtl_grp *
500 throtl_rb_first(struct throtl_service_queue *parent_sq)
501 {
502         struct rb_node *n;
503
504         n = rb_first_cached(&parent_sq->pending_tree);
505         WARN_ON_ONCE(!n);
506         if (!n)
507                 return NULL;
508         return rb_entry_tg(n);
509 }
510
511 static void throtl_rb_erase(struct rb_node *n,
512                             struct throtl_service_queue *parent_sq)
513 {
514         rb_erase_cached(n, &parent_sq->pending_tree);
515         RB_CLEAR_NODE(n);
516 }
517
518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519 {
520         struct throtl_grp *tg;
521
522         tg = throtl_rb_first(parent_sq);
523         if (!tg)
524                 return;
525
526         parent_sq->first_pending_disptime = tg->disptime;
527 }
528
529 static void tg_service_queue_add(struct throtl_grp *tg)
530 {
531         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533         struct rb_node *parent = NULL;
534         struct throtl_grp *__tg;
535         unsigned long key = tg->disptime;
536         bool leftmost = true;
537
538         while (*node != NULL) {
539                 parent = *node;
540                 __tg = rb_entry_tg(parent);
541
542                 if (time_before(key, __tg->disptime))
543                         node = &parent->rb_left;
544                 else {
545                         node = &parent->rb_right;
546                         leftmost = false;
547                 }
548         }
549
550         rb_link_node(&tg->rb_node, parent, node);
551         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552                                leftmost);
553 }
554
555 static void throtl_enqueue_tg(struct throtl_grp *tg)
556 {
557         if (!(tg->flags & THROTL_TG_PENDING)) {
558                 tg_service_queue_add(tg);
559                 tg->flags |= THROTL_TG_PENDING;
560                 tg->service_queue.parent_sq->nr_pending++;
561         }
562 }
563
564 static void throtl_dequeue_tg(struct throtl_grp *tg)
565 {
566         if (tg->flags & THROTL_TG_PENDING) {
567                 struct throtl_service_queue *parent_sq =
568                         tg->service_queue.parent_sq;
569
570                 throtl_rb_erase(&tg->rb_node, parent_sq);
571                 --parent_sq->nr_pending;
572                 tg->flags &= ~THROTL_TG_PENDING;
573         }
574 }
575
576 /* Call with queue lock held */
577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578                                           unsigned long expires)
579 {
580         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581
582         /*
583          * Since we are adjusting the throttle limit dynamically, the sleep
584          * time calculated according to previous limit might be invalid. It's
585          * possible the cgroup sleep time is very long and no other cgroups
586          * have IO running so notify the limit changes. Make sure the cgroup
587          * doesn't sleep too long to avoid the missed notification.
588          */
589         if (time_after(expires, max_expire))
590                 expires = max_expire;
591         mod_timer(&sq->pending_timer, expires);
592         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593                    expires - jiffies, jiffies);
594 }
595
596 /**
597  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598  * @sq: the service_queue to schedule dispatch for
599  * @force: force scheduling
600  *
601  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602  * dispatch time of the first pending child.  Returns %true if either timer
603  * is armed or there's no pending child left.  %false if the current
604  * dispatch window is still open and the caller should continue
605  * dispatching.
606  *
607  * If @force is %true, the dispatch timer is always scheduled and this
608  * function is guaranteed to return %true.  This is to be used when the
609  * caller can't dispatch itself and needs to invoke pending_timer
610  * unconditionally.  Note that forced scheduling is likely to induce short
611  * delay before dispatch starts even if @sq->first_pending_disptime is not
612  * in the future and thus shouldn't be used in hot paths.
613  */
614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615                                           bool force)
616 {
617         /* any pending children left? */
618         if (!sq->nr_pending)
619                 return true;
620
621         update_min_dispatch_time(sq);
622
623         /* is the next dispatch time in the future? */
624         if (force || time_after(sq->first_pending_disptime, jiffies)) {
625                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626                 return true;
627         }
628
629         /* tell the caller to continue dispatching */
630         return false;
631 }
632
633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634                 bool rw, unsigned long start)
635 {
636         tg->bytes_disp[rw] = 0;
637         tg->io_disp[rw] = 0;
638         tg->carryover_bytes[rw] = 0;
639         tg->carryover_ios[rw] = 0;
640
641         /*
642          * Previous slice has expired. We must have trimmed it after last
643          * bio dispatch. That means since start of last slice, we never used
644          * that bandwidth. Do try to make use of that bandwidth while giving
645          * credit.
646          */
647         if (time_after(start, tg->slice_start[rw]))
648                 tg->slice_start[rw] = start;
649
650         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651         throtl_log(&tg->service_queue,
652                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
654                    tg->slice_end[rw], jiffies);
655 }
656
657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658                                           bool clear_carryover)
659 {
660         tg->bytes_disp[rw] = 0;
661         tg->io_disp[rw] = 0;
662         tg->slice_start[rw] = jiffies;
663         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664         if (clear_carryover) {
665                 tg->carryover_bytes[rw] = 0;
666                 tg->carryover_ios[rw] = 0;
667         }
668
669         throtl_log(&tg->service_queue,
670                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
671                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
672                    tg->slice_end[rw], jiffies);
673 }
674
675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676                                         unsigned long jiffy_end)
677 {
678         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679 }
680
681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682                                        unsigned long jiffy_end)
683 {
684         throtl_set_slice_end(tg, rw, jiffy_end);
685         throtl_log(&tg->service_queue,
686                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
688                    tg->slice_end[rw], jiffies);
689 }
690
691 /* Determine if previously allocated or extended slice is complete or not */
692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693 {
694         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695                 return false;
696
697         return true;
698 }
699
700 /* Trim the used slices and adjust slice start accordingly */
701 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
702 {
703         unsigned long nr_slices, time_elapsed, io_trim;
704         u64 bytes_trim, tmp;
705
706         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
707
708         /*
709          * If bps are unlimited (-1), then time slice don't get
710          * renewed. Don't try to trim the slice if slice is used. A new
711          * slice will start when appropriate.
712          */
713         if (throtl_slice_used(tg, rw))
714                 return;
715
716         /*
717          * A bio has been dispatched. Also adjust slice_end. It might happen
718          * that initially cgroup limit was very low resulting in high
719          * slice_end, but later limit was bumped up and bio was dispatched
720          * sooner, then we need to reduce slice_end. A high bogus slice_end
721          * is bad because it does not allow new slice to start.
722          */
723
724         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
725
726         time_elapsed = jiffies - tg->slice_start[rw];
727
728         nr_slices = time_elapsed / tg->td->throtl_slice;
729
730         if (!nr_slices)
731                 return;
732         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
733         do_div(tmp, HZ);
734         bytes_trim = tmp;
735
736         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
737                 HZ;
738
739         if (!bytes_trim && !io_trim)
740                 return;
741
742         if (tg->bytes_disp[rw] >= bytes_trim)
743                 tg->bytes_disp[rw] -= bytes_trim;
744         else
745                 tg->bytes_disp[rw] = 0;
746
747         if (tg->io_disp[rw] >= io_trim)
748                 tg->io_disp[rw] -= io_trim;
749         else
750                 tg->io_disp[rw] = 0;
751
752         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
753
754         throtl_log(&tg->service_queue,
755                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
756                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
757                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
758 }
759
760 static unsigned int calculate_io_allowed(u32 iops_limit,
761                                          unsigned long jiffy_elapsed)
762 {
763         unsigned int io_allowed;
764         u64 tmp;
765
766         /*
767          * jiffy_elapsed should not be a big value as minimum iops can be
768          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
769          * will allow dispatch after 1 second and after that slice should
770          * have been trimmed.
771          */
772
773         tmp = (u64)iops_limit * jiffy_elapsed;
774         do_div(tmp, HZ);
775
776         if (tmp > UINT_MAX)
777                 io_allowed = UINT_MAX;
778         else
779                 io_allowed = tmp;
780
781         return io_allowed;
782 }
783
784 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
785 {
786         return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
787 }
788
789 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
790 {
791         unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
792         u64 bps_limit = tg_bps_limit(tg, rw);
793         u32 iops_limit = tg_iops_limit(tg, rw);
794
795         /*
796          * If config is updated while bios are still throttled, calculate and
797          * accumulate how many bytes/ios are waited across changes. And
798          * carryover_bytes/ios will be used to calculate new wait time under new
799          * configuration.
800          */
801         if (bps_limit != U64_MAX)
802                 tg->carryover_bytes[rw] +=
803                         calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
804                         tg->bytes_disp[rw];
805         if (iops_limit != UINT_MAX)
806                 tg->carryover_ios[rw] +=
807                         calculate_io_allowed(iops_limit, jiffy_elapsed) -
808                         tg->io_disp[rw];
809 }
810
811 static void tg_update_carryover(struct throtl_grp *tg)
812 {
813         if (tg->service_queue.nr_queued[READ])
814                 __tg_update_carryover(tg, READ);
815         if (tg->service_queue.nr_queued[WRITE])
816                 __tg_update_carryover(tg, WRITE);
817
818         /* see comments in struct throtl_grp for meaning of these fields. */
819         throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
820                    tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
821                    tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
822 }
823
824 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
825                                  u32 iops_limit)
826 {
827         bool rw = bio_data_dir(bio);
828         unsigned int io_allowed;
829         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
830
831         if (iops_limit == UINT_MAX) {
832                 return 0;
833         }
834
835         jiffy_elapsed = jiffies - tg->slice_start[rw];
836
837         /* Round up to the next throttle slice, wait time must be nonzero */
838         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
839         io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
840                      tg->carryover_ios[rw];
841         if (tg->io_disp[rw] + 1 <= io_allowed) {
842                 return 0;
843         }
844
845         /* Calc approx time to dispatch */
846         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
847         return jiffy_wait;
848 }
849
850 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
851                                 u64 bps_limit)
852 {
853         bool rw = bio_data_dir(bio);
854         u64 bytes_allowed, extra_bytes;
855         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
856         unsigned int bio_size = throtl_bio_data_size(bio);
857
858         /* no need to throttle if this bio's bytes have been accounted */
859         if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
860                 return 0;
861         }
862
863         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
864
865         /* Slice has just started. Consider one slice interval */
866         if (!jiffy_elapsed)
867                 jiffy_elapsed_rnd = tg->td->throtl_slice;
868
869         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
870         bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
871                         tg->carryover_bytes[rw];
872         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
873                 return 0;
874         }
875
876         /* Calc approx time to dispatch */
877         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
878         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
879
880         if (!jiffy_wait)
881                 jiffy_wait = 1;
882
883         /*
884          * This wait time is without taking into consideration the rounding
885          * up we did. Add that time also.
886          */
887         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
888         return jiffy_wait;
889 }
890
891 /*
892  * Returns whether one can dispatch a bio or not. Also returns approx number
893  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
894  */
895 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
896                             unsigned long *wait)
897 {
898         bool rw = bio_data_dir(bio);
899         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
900         u64 bps_limit = tg_bps_limit(tg, rw);
901         u32 iops_limit = tg_iops_limit(tg, rw);
902
903         /*
904          * Currently whole state machine of group depends on first bio
905          * queued in the group bio list. So one should not be calling
906          * this function with a different bio if there are other bios
907          * queued.
908          */
909         BUG_ON(tg->service_queue.nr_queued[rw] &&
910                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911
912         /* If tg->bps = -1, then BW is unlimited */
913         if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
914             tg->flags & THROTL_TG_CANCELING) {
915                 if (wait)
916                         *wait = 0;
917                 return true;
918         }
919
920         /*
921          * If previous slice expired, start a new one otherwise renew/extend
922          * existing slice to make sure it is at least throtl_slice interval
923          * long since now. New slice is started only for empty throttle group.
924          * If there is queued bio, that means there should be an active
925          * slice and it should be extended instead.
926          */
927         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
928                 throtl_start_new_slice(tg, rw, true);
929         else {
930                 if (time_before(tg->slice_end[rw],
931                     jiffies + tg->td->throtl_slice))
932                         throtl_extend_slice(tg, rw,
933                                 jiffies + tg->td->throtl_slice);
934         }
935
936         bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
937         iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
938         if (bps_wait + iops_wait == 0) {
939                 if (wait)
940                         *wait = 0;
941                 return true;
942         }
943
944         max_wait = max(bps_wait, iops_wait);
945
946         if (wait)
947                 *wait = max_wait;
948
949         if (time_before(tg->slice_end[rw], jiffies + max_wait))
950                 throtl_extend_slice(tg, rw, jiffies + max_wait);
951
952         return false;
953 }
954
955 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
956 {
957         bool rw = bio_data_dir(bio);
958         unsigned int bio_size = throtl_bio_data_size(bio);
959
960         /* Charge the bio to the group */
961         if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
962                 tg->bytes_disp[rw] += bio_size;
963                 tg->last_bytes_disp[rw] += bio_size;
964         }
965
966         tg->io_disp[rw]++;
967         tg->last_io_disp[rw]++;
968 }
969
970 /**
971  * throtl_add_bio_tg - add a bio to the specified throtl_grp
972  * @bio: bio to add
973  * @qn: qnode to use
974  * @tg: the target throtl_grp
975  *
976  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
977  * tg->qnode_on_self[] is used.
978  */
979 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
980                               struct throtl_grp *tg)
981 {
982         struct throtl_service_queue *sq = &tg->service_queue;
983         bool rw = bio_data_dir(bio);
984
985         if (!qn)
986                 qn = &tg->qnode_on_self[rw];
987
988         /*
989          * If @tg doesn't currently have any bios queued in the same
990          * direction, queueing @bio can change when @tg should be
991          * dispatched.  Mark that @tg was empty.  This is automatically
992          * cleared on the next tg_update_disptime().
993          */
994         if (!sq->nr_queued[rw])
995                 tg->flags |= THROTL_TG_WAS_EMPTY;
996
997         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
998
999         sq->nr_queued[rw]++;
1000         throtl_enqueue_tg(tg);
1001 }
1002
1003 static void tg_update_disptime(struct throtl_grp *tg)
1004 {
1005         struct throtl_service_queue *sq = &tg->service_queue;
1006         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1007         struct bio *bio;
1008
1009         bio = throtl_peek_queued(&sq->queued[READ]);
1010         if (bio)
1011                 tg_may_dispatch(tg, bio, &read_wait);
1012
1013         bio = throtl_peek_queued(&sq->queued[WRITE]);
1014         if (bio)
1015                 tg_may_dispatch(tg, bio, &write_wait);
1016
1017         min_wait = min(read_wait, write_wait);
1018         disptime = jiffies + min_wait;
1019
1020         /* Update dispatch time */
1021         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1022         tg->disptime = disptime;
1023         tg_service_queue_add(tg);
1024
1025         /* see throtl_add_bio_tg() */
1026         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1027 }
1028
1029 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1030                                         struct throtl_grp *parent_tg, bool rw)
1031 {
1032         if (throtl_slice_used(parent_tg, rw)) {
1033                 throtl_start_new_slice_with_credit(parent_tg, rw,
1034                                 child_tg->slice_start[rw]);
1035         }
1036
1037 }
1038
1039 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1040 {
1041         struct throtl_service_queue *sq = &tg->service_queue;
1042         struct throtl_service_queue *parent_sq = sq->parent_sq;
1043         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1044         struct throtl_grp *tg_to_put = NULL;
1045         struct bio *bio;
1046
1047         /*
1048          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1049          * from @tg may put its reference and @parent_sq might end up
1050          * getting released prematurely.  Remember the tg to put and put it
1051          * after @bio is transferred to @parent_sq.
1052          */
1053         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1054         sq->nr_queued[rw]--;
1055
1056         throtl_charge_bio(tg, bio);
1057
1058         /*
1059          * If our parent is another tg, we just need to transfer @bio to
1060          * the parent using throtl_add_bio_tg().  If our parent is
1061          * @td->service_queue, @bio is ready to be issued.  Put it on its
1062          * bio_lists[] and decrease total number queued.  The caller is
1063          * responsible for issuing these bios.
1064          */
1065         if (parent_tg) {
1066                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1067                 start_parent_slice_with_credit(tg, parent_tg, rw);
1068         } else {
1069                 bio_set_flag(bio, BIO_BPS_THROTTLED);
1070                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1071                                      &parent_sq->queued[rw]);
1072                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1073                 tg->td->nr_queued[rw]--;
1074         }
1075
1076         throtl_trim_slice(tg, rw);
1077
1078         if (tg_to_put)
1079                 blkg_put(tg_to_blkg(tg_to_put));
1080 }
1081
1082 static int throtl_dispatch_tg(struct throtl_grp *tg)
1083 {
1084         struct throtl_service_queue *sq = &tg->service_queue;
1085         unsigned int nr_reads = 0, nr_writes = 0;
1086         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1087         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1088         struct bio *bio;
1089
1090         /* Try to dispatch 75% READS and 25% WRITES */
1091
1092         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1093                tg_may_dispatch(tg, bio, NULL)) {
1094
1095                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1096                 nr_reads++;
1097
1098                 if (nr_reads >= max_nr_reads)
1099                         break;
1100         }
1101
1102         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1103                tg_may_dispatch(tg, bio, NULL)) {
1104
1105                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1106                 nr_writes++;
1107
1108                 if (nr_writes >= max_nr_writes)
1109                         break;
1110         }
1111
1112         return nr_reads + nr_writes;
1113 }
1114
1115 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1116 {
1117         unsigned int nr_disp = 0;
1118
1119         while (1) {
1120                 struct throtl_grp *tg;
1121                 struct throtl_service_queue *sq;
1122
1123                 if (!parent_sq->nr_pending)
1124                         break;
1125
1126                 tg = throtl_rb_first(parent_sq);
1127                 if (!tg)
1128                         break;
1129
1130                 if (time_before(jiffies, tg->disptime))
1131                         break;
1132
1133                 nr_disp += throtl_dispatch_tg(tg);
1134
1135                 sq = &tg->service_queue;
1136                 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1137                         tg_update_disptime(tg);
1138                 else
1139                         throtl_dequeue_tg(tg);
1140
1141                 if (nr_disp >= THROTL_QUANTUM)
1142                         break;
1143         }
1144
1145         return nr_disp;
1146 }
1147
1148 static bool throtl_can_upgrade(struct throtl_data *td,
1149         struct throtl_grp *this_tg);
1150 /**
1151  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1152  * @t: the pending_timer member of the throtl_service_queue being serviced
1153  *
1154  * This timer is armed when a child throtl_grp with active bio's become
1155  * pending and queued on the service_queue's pending_tree and expires when
1156  * the first child throtl_grp should be dispatched.  This function
1157  * dispatches bio's from the children throtl_grps to the parent
1158  * service_queue.
1159  *
1160  * If the parent's parent is another throtl_grp, dispatching is propagated
1161  * by either arming its pending_timer or repeating dispatch directly.  If
1162  * the top-level service_tree is reached, throtl_data->dispatch_work is
1163  * kicked so that the ready bio's are issued.
1164  */
1165 static void throtl_pending_timer_fn(struct timer_list *t)
1166 {
1167         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1168         struct throtl_grp *tg = sq_to_tg(sq);
1169         struct throtl_data *td = sq_to_td(sq);
1170         struct throtl_service_queue *parent_sq;
1171         struct request_queue *q;
1172         bool dispatched;
1173         int ret;
1174
1175         /* throtl_data may be gone, so figure out request queue by blkg */
1176         if (tg)
1177                 q = tg->pd.blkg->q;
1178         else
1179                 q = td->queue;
1180
1181         spin_lock_irq(&q->queue_lock);
1182
1183         if (!q->root_blkg)
1184                 goto out_unlock;
1185
1186         if (throtl_can_upgrade(td, NULL))
1187                 throtl_upgrade_state(td);
1188
1189 again:
1190         parent_sq = sq->parent_sq;
1191         dispatched = false;
1192
1193         while (true) {
1194                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1195                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1196                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1197
1198                 ret = throtl_select_dispatch(sq);
1199                 if (ret) {
1200                         throtl_log(sq, "bios disp=%u", ret);
1201                         dispatched = true;
1202                 }
1203
1204                 if (throtl_schedule_next_dispatch(sq, false))
1205                         break;
1206
1207                 /* this dispatch windows is still open, relax and repeat */
1208                 spin_unlock_irq(&q->queue_lock);
1209                 cpu_relax();
1210                 spin_lock_irq(&q->queue_lock);
1211         }
1212
1213         if (!dispatched)
1214                 goto out_unlock;
1215
1216         if (parent_sq) {
1217                 /* @parent_sq is another throl_grp, propagate dispatch */
1218                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1219                         tg_update_disptime(tg);
1220                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1221                                 /* window is already open, repeat dispatching */
1222                                 sq = parent_sq;
1223                                 tg = sq_to_tg(sq);
1224                                 goto again;
1225                         }
1226                 }
1227         } else {
1228                 /* reached the top-level, queue issuing */
1229                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1230         }
1231 out_unlock:
1232         spin_unlock_irq(&q->queue_lock);
1233 }
1234
1235 /**
1236  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1237  * @work: work item being executed
1238  *
1239  * This function is queued for execution when bios reach the bio_lists[]
1240  * of throtl_data->service_queue.  Those bios are ready and issued by this
1241  * function.
1242  */
1243 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1244 {
1245         struct throtl_data *td = container_of(work, struct throtl_data,
1246                                               dispatch_work);
1247         struct throtl_service_queue *td_sq = &td->service_queue;
1248         struct request_queue *q = td->queue;
1249         struct bio_list bio_list_on_stack;
1250         struct bio *bio;
1251         struct blk_plug plug;
1252         int rw;
1253
1254         bio_list_init(&bio_list_on_stack);
1255
1256         spin_lock_irq(&q->queue_lock);
1257         for (rw = READ; rw <= WRITE; rw++)
1258                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1259                         bio_list_add(&bio_list_on_stack, bio);
1260         spin_unlock_irq(&q->queue_lock);
1261
1262         if (!bio_list_empty(&bio_list_on_stack)) {
1263                 blk_start_plug(&plug);
1264                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1265                         submit_bio_noacct_nocheck(bio);
1266                 blk_finish_plug(&plug);
1267         }
1268 }
1269
1270 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1271                               int off)
1272 {
1273         struct throtl_grp *tg = pd_to_tg(pd);
1274         u64 v = *(u64 *)((void *)tg + off);
1275
1276         if (v == U64_MAX)
1277                 return 0;
1278         return __blkg_prfill_u64(sf, pd, v);
1279 }
1280
1281 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1282                                int off)
1283 {
1284         struct throtl_grp *tg = pd_to_tg(pd);
1285         unsigned int v = *(unsigned int *)((void *)tg + off);
1286
1287         if (v == UINT_MAX)
1288                 return 0;
1289         return __blkg_prfill_u64(sf, pd, v);
1290 }
1291
1292 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1293 {
1294         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1295                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1296         return 0;
1297 }
1298
1299 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1300 {
1301         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1302                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1303         return 0;
1304 }
1305
1306 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1307 {
1308         struct throtl_service_queue *sq = &tg->service_queue;
1309         struct cgroup_subsys_state *pos_css;
1310         struct blkcg_gq *blkg;
1311
1312         throtl_log(&tg->service_queue,
1313                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1314                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1315                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1316
1317         /*
1318          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1319          * considered to have rules if either the tg itself or any of its
1320          * ancestors has rules.  This identifies groups without any
1321          * restrictions in the whole hierarchy and allows them to bypass
1322          * blk-throttle.
1323          */
1324         blkg_for_each_descendant_pre(blkg, pos_css,
1325                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1326                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1327                 struct throtl_grp *parent_tg;
1328
1329                 tg_update_has_rules(this_tg);
1330                 /* ignore root/second level */
1331                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1332                     !blkg->parent->parent)
1333                         continue;
1334                 parent_tg = blkg_to_tg(blkg->parent);
1335                 /*
1336                  * make sure all children has lower idle time threshold and
1337                  * higher latency target
1338                  */
1339                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1340                                 parent_tg->idletime_threshold);
1341                 this_tg->latency_target = max(this_tg->latency_target,
1342                                 parent_tg->latency_target);
1343         }
1344
1345         /*
1346          * We're already holding queue_lock and know @tg is valid.  Let's
1347          * apply the new config directly.
1348          *
1349          * Restart the slices for both READ and WRITES. It might happen
1350          * that a group's limit are dropped suddenly and we don't want to
1351          * account recently dispatched IO with new low rate.
1352          */
1353         throtl_start_new_slice(tg, READ, false);
1354         throtl_start_new_slice(tg, WRITE, false);
1355
1356         if (tg->flags & THROTL_TG_PENDING) {
1357                 tg_update_disptime(tg);
1358                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1359         }
1360 }
1361
1362 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1363                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1364 {
1365         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1366         struct blkg_conf_ctx ctx;
1367         struct throtl_grp *tg;
1368         int ret;
1369         u64 v;
1370
1371         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1372         if (ret)
1373                 return ret;
1374
1375         ret = -EINVAL;
1376         if (sscanf(ctx.body, "%llu", &v) != 1)
1377                 goto out_finish;
1378         if (!v)
1379                 v = U64_MAX;
1380
1381         tg = blkg_to_tg(ctx.blkg);
1382         tg_update_carryover(tg);
1383
1384         if (is_u64)
1385                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1386         else
1387                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1388
1389         tg_conf_updated(tg, false);
1390         ret = 0;
1391 out_finish:
1392         blkg_conf_finish(&ctx);
1393         return ret ?: nbytes;
1394 }
1395
1396 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1397                                char *buf, size_t nbytes, loff_t off)
1398 {
1399         return tg_set_conf(of, buf, nbytes, off, true);
1400 }
1401
1402 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1403                                 char *buf, size_t nbytes, loff_t off)
1404 {
1405         return tg_set_conf(of, buf, nbytes, off, false);
1406 }
1407
1408 static int tg_print_rwstat(struct seq_file *sf, void *v)
1409 {
1410         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1411                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1412                           seq_cft(sf)->private, true);
1413         return 0;
1414 }
1415
1416 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1417                                       struct blkg_policy_data *pd, int off)
1418 {
1419         struct blkg_rwstat_sample sum;
1420
1421         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1422                                   &sum);
1423         return __blkg_prfill_rwstat(sf, pd, &sum);
1424 }
1425
1426 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1427 {
1428         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1429                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1430                           seq_cft(sf)->private, true);
1431         return 0;
1432 }
1433
1434 static struct cftype throtl_legacy_files[] = {
1435         {
1436                 .name = "throttle.read_bps_device",
1437                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1438                 .seq_show = tg_print_conf_u64,
1439                 .write = tg_set_conf_u64,
1440         },
1441         {
1442                 .name = "throttle.write_bps_device",
1443                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1444                 .seq_show = tg_print_conf_u64,
1445                 .write = tg_set_conf_u64,
1446         },
1447         {
1448                 .name = "throttle.read_iops_device",
1449                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1450                 .seq_show = tg_print_conf_uint,
1451                 .write = tg_set_conf_uint,
1452         },
1453         {
1454                 .name = "throttle.write_iops_device",
1455                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1456                 .seq_show = tg_print_conf_uint,
1457                 .write = tg_set_conf_uint,
1458         },
1459         {
1460                 .name = "throttle.io_service_bytes",
1461                 .private = offsetof(struct throtl_grp, stat_bytes),
1462                 .seq_show = tg_print_rwstat,
1463         },
1464         {
1465                 .name = "throttle.io_service_bytes_recursive",
1466                 .private = offsetof(struct throtl_grp, stat_bytes),
1467                 .seq_show = tg_print_rwstat_recursive,
1468         },
1469         {
1470                 .name = "throttle.io_serviced",
1471                 .private = offsetof(struct throtl_grp, stat_ios),
1472                 .seq_show = tg_print_rwstat,
1473         },
1474         {
1475                 .name = "throttle.io_serviced_recursive",
1476                 .private = offsetof(struct throtl_grp, stat_ios),
1477                 .seq_show = tg_print_rwstat_recursive,
1478         },
1479         { }     /* terminate */
1480 };
1481
1482 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1483                          int off)
1484 {
1485         struct throtl_grp *tg = pd_to_tg(pd);
1486         const char *dname = blkg_dev_name(pd->blkg);
1487         char bufs[4][21] = { "max", "max", "max", "max" };
1488         u64 bps_dft;
1489         unsigned int iops_dft;
1490         char idle_time[26] = "";
1491         char latency_time[26] = "";
1492
1493         if (!dname)
1494                 return 0;
1495
1496         if (off == LIMIT_LOW) {
1497                 bps_dft = 0;
1498                 iops_dft = 0;
1499         } else {
1500                 bps_dft = U64_MAX;
1501                 iops_dft = UINT_MAX;
1502         }
1503
1504         if (tg->bps_conf[READ][off] == bps_dft &&
1505             tg->bps_conf[WRITE][off] == bps_dft &&
1506             tg->iops_conf[READ][off] == iops_dft &&
1507             tg->iops_conf[WRITE][off] == iops_dft &&
1508             (off != LIMIT_LOW ||
1509              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1510               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1511                 return 0;
1512
1513         if (tg->bps_conf[READ][off] != U64_MAX)
1514                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1515                         tg->bps_conf[READ][off]);
1516         if (tg->bps_conf[WRITE][off] != U64_MAX)
1517                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1518                         tg->bps_conf[WRITE][off]);
1519         if (tg->iops_conf[READ][off] != UINT_MAX)
1520                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1521                         tg->iops_conf[READ][off]);
1522         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1523                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1524                         tg->iops_conf[WRITE][off]);
1525         if (off == LIMIT_LOW) {
1526                 if (tg->idletime_threshold_conf == ULONG_MAX)
1527                         strcpy(idle_time, " idle=max");
1528                 else
1529                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1530                                 tg->idletime_threshold_conf);
1531
1532                 if (tg->latency_target_conf == ULONG_MAX)
1533                         strcpy(latency_time, " latency=max");
1534                 else
1535                         snprintf(latency_time, sizeof(latency_time),
1536                                 " latency=%lu", tg->latency_target_conf);
1537         }
1538
1539         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1540                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1541                    latency_time);
1542         return 0;
1543 }
1544
1545 static int tg_print_limit(struct seq_file *sf, void *v)
1546 {
1547         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1548                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1549         return 0;
1550 }
1551
1552 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1553                           char *buf, size_t nbytes, loff_t off)
1554 {
1555         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1556         struct blkg_conf_ctx ctx;
1557         struct throtl_grp *tg;
1558         u64 v[4];
1559         unsigned long idle_time;
1560         unsigned long latency_time;
1561         int ret;
1562         int index = of_cft(of)->private;
1563
1564         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1565         if (ret)
1566                 return ret;
1567
1568         tg = blkg_to_tg(ctx.blkg);
1569         tg_update_carryover(tg);
1570
1571         v[0] = tg->bps_conf[READ][index];
1572         v[1] = tg->bps_conf[WRITE][index];
1573         v[2] = tg->iops_conf[READ][index];
1574         v[3] = tg->iops_conf[WRITE][index];
1575
1576         idle_time = tg->idletime_threshold_conf;
1577         latency_time = tg->latency_target_conf;
1578         while (true) {
1579                 char tok[27];   /* wiops=18446744073709551616 */
1580                 char *p;
1581                 u64 val = U64_MAX;
1582                 int len;
1583
1584                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1585                         break;
1586                 if (tok[0] == '\0')
1587                         break;
1588                 ctx.body += len;
1589
1590                 ret = -EINVAL;
1591                 p = tok;
1592                 strsep(&p, "=");
1593                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1594                         goto out_finish;
1595
1596                 ret = -ERANGE;
1597                 if (!val)
1598                         goto out_finish;
1599
1600                 ret = -EINVAL;
1601                 if (!strcmp(tok, "rbps") && val > 1)
1602                         v[0] = val;
1603                 else if (!strcmp(tok, "wbps") && val > 1)
1604                         v[1] = val;
1605                 else if (!strcmp(tok, "riops") && val > 1)
1606                         v[2] = min_t(u64, val, UINT_MAX);
1607                 else if (!strcmp(tok, "wiops") && val > 1)
1608                         v[3] = min_t(u64, val, UINT_MAX);
1609                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1610                         idle_time = val;
1611                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1612                         latency_time = val;
1613                 else
1614                         goto out_finish;
1615         }
1616
1617         tg->bps_conf[READ][index] = v[0];
1618         tg->bps_conf[WRITE][index] = v[1];
1619         tg->iops_conf[READ][index] = v[2];
1620         tg->iops_conf[WRITE][index] = v[3];
1621
1622         if (index == LIMIT_MAX) {
1623                 tg->bps[READ][index] = v[0];
1624                 tg->bps[WRITE][index] = v[1];
1625                 tg->iops[READ][index] = v[2];
1626                 tg->iops[WRITE][index] = v[3];
1627         }
1628         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1629                 tg->bps_conf[READ][LIMIT_MAX]);
1630         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1631                 tg->bps_conf[WRITE][LIMIT_MAX]);
1632         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1633                 tg->iops_conf[READ][LIMIT_MAX]);
1634         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1635                 tg->iops_conf[WRITE][LIMIT_MAX]);
1636         tg->idletime_threshold_conf = idle_time;
1637         tg->latency_target_conf = latency_time;
1638
1639         /* force user to configure all settings for low limit  */
1640         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1641               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1642             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1643             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1644                 tg->bps[READ][LIMIT_LOW] = 0;
1645                 tg->bps[WRITE][LIMIT_LOW] = 0;
1646                 tg->iops[READ][LIMIT_LOW] = 0;
1647                 tg->iops[WRITE][LIMIT_LOW] = 0;
1648                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1649                 tg->latency_target = DFL_LATENCY_TARGET;
1650         } else if (index == LIMIT_LOW) {
1651                 tg->idletime_threshold = tg->idletime_threshold_conf;
1652                 tg->latency_target = tg->latency_target_conf;
1653         }
1654
1655         blk_throtl_update_limit_valid(tg->td);
1656         if (tg->td->limit_valid[LIMIT_LOW]) {
1657                 if (index == LIMIT_LOW)
1658                         tg->td->limit_index = LIMIT_LOW;
1659         } else
1660                 tg->td->limit_index = LIMIT_MAX;
1661         tg_conf_updated(tg, index == LIMIT_LOW &&
1662                 tg->td->limit_valid[LIMIT_LOW]);
1663         ret = 0;
1664 out_finish:
1665         blkg_conf_finish(&ctx);
1666         return ret ?: nbytes;
1667 }
1668
1669 static struct cftype throtl_files[] = {
1670 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1671         {
1672                 .name = "low",
1673                 .flags = CFTYPE_NOT_ON_ROOT,
1674                 .seq_show = tg_print_limit,
1675                 .write = tg_set_limit,
1676                 .private = LIMIT_LOW,
1677         },
1678 #endif
1679         {
1680                 .name = "max",
1681                 .flags = CFTYPE_NOT_ON_ROOT,
1682                 .seq_show = tg_print_limit,
1683                 .write = tg_set_limit,
1684                 .private = LIMIT_MAX,
1685         },
1686         { }     /* terminate */
1687 };
1688
1689 static void throtl_shutdown_wq(struct request_queue *q)
1690 {
1691         struct throtl_data *td = q->td;
1692
1693         cancel_work_sync(&td->dispatch_work);
1694 }
1695
1696 struct blkcg_policy blkcg_policy_throtl = {
1697         .dfl_cftypes            = throtl_files,
1698         .legacy_cftypes         = throtl_legacy_files,
1699
1700         .pd_alloc_fn            = throtl_pd_alloc,
1701         .pd_init_fn             = throtl_pd_init,
1702         .pd_online_fn           = throtl_pd_online,
1703         .pd_offline_fn          = throtl_pd_offline,
1704         .pd_free_fn             = throtl_pd_free,
1705 };
1706
1707 void blk_throtl_cancel_bios(struct gendisk *disk)
1708 {
1709         struct request_queue *q = disk->queue;
1710         struct cgroup_subsys_state *pos_css;
1711         struct blkcg_gq *blkg;
1712
1713         spin_lock_irq(&q->queue_lock);
1714         /*
1715          * queue_lock is held, rcu lock is not needed here technically.
1716          * However, rcu lock is still held to emphasize that following
1717          * path need RCU protection and to prevent warning from lockdep.
1718          */
1719         rcu_read_lock();
1720         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1721                 struct throtl_grp *tg = blkg_to_tg(blkg);
1722                 struct throtl_service_queue *sq = &tg->service_queue;
1723
1724                 /*
1725                  * Set the flag to make sure throtl_pending_timer_fn() won't
1726                  * stop until all throttled bios are dispatched.
1727                  */
1728                 tg->flags |= THROTL_TG_CANCELING;
1729
1730                 /*
1731                  * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1732                  * will be inserted to service queue without THROTL_TG_PENDING
1733                  * set in tg_update_disptime below. Then IO dispatched from
1734                  * child in tg_dispatch_one_bio will trigger double insertion
1735                  * and corrupt the tree.
1736                  */
1737                 if (!(tg->flags & THROTL_TG_PENDING))
1738                         continue;
1739
1740                 /*
1741                  * Update disptime after setting the above flag to make sure
1742                  * throtl_select_dispatch() won't exit without dispatching.
1743                  */
1744                 tg_update_disptime(tg);
1745
1746                 throtl_schedule_pending_timer(sq, jiffies + 1);
1747         }
1748         rcu_read_unlock();
1749         spin_unlock_irq(&q->queue_lock);
1750 }
1751
1752 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1753 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1754 {
1755         unsigned long rtime = jiffies, wtime = jiffies;
1756
1757         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1758                 rtime = tg->last_low_overflow_time[READ];
1759         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1760                 wtime = tg->last_low_overflow_time[WRITE];
1761         return min(rtime, wtime);
1762 }
1763
1764 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1765 {
1766         struct throtl_service_queue *parent_sq;
1767         struct throtl_grp *parent = tg;
1768         unsigned long ret = __tg_last_low_overflow_time(tg);
1769
1770         while (true) {
1771                 parent_sq = parent->service_queue.parent_sq;
1772                 parent = sq_to_tg(parent_sq);
1773                 if (!parent)
1774                         break;
1775
1776                 /*
1777                  * The parent doesn't have low limit, it always reaches low
1778                  * limit. Its overflow time is useless for children
1779                  */
1780                 if (!parent->bps[READ][LIMIT_LOW] &&
1781                     !parent->iops[READ][LIMIT_LOW] &&
1782                     !parent->bps[WRITE][LIMIT_LOW] &&
1783                     !parent->iops[WRITE][LIMIT_LOW])
1784                         continue;
1785                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1786                         ret = __tg_last_low_overflow_time(parent);
1787         }
1788         return ret;
1789 }
1790
1791 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1792 {
1793         /*
1794          * cgroup is idle if:
1795          * - single idle is too long, longer than a fixed value (in case user
1796          *   configure a too big threshold) or 4 times of idletime threshold
1797          * - average think time is more than threshold
1798          * - IO latency is largely below threshold
1799          */
1800         unsigned long time;
1801         bool ret;
1802
1803         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1804         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1805               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1806               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1807               tg->avg_idletime > tg->idletime_threshold ||
1808               (tg->latency_target && tg->bio_cnt &&
1809                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1810         throtl_log(&tg->service_queue,
1811                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1812                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1813                 tg->bio_cnt, ret, tg->td->scale);
1814         return ret;
1815 }
1816
1817 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1818 {
1819         struct throtl_service_queue *sq = &tg->service_queue;
1820         bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1821
1822         /*
1823          * if low limit is zero, low limit is always reached.
1824          * if low limit is non-zero, we can check if there is any request
1825          * is queued to determine if low limit is reached as we throttle
1826          * request according to limit.
1827          */
1828         return !limit || sq->nr_queued[rw];
1829 }
1830
1831 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1832 {
1833         /*
1834          * cgroup reaches low limit when low limit of READ and WRITE are
1835          * both reached, it's ok to upgrade to next limit if cgroup reaches
1836          * low limit
1837          */
1838         if (throtl_low_limit_reached(tg, READ) &&
1839             throtl_low_limit_reached(tg, WRITE))
1840                 return true;
1841
1842         if (time_after_eq(jiffies,
1843                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1844             throtl_tg_is_idle(tg))
1845                 return true;
1846         return false;
1847 }
1848
1849 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1850 {
1851         while (true) {
1852                 if (throtl_tg_can_upgrade(tg))
1853                         return true;
1854                 tg = sq_to_tg(tg->service_queue.parent_sq);
1855                 if (!tg || !tg_to_blkg(tg)->parent)
1856                         return false;
1857         }
1858         return false;
1859 }
1860
1861 static bool throtl_can_upgrade(struct throtl_data *td,
1862         struct throtl_grp *this_tg)
1863 {
1864         struct cgroup_subsys_state *pos_css;
1865         struct blkcg_gq *blkg;
1866
1867         if (td->limit_index != LIMIT_LOW)
1868                 return false;
1869
1870         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1871                 return false;
1872
1873         rcu_read_lock();
1874         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1875                 struct throtl_grp *tg = blkg_to_tg(blkg);
1876
1877                 if (tg == this_tg)
1878                         continue;
1879                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1880                         continue;
1881                 if (!throtl_hierarchy_can_upgrade(tg)) {
1882                         rcu_read_unlock();
1883                         return false;
1884                 }
1885         }
1886         rcu_read_unlock();
1887         return true;
1888 }
1889
1890 static void throtl_upgrade_check(struct throtl_grp *tg)
1891 {
1892         unsigned long now = jiffies;
1893
1894         if (tg->td->limit_index != LIMIT_LOW)
1895                 return;
1896
1897         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1898                 return;
1899
1900         tg->last_check_time = now;
1901
1902         if (!time_after_eq(now,
1903              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1904                 return;
1905
1906         if (throtl_can_upgrade(tg->td, NULL))
1907                 throtl_upgrade_state(tg->td);
1908 }
1909
1910 static void throtl_upgrade_state(struct throtl_data *td)
1911 {
1912         struct cgroup_subsys_state *pos_css;
1913         struct blkcg_gq *blkg;
1914
1915         throtl_log(&td->service_queue, "upgrade to max");
1916         td->limit_index = LIMIT_MAX;
1917         td->low_upgrade_time = jiffies;
1918         td->scale = 0;
1919         rcu_read_lock();
1920         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1921                 struct throtl_grp *tg = blkg_to_tg(blkg);
1922                 struct throtl_service_queue *sq = &tg->service_queue;
1923
1924                 tg->disptime = jiffies - 1;
1925                 throtl_select_dispatch(sq);
1926                 throtl_schedule_next_dispatch(sq, true);
1927         }
1928         rcu_read_unlock();
1929         throtl_select_dispatch(&td->service_queue);
1930         throtl_schedule_next_dispatch(&td->service_queue, true);
1931         queue_work(kthrotld_workqueue, &td->dispatch_work);
1932 }
1933
1934 static void throtl_downgrade_state(struct throtl_data *td)
1935 {
1936         td->scale /= 2;
1937
1938         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1939         if (td->scale) {
1940                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1941                 return;
1942         }
1943
1944         td->limit_index = LIMIT_LOW;
1945         td->low_downgrade_time = jiffies;
1946 }
1947
1948 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1949 {
1950         struct throtl_data *td = tg->td;
1951         unsigned long now = jiffies;
1952
1953         /*
1954          * If cgroup is below low limit, consider downgrade and throttle other
1955          * cgroups
1956          */
1957         if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1958                                         td->throtl_slice) &&
1959             (!throtl_tg_is_idle(tg) ||
1960              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1961                 return true;
1962         return false;
1963 }
1964
1965 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1966 {
1967         struct throtl_data *td = tg->td;
1968
1969         if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1970                 return false;
1971
1972         while (true) {
1973                 if (!throtl_tg_can_downgrade(tg))
1974                         return false;
1975                 tg = sq_to_tg(tg->service_queue.parent_sq);
1976                 if (!tg || !tg_to_blkg(tg)->parent)
1977                         break;
1978         }
1979         return true;
1980 }
1981
1982 static void throtl_downgrade_check(struct throtl_grp *tg)
1983 {
1984         uint64_t bps;
1985         unsigned int iops;
1986         unsigned long elapsed_time;
1987         unsigned long now = jiffies;
1988
1989         if (tg->td->limit_index != LIMIT_MAX ||
1990             !tg->td->limit_valid[LIMIT_LOW])
1991                 return;
1992         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1993                 return;
1994         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1995                 return;
1996
1997         elapsed_time = now - tg->last_check_time;
1998         tg->last_check_time = now;
1999
2000         if (time_before(now, tg_last_low_overflow_time(tg) +
2001                         tg->td->throtl_slice))
2002                 return;
2003
2004         if (tg->bps[READ][LIMIT_LOW]) {
2005                 bps = tg->last_bytes_disp[READ] * HZ;
2006                 do_div(bps, elapsed_time);
2007                 if (bps >= tg->bps[READ][LIMIT_LOW])
2008                         tg->last_low_overflow_time[READ] = now;
2009         }
2010
2011         if (tg->bps[WRITE][LIMIT_LOW]) {
2012                 bps = tg->last_bytes_disp[WRITE] * HZ;
2013                 do_div(bps, elapsed_time);
2014                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2015                         tg->last_low_overflow_time[WRITE] = now;
2016         }
2017
2018         if (tg->iops[READ][LIMIT_LOW]) {
2019                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2020                 if (iops >= tg->iops[READ][LIMIT_LOW])
2021                         tg->last_low_overflow_time[READ] = now;
2022         }
2023
2024         if (tg->iops[WRITE][LIMIT_LOW]) {
2025                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2026                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2027                         tg->last_low_overflow_time[WRITE] = now;
2028         }
2029
2030         /*
2031          * If cgroup is below low limit, consider downgrade and throttle other
2032          * cgroups
2033          */
2034         if (throtl_hierarchy_can_downgrade(tg))
2035                 throtl_downgrade_state(tg->td);
2036
2037         tg->last_bytes_disp[READ] = 0;
2038         tg->last_bytes_disp[WRITE] = 0;
2039         tg->last_io_disp[READ] = 0;
2040         tg->last_io_disp[WRITE] = 0;
2041 }
2042
2043 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2044 {
2045         unsigned long now;
2046         unsigned long last_finish_time = tg->last_finish_time;
2047
2048         if (last_finish_time == 0)
2049                 return;
2050
2051         now = ktime_get_ns() >> 10;
2052         if (now <= last_finish_time ||
2053             last_finish_time == tg->checked_last_finish_time)
2054                 return;
2055
2056         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2057         tg->checked_last_finish_time = last_finish_time;
2058 }
2059
2060 static void throtl_update_latency_buckets(struct throtl_data *td)
2061 {
2062         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2063         int i, cpu, rw;
2064         unsigned long last_latency[2] = { 0 };
2065         unsigned long latency[2];
2066
2067         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2068                 return;
2069         if (time_before(jiffies, td->last_calculate_time + HZ))
2070                 return;
2071         td->last_calculate_time = jiffies;
2072
2073         memset(avg_latency, 0, sizeof(avg_latency));
2074         for (rw = READ; rw <= WRITE; rw++) {
2075                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2076                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2077
2078                         for_each_possible_cpu(cpu) {
2079                                 struct latency_bucket *bucket;
2080
2081                                 /* this isn't race free, but ok in practice */
2082                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2083                                         cpu);
2084                                 tmp->total_latency += bucket[i].total_latency;
2085                                 tmp->samples += bucket[i].samples;
2086                                 bucket[i].total_latency = 0;
2087                                 bucket[i].samples = 0;
2088                         }
2089
2090                         if (tmp->samples >= 32) {
2091                                 int samples = tmp->samples;
2092
2093                                 latency[rw] = tmp->total_latency;
2094
2095                                 tmp->total_latency = 0;
2096                                 tmp->samples = 0;
2097                                 latency[rw] /= samples;
2098                                 if (latency[rw] == 0)
2099                                         continue;
2100                                 avg_latency[rw][i].latency = latency[rw];
2101                         }
2102                 }
2103         }
2104
2105         for (rw = READ; rw <= WRITE; rw++) {
2106                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2107                         if (!avg_latency[rw][i].latency) {
2108                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2109                                         td->avg_buckets[rw][i].latency =
2110                                                 last_latency[rw];
2111                                 continue;
2112                         }
2113
2114                         if (!td->avg_buckets[rw][i].valid)
2115                                 latency[rw] = avg_latency[rw][i].latency;
2116                         else
2117                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2118                                         avg_latency[rw][i].latency) >> 3;
2119
2120                         td->avg_buckets[rw][i].latency = max(latency[rw],
2121                                 last_latency[rw]);
2122                         td->avg_buckets[rw][i].valid = true;
2123                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2124                 }
2125         }
2126
2127         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2128                 throtl_log(&td->service_queue,
2129                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2130                         "write latency=%ld, write valid=%d", i,
2131                         td->avg_buckets[READ][i].latency,
2132                         td->avg_buckets[READ][i].valid,
2133                         td->avg_buckets[WRITE][i].latency,
2134                         td->avg_buckets[WRITE][i].valid);
2135 }
2136 #else
2137 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2138 {
2139 }
2140
2141 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2142 {
2143 }
2144
2145 static void throtl_downgrade_check(struct throtl_grp *tg)
2146 {
2147 }
2148
2149 static void throtl_upgrade_check(struct throtl_grp *tg)
2150 {
2151 }
2152
2153 static bool throtl_can_upgrade(struct throtl_data *td,
2154         struct throtl_grp *this_tg)
2155 {
2156         return false;
2157 }
2158
2159 static void throtl_upgrade_state(struct throtl_data *td)
2160 {
2161 }
2162 #endif
2163
2164 bool __blk_throtl_bio(struct bio *bio)
2165 {
2166         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2167         struct blkcg_gq *blkg = bio->bi_blkg;
2168         struct throtl_qnode *qn = NULL;
2169         struct throtl_grp *tg = blkg_to_tg(blkg);
2170         struct throtl_service_queue *sq;
2171         bool rw = bio_data_dir(bio);
2172         bool throttled = false;
2173         struct throtl_data *td = tg->td;
2174
2175         rcu_read_lock();
2176
2177         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2178                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2179                                 bio->bi_iter.bi_size);
2180                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2181         }
2182
2183         spin_lock_irq(&q->queue_lock);
2184
2185         throtl_update_latency_buckets(td);
2186
2187         blk_throtl_update_idletime(tg);
2188
2189         sq = &tg->service_queue;
2190
2191 again:
2192         while (true) {
2193                 if (tg->last_low_overflow_time[rw] == 0)
2194                         tg->last_low_overflow_time[rw] = jiffies;
2195                 throtl_downgrade_check(tg);
2196                 throtl_upgrade_check(tg);
2197                 /* throtl is FIFO - if bios are already queued, should queue */
2198                 if (sq->nr_queued[rw])
2199                         break;
2200
2201                 /* if above limits, break to queue */
2202                 if (!tg_may_dispatch(tg, bio, NULL)) {
2203                         tg->last_low_overflow_time[rw] = jiffies;
2204                         if (throtl_can_upgrade(td, tg)) {
2205                                 throtl_upgrade_state(td);
2206                                 goto again;
2207                         }
2208                         break;
2209                 }
2210
2211                 /* within limits, let's charge and dispatch directly */
2212                 throtl_charge_bio(tg, bio);
2213
2214                 /*
2215                  * We need to trim slice even when bios are not being queued
2216                  * otherwise it might happen that a bio is not queued for
2217                  * a long time and slice keeps on extending and trim is not
2218                  * called for a long time. Now if limits are reduced suddenly
2219                  * we take into account all the IO dispatched so far at new
2220                  * low rate and * newly queued IO gets a really long dispatch
2221                  * time.
2222                  *
2223                  * So keep on trimming slice even if bio is not queued.
2224                  */
2225                 throtl_trim_slice(tg, rw);
2226
2227                 /*
2228                  * @bio passed through this layer without being throttled.
2229                  * Climb up the ladder.  If we're already at the top, it
2230                  * can be executed directly.
2231                  */
2232                 qn = &tg->qnode_on_parent[rw];
2233                 sq = sq->parent_sq;
2234                 tg = sq_to_tg(sq);
2235                 if (!tg) {
2236                         bio_set_flag(bio, BIO_BPS_THROTTLED);
2237                         goto out_unlock;
2238                 }
2239         }
2240
2241         /* out-of-limit, queue to @tg */
2242         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2243                    rw == READ ? 'R' : 'W',
2244                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2245                    tg_bps_limit(tg, rw),
2246                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2247                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2248
2249         tg->last_low_overflow_time[rw] = jiffies;
2250
2251         td->nr_queued[rw]++;
2252         throtl_add_bio_tg(bio, qn, tg);
2253         throttled = true;
2254
2255         /*
2256          * Update @tg's dispatch time and force schedule dispatch if @tg
2257          * was empty before @bio.  The forced scheduling isn't likely to
2258          * cause undue delay as @bio is likely to be dispatched directly if
2259          * its @tg's disptime is not in the future.
2260          */
2261         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2262                 tg_update_disptime(tg);
2263                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2264         }
2265
2266 out_unlock:
2267 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2268         if (throttled || !td->track_bio_latency)
2269                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2270 #endif
2271         spin_unlock_irq(&q->queue_lock);
2272
2273         rcu_read_unlock();
2274         return throttled;
2275 }
2276
2277 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2278 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2279                                  enum req_op op, unsigned long time)
2280 {
2281         const bool rw = op_is_write(op);
2282         struct latency_bucket *latency;
2283         int index;
2284
2285         if (!td || td->limit_index != LIMIT_LOW ||
2286             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2287             !blk_queue_nonrot(td->queue))
2288                 return;
2289
2290         index = request_bucket_index(size);
2291
2292         latency = get_cpu_ptr(td->latency_buckets[rw]);
2293         latency[index].total_latency += time;
2294         latency[index].samples++;
2295         put_cpu_ptr(td->latency_buckets[rw]);
2296 }
2297
2298 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2299 {
2300         struct request_queue *q = rq->q;
2301         struct throtl_data *td = q->td;
2302
2303         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2304                              time_ns >> 10);
2305 }
2306
2307 void blk_throtl_bio_endio(struct bio *bio)
2308 {
2309         struct blkcg_gq *blkg;
2310         struct throtl_grp *tg;
2311         u64 finish_time_ns;
2312         unsigned long finish_time;
2313         unsigned long start_time;
2314         unsigned long lat;
2315         int rw = bio_data_dir(bio);
2316
2317         blkg = bio->bi_blkg;
2318         if (!blkg)
2319                 return;
2320         tg = blkg_to_tg(blkg);
2321         if (!tg->td->limit_valid[LIMIT_LOW])
2322                 return;
2323
2324         finish_time_ns = ktime_get_ns();
2325         tg->last_finish_time = finish_time_ns >> 10;
2326
2327         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2328         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2329         if (!start_time || finish_time <= start_time)
2330                 return;
2331
2332         lat = finish_time - start_time;
2333         /* this is only for bio based driver */
2334         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2335                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2336                                      bio_op(bio), lat);
2337
2338         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2339                 int bucket;
2340                 unsigned int threshold;
2341
2342                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2343                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2344                         tg->latency_target;
2345                 if (lat > threshold)
2346                         tg->bad_bio_cnt++;
2347                 /*
2348                  * Not race free, could get wrong count, which means cgroups
2349                  * will be throttled
2350                  */
2351                 tg->bio_cnt++;
2352         }
2353
2354         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2355                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2356                 tg->bio_cnt /= 2;
2357                 tg->bad_bio_cnt /= 2;
2358         }
2359 }
2360 #endif
2361
2362 int blk_throtl_init(struct gendisk *disk)
2363 {
2364         struct request_queue *q = disk->queue;
2365         struct throtl_data *td;
2366         int ret;
2367
2368         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2369         if (!td)
2370                 return -ENOMEM;
2371         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2372                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2373         if (!td->latency_buckets[READ]) {
2374                 kfree(td);
2375                 return -ENOMEM;
2376         }
2377         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2378                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2379         if (!td->latency_buckets[WRITE]) {
2380                 free_percpu(td->latency_buckets[READ]);
2381                 kfree(td);
2382                 return -ENOMEM;
2383         }
2384
2385         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2386         throtl_service_queue_init(&td->service_queue);
2387
2388         q->td = td;
2389         td->queue = q;
2390
2391         td->limit_valid[LIMIT_MAX] = true;
2392         td->limit_index = LIMIT_MAX;
2393         td->low_upgrade_time = jiffies;
2394         td->low_downgrade_time = jiffies;
2395
2396         /* activate policy */
2397         ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2398         if (ret) {
2399                 free_percpu(td->latency_buckets[READ]);
2400                 free_percpu(td->latency_buckets[WRITE]);
2401                 kfree(td);
2402         }
2403         return ret;
2404 }
2405
2406 void blk_throtl_exit(struct gendisk *disk)
2407 {
2408         struct request_queue *q = disk->queue;
2409
2410         BUG_ON(!q->td);
2411         del_timer_sync(&q->td->service_queue.pending_timer);
2412         throtl_shutdown_wq(q);
2413         blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2414         free_percpu(q->td->latency_buckets[READ]);
2415         free_percpu(q->td->latency_buckets[WRITE]);
2416         kfree(q->td);
2417 }
2418
2419 void blk_throtl_register(struct gendisk *disk)
2420 {
2421         struct request_queue *q = disk->queue;
2422         struct throtl_data *td;
2423         int i;
2424
2425         td = q->td;
2426         BUG_ON(!td);
2427
2428         if (blk_queue_nonrot(q)) {
2429                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2430                 td->filtered_latency = LATENCY_FILTERED_SSD;
2431         } else {
2432                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2433                 td->filtered_latency = LATENCY_FILTERED_HD;
2434                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2435                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2436                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2437                 }
2438         }
2439 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2440         /* if no low limit, use previous default */
2441         td->throtl_slice = DFL_THROTL_SLICE_HD;
2442 #endif
2443
2444         td->track_bio_latency = !queue_is_mq(q);
2445         if (!td->track_bio_latency)
2446                 blk_stat_enable_accounting(q);
2447 }
2448
2449 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2450 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2451 {
2452         if (!q->td)
2453                 return -EINVAL;
2454         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2455 }
2456
2457 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2458         const char *page, size_t count)
2459 {
2460         unsigned long v;
2461         unsigned long t;
2462
2463         if (!q->td)
2464                 return -EINVAL;
2465         if (kstrtoul(page, 10, &v))
2466                 return -EINVAL;
2467         t = msecs_to_jiffies(v);
2468         if (t == 0 || t > MAX_THROTL_SLICE)
2469                 return -EINVAL;
2470         q->td->throtl_slice = t;
2471         return count;
2472 }
2473 #endif
2474
2475 static int __init throtl_init(void)
2476 {
2477         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2478         if (!kthrotld_workqueue)
2479                 panic("Failed to create kthrotld\n");
2480
2481         return blkcg_policy_register(&blkcg_policy_throtl);
2482 }
2483
2484 module_init(throtl_init);