4806b867e37d084b24a7db92392e8f1386a95348
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_in_driver(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->rq_flags & RQF_IO_STAT &&
97             (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
109                                    &mi);
110         inflight[READ] = mi.inflight[READ];
111         inflight[WRITE] = mi.inflight[WRITE];
112 }
113
114 #ifdef CONFIG_LOCKDEP
115 static bool blk_freeze_set_owner(struct request_queue *q,
116                                  struct task_struct *owner)
117 {
118         if (!owner)
119                 return false;
120
121         if (!q->mq_freeze_depth) {
122                 q->mq_freeze_owner = owner;
123                 q->mq_freeze_owner_depth = 1;
124                 q->mq_freeze_disk_dead = !q->disk ||
125                         test_bit(GD_DEAD, &q->disk->state) ||
126                         !blk_queue_registered(q);
127                 q->mq_freeze_queue_dying = blk_queue_dying(q);
128                 return true;
129         }
130
131         if (owner == q->mq_freeze_owner)
132                 q->mq_freeze_owner_depth += 1;
133         return false;
134 }
135
136 /* verify the last unfreeze in owner context */
137 static bool blk_unfreeze_check_owner(struct request_queue *q)
138 {
139         if (q->mq_freeze_owner != current)
140                 return false;
141         if (--q->mq_freeze_owner_depth == 0) {
142                 q->mq_freeze_owner = NULL;
143                 return true;
144         }
145         return false;
146 }
147
148 #else
149
150 static bool blk_freeze_set_owner(struct request_queue *q,
151                                  struct task_struct *owner)
152 {
153         return false;
154 }
155
156 static bool blk_unfreeze_check_owner(struct request_queue *q)
157 {
158         return false;
159 }
160 #endif
161
162 bool __blk_freeze_queue_start(struct request_queue *q,
163                               struct task_struct *owner)
164 {
165         bool freeze;
166
167         mutex_lock(&q->mq_freeze_lock);
168         freeze = blk_freeze_set_owner(q, owner);
169         if (++q->mq_freeze_depth == 1) {
170                 percpu_ref_kill(&q->q_usage_counter);
171                 mutex_unlock(&q->mq_freeze_lock);
172                 if (queue_is_mq(q))
173                         blk_mq_run_hw_queues(q, false);
174         } else {
175                 mutex_unlock(&q->mq_freeze_lock);
176         }
177
178         return freeze;
179 }
180
181 void blk_freeze_queue_start(struct request_queue *q)
182 {
183         if (__blk_freeze_queue_start(q, current))
184                 blk_freeze_acquire_lock(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
187
188 void blk_mq_freeze_queue_wait(struct request_queue *q)
189 {
190         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
193
194 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
195                                      unsigned long timeout)
196 {
197         return wait_event_timeout(q->mq_freeze_wq,
198                                         percpu_ref_is_zero(&q->q_usage_counter),
199                                         timeout);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
202
203 void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
204 {
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
209
210 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
211 {
212         bool unfreeze;
213
214         mutex_lock(&q->mq_freeze_lock);
215         if (force_atomic)
216                 q->q_usage_counter.data->force_atomic = true;
217         q->mq_freeze_depth--;
218         WARN_ON_ONCE(q->mq_freeze_depth < 0);
219         if (!q->mq_freeze_depth) {
220                 percpu_ref_resurrect(&q->q_usage_counter);
221                 wake_up_all(&q->mq_freeze_wq);
222         }
223         unfreeze = blk_unfreeze_check_owner(q);
224         mutex_unlock(&q->mq_freeze_lock);
225
226         return unfreeze;
227 }
228
229 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
230 {
231         if (__blk_mq_unfreeze_queue(q, false))
232                 blk_unfreeze_release_lock(q);
233 }
234 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
235
236 /*
237  * non_owner variant of blk_freeze_queue_start
238  *
239  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
240  * by the same task.  This is fragile and should not be used if at all
241  * possible.
242  */
243 void blk_freeze_queue_start_non_owner(struct request_queue *q)
244 {
245         __blk_freeze_queue_start(q, NULL);
246 }
247 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
248
249 /* non_owner variant of blk_mq_unfreeze_queue */
250 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
251 {
252         __blk_mq_unfreeze_queue(q, false);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
255
256 /*
257  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
258  * mpt3sas driver such that this function can be removed.
259  */
260 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
261 {
262         unsigned long flags;
263
264         spin_lock_irqsave(&q->queue_lock, flags);
265         if (!q->quiesce_depth++)
266                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
267         spin_unlock_irqrestore(&q->queue_lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
270
271 /**
272  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
273  * @set: tag_set to wait on
274  *
275  * Note: it is driver's responsibility for making sure that quiesce has
276  * been started on or more of the request_queues of the tag_set.  This
277  * function only waits for the quiesce on those request_queues that had
278  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
279  */
280 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
281 {
282         if (set->flags & BLK_MQ_F_BLOCKING)
283                 synchronize_srcu(set->srcu);
284         else
285                 synchronize_rcu();
286 }
287 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
288
289 /**
290  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
291  * @q: request queue.
292  *
293  * Note: this function does not prevent that the struct request end_io()
294  * callback function is invoked. Once this function is returned, we make
295  * sure no dispatch can happen until the queue is unquiesced via
296  * blk_mq_unquiesce_queue().
297  */
298 void blk_mq_quiesce_queue(struct request_queue *q)
299 {
300         blk_mq_quiesce_queue_nowait(q);
301         /* nothing to wait for non-mq queues */
302         if (queue_is_mq(q))
303                 blk_mq_wait_quiesce_done(q->tag_set);
304 }
305 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
306
307 /*
308  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
309  * @q: request queue.
310  *
311  * This function recovers queue into the state before quiescing
312  * which is done by blk_mq_quiesce_queue.
313  */
314 void blk_mq_unquiesce_queue(struct request_queue *q)
315 {
316         unsigned long flags;
317         bool run_queue = false;
318
319         spin_lock_irqsave(&q->queue_lock, flags);
320         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
321                 ;
322         } else if (!--q->quiesce_depth) {
323                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
324                 run_queue = true;
325         }
326         spin_unlock_irqrestore(&q->queue_lock, flags);
327
328         /* dispatch requests which are inserted during quiescing */
329         if (run_queue)
330                 blk_mq_run_hw_queues(q, true);
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
333
334 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
335 {
336         struct request_queue *q;
337
338         mutex_lock(&set->tag_list_lock);
339         list_for_each_entry(q, &set->tag_list, tag_set_list) {
340                 if (!blk_queue_skip_tagset_quiesce(q))
341                         blk_mq_quiesce_queue_nowait(q);
342         }
343         mutex_unlock(&set->tag_list_lock);
344
345         blk_mq_wait_quiesce_done(set);
346 }
347 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
348
349 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
350 {
351         struct request_queue *q;
352
353         mutex_lock(&set->tag_list_lock);
354         list_for_each_entry(q, &set->tag_list, tag_set_list) {
355                 if (!blk_queue_skip_tagset_quiesce(q))
356                         blk_mq_unquiesce_queue(q);
357         }
358         mutex_unlock(&set->tag_list_lock);
359 }
360 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
361
362 void blk_mq_wake_waiters(struct request_queue *q)
363 {
364         struct blk_mq_hw_ctx *hctx;
365         unsigned long i;
366
367         queue_for_each_hw_ctx(q, hctx, i)
368                 if (blk_mq_hw_queue_mapped(hctx))
369                         blk_mq_tag_wakeup_all(hctx->tags, true);
370 }
371
372 void blk_rq_init(struct request_queue *q, struct request *rq)
373 {
374         memset(rq, 0, sizeof(*rq));
375
376         INIT_LIST_HEAD(&rq->queuelist);
377         rq->q = q;
378         rq->__sector = (sector_t) -1;
379         INIT_HLIST_NODE(&rq->hash);
380         RB_CLEAR_NODE(&rq->rb_node);
381         rq->tag = BLK_MQ_NO_TAG;
382         rq->internal_tag = BLK_MQ_NO_TAG;
383         rq->start_time_ns = blk_time_get_ns();
384         blk_crypto_rq_set_defaults(rq);
385 }
386 EXPORT_SYMBOL(blk_rq_init);
387
388 /* Set start and alloc time when the allocated request is actually used */
389 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
390 {
391 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
392         if (blk_queue_rq_alloc_time(rq->q))
393                 rq->alloc_time_ns = alloc_time_ns;
394         else
395                 rq->alloc_time_ns = 0;
396 #endif
397 }
398
399 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
400                 struct blk_mq_tags *tags, unsigned int tag)
401 {
402         struct blk_mq_ctx *ctx = data->ctx;
403         struct blk_mq_hw_ctx *hctx = data->hctx;
404         struct request_queue *q = data->q;
405         struct request *rq = tags->static_rqs[tag];
406
407         rq->q = q;
408         rq->mq_ctx = ctx;
409         rq->mq_hctx = hctx;
410         rq->cmd_flags = data->cmd_flags;
411
412         if (data->flags & BLK_MQ_REQ_PM)
413                 data->rq_flags |= RQF_PM;
414         rq->rq_flags = data->rq_flags;
415
416         if (data->rq_flags & RQF_SCHED_TAGS) {
417                 rq->tag = BLK_MQ_NO_TAG;
418                 rq->internal_tag = tag;
419         } else {
420                 rq->tag = tag;
421                 rq->internal_tag = BLK_MQ_NO_TAG;
422         }
423         rq->timeout = 0;
424
425         rq->part = NULL;
426         rq->io_start_time_ns = 0;
427         rq->stats_sectors = 0;
428         rq->nr_phys_segments = 0;
429         rq->nr_integrity_segments = 0;
430         rq->end_io = NULL;
431         rq->end_io_data = NULL;
432
433         blk_crypto_rq_set_defaults(rq);
434         INIT_LIST_HEAD(&rq->queuelist);
435         /* tag was already set */
436         WRITE_ONCE(rq->deadline, 0);
437         req_ref_set(rq, 1);
438
439         if (rq->rq_flags & RQF_USE_SCHED) {
440                 struct elevator_queue *e = data->q->elevator;
441
442                 INIT_HLIST_NODE(&rq->hash);
443                 RB_CLEAR_NODE(&rq->rb_node);
444
445                 if (e->type->ops.prepare_request)
446                         e->type->ops.prepare_request(rq);
447         }
448
449         return rq;
450 }
451
452 static inline struct request *
453 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
454 {
455         unsigned int tag, tag_offset;
456         struct blk_mq_tags *tags;
457         struct request *rq;
458         unsigned long tag_mask;
459         int i, nr = 0;
460
461         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
462         if (unlikely(!tag_mask))
463                 return NULL;
464
465         tags = blk_mq_tags_from_data(data);
466         for (i = 0; tag_mask; i++) {
467                 if (!(tag_mask & (1UL << i)))
468                         continue;
469                 tag = tag_offset + i;
470                 prefetch(tags->static_rqs[tag]);
471                 tag_mask &= ~(1UL << i);
472                 rq = blk_mq_rq_ctx_init(data, tags, tag);
473                 rq_list_add_head(data->cached_rqs, rq);
474                 nr++;
475         }
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_add_active_requests(data->hctx, nr);
478         /* caller already holds a reference, add for remainder */
479         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
480         data->nr_tags -= nr;
481
482         return rq_list_pop(data->cached_rqs);
483 }
484
485 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
486 {
487         struct request_queue *q = data->q;
488         u64 alloc_time_ns = 0;
489         struct request *rq;
490         unsigned int tag;
491
492         /* alloc_time includes depth and tag waits */
493         if (blk_queue_rq_alloc_time(q))
494                 alloc_time_ns = blk_time_get_ns();
495
496         if (data->cmd_flags & REQ_NOWAIT)
497                 data->flags |= BLK_MQ_REQ_NOWAIT;
498
499 retry:
500         data->ctx = blk_mq_get_ctx(q);
501         data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
502
503         if (q->elevator) {
504                 /*
505                  * All requests use scheduler tags when an I/O scheduler is
506                  * enabled for the queue.
507                  */
508                 data->rq_flags |= RQF_SCHED_TAGS;
509
510                 /*
511                  * Flush/passthrough requests are special and go directly to the
512                  * dispatch list.
513                  */
514                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
515                     !blk_op_is_passthrough(data->cmd_flags)) {
516                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
517
518                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
519
520                         data->rq_flags |= RQF_USE_SCHED;
521                         if (ops->limit_depth)
522                                 ops->limit_depth(data->cmd_flags, data);
523                 }
524         } else {
525                 blk_mq_tag_busy(data->hctx);
526         }
527
528         if (data->flags & BLK_MQ_REQ_RESERVED)
529                 data->rq_flags |= RQF_RESV;
530
531         /*
532          * Try batched alloc if we want more than 1 tag.
533          */
534         if (data->nr_tags > 1) {
535                 rq = __blk_mq_alloc_requests_batch(data);
536                 if (rq) {
537                         blk_mq_rq_time_init(rq, alloc_time_ns);
538                         return rq;
539                 }
540                 data->nr_tags = 1;
541         }
542
543         /*
544          * Waiting allocations only fail because of an inactive hctx.  In that
545          * case just retry the hctx assignment and tag allocation as CPU hotplug
546          * should have migrated us to an online CPU by now.
547          */
548         tag = blk_mq_get_tag(data);
549         if (tag == BLK_MQ_NO_TAG) {
550                 if (data->flags & BLK_MQ_REQ_NOWAIT)
551                         return NULL;
552                 /*
553                  * Give up the CPU and sleep for a random short time to
554                  * ensure that thread using a realtime scheduling class
555                  * are migrated off the CPU, and thus off the hctx that
556                  * is going away.
557                  */
558                 msleep(3);
559                 goto retry;
560         }
561
562         if (!(data->rq_flags & RQF_SCHED_TAGS))
563                 blk_mq_inc_active_requests(data->hctx);
564         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
565         blk_mq_rq_time_init(rq, alloc_time_ns);
566         return rq;
567 }
568
569 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
570                                             struct blk_plug *plug,
571                                             blk_opf_t opf,
572                                             blk_mq_req_flags_t flags)
573 {
574         struct blk_mq_alloc_data data = {
575                 .q              = q,
576                 .flags          = flags,
577                 .shallow_depth  = 0,
578                 .cmd_flags      = opf,
579                 .rq_flags       = 0,
580                 .nr_tags        = plug->nr_ios,
581                 .cached_rqs     = &plug->cached_rqs,
582                 .ctx            = NULL,
583                 .hctx           = NULL
584         };
585         struct request *rq;
586
587         if (blk_queue_enter(q, flags))
588                 return NULL;
589
590         plug->nr_ios = 1;
591
592         rq = __blk_mq_alloc_requests(&data);
593         if (unlikely(!rq))
594                 blk_queue_exit(q);
595         return rq;
596 }
597
598 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
599                                                    blk_opf_t opf,
600                                                    blk_mq_req_flags_t flags)
601 {
602         struct blk_plug *plug = current->plug;
603         struct request *rq;
604
605         if (!plug)
606                 return NULL;
607
608         if (rq_list_empty(&plug->cached_rqs)) {
609                 if (plug->nr_ios == 1)
610                         return NULL;
611                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
612                 if (!rq)
613                         return NULL;
614         } else {
615                 rq = rq_list_peek(&plug->cached_rqs);
616                 if (!rq || rq->q != q)
617                         return NULL;
618
619                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
620                         return NULL;
621                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
622                         return NULL;
623
624                 rq_list_pop(&plug->cached_rqs);
625                 blk_mq_rq_time_init(rq, blk_time_get_ns());
626         }
627
628         rq->cmd_flags = opf;
629         INIT_LIST_HEAD(&rq->queuelist);
630         return rq;
631 }
632
633 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
634                 blk_mq_req_flags_t flags)
635 {
636         struct request *rq;
637
638         rq = blk_mq_alloc_cached_request(q, opf, flags);
639         if (!rq) {
640                 struct blk_mq_alloc_data data = {
641                         .q              = q,
642                         .flags          = flags,
643                         .shallow_depth  = 0,
644                         .cmd_flags      = opf,
645                         .rq_flags       = 0,
646                         .nr_tags        = 1,
647                         .cached_rqs     = NULL,
648                         .ctx            = NULL,
649                         .hctx           = NULL
650                 };
651                 int ret;
652
653                 ret = blk_queue_enter(q, flags);
654                 if (ret)
655                         return ERR_PTR(ret);
656
657                 rq = __blk_mq_alloc_requests(&data);
658                 if (!rq)
659                         goto out_queue_exit;
660         }
661         rq->__data_len = 0;
662         rq->__sector = (sector_t) -1;
663         rq->bio = rq->biotail = NULL;
664         return rq;
665 out_queue_exit:
666         blk_queue_exit(q);
667         return ERR_PTR(-EWOULDBLOCK);
668 }
669 EXPORT_SYMBOL(blk_mq_alloc_request);
670
671 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
672         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
673 {
674         struct blk_mq_alloc_data data = {
675                 .q              = q,
676                 .flags          = flags,
677                 .shallow_depth  = 0,
678                 .cmd_flags      = opf,
679                 .rq_flags       = 0,
680                 .nr_tags        = 1,
681                 .cached_rqs     = NULL,
682                 .ctx            = NULL,
683                 .hctx           = NULL
684         };
685         u64 alloc_time_ns = 0;
686         struct request *rq;
687         unsigned int cpu;
688         unsigned int tag;
689         int ret;
690
691         /* alloc_time includes depth and tag waits */
692         if (blk_queue_rq_alloc_time(q))
693                 alloc_time_ns = blk_time_get_ns();
694
695         /*
696          * If the tag allocator sleeps we could get an allocation for a
697          * different hardware context.  No need to complicate the low level
698          * allocator for this for the rare use case of a command tied to
699          * a specific queue.
700          */
701         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
702             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
703                 return ERR_PTR(-EINVAL);
704
705         if (hctx_idx >= q->nr_hw_queues)
706                 return ERR_PTR(-EIO);
707
708         ret = blk_queue_enter(q, flags);
709         if (ret)
710                 return ERR_PTR(ret);
711
712         /*
713          * Check if the hardware context is actually mapped to anything.
714          * If not tell the caller that it should skip this queue.
715          */
716         ret = -EXDEV;
717         data.hctx = xa_load(&q->hctx_table, hctx_idx);
718         if (!blk_mq_hw_queue_mapped(data.hctx))
719                 goto out_queue_exit;
720         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
721         if (cpu >= nr_cpu_ids)
722                 goto out_queue_exit;
723         data.ctx = __blk_mq_get_ctx(q, cpu);
724
725         if (q->elevator)
726                 data.rq_flags |= RQF_SCHED_TAGS;
727         else
728                 blk_mq_tag_busy(data.hctx);
729
730         if (flags & BLK_MQ_REQ_RESERVED)
731                 data.rq_flags |= RQF_RESV;
732
733         ret = -EWOULDBLOCK;
734         tag = blk_mq_get_tag(&data);
735         if (tag == BLK_MQ_NO_TAG)
736                 goto out_queue_exit;
737         if (!(data.rq_flags & RQF_SCHED_TAGS))
738                 blk_mq_inc_active_requests(data.hctx);
739         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
740         blk_mq_rq_time_init(rq, alloc_time_ns);
741         rq->__data_len = 0;
742         rq->__sector = (sector_t) -1;
743         rq->bio = rq->biotail = NULL;
744         return rq;
745
746 out_queue_exit:
747         blk_queue_exit(q);
748         return ERR_PTR(ret);
749 }
750 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
751
752 static void blk_mq_finish_request(struct request *rq)
753 {
754         struct request_queue *q = rq->q;
755
756         blk_zone_finish_request(rq);
757
758         if (rq->rq_flags & RQF_USE_SCHED) {
759                 q->elevator->type->ops.finish_request(rq);
760                 /*
761                  * For postflush request that may need to be
762                  * completed twice, we should clear this flag
763                  * to avoid double finish_request() on the rq.
764                  */
765                 rq->rq_flags &= ~RQF_USE_SCHED;
766         }
767 }
768
769 static void __blk_mq_free_request(struct request *rq)
770 {
771         struct request_queue *q = rq->q;
772         struct blk_mq_ctx *ctx = rq->mq_ctx;
773         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
774         const int sched_tag = rq->internal_tag;
775
776         blk_crypto_free_request(rq);
777         blk_pm_mark_last_busy(rq);
778         rq->mq_hctx = NULL;
779
780         if (rq->tag != BLK_MQ_NO_TAG) {
781                 blk_mq_dec_active_requests(hctx);
782                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
783         }
784         if (sched_tag != BLK_MQ_NO_TAG)
785                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
786         blk_mq_sched_restart(hctx);
787         blk_queue_exit(q);
788 }
789
790 void blk_mq_free_request(struct request *rq)
791 {
792         struct request_queue *q = rq->q;
793
794         blk_mq_finish_request(rq);
795
796         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
797                 laptop_io_completion(q->disk->bdi);
798
799         rq_qos_done(q, rq);
800
801         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
802         if (req_ref_put_and_test(rq))
803                 __blk_mq_free_request(rq);
804 }
805 EXPORT_SYMBOL_GPL(blk_mq_free_request);
806
807 void blk_mq_free_plug_rqs(struct blk_plug *plug)
808 {
809         struct request *rq;
810
811         while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
812                 blk_mq_free_request(rq);
813 }
814
815 void blk_dump_rq_flags(struct request *rq, char *msg)
816 {
817         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
818                 rq->q->disk ? rq->q->disk->disk_name : "?",
819                 (__force unsigned long long) rq->cmd_flags);
820
821         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
822                (unsigned long long)blk_rq_pos(rq),
823                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
824         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
825                rq->bio, rq->biotail, blk_rq_bytes(rq));
826 }
827 EXPORT_SYMBOL(blk_dump_rq_flags);
828
829 static void blk_account_io_completion(struct request *req, unsigned int bytes)
830 {
831         if (req->rq_flags & RQF_IO_STAT) {
832                 const int sgrp = op_stat_group(req_op(req));
833
834                 part_stat_lock();
835                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
836                 part_stat_unlock();
837         }
838 }
839
840 static void blk_print_req_error(struct request *req, blk_status_t status)
841 {
842         printk_ratelimited(KERN_ERR
843                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
844                 "phys_seg %u prio class %u\n",
845                 blk_status_to_str(status),
846                 req->q->disk ? req->q->disk->disk_name : "?",
847                 blk_rq_pos(req), (__force u32)req_op(req),
848                 blk_op_str(req_op(req)),
849                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
850                 req->nr_phys_segments,
851                 IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
852 }
853
854 /*
855  * Fully end IO on a request. Does not support partial completions, or
856  * errors.
857  */
858 static void blk_complete_request(struct request *req)
859 {
860         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
861         int total_bytes = blk_rq_bytes(req);
862         struct bio *bio = req->bio;
863
864         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
865
866         if (!bio)
867                 return;
868
869         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
870                 blk_integrity_complete(req, total_bytes);
871
872         /*
873          * Upper layers may call blk_crypto_evict_key() anytime after the last
874          * bio_endio().  Therefore, the keyslot must be released before that.
875          */
876         blk_crypto_rq_put_keyslot(req);
877
878         blk_account_io_completion(req, total_bytes);
879
880         do {
881                 struct bio *next = bio->bi_next;
882
883                 /* Completion has already been traced */
884                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
885
886                 blk_zone_update_request_bio(req, bio);
887
888                 if (!is_flush)
889                         bio_endio(bio);
890                 bio = next;
891         } while (bio);
892
893         /*
894          * Reset counters so that the request stacking driver
895          * can find how many bytes remain in the request
896          * later.
897          */
898         if (!req->end_io) {
899                 req->bio = NULL;
900                 req->__data_len = 0;
901         }
902 }
903
904 /**
905  * blk_update_request - Complete multiple bytes without completing the request
906  * @req:      the request being processed
907  * @error:    block status code
908  * @nr_bytes: number of bytes to complete for @req
909  *
910  * Description:
911  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
912  *     the request structure even if @req doesn't have leftover.
913  *     If @req has leftover, sets it up for the next range of segments.
914  *
915  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
916  *     %false return from this function.
917  *
918  * Note:
919  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
920  *      except in the consistency check at the end of this function.
921  *
922  * Return:
923  *     %false - this request doesn't have any more data
924  *     %true  - this request has more data
925  **/
926 bool blk_update_request(struct request *req, blk_status_t error,
927                 unsigned int nr_bytes)
928 {
929         bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
930         bool quiet = req->rq_flags & RQF_QUIET;
931         int total_bytes;
932
933         trace_block_rq_complete(req, error, nr_bytes);
934
935         if (!req->bio)
936                 return false;
937
938         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
939             error == BLK_STS_OK)
940                 blk_integrity_complete(req, nr_bytes);
941
942         /*
943          * Upper layers may call blk_crypto_evict_key() anytime after the last
944          * bio_endio().  Therefore, the keyslot must be released before that.
945          */
946         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
947                 __blk_crypto_rq_put_keyslot(req);
948
949         if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
950             !test_bit(GD_DEAD, &req->q->disk->state)) {
951                 blk_print_req_error(req, error);
952                 trace_block_rq_error(req, error, nr_bytes);
953         }
954
955         blk_account_io_completion(req, nr_bytes);
956
957         total_bytes = 0;
958         while (req->bio) {
959                 struct bio *bio = req->bio;
960                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
961
962                 if (unlikely(error))
963                         bio->bi_status = error;
964
965                 if (bio_bytes == bio->bi_iter.bi_size) {
966                         req->bio = bio->bi_next;
967                 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
968                         /*
969                          * Partial zone append completions cannot be supported
970                          * as the BIO fragments may end up not being written
971                          * sequentially.
972                          */
973                         bio->bi_status = BLK_STS_IOERR;
974                 }
975
976                 /* Completion has already been traced */
977                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
978                 if (unlikely(quiet))
979                         bio_set_flag(bio, BIO_QUIET);
980
981                 bio_advance(bio, bio_bytes);
982
983                 /* Don't actually finish bio if it's part of flush sequence */
984                 if (!bio->bi_iter.bi_size) {
985                         blk_zone_update_request_bio(req, bio);
986                         if (!is_flush)
987                                 bio_endio(bio);
988                 }
989
990                 total_bytes += bio_bytes;
991                 nr_bytes -= bio_bytes;
992
993                 if (!nr_bytes)
994                         break;
995         }
996
997         /*
998          * completely done
999          */
1000         if (!req->bio) {
1001                 /*
1002                  * Reset counters so that the request stacking driver
1003                  * can find how many bytes remain in the request
1004                  * later.
1005                  */
1006                 req->__data_len = 0;
1007                 return false;
1008         }
1009
1010         req->__data_len -= total_bytes;
1011
1012         /* update sector only for requests with clear definition of sector */
1013         if (!blk_rq_is_passthrough(req))
1014                 req->__sector += total_bytes >> 9;
1015
1016         /* mixed attributes always follow the first bio */
1017         if (req->rq_flags & RQF_MIXED_MERGE) {
1018                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1019                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1020         }
1021
1022         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1023                 /*
1024                  * If total number of sectors is less than the first segment
1025                  * size, something has gone terribly wrong.
1026                  */
1027                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1028                         blk_dump_rq_flags(req, "request botched");
1029                         req->__data_len = blk_rq_cur_bytes(req);
1030                 }
1031
1032                 /* recalculate the number of segments */
1033                 req->nr_phys_segments = blk_recalc_rq_segments(req);
1034         }
1035
1036         return true;
1037 }
1038 EXPORT_SYMBOL_GPL(blk_update_request);
1039
1040 static inline void blk_account_io_done(struct request *req, u64 now)
1041 {
1042         trace_block_io_done(req);
1043
1044         /*
1045          * Account IO completion.  flush_rq isn't accounted as a
1046          * normal IO on queueing nor completion.  Accounting the
1047          * containing request is enough.
1048          */
1049         if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1050                 const int sgrp = op_stat_group(req_op(req));
1051
1052                 part_stat_lock();
1053                 update_io_ticks(req->part, jiffies, true);
1054                 part_stat_inc(req->part, ios[sgrp]);
1055                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1056                 part_stat_local_dec(req->part,
1057                                     in_flight[op_is_write(req_op(req))]);
1058                 part_stat_unlock();
1059         }
1060 }
1061
1062 static inline bool blk_rq_passthrough_stats(struct request *req)
1063 {
1064         struct bio *bio = req->bio;
1065
1066         if (!blk_queue_passthrough_stat(req->q))
1067                 return false;
1068
1069         /* Requests without a bio do not transfer data. */
1070         if (!bio)
1071                 return false;
1072
1073         /*
1074          * Stats are accumulated in the bdev, so must have one attached to a
1075          * bio to track stats. Most drivers do not set the bdev for passthrough
1076          * requests, but nvme is one that will set it.
1077          */
1078         if (!bio->bi_bdev)
1079                 return false;
1080
1081         /*
1082          * We don't know what a passthrough command does, but we know the
1083          * payload size and data direction. Ensuring the size is aligned to the
1084          * block size filters out most commands with payloads that don't
1085          * represent sector access.
1086          */
1087         if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1088                 return false;
1089         return true;
1090 }
1091
1092 static inline void blk_account_io_start(struct request *req)
1093 {
1094         trace_block_io_start(req);
1095
1096         if (!blk_queue_io_stat(req->q))
1097                 return;
1098         if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1099                 return;
1100
1101         req->rq_flags |= RQF_IO_STAT;
1102         req->start_time_ns = blk_time_get_ns();
1103
1104         /*
1105          * All non-passthrough requests are created from a bio with one
1106          * exception: when a flush command that is part of a flush sequence
1107          * generated by the state machine in blk-flush.c is cloned onto the
1108          * lower device by dm-multipath we can get here without a bio.
1109          */
1110         if (req->bio)
1111                 req->part = req->bio->bi_bdev;
1112         else
1113                 req->part = req->q->disk->part0;
1114
1115         part_stat_lock();
1116         update_io_ticks(req->part, jiffies, false);
1117         part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1118         part_stat_unlock();
1119 }
1120
1121 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1122 {
1123         if (rq->rq_flags & RQF_STATS)
1124                 blk_stat_add(rq, now);
1125
1126         blk_mq_sched_completed_request(rq, now);
1127         blk_account_io_done(rq, now);
1128 }
1129
1130 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1131 {
1132         if (blk_mq_need_time_stamp(rq))
1133                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1134
1135         blk_mq_finish_request(rq);
1136
1137         if (rq->end_io) {
1138                 rq_qos_done(rq->q, rq);
1139                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1140                         blk_mq_free_request(rq);
1141         } else {
1142                 blk_mq_free_request(rq);
1143         }
1144 }
1145 EXPORT_SYMBOL(__blk_mq_end_request);
1146
1147 void blk_mq_end_request(struct request *rq, blk_status_t error)
1148 {
1149         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1150                 BUG();
1151         __blk_mq_end_request(rq, error);
1152 }
1153 EXPORT_SYMBOL(blk_mq_end_request);
1154
1155 #define TAG_COMP_BATCH          32
1156
1157 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1158                                           int *tag_array, int nr_tags)
1159 {
1160         struct request_queue *q = hctx->queue;
1161
1162         blk_mq_sub_active_requests(hctx, nr_tags);
1163
1164         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1165         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1166 }
1167
1168 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1169 {
1170         int tags[TAG_COMP_BATCH], nr_tags = 0;
1171         struct blk_mq_hw_ctx *cur_hctx = NULL;
1172         struct request *rq;
1173         u64 now = 0;
1174
1175         if (iob->need_ts)
1176                 now = blk_time_get_ns();
1177
1178         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1179                 prefetch(rq->bio);
1180                 prefetch(rq->rq_next);
1181
1182                 blk_complete_request(rq);
1183                 if (iob->need_ts)
1184                         __blk_mq_end_request_acct(rq, now);
1185
1186                 blk_mq_finish_request(rq);
1187
1188                 rq_qos_done(rq->q, rq);
1189
1190                 /*
1191                  * If end_io handler returns NONE, then it still has
1192                  * ownership of the request.
1193                  */
1194                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1195                         continue;
1196
1197                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1198                 if (!req_ref_put_and_test(rq))
1199                         continue;
1200
1201                 blk_crypto_free_request(rq);
1202                 blk_pm_mark_last_busy(rq);
1203
1204                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1205                         if (cur_hctx)
1206                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1207                         nr_tags = 0;
1208                         cur_hctx = rq->mq_hctx;
1209                 }
1210                 tags[nr_tags++] = rq->tag;
1211         }
1212
1213         if (nr_tags)
1214                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1215 }
1216 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1217
1218 static void blk_complete_reqs(struct llist_head *list)
1219 {
1220         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1221         struct request *rq, *next;
1222
1223         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1224                 rq->q->mq_ops->complete(rq);
1225 }
1226
1227 static __latent_entropy void blk_done_softirq(void)
1228 {
1229         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1230 }
1231
1232 static int blk_softirq_cpu_dead(unsigned int cpu)
1233 {
1234         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1235         return 0;
1236 }
1237
1238 static void __blk_mq_complete_request_remote(void *data)
1239 {
1240         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1241 }
1242
1243 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1244 {
1245         int cpu = raw_smp_processor_id();
1246
1247         if (!IS_ENABLED(CONFIG_SMP) ||
1248             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1249                 return false;
1250         /*
1251          * With force threaded interrupts enabled, raising softirq from an SMP
1252          * function call will always result in waking the ksoftirqd thread.
1253          * This is probably worse than completing the request on a different
1254          * cache domain.
1255          */
1256         if (force_irqthreads())
1257                 return false;
1258
1259         /* same CPU or cache domain and capacity?  Complete locally */
1260         if (cpu == rq->mq_ctx->cpu ||
1261             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1262              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1263              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1264                 return false;
1265
1266         /* don't try to IPI to an offline CPU */
1267         return cpu_online(rq->mq_ctx->cpu);
1268 }
1269
1270 static void blk_mq_complete_send_ipi(struct request *rq)
1271 {
1272         unsigned int cpu;
1273
1274         cpu = rq->mq_ctx->cpu;
1275         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1276                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1277 }
1278
1279 static void blk_mq_raise_softirq(struct request *rq)
1280 {
1281         struct llist_head *list;
1282
1283         preempt_disable();
1284         list = this_cpu_ptr(&blk_cpu_done);
1285         if (llist_add(&rq->ipi_list, list))
1286                 raise_softirq(BLOCK_SOFTIRQ);
1287         preempt_enable();
1288 }
1289
1290 bool blk_mq_complete_request_remote(struct request *rq)
1291 {
1292         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1293
1294         /*
1295          * For request which hctx has only one ctx mapping,
1296          * or a polled request, always complete locally,
1297          * it's pointless to redirect the completion.
1298          */
1299         if ((rq->mq_hctx->nr_ctx == 1 &&
1300              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1301              rq->cmd_flags & REQ_POLLED)
1302                 return false;
1303
1304         if (blk_mq_complete_need_ipi(rq)) {
1305                 blk_mq_complete_send_ipi(rq);
1306                 return true;
1307         }
1308
1309         if (rq->q->nr_hw_queues == 1) {
1310                 blk_mq_raise_softirq(rq);
1311                 return true;
1312         }
1313         return false;
1314 }
1315 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1316
1317 /**
1318  * blk_mq_complete_request - end I/O on a request
1319  * @rq:         the request being processed
1320  *
1321  * Description:
1322  *      Complete a request by scheduling the ->complete_rq operation.
1323  **/
1324 void blk_mq_complete_request(struct request *rq)
1325 {
1326         if (!blk_mq_complete_request_remote(rq))
1327                 rq->q->mq_ops->complete(rq);
1328 }
1329 EXPORT_SYMBOL(blk_mq_complete_request);
1330
1331 /**
1332  * blk_mq_start_request - Start processing a request
1333  * @rq: Pointer to request to be started
1334  *
1335  * Function used by device drivers to notify the block layer that a request
1336  * is going to be processed now, so blk layer can do proper initializations
1337  * such as starting the timeout timer.
1338  */
1339 void blk_mq_start_request(struct request *rq)
1340 {
1341         struct request_queue *q = rq->q;
1342
1343         trace_block_rq_issue(rq);
1344
1345         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1346             !blk_rq_is_passthrough(rq)) {
1347                 rq->io_start_time_ns = blk_time_get_ns();
1348                 rq->stats_sectors = blk_rq_sectors(rq);
1349                 rq->rq_flags |= RQF_STATS;
1350                 rq_qos_issue(q, rq);
1351         }
1352
1353         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1354
1355         blk_add_timer(rq);
1356         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1357         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1358
1359         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1360                 blk_integrity_prepare(rq);
1361
1362         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1363                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1364 }
1365 EXPORT_SYMBOL(blk_mq_start_request);
1366
1367 /*
1368  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1369  * queues. This is important for md arrays to benefit from merging
1370  * requests.
1371  */
1372 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1373 {
1374         if (plug->multiple_queues)
1375                 return BLK_MAX_REQUEST_COUNT * 2;
1376         return BLK_MAX_REQUEST_COUNT;
1377 }
1378
1379 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1380 {
1381         struct request *last = rq_list_peek(&plug->mq_list);
1382
1383         if (!plug->rq_count) {
1384                 trace_block_plug(rq->q);
1385         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1386                    (!blk_queue_nomerges(rq->q) &&
1387                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1388                 blk_mq_flush_plug_list(plug, false);
1389                 last = NULL;
1390                 trace_block_plug(rq->q);
1391         }
1392
1393         if (!plug->multiple_queues && last && last->q != rq->q)
1394                 plug->multiple_queues = true;
1395         /*
1396          * Any request allocated from sched tags can't be issued to
1397          * ->queue_rqs() directly
1398          */
1399         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1400                 plug->has_elevator = true;
1401         rq_list_add_tail(&plug->mq_list, rq);
1402         plug->rq_count++;
1403 }
1404
1405 /**
1406  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1407  * @rq:         request to insert
1408  * @at_head:    insert request at head or tail of queue
1409  *
1410  * Description:
1411  *    Insert a fully prepared request at the back of the I/O scheduler queue
1412  *    for execution.  Don't wait for completion.
1413  *
1414  * Note:
1415  *    This function will invoke @done directly if the queue is dead.
1416  */
1417 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1418 {
1419         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1420
1421         WARN_ON(irqs_disabled());
1422         WARN_ON(!blk_rq_is_passthrough(rq));
1423
1424         blk_account_io_start(rq);
1425
1426         if (current->plug && !at_head) {
1427                 blk_add_rq_to_plug(current->plug, rq);
1428                 return;
1429         }
1430
1431         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1432         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1433 }
1434 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1435
1436 struct blk_rq_wait {
1437         struct completion done;
1438         blk_status_t ret;
1439 };
1440
1441 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1442 {
1443         struct blk_rq_wait *wait = rq->end_io_data;
1444
1445         wait->ret = ret;
1446         complete(&wait->done);
1447         return RQ_END_IO_NONE;
1448 }
1449
1450 bool blk_rq_is_poll(struct request *rq)
1451 {
1452         if (!rq->mq_hctx)
1453                 return false;
1454         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1455                 return false;
1456         return true;
1457 }
1458 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1459
1460 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1461 {
1462         do {
1463                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1464                 cond_resched();
1465         } while (!completion_done(wait));
1466 }
1467
1468 /**
1469  * blk_execute_rq - insert a request into queue for execution
1470  * @rq:         request to insert
1471  * @at_head:    insert request at head or tail of queue
1472  *
1473  * Description:
1474  *    Insert a fully prepared request at the back of the I/O scheduler queue
1475  *    for execution and wait for completion.
1476  * Return: The blk_status_t result provided to blk_mq_end_request().
1477  */
1478 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1479 {
1480         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1481         struct blk_rq_wait wait = {
1482                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1483         };
1484
1485         WARN_ON(irqs_disabled());
1486         WARN_ON(!blk_rq_is_passthrough(rq));
1487
1488         rq->end_io_data = &wait;
1489         rq->end_io = blk_end_sync_rq;
1490
1491         blk_account_io_start(rq);
1492         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1493         blk_mq_run_hw_queue(hctx, false);
1494
1495         if (blk_rq_is_poll(rq))
1496                 blk_rq_poll_completion(rq, &wait.done);
1497         else
1498                 blk_wait_io(&wait.done);
1499
1500         return wait.ret;
1501 }
1502 EXPORT_SYMBOL(blk_execute_rq);
1503
1504 static void __blk_mq_requeue_request(struct request *rq)
1505 {
1506         struct request_queue *q = rq->q;
1507
1508         blk_mq_put_driver_tag(rq);
1509
1510         trace_block_rq_requeue(rq);
1511         rq_qos_requeue(q, rq);
1512
1513         if (blk_mq_request_started(rq)) {
1514                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1515                 rq->rq_flags &= ~RQF_TIMED_OUT;
1516         }
1517 }
1518
1519 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1520 {
1521         struct request_queue *q = rq->q;
1522         unsigned long flags;
1523
1524         __blk_mq_requeue_request(rq);
1525
1526         /* this request will be re-inserted to io scheduler queue */
1527         blk_mq_sched_requeue_request(rq);
1528
1529         spin_lock_irqsave(&q->requeue_lock, flags);
1530         list_add_tail(&rq->queuelist, &q->requeue_list);
1531         spin_unlock_irqrestore(&q->requeue_lock, flags);
1532
1533         if (kick_requeue_list)
1534                 blk_mq_kick_requeue_list(q);
1535 }
1536 EXPORT_SYMBOL(blk_mq_requeue_request);
1537
1538 static void blk_mq_requeue_work(struct work_struct *work)
1539 {
1540         struct request_queue *q =
1541                 container_of(work, struct request_queue, requeue_work.work);
1542         LIST_HEAD(rq_list);
1543         LIST_HEAD(flush_list);
1544         struct request *rq;
1545
1546         spin_lock_irq(&q->requeue_lock);
1547         list_splice_init(&q->requeue_list, &rq_list);
1548         list_splice_init(&q->flush_list, &flush_list);
1549         spin_unlock_irq(&q->requeue_lock);
1550
1551         while (!list_empty(&rq_list)) {
1552                 rq = list_entry(rq_list.next, struct request, queuelist);
1553                 list_del_init(&rq->queuelist);
1554                 /*
1555                  * If RQF_DONTPREP is set, the request has been started by the
1556                  * driver already and might have driver-specific data allocated
1557                  * already.  Insert it into the hctx dispatch list to avoid
1558                  * block layer merges for the request.
1559                  */
1560                 if (rq->rq_flags & RQF_DONTPREP)
1561                         blk_mq_request_bypass_insert(rq, 0);
1562                 else
1563                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1564         }
1565
1566         while (!list_empty(&flush_list)) {
1567                 rq = list_entry(flush_list.next, struct request, queuelist);
1568                 list_del_init(&rq->queuelist);
1569                 blk_mq_insert_request(rq, 0);
1570         }
1571
1572         blk_mq_run_hw_queues(q, false);
1573 }
1574
1575 void blk_mq_kick_requeue_list(struct request_queue *q)
1576 {
1577         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1578 }
1579 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1580
1581 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1582                                     unsigned long msecs)
1583 {
1584         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1585                                     msecs_to_jiffies(msecs));
1586 }
1587 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1588
1589 static bool blk_is_flush_data_rq(struct request *rq)
1590 {
1591         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1592 }
1593
1594 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1595 {
1596         /*
1597          * If we find a request that isn't idle we know the queue is busy
1598          * as it's checked in the iter.
1599          * Return false to stop the iteration.
1600          *
1601          * In case of queue quiesce, if one flush data request is completed,
1602          * don't count it as inflight given the flush sequence is suspended,
1603          * and the original flush data request is invisible to driver, just
1604          * like other pending requests because of quiesce
1605          */
1606         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1607                                 blk_is_flush_data_rq(rq) &&
1608                                 blk_mq_request_completed(rq))) {
1609                 bool *busy = priv;
1610
1611                 *busy = true;
1612                 return false;
1613         }
1614
1615         return true;
1616 }
1617
1618 bool blk_mq_queue_inflight(struct request_queue *q)
1619 {
1620         bool busy = false;
1621
1622         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1623         return busy;
1624 }
1625 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1626
1627 static void blk_mq_rq_timed_out(struct request *req)
1628 {
1629         req->rq_flags |= RQF_TIMED_OUT;
1630         if (req->q->mq_ops->timeout) {
1631                 enum blk_eh_timer_return ret;
1632
1633                 ret = req->q->mq_ops->timeout(req);
1634                 if (ret == BLK_EH_DONE)
1635                         return;
1636                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1637         }
1638
1639         blk_add_timer(req);
1640 }
1641
1642 struct blk_expired_data {
1643         bool has_timedout_rq;
1644         unsigned long next;
1645         unsigned long timeout_start;
1646 };
1647
1648 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1649 {
1650         unsigned long deadline;
1651
1652         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1653                 return false;
1654         if (rq->rq_flags & RQF_TIMED_OUT)
1655                 return false;
1656
1657         deadline = READ_ONCE(rq->deadline);
1658         if (time_after_eq(expired->timeout_start, deadline))
1659                 return true;
1660
1661         if (expired->next == 0)
1662                 expired->next = deadline;
1663         else if (time_after(expired->next, deadline))
1664                 expired->next = deadline;
1665         return false;
1666 }
1667
1668 void blk_mq_put_rq_ref(struct request *rq)
1669 {
1670         if (is_flush_rq(rq)) {
1671                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1672                         blk_mq_free_request(rq);
1673         } else if (req_ref_put_and_test(rq)) {
1674                 __blk_mq_free_request(rq);
1675         }
1676 }
1677
1678 static bool blk_mq_check_expired(struct request *rq, void *priv)
1679 {
1680         struct blk_expired_data *expired = priv;
1681
1682         /*
1683          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1684          * be reallocated underneath the timeout handler's processing, then
1685          * the expire check is reliable. If the request is not expired, then
1686          * it was completed and reallocated as a new request after returning
1687          * from blk_mq_check_expired().
1688          */
1689         if (blk_mq_req_expired(rq, expired)) {
1690                 expired->has_timedout_rq = true;
1691                 return false;
1692         }
1693         return true;
1694 }
1695
1696 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1697 {
1698         struct blk_expired_data *expired = priv;
1699
1700         if (blk_mq_req_expired(rq, expired))
1701                 blk_mq_rq_timed_out(rq);
1702         return true;
1703 }
1704
1705 static void blk_mq_timeout_work(struct work_struct *work)
1706 {
1707         struct request_queue *q =
1708                 container_of(work, struct request_queue, timeout_work);
1709         struct blk_expired_data expired = {
1710                 .timeout_start = jiffies,
1711         };
1712         struct blk_mq_hw_ctx *hctx;
1713         unsigned long i;
1714
1715         /* A deadlock might occur if a request is stuck requiring a
1716          * timeout at the same time a queue freeze is waiting
1717          * completion, since the timeout code would not be able to
1718          * acquire the queue reference here.
1719          *
1720          * That's why we don't use blk_queue_enter here; instead, we use
1721          * percpu_ref_tryget directly, because we need to be able to
1722          * obtain a reference even in the short window between the queue
1723          * starting to freeze, by dropping the first reference in
1724          * blk_freeze_queue_start, and the moment the last request is
1725          * consumed, marked by the instant q_usage_counter reaches
1726          * zero.
1727          */
1728         if (!percpu_ref_tryget(&q->q_usage_counter))
1729                 return;
1730
1731         /* check if there is any timed-out request */
1732         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1733         if (expired.has_timedout_rq) {
1734                 /*
1735                  * Before walking tags, we must ensure any submit started
1736                  * before the current time has finished. Since the submit
1737                  * uses srcu or rcu, wait for a synchronization point to
1738                  * ensure all running submits have finished
1739                  */
1740                 blk_mq_wait_quiesce_done(q->tag_set);
1741
1742                 expired.next = 0;
1743                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1744         }
1745
1746         if (expired.next != 0) {
1747                 mod_timer(&q->timeout, expired.next);
1748         } else {
1749                 /*
1750                  * Request timeouts are handled as a forward rolling timer. If
1751                  * we end up here it means that no requests are pending and
1752                  * also that no request has been pending for a while. Mark
1753                  * each hctx as idle.
1754                  */
1755                 queue_for_each_hw_ctx(q, hctx, i) {
1756                         /* the hctx may be unmapped, so check it here */
1757                         if (blk_mq_hw_queue_mapped(hctx))
1758                                 blk_mq_tag_idle(hctx);
1759                 }
1760         }
1761         blk_queue_exit(q);
1762 }
1763
1764 struct flush_busy_ctx_data {
1765         struct blk_mq_hw_ctx *hctx;
1766         struct list_head *list;
1767 };
1768
1769 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1770 {
1771         struct flush_busy_ctx_data *flush_data = data;
1772         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1773         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1774         enum hctx_type type = hctx->type;
1775
1776         spin_lock(&ctx->lock);
1777         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1778         sbitmap_clear_bit(sb, bitnr);
1779         spin_unlock(&ctx->lock);
1780         return true;
1781 }
1782
1783 /*
1784  * Process software queues that have been marked busy, splicing them
1785  * to the for-dispatch
1786  */
1787 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1788 {
1789         struct flush_busy_ctx_data data = {
1790                 .hctx = hctx,
1791                 .list = list,
1792         };
1793
1794         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1795 }
1796
1797 struct dispatch_rq_data {
1798         struct blk_mq_hw_ctx *hctx;
1799         struct request *rq;
1800 };
1801
1802 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1803                 void *data)
1804 {
1805         struct dispatch_rq_data *dispatch_data = data;
1806         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1807         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1808         enum hctx_type type = hctx->type;
1809
1810         spin_lock(&ctx->lock);
1811         if (!list_empty(&ctx->rq_lists[type])) {
1812                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1813                 list_del_init(&dispatch_data->rq->queuelist);
1814                 if (list_empty(&ctx->rq_lists[type]))
1815                         sbitmap_clear_bit(sb, bitnr);
1816         }
1817         spin_unlock(&ctx->lock);
1818
1819         return !dispatch_data->rq;
1820 }
1821
1822 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1823                                         struct blk_mq_ctx *start)
1824 {
1825         unsigned off = start ? start->index_hw[hctx->type] : 0;
1826         struct dispatch_rq_data data = {
1827                 .hctx = hctx,
1828                 .rq   = NULL,
1829         };
1830
1831         __sbitmap_for_each_set(&hctx->ctx_map, off,
1832                                dispatch_rq_from_ctx, &data);
1833
1834         return data.rq;
1835 }
1836
1837 bool __blk_mq_alloc_driver_tag(struct request *rq)
1838 {
1839         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1840         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1841         int tag;
1842
1843         blk_mq_tag_busy(rq->mq_hctx);
1844
1845         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1846                 bt = &rq->mq_hctx->tags->breserved_tags;
1847                 tag_offset = 0;
1848         } else {
1849                 if (!hctx_may_queue(rq->mq_hctx, bt))
1850                         return false;
1851         }
1852
1853         tag = __sbitmap_queue_get(bt);
1854         if (tag == BLK_MQ_NO_TAG)
1855                 return false;
1856
1857         rq->tag = tag + tag_offset;
1858         blk_mq_inc_active_requests(rq->mq_hctx);
1859         return true;
1860 }
1861
1862 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1863                                 int flags, void *key)
1864 {
1865         struct blk_mq_hw_ctx *hctx;
1866
1867         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1868
1869         spin_lock(&hctx->dispatch_wait_lock);
1870         if (!list_empty(&wait->entry)) {
1871                 struct sbitmap_queue *sbq;
1872
1873                 list_del_init(&wait->entry);
1874                 sbq = &hctx->tags->bitmap_tags;
1875                 atomic_dec(&sbq->ws_active);
1876         }
1877         spin_unlock(&hctx->dispatch_wait_lock);
1878
1879         blk_mq_run_hw_queue(hctx, true);
1880         return 1;
1881 }
1882
1883 /*
1884  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1885  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1886  * restart. For both cases, take care to check the condition again after
1887  * marking us as waiting.
1888  */
1889 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1890                                  struct request *rq)
1891 {
1892         struct sbitmap_queue *sbq;
1893         struct wait_queue_head *wq;
1894         wait_queue_entry_t *wait;
1895         bool ret;
1896
1897         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1898             !(blk_mq_is_shared_tags(hctx->flags))) {
1899                 blk_mq_sched_mark_restart_hctx(hctx);
1900
1901                 /*
1902                  * It's possible that a tag was freed in the window between the
1903                  * allocation failure and adding the hardware queue to the wait
1904                  * queue.
1905                  *
1906                  * Don't clear RESTART here, someone else could have set it.
1907                  * At most this will cost an extra queue run.
1908                  */
1909                 return blk_mq_get_driver_tag(rq);
1910         }
1911
1912         wait = &hctx->dispatch_wait;
1913         if (!list_empty_careful(&wait->entry))
1914                 return false;
1915
1916         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1917                 sbq = &hctx->tags->breserved_tags;
1918         else
1919                 sbq = &hctx->tags->bitmap_tags;
1920         wq = &bt_wait_ptr(sbq, hctx)->wait;
1921
1922         spin_lock_irq(&wq->lock);
1923         spin_lock(&hctx->dispatch_wait_lock);
1924         if (!list_empty(&wait->entry)) {
1925                 spin_unlock(&hctx->dispatch_wait_lock);
1926                 spin_unlock_irq(&wq->lock);
1927                 return false;
1928         }
1929
1930         atomic_inc(&sbq->ws_active);
1931         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1932         __add_wait_queue(wq, wait);
1933
1934         /*
1935          * Add one explicit barrier since blk_mq_get_driver_tag() may
1936          * not imply barrier in case of failure.
1937          *
1938          * Order adding us to wait queue and allocating driver tag.
1939          *
1940          * The pair is the one implied in sbitmap_queue_wake_up() which
1941          * orders clearing sbitmap tag bits and waitqueue_active() in
1942          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1943          *
1944          * Otherwise, re-order of adding wait queue and getting driver tag
1945          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1946          * the waitqueue_active() may not observe us in wait queue.
1947          */
1948         smp_mb();
1949
1950         /*
1951          * It's possible that a tag was freed in the window between the
1952          * allocation failure and adding the hardware queue to the wait
1953          * queue.
1954          */
1955         ret = blk_mq_get_driver_tag(rq);
1956         if (!ret) {
1957                 spin_unlock(&hctx->dispatch_wait_lock);
1958                 spin_unlock_irq(&wq->lock);
1959                 return false;
1960         }
1961
1962         /*
1963          * We got a tag, remove ourselves from the wait queue to ensure
1964          * someone else gets the wakeup.
1965          */
1966         list_del_init(&wait->entry);
1967         atomic_dec(&sbq->ws_active);
1968         spin_unlock(&hctx->dispatch_wait_lock);
1969         spin_unlock_irq(&wq->lock);
1970
1971         return true;
1972 }
1973
1974 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1975 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1976 /*
1977  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1978  * - EWMA is one simple way to compute running average value
1979  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1980  * - take 4 as factor for avoiding to get too small(0) result, and this
1981  *   factor doesn't matter because EWMA decreases exponentially
1982  */
1983 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1984 {
1985         unsigned int ewma;
1986
1987         ewma = hctx->dispatch_busy;
1988
1989         if (!ewma && !busy)
1990                 return;
1991
1992         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1993         if (busy)
1994                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1995         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1996
1997         hctx->dispatch_busy = ewma;
1998 }
1999
2000 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
2001
2002 static void blk_mq_handle_dev_resource(struct request *rq,
2003                                        struct list_head *list)
2004 {
2005         list_add(&rq->queuelist, list);
2006         __blk_mq_requeue_request(rq);
2007 }
2008
2009 enum prep_dispatch {
2010         PREP_DISPATCH_OK,
2011         PREP_DISPATCH_NO_TAG,
2012         PREP_DISPATCH_NO_BUDGET,
2013 };
2014
2015 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2016                                                   bool need_budget)
2017 {
2018         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2019         int budget_token = -1;
2020
2021         if (need_budget) {
2022                 budget_token = blk_mq_get_dispatch_budget(rq->q);
2023                 if (budget_token < 0) {
2024                         blk_mq_put_driver_tag(rq);
2025                         return PREP_DISPATCH_NO_BUDGET;
2026                 }
2027                 blk_mq_set_rq_budget_token(rq, budget_token);
2028         }
2029
2030         if (!blk_mq_get_driver_tag(rq)) {
2031                 /*
2032                  * The initial allocation attempt failed, so we need to
2033                  * rerun the hardware queue when a tag is freed. The
2034                  * waitqueue takes care of that. If the queue is run
2035                  * before we add this entry back on the dispatch list,
2036                  * we'll re-run it below.
2037                  */
2038                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2039                         /*
2040                          * All budgets not got from this function will be put
2041                          * together during handling partial dispatch
2042                          */
2043                         if (need_budget)
2044                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2045                         return PREP_DISPATCH_NO_TAG;
2046                 }
2047         }
2048
2049         return PREP_DISPATCH_OK;
2050 }
2051
2052 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2053 static void blk_mq_release_budgets(struct request_queue *q,
2054                 struct list_head *list)
2055 {
2056         struct request *rq;
2057
2058         list_for_each_entry(rq, list, queuelist) {
2059                 int budget_token = blk_mq_get_rq_budget_token(rq);
2060
2061                 if (budget_token >= 0)
2062                         blk_mq_put_dispatch_budget(q, budget_token);
2063         }
2064 }
2065
2066 /*
2067  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2068  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2069  * details)
2070  * Attention, we should explicitly call this in unusual cases:
2071  *  1) did not queue everything initially scheduled to queue
2072  *  2) the last attempt to queue a request failed
2073  */
2074 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2075                               bool from_schedule)
2076 {
2077         if (hctx->queue->mq_ops->commit_rqs && queued) {
2078                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2079                 hctx->queue->mq_ops->commit_rqs(hctx);
2080         }
2081 }
2082
2083 /*
2084  * Returns true if we did some work AND can potentially do more.
2085  */
2086 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2087                              bool get_budget)
2088 {
2089         enum prep_dispatch prep;
2090         struct request_queue *q = hctx->queue;
2091         struct request *rq;
2092         int queued;
2093         blk_status_t ret = BLK_STS_OK;
2094         bool needs_resource = false;
2095
2096         if (list_empty(list))
2097                 return false;
2098
2099         /*
2100          * Now process all the entries, sending them to the driver.
2101          */
2102         queued = 0;
2103         do {
2104                 struct blk_mq_queue_data bd;
2105
2106                 rq = list_first_entry(list, struct request, queuelist);
2107
2108                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2109                 prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2110                 if (prep != PREP_DISPATCH_OK)
2111                         break;
2112
2113                 list_del_init(&rq->queuelist);
2114
2115                 bd.rq = rq;
2116                 bd.last = list_empty(list);
2117
2118                 ret = q->mq_ops->queue_rq(hctx, &bd);
2119                 switch (ret) {
2120                 case BLK_STS_OK:
2121                         queued++;
2122                         break;
2123                 case BLK_STS_RESOURCE:
2124                         needs_resource = true;
2125                         fallthrough;
2126                 case BLK_STS_DEV_RESOURCE:
2127                         blk_mq_handle_dev_resource(rq, list);
2128                         goto out;
2129                 default:
2130                         blk_mq_end_request(rq, ret);
2131                 }
2132         } while (!list_empty(list));
2133 out:
2134         /* If we didn't flush the entire list, we could have told the driver
2135          * there was more coming, but that turned out to be a lie.
2136          */
2137         if (!list_empty(list) || ret != BLK_STS_OK)
2138                 blk_mq_commit_rqs(hctx, queued, false);
2139
2140         /*
2141          * Any items that need requeuing? Stuff them into hctx->dispatch,
2142          * that is where we will continue on next queue run.
2143          */
2144         if (!list_empty(list)) {
2145                 bool needs_restart;
2146                 /* For non-shared tags, the RESTART check will suffice */
2147                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2148                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2149                         blk_mq_is_shared_tags(hctx->flags));
2150
2151                 /*
2152                  * If the caller allocated budgets, free the budgets of the
2153                  * requests that have not yet been passed to the block driver.
2154                  */
2155                 if (!get_budget)
2156                         blk_mq_release_budgets(q, list);
2157
2158                 spin_lock(&hctx->lock);
2159                 list_splice_tail_init(list, &hctx->dispatch);
2160                 spin_unlock(&hctx->lock);
2161
2162                 /*
2163                  * Order adding requests to hctx->dispatch and checking
2164                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2165                  * in blk_mq_sched_restart(). Avoid restart code path to
2166                  * miss the new added requests to hctx->dispatch, meantime
2167                  * SCHED_RESTART is observed here.
2168                  */
2169                 smp_mb();
2170
2171                 /*
2172                  * If SCHED_RESTART was set by the caller of this function and
2173                  * it is no longer set that means that it was cleared by another
2174                  * thread and hence that a queue rerun is needed.
2175                  *
2176                  * If 'no_tag' is set, that means that we failed getting
2177                  * a driver tag with an I/O scheduler attached. If our dispatch
2178                  * waitqueue is no longer active, ensure that we run the queue
2179                  * AFTER adding our entries back to the list.
2180                  *
2181                  * If no I/O scheduler has been configured it is possible that
2182                  * the hardware queue got stopped and restarted before requests
2183                  * were pushed back onto the dispatch list. Rerun the queue to
2184                  * avoid starvation. Notes:
2185                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2186                  *   been stopped before rerunning a queue.
2187                  * - Some but not all block drivers stop a queue before
2188                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2189                  *   and dm-rq.
2190                  *
2191                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2192                  * bit is set, run queue after a delay to avoid IO stalls
2193                  * that could otherwise occur if the queue is idle.  We'll do
2194                  * similar if we couldn't get budget or couldn't lock a zone
2195                  * and SCHED_RESTART is set.
2196                  */
2197                 needs_restart = blk_mq_sched_needs_restart(hctx);
2198                 if (prep == PREP_DISPATCH_NO_BUDGET)
2199                         needs_resource = true;
2200                 if (!needs_restart ||
2201                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2202                         blk_mq_run_hw_queue(hctx, true);
2203                 else if (needs_resource)
2204                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2205
2206                 blk_mq_update_dispatch_busy(hctx, true);
2207                 return false;
2208         }
2209
2210         blk_mq_update_dispatch_busy(hctx, false);
2211         return true;
2212 }
2213
2214 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2215 {
2216         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2217
2218         if (cpu >= nr_cpu_ids)
2219                 cpu = cpumask_first(hctx->cpumask);
2220         return cpu;
2221 }
2222
2223 /*
2224  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2225  * it for speeding up the check
2226  */
2227 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2228 {
2229         return hctx->next_cpu >= nr_cpu_ids;
2230 }
2231
2232 /*
2233  * It'd be great if the workqueue API had a way to pass
2234  * in a mask and had some smarts for more clever placement.
2235  * For now we just round-robin here, switching for every
2236  * BLK_MQ_CPU_WORK_BATCH queued items.
2237  */
2238 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2239 {
2240         bool tried = false;
2241         int next_cpu = hctx->next_cpu;
2242
2243         /* Switch to unbound if no allowable CPUs in this hctx */
2244         if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2245                 return WORK_CPU_UNBOUND;
2246
2247         if (--hctx->next_cpu_batch <= 0) {
2248 select_cpu:
2249                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2250                                 cpu_online_mask);
2251                 if (next_cpu >= nr_cpu_ids)
2252                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2253                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2254         }
2255
2256         /*
2257          * Do unbound schedule if we can't find a online CPU for this hctx,
2258          * and it should only happen in the path of handling CPU DEAD.
2259          */
2260         if (!cpu_online(next_cpu)) {
2261                 if (!tried) {
2262                         tried = true;
2263                         goto select_cpu;
2264                 }
2265
2266                 /*
2267                  * Make sure to re-select CPU next time once after CPUs
2268                  * in hctx->cpumask become online again.
2269                  */
2270                 hctx->next_cpu = next_cpu;
2271                 hctx->next_cpu_batch = 1;
2272                 return WORK_CPU_UNBOUND;
2273         }
2274
2275         hctx->next_cpu = next_cpu;
2276         return next_cpu;
2277 }
2278
2279 /**
2280  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2281  * @hctx: Pointer to the hardware queue to run.
2282  * @msecs: Milliseconds of delay to wait before running the queue.
2283  *
2284  * Run a hardware queue asynchronously with a delay of @msecs.
2285  */
2286 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2287 {
2288         if (unlikely(blk_mq_hctx_stopped(hctx)))
2289                 return;
2290         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2291                                     msecs_to_jiffies(msecs));
2292 }
2293 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2294
2295 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2296 {
2297         bool need_run;
2298
2299         /*
2300          * When queue is quiesced, we may be switching io scheduler, or
2301          * updating nr_hw_queues, or other things, and we can't run queue
2302          * any more, even blk_mq_hctx_has_pending() can't be called safely.
2303          *
2304          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2305          * quiesced.
2306          */
2307         __blk_mq_run_dispatch_ops(hctx->queue, false,
2308                 need_run = !blk_queue_quiesced(hctx->queue) &&
2309                 blk_mq_hctx_has_pending(hctx));
2310         return need_run;
2311 }
2312
2313 /**
2314  * blk_mq_run_hw_queue - Start to run a hardware queue.
2315  * @hctx: Pointer to the hardware queue to run.
2316  * @async: If we want to run the queue asynchronously.
2317  *
2318  * Check if the request queue is not in a quiesced state and if there are
2319  * pending requests to be sent. If this is true, run the queue to send requests
2320  * to hardware.
2321  */
2322 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2323 {
2324         bool need_run;
2325
2326         /*
2327          * We can't run the queue inline with interrupts disabled.
2328          */
2329         WARN_ON_ONCE(!async && in_interrupt());
2330
2331         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2332
2333         need_run = blk_mq_hw_queue_need_run(hctx);
2334         if (!need_run) {
2335                 unsigned long flags;
2336
2337                 /*
2338                  * Synchronize with blk_mq_unquiesce_queue(), because we check
2339                  * if hw queue is quiesced locklessly above, we need the use
2340                  * ->queue_lock to make sure we see the up-to-date status to
2341                  * not miss rerunning the hw queue.
2342                  */
2343                 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2344                 need_run = blk_mq_hw_queue_need_run(hctx);
2345                 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2346
2347                 if (!need_run)
2348                         return;
2349         }
2350
2351         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2352                 blk_mq_delay_run_hw_queue(hctx, 0);
2353                 return;
2354         }
2355
2356         blk_mq_run_dispatch_ops(hctx->queue,
2357                                 blk_mq_sched_dispatch_requests(hctx));
2358 }
2359 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2360
2361 /*
2362  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2363  * scheduler.
2364  */
2365 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2366 {
2367         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2368         /*
2369          * If the IO scheduler does not respect hardware queues when
2370          * dispatching, we just don't bother with multiple HW queues and
2371          * dispatch from hctx for the current CPU since running multiple queues
2372          * just causes lock contention inside the scheduler and pointless cache
2373          * bouncing.
2374          */
2375         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2376
2377         if (!blk_mq_hctx_stopped(hctx))
2378                 return hctx;
2379         return NULL;
2380 }
2381
2382 /**
2383  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2384  * @q: Pointer to the request queue to run.
2385  * @async: If we want to run the queue asynchronously.
2386  */
2387 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2388 {
2389         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2390         unsigned long i;
2391
2392         sq_hctx = NULL;
2393         if (blk_queue_sq_sched(q))
2394                 sq_hctx = blk_mq_get_sq_hctx(q);
2395         queue_for_each_hw_ctx(q, hctx, i) {
2396                 if (blk_mq_hctx_stopped(hctx))
2397                         continue;
2398                 /*
2399                  * Dispatch from this hctx either if there's no hctx preferred
2400                  * by IO scheduler or if it has requests that bypass the
2401                  * scheduler.
2402                  */
2403                 if (!sq_hctx || sq_hctx == hctx ||
2404                     !list_empty_careful(&hctx->dispatch))
2405                         blk_mq_run_hw_queue(hctx, async);
2406         }
2407 }
2408 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2409
2410 /**
2411  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2412  * @q: Pointer to the request queue to run.
2413  * @msecs: Milliseconds of delay to wait before running the queues.
2414  */
2415 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2416 {
2417         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2418         unsigned long i;
2419
2420         sq_hctx = NULL;
2421         if (blk_queue_sq_sched(q))
2422                 sq_hctx = blk_mq_get_sq_hctx(q);
2423         queue_for_each_hw_ctx(q, hctx, i) {
2424                 if (blk_mq_hctx_stopped(hctx))
2425                         continue;
2426                 /*
2427                  * If there is already a run_work pending, leave the
2428                  * pending delay untouched. Otherwise, a hctx can stall
2429                  * if another hctx is re-delaying the other's work
2430                  * before the work executes.
2431                  */
2432                 if (delayed_work_pending(&hctx->run_work))
2433                         continue;
2434                 /*
2435                  * Dispatch from this hctx either if there's no hctx preferred
2436                  * by IO scheduler or if it has requests that bypass the
2437                  * scheduler.
2438                  */
2439                 if (!sq_hctx || sq_hctx == hctx ||
2440                     !list_empty_careful(&hctx->dispatch))
2441                         blk_mq_delay_run_hw_queue(hctx, msecs);
2442         }
2443 }
2444 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2445
2446 /*
2447  * This function is often used for pausing .queue_rq() by driver when
2448  * there isn't enough resource or some conditions aren't satisfied, and
2449  * BLK_STS_RESOURCE is usually returned.
2450  *
2451  * We do not guarantee that dispatch can be drained or blocked
2452  * after blk_mq_stop_hw_queue() returns. Please use
2453  * blk_mq_quiesce_queue() for that requirement.
2454  */
2455 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2456 {
2457         cancel_delayed_work(&hctx->run_work);
2458
2459         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2460 }
2461 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2462
2463 /*
2464  * This function is often used for pausing .queue_rq() by driver when
2465  * there isn't enough resource or some conditions aren't satisfied, and
2466  * BLK_STS_RESOURCE is usually returned.
2467  *
2468  * We do not guarantee that dispatch can be drained or blocked
2469  * after blk_mq_stop_hw_queues() returns. Please use
2470  * blk_mq_quiesce_queue() for that requirement.
2471  */
2472 void blk_mq_stop_hw_queues(struct request_queue *q)
2473 {
2474         struct blk_mq_hw_ctx *hctx;
2475         unsigned long i;
2476
2477         queue_for_each_hw_ctx(q, hctx, i)
2478                 blk_mq_stop_hw_queue(hctx);
2479 }
2480 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2481
2482 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2483 {
2484         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2485
2486         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2487 }
2488 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2489
2490 void blk_mq_start_hw_queues(struct request_queue *q)
2491 {
2492         struct blk_mq_hw_ctx *hctx;
2493         unsigned long i;
2494
2495         queue_for_each_hw_ctx(q, hctx, i)
2496                 blk_mq_start_hw_queue(hctx);
2497 }
2498 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2499
2500 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2501 {
2502         if (!blk_mq_hctx_stopped(hctx))
2503                 return;
2504
2505         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2506         /*
2507          * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2508          * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2509          * list in the subsequent routine.
2510          */
2511         smp_mb__after_atomic();
2512         blk_mq_run_hw_queue(hctx, async);
2513 }
2514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2515
2516 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2517 {
2518         struct blk_mq_hw_ctx *hctx;
2519         unsigned long i;
2520
2521         queue_for_each_hw_ctx(q, hctx, i)
2522                 blk_mq_start_stopped_hw_queue(hctx, async ||
2523                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2524 }
2525 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2526
2527 static void blk_mq_run_work_fn(struct work_struct *work)
2528 {
2529         struct blk_mq_hw_ctx *hctx =
2530                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2531
2532         blk_mq_run_dispatch_ops(hctx->queue,
2533                                 blk_mq_sched_dispatch_requests(hctx));
2534 }
2535
2536 /**
2537  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2538  * @rq: Pointer to request to be inserted.
2539  * @flags: BLK_MQ_INSERT_*
2540  *
2541  * Should only be used carefully, when the caller knows we want to
2542  * bypass a potential IO scheduler on the target device.
2543  */
2544 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2545 {
2546         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2547
2548         spin_lock(&hctx->lock);
2549         if (flags & BLK_MQ_INSERT_AT_HEAD)
2550                 list_add(&rq->queuelist, &hctx->dispatch);
2551         else
2552                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2553         spin_unlock(&hctx->lock);
2554 }
2555
2556 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2557                 struct blk_mq_ctx *ctx, struct list_head *list,
2558                 bool run_queue_async)
2559 {
2560         struct request *rq;
2561         enum hctx_type type = hctx->type;
2562
2563         /*
2564          * Try to issue requests directly if the hw queue isn't busy to save an
2565          * extra enqueue & dequeue to the sw queue.
2566          */
2567         if (!hctx->dispatch_busy && !run_queue_async) {
2568                 blk_mq_run_dispatch_ops(hctx->queue,
2569                         blk_mq_try_issue_list_directly(hctx, list));
2570                 if (list_empty(list))
2571                         goto out;
2572         }
2573
2574         /*
2575          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2576          * offline now
2577          */
2578         list_for_each_entry(rq, list, queuelist) {
2579                 BUG_ON(rq->mq_ctx != ctx);
2580                 trace_block_rq_insert(rq);
2581                 if (rq->cmd_flags & REQ_NOWAIT)
2582                         run_queue_async = true;
2583         }
2584
2585         spin_lock(&ctx->lock);
2586         list_splice_tail_init(list, &ctx->rq_lists[type]);
2587         blk_mq_hctx_mark_pending(hctx, ctx);
2588         spin_unlock(&ctx->lock);
2589 out:
2590         blk_mq_run_hw_queue(hctx, run_queue_async);
2591 }
2592
2593 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2594 {
2595         struct request_queue *q = rq->q;
2596         struct blk_mq_ctx *ctx = rq->mq_ctx;
2597         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2598
2599         if (blk_rq_is_passthrough(rq)) {
2600                 /*
2601                  * Passthrough request have to be added to hctx->dispatch
2602                  * directly.  The device may be in a situation where it can't
2603                  * handle FS request, and always returns BLK_STS_RESOURCE for
2604                  * them, which gets them added to hctx->dispatch.
2605                  *
2606                  * If a passthrough request is required to unblock the queues,
2607                  * and it is added to the scheduler queue, there is no chance to
2608                  * dispatch it given we prioritize requests in hctx->dispatch.
2609                  */
2610                 blk_mq_request_bypass_insert(rq, flags);
2611         } else if (req_op(rq) == REQ_OP_FLUSH) {
2612                 /*
2613                  * Firstly normal IO request is inserted to scheduler queue or
2614                  * sw queue, meantime we add flush request to dispatch queue(
2615                  * hctx->dispatch) directly and there is at most one in-flight
2616                  * flush request for each hw queue, so it doesn't matter to add
2617                  * flush request to tail or front of the dispatch queue.
2618                  *
2619                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2620                  * command, and queueing it will fail when there is any
2621                  * in-flight normal IO request(NCQ command). When adding flush
2622                  * rq to the front of hctx->dispatch, it is easier to introduce
2623                  * extra time to flush rq's latency because of S_SCHED_RESTART
2624                  * compared with adding to the tail of dispatch queue, then
2625                  * chance of flush merge is increased, and less flush requests
2626                  * will be issued to controller. It is observed that ~10% time
2627                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2628                  * drive when adding flush rq to the front of hctx->dispatch.
2629                  *
2630                  * Simply queue flush rq to the front of hctx->dispatch so that
2631                  * intensive flush workloads can benefit in case of NCQ HW.
2632                  */
2633                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2634         } else if (q->elevator) {
2635                 LIST_HEAD(list);
2636
2637                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2638
2639                 list_add(&rq->queuelist, &list);
2640                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2641         } else {
2642                 trace_block_rq_insert(rq);
2643
2644                 spin_lock(&ctx->lock);
2645                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2646                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2647                 else
2648                         list_add_tail(&rq->queuelist,
2649                                       &ctx->rq_lists[hctx->type]);
2650                 blk_mq_hctx_mark_pending(hctx, ctx);
2651                 spin_unlock(&ctx->lock);
2652         }
2653 }
2654
2655 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2656                 unsigned int nr_segs)
2657 {
2658         int err;
2659
2660         if (bio->bi_opf & REQ_RAHEAD)
2661                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2662
2663         rq->bio = rq->biotail = bio;
2664         rq->__sector = bio->bi_iter.bi_sector;
2665         rq->__data_len = bio->bi_iter.bi_size;
2666         rq->nr_phys_segments = nr_segs;
2667         if (bio_integrity(bio))
2668                 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2669                                                                       bio);
2670
2671         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2672         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2673         WARN_ON_ONCE(err);
2674
2675         blk_account_io_start(rq);
2676 }
2677
2678 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2679                                             struct request *rq, bool last)
2680 {
2681         struct request_queue *q = rq->q;
2682         struct blk_mq_queue_data bd = {
2683                 .rq = rq,
2684                 .last = last,
2685         };
2686         blk_status_t ret;
2687
2688         /*
2689          * For OK queue, we are done. For error, caller may kill it.
2690          * Any other error (busy), just add it to our list as we
2691          * previously would have done.
2692          */
2693         ret = q->mq_ops->queue_rq(hctx, &bd);
2694         switch (ret) {
2695         case BLK_STS_OK:
2696                 blk_mq_update_dispatch_busy(hctx, false);
2697                 break;
2698         case BLK_STS_RESOURCE:
2699         case BLK_STS_DEV_RESOURCE:
2700                 blk_mq_update_dispatch_busy(hctx, true);
2701                 __blk_mq_requeue_request(rq);
2702                 break;
2703         default:
2704                 blk_mq_update_dispatch_busy(hctx, false);
2705                 break;
2706         }
2707
2708         return ret;
2709 }
2710
2711 static bool blk_mq_get_budget_and_tag(struct request *rq)
2712 {
2713         int budget_token;
2714
2715         budget_token = blk_mq_get_dispatch_budget(rq->q);
2716         if (budget_token < 0)
2717                 return false;
2718         blk_mq_set_rq_budget_token(rq, budget_token);
2719         if (!blk_mq_get_driver_tag(rq)) {
2720                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2721                 return false;
2722         }
2723         return true;
2724 }
2725
2726 /**
2727  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2728  * @hctx: Pointer of the associated hardware queue.
2729  * @rq: Pointer to request to be sent.
2730  *
2731  * If the device has enough resources to accept a new request now, send the
2732  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2733  * we can try send it another time in the future. Requests inserted at this
2734  * queue have higher priority.
2735  */
2736 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2737                 struct request *rq)
2738 {
2739         blk_status_t ret;
2740
2741         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2742                 blk_mq_insert_request(rq, 0);
2743                 blk_mq_run_hw_queue(hctx, false);
2744                 return;
2745         }
2746
2747         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2748                 blk_mq_insert_request(rq, 0);
2749                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2750                 return;
2751         }
2752
2753         ret = __blk_mq_issue_directly(hctx, rq, true);
2754         switch (ret) {
2755         case BLK_STS_OK:
2756                 break;
2757         case BLK_STS_RESOURCE:
2758         case BLK_STS_DEV_RESOURCE:
2759                 blk_mq_request_bypass_insert(rq, 0);
2760                 blk_mq_run_hw_queue(hctx, false);
2761                 break;
2762         default:
2763                 blk_mq_end_request(rq, ret);
2764                 break;
2765         }
2766 }
2767
2768 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2769 {
2770         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2771
2772         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2773                 blk_mq_insert_request(rq, 0);
2774                 blk_mq_run_hw_queue(hctx, false);
2775                 return BLK_STS_OK;
2776         }
2777
2778         if (!blk_mq_get_budget_and_tag(rq))
2779                 return BLK_STS_RESOURCE;
2780         return __blk_mq_issue_directly(hctx, rq, last);
2781 }
2782
2783 static void blk_mq_issue_direct(struct rq_list *rqs)
2784 {
2785         struct blk_mq_hw_ctx *hctx = NULL;
2786         struct request *rq;
2787         int queued = 0;
2788         blk_status_t ret = BLK_STS_OK;
2789
2790         while ((rq = rq_list_pop(rqs))) {
2791                 bool last = rq_list_empty(rqs);
2792
2793                 if (hctx != rq->mq_hctx) {
2794                         if (hctx) {
2795                                 blk_mq_commit_rqs(hctx, queued, false);
2796                                 queued = 0;
2797                         }
2798                         hctx = rq->mq_hctx;
2799                 }
2800
2801                 ret = blk_mq_request_issue_directly(rq, last);
2802                 switch (ret) {
2803                 case BLK_STS_OK:
2804                         queued++;
2805                         break;
2806                 case BLK_STS_RESOURCE:
2807                 case BLK_STS_DEV_RESOURCE:
2808                         blk_mq_request_bypass_insert(rq, 0);
2809                         blk_mq_run_hw_queue(hctx, false);
2810                         goto out;
2811                 default:
2812                         blk_mq_end_request(rq, ret);
2813                         break;
2814                 }
2815         }
2816
2817 out:
2818         if (ret != BLK_STS_OK)
2819                 blk_mq_commit_rqs(hctx, queued, false);
2820 }
2821
2822 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2823 {
2824         if (blk_queue_quiesced(q))
2825                 return;
2826         q->mq_ops->queue_rqs(rqs);
2827 }
2828
2829 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2830                                               struct rq_list *queue_rqs)
2831 {
2832         struct request *rq = rq_list_pop(rqs);
2833         struct request_queue *this_q = rq->q;
2834         struct request **prev = &rqs->head;
2835         struct rq_list matched_rqs = {};
2836         struct request *last = NULL;
2837         unsigned depth = 1;
2838
2839         rq_list_add_tail(&matched_rqs, rq);
2840         while ((rq = *prev)) {
2841                 if (rq->q == this_q) {
2842                         /* move rq from rqs to matched_rqs */
2843                         *prev = rq->rq_next;
2844                         rq_list_add_tail(&matched_rqs, rq);
2845                         depth++;
2846                 } else {
2847                         /* leave rq in rqs */
2848                         prev = &rq->rq_next;
2849                         last = rq;
2850                 }
2851         }
2852
2853         rqs->tail = last;
2854         *queue_rqs = matched_rqs;
2855         return depth;
2856 }
2857
2858 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2859 {
2860         struct request_queue *q = rq_list_peek(rqs)->q;
2861
2862         trace_block_unplug(q, depth, true);
2863
2864         /*
2865          * Peek first request and see if we have a ->queue_rqs() hook.
2866          * If we do, we can dispatch the whole list in one go.
2867          * We already know at this point that all requests belong to the
2868          * same queue, caller must ensure that's the case.
2869          */
2870         if (q->mq_ops->queue_rqs) {
2871                 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2872                 if (rq_list_empty(rqs))
2873                         return;
2874         }
2875
2876         blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2877 }
2878
2879 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2880 {
2881         struct blk_mq_hw_ctx *this_hctx = NULL;
2882         struct blk_mq_ctx *this_ctx = NULL;
2883         struct rq_list requeue_list = {};
2884         unsigned int depth = 0;
2885         bool is_passthrough = false;
2886         LIST_HEAD(list);
2887
2888         do {
2889                 struct request *rq = rq_list_pop(rqs);
2890
2891                 if (!this_hctx) {
2892                         this_hctx = rq->mq_hctx;
2893                         this_ctx = rq->mq_ctx;
2894                         is_passthrough = blk_rq_is_passthrough(rq);
2895                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2896                            is_passthrough != blk_rq_is_passthrough(rq)) {
2897                         rq_list_add_tail(&requeue_list, rq);
2898                         continue;
2899                 }
2900                 list_add_tail(&rq->queuelist, &list);
2901                 depth++;
2902         } while (!rq_list_empty(rqs));
2903
2904         *rqs = requeue_list;
2905         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2906
2907         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2908         /* passthrough requests should never be issued to the I/O scheduler */
2909         if (is_passthrough) {
2910                 spin_lock(&this_hctx->lock);
2911                 list_splice_tail_init(&list, &this_hctx->dispatch);
2912                 spin_unlock(&this_hctx->lock);
2913                 blk_mq_run_hw_queue(this_hctx, from_sched);
2914         } else if (this_hctx->queue->elevator) {
2915                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2916                                 &list, 0);
2917                 blk_mq_run_hw_queue(this_hctx, from_sched);
2918         } else {
2919                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2920         }
2921         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2922 }
2923
2924 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2925 {
2926         do {
2927                 struct rq_list queue_rqs;
2928                 unsigned depth;
2929
2930                 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2931                 blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2932                 while (!rq_list_empty(&queue_rqs))
2933                         blk_mq_dispatch_list(&queue_rqs, false);
2934         } while (!rq_list_empty(rqs));
2935 }
2936
2937 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2938 {
2939         unsigned int depth;
2940
2941         /*
2942          * We may have been called recursively midway through handling
2943          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2944          * To avoid mq_list changing under our feet, clear rq_count early and
2945          * bail out specifically if rq_count is 0 rather than checking
2946          * whether the mq_list is empty.
2947          */
2948         if (plug->rq_count == 0)
2949                 return;
2950         depth = plug->rq_count;
2951         plug->rq_count = 0;
2952
2953         if (!plug->has_elevator && !from_schedule) {
2954                 if (plug->multiple_queues) {
2955                         blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2956                         return;
2957                 }
2958
2959                 blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2960                 if (rq_list_empty(&plug->mq_list))
2961                         return;
2962         }
2963
2964         do {
2965                 blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2966         } while (!rq_list_empty(&plug->mq_list));
2967 }
2968
2969 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2970                 struct list_head *list)
2971 {
2972         int queued = 0;
2973         blk_status_t ret = BLK_STS_OK;
2974
2975         while (!list_empty(list)) {
2976                 struct request *rq = list_first_entry(list, struct request,
2977                                 queuelist);
2978
2979                 list_del_init(&rq->queuelist);
2980                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2981                 switch (ret) {
2982                 case BLK_STS_OK:
2983                         queued++;
2984                         break;
2985                 case BLK_STS_RESOURCE:
2986                 case BLK_STS_DEV_RESOURCE:
2987                         blk_mq_request_bypass_insert(rq, 0);
2988                         if (list_empty(list))
2989                                 blk_mq_run_hw_queue(hctx, false);
2990                         goto out;
2991                 default:
2992                         blk_mq_end_request(rq, ret);
2993                         break;
2994                 }
2995         }
2996
2997 out:
2998         if (ret != BLK_STS_OK)
2999                 blk_mq_commit_rqs(hctx, queued, false);
3000 }
3001
3002 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3003                                      struct bio *bio, unsigned int nr_segs)
3004 {
3005         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3006                 if (blk_attempt_plug_merge(q, bio, nr_segs))
3007                         return true;
3008                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3009                         return true;
3010         }
3011         return false;
3012 }
3013
3014 static struct request *blk_mq_get_new_requests(struct request_queue *q,
3015                                                struct blk_plug *plug,
3016                                                struct bio *bio)
3017 {
3018         struct blk_mq_alloc_data data = {
3019                 .q              = q,
3020                 .flags          = 0,
3021                 .shallow_depth  = 0,
3022                 .cmd_flags      = bio->bi_opf,
3023                 .rq_flags       = 0,
3024                 .nr_tags        = 1,
3025                 .cached_rqs     = NULL,
3026                 .ctx            = NULL,
3027                 .hctx           = NULL
3028         };
3029         struct request *rq;
3030
3031         rq_qos_throttle(q, bio);
3032
3033         if (plug) {
3034                 data.nr_tags = plug->nr_ios;
3035                 plug->nr_ios = 1;
3036                 data.cached_rqs = &plug->cached_rqs;
3037         }
3038
3039         rq = __blk_mq_alloc_requests(&data);
3040         if (unlikely(!rq))
3041                 rq_qos_cleanup(q, bio);
3042         return rq;
3043 }
3044
3045 /*
3046  * Check if there is a suitable cached request and return it.
3047  */
3048 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3049                 struct request_queue *q, blk_opf_t opf)
3050 {
3051         enum hctx_type type = blk_mq_get_hctx_type(opf);
3052         struct request *rq;
3053
3054         if (!plug)
3055                 return NULL;
3056         rq = rq_list_peek(&plug->cached_rqs);
3057         if (!rq || rq->q != q)
3058                 return NULL;
3059         if (type != rq->mq_hctx->type &&
3060             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3061                 return NULL;
3062         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3063                 return NULL;
3064         return rq;
3065 }
3066
3067 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3068                 struct bio *bio)
3069 {
3070         if (rq_list_pop(&plug->cached_rqs) != rq)
3071                 WARN_ON_ONCE(1);
3072
3073         /*
3074          * If any qos ->throttle() end up blocking, we will have flushed the
3075          * plug and hence killed the cached_rq list as well. Pop this entry
3076          * before we throttle.
3077          */
3078         rq_qos_throttle(rq->q, bio);
3079
3080         blk_mq_rq_time_init(rq, blk_time_get_ns());
3081         rq->cmd_flags = bio->bi_opf;
3082         INIT_LIST_HEAD(&rq->queuelist);
3083 }
3084
3085 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3086 {
3087         unsigned int bs_mask = queue_logical_block_size(q) - 1;
3088
3089         /* .bi_sector of any zero sized bio need to be initialized */
3090         if ((bio->bi_iter.bi_size & bs_mask) ||
3091             ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3092                 return true;
3093         return false;
3094 }
3095
3096 /**
3097  * blk_mq_submit_bio - Create and send a request to block device.
3098  * @bio: Bio pointer.
3099  *
3100  * Builds up a request structure from @q and @bio and send to the device. The
3101  * request may not be queued directly to hardware if:
3102  * * This request can be merged with another one
3103  * * We want to place request at plug queue for possible future merging
3104  * * There is an IO scheduler active at this queue
3105  *
3106  * It will not queue the request if there is an error with the bio, or at the
3107  * request creation.
3108  */
3109 void blk_mq_submit_bio(struct bio *bio)
3110 {
3111         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3112         struct blk_plug *plug = current->plug;
3113         const int is_sync = op_is_sync(bio->bi_opf);
3114         struct blk_mq_hw_ctx *hctx;
3115         unsigned int nr_segs;
3116         struct request *rq;
3117         blk_status_t ret;
3118
3119         /*
3120          * If the plug has a cached request for this queue, try to use it.
3121          */
3122         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3123
3124         /*
3125          * A BIO that was released from a zone write plug has already been
3126          * through the preparation in this function, already holds a reference
3127          * on the queue usage counter, and is the only write BIO in-flight for
3128          * the target zone. Go straight to preparing a request for it.
3129          */
3130         if (bio_zone_write_plugging(bio)) {
3131                 nr_segs = bio->__bi_nr_segments;
3132                 if (rq)
3133                         blk_queue_exit(q);
3134                 goto new_request;
3135         }
3136
3137         /*
3138          * The cached request already holds a q_usage_counter reference and we
3139          * don't have to acquire a new one if we use it.
3140          */
3141         if (!rq) {
3142                 if (unlikely(bio_queue_enter(bio)))
3143                         return;
3144         }
3145
3146         /*
3147          * Device reconfiguration may change logical block size or reduce the
3148          * number of poll queues, so the checks for alignment and poll support
3149          * have to be done with queue usage counter held.
3150          */
3151         if (unlikely(bio_unaligned(bio, q))) {
3152                 bio_io_error(bio);
3153                 goto queue_exit;
3154         }
3155
3156         if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3157                 bio->bi_status = BLK_STS_NOTSUPP;
3158                 bio_endio(bio);
3159                 goto queue_exit;
3160         }
3161
3162         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3163         if (!bio)
3164                 goto queue_exit;
3165
3166         if (!bio_integrity_prep(bio))
3167                 goto queue_exit;
3168
3169         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3170                 goto queue_exit;
3171
3172         if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3173                 goto queue_exit;
3174
3175 new_request:
3176         if (rq) {
3177                 blk_mq_use_cached_rq(rq, plug, bio);
3178         } else {
3179                 rq = blk_mq_get_new_requests(q, plug, bio);
3180                 if (unlikely(!rq)) {
3181                         if (bio->bi_opf & REQ_NOWAIT)
3182                                 bio_wouldblock_error(bio);
3183                         goto queue_exit;
3184                 }
3185         }
3186
3187         trace_block_getrq(bio);
3188
3189         rq_qos_track(q, rq, bio);
3190
3191         blk_mq_bio_to_request(rq, bio, nr_segs);
3192
3193         ret = blk_crypto_rq_get_keyslot(rq);
3194         if (ret != BLK_STS_OK) {
3195                 bio->bi_status = ret;
3196                 bio_endio(bio);
3197                 blk_mq_free_request(rq);
3198                 return;
3199         }
3200
3201         if (bio_zone_write_plugging(bio))
3202                 blk_zone_write_plug_init_request(rq);
3203
3204         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3205                 return;
3206
3207         if (plug) {
3208                 blk_add_rq_to_plug(plug, rq);
3209                 return;
3210         }
3211
3212         hctx = rq->mq_hctx;
3213         if ((rq->rq_flags & RQF_USE_SCHED) ||
3214             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3215                 blk_mq_insert_request(rq, 0);
3216                 blk_mq_run_hw_queue(hctx, true);
3217         } else {
3218                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3219         }
3220         return;
3221
3222 queue_exit:
3223         /*
3224          * Don't drop the queue reference if we were trying to use a cached
3225          * request and thus didn't acquire one.
3226          */
3227         if (!rq)
3228                 blk_queue_exit(q);
3229 }
3230
3231 #ifdef CONFIG_BLK_MQ_STACKING
3232 /**
3233  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3234  * @rq: the request being queued
3235  */
3236 blk_status_t blk_insert_cloned_request(struct request *rq)
3237 {
3238         struct request_queue *q = rq->q;
3239         unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3240         unsigned int max_segments = blk_rq_get_max_segments(rq);
3241         blk_status_t ret;
3242
3243         if (blk_rq_sectors(rq) > max_sectors) {
3244                 /*
3245                  * SCSI device does not have a good way to return if
3246                  * Write Same/Zero is actually supported. If a device rejects
3247                  * a non-read/write command (discard, write same,etc.) the
3248                  * low-level device driver will set the relevant queue limit to
3249                  * 0 to prevent blk-lib from issuing more of the offending
3250                  * operations. Commands queued prior to the queue limit being
3251                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3252                  * errors being propagated to upper layers.
3253                  */
3254                 if (max_sectors == 0)
3255                         return BLK_STS_NOTSUPP;
3256
3257                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3258                         __func__, blk_rq_sectors(rq), max_sectors);
3259                 return BLK_STS_IOERR;
3260         }
3261
3262         /*
3263          * The queue settings related to segment counting may differ from the
3264          * original queue.
3265          */
3266         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3267         if (rq->nr_phys_segments > max_segments) {
3268                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3269                         __func__, rq->nr_phys_segments, max_segments);
3270                 return BLK_STS_IOERR;
3271         }
3272
3273         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3274                 return BLK_STS_IOERR;
3275
3276         ret = blk_crypto_rq_get_keyslot(rq);
3277         if (ret != BLK_STS_OK)
3278                 return ret;
3279
3280         blk_account_io_start(rq);
3281
3282         /*
3283          * Since we have a scheduler attached on the top device,
3284          * bypass a potential scheduler on the bottom device for
3285          * insert.
3286          */
3287         blk_mq_run_dispatch_ops(q,
3288                         ret = blk_mq_request_issue_directly(rq, true));
3289         if (ret)
3290                 blk_account_io_done(rq, blk_time_get_ns());
3291         return ret;
3292 }
3293 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3294
3295 /**
3296  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3297  * @rq: the clone request to be cleaned up
3298  *
3299  * Description:
3300  *     Free all bios in @rq for a cloned request.
3301  */
3302 void blk_rq_unprep_clone(struct request *rq)
3303 {
3304         struct bio *bio;
3305
3306         while ((bio = rq->bio) != NULL) {
3307                 rq->bio = bio->bi_next;
3308
3309                 bio_put(bio);
3310         }
3311 }
3312 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3313
3314 /**
3315  * blk_rq_prep_clone - Helper function to setup clone request
3316  * @rq: the request to be setup
3317  * @rq_src: original request to be cloned
3318  * @bs: bio_set that bios for clone are allocated from
3319  * @gfp_mask: memory allocation mask for bio
3320  * @bio_ctr: setup function to be called for each clone bio.
3321  *           Returns %0 for success, non %0 for failure.
3322  * @data: private data to be passed to @bio_ctr
3323  *
3324  * Description:
3325  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3326  *     Also, pages which the original bios are pointing to are not copied
3327  *     and the cloned bios just point same pages.
3328  *     So cloned bios must be completed before original bios, which means
3329  *     the caller must complete @rq before @rq_src.
3330  */
3331 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3332                       struct bio_set *bs, gfp_t gfp_mask,
3333                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3334                       void *data)
3335 {
3336         struct bio *bio_src;
3337
3338         if (!bs)
3339                 bs = &fs_bio_set;
3340
3341         __rq_for_each_bio(bio_src, rq_src) {
3342                 struct bio *bio  = bio_alloc_clone(rq->q->disk->part0, bio_src,
3343                                         gfp_mask, bs);
3344                 if (!bio)
3345                         goto free_and_out;
3346
3347                 if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3348                         bio_put(bio);
3349                         goto free_and_out;
3350                 }
3351
3352                 if (rq->bio) {
3353                         rq->biotail->bi_next = bio;
3354                         rq->biotail = bio;
3355                 } else {
3356                         rq->bio = rq->biotail = bio;
3357                 }
3358         }
3359
3360         /* Copy attributes of the original request to the clone request. */
3361         rq->__sector = blk_rq_pos(rq_src);
3362         rq->__data_len = blk_rq_bytes(rq_src);
3363         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3364                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3365                 rq->special_vec = rq_src->special_vec;
3366         }
3367         rq->nr_phys_segments = rq_src->nr_phys_segments;
3368         rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3369
3370         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3371                 goto free_and_out;
3372
3373         return 0;
3374
3375 free_and_out:
3376         blk_rq_unprep_clone(rq);
3377
3378         return -ENOMEM;
3379 }
3380 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3381 #endif /* CONFIG_BLK_MQ_STACKING */
3382
3383 /*
3384  * Steal bios from a request and add them to a bio list.
3385  * The request must not have been partially completed before.
3386  */
3387 void blk_steal_bios(struct bio_list *list, struct request *rq)
3388 {
3389         if (rq->bio) {
3390                 if (list->tail)
3391                         list->tail->bi_next = rq->bio;
3392                 else
3393                         list->head = rq->bio;
3394                 list->tail = rq->biotail;
3395
3396                 rq->bio = NULL;
3397                 rq->biotail = NULL;
3398         }
3399
3400         rq->__data_len = 0;
3401 }
3402 EXPORT_SYMBOL_GPL(blk_steal_bios);
3403
3404 static size_t order_to_size(unsigned int order)
3405 {
3406         return (size_t)PAGE_SIZE << order;
3407 }
3408
3409 /* called before freeing request pool in @tags */
3410 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3411                                     struct blk_mq_tags *tags)
3412 {
3413         struct page *page;
3414         unsigned long flags;
3415
3416         /*
3417          * There is no need to clear mapping if driver tags is not initialized
3418          * or the mapping belongs to the driver tags.
3419          */
3420         if (!drv_tags || drv_tags == tags)
3421                 return;
3422
3423         list_for_each_entry(page, &tags->page_list, lru) {
3424                 unsigned long start = (unsigned long)page_address(page);
3425                 unsigned long end = start + order_to_size(page->private);
3426                 int i;
3427
3428                 for (i = 0; i < drv_tags->nr_tags; i++) {
3429                         struct request *rq = drv_tags->rqs[i];
3430                         unsigned long rq_addr = (unsigned long)rq;
3431
3432                         if (rq_addr >= start && rq_addr < end) {
3433                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3434                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3435                         }
3436                 }
3437         }
3438
3439         /*
3440          * Wait until all pending iteration is done.
3441          *
3442          * Request reference is cleared and it is guaranteed to be observed
3443          * after the ->lock is released.
3444          */
3445         spin_lock_irqsave(&drv_tags->lock, flags);
3446         spin_unlock_irqrestore(&drv_tags->lock, flags);
3447 }
3448
3449 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3450                      unsigned int hctx_idx)
3451 {
3452         struct blk_mq_tags *drv_tags;
3453         struct page *page;
3454
3455         if (list_empty(&tags->page_list))
3456                 return;
3457
3458         if (blk_mq_is_shared_tags(set->flags))
3459                 drv_tags = set->shared_tags;
3460         else
3461                 drv_tags = set->tags[hctx_idx];
3462
3463         if (tags->static_rqs && set->ops->exit_request) {
3464                 int i;
3465
3466                 for (i = 0; i < tags->nr_tags; i++) {
3467                         struct request *rq = tags->static_rqs[i];
3468
3469                         if (!rq)
3470                                 continue;
3471                         set->ops->exit_request(set, rq, hctx_idx);
3472                         tags->static_rqs[i] = NULL;
3473                 }
3474         }
3475
3476         blk_mq_clear_rq_mapping(drv_tags, tags);
3477
3478         while (!list_empty(&tags->page_list)) {
3479                 page = list_first_entry(&tags->page_list, struct page, lru);
3480                 list_del_init(&page->lru);
3481                 /*
3482                  * Remove kmemleak object previously allocated in
3483                  * blk_mq_alloc_rqs().
3484                  */
3485                 kmemleak_free(page_address(page));
3486                 __free_pages(page, page->private);
3487         }
3488 }
3489
3490 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3491 {
3492         kfree(tags->rqs);
3493         tags->rqs = NULL;
3494         kfree(tags->static_rqs);
3495         tags->static_rqs = NULL;
3496
3497         blk_mq_free_tags(tags);
3498 }
3499
3500 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3501                 unsigned int hctx_idx)
3502 {
3503         int i;
3504
3505         for (i = 0; i < set->nr_maps; i++) {
3506                 unsigned int start = set->map[i].queue_offset;
3507                 unsigned int end = start + set->map[i].nr_queues;
3508
3509                 if (hctx_idx >= start && hctx_idx < end)
3510                         break;
3511         }
3512
3513         if (i >= set->nr_maps)
3514                 i = HCTX_TYPE_DEFAULT;
3515
3516         return i;
3517 }
3518
3519 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3520                 unsigned int hctx_idx)
3521 {
3522         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3523
3524         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3525 }
3526
3527 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3528                                                unsigned int hctx_idx,
3529                                                unsigned int nr_tags,
3530                                                unsigned int reserved_tags)
3531 {
3532         int node = blk_mq_get_hctx_node(set, hctx_idx);
3533         struct blk_mq_tags *tags;
3534
3535         if (node == NUMA_NO_NODE)
3536                 node = set->numa_node;
3537
3538         tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3539         if (!tags)
3540                 return NULL;
3541
3542         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3543                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3544                                  node);
3545         if (!tags->rqs)
3546                 goto err_free_tags;
3547
3548         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3549                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3550                                         node);
3551         if (!tags->static_rqs)
3552                 goto err_free_rqs;
3553
3554         return tags;
3555
3556 err_free_rqs:
3557         kfree(tags->rqs);
3558 err_free_tags:
3559         blk_mq_free_tags(tags);
3560         return NULL;
3561 }
3562
3563 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3564                                unsigned int hctx_idx, int node)
3565 {
3566         int ret;
3567
3568         if (set->ops->init_request) {
3569                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3570                 if (ret)
3571                         return ret;
3572         }
3573
3574         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3575         return 0;
3576 }
3577
3578 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3579                             struct blk_mq_tags *tags,
3580                             unsigned int hctx_idx, unsigned int depth)
3581 {
3582         unsigned int i, j, entries_per_page, max_order = 4;
3583         int node = blk_mq_get_hctx_node(set, hctx_idx);
3584         size_t rq_size, left;
3585
3586         if (node == NUMA_NO_NODE)
3587                 node = set->numa_node;
3588
3589         INIT_LIST_HEAD(&tags->page_list);
3590
3591         /*
3592          * rq_size is the size of the request plus driver payload, rounded
3593          * to the cacheline size
3594          */
3595         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3596                                 cache_line_size());
3597         left = rq_size * depth;
3598
3599         for (i = 0; i < depth; ) {
3600                 int this_order = max_order;
3601                 struct page *page;
3602                 int to_do;
3603                 void *p;
3604
3605                 while (this_order && left < order_to_size(this_order - 1))
3606                         this_order--;
3607
3608                 do {
3609                         page = alloc_pages_node(node,
3610                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3611                                 this_order);
3612                         if (page)
3613                                 break;
3614                         if (!this_order--)
3615                                 break;
3616                         if (order_to_size(this_order) < rq_size)
3617                                 break;
3618                 } while (1);
3619
3620                 if (!page)
3621                         goto fail;
3622
3623                 page->private = this_order;
3624                 list_add_tail(&page->lru, &tags->page_list);
3625
3626                 p = page_address(page);
3627                 /*
3628                  * Allow kmemleak to scan these pages as they contain pointers
3629                  * to additional allocations like via ops->init_request().
3630                  */
3631                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3632                 entries_per_page = order_to_size(this_order) / rq_size;
3633                 to_do = min(entries_per_page, depth - i);
3634                 left -= to_do * rq_size;
3635                 for (j = 0; j < to_do; j++) {
3636                         struct request *rq = p;
3637
3638                         tags->static_rqs[i] = rq;
3639                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3640                                 tags->static_rqs[i] = NULL;
3641                                 goto fail;
3642                         }
3643
3644                         p += rq_size;
3645                         i++;
3646                 }
3647         }
3648         return 0;
3649
3650 fail:
3651         blk_mq_free_rqs(set, tags, hctx_idx);
3652         return -ENOMEM;
3653 }
3654
3655 struct rq_iter_data {
3656         struct blk_mq_hw_ctx *hctx;
3657         bool has_rq;
3658 };
3659
3660 static bool blk_mq_has_request(struct request *rq, void *data)
3661 {
3662         struct rq_iter_data *iter_data = data;
3663
3664         if (rq->mq_hctx != iter_data->hctx)
3665                 return true;
3666         iter_data->has_rq = true;
3667         return false;
3668 }
3669
3670 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3671 {
3672         struct blk_mq_tags *tags = hctx->sched_tags ?
3673                         hctx->sched_tags : hctx->tags;
3674         struct rq_iter_data data = {
3675                 .hctx   = hctx,
3676         };
3677
3678         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3679         return data.has_rq;
3680 }
3681
3682 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3683                 unsigned int this_cpu)
3684 {
3685         enum hctx_type type = hctx->type;
3686         int cpu;
3687
3688         /*
3689          * hctx->cpumask has to rule out isolated CPUs, but userspace still
3690          * might submit IOs on these isolated CPUs, so use the queue map to
3691          * check if all CPUs mapped to this hctx are offline
3692          */
3693         for_each_online_cpu(cpu) {
3694                 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3695                                 type, cpu);
3696
3697                 if (h != hctx)
3698                         continue;
3699
3700                 /* this hctx has at least one online CPU */
3701                 if (this_cpu != cpu)
3702                         return true;
3703         }
3704
3705         return false;
3706 }
3707
3708 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3709 {
3710         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3711                         struct blk_mq_hw_ctx, cpuhp_online);
3712
3713         if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3714                 return 0;
3715
3716         /*
3717          * Prevent new request from being allocated on the current hctx.
3718          *
3719          * The smp_mb__after_atomic() Pairs with the implied barrier in
3720          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3721          * seen once we return from the tag allocator.
3722          */
3723         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3724         smp_mb__after_atomic();
3725
3726         /*
3727          * Try to grab a reference to the queue and wait for any outstanding
3728          * requests.  If we could not grab a reference the queue has been
3729          * frozen and there are no requests.
3730          */
3731         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3732                 while (blk_mq_hctx_has_requests(hctx))
3733                         msleep(5);
3734                 percpu_ref_put(&hctx->queue->q_usage_counter);
3735         }
3736
3737         return 0;
3738 }
3739
3740 /*
3741  * Check if one CPU is mapped to the specified hctx
3742  *
3743  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3744  * to be used for scheduling kworker only. For other usage, please call this
3745  * helper for checking if one CPU belongs to the specified hctx
3746  */
3747 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3748                 const struct blk_mq_hw_ctx *hctx)
3749 {
3750         struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3751                         hctx->type, cpu);
3752
3753         return mapped_hctx == hctx;
3754 }
3755
3756 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3757 {
3758         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3759                         struct blk_mq_hw_ctx, cpuhp_online);
3760
3761         if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3762                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3763         return 0;
3764 }
3765
3766 /*
3767  * 'cpu' is going away. splice any existing rq_list entries from this
3768  * software queue to the hw queue dispatch list, and ensure that it
3769  * gets run.
3770  */
3771 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3772 {
3773         struct blk_mq_hw_ctx *hctx;
3774         struct blk_mq_ctx *ctx;
3775         LIST_HEAD(tmp);
3776         enum hctx_type type;
3777
3778         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3779         if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3780                 return 0;
3781
3782         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3783         type = hctx->type;
3784
3785         spin_lock(&ctx->lock);
3786         if (!list_empty(&ctx->rq_lists[type])) {
3787                 list_splice_init(&ctx->rq_lists[type], &tmp);
3788                 blk_mq_hctx_clear_pending(hctx, ctx);
3789         }
3790         spin_unlock(&ctx->lock);
3791
3792         if (list_empty(&tmp))
3793                 return 0;
3794
3795         spin_lock(&hctx->lock);
3796         list_splice_tail_init(&tmp, &hctx->dispatch);
3797         spin_unlock(&hctx->lock);
3798
3799         blk_mq_run_hw_queue(hctx, true);
3800         return 0;
3801 }
3802
3803 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3804 {
3805         lockdep_assert_held(&blk_mq_cpuhp_lock);
3806
3807         if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3808             !hlist_unhashed(&hctx->cpuhp_online)) {
3809                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3810                                                     &hctx->cpuhp_online);
3811                 INIT_HLIST_NODE(&hctx->cpuhp_online);
3812         }
3813
3814         if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3815                 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3816                                                     &hctx->cpuhp_dead);
3817                 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3818         }
3819 }
3820
3821 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3822 {
3823         mutex_lock(&blk_mq_cpuhp_lock);
3824         __blk_mq_remove_cpuhp(hctx);
3825         mutex_unlock(&blk_mq_cpuhp_lock);
3826 }
3827
3828 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3829 {
3830         lockdep_assert_held(&blk_mq_cpuhp_lock);
3831
3832         if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3833             hlist_unhashed(&hctx->cpuhp_online))
3834                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3835                                 &hctx->cpuhp_online);
3836
3837         if (hlist_unhashed(&hctx->cpuhp_dead))
3838                 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3839                                 &hctx->cpuhp_dead);
3840 }
3841
3842 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3843 {
3844         struct blk_mq_hw_ctx *hctx;
3845
3846         lockdep_assert_held(&blk_mq_cpuhp_lock);
3847
3848         list_for_each_entry(hctx, head, hctx_list)
3849                 __blk_mq_remove_cpuhp(hctx);
3850 }
3851
3852 /*
3853  * Unregister cpuhp callbacks from exited hw queues
3854  *
3855  * Safe to call if this `request_queue` is live
3856  */
3857 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3858 {
3859         LIST_HEAD(hctx_list);
3860
3861         spin_lock(&q->unused_hctx_lock);
3862         list_splice_init(&q->unused_hctx_list, &hctx_list);
3863         spin_unlock(&q->unused_hctx_lock);
3864
3865         mutex_lock(&blk_mq_cpuhp_lock);
3866         __blk_mq_remove_cpuhp_list(&hctx_list);
3867         mutex_unlock(&blk_mq_cpuhp_lock);
3868
3869         spin_lock(&q->unused_hctx_lock);
3870         list_splice(&hctx_list, &q->unused_hctx_list);
3871         spin_unlock(&q->unused_hctx_lock);
3872 }
3873
3874 /*
3875  * Register cpuhp callbacks from all hw queues
3876  *
3877  * Safe to call if this `request_queue` is live
3878  */
3879 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3880 {
3881         struct blk_mq_hw_ctx *hctx;
3882         unsigned long i;
3883
3884         mutex_lock(&blk_mq_cpuhp_lock);
3885         queue_for_each_hw_ctx(q, hctx, i)
3886                 __blk_mq_add_cpuhp(hctx);
3887         mutex_unlock(&blk_mq_cpuhp_lock);
3888 }
3889
3890 /*
3891  * Before freeing hw queue, clearing the flush request reference in
3892  * tags->rqs[] for avoiding potential UAF.
3893  */
3894 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3895                 unsigned int queue_depth, struct request *flush_rq)
3896 {
3897         int i;
3898         unsigned long flags;
3899
3900         /* The hw queue may not be mapped yet */
3901         if (!tags)
3902                 return;
3903
3904         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3905
3906         for (i = 0; i < queue_depth; i++)
3907                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3908
3909         /*
3910          * Wait until all pending iteration is done.
3911          *
3912          * Request reference is cleared and it is guaranteed to be observed
3913          * after the ->lock is released.
3914          */
3915         spin_lock_irqsave(&tags->lock, flags);
3916         spin_unlock_irqrestore(&tags->lock, flags);
3917 }
3918
3919 /* hctx->ctxs will be freed in queue's release handler */
3920 static void blk_mq_exit_hctx(struct request_queue *q,
3921                 struct blk_mq_tag_set *set,
3922                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3923 {
3924         struct request *flush_rq = hctx->fq->flush_rq;
3925
3926         if (blk_mq_hw_queue_mapped(hctx))
3927                 blk_mq_tag_idle(hctx);
3928
3929         if (blk_queue_init_done(q))
3930                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3931                                 set->queue_depth, flush_rq);
3932         if (set->ops->exit_request)
3933                 set->ops->exit_request(set, flush_rq, hctx_idx);
3934
3935         if (set->ops->exit_hctx)
3936                 set->ops->exit_hctx(hctx, hctx_idx);
3937
3938         xa_erase(&q->hctx_table, hctx_idx);
3939
3940         spin_lock(&q->unused_hctx_lock);
3941         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3942         spin_unlock(&q->unused_hctx_lock);
3943 }
3944
3945 static void blk_mq_exit_hw_queues(struct request_queue *q,
3946                 struct blk_mq_tag_set *set, int nr_queue)
3947 {
3948         struct blk_mq_hw_ctx *hctx;
3949         unsigned long i;
3950
3951         queue_for_each_hw_ctx(q, hctx, i) {
3952                 if (i == nr_queue)
3953                         break;
3954                 blk_mq_remove_cpuhp(hctx);
3955                 blk_mq_exit_hctx(q, set, hctx, i);
3956         }
3957 }
3958
3959 static int blk_mq_init_hctx(struct request_queue *q,
3960                 struct blk_mq_tag_set *set,
3961                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3962 {
3963         hctx->queue_num = hctx_idx;
3964
3965         hctx->tags = set->tags[hctx_idx];
3966
3967         if (set->ops->init_hctx &&
3968             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3969                 goto fail;
3970
3971         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3972                                 hctx->numa_node))
3973                 goto exit_hctx;
3974
3975         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3976                 goto exit_flush_rq;
3977
3978         return 0;
3979
3980  exit_flush_rq:
3981         if (set->ops->exit_request)
3982                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3983  exit_hctx:
3984         if (set->ops->exit_hctx)
3985                 set->ops->exit_hctx(hctx, hctx_idx);
3986  fail:
3987         return -1;
3988 }
3989
3990 static struct blk_mq_hw_ctx *
3991 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3992                 int node)
3993 {
3994         struct blk_mq_hw_ctx *hctx;
3995         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3996
3997         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3998         if (!hctx)
3999                 goto fail_alloc_hctx;
4000
4001         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4002                 goto free_hctx;
4003
4004         atomic_set(&hctx->nr_active, 0);
4005         if (node == NUMA_NO_NODE)
4006                 node = set->numa_node;
4007         hctx->numa_node = node;
4008
4009         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4010         spin_lock_init(&hctx->lock);
4011         INIT_LIST_HEAD(&hctx->dispatch);
4012         INIT_HLIST_NODE(&hctx->cpuhp_dead);
4013         INIT_HLIST_NODE(&hctx->cpuhp_online);
4014         hctx->queue = q;
4015         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4016
4017         INIT_LIST_HEAD(&hctx->hctx_list);
4018
4019         /*
4020          * Allocate space for all possible cpus to avoid allocation at
4021          * runtime
4022          */
4023         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4024                         gfp, node);
4025         if (!hctx->ctxs)
4026                 goto free_cpumask;
4027
4028         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4029                                 gfp, node, false, false))
4030                 goto free_ctxs;
4031         hctx->nr_ctx = 0;
4032
4033         spin_lock_init(&hctx->dispatch_wait_lock);
4034         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4035         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4036
4037         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
4038         if (!hctx->fq)
4039                 goto free_bitmap;
4040
4041         blk_mq_hctx_kobj_init(hctx);
4042
4043         return hctx;
4044
4045  free_bitmap:
4046         sbitmap_free(&hctx->ctx_map);
4047  free_ctxs:
4048         kfree(hctx->ctxs);
4049  free_cpumask:
4050         free_cpumask_var(hctx->cpumask);
4051  free_hctx:
4052         kfree(hctx);
4053  fail_alloc_hctx:
4054         return NULL;
4055 }
4056
4057 static void blk_mq_init_cpu_queues(struct request_queue *q,
4058                                    unsigned int nr_hw_queues)
4059 {
4060         struct blk_mq_tag_set *set = q->tag_set;
4061         unsigned int i, j;
4062
4063         for_each_possible_cpu(i) {
4064                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4065                 struct blk_mq_hw_ctx *hctx;
4066                 int k;
4067
4068                 __ctx->cpu = i;
4069                 spin_lock_init(&__ctx->lock);
4070                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4071                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4072
4073                 __ctx->queue = q;
4074
4075                 /*
4076                  * Set local node, IFF we have more than one hw queue. If
4077                  * not, we remain on the home node of the device
4078                  */
4079                 for (j = 0; j < set->nr_maps; j++) {
4080                         hctx = blk_mq_map_queue_type(q, j, i);
4081                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4082                                 hctx->numa_node = cpu_to_node(i);
4083                 }
4084         }
4085 }
4086
4087 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4088                                              unsigned int hctx_idx,
4089                                              unsigned int depth)
4090 {
4091         struct blk_mq_tags *tags;
4092         int ret;
4093
4094         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4095         if (!tags)
4096                 return NULL;
4097
4098         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4099         if (ret) {
4100                 blk_mq_free_rq_map(tags);
4101                 return NULL;
4102         }
4103
4104         return tags;
4105 }
4106
4107 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4108                                        int hctx_idx)
4109 {
4110         if (blk_mq_is_shared_tags(set->flags)) {
4111                 set->tags[hctx_idx] = set->shared_tags;
4112
4113                 return true;
4114         }
4115
4116         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4117                                                        set->queue_depth);
4118
4119         return set->tags[hctx_idx];
4120 }
4121
4122 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4123                              struct blk_mq_tags *tags,
4124                              unsigned int hctx_idx)
4125 {
4126         if (tags) {
4127                 blk_mq_free_rqs(set, tags, hctx_idx);
4128                 blk_mq_free_rq_map(tags);
4129         }
4130 }
4131
4132 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4133                                       unsigned int hctx_idx)
4134 {
4135         if (!blk_mq_is_shared_tags(set->flags))
4136                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4137
4138         set->tags[hctx_idx] = NULL;
4139 }
4140
4141 static void blk_mq_map_swqueue(struct request_queue *q)
4142 {
4143         unsigned int j, hctx_idx;
4144         unsigned long i;
4145         struct blk_mq_hw_ctx *hctx;
4146         struct blk_mq_ctx *ctx;
4147         struct blk_mq_tag_set *set = q->tag_set;
4148
4149         queue_for_each_hw_ctx(q, hctx, i) {
4150                 cpumask_clear(hctx->cpumask);
4151                 hctx->nr_ctx = 0;
4152                 hctx->dispatch_from = NULL;
4153         }
4154
4155         /*
4156          * Map software to hardware queues.
4157          *
4158          * If the cpu isn't present, the cpu is mapped to first hctx.
4159          */
4160         for_each_possible_cpu(i) {
4161
4162                 ctx = per_cpu_ptr(q->queue_ctx, i);
4163                 for (j = 0; j < set->nr_maps; j++) {
4164                         if (!set->map[j].nr_queues) {
4165                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4166                                                 HCTX_TYPE_DEFAULT, i);
4167                                 continue;
4168                         }
4169                         hctx_idx = set->map[j].mq_map[i];
4170                         /* unmapped hw queue can be remapped after CPU topo changed */
4171                         if (!set->tags[hctx_idx] &&
4172                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4173                                 /*
4174                                  * If tags initialization fail for some hctx,
4175                                  * that hctx won't be brought online.  In this
4176                                  * case, remap the current ctx to hctx[0] which
4177                                  * is guaranteed to always have tags allocated
4178                                  */
4179                                 set->map[j].mq_map[i] = 0;
4180                         }
4181
4182                         hctx = blk_mq_map_queue_type(q, j, i);
4183                         ctx->hctxs[j] = hctx;
4184                         /*
4185                          * If the CPU is already set in the mask, then we've
4186                          * mapped this one already. This can happen if
4187                          * devices share queues across queue maps.
4188                          */
4189                         if (cpumask_test_cpu(i, hctx->cpumask))
4190                                 continue;
4191
4192                         cpumask_set_cpu(i, hctx->cpumask);
4193                         hctx->type = j;
4194                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
4195                         hctx->ctxs[hctx->nr_ctx++] = ctx;
4196
4197                         /*
4198                          * If the nr_ctx type overflows, we have exceeded the
4199                          * amount of sw queues we can support.
4200                          */
4201                         BUG_ON(!hctx->nr_ctx);
4202                 }
4203
4204                 for (; j < HCTX_MAX_TYPES; j++)
4205                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
4206                                         HCTX_TYPE_DEFAULT, i);
4207         }
4208
4209         queue_for_each_hw_ctx(q, hctx, i) {
4210                 int cpu;
4211
4212                 /*
4213                  * If no software queues are mapped to this hardware queue,
4214                  * disable it and free the request entries.
4215                  */
4216                 if (!hctx->nr_ctx) {
4217                         /* Never unmap queue 0.  We need it as a
4218                          * fallback in case of a new remap fails
4219                          * allocation
4220                          */
4221                         if (i)
4222                                 __blk_mq_free_map_and_rqs(set, i);
4223
4224                         hctx->tags = NULL;
4225                         continue;
4226                 }
4227
4228                 hctx->tags = set->tags[i];
4229                 WARN_ON(!hctx->tags);
4230
4231                 /*
4232                  * Set the map size to the number of mapped software queues.
4233                  * This is more accurate and more efficient than looping
4234                  * over all possibly mapped software queues.
4235                  */
4236                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4237
4238                 /*
4239                  * Rule out isolated CPUs from hctx->cpumask to avoid
4240                  * running block kworker on isolated CPUs
4241                  */
4242                 for_each_cpu(cpu, hctx->cpumask) {
4243                         if (cpu_is_isolated(cpu))
4244                                 cpumask_clear_cpu(cpu, hctx->cpumask);
4245                 }
4246
4247                 /*
4248                  * Initialize batch roundrobin counts
4249                  */
4250                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4251                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4252         }
4253 }
4254
4255 /*
4256  * Caller needs to ensure that we're either frozen/quiesced, or that
4257  * the queue isn't live yet.
4258  */
4259 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4260 {
4261         struct blk_mq_hw_ctx *hctx;
4262         unsigned long i;
4263
4264         queue_for_each_hw_ctx(q, hctx, i) {
4265                 if (shared) {
4266                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4267                 } else {
4268                         blk_mq_tag_idle(hctx);
4269                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4270                 }
4271         }
4272 }
4273
4274 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4275                                          bool shared)
4276 {
4277         struct request_queue *q;
4278         unsigned int memflags;
4279
4280         lockdep_assert_held(&set->tag_list_lock);
4281
4282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4283                 memflags = blk_mq_freeze_queue(q);
4284                 queue_set_hctx_shared(q, shared);
4285                 blk_mq_unfreeze_queue(q, memflags);
4286         }
4287 }
4288
4289 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4290 {
4291         struct blk_mq_tag_set *set = q->tag_set;
4292
4293         mutex_lock(&set->tag_list_lock);
4294         list_del(&q->tag_set_list);
4295         if (list_is_singular(&set->tag_list)) {
4296                 /* just transitioned to unshared */
4297                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4298                 /* update existing queue */
4299                 blk_mq_update_tag_set_shared(set, false);
4300         }
4301         mutex_unlock(&set->tag_list_lock);
4302         INIT_LIST_HEAD(&q->tag_set_list);
4303 }
4304
4305 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4306                                      struct request_queue *q)
4307 {
4308         mutex_lock(&set->tag_list_lock);
4309
4310         /*
4311          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4312          */
4313         if (!list_empty(&set->tag_list) &&
4314             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4315                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4316                 /* update existing queue */
4317                 blk_mq_update_tag_set_shared(set, true);
4318         }
4319         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4320                 queue_set_hctx_shared(q, true);
4321         list_add_tail(&q->tag_set_list, &set->tag_list);
4322
4323         mutex_unlock(&set->tag_list_lock);
4324 }
4325
4326 /* All allocations will be freed in release handler of q->mq_kobj */
4327 static int blk_mq_alloc_ctxs(struct request_queue *q)
4328 {
4329         struct blk_mq_ctxs *ctxs;
4330         int cpu;
4331
4332         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4333         if (!ctxs)
4334                 return -ENOMEM;
4335
4336         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4337         if (!ctxs->queue_ctx)
4338                 goto fail;
4339
4340         for_each_possible_cpu(cpu) {
4341                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4342                 ctx->ctxs = ctxs;
4343         }
4344
4345         q->mq_kobj = &ctxs->kobj;
4346         q->queue_ctx = ctxs->queue_ctx;
4347
4348         return 0;
4349  fail:
4350         kfree(ctxs);
4351         return -ENOMEM;
4352 }
4353
4354 /*
4355  * It is the actual release handler for mq, but we do it from
4356  * request queue's release handler for avoiding use-after-free
4357  * and headache because q->mq_kobj shouldn't have been introduced,
4358  * but we can't group ctx/kctx kobj without it.
4359  */
4360 void blk_mq_release(struct request_queue *q)
4361 {
4362         struct blk_mq_hw_ctx *hctx, *next;
4363         unsigned long i;
4364
4365         queue_for_each_hw_ctx(q, hctx, i)
4366                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4367
4368         /* all hctx are in .unused_hctx_list now */
4369         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4370                 list_del_init(&hctx->hctx_list);
4371                 kobject_put(&hctx->kobj);
4372         }
4373
4374         xa_destroy(&q->hctx_table);
4375
4376         /*
4377          * release .mq_kobj and sw queue's kobject now because
4378          * both share lifetime with request queue.
4379          */
4380         blk_mq_sysfs_deinit(q);
4381 }
4382
4383 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4384                 struct queue_limits *lim, void *queuedata)
4385 {
4386         struct queue_limits default_lim = { };
4387         struct request_queue *q;
4388         int ret;
4389
4390         if (!lim)
4391                 lim = &default_lim;
4392         lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4393         if (set->nr_maps > HCTX_TYPE_POLL)
4394                 lim->features |= BLK_FEAT_POLL;
4395
4396         q = blk_alloc_queue(lim, set->numa_node);
4397         if (IS_ERR(q))
4398                 return q;
4399         q->queuedata = queuedata;
4400         ret = blk_mq_init_allocated_queue(set, q);
4401         if (ret) {
4402                 blk_put_queue(q);
4403                 return ERR_PTR(ret);
4404         }
4405         return q;
4406 }
4407 EXPORT_SYMBOL(blk_mq_alloc_queue);
4408
4409 /**
4410  * blk_mq_destroy_queue - shutdown a request queue
4411  * @q: request queue to shutdown
4412  *
4413  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4414  * requests will be failed with -ENODEV. The caller is responsible for dropping
4415  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4416  *
4417  * Context: can sleep
4418  */
4419 void blk_mq_destroy_queue(struct request_queue *q)
4420 {
4421         WARN_ON_ONCE(!queue_is_mq(q));
4422         WARN_ON_ONCE(blk_queue_registered(q));
4423
4424         might_sleep();
4425
4426         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4427         blk_queue_start_drain(q);
4428         blk_mq_freeze_queue_wait(q);
4429
4430         blk_sync_queue(q);
4431         blk_mq_cancel_work_sync(q);
4432         blk_mq_exit_queue(q);
4433 }
4434 EXPORT_SYMBOL(blk_mq_destroy_queue);
4435
4436 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4437                 struct queue_limits *lim, void *queuedata,
4438                 struct lock_class_key *lkclass)
4439 {
4440         struct request_queue *q;
4441         struct gendisk *disk;
4442
4443         q = blk_mq_alloc_queue(set, lim, queuedata);
4444         if (IS_ERR(q))
4445                 return ERR_CAST(q);
4446
4447         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4448         if (!disk) {
4449                 blk_mq_destroy_queue(q);
4450                 blk_put_queue(q);
4451                 return ERR_PTR(-ENOMEM);
4452         }
4453         set_bit(GD_OWNS_QUEUE, &disk->state);
4454         return disk;
4455 }
4456 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4457
4458 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4459                 struct lock_class_key *lkclass)
4460 {
4461         struct gendisk *disk;
4462
4463         if (!blk_get_queue(q))
4464                 return NULL;
4465         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4466         if (!disk)
4467                 blk_put_queue(q);
4468         return disk;
4469 }
4470 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4471
4472 /*
4473  * Only hctx removed from cpuhp list can be reused
4474  */
4475 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4476 {
4477         return hlist_unhashed(&hctx->cpuhp_online) &&
4478                 hlist_unhashed(&hctx->cpuhp_dead);
4479 }
4480
4481 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4482                 struct blk_mq_tag_set *set, struct request_queue *q,
4483                 int hctx_idx, int node)
4484 {
4485         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4486
4487         /* reuse dead hctx first */
4488         spin_lock(&q->unused_hctx_lock);
4489         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4490                 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4491                         hctx = tmp;
4492                         break;
4493                 }
4494         }
4495         if (hctx)
4496                 list_del_init(&hctx->hctx_list);
4497         spin_unlock(&q->unused_hctx_lock);
4498
4499         if (!hctx)
4500                 hctx = blk_mq_alloc_hctx(q, set, node);
4501         if (!hctx)
4502                 goto fail;
4503
4504         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4505                 goto free_hctx;
4506
4507         return hctx;
4508
4509  free_hctx:
4510         kobject_put(&hctx->kobj);
4511  fail:
4512         return NULL;
4513 }
4514
4515 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4516                                      struct request_queue *q)
4517 {
4518         struct blk_mq_hw_ctx *hctx;
4519         unsigned long i, j;
4520
4521         for (i = 0; i < set->nr_hw_queues; i++) {
4522                 int old_node;
4523                 int node = blk_mq_get_hctx_node(set, i);
4524                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4525
4526                 if (old_hctx) {
4527                         old_node = old_hctx->numa_node;
4528                         blk_mq_exit_hctx(q, set, old_hctx, i);
4529                 }
4530
4531                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4532                         if (!old_hctx)
4533                                 break;
4534                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4535                                         node, old_node);
4536                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4537                         WARN_ON_ONCE(!hctx);
4538                 }
4539         }
4540         /*
4541          * Increasing nr_hw_queues fails. Free the newly allocated
4542          * hctxs and keep the previous q->nr_hw_queues.
4543          */
4544         if (i != set->nr_hw_queues) {
4545                 j = q->nr_hw_queues;
4546         } else {
4547                 j = i;
4548                 q->nr_hw_queues = set->nr_hw_queues;
4549         }
4550
4551         xa_for_each_start(&q->hctx_table, j, hctx, j)
4552                 blk_mq_exit_hctx(q, set, hctx, j);
4553 }
4554
4555 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4556                                    struct request_queue *q)
4557 {
4558         __blk_mq_realloc_hw_ctxs(set, q);
4559
4560         /* unregister cpuhp callbacks for exited hctxs */
4561         blk_mq_remove_hw_queues_cpuhp(q);
4562
4563         /* register cpuhp for new initialized hctxs */
4564         blk_mq_add_hw_queues_cpuhp(q);
4565 }
4566
4567 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4568                 struct request_queue *q)
4569 {
4570         /* mark the queue as mq asap */
4571         q->mq_ops = set->ops;
4572
4573         /*
4574          * ->tag_set has to be setup before initialize hctx, which cpuphp
4575          * handler needs it for checking queue mapping
4576          */
4577         q->tag_set = set;
4578
4579         if (blk_mq_alloc_ctxs(q))
4580                 goto err_exit;
4581
4582         /* init q->mq_kobj and sw queues' kobjects */
4583         blk_mq_sysfs_init(q);
4584
4585         INIT_LIST_HEAD(&q->unused_hctx_list);
4586         spin_lock_init(&q->unused_hctx_lock);
4587
4588         xa_init(&q->hctx_table);
4589
4590         blk_mq_realloc_hw_ctxs(set, q);
4591         if (!q->nr_hw_queues)
4592                 goto err_hctxs;
4593
4594         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4595         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4596
4597         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4598
4599         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4600         INIT_LIST_HEAD(&q->flush_list);
4601         INIT_LIST_HEAD(&q->requeue_list);
4602         spin_lock_init(&q->requeue_lock);
4603
4604         q->nr_requests = set->queue_depth;
4605
4606         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4607         blk_mq_map_swqueue(q);
4608         blk_mq_add_queue_tag_set(set, q);
4609         return 0;
4610
4611 err_hctxs:
4612         blk_mq_release(q);
4613 err_exit:
4614         q->mq_ops = NULL;
4615         return -ENOMEM;
4616 }
4617 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4618
4619 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4620 void blk_mq_exit_queue(struct request_queue *q)
4621 {
4622         struct blk_mq_tag_set *set = q->tag_set;
4623
4624         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4625         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4626         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4627         blk_mq_del_queue_tag_set(q);
4628 }
4629
4630 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4631 {
4632         int i;
4633
4634         if (blk_mq_is_shared_tags(set->flags)) {
4635                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4636                                                 BLK_MQ_NO_HCTX_IDX,
4637                                                 set->queue_depth);
4638                 if (!set->shared_tags)
4639                         return -ENOMEM;
4640         }
4641
4642         for (i = 0; i < set->nr_hw_queues; i++) {
4643                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4644                         goto out_unwind;
4645                 cond_resched();
4646         }
4647
4648         return 0;
4649
4650 out_unwind:
4651         while (--i >= 0)
4652                 __blk_mq_free_map_and_rqs(set, i);
4653
4654         if (blk_mq_is_shared_tags(set->flags)) {
4655                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4656                                         BLK_MQ_NO_HCTX_IDX);
4657         }
4658
4659         return -ENOMEM;
4660 }
4661
4662 /*
4663  * Allocate the request maps associated with this tag_set. Note that this
4664  * may reduce the depth asked for, if memory is tight. set->queue_depth
4665  * will be updated to reflect the allocated depth.
4666  */
4667 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4668 {
4669         unsigned int depth;
4670         int err;
4671
4672         depth = set->queue_depth;
4673         do {
4674                 err = __blk_mq_alloc_rq_maps(set);
4675                 if (!err)
4676                         break;
4677
4678                 set->queue_depth >>= 1;
4679                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4680                         err = -ENOMEM;
4681                         break;
4682                 }
4683         } while (set->queue_depth);
4684
4685         if (!set->queue_depth || err) {
4686                 pr_err("blk-mq: failed to allocate request map\n");
4687                 return -ENOMEM;
4688         }
4689
4690         if (depth != set->queue_depth)
4691                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4692                                                 depth, set->queue_depth);
4693
4694         return 0;
4695 }
4696
4697 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4698 {
4699         /*
4700          * blk_mq_map_queues() and multiple .map_queues() implementations
4701          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4702          * number of hardware queues.
4703          */
4704         if (set->nr_maps == 1)
4705                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4706
4707         if (set->ops->map_queues) {
4708                 int i;
4709
4710                 /*
4711                  * transport .map_queues is usually done in the following
4712                  * way:
4713                  *
4714                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4715                  *      mask = get_cpu_mask(queue)
4716                  *      for_each_cpu(cpu, mask)
4717                  *              set->map[x].mq_map[cpu] = queue;
4718                  * }
4719                  *
4720                  * When we need to remap, the table has to be cleared for
4721                  * killing stale mapping since one CPU may not be mapped
4722                  * to any hw queue.
4723                  */
4724                 for (i = 0; i < set->nr_maps; i++)
4725                         blk_mq_clear_mq_map(&set->map[i]);
4726
4727                 set->ops->map_queues(set);
4728         } else {
4729                 BUG_ON(set->nr_maps > 1);
4730                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4731         }
4732 }
4733
4734 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4735                                        int new_nr_hw_queues)
4736 {
4737         struct blk_mq_tags **new_tags;
4738         int i;
4739
4740         if (set->nr_hw_queues >= new_nr_hw_queues)
4741                 goto done;
4742
4743         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4744                                 GFP_KERNEL, set->numa_node);
4745         if (!new_tags)
4746                 return -ENOMEM;
4747
4748         if (set->tags)
4749                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4750                        sizeof(*set->tags));
4751         kfree(set->tags);
4752         set->tags = new_tags;
4753
4754         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4755                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4756                         while (--i >= set->nr_hw_queues)
4757                                 __blk_mq_free_map_and_rqs(set, i);
4758                         return -ENOMEM;
4759                 }
4760                 cond_resched();
4761         }
4762
4763 done:
4764         set->nr_hw_queues = new_nr_hw_queues;
4765         return 0;
4766 }
4767
4768 /*
4769  * Alloc a tag set to be associated with one or more request queues.
4770  * May fail with EINVAL for various error conditions. May adjust the
4771  * requested depth down, if it's too large. In that case, the set
4772  * value will be stored in set->queue_depth.
4773  */
4774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4775 {
4776         int i, ret;
4777
4778         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4779
4780         if (!set->nr_hw_queues)
4781                 return -EINVAL;
4782         if (!set->queue_depth)
4783                 return -EINVAL;
4784         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4785                 return -EINVAL;
4786
4787         if (!set->ops->queue_rq)
4788                 return -EINVAL;
4789
4790         if (!set->ops->get_budget ^ !set->ops->put_budget)
4791                 return -EINVAL;
4792
4793         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4794                 pr_info("blk-mq: reduced tag depth to %u\n",
4795                         BLK_MQ_MAX_DEPTH);
4796                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4797         }
4798
4799         if (!set->nr_maps)
4800                 set->nr_maps = 1;
4801         else if (set->nr_maps > HCTX_MAX_TYPES)
4802                 return -EINVAL;
4803
4804         /*
4805          * If a crashdump is active, then we are potentially in a very
4806          * memory constrained environment. Limit us to  64 tags to prevent
4807          * using too much memory.
4808          */
4809         if (is_kdump_kernel())
4810                 set->queue_depth = min(64U, set->queue_depth);
4811
4812         /*
4813          * There is no use for more h/w queues than cpus if we just have
4814          * a single map
4815          */
4816         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4817                 set->nr_hw_queues = nr_cpu_ids;
4818
4819         if (set->flags & BLK_MQ_F_BLOCKING) {
4820                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4821                 if (!set->srcu)
4822                         return -ENOMEM;
4823                 ret = init_srcu_struct(set->srcu);
4824                 if (ret)
4825                         goto out_free_srcu;
4826         }
4827
4828         init_rwsem(&set->update_nr_hwq_lock);
4829
4830         ret = -ENOMEM;
4831         set->tags = kcalloc_node(set->nr_hw_queues,
4832                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4833                                  set->numa_node);
4834         if (!set->tags)
4835                 goto out_cleanup_srcu;
4836
4837         for (i = 0; i < set->nr_maps; i++) {
4838                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4839                                                   sizeof(set->map[i].mq_map[0]),
4840                                                   GFP_KERNEL, set->numa_node);
4841                 if (!set->map[i].mq_map)
4842                         goto out_free_mq_map;
4843                 set->map[i].nr_queues = set->nr_hw_queues;
4844         }
4845
4846         blk_mq_update_queue_map(set);
4847
4848         ret = blk_mq_alloc_set_map_and_rqs(set);
4849         if (ret)
4850                 goto out_free_mq_map;
4851
4852         mutex_init(&set->tag_list_lock);
4853         INIT_LIST_HEAD(&set->tag_list);
4854
4855         return 0;
4856
4857 out_free_mq_map:
4858         for (i = 0; i < set->nr_maps; i++) {
4859                 kfree(set->map[i].mq_map);
4860                 set->map[i].mq_map = NULL;
4861         }
4862         kfree(set->tags);
4863         set->tags = NULL;
4864 out_cleanup_srcu:
4865         if (set->flags & BLK_MQ_F_BLOCKING)
4866                 cleanup_srcu_struct(set->srcu);
4867 out_free_srcu:
4868         if (set->flags & BLK_MQ_F_BLOCKING)
4869                 kfree(set->srcu);
4870         return ret;
4871 }
4872 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4873
4874 /* allocate and initialize a tagset for a simple single-queue device */
4875 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4876                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4877                 unsigned int set_flags)
4878 {
4879         memset(set, 0, sizeof(*set));
4880         set->ops = ops;
4881         set->nr_hw_queues = 1;
4882         set->nr_maps = 1;
4883         set->queue_depth = queue_depth;
4884         set->numa_node = NUMA_NO_NODE;
4885         set->flags = set_flags;
4886         return blk_mq_alloc_tag_set(set);
4887 }
4888 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4889
4890 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4891 {
4892         int i, j;
4893
4894         for (i = 0; i < set->nr_hw_queues; i++)
4895                 __blk_mq_free_map_and_rqs(set, i);
4896
4897         if (blk_mq_is_shared_tags(set->flags)) {
4898                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4899                                         BLK_MQ_NO_HCTX_IDX);
4900         }
4901
4902         for (j = 0; j < set->nr_maps; j++) {
4903                 kfree(set->map[j].mq_map);
4904                 set->map[j].mq_map = NULL;
4905         }
4906
4907         kfree(set->tags);
4908         set->tags = NULL;
4909         if (set->flags & BLK_MQ_F_BLOCKING) {
4910                 cleanup_srcu_struct(set->srcu);
4911                 kfree(set->srcu);
4912         }
4913 }
4914 EXPORT_SYMBOL(blk_mq_free_tag_set);
4915
4916 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4917 {
4918         struct blk_mq_tag_set *set = q->tag_set;
4919         struct blk_mq_hw_ctx *hctx;
4920         int ret;
4921         unsigned long i;
4922
4923         if (WARN_ON_ONCE(!q->mq_freeze_depth))
4924                 return -EINVAL;
4925
4926         if (!set)
4927                 return -EINVAL;
4928
4929         if (q->nr_requests == nr)
4930                 return 0;
4931
4932         blk_mq_quiesce_queue(q);
4933
4934         ret = 0;
4935         queue_for_each_hw_ctx(q, hctx, i) {
4936                 if (!hctx->tags)
4937                         continue;
4938                 /*
4939                  * If we're using an MQ scheduler, just update the scheduler
4940                  * queue depth. This is similar to what the old code would do.
4941                  */
4942                 if (hctx->sched_tags) {
4943                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4944                                                       nr, true);
4945                 } else {
4946                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4947                                                       false);
4948                 }
4949                 if (ret)
4950                         break;
4951                 if (q->elevator && q->elevator->type->ops.depth_updated)
4952                         q->elevator->type->ops.depth_updated(hctx);
4953         }
4954         if (!ret) {
4955                 q->nr_requests = nr;
4956                 if (blk_mq_is_shared_tags(set->flags)) {
4957                         if (q->elevator)
4958                                 blk_mq_tag_update_sched_shared_tags(q);
4959                         else
4960                                 blk_mq_tag_resize_shared_tags(set, nr);
4961                 }
4962         }
4963
4964         blk_mq_unquiesce_queue(q);
4965
4966         return ret;
4967 }
4968
4969 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4970                                                         int nr_hw_queues)
4971 {
4972         struct request_queue *q;
4973         int prev_nr_hw_queues = set->nr_hw_queues;
4974         unsigned int memflags;
4975         int i;
4976
4977         lockdep_assert_held(&set->tag_list_lock);
4978
4979         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4980                 nr_hw_queues = nr_cpu_ids;
4981         if (nr_hw_queues < 1)
4982                 return;
4983         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4984                 return;
4985
4986         memflags = memalloc_noio_save();
4987         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4988                 blk_mq_debugfs_unregister_hctxs(q);
4989                 blk_mq_sysfs_unregister_hctxs(q);
4990         }
4991
4992         list_for_each_entry(q, &set->tag_list, tag_set_list)
4993                 blk_mq_freeze_queue_nomemsave(q);
4994
4995         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) {
4996                 list_for_each_entry(q, &set->tag_list, tag_set_list)
4997                         blk_mq_unfreeze_queue_nomemrestore(q);
4998                 goto reregister;
4999         }
5000
5001 fallback:
5002         blk_mq_update_queue_map(set);
5003         list_for_each_entry(q, &set->tag_list, tag_set_list) {
5004                 __blk_mq_realloc_hw_ctxs(set, q);
5005
5006                 if (q->nr_hw_queues != set->nr_hw_queues) {
5007                         int i = prev_nr_hw_queues;
5008
5009                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5010                                         nr_hw_queues, prev_nr_hw_queues);
5011                         for (; i < set->nr_hw_queues; i++)
5012                                 __blk_mq_free_map_and_rqs(set, i);
5013
5014                         set->nr_hw_queues = prev_nr_hw_queues;
5015                         goto fallback;
5016                 }
5017                 blk_mq_map_swqueue(q);
5018         }
5019
5020         /* elv_update_nr_hw_queues() unfreeze queue for us */
5021         list_for_each_entry(q, &set->tag_list, tag_set_list)
5022                 elv_update_nr_hw_queues(q);
5023
5024 reregister:
5025         list_for_each_entry(q, &set->tag_list, tag_set_list) {
5026                 blk_mq_sysfs_register_hctxs(q);
5027                 blk_mq_debugfs_register_hctxs(q);
5028
5029                 blk_mq_remove_hw_queues_cpuhp(q);
5030                 blk_mq_add_hw_queues_cpuhp(q);
5031         }
5032         memalloc_noio_restore(memflags);
5033
5034         /* Free the excess tags when nr_hw_queues shrink. */
5035         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5036                 __blk_mq_free_map_and_rqs(set, i);
5037 }
5038
5039 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5040 {
5041         down_write(&set->update_nr_hwq_lock);
5042         mutex_lock(&set->tag_list_lock);
5043         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5044         mutex_unlock(&set->tag_list_lock);
5045         up_write(&set->update_nr_hwq_lock);
5046 }
5047 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5048
5049 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5050                          struct io_comp_batch *iob, unsigned int flags)
5051 {
5052         long state = get_current_state();
5053         int ret;
5054
5055         do {
5056                 ret = q->mq_ops->poll(hctx, iob);
5057                 if (ret > 0) {
5058                         __set_current_state(TASK_RUNNING);
5059                         return ret;
5060                 }
5061
5062                 if (signal_pending_state(state, current))
5063                         __set_current_state(TASK_RUNNING);
5064                 if (task_is_running(current))
5065                         return 1;
5066
5067                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5068                         break;
5069                 cpu_relax();
5070         } while (!need_resched());
5071
5072         __set_current_state(TASK_RUNNING);
5073         return 0;
5074 }
5075
5076 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5077                 struct io_comp_batch *iob, unsigned int flags)
5078 {
5079         if (!blk_mq_can_poll(q))
5080                 return 0;
5081         return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5082 }
5083
5084 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5085                 unsigned int poll_flags)
5086 {
5087         struct request_queue *q = rq->q;
5088         int ret;
5089
5090         if (!blk_rq_is_poll(rq))
5091                 return 0;
5092         if (!percpu_ref_tryget(&q->q_usage_counter))
5093                 return 0;
5094
5095         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5096         blk_queue_exit(q);
5097
5098         return ret;
5099 }
5100 EXPORT_SYMBOL_GPL(blk_rq_poll);
5101
5102 unsigned int blk_mq_rq_cpu(struct request *rq)
5103 {
5104         return rq->mq_ctx->cpu;
5105 }
5106 EXPORT_SYMBOL(blk_mq_rq_cpu);
5107
5108 void blk_mq_cancel_work_sync(struct request_queue *q)
5109 {
5110         struct blk_mq_hw_ctx *hctx;
5111         unsigned long i;
5112
5113         cancel_delayed_work_sync(&q->requeue_work);
5114
5115         queue_for_each_hw_ctx(q, hctx, i)
5116                 cancel_delayed_work_sync(&hctx->run_work);
5117 }
5118
5119 static int __init blk_mq_init(void)
5120 {
5121         int i;
5122
5123         for_each_possible_cpu(i)
5124                 init_llist_head(&per_cpu(blk_cpu_done, i));
5125         for_each_possible_cpu(i)
5126                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
5127                          __blk_mq_complete_request_remote, NULL);
5128         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5129
5130         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5131                                   "block/softirq:dead", NULL,
5132                                   blk_softirq_cpu_dead);
5133         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5134                                 blk_mq_hctx_notify_dead);
5135         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5136                                 blk_mq_hctx_notify_online,
5137                                 blk_mq_hctx_notify_offline);
5138         return 0;
5139 }
5140 subsys_initcall(blk_mq_init);