ba3a4b77f5786e5372adce53e4fff5aa2ace24aa
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_in_driver(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->rq_flags & RQF_IO_STAT &&
97             (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
109                                    &mi);
110         inflight[READ] = mi.inflight[READ];
111         inflight[WRITE] = mi.inflight[WRITE];
112 }
113
114 #ifdef CONFIG_LOCKDEP
115 static bool blk_freeze_set_owner(struct request_queue *q,
116                                  struct task_struct *owner)
117 {
118         if (!owner)
119                 return false;
120
121         if (!q->mq_freeze_depth) {
122                 q->mq_freeze_owner = owner;
123                 q->mq_freeze_owner_depth = 1;
124                 q->mq_freeze_disk_dead = !q->disk ||
125                         test_bit(GD_DEAD, &q->disk->state) ||
126                         !blk_queue_registered(q);
127                 q->mq_freeze_queue_dying = blk_queue_dying(q);
128                 return true;
129         }
130
131         if (owner == q->mq_freeze_owner)
132                 q->mq_freeze_owner_depth += 1;
133         return false;
134 }
135
136 /* verify the last unfreeze in owner context */
137 static bool blk_unfreeze_check_owner(struct request_queue *q)
138 {
139         if (q->mq_freeze_owner != current)
140                 return false;
141         if (--q->mq_freeze_owner_depth == 0) {
142                 q->mq_freeze_owner = NULL;
143                 return true;
144         }
145         return false;
146 }
147
148 #else
149
150 static bool blk_freeze_set_owner(struct request_queue *q,
151                                  struct task_struct *owner)
152 {
153         return false;
154 }
155
156 static bool blk_unfreeze_check_owner(struct request_queue *q)
157 {
158         return false;
159 }
160 #endif
161
162 bool __blk_freeze_queue_start(struct request_queue *q,
163                               struct task_struct *owner)
164 {
165         bool freeze;
166
167         mutex_lock(&q->mq_freeze_lock);
168         freeze = blk_freeze_set_owner(q, owner);
169         if (++q->mq_freeze_depth == 1) {
170                 percpu_ref_kill(&q->q_usage_counter);
171                 mutex_unlock(&q->mq_freeze_lock);
172                 if (queue_is_mq(q))
173                         blk_mq_run_hw_queues(q, false);
174         } else {
175                 mutex_unlock(&q->mq_freeze_lock);
176         }
177
178         return freeze;
179 }
180
181 void blk_freeze_queue_start(struct request_queue *q)
182 {
183         if (__blk_freeze_queue_start(q, current))
184                 blk_freeze_acquire_lock(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
187
188 void blk_mq_freeze_queue_wait(struct request_queue *q)
189 {
190         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
193
194 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
195                                      unsigned long timeout)
196 {
197         return wait_event_timeout(q->mq_freeze_wq,
198                                         percpu_ref_is_zero(&q->q_usage_counter),
199                                         timeout);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
202
203 void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
204 {
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
209
210 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
211 {
212         bool unfreeze;
213
214         mutex_lock(&q->mq_freeze_lock);
215         if (force_atomic)
216                 q->q_usage_counter.data->force_atomic = true;
217         q->mq_freeze_depth--;
218         WARN_ON_ONCE(q->mq_freeze_depth < 0);
219         if (!q->mq_freeze_depth) {
220                 percpu_ref_resurrect(&q->q_usage_counter);
221                 wake_up_all(&q->mq_freeze_wq);
222         }
223         unfreeze = blk_unfreeze_check_owner(q);
224         mutex_unlock(&q->mq_freeze_lock);
225
226         return unfreeze;
227 }
228
229 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
230 {
231         if (__blk_mq_unfreeze_queue(q, false))
232                 blk_unfreeze_release_lock(q);
233 }
234 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
235
236 /*
237  * non_owner variant of blk_freeze_queue_start
238  *
239  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
240  * by the same task.  This is fragile and should not be used if at all
241  * possible.
242  */
243 void blk_freeze_queue_start_non_owner(struct request_queue *q)
244 {
245         __blk_freeze_queue_start(q, NULL);
246 }
247 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
248
249 /* non_owner variant of blk_mq_unfreeze_queue */
250 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
251 {
252         __blk_mq_unfreeze_queue(q, false);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
255
256 /*
257  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
258  * mpt3sas driver such that this function can be removed.
259  */
260 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
261 {
262         unsigned long flags;
263
264         spin_lock_irqsave(&q->queue_lock, flags);
265         if (!q->quiesce_depth++)
266                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
267         spin_unlock_irqrestore(&q->queue_lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
270
271 /**
272  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
273  * @set: tag_set to wait on
274  *
275  * Note: it is driver's responsibility for making sure that quiesce has
276  * been started on or more of the request_queues of the tag_set.  This
277  * function only waits for the quiesce on those request_queues that had
278  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
279  */
280 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
281 {
282         if (set->flags & BLK_MQ_F_BLOCKING)
283                 synchronize_srcu(set->srcu);
284         else
285                 synchronize_rcu();
286 }
287 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
288
289 /**
290  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
291  * @q: request queue.
292  *
293  * Note: this function does not prevent that the struct request end_io()
294  * callback function is invoked. Once this function is returned, we make
295  * sure no dispatch can happen until the queue is unquiesced via
296  * blk_mq_unquiesce_queue().
297  */
298 void blk_mq_quiesce_queue(struct request_queue *q)
299 {
300         blk_mq_quiesce_queue_nowait(q);
301         /* nothing to wait for non-mq queues */
302         if (queue_is_mq(q))
303                 blk_mq_wait_quiesce_done(q->tag_set);
304 }
305 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
306
307 /*
308  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
309  * @q: request queue.
310  *
311  * This function recovers queue into the state before quiescing
312  * which is done by blk_mq_quiesce_queue.
313  */
314 void blk_mq_unquiesce_queue(struct request_queue *q)
315 {
316         unsigned long flags;
317         bool run_queue = false;
318
319         spin_lock_irqsave(&q->queue_lock, flags);
320         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
321                 ;
322         } else if (!--q->quiesce_depth) {
323                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
324                 run_queue = true;
325         }
326         spin_unlock_irqrestore(&q->queue_lock, flags);
327
328         /* dispatch requests which are inserted during quiescing */
329         if (run_queue)
330                 blk_mq_run_hw_queues(q, true);
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
333
334 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
335 {
336         struct request_queue *q;
337
338         mutex_lock(&set->tag_list_lock);
339         list_for_each_entry(q, &set->tag_list, tag_set_list) {
340                 if (!blk_queue_skip_tagset_quiesce(q))
341                         blk_mq_quiesce_queue_nowait(q);
342         }
343         mutex_unlock(&set->tag_list_lock);
344
345         blk_mq_wait_quiesce_done(set);
346 }
347 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
348
349 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
350 {
351         struct request_queue *q;
352
353         mutex_lock(&set->tag_list_lock);
354         list_for_each_entry(q, &set->tag_list, tag_set_list) {
355                 if (!blk_queue_skip_tagset_quiesce(q))
356                         blk_mq_unquiesce_queue(q);
357         }
358         mutex_unlock(&set->tag_list_lock);
359 }
360 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
361
362 void blk_mq_wake_waiters(struct request_queue *q)
363 {
364         struct blk_mq_hw_ctx *hctx;
365         unsigned long i;
366
367         queue_for_each_hw_ctx(q, hctx, i)
368                 if (blk_mq_hw_queue_mapped(hctx))
369                         blk_mq_tag_wakeup_all(hctx->tags, true);
370 }
371
372 void blk_rq_init(struct request_queue *q, struct request *rq)
373 {
374         memset(rq, 0, sizeof(*rq));
375
376         INIT_LIST_HEAD(&rq->queuelist);
377         rq->q = q;
378         rq->__sector = (sector_t) -1;
379         INIT_HLIST_NODE(&rq->hash);
380         RB_CLEAR_NODE(&rq->rb_node);
381         rq->tag = BLK_MQ_NO_TAG;
382         rq->internal_tag = BLK_MQ_NO_TAG;
383         rq->start_time_ns = blk_time_get_ns();
384         blk_crypto_rq_set_defaults(rq);
385 }
386 EXPORT_SYMBOL(blk_rq_init);
387
388 /* Set start and alloc time when the allocated request is actually used */
389 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
390 {
391 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
392         if (blk_queue_rq_alloc_time(rq->q))
393                 rq->alloc_time_ns = alloc_time_ns;
394         else
395                 rq->alloc_time_ns = 0;
396 #endif
397 }
398
399 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
400                 struct blk_mq_tags *tags, unsigned int tag)
401 {
402         struct blk_mq_ctx *ctx = data->ctx;
403         struct blk_mq_hw_ctx *hctx = data->hctx;
404         struct request_queue *q = data->q;
405         struct request *rq = tags->static_rqs[tag];
406
407         rq->q = q;
408         rq->mq_ctx = ctx;
409         rq->mq_hctx = hctx;
410         rq->cmd_flags = data->cmd_flags;
411
412         if (data->flags & BLK_MQ_REQ_PM)
413                 data->rq_flags |= RQF_PM;
414         rq->rq_flags = data->rq_flags;
415
416         if (data->rq_flags & RQF_SCHED_TAGS) {
417                 rq->tag = BLK_MQ_NO_TAG;
418                 rq->internal_tag = tag;
419         } else {
420                 rq->tag = tag;
421                 rq->internal_tag = BLK_MQ_NO_TAG;
422         }
423         rq->timeout = 0;
424
425         rq->part = NULL;
426         rq->io_start_time_ns = 0;
427         rq->stats_sectors = 0;
428         rq->nr_phys_segments = 0;
429         rq->nr_integrity_segments = 0;
430         rq->end_io = NULL;
431         rq->end_io_data = NULL;
432
433         blk_crypto_rq_set_defaults(rq);
434         INIT_LIST_HEAD(&rq->queuelist);
435         /* tag was already set */
436         WRITE_ONCE(rq->deadline, 0);
437         req_ref_set(rq, 1);
438
439         if (rq->rq_flags & RQF_USE_SCHED) {
440                 struct elevator_queue *e = data->q->elevator;
441
442                 INIT_HLIST_NODE(&rq->hash);
443                 RB_CLEAR_NODE(&rq->rb_node);
444
445                 if (e->type->ops.prepare_request)
446                         e->type->ops.prepare_request(rq);
447         }
448
449         return rq;
450 }
451
452 static inline struct request *
453 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
454 {
455         unsigned int tag, tag_offset;
456         struct blk_mq_tags *tags;
457         struct request *rq;
458         unsigned long tag_mask;
459         int i, nr = 0;
460
461         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
462         if (unlikely(!tag_mask))
463                 return NULL;
464
465         tags = blk_mq_tags_from_data(data);
466         for (i = 0; tag_mask; i++) {
467                 if (!(tag_mask & (1UL << i)))
468                         continue;
469                 tag = tag_offset + i;
470                 prefetch(tags->static_rqs[tag]);
471                 tag_mask &= ~(1UL << i);
472                 rq = blk_mq_rq_ctx_init(data, tags, tag);
473                 rq_list_add_head(data->cached_rqs, rq);
474                 nr++;
475         }
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_add_active_requests(data->hctx, nr);
478         /* caller already holds a reference, add for remainder */
479         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
480         data->nr_tags -= nr;
481
482         return rq_list_pop(data->cached_rqs);
483 }
484
485 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
486 {
487         struct request_queue *q = data->q;
488         u64 alloc_time_ns = 0;
489         struct request *rq;
490         unsigned int tag;
491
492         /* alloc_time includes depth and tag waits */
493         if (blk_queue_rq_alloc_time(q))
494                 alloc_time_ns = blk_time_get_ns();
495
496         if (data->cmd_flags & REQ_NOWAIT)
497                 data->flags |= BLK_MQ_REQ_NOWAIT;
498
499 retry:
500         data->ctx = blk_mq_get_ctx(q);
501         data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
502
503         if (q->elevator) {
504                 /*
505                  * All requests use scheduler tags when an I/O scheduler is
506                  * enabled for the queue.
507                  */
508                 data->rq_flags |= RQF_SCHED_TAGS;
509
510                 /*
511                  * Flush/passthrough requests are special and go directly to the
512                  * dispatch list.
513                  */
514                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
515                     !blk_op_is_passthrough(data->cmd_flags)) {
516                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
517
518                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
519
520                         data->rq_flags |= RQF_USE_SCHED;
521                         if (ops->limit_depth)
522                                 ops->limit_depth(data->cmd_flags, data);
523                 }
524         } else {
525                 blk_mq_tag_busy(data->hctx);
526         }
527
528         if (data->flags & BLK_MQ_REQ_RESERVED)
529                 data->rq_flags |= RQF_RESV;
530
531         /*
532          * Try batched alloc if we want more than 1 tag.
533          */
534         if (data->nr_tags > 1) {
535                 rq = __blk_mq_alloc_requests_batch(data);
536                 if (rq) {
537                         blk_mq_rq_time_init(rq, alloc_time_ns);
538                         return rq;
539                 }
540                 data->nr_tags = 1;
541         }
542
543         /*
544          * Waiting allocations only fail because of an inactive hctx.  In that
545          * case just retry the hctx assignment and tag allocation as CPU hotplug
546          * should have migrated us to an online CPU by now.
547          */
548         tag = blk_mq_get_tag(data);
549         if (tag == BLK_MQ_NO_TAG) {
550                 if (data->flags & BLK_MQ_REQ_NOWAIT)
551                         return NULL;
552                 /*
553                  * Give up the CPU and sleep for a random short time to
554                  * ensure that thread using a realtime scheduling class
555                  * are migrated off the CPU, and thus off the hctx that
556                  * is going away.
557                  */
558                 msleep(3);
559                 goto retry;
560         }
561
562         if (!(data->rq_flags & RQF_SCHED_TAGS))
563                 blk_mq_inc_active_requests(data->hctx);
564         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
565         blk_mq_rq_time_init(rq, alloc_time_ns);
566         return rq;
567 }
568
569 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
570                                             struct blk_plug *plug,
571                                             blk_opf_t opf,
572                                             blk_mq_req_flags_t flags)
573 {
574         struct blk_mq_alloc_data data = {
575                 .q              = q,
576                 .flags          = flags,
577                 .shallow_depth  = 0,
578                 .cmd_flags      = opf,
579                 .rq_flags       = 0,
580                 .nr_tags        = plug->nr_ios,
581                 .cached_rqs     = &plug->cached_rqs,
582                 .ctx            = NULL,
583                 .hctx           = NULL
584         };
585         struct request *rq;
586
587         if (blk_queue_enter(q, flags))
588                 return NULL;
589
590         plug->nr_ios = 1;
591
592         rq = __blk_mq_alloc_requests(&data);
593         if (unlikely(!rq))
594                 blk_queue_exit(q);
595         return rq;
596 }
597
598 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
599                                                    blk_opf_t opf,
600                                                    blk_mq_req_flags_t flags)
601 {
602         struct blk_plug *plug = current->plug;
603         struct request *rq;
604
605         if (!plug)
606                 return NULL;
607
608         if (rq_list_empty(&plug->cached_rqs)) {
609                 if (plug->nr_ios == 1)
610                         return NULL;
611                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
612                 if (!rq)
613                         return NULL;
614         } else {
615                 rq = rq_list_peek(&plug->cached_rqs);
616                 if (!rq || rq->q != q)
617                         return NULL;
618
619                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
620                         return NULL;
621                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
622                         return NULL;
623
624                 rq_list_pop(&plug->cached_rqs);
625                 blk_mq_rq_time_init(rq, blk_time_get_ns());
626         }
627
628         rq->cmd_flags = opf;
629         INIT_LIST_HEAD(&rq->queuelist);
630         return rq;
631 }
632
633 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
634                 blk_mq_req_flags_t flags)
635 {
636         struct request *rq;
637
638         rq = blk_mq_alloc_cached_request(q, opf, flags);
639         if (!rq) {
640                 struct blk_mq_alloc_data data = {
641                         .q              = q,
642                         .flags          = flags,
643                         .shallow_depth  = 0,
644                         .cmd_flags      = opf,
645                         .rq_flags       = 0,
646                         .nr_tags        = 1,
647                         .cached_rqs     = NULL,
648                         .ctx            = NULL,
649                         .hctx           = NULL
650                 };
651                 int ret;
652
653                 ret = blk_queue_enter(q, flags);
654                 if (ret)
655                         return ERR_PTR(ret);
656
657                 rq = __blk_mq_alloc_requests(&data);
658                 if (!rq)
659                         goto out_queue_exit;
660         }
661         rq->__data_len = 0;
662         rq->__sector = (sector_t) -1;
663         rq->bio = rq->biotail = NULL;
664         return rq;
665 out_queue_exit:
666         blk_queue_exit(q);
667         return ERR_PTR(-EWOULDBLOCK);
668 }
669 EXPORT_SYMBOL(blk_mq_alloc_request);
670
671 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
672         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
673 {
674         struct blk_mq_alloc_data data = {
675                 .q              = q,
676                 .flags          = flags,
677                 .shallow_depth  = 0,
678                 .cmd_flags      = opf,
679                 .rq_flags       = 0,
680                 .nr_tags        = 1,
681                 .cached_rqs     = NULL,
682                 .ctx            = NULL,
683                 .hctx           = NULL
684         };
685         u64 alloc_time_ns = 0;
686         struct request *rq;
687         unsigned int cpu;
688         unsigned int tag;
689         int ret;
690
691         /* alloc_time includes depth and tag waits */
692         if (blk_queue_rq_alloc_time(q))
693                 alloc_time_ns = blk_time_get_ns();
694
695         /*
696          * If the tag allocator sleeps we could get an allocation for a
697          * different hardware context.  No need to complicate the low level
698          * allocator for this for the rare use case of a command tied to
699          * a specific queue.
700          */
701         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
702             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
703                 return ERR_PTR(-EINVAL);
704
705         if (hctx_idx >= q->nr_hw_queues)
706                 return ERR_PTR(-EIO);
707
708         ret = blk_queue_enter(q, flags);
709         if (ret)
710                 return ERR_PTR(ret);
711
712         /*
713          * Check if the hardware context is actually mapped to anything.
714          * If not tell the caller that it should skip this queue.
715          */
716         ret = -EXDEV;
717         data.hctx = xa_load(&q->hctx_table, hctx_idx);
718         if (!blk_mq_hw_queue_mapped(data.hctx))
719                 goto out_queue_exit;
720         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
721         if (cpu >= nr_cpu_ids)
722                 goto out_queue_exit;
723         data.ctx = __blk_mq_get_ctx(q, cpu);
724
725         if (q->elevator)
726                 data.rq_flags |= RQF_SCHED_TAGS;
727         else
728                 blk_mq_tag_busy(data.hctx);
729
730         if (flags & BLK_MQ_REQ_RESERVED)
731                 data.rq_flags |= RQF_RESV;
732
733         ret = -EWOULDBLOCK;
734         tag = blk_mq_get_tag(&data);
735         if (tag == BLK_MQ_NO_TAG)
736                 goto out_queue_exit;
737         if (!(data.rq_flags & RQF_SCHED_TAGS))
738                 blk_mq_inc_active_requests(data.hctx);
739         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
740         blk_mq_rq_time_init(rq, alloc_time_ns);
741         rq->__data_len = 0;
742         rq->__sector = (sector_t) -1;
743         rq->bio = rq->biotail = NULL;
744         return rq;
745
746 out_queue_exit:
747         blk_queue_exit(q);
748         return ERR_PTR(ret);
749 }
750 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
751
752 static void blk_mq_finish_request(struct request *rq)
753 {
754         struct request_queue *q = rq->q;
755
756         blk_zone_finish_request(rq);
757
758         if (rq->rq_flags & RQF_USE_SCHED) {
759                 q->elevator->type->ops.finish_request(rq);
760                 /*
761                  * For postflush request that may need to be
762                  * completed twice, we should clear this flag
763                  * to avoid double finish_request() on the rq.
764                  */
765                 rq->rq_flags &= ~RQF_USE_SCHED;
766         }
767 }
768
769 static void __blk_mq_free_request(struct request *rq)
770 {
771         struct request_queue *q = rq->q;
772         struct blk_mq_ctx *ctx = rq->mq_ctx;
773         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
774         const int sched_tag = rq->internal_tag;
775
776         blk_crypto_free_request(rq);
777         blk_pm_mark_last_busy(rq);
778         rq->mq_hctx = NULL;
779
780         if (rq->tag != BLK_MQ_NO_TAG) {
781                 blk_mq_dec_active_requests(hctx);
782                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
783         }
784         if (sched_tag != BLK_MQ_NO_TAG)
785                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
786         blk_mq_sched_restart(hctx);
787         blk_queue_exit(q);
788 }
789
790 void blk_mq_free_request(struct request *rq)
791 {
792         struct request_queue *q = rq->q;
793
794         blk_mq_finish_request(rq);
795
796         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
797                 laptop_io_completion(q->disk->bdi);
798
799         rq_qos_done(q, rq);
800
801         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
802         if (req_ref_put_and_test(rq))
803                 __blk_mq_free_request(rq);
804 }
805 EXPORT_SYMBOL_GPL(blk_mq_free_request);
806
807 void blk_mq_free_plug_rqs(struct blk_plug *plug)
808 {
809         struct request *rq;
810
811         while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
812                 blk_mq_free_request(rq);
813 }
814
815 void blk_dump_rq_flags(struct request *rq, char *msg)
816 {
817         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
818                 rq->q->disk ? rq->q->disk->disk_name : "?",
819                 (__force unsigned long long) rq->cmd_flags);
820
821         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
822                (unsigned long long)blk_rq_pos(rq),
823                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
824         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
825                rq->bio, rq->biotail, blk_rq_bytes(rq));
826 }
827 EXPORT_SYMBOL(blk_dump_rq_flags);
828
829 static void blk_account_io_completion(struct request *req, unsigned int bytes)
830 {
831         if (req->rq_flags & RQF_IO_STAT) {
832                 const int sgrp = op_stat_group(req_op(req));
833
834                 part_stat_lock();
835                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
836                 part_stat_unlock();
837         }
838 }
839
840 static void blk_print_req_error(struct request *req, blk_status_t status)
841 {
842         printk_ratelimited(KERN_ERR
843                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
844                 "phys_seg %u prio class %u\n",
845                 blk_status_to_str(status),
846                 req->q->disk ? req->q->disk->disk_name : "?",
847                 blk_rq_pos(req), (__force u32)req_op(req),
848                 blk_op_str(req_op(req)),
849                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
850                 req->nr_phys_segments,
851                 IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
852 }
853
854 /*
855  * Fully end IO on a request. Does not support partial completions, or
856  * errors.
857  */
858 static void blk_complete_request(struct request *req)
859 {
860         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
861         int total_bytes = blk_rq_bytes(req);
862         struct bio *bio = req->bio;
863
864         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
865
866         if (!bio)
867                 return;
868
869         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
870                 blk_integrity_complete(req, total_bytes);
871
872         /*
873          * Upper layers may call blk_crypto_evict_key() anytime after the last
874          * bio_endio().  Therefore, the keyslot must be released before that.
875          */
876         blk_crypto_rq_put_keyslot(req);
877
878         blk_account_io_completion(req, total_bytes);
879
880         do {
881                 struct bio *next = bio->bi_next;
882
883                 /* Completion has already been traced */
884                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
885
886                 if (blk_req_bio_is_zone_append(req, bio))
887                         blk_zone_append_update_request_bio(req, bio);
888
889                 if (!is_flush)
890                         bio_endio(bio);
891                 bio = next;
892         } while (bio);
893
894         /*
895          * Reset counters so that the request stacking driver
896          * can find how many bytes remain in the request
897          * later.
898          */
899         if (!req->end_io) {
900                 req->bio = NULL;
901                 req->__data_len = 0;
902         }
903 }
904
905 /**
906  * blk_update_request - Complete multiple bytes without completing the request
907  * @req:      the request being processed
908  * @error:    block status code
909  * @nr_bytes: number of bytes to complete for @req
910  *
911  * Description:
912  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
913  *     the request structure even if @req doesn't have leftover.
914  *     If @req has leftover, sets it up for the next range of segments.
915  *
916  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
917  *     %false return from this function.
918  *
919  * Note:
920  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
921  *      except in the consistency check at the end of this function.
922  *
923  * Return:
924  *     %false - this request doesn't have any more data
925  *     %true  - this request has more data
926  **/
927 bool blk_update_request(struct request *req, blk_status_t error,
928                 unsigned int nr_bytes)
929 {
930         bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
931         bool quiet = req->rq_flags & RQF_QUIET;
932         int total_bytes;
933
934         trace_block_rq_complete(req, error, nr_bytes);
935
936         if (!req->bio)
937                 return false;
938
939         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
940             error == BLK_STS_OK)
941                 blk_integrity_complete(req, nr_bytes);
942
943         /*
944          * Upper layers may call blk_crypto_evict_key() anytime after the last
945          * bio_endio().  Therefore, the keyslot must be released before that.
946          */
947         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
948                 __blk_crypto_rq_put_keyslot(req);
949
950         if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
951             !test_bit(GD_DEAD, &req->q->disk->state)) {
952                 blk_print_req_error(req, error);
953                 trace_block_rq_error(req, error, nr_bytes);
954         }
955
956         blk_account_io_completion(req, nr_bytes);
957
958         total_bytes = 0;
959         while (req->bio) {
960                 struct bio *bio = req->bio;
961                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
962
963                 if (unlikely(error))
964                         bio->bi_status = error;
965
966                 if (bio_bytes == bio->bi_iter.bi_size) {
967                         req->bio = bio->bi_next;
968                 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
969                         /*
970                          * Partial zone append completions cannot be supported
971                          * as the BIO fragments may end up not being written
972                          * sequentially.
973                          */
974                         bio->bi_status = BLK_STS_IOERR;
975                 }
976
977                 /* Completion has already been traced */
978                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
979                 if (unlikely(quiet))
980                         bio_set_flag(bio, BIO_QUIET);
981
982                 bio_advance(bio, bio_bytes);
983
984                 /* Don't actually finish bio if it's part of flush sequence */
985                 if (!bio->bi_iter.bi_size) {
986                         if (blk_req_bio_is_zone_append(req, bio))
987                                 blk_zone_append_update_request_bio(req, bio);
988                         if (!is_flush)
989                                 bio_endio(bio);
990                 }
991
992                 total_bytes += bio_bytes;
993                 nr_bytes -= bio_bytes;
994
995                 if (!nr_bytes)
996                         break;
997         }
998
999         /*
1000          * completely done
1001          */
1002         if (!req->bio) {
1003                 /*
1004                  * Reset counters so that the request stacking driver
1005                  * can find how many bytes remain in the request
1006                  * later.
1007                  */
1008                 req->__data_len = 0;
1009                 return false;
1010         }
1011
1012         req->__data_len -= total_bytes;
1013
1014         /* update sector only for requests with clear definition of sector */
1015         if (!blk_rq_is_passthrough(req))
1016                 req->__sector += total_bytes >> 9;
1017
1018         /* mixed attributes always follow the first bio */
1019         if (req->rq_flags & RQF_MIXED_MERGE) {
1020                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1021                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1022         }
1023
1024         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1025                 /*
1026                  * If total number of sectors is less than the first segment
1027                  * size, something has gone terribly wrong.
1028                  */
1029                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1030                         blk_dump_rq_flags(req, "request botched");
1031                         req->__data_len = blk_rq_cur_bytes(req);
1032                 }
1033
1034                 /* recalculate the number of segments */
1035                 req->nr_phys_segments = blk_recalc_rq_segments(req);
1036         }
1037
1038         return true;
1039 }
1040 EXPORT_SYMBOL_GPL(blk_update_request);
1041
1042 static inline void blk_account_io_done(struct request *req, u64 now)
1043 {
1044         trace_block_io_done(req);
1045
1046         /*
1047          * Account IO completion.  flush_rq isn't accounted as a
1048          * normal IO on queueing nor completion.  Accounting the
1049          * containing request is enough.
1050          */
1051         if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1052                 const int sgrp = op_stat_group(req_op(req));
1053
1054                 part_stat_lock();
1055                 update_io_ticks(req->part, jiffies, true);
1056                 part_stat_inc(req->part, ios[sgrp]);
1057                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1058                 part_stat_local_dec(req->part,
1059                                     in_flight[op_is_write(req_op(req))]);
1060                 part_stat_unlock();
1061         }
1062 }
1063
1064 static inline bool blk_rq_passthrough_stats(struct request *req)
1065 {
1066         struct bio *bio = req->bio;
1067
1068         if (!blk_queue_passthrough_stat(req->q))
1069                 return false;
1070
1071         /* Requests without a bio do not transfer data. */
1072         if (!bio)
1073                 return false;
1074
1075         /*
1076          * Stats are accumulated in the bdev, so must have one attached to a
1077          * bio to track stats. Most drivers do not set the bdev for passthrough
1078          * requests, but nvme is one that will set it.
1079          */
1080         if (!bio->bi_bdev)
1081                 return false;
1082
1083         /*
1084          * We don't know what a passthrough command does, but we know the
1085          * payload size and data direction. Ensuring the size is aligned to the
1086          * block size filters out most commands with payloads that don't
1087          * represent sector access.
1088          */
1089         if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1090                 return false;
1091         return true;
1092 }
1093
1094 static inline void blk_account_io_start(struct request *req)
1095 {
1096         trace_block_io_start(req);
1097
1098         if (!blk_queue_io_stat(req->q))
1099                 return;
1100         if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1101                 return;
1102
1103         req->rq_flags |= RQF_IO_STAT;
1104         req->start_time_ns = blk_time_get_ns();
1105
1106         /*
1107          * All non-passthrough requests are created from a bio with one
1108          * exception: when a flush command that is part of a flush sequence
1109          * generated by the state machine in blk-flush.c is cloned onto the
1110          * lower device by dm-multipath we can get here without a bio.
1111          */
1112         if (req->bio)
1113                 req->part = req->bio->bi_bdev;
1114         else
1115                 req->part = req->q->disk->part0;
1116
1117         part_stat_lock();
1118         update_io_ticks(req->part, jiffies, false);
1119         part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1120         part_stat_unlock();
1121 }
1122
1123 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1124 {
1125         if (rq->rq_flags & RQF_STATS)
1126                 blk_stat_add(rq, now);
1127
1128         blk_mq_sched_completed_request(rq, now);
1129         blk_account_io_done(rq, now);
1130 }
1131
1132 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1133 {
1134         if (blk_mq_need_time_stamp(rq))
1135                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1136
1137         blk_mq_finish_request(rq);
1138
1139         if (rq->end_io) {
1140                 rq_qos_done(rq->q, rq);
1141                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1142                         blk_mq_free_request(rq);
1143         } else {
1144                 blk_mq_free_request(rq);
1145         }
1146 }
1147 EXPORT_SYMBOL(__blk_mq_end_request);
1148
1149 void blk_mq_end_request(struct request *rq, blk_status_t error)
1150 {
1151         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1152                 BUG();
1153         __blk_mq_end_request(rq, error);
1154 }
1155 EXPORT_SYMBOL(blk_mq_end_request);
1156
1157 #define TAG_COMP_BATCH          32
1158
1159 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1160                                           int *tag_array, int nr_tags)
1161 {
1162         struct request_queue *q = hctx->queue;
1163
1164         blk_mq_sub_active_requests(hctx, nr_tags);
1165
1166         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1167         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1168 }
1169
1170 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1171 {
1172         int tags[TAG_COMP_BATCH], nr_tags = 0;
1173         struct blk_mq_hw_ctx *cur_hctx = NULL;
1174         struct request *rq;
1175         u64 now = 0;
1176
1177         if (iob->need_ts)
1178                 now = blk_time_get_ns();
1179
1180         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1181                 prefetch(rq->bio);
1182                 prefetch(rq->rq_next);
1183
1184                 blk_complete_request(rq);
1185                 if (iob->need_ts)
1186                         __blk_mq_end_request_acct(rq, now);
1187
1188                 blk_mq_finish_request(rq);
1189
1190                 rq_qos_done(rq->q, rq);
1191
1192                 /*
1193                  * If end_io handler returns NONE, then it still has
1194                  * ownership of the request.
1195                  */
1196                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1197                         continue;
1198
1199                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1200                 if (!req_ref_put_and_test(rq))
1201                         continue;
1202
1203                 blk_crypto_free_request(rq);
1204                 blk_pm_mark_last_busy(rq);
1205
1206                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1207                         if (cur_hctx)
1208                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1209                         nr_tags = 0;
1210                         cur_hctx = rq->mq_hctx;
1211                 }
1212                 tags[nr_tags++] = rq->tag;
1213         }
1214
1215         if (nr_tags)
1216                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1217 }
1218 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1219
1220 static void blk_complete_reqs(struct llist_head *list)
1221 {
1222         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1223         struct request *rq, *next;
1224
1225         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1226                 rq->q->mq_ops->complete(rq);
1227 }
1228
1229 static __latent_entropy void blk_done_softirq(void)
1230 {
1231         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1232 }
1233
1234 static int blk_softirq_cpu_dead(unsigned int cpu)
1235 {
1236         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1237         return 0;
1238 }
1239
1240 static void __blk_mq_complete_request_remote(void *data)
1241 {
1242         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1243 }
1244
1245 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1246 {
1247         int cpu = raw_smp_processor_id();
1248
1249         if (!IS_ENABLED(CONFIG_SMP) ||
1250             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1251                 return false;
1252         /*
1253          * With force threaded interrupts enabled, raising softirq from an SMP
1254          * function call will always result in waking the ksoftirqd thread.
1255          * This is probably worse than completing the request on a different
1256          * cache domain.
1257          */
1258         if (force_irqthreads())
1259                 return false;
1260
1261         /* same CPU or cache domain and capacity?  Complete locally */
1262         if (cpu == rq->mq_ctx->cpu ||
1263             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1264              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1265              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1266                 return false;
1267
1268         /* don't try to IPI to an offline CPU */
1269         return cpu_online(rq->mq_ctx->cpu);
1270 }
1271
1272 static void blk_mq_complete_send_ipi(struct request *rq)
1273 {
1274         unsigned int cpu;
1275
1276         cpu = rq->mq_ctx->cpu;
1277         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1278                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1279 }
1280
1281 static void blk_mq_raise_softirq(struct request *rq)
1282 {
1283         struct llist_head *list;
1284
1285         preempt_disable();
1286         list = this_cpu_ptr(&blk_cpu_done);
1287         if (llist_add(&rq->ipi_list, list))
1288                 raise_softirq(BLOCK_SOFTIRQ);
1289         preempt_enable();
1290 }
1291
1292 bool blk_mq_complete_request_remote(struct request *rq)
1293 {
1294         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1295
1296         /*
1297          * For request which hctx has only one ctx mapping,
1298          * or a polled request, always complete locally,
1299          * it's pointless to redirect the completion.
1300          */
1301         if ((rq->mq_hctx->nr_ctx == 1 &&
1302              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1303              rq->cmd_flags & REQ_POLLED)
1304                 return false;
1305
1306         if (blk_mq_complete_need_ipi(rq)) {
1307                 blk_mq_complete_send_ipi(rq);
1308                 return true;
1309         }
1310
1311         if (rq->q->nr_hw_queues == 1) {
1312                 blk_mq_raise_softirq(rq);
1313                 return true;
1314         }
1315         return false;
1316 }
1317 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1318
1319 /**
1320  * blk_mq_complete_request - end I/O on a request
1321  * @rq:         the request being processed
1322  *
1323  * Description:
1324  *      Complete a request by scheduling the ->complete_rq operation.
1325  **/
1326 void blk_mq_complete_request(struct request *rq)
1327 {
1328         if (!blk_mq_complete_request_remote(rq))
1329                 rq->q->mq_ops->complete(rq);
1330 }
1331 EXPORT_SYMBOL(blk_mq_complete_request);
1332
1333 /**
1334  * blk_mq_start_request - Start processing a request
1335  * @rq: Pointer to request to be started
1336  *
1337  * Function used by device drivers to notify the block layer that a request
1338  * is going to be processed now, so blk layer can do proper initializations
1339  * such as starting the timeout timer.
1340  */
1341 void blk_mq_start_request(struct request *rq)
1342 {
1343         struct request_queue *q = rq->q;
1344
1345         trace_block_rq_issue(rq);
1346
1347         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1348             !blk_rq_is_passthrough(rq)) {
1349                 rq->io_start_time_ns = blk_time_get_ns();
1350                 rq->stats_sectors = blk_rq_sectors(rq);
1351                 rq->rq_flags |= RQF_STATS;
1352                 rq_qos_issue(q, rq);
1353         }
1354
1355         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1356
1357         blk_add_timer(rq);
1358         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1359         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1360
1361         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1362                 blk_integrity_prepare(rq);
1363
1364         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1365                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1366 }
1367 EXPORT_SYMBOL(blk_mq_start_request);
1368
1369 /*
1370  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1371  * queues. This is important for md arrays to benefit from merging
1372  * requests.
1373  */
1374 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1375 {
1376         if (plug->multiple_queues)
1377                 return BLK_MAX_REQUEST_COUNT * 2;
1378         return BLK_MAX_REQUEST_COUNT;
1379 }
1380
1381 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1382 {
1383         struct request *last = rq_list_peek(&plug->mq_list);
1384
1385         if (!plug->rq_count) {
1386                 trace_block_plug(rq->q);
1387         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1388                    (!blk_queue_nomerges(rq->q) &&
1389                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1390                 blk_mq_flush_plug_list(plug, false);
1391                 last = NULL;
1392                 trace_block_plug(rq->q);
1393         }
1394
1395         if (!plug->multiple_queues && last && last->q != rq->q)
1396                 plug->multiple_queues = true;
1397         /*
1398          * Any request allocated from sched tags can't be issued to
1399          * ->queue_rqs() directly
1400          */
1401         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1402                 plug->has_elevator = true;
1403         rq_list_add_tail(&plug->mq_list, rq);
1404         plug->rq_count++;
1405 }
1406
1407 /**
1408  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1409  * @rq:         request to insert
1410  * @at_head:    insert request at head or tail of queue
1411  *
1412  * Description:
1413  *    Insert a fully prepared request at the back of the I/O scheduler queue
1414  *    for execution.  Don't wait for completion.
1415  *
1416  * Note:
1417  *    This function will invoke @done directly if the queue is dead.
1418  */
1419 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1420 {
1421         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1422
1423         WARN_ON(irqs_disabled());
1424         WARN_ON(!blk_rq_is_passthrough(rq));
1425
1426         blk_account_io_start(rq);
1427
1428         if (current->plug && !at_head) {
1429                 blk_add_rq_to_plug(current->plug, rq);
1430                 return;
1431         }
1432
1433         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1434         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1435 }
1436 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1437
1438 struct blk_rq_wait {
1439         struct completion done;
1440         blk_status_t ret;
1441 };
1442
1443 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1444 {
1445         struct blk_rq_wait *wait = rq->end_io_data;
1446
1447         wait->ret = ret;
1448         complete(&wait->done);
1449         return RQ_END_IO_NONE;
1450 }
1451
1452 bool blk_rq_is_poll(struct request *rq)
1453 {
1454         if (!rq->mq_hctx)
1455                 return false;
1456         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1457                 return false;
1458         return true;
1459 }
1460 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1461
1462 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1463 {
1464         do {
1465                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1466                 cond_resched();
1467         } while (!completion_done(wait));
1468 }
1469
1470 /**
1471  * blk_execute_rq - insert a request into queue for execution
1472  * @rq:         request to insert
1473  * @at_head:    insert request at head or tail of queue
1474  *
1475  * Description:
1476  *    Insert a fully prepared request at the back of the I/O scheduler queue
1477  *    for execution and wait for completion.
1478  * Return: The blk_status_t result provided to blk_mq_end_request().
1479  */
1480 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1481 {
1482         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1483         struct blk_rq_wait wait = {
1484                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1485         };
1486
1487         WARN_ON(irqs_disabled());
1488         WARN_ON(!blk_rq_is_passthrough(rq));
1489
1490         rq->end_io_data = &wait;
1491         rq->end_io = blk_end_sync_rq;
1492
1493         blk_account_io_start(rq);
1494         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1495         blk_mq_run_hw_queue(hctx, false);
1496
1497         if (blk_rq_is_poll(rq))
1498                 blk_rq_poll_completion(rq, &wait.done);
1499         else
1500                 blk_wait_io(&wait.done);
1501
1502         return wait.ret;
1503 }
1504 EXPORT_SYMBOL(blk_execute_rq);
1505
1506 static void __blk_mq_requeue_request(struct request *rq)
1507 {
1508         struct request_queue *q = rq->q;
1509
1510         blk_mq_put_driver_tag(rq);
1511
1512         trace_block_rq_requeue(rq);
1513         rq_qos_requeue(q, rq);
1514
1515         if (blk_mq_request_started(rq)) {
1516                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1517                 rq->rq_flags &= ~RQF_TIMED_OUT;
1518         }
1519 }
1520
1521 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1522 {
1523         struct request_queue *q = rq->q;
1524         unsigned long flags;
1525
1526         __blk_mq_requeue_request(rq);
1527
1528         /* this request will be re-inserted to io scheduler queue */
1529         blk_mq_sched_requeue_request(rq);
1530
1531         spin_lock_irqsave(&q->requeue_lock, flags);
1532         list_add_tail(&rq->queuelist, &q->requeue_list);
1533         spin_unlock_irqrestore(&q->requeue_lock, flags);
1534
1535         if (kick_requeue_list)
1536                 blk_mq_kick_requeue_list(q);
1537 }
1538 EXPORT_SYMBOL(blk_mq_requeue_request);
1539
1540 static void blk_mq_requeue_work(struct work_struct *work)
1541 {
1542         struct request_queue *q =
1543                 container_of(work, struct request_queue, requeue_work.work);
1544         LIST_HEAD(rq_list);
1545         LIST_HEAD(flush_list);
1546         struct request *rq;
1547
1548         spin_lock_irq(&q->requeue_lock);
1549         list_splice_init(&q->requeue_list, &rq_list);
1550         list_splice_init(&q->flush_list, &flush_list);
1551         spin_unlock_irq(&q->requeue_lock);
1552
1553         while (!list_empty(&rq_list)) {
1554                 rq = list_entry(rq_list.next, struct request, queuelist);
1555                 list_del_init(&rq->queuelist);
1556                 /*
1557                  * If RQF_DONTPREP is set, the request has been started by the
1558                  * driver already and might have driver-specific data allocated
1559                  * already.  Insert it into the hctx dispatch list to avoid
1560                  * block layer merges for the request.
1561                  */
1562                 if (rq->rq_flags & RQF_DONTPREP)
1563                         blk_mq_request_bypass_insert(rq, 0);
1564                 else
1565                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1566         }
1567
1568         while (!list_empty(&flush_list)) {
1569                 rq = list_entry(flush_list.next, struct request, queuelist);
1570                 list_del_init(&rq->queuelist);
1571                 blk_mq_insert_request(rq, 0);
1572         }
1573
1574         blk_mq_run_hw_queues(q, false);
1575 }
1576
1577 void blk_mq_kick_requeue_list(struct request_queue *q)
1578 {
1579         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1580 }
1581 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1582
1583 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1584                                     unsigned long msecs)
1585 {
1586         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1587                                     msecs_to_jiffies(msecs));
1588 }
1589 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1590
1591 static bool blk_is_flush_data_rq(struct request *rq)
1592 {
1593         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1594 }
1595
1596 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1597 {
1598         /*
1599          * If we find a request that isn't idle we know the queue is busy
1600          * as it's checked in the iter.
1601          * Return false to stop the iteration.
1602          *
1603          * In case of queue quiesce, if one flush data request is completed,
1604          * don't count it as inflight given the flush sequence is suspended,
1605          * and the original flush data request is invisible to driver, just
1606          * like other pending requests because of quiesce
1607          */
1608         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1609                                 blk_is_flush_data_rq(rq) &&
1610                                 blk_mq_request_completed(rq))) {
1611                 bool *busy = priv;
1612
1613                 *busy = true;
1614                 return false;
1615         }
1616
1617         return true;
1618 }
1619
1620 bool blk_mq_queue_inflight(struct request_queue *q)
1621 {
1622         bool busy = false;
1623
1624         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1625         return busy;
1626 }
1627 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1628
1629 static void blk_mq_rq_timed_out(struct request *req)
1630 {
1631         req->rq_flags |= RQF_TIMED_OUT;
1632         if (req->q->mq_ops->timeout) {
1633                 enum blk_eh_timer_return ret;
1634
1635                 ret = req->q->mq_ops->timeout(req);
1636                 if (ret == BLK_EH_DONE)
1637                         return;
1638                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1639         }
1640
1641         blk_add_timer(req);
1642 }
1643
1644 struct blk_expired_data {
1645         bool has_timedout_rq;
1646         unsigned long next;
1647         unsigned long timeout_start;
1648 };
1649
1650 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1651 {
1652         unsigned long deadline;
1653
1654         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1655                 return false;
1656         if (rq->rq_flags & RQF_TIMED_OUT)
1657                 return false;
1658
1659         deadline = READ_ONCE(rq->deadline);
1660         if (time_after_eq(expired->timeout_start, deadline))
1661                 return true;
1662
1663         if (expired->next == 0)
1664                 expired->next = deadline;
1665         else if (time_after(expired->next, deadline))
1666                 expired->next = deadline;
1667         return false;
1668 }
1669
1670 void blk_mq_put_rq_ref(struct request *rq)
1671 {
1672         if (is_flush_rq(rq)) {
1673                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1674                         blk_mq_free_request(rq);
1675         } else if (req_ref_put_and_test(rq)) {
1676                 __blk_mq_free_request(rq);
1677         }
1678 }
1679
1680 static bool blk_mq_check_expired(struct request *rq, void *priv)
1681 {
1682         struct blk_expired_data *expired = priv;
1683
1684         /*
1685          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1686          * be reallocated underneath the timeout handler's processing, then
1687          * the expire check is reliable. If the request is not expired, then
1688          * it was completed and reallocated as a new request after returning
1689          * from blk_mq_check_expired().
1690          */
1691         if (blk_mq_req_expired(rq, expired)) {
1692                 expired->has_timedout_rq = true;
1693                 return false;
1694         }
1695         return true;
1696 }
1697
1698 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1699 {
1700         struct blk_expired_data *expired = priv;
1701
1702         if (blk_mq_req_expired(rq, expired))
1703                 blk_mq_rq_timed_out(rq);
1704         return true;
1705 }
1706
1707 static void blk_mq_timeout_work(struct work_struct *work)
1708 {
1709         struct request_queue *q =
1710                 container_of(work, struct request_queue, timeout_work);
1711         struct blk_expired_data expired = {
1712                 .timeout_start = jiffies,
1713         };
1714         struct blk_mq_hw_ctx *hctx;
1715         unsigned long i;
1716
1717         /* A deadlock might occur if a request is stuck requiring a
1718          * timeout at the same time a queue freeze is waiting
1719          * completion, since the timeout code would not be able to
1720          * acquire the queue reference here.
1721          *
1722          * That's why we don't use blk_queue_enter here; instead, we use
1723          * percpu_ref_tryget directly, because we need to be able to
1724          * obtain a reference even in the short window between the queue
1725          * starting to freeze, by dropping the first reference in
1726          * blk_freeze_queue_start, and the moment the last request is
1727          * consumed, marked by the instant q_usage_counter reaches
1728          * zero.
1729          */
1730         if (!percpu_ref_tryget(&q->q_usage_counter))
1731                 return;
1732
1733         /* check if there is any timed-out request */
1734         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1735         if (expired.has_timedout_rq) {
1736                 /*
1737                  * Before walking tags, we must ensure any submit started
1738                  * before the current time has finished. Since the submit
1739                  * uses srcu or rcu, wait for a synchronization point to
1740                  * ensure all running submits have finished
1741                  */
1742                 blk_mq_wait_quiesce_done(q->tag_set);
1743
1744                 expired.next = 0;
1745                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1746         }
1747
1748         if (expired.next != 0) {
1749                 mod_timer(&q->timeout, expired.next);
1750         } else {
1751                 /*
1752                  * Request timeouts are handled as a forward rolling timer. If
1753                  * we end up here it means that no requests are pending and
1754                  * also that no request has been pending for a while. Mark
1755                  * each hctx as idle.
1756                  */
1757                 queue_for_each_hw_ctx(q, hctx, i) {
1758                         /* the hctx may be unmapped, so check it here */
1759                         if (blk_mq_hw_queue_mapped(hctx))
1760                                 blk_mq_tag_idle(hctx);
1761                 }
1762         }
1763         blk_queue_exit(q);
1764 }
1765
1766 struct flush_busy_ctx_data {
1767         struct blk_mq_hw_ctx *hctx;
1768         struct list_head *list;
1769 };
1770
1771 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1772 {
1773         struct flush_busy_ctx_data *flush_data = data;
1774         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1775         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1776         enum hctx_type type = hctx->type;
1777
1778         spin_lock(&ctx->lock);
1779         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1780         sbitmap_clear_bit(sb, bitnr);
1781         spin_unlock(&ctx->lock);
1782         return true;
1783 }
1784
1785 /*
1786  * Process software queues that have been marked busy, splicing them
1787  * to the for-dispatch
1788  */
1789 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1790 {
1791         struct flush_busy_ctx_data data = {
1792                 .hctx = hctx,
1793                 .list = list,
1794         };
1795
1796         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1797 }
1798
1799 struct dispatch_rq_data {
1800         struct blk_mq_hw_ctx *hctx;
1801         struct request *rq;
1802 };
1803
1804 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1805                 void *data)
1806 {
1807         struct dispatch_rq_data *dispatch_data = data;
1808         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1809         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1810         enum hctx_type type = hctx->type;
1811
1812         spin_lock(&ctx->lock);
1813         if (!list_empty(&ctx->rq_lists[type])) {
1814                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1815                 list_del_init(&dispatch_data->rq->queuelist);
1816                 if (list_empty(&ctx->rq_lists[type]))
1817                         sbitmap_clear_bit(sb, bitnr);
1818         }
1819         spin_unlock(&ctx->lock);
1820
1821         return !dispatch_data->rq;
1822 }
1823
1824 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1825                                         struct blk_mq_ctx *start)
1826 {
1827         unsigned off = start ? start->index_hw[hctx->type] : 0;
1828         struct dispatch_rq_data data = {
1829                 .hctx = hctx,
1830                 .rq   = NULL,
1831         };
1832
1833         __sbitmap_for_each_set(&hctx->ctx_map, off,
1834                                dispatch_rq_from_ctx, &data);
1835
1836         return data.rq;
1837 }
1838
1839 bool __blk_mq_alloc_driver_tag(struct request *rq)
1840 {
1841         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1842         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1843         int tag;
1844
1845         blk_mq_tag_busy(rq->mq_hctx);
1846
1847         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1848                 bt = &rq->mq_hctx->tags->breserved_tags;
1849                 tag_offset = 0;
1850         } else {
1851                 if (!hctx_may_queue(rq->mq_hctx, bt))
1852                         return false;
1853         }
1854
1855         tag = __sbitmap_queue_get(bt);
1856         if (tag == BLK_MQ_NO_TAG)
1857                 return false;
1858
1859         rq->tag = tag + tag_offset;
1860         blk_mq_inc_active_requests(rq->mq_hctx);
1861         return true;
1862 }
1863
1864 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1865                                 int flags, void *key)
1866 {
1867         struct blk_mq_hw_ctx *hctx;
1868
1869         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1870
1871         spin_lock(&hctx->dispatch_wait_lock);
1872         if (!list_empty(&wait->entry)) {
1873                 struct sbitmap_queue *sbq;
1874
1875                 list_del_init(&wait->entry);
1876                 sbq = &hctx->tags->bitmap_tags;
1877                 atomic_dec(&sbq->ws_active);
1878         }
1879         spin_unlock(&hctx->dispatch_wait_lock);
1880
1881         blk_mq_run_hw_queue(hctx, true);
1882         return 1;
1883 }
1884
1885 /*
1886  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1887  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1888  * restart. For both cases, take care to check the condition again after
1889  * marking us as waiting.
1890  */
1891 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1892                                  struct request *rq)
1893 {
1894         struct sbitmap_queue *sbq;
1895         struct wait_queue_head *wq;
1896         wait_queue_entry_t *wait;
1897         bool ret;
1898
1899         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1900             !(blk_mq_is_shared_tags(hctx->flags))) {
1901                 blk_mq_sched_mark_restart_hctx(hctx);
1902
1903                 /*
1904                  * It's possible that a tag was freed in the window between the
1905                  * allocation failure and adding the hardware queue to the wait
1906                  * queue.
1907                  *
1908                  * Don't clear RESTART here, someone else could have set it.
1909                  * At most this will cost an extra queue run.
1910                  */
1911                 return blk_mq_get_driver_tag(rq);
1912         }
1913
1914         wait = &hctx->dispatch_wait;
1915         if (!list_empty_careful(&wait->entry))
1916                 return false;
1917
1918         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1919                 sbq = &hctx->tags->breserved_tags;
1920         else
1921                 sbq = &hctx->tags->bitmap_tags;
1922         wq = &bt_wait_ptr(sbq, hctx)->wait;
1923
1924         spin_lock_irq(&wq->lock);
1925         spin_lock(&hctx->dispatch_wait_lock);
1926         if (!list_empty(&wait->entry)) {
1927                 spin_unlock(&hctx->dispatch_wait_lock);
1928                 spin_unlock_irq(&wq->lock);
1929                 return false;
1930         }
1931
1932         atomic_inc(&sbq->ws_active);
1933         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1934         __add_wait_queue(wq, wait);
1935
1936         /*
1937          * Add one explicit barrier since blk_mq_get_driver_tag() may
1938          * not imply barrier in case of failure.
1939          *
1940          * Order adding us to wait queue and allocating driver tag.
1941          *
1942          * The pair is the one implied in sbitmap_queue_wake_up() which
1943          * orders clearing sbitmap tag bits and waitqueue_active() in
1944          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1945          *
1946          * Otherwise, re-order of adding wait queue and getting driver tag
1947          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1948          * the waitqueue_active() may not observe us in wait queue.
1949          */
1950         smp_mb();
1951
1952         /*
1953          * It's possible that a tag was freed in the window between the
1954          * allocation failure and adding the hardware queue to the wait
1955          * queue.
1956          */
1957         ret = blk_mq_get_driver_tag(rq);
1958         if (!ret) {
1959                 spin_unlock(&hctx->dispatch_wait_lock);
1960                 spin_unlock_irq(&wq->lock);
1961                 return false;
1962         }
1963
1964         /*
1965          * We got a tag, remove ourselves from the wait queue to ensure
1966          * someone else gets the wakeup.
1967          */
1968         list_del_init(&wait->entry);
1969         atomic_dec(&sbq->ws_active);
1970         spin_unlock(&hctx->dispatch_wait_lock);
1971         spin_unlock_irq(&wq->lock);
1972
1973         return true;
1974 }
1975
1976 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1977 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1978 /*
1979  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1980  * - EWMA is one simple way to compute running average value
1981  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1982  * - take 4 as factor for avoiding to get too small(0) result, and this
1983  *   factor doesn't matter because EWMA decreases exponentially
1984  */
1985 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1986 {
1987         unsigned int ewma;
1988
1989         ewma = hctx->dispatch_busy;
1990
1991         if (!ewma && !busy)
1992                 return;
1993
1994         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1995         if (busy)
1996                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1997         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1998
1999         hctx->dispatch_busy = ewma;
2000 }
2001
2002 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
2003
2004 static void blk_mq_handle_dev_resource(struct request *rq,
2005                                        struct list_head *list)
2006 {
2007         list_add(&rq->queuelist, list);
2008         __blk_mq_requeue_request(rq);
2009 }
2010
2011 enum prep_dispatch {
2012         PREP_DISPATCH_OK,
2013         PREP_DISPATCH_NO_TAG,
2014         PREP_DISPATCH_NO_BUDGET,
2015 };
2016
2017 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2018                                                   bool need_budget)
2019 {
2020         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2021         int budget_token = -1;
2022
2023         if (need_budget) {
2024                 budget_token = blk_mq_get_dispatch_budget(rq->q);
2025                 if (budget_token < 0) {
2026                         blk_mq_put_driver_tag(rq);
2027                         return PREP_DISPATCH_NO_BUDGET;
2028                 }
2029                 blk_mq_set_rq_budget_token(rq, budget_token);
2030         }
2031
2032         if (!blk_mq_get_driver_tag(rq)) {
2033                 /*
2034                  * The initial allocation attempt failed, so we need to
2035                  * rerun the hardware queue when a tag is freed. The
2036                  * waitqueue takes care of that. If the queue is run
2037                  * before we add this entry back on the dispatch list,
2038                  * we'll re-run it below.
2039                  */
2040                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2041                         /*
2042                          * All budgets not got from this function will be put
2043                          * together during handling partial dispatch
2044                          */
2045                         if (need_budget)
2046                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2047                         return PREP_DISPATCH_NO_TAG;
2048                 }
2049         }
2050
2051         return PREP_DISPATCH_OK;
2052 }
2053
2054 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2055 static void blk_mq_release_budgets(struct request_queue *q,
2056                 struct list_head *list)
2057 {
2058         struct request *rq;
2059
2060         list_for_each_entry(rq, list, queuelist) {
2061                 int budget_token = blk_mq_get_rq_budget_token(rq);
2062
2063                 if (budget_token >= 0)
2064                         blk_mq_put_dispatch_budget(q, budget_token);
2065         }
2066 }
2067
2068 /*
2069  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2070  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2071  * details)
2072  * Attention, we should explicitly call this in unusual cases:
2073  *  1) did not queue everything initially scheduled to queue
2074  *  2) the last attempt to queue a request failed
2075  */
2076 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2077                               bool from_schedule)
2078 {
2079         if (hctx->queue->mq_ops->commit_rqs && queued) {
2080                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2081                 hctx->queue->mq_ops->commit_rqs(hctx);
2082         }
2083 }
2084
2085 /*
2086  * Returns true if we did some work AND can potentially do more.
2087  */
2088 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2089                              bool get_budget)
2090 {
2091         enum prep_dispatch prep;
2092         struct request_queue *q = hctx->queue;
2093         struct request *rq;
2094         int queued;
2095         blk_status_t ret = BLK_STS_OK;
2096         bool needs_resource = false;
2097
2098         if (list_empty(list))
2099                 return false;
2100
2101         /*
2102          * Now process all the entries, sending them to the driver.
2103          */
2104         queued = 0;
2105         do {
2106                 struct blk_mq_queue_data bd;
2107
2108                 rq = list_first_entry(list, struct request, queuelist);
2109
2110                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2111                 prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2112                 if (prep != PREP_DISPATCH_OK)
2113                         break;
2114
2115                 list_del_init(&rq->queuelist);
2116
2117                 bd.rq = rq;
2118                 bd.last = list_empty(list);
2119
2120                 ret = q->mq_ops->queue_rq(hctx, &bd);
2121                 switch (ret) {
2122                 case BLK_STS_OK:
2123                         queued++;
2124                         break;
2125                 case BLK_STS_RESOURCE:
2126                         needs_resource = true;
2127                         fallthrough;
2128                 case BLK_STS_DEV_RESOURCE:
2129                         blk_mq_handle_dev_resource(rq, list);
2130                         goto out;
2131                 default:
2132                         blk_mq_end_request(rq, ret);
2133                 }
2134         } while (!list_empty(list));
2135 out:
2136         /* If we didn't flush the entire list, we could have told the driver
2137          * there was more coming, but that turned out to be a lie.
2138          */
2139         if (!list_empty(list) || ret != BLK_STS_OK)
2140                 blk_mq_commit_rqs(hctx, queued, false);
2141
2142         /*
2143          * Any items that need requeuing? Stuff them into hctx->dispatch,
2144          * that is where we will continue on next queue run.
2145          */
2146         if (!list_empty(list)) {
2147                 bool needs_restart;
2148                 /* For non-shared tags, the RESTART check will suffice */
2149                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2150                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2151                         blk_mq_is_shared_tags(hctx->flags));
2152
2153                 /*
2154                  * If the caller allocated budgets, free the budgets of the
2155                  * requests that have not yet been passed to the block driver.
2156                  */
2157                 if (!get_budget)
2158                         blk_mq_release_budgets(q, list);
2159
2160                 spin_lock(&hctx->lock);
2161                 list_splice_tail_init(list, &hctx->dispatch);
2162                 spin_unlock(&hctx->lock);
2163
2164                 /*
2165                  * Order adding requests to hctx->dispatch and checking
2166                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2167                  * in blk_mq_sched_restart(). Avoid restart code path to
2168                  * miss the new added requests to hctx->dispatch, meantime
2169                  * SCHED_RESTART is observed here.
2170                  */
2171                 smp_mb();
2172
2173                 /*
2174                  * If SCHED_RESTART was set by the caller of this function and
2175                  * it is no longer set that means that it was cleared by another
2176                  * thread and hence that a queue rerun is needed.
2177                  *
2178                  * If 'no_tag' is set, that means that we failed getting
2179                  * a driver tag with an I/O scheduler attached. If our dispatch
2180                  * waitqueue is no longer active, ensure that we run the queue
2181                  * AFTER adding our entries back to the list.
2182                  *
2183                  * If no I/O scheduler has been configured it is possible that
2184                  * the hardware queue got stopped and restarted before requests
2185                  * were pushed back onto the dispatch list. Rerun the queue to
2186                  * avoid starvation. Notes:
2187                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2188                  *   been stopped before rerunning a queue.
2189                  * - Some but not all block drivers stop a queue before
2190                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2191                  *   and dm-rq.
2192                  *
2193                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2194                  * bit is set, run queue after a delay to avoid IO stalls
2195                  * that could otherwise occur if the queue is idle.  We'll do
2196                  * similar if we couldn't get budget or couldn't lock a zone
2197                  * and SCHED_RESTART is set.
2198                  */
2199                 needs_restart = blk_mq_sched_needs_restart(hctx);
2200                 if (prep == PREP_DISPATCH_NO_BUDGET)
2201                         needs_resource = true;
2202                 if (!needs_restart ||
2203                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2204                         blk_mq_run_hw_queue(hctx, true);
2205                 else if (needs_resource)
2206                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2207
2208                 blk_mq_update_dispatch_busy(hctx, true);
2209                 return false;
2210         }
2211
2212         blk_mq_update_dispatch_busy(hctx, false);
2213         return true;
2214 }
2215
2216 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2217 {
2218         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2219
2220         if (cpu >= nr_cpu_ids)
2221                 cpu = cpumask_first(hctx->cpumask);
2222         return cpu;
2223 }
2224
2225 /*
2226  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2227  * it for speeding up the check
2228  */
2229 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2230 {
2231         return hctx->next_cpu >= nr_cpu_ids;
2232 }
2233
2234 /*
2235  * It'd be great if the workqueue API had a way to pass
2236  * in a mask and had some smarts for more clever placement.
2237  * For now we just round-robin here, switching for every
2238  * BLK_MQ_CPU_WORK_BATCH queued items.
2239  */
2240 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2241 {
2242         bool tried = false;
2243         int next_cpu = hctx->next_cpu;
2244
2245         /* Switch to unbound if no allowable CPUs in this hctx */
2246         if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2247                 return WORK_CPU_UNBOUND;
2248
2249         if (--hctx->next_cpu_batch <= 0) {
2250 select_cpu:
2251                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2252                                 cpu_online_mask);
2253                 if (next_cpu >= nr_cpu_ids)
2254                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2255                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2256         }
2257
2258         /*
2259          * Do unbound schedule if we can't find a online CPU for this hctx,
2260          * and it should only happen in the path of handling CPU DEAD.
2261          */
2262         if (!cpu_online(next_cpu)) {
2263                 if (!tried) {
2264                         tried = true;
2265                         goto select_cpu;
2266                 }
2267
2268                 /*
2269                  * Make sure to re-select CPU next time once after CPUs
2270                  * in hctx->cpumask become online again.
2271                  */
2272                 hctx->next_cpu = next_cpu;
2273                 hctx->next_cpu_batch = 1;
2274                 return WORK_CPU_UNBOUND;
2275         }
2276
2277         hctx->next_cpu = next_cpu;
2278         return next_cpu;
2279 }
2280
2281 /**
2282  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2283  * @hctx: Pointer to the hardware queue to run.
2284  * @msecs: Milliseconds of delay to wait before running the queue.
2285  *
2286  * Run a hardware queue asynchronously with a delay of @msecs.
2287  */
2288 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2289 {
2290         if (unlikely(blk_mq_hctx_stopped(hctx)))
2291                 return;
2292         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2293                                     msecs_to_jiffies(msecs));
2294 }
2295 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2296
2297 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2298 {
2299         bool need_run;
2300
2301         /*
2302          * When queue is quiesced, we may be switching io scheduler, or
2303          * updating nr_hw_queues, or other things, and we can't run queue
2304          * any more, even blk_mq_hctx_has_pending() can't be called safely.
2305          *
2306          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2307          * quiesced.
2308          */
2309         __blk_mq_run_dispatch_ops(hctx->queue, false,
2310                 need_run = !blk_queue_quiesced(hctx->queue) &&
2311                 blk_mq_hctx_has_pending(hctx));
2312         return need_run;
2313 }
2314
2315 /**
2316  * blk_mq_run_hw_queue - Start to run a hardware queue.
2317  * @hctx: Pointer to the hardware queue to run.
2318  * @async: If we want to run the queue asynchronously.
2319  *
2320  * Check if the request queue is not in a quiesced state and if there are
2321  * pending requests to be sent. If this is true, run the queue to send requests
2322  * to hardware.
2323  */
2324 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2325 {
2326         bool need_run;
2327
2328         /*
2329          * We can't run the queue inline with interrupts disabled.
2330          */
2331         WARN_ON_ONCE(!async && in_interrupt());
2332
2333         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2334
2335         need_run = blk_mq_hw_queue_need_run(hctx);
2336         if (!need_run) {
2337                 unsigned long flags;
2338
2339                 /*
2340                  * Synchronize with blk_mq_unquiesce_queue(), because we check
2341                  * if hw queue is quiesced locklessly above, we need the use
2342                  * ->queue_lock to make sure we see the up-to-date status to
2343                  * not miss rerunning the hw queue.
2344                  */
2345                 spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2346                 need_run = blk_mq_hw_queue_need_run(hctx);
2347                 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2348
2349                 if (!need_run)
2350                         return;
2351         }
2352
2353         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2354                 blk_mq_delay_run_hw_queue(hctx, 0);
2355                 return;
2356         }
2357
2358         blk_mq_run_dispatch_ops(hctx->queue,
2359                                 blk_mq_sched_dispatch_requests(hctx));
2360 }
2361 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2362
2363 /*
2364  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2365  * scheduler.
2366  */
2367 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2368 {
2369         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2370         /*
2371          * If the IO scheduler does not respect hardware queues when
2372          * dispatching, we just don't bother with multiple HW queues and
2373          * dispatch from hctx for the current CPU since running multiple queues
2374          * just causes lock contention inside the scheduler and pointless cache
2375          * bouncing.
2376          */
2377         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2378
2379         if (!blk_mq_hctx_stopped(hctx))
2380                 return hctx;
2381         return NULL;
2382 }
2383
2384 /**
2385  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2386  * @q: Pointer to the request queue to run.
2387  * @async: If we want to run the queue asynchronously.
2388  */
2389 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2390 {
2391         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2392         unsigned long i;
2393
2394         sq_hctx = NULL;
2395         if (blk_queue_sq_sched(q))
2396                 sq_hctx = blk_mq_get_sq_hctx(q);
2397         queue_for_each_hw_ctx(q, hctx, i) {
2398                 if (blk_mq_hctx_stopped(hctx))
2399                         continue;
2400                 /*
2401                  * Dispatch from this hctx either if there's no hctx preferred
2402                  * by IO scheduler or if it has requests that bypass the
2403                  * scheduler.
2404                  */
2405                 if (!sq_hctx || sq_hctx == hctx ||
2406                     !list_empty_careful(&hctx->dispatch))
2407                         blk_mq_run_hw_queue(hctx, async);
2408         }
2409 }
2410 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2411
2412 /**
2413  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2414  * @q: Pointer to the request queue to run.
2415  * @msecs: Milliseconds of delay to wait before running the queues.
2416  */
2417 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2418 {
2419         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2420         unsigned long i;
2421
2422         sq_hctx = NULL;
2423         if (blk_queue_sq_sched(q))
2424                 sq_hctx = blk_mq_get_sq_hctx(q);
2425         queue_for_each_hw_ctx(q, hctx, i) {
2426                 if (blk_mq_hctx_stopped(hctx))
2427                         continue;
2428                 /*
2429                  * If there is already a run_work pending, leave the
2430                  * pending delay untouched. Otherwise, a hctx can stall
2431                  * if another hctx is re-delaying the other's work
2432                  * before the work executes.
2433                  */
2434                 if (delayed_work_pending(&hctx->run_work))
2435                         continue;
2436                 /*
2437                  * Dispatch from this hctx either if there's no hctx preferred
2438                  * by IO scheduler or if it has requests that bypass the
2439                  * scheduler.
2440                  */
2441                 if (!sq_hctx || sq_hctx == hctx ||
2442                     !list_empty_careful(&hctx->dispatch))
2443                         blk_mq_delay_run_hw_queue(hctx, msecs);
2444         }
2445 }
2446 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2447
2448 /*
2449  * This function is often used for pausing .queue_rq() by driver when
2450  * there isn't enough resource or some conditions aren't satisfied, and
2451  * BLK_STS_RESOURCE is usually returned.
2452  *
2453  * We do not guarantee that dispatch can be drained or blocked
2454  * after blk_mq_stop_hw_queue() returns. Please use
2455  * blk_mq_quiesce_queue() for that requirement.
2456  */
2457 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2458 {
2459         cancel_delayed_work(&hctx->run_work);
2460
2461         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2462 }
2463 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2464
2465 /*
2466  * This function is often used for pausing .queue_rq() by driver when
2467  * there isn't enough resource or some conditions aren't satisfied, and
2468  * BLK_STS_RESOURCE is usually returned.
2469  *
2470  * We do not guarantee that dispatch can be drained or blocked
2471  * after blk_mq_stop_hw_queues() returns. Please use
2472  * blk_mq_quiesce_queue() for that requirement.
2473  */
2474 void blk_mq_stop_hw_queues(struct request_queue *q)
2475 {
2476         struct blk_mq_hw_ctx *hctx;
2477         unsigned long i;
2478
2479         queue_for_each_hw_ctx(q, hctx, i)
2480                 blk_mq_stop_hw_queue(hctx);
2481 }
2482 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2483
2484 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2485 {
2486         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2487
2488         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2489 }
2490 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2491
2492 void blk_mq_start_hw_queues(struct request_queue *q)
2493 {
2494         struct blk_mq_hw_ctx *hctx;
2495         unsigned long i;
2496
2497         queue_for_each_hw_ctx(q, hctx, i)
2498                 blk_mq_start_hw_queue(hctx);
2499 }
2500 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2501
2502 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2503 {
2504         if (!blk_mq_hctx_stopped(hctx))
2505                 return;
2506
2507         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2508         /*
2509          * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2510          * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2511          * list in the subsequent routine.
2512          */
2513         smp_mb__after_atomic();
2514         blk_mq_run_hw_queue(hctx, async);
2515 }
2516 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2517
2518 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2519 {
2520         struct blk_mq_hw_ctx *hctx;
2521         unsigned long i;
2522
2523         queue_for_each_hw_ctx(q, hctx, i)
2524                 blk_mq_start_stopped_hw_queue(hctx, async ||
2525                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2526 }
2527 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2528
2529 static void blk_mq_run_work_fn(struct work_struct *work)
2530 {
2531         struct blk_mq_hw_ctx *hctx =
2532                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2533
2534         blk_mq_run_dispatch_ops(hctx->queue,
2535                                 blk_mq_sched_dispatch_requests(hctx));
2536 }
2537
2538 /**
2539  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2540  * @rq: Pointer to request to be inserted.
2541  * @flags: BLK_MQ_INSERT_*
2542  *
2543  * Should only be used carefully, when the caller knows we want to
2544  * bypass a potential IO scheduler on the target device.
2545  */
2546 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2547 {
2548         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2549
2550         spin_lock(&hctx->lock);
2551         if (flags & BLK_MQ_INSERT_AT_HEAD)
2552                 list_add(&rq->queuelist, &hctx->dispatch);
2553         else
2554                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2555         spin_unlock(&hctx->lock);
2556 }
2557
2558 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2559                 struct blk_mq_ctx *ctx, struct list_head *list,
2560                 bool run_queue_async)
2561 {
2562         struct request *rq;
2563         enum hctx_type type = hctx->type;
2564
2565         /*
2566          * Try to issue requests directly if the hw queue isn't busy to save an
2567          * extra enqueue & dequeue to the sw queue.
2568          */
2569         if (!hctx->dispatch_busy && !run_queue_async) {
2570                 blk_mq_run_dispatch_ops(hctx->queue,
2571                         blk_mq_try_issue_list_directly(hctx, list));
2572                 if (list_empty(list))
2573                         goto out;
2574         }
2575
2576         /*
2577          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2578          * offline now
2579          */
2580         list_for_each_entry(rq, list, queuelist) {
2581                 BUG_ON(rq->mq_ctx != ctx);
2582                 trace_block_rq_insert(rq);
2583                 if (rq->cmd_flags & REQ_NOWAIT)
2584                         run_queue_async = true;
2585         }
2586
2587         spin_lock(&ctx->lock);
2588         list_splice_tail_init(list, &ctx->rq_lists[type]);
2589         blk_mq_hctx_mark_pending(hctx, ctx);
2590         spin_unlock(&ctx->lock);
2591 out:
2592         blk_mq_run_hw_queue(hctx, run_queue_async);
2593 }
2594
2595 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2596 {
2597         struct request_queue *q = rq->q;
2598         struct blk_mq_ctx *ctx = rq->mq_ctx;
2599         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2600
2601         if (blk_rq_is_passthrough(rq)) {
2602                 /*
2603                  * Passthrough request have to be added to hctx->dispatch
2604                  * directly.  The device may be in a situation where it can't
2605                  * handle FS request, and always returns BLK_STS_RESOURCE for
2606                  * them, which gets them added to hctx->dispatch.
2607                  *
2608                  * If a passthrough request is required to unblock the queues,
2609                  * and it is added to the scheduler queue, there is no chance to
2610                  * dispatch it given we prioritize requests in hctx->dispatch.
2611                  */
2612                 blk_mq_request_bypass_insert(rq, flags);
2613         } else if (req_op(rq) == REQ_OP_FLUSH) {
2614                 /*
2615                  * Firstly normal IO request is inserted to scheduler queue or
2616                  * sw queue, meantime we add flush request to dispatch queue(
2617                  * hctx->dispatch) directly and there is at most one in-flight
2618                  * flush request for each hw queue, so it doesn't matter to add
2619                  * flush request to tail or front of the dispatch queue.
2620                  *
2621                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2622                  * command, and queueing it will fail when there is any
2623                  * in-flight normal IO request(NCQ command). When adding flush
2624                  * rq to the front of hctx->dispatch, it is easier to introduce
2625                  * extra time to flush rq's latency because of S_SCHED_RESTART
2626                  * compared with adding to the tail of dispatch queue, then
2627                  * chance of flush merge is increased, and less flush requests
2628                  * will be issued to controller. It is observed that ~10% time
2629                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2630                  * drive when adding flush rq to the front of hctx->dispatch.
2631                  *
2632                  * Simply queue flush rq to the front of hctx->dispatch so that
2633                  * intensive flush workloads can benefit in case of NCQ HW.
2634                  */
2635                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2636         } else if (q->elevator) {
2637                 LIST_HEAD(list);
2638
2639                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2640
2641                 list_add(&rq->queuelist, &list);
2642                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2643         } else {
2644                 trace_block_rq_insert(rq);
2645
2646                 spin_lock(&ctx->lock);
2647                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2648                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2649                 else
2650                         list_add_tail(&rq->queuelist,
2651                                       &ctx->rq_lists[hctx->type]);
2652                 blk_mq_hctx_mark_pending(hctx, ctx);
2653                 spin_unlock(&ctx->lock);
2654         }
2655 }
2656
2657 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2658                 unsigned int nr_segs)
2659 {
2660         int err;
2661
2662         if (bio->bi_opf & REQ_RAHEAD)
2663                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2664
2665         rq->bio = rq->biotail = bio;
2666         rq->__sector = bio->bi_iter.bi_sector;
2667         rq->__data_len = bio->bi_iter.bi_size;
2668         rq->nr_phys_segments = nr_segs;
2669         if (bio_integrity(bio))
2670                 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2671                                                                       bio);
2672
2673         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2674         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2675         WARN_ON_ONCE(err);
2676
2677         blk_account_io_start(rq);
2678 }
2679
2680 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2681                                             struct request *rq, bool last)
2682 {
2683         struct request_queue *q = rq->q;
2684         struct blk_mq_queue_data bd = {
2685                 .rq = rq,
2686                 .last = last,
2687         };
2688         blk_status_t ret;
2689
2690         /*
2691          * For OK queue, we are done. For error, caller may kill it.
2692          * Any other error (busy), just add it to our list as we
2693          * previously would have done.
2694          */
2695         ret = q->mq_ops->queue_rq(hctx, &bd);
2696         switch (ret) {
2697         case BLK_STS_OK:
2698                 blk_mq_update_dispatch_busy(hctx, false);
2699                 break;
2700         case BLK_STS_RESOURCE:
2701         case BLK_STS_DEV_RESOURCE:
2702                 blk_mq_update_dispatch_busy(hctx, true);
2703                 __blk_mq_requeue_request(rq);
2704                 break;
2705         default:
2706                 blk_mq_update_dispatch_busy(hctx, false);
2707                 break;
2708         }
2709
2710         return ret;
2711 }
2712
2713 static bool blk_mq_get_budget_and_tag(struct request *rq)
2714 {
2715         int budget_token;
2716
2717         budget_token = blk_mq_get_dispatch_budget(rq->q);
2718         if (budget_token < 0)
2719                 return false;
2720         blk_mq_set_rq_budget_token(rq, budget_token);
2721         if (!blk_mq_get_driver_tag(rq)) {
2722                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2723                 return false;
2724         }
2725         return true;
2726 }
2727
2728 /**
2729  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2730  * @hctx: Pointer of the associated hardware queue.
2731  * @rq: Pointer to request to be sent.
2732  *
2733  * If the device has enough resources to accept a new request now, send the
2734  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2735  * we can try send it another time in the future. Requests inserted at this
2736  * queue have higher priority.
2737  */
2738 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2739                 struct request *rq)
2740 {
2741         blk_status_t ret;
2742
2743         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2744                 blk_mq_insert_request(rq, 0);
2745                 blk_mq_run_hw_queue(hctx, false);
2746                 return;
2747         }
2748
2749         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2750                 blk_mq_insert_request(rq, 0);
2751                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2752                 return;
2753         }
2754
2755         ret = __blk_mq_issue_directly(hctx, rq, true);
2756         switch (ret) {
2757         case BLK_STS_OK:
2758                 break;
2759         case BLK_STS_RESOURCE:
2760         case BLK_STS_DEV_RESOURCE:
2761                 blk_mq_request_bypass_insert(rq, 0);
2762                 blk_mq_run_hw_queue(hctx, false);
2763                 break;
2764         default:
2765                 blk_mq_end_request(rq, ret);
2766                 break;
2767         }
2768 }
2769
2770 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2771 {
2772         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2773
2774         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2775                 blk_mq_insert_request(rq, 0);
2776                 blk_mq_run_hw_queue(hctx, false);
2777                 return BLK_STS_OK;
2778         }
2779
2780         if (!blk_mq_get_budget_and_tag(rq))
2781                 return BLK_STS_RESOURCE;
2782         return __blk_mq_issue_directly(hctx, rq, last);
2783 }
2784
2785 static void blk_mq_issue_direct(struct rq_list *rqs)
2786 {
2787         struct blk_mq_hw_ctx *hctx = NULL;
2788         struct request *rq;
2789         int queued = 0;
2790         blk_status_t ret = BLK_STS_OK;
2791
2792         while ((rq = rq_list_pop(rqs))) {
2793                 bool last = rq_list_empty(rqs);
2794
2795                 if (hctx != rq->mq_hctx) {
2796                         if (hctx) {
2797                                 blk_mq_commit_rqs(hctx, queued, false);
2798                                 queued = 0;
2799                         }
2800                         hctx = rq->mq_hctx;
2801                 }
2802
2803                 ret = blk_mq_request_issue_directly(rq, last);
2804                 switch (ret) {
2805                 case BLK_STS_OK:
2806                         queued++;
2807                         break;
2808                 case BLK_STS_RESOURCE:
2809                 case BLK_STS_DEV_RESOURCE:
2810                         blk_mq_request_bypass_insert(rq, 0);
2811                         blk_mq_run_hw_queue(hctx, false);
2812                         goto out;
2813                 default:
2814                         blk_mq_end_request(rq, ret);
2815                         break;
2816                 }
2817         }
2818
2819 out:
2820         if (ret != BLK_STS_OK)
2821                 blk_mq_commit_rqs(hctx, queued, false);
2822 }
2823
2824 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2825 {
2826         if (blk_queue_quiesced(q))
2827                 return;
2828         q->mq_ops->queue_rqs(rqs);
2829 }
2830
2831 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2832                                               struct rq_list *queue_rqs)
2833 {
2834         struct request *rq = rq_list_pop(rqs);
2835         struct request_queue *this_q = rq->q;
2836         struct request **prev = &rqs->head;
2837         struct rq_list matched_rqs = {};
2838         struct request *last = NULL;
2839         unsigned depth = 1;
2840
2841         rq_list_add_tail(&matched_rqs, rq);
2842         while ((rq = *prev)) {
2843                 if (rq->q == this_q) {
2844                         /* move rq from rqs to matched_rqs */
2845                         *prev = rq->rq_next;
2846                         rq_list_add_tail(&matched_rqs, rq);
2847                         depth++;
2848                 } else {
2849                         /* leave rq in rqs */
2850                         prev = &rq->rq_next;
2851                         last = rq;
2852                 }
2853         }
2854
2855         rqs->tail = last;
2856         *queue_rqs = matched_rqs;
2857         return depth;
2858 }
2859
2860 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2861 {
2862         struct request_queue *q = rq_list_peek(rqs)->q;
2863
2864         trace_block_unplug(q, depth, true);
2865
2866         /*
2867          * Peek first request and see if we have a ->queue_rqs() hook.
2868          * If we do, we can dispatch the whole list in one go.
2869          * We already know at this point that all requests belong to the
2870          * same queue, caller must ensure that's the case.
2871          */
2872         if (q->mq_ops->queue_rqs) {
2873                 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2874                 if (rq_list_empty(rqs))
2875                         return;
2876         }
2877
2878         blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2879 }
2880
2881 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2882 {
2883         struct blk_mq_hw_ctx *this_hctx = NULL;
2884         struct blk_mq_ctx *this_ctx = NULL;
2885         struct rq_list requeue_list = {};
2886         unsigned int depth = 0;
2887         bool is_passthrough = false;
2888         LIST_HEAD(list);
2889
2890         do {
2891                 struct request *rq = rq_list_pop(rqs);
2892
2893                 if (!this_hctx) {
2894                         this_hctx = rq->mq_hctx;
2895                         this_ctx = rq->mq_ctx;
2896                         is_passthrough = blk_rq_is_passthrough(rq);
2897                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2898                            is_passthrough != blk_rq_is_passthrough(rq)) {
2899                         rq_list_add_tail(&requeue_list, rq);
2900                         continue;
2901                 }
2902                 list_add_tail(&rq->queuelist, &list);
2903                 depth++;
2904         } while (!rq_list_empty(rqs));
2905
2906         *rqs = requeue_list;
2907         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2908
2909         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2910         /* passthrough requests should never be issued to the I/O scheduler */
2911         if (is_passthrough) {
2912                 spin_lock(&this_hctx->lock);
2913                 list_splice_tail_init(&list, &this_hctx->dispatch);
2914                 spin_unlock(&this_hctx->lock);
2915                 blk_mq_run_hw_queue(this_hctx, from_sched);
2916         } else if (this_hctx->queue->elevator) {
2917                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2918                                 &list, 0);
2919                 blk_mq_run_hw_queue(this_hctx, from_sched);
2920         } else {
2921                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2922         }
2923         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2924 }
2925
2926 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2927 {
2928         do {
2929                 struct rq_list queue_rqs;
2930                 unsigned depth;
2931
2932                 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2933                 blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2934                 while (!rq_list_empty(&queue_rqs))
2935                         blk_mq_dispatch_list(&queue_rqs, false);
2936         } while (!rq_list_empty(rqs));
2937 }
2938
2939 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2940 {
2941         unsigned int depth;
2942
2943         /*
2944          * We may have been called recursively midway through handling
2945          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2946          * To avoid mq_list changing under our feet, clear rq_count early and
2947          * bail out specifically if rq_count is 0 rather than checking
2948          * whether the mq_list is empty.
2949          */
2950         if (plug->rq_count == 0)
2951                 return;
2952         depth = plug->rq_count;
2953         plug->rq_count = 0;
2954
2955         if (!plug->has_elevator && !from_schedule) {
2956                 if (plug->multiple_queues) {
2957                         blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2958                         return;
2959                 }
2960
2961                 blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2962                 if (rq_list_empty(&plug->mq_list))
2963                         return;
2964         }
2965
2966         do {
2967                 blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2968         } while (!rq_list_empty(&plug->mq_list));
2969 }
2970
2971 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2972                 struct list_head *list)
2973 {
2974         int queued = 0;
2975         blk_status_t ret = BLK_STS_OK;
2976
2977         while (!list_empty(list)) {
2978                 struct request *rq = list_first_entry(list, struct request,
2979                                 queuelist);
2980
2981                 list_del_init(&rq->queuelist);
2982                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2983                 switch (ret) {
2984                 case BLK_STS_OK:
2985                         queued++;
2986                         break;
2987                 case BLK_STS_RESOURCE:
2988                 case BLK_STS_DEV_RESOURCE:
2989                         blk_mq_request_bypass_insert(rq, 0);
2990                         if (list_empty(list))
2991                                 blk_mq_run_hw_queue(hctx, false);
2992                         goto out;
2993                 default:
2994                         blk_mq_end_request(rq, ret);
2995                         break;
2996                 }
2997         }
2998
2999 out:
3000         if (ret != BLK_STS_OK)
3001                 blk_mq_commit_rqs(hctx, queued, false);
3002 }
3003
3004 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3005                                      struct bio *bio, unsigned int nr_segs)
3006 {
3007         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3008                 if (blk_attempt_plug_merge(q, bio, nr_segs))
3009                         return true;
3010                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3011                         return true;
3012         }
3013         return false;
3014 }
3015
3016 static struct request *blk_mq_get_new_requests(struct request_queue *q,
3017                                                struct blk_plug *plug,
3018                                                struct bio *bio)
3019 {
3020         struct blk_mq_alloc_data data = {
3021                 .q              = q,
3022                 .flags          = 0,
3023                 .shallow_depth  = 0,
3024                 .cmd_flags      = bio->bi_opf,
3025                 .rq_flags       = 0,
3026                 .nr_tags        = 1,
3027                 .cached_rqs     = NULL,
3028                 .ctx            = NULL,
3029                 .hctx           = NULL
3030         };
3031         struct request *rq;
3032
3033         rq_qos_throttle(q, bio);
3034
3035         if (plug) {
3036                 data.nr_tags = plug->nr_ios;
3037                 plug->nr_ios = 1;
3038                 data.cached_rqs = &plug->cached_rqs;
3039         }
3040
3041         rq = __blk_mq_alloc_requests(&data);
3042         if (unlikely(!rq))
3043                 rq_qos_cleanup(q, bio);
3044         return rq;
3045 }
3046
3047 /*
3048  * Check if there is a suitable cached request and return it.
3049  */
3050 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3051                 struct request_queue *q, blk_opf_t opf)
3052 {
3053         enum hctx_type type = blk_mq_get_hctx_type(opf);
3054         struct request *rq;
3055
3056         if (!plug)
3057                 return NULL;
3058         rq = rq_list_peek(&plug->cached_rqs);
3059         if (!rq || rq->q != q)
3060                 return NULL;
3061         if (type != rq->mq_hctx->type &&
3062             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3063                 return NULL;
3064         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3065                 return NULL;
3066         return rq;
3067 }
3068
3069 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3070                 struct bio *bio)
3071 {
3072         if (rq_list_pop(&plug->cached_rqs) != rq)
3073                 WARN_ON_ONCE(1);
3074
3075         /*
3076          * If any qos ->throttle() end up blocking, we will have flushed the
3077          * plug and hence killed the cached_rq list as well. Pop this entry
3078          * before we throttle.
3079          */
3080         rq_qos_throttle(rq->q, bio);
3081
3082         blk_mq_rq_time_init(rq, blk_time_get_ns());
3083         rq->cmd_flags = bio->bi_opf;
3084         INIT_LIST_HEAD(&rq->queuelist);
3085 }
3086
3087 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3088 {
3089         unsigned int bs_mask = queue_logical_block_size(q) - 1;
3090
3091         /* .bi_sector of any zero sized bio need to be initialized */
3092         if ((bio->bi_iter.bi_size & bs_mask) ||
3093             ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3094                 return true;
3095         return false;
3096 }
3097
3098 /**
3099  * blk_mq_submit_bio - Create and send a request to block device.
3100  * @bio: Bio pointer.
3101  *
3102  * Builds up a request structure from @q and @bio and send to the device. The
3103  * request may not be queued directly to hardware if:
3104  * * This request can be merged with another one
3105  * * We want to place request at plug queue for possible future merging
3106  * * There is an IO scheduler active at this queue
3107  *
3108  * It will not queue the request if there is an error with the bio, or at the
3109  * request creation.
3110  */
3111 void blk_mq_submit_bio(struct bio *bio)
3112 {
3113         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3114         struct blk_plug *plug = current->plug;
3115         const int is_sync = op_is_sync(bio->bi_opf);
3116         struct blk_mq_hw_ctx *hctx;
3117         unsigned int nr_segs;
3118         struct request *rq;
3119         blk_status_t ret;
3120
3121         /*
3122          * If the plug has a cached request for this queue, try to use it.
3123          */
3124         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3125
3126         /*
3127          * A BIO that was released from a zone write plug has already been
3128          * through the preparation in this function, already holds a reference
3129          * on the queue usage counter, and is the only write BIO in-flight for
3130          * the target zone. Go straight to preparing a request for it.
3131          */
3132         if (bio_zone_write_plugging(bio)) {
3133                 nr_segs = bio->__bi_nr_segments;
3134                 if (rq)
3135                         blk_queue_exit(q);
3136                 goto new_request;
3137         }
3138
3139         /*
3140          * The cached request already holds a q_usage_counter reference and we
3141          * don't have to acquire a new one if we use it.
3142          */
3143         if (!rq) {
3144                 if (unlikely(bio_queue_enter(bio)))
3145                         return;
3146         }
3147
3148         /*
3149          * Device reconfiguration may change logical block size or reduce the
3150          * number of poll queues, so the checks for alignment and poll support
3151          * have to be done with queue usage counter held.
3152          */
3153         if (unlikely(bio_unaligned(bio, q))) {
3154                 bio_io_error(bio);
3155                 goto queue_exit;
3156         }
3157
3158         if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3159                 bio->bi_status = BLK_STS_NOTSUPP;
3160                 bio_endio(bio);
3161                 goto queue_exit;
3162         }
3163
3164         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3165         if (!bio)
3166                 goto queue_exit;
3167
3168         if (!bio_integrity_prep(bio))
3169                 goto queue_exit;
3170
3171         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3172                 goto queue_exit;
3173
3174         if (bio_needs_zone_write_plugging(bio)) {
3175                 if (blk_zone_plug_bio(bio, nr_segs))
3176                         goto queue_exit;
3177         }
3178
3179 new_request:
3180         if (rq) {
3181                 blk_mq_use_cached_rq(rq, plug, bio);
3182         } else {
3183                 rq = blk_mq_get_new_requests(q, plug, bio);
3184                 if (unlikely(!rq)) {
3185                         if (bio->bi_opf & REQ_NOWAIT)
3186                                 bio_wouldblock_error(bio);
3187                         goto queue_exit;
3188                 }
3189         }
3190
3191         trace_block_getrq(bio);
3192
3193         rq_qos_track(q, rq, bio);
3194
3195         blk_mq_bio_to_request(rq, bio, nr_segs);
3196
3197         ret = blk_crypto_rq_get_keyslot(rq);
3198         if (ret != BLK_STS_OK) {
3199                 bio->bi_status = ret;
3200                 bio_endio(bio);
3201                 blk_mq_free_request(rq);
3202                 return;
3203         }
3204
3205         if (bio_zone_write_plugging(bio))
3206                 blk_zone_write_plug_init_request(rq);
3207
3208         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3209                 return;
3210
3211         if (plug) {
3212                 blk_add_rq_to_plug(plug, rq);
3213                 return;
3214         }
3215
3216         hctx = rq->mq_hctx;
3217         if ((rq->rq_flags & RQF_USE_SCHED) ||
3218             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3219                 blk_mq_insert_request(rq, 0);
3220                 blk_mq_run_hw_queue(hctx, true);
3221         } else {
3222                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3223         }
3224         return;
3225
3226 queue_exit:
3227         /*
3228          * Don't drop the queue reference if we were trying to use a cached
3229          * request and thus didn't acquire one.
3230          */
3231         if (!rq)
3232                 blk_queue_exit(q);
3233 }
3234
3235 #ifdef CONFIG_BLK_MQ_STACKING
3236 /**
3237  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3238  * @rq: the request being queued
3239  */
3240 blk_status_t blk_insert_cloned_request(struct request *rq)
3241 {
3242         struct request_queue *q = rq->q;
3243         unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3244         unsigned int max_segments = blk_rq_get_max_segments(rq);
3245         blk_status_t ret;
3246
3247         if (blk_rq_sectors(rq) > max_sectors) {
3248                 /*
3249                  * SCSI device does not have a good way to return if
3250                  * Write Same/Zero is actually supported. If a device rejects
3251                  * a non-read/write command (discard, write same,etc.) the
3252                  * low-level device driver will set the relevant queue limit to
3253                  * 0 to prevent blk-lib from issuing more of the offending
3254                  * operations. Commands queued prior to the queue limit being
3255                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3256                  * errors being propagated to upper layers.
3257                  */
3258                 if (max_sectors == 0)
3259                         return BLK_STS_NOTSUPP;
3260
3261                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3262                         __func__, blk_rq_sectors(rq), max_sectors);
3263                 return BLK_STS_IOERR;
3264         }
3265
3266         /*
3267          * The queue settings related to segment counting may differ from the
3268          * original queue.
3269          */
3270         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3271         if (rq->nr_phys_segments > max_segments) {
3272                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3273                         __func__, rq->nr_phys_segments, max_segments);
3274                 return BLK_STS_IOERR;
3275         }
3276
3277         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3278                 return BLK_STS_IOERR;
3279
3280         ret = blk_crypto_rq_get_keyslot(rq);
3281         if (ret != BLK_STS_OK)
3282                 return ret;
3283
3284         blk_account_io_start(rq);
3285
3286         /*
3287          * Since we have a scheduler attached on the top device,
3288          * bypass a potential scheduler on the bottom device for
3289          * insert.
3290          */
3291         blk_mq_run_dispatch_ops(q,
3292                         ret = blk_mq_request_issue_directly(rq, true));
3293         if (ret)
3294                 blk_account_io_done(rq, blk_time_get_ns());
3295         return ret;
3296 }
3297 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3298
3299 /**
3300  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3301  * @rq: the clone request to be cleaned up
3302  *
3303  * Description:
3304  *     Free all bios in @rq for a cloned request.
3305  */
3306 void blk_rq_unprep_clone(struct request *rq)
3307 {
3308         struct bio *bio;
3309
3310         while ((bio = rq->bio) != NULL) {
3311                 rq->bio = bio->bi_next;
3312
3313                 bio_put(bio);
3314         }
3315 }
3316 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3317
3318 /**
3319  * blk_rq_prep_clone - Helper function to setup clone request
3320  * @rq: the request to be setup
3321  * @rq_src: original request to be cloned
3322  * @bs: bio_set that bios for clone are allocated from
3323  * @gfp_mask: memory allocation mask for bio
3324  * @bio_ctr: setup function to be called for each clone bio.
3325  *           Returns %0 for success, non %0 for failure.
3326  * @data: private data to be passed to @bio_ctr
3327  *
3328  * Description:
3329  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3330  *     Also, pages which the original bios are pointing to are not copied
3331  *     and the cloned bios just point same pages.
3332  *     So cloned bios must be completed before original bios, which means
3333  *     the caller must complete @rq before @rq_src.
3334  */
3335 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3336                       struct bio_set *bs, gfp_t gfp_mask,
3337                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3338                       void *data)
3339 {
3340         struct bio *bio_src;
3341
3342         if (!bs)
3343                 bs = &fs_bio_set;
3344
3345         __rq_for_each_bio(bio_src, rq_src) {
3346                 struct bio *bio  = bio_alloc_clone(rq->q->disk->part0, bio_src,
3347                                         gfp_mask, bs);
3348                 if (!bio)
3349                         goto free_and_out;
3350
3351                 if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3352                         bio_put(bio);
3353                         goto free_and_out;
3354                 }
3355
3356                 if (rq->bio) {
3357                         rq->biotail->bi_next = bio;
3358                         rq->biotail = bio;
3359                 } else {
3360                         rq->bio = rq->biotail = bio;
3361                 }
3362         }
3363
3364         /* Copy attributes of the original request to the clone request. */
3365         rq->__sector = blk_rq_pos(rq_src);
3366         rq->__data_len = blk_rq_bytes(rq_src);
3367         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3368                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3369                 rq->special_vec = rq_src->special_vec;
3370         }
3371         rq->nr_phys_segments = rq_src->nr_phys_segments;
3372         rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3373
3374         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3375                 goto free_and_out;
3376
3377         return 0;
3378
3379 free_and_out:
3380         blk_rq_unprep_clone(rq);
3381
3382         return -ENOMEM;
3383 }
3384 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3385 #endif /* CONFIG_BLK_MQ_STACKING */
3386
3387 /*
3388  * Steal bios from a request and add them to a bio list.
3389  * The request must not have been partially completed before.
3390  */
3391 void blk_steal_bios(struct bio_list *list, struct request *rq)
3392 {
3393         if (rq->bio) {
3394                 if (list->tail)
3395                         list->tail->bi_next = rq->bio;
3396                 else
3397                         list->head = rq->bio;
3398                 list->tail = rq->biotail;
3399
3400                 rq->bio = NULL;
3401                 rq->biotail = NULL;
3402         }
3403
3404         rq->__data_len = 0;
3405 }
3406 EXPORT_SYMBOL_GPL(blk_steal_bios);
3407
3408 static size_t order_to_size(unsigned int order)
3409 {
3410         return (size_t)PAGE_SIZE << order;
3411 }
3412
3413 /* called before freeing request pool in @tags */
3414 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3415                                     struct blk_mq_tags *tags)
3416 {
3417         struct page *page;
3418         unsigned long flags;
3419
3420         /*
3421          * There is no need to clear mapping if driver tags is not initialized
3422          * or the mapping belongs to the driver tags.
3423          */
3424         if (!drv_tags || drv_tags == tags)
3425                 return;
3426
3427         list_for_each_entry(page, &tags->page_list, lru) {
3428                 unsigned long start = (unsigned long)page_address(page);
3429                 unsigned long end = start + order_to_size(page->private);
3430                 int i;
3431
3432                 for (i = 0; i < drv_tags->nr_tags; i++) {
3433                         struct request *rq = drv_tags->rqs[i];
3434                         unsigned long rq_addr = (unsigned long)rq;
3435
3436                         if (rq_addr >= start && rq_addr < end) {
3437                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3438                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3439                         }
3440                 }
3441         }
3442
3443         /*
3444          * Wait until all pending iteration is done.
3445          *
3446          * Request reference is cleared and it is guaranteed to be observed
3447          * after the ->lock is released.
3448          */
3449         spin_lock_irqsave(&drv_tags->lock, flags);
3450         spin_unlock_irqrestore(&drv_tags->lock, flags);
3451 }
3452
3453 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3454                      unsigned int hctx_idx)
3455 {
3456         struct blk_mq_tags *drv_tags;
3457         struct page *page;
3458
3459         if (list_empty(&tags->page_list))
3460                 return;
3461
3462         if (blk_mq_is_shared_tags(set->flags))
3463                 drv_tags = set->shared_tags;
3464         else
3465                 drv_tags = set->tags[hctx_idx];
3466
3467         if (tags->static_rqs && set->ops->exit_request) {
3468                 int i;
3469
3470                 for (i = 0; i < tags->nr_tags; i++) {
3471                         struct request *rq = tags->static_rqs[i];
3472
3473                         if (!rq)
3474                                 continue;
3475                         set->ops->exit_request(set, rq, hctx_idx);
3476                         tags->static_rqs[i] = NULL;
3477                 }
3478         }
3479
3480         blk_mq_clear_rq_mapping(drv_tags, tags);
3481
3482         while (!list_empty(&tags->page_list)) {
3483                 page = list_first_entry(&tags->page_list, struct page, lru);
3484                 list_del_init(&page->lru);
3485                 /*
3486                  * Remove kmemleak object previously allocated in
3487                  * blk_mq_alloc_rqs().
3488                  */
3489                 kmemleak_free(page_address(page));
3490                 __free_pages(page, page->private);
3491         }
3492 }
3493
3494 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3495 {
3496         kfree(tags->rqs);
3497         tags->rqs = NULL;
3498         kfree(tags->static_rqs);
3499         tags->static_rqs = NULL;
3500
3501         blk_mq_free_tags(tags);
3502 }
3503
3504 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3505                 unsigned int hctx_idx)
3506 {
3507         int i;
3508
3509         for (i = 0; i < set->nr_maps; i++) {
3510                 unsigned int start = set->map[i].queue_offset;
3511                 unsigned int end = start + set->map[i].nr_queues;
3512
3513                 if (hctx_idx >= start && hctx_idx < end)
3514                         break;
3515         }
3516
3517         if (i >= set->nr_maps)
3518                 i = HCTX_TYPE_DEFAULT;
3519
3520         return i;
3521 }
3522
3523 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3524                 unsigned int hctx_idx)
3525 {
3526         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3527
3528         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3529 }
3530
3531 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3532                                                unsigned int hctx_idx,
3533                                                unsigned int nr_tags,
3534                                                unsigned int reserved_tags)
3535 {
3536         int node = blk_mq_get_hctx_node(set, hctx_idx);
3537         struct blk_mq_tags *tags;
3538
3539         if (node == NUMA_NO_NODE)
3540                 node = set->numa_node;
3541
3542         tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3543         if (!tags)
3544                 return NULL;
3545
3546         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3547                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3548                                  node);
3549         if (!tags->rqs)
3550                 goto err_free_tags;
3551
3552         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3553                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3554                                         node);
3555         if (!tags->static_rqs)
3556                 goto err_free_rqs;
3557
3558         return tags;
3559
3560 err_free_rqs:
3561         kfree(tags->rqs);
3562 err_free_tags:
3563         blk_mq_free_tags(tags);
3564         return NULL;
3565 }
3566
3567 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3568                                unsigned int hctx_idx, int node)
3569 {
3570         int ret;
3571
3572         if (set->ops->init_request) {
3573                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3574                 if (ret)
3575                         return ret;
3576         }
3577
3578         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3579         return 0;
3580 }
3581
3582 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3583                             struct blk_mq_tags *tags,
3584                             unsigned int hctx_idx, unsigned int depth)
3585 {
3586         unsigned int i, j, entries_per_page, max_order = 4;
3587         int node = blk_mq_get_hctx_node(set, hctx_idx);
3588         size_t rq_size, left;
3589
3590         if (node == NUMA_NO_NODE)
3591                 node = set->numa_node;
3592
3593         INIT_LIST_HEAD(&tags->page_list);
3594
3595         /*
3596          * rq_size is the size of the request plus driver payload, rounded
3597          * to the cacheline size
3598          */
3599         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3600                                 cache_line_size());
3601         left = rq_size * depth;
3602
3603         for (i = 0; i < depth; ) {
3604                 int this_order = max_order;
3605                 struct page *page;
3606                 int to_do;
3607                 void *p;
3608
3609                 while (this_order && left < order_to_size(this_order - 1))
3610                         this_order--;
3611
3612                 do {
3613                         page = alloc_pages_node(node,
3614                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3615                                 this_order);
3616                         if (page)
3617                                 break;
3618                         if (!this_order--)
3619                                 break;
3620                         if (order_to_size(this_order) < rq_size)
3621                                 break;
3622                 } while (1);
3623
3624                 if (!page)
3625                         goto fail;
3626
3627                 page->private = this_order;
3628                 list_add_tail(&page->lru, &tags->page_list);
3629
3630                 p = page_address(page);
3631                 /*
3632                  * Allow kmemleak to scan these pages as they contain pointers
3633                  * to additional allocations like via ops->init_request().
3634                  */
3635                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3636                 entries_per_page = order_to_size(this_order) / rq_size;
3637                 to_do = min(entries_per_page, depth - i);
3638                 left -= to_do * rq_size;
3639                 for (j = 0; j < to_do; j++) {
3640                         struct request *rq = p;
3641
3642                         tags->static_rqs[i] = rq;
3643                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3644                                 tags->static_rqs[i] = NULL;
3645                                 goto fail;
3646                         }
3647
3648                         p += rq_size;
3649                         i++;
3650                 }
3651         }
3652         return 0;
3653
3654 fail:
3655         blk_mq_free_rqs(set, tags, hctx_idx);
3656         return -ENOMEM;
3657 }
3658
3659 struct rq_iter_data {
3660         struct blk_mq_hw_ctx *hctx;
3661         bool has_rq;
3662 };
3663
3664 static bool blk_mq_has_request(struct request *rq, void *data)
3665 {
3666         struct rq_iter_data *iter_data = data;
3667
3668         if (rq->mq_hctx != iter_data->hctx)
3669                 return true;
3670         iter_data->has_rq = true;
3671         return false;
3672 }
3673
3674 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3675 {
3676         struct blk_mq_tags *tags = hctx->sched_tags ?
3677                         hctx->sched_tags : hctx->tags;
3678         struct rq_iter_data data = {
3679                 .hctx   = hctx,
3680         };
3681
3682         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3683         return data.has_rq;
3684 }
3685
3686 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3687                 unsigned int this_cpu)
3688 {
3689         enum hctx_type type = hctx->type;
3690         int cpu;
3691
3692         /*
3693          * hctx->cpumask has to rule out isolated CPUs, but userspace still
3694          * might submit IOs on these isolated CPUs, so use the queue map to
3695          * check if all CPUs mapped to this hctx are offline
3696          */
3697         for_each_online_cpu(cpu) {
3698                 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3699                                 type, cpu);
3700
3701                 if (h != hctx)
3702                         continue;
3703
3704                 /* this hctx has at least one online CPU */
3705                 if (this_cpu != cpu)
3706                         return true;
3707         }
3708
3709         return false;
3710 }
3711
3712 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3713 {
3714         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3715                         struct blk_mq_hw_ctx, cpuhp_online);
3716
3717         if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3718                 return 0;
3719
3720         /*
3721          * Prevent new request from being allocated on the current hctx.
3722          *
3723          * The smp_mb__after_atomic() Pairs with the implied barrier in
3724          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3725          * seen once we return from the tag allocator.
3726          */
3727         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3728         smp_mb__after_atomic();
3729
3730         /*
3731          * Try to grab a reference to the queue and wait for any outstanding
3732          * requests.  If we could not grab a reference the queue has been
3733          * frozen and there are no requests.
3734          */
3735         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3736                 while (blk_mq_hctx_has_requests(hctx))
3737                         msleep(5);
3738                 percpu_ref_put(&hctx->queue->q_usage_counter);
3739         }
3740
3741         return 0;
3742 }
3743
3744 /*
3745  * Check if one CPU is mapped to the specified hctx
3746  *
3747  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3748  * to be used for scheduling kworker only. For other usage, please call this
3749  * helper for checking if one CPU belongs to the specified hctx
3750  */
3751 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3752                 const struct blk_mq_hw_ctx *hctx)
3753 {
3754         struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3755                         hctx->type, cpu);
3756
3757         return mapped_hctx == hctx;
3758 }
3759
3760 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3761 {
3762         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3763                         struct blk_mq_hw_ctx, cpuhp_online);
3764
3765         if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3766                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3767         return 0;
3768 }
3769
3770 /*
3771  * 'cpu' is going away. splice any existing rq_list entries from this
3772  * software queue to the hw queue dispatch list, and ensure that it
3773  * gets run.
3774  */
3775 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3776 {
3777         struct blk_mq_hw_ctx *hctx;
3778         struct blk_mq_ctx *ctx;
3779         LIST_HEAD(tmp);
3780         enum hctx_type type;
3781
3782         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3783         if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3784                 return 0;
3785
3786         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3787         type = hctx->type;
3788
3789         spin_lock(&ctx->lock);
3790         if (!list_empty(&ctx->rq_lists[type])) {
3791                 list_splice_init(&ctx->rq_lists[type], &tmp);
3792                 blk_mq_hctx_clear_pending(hctx, ctx);
3793         }
3794         spin_unlock(&ctx->lock);
3795
3796         if (list_empty(&tmp))
3797                 return 0;
3798
3799         spin_lock(&hctx->lock);
3800         list_splice_tail_init(&tmp, &hctx->dispatch);
3801         spin_unlock(&hctx->lock);
3802
3803         blk_mq_run_hw_queue(hctx, true);
3804         return 0;
3805 }
3806
3807 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3808 {
3809         lockdep_assert_held(&blk_mq_cpuhp_lock);
3810
3811         if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3812             !hlist_unhashed(&hctx->cpuhp_online)) {
3813                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3814                                                     &hctx->cpuhp_online);
3815                 INIT_HLIST_NODE(&hctx->cpuhp_online);
3816         }
3817
3818         if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3819                 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3820                                                     &hctx->cpuhp_dead);
3821                 INIT_HLIST_NODE(&hctx->cpuhp_dead);
3822         }
3823 }
3824
3825 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3826 {
3827         mutex_lock(&blk_mq_cpuhp_lock);
3828         __blk_mq_remove_cpuhp(hctx);
3829         mutex_unlock(&blk_mq_cpuhp_lock);
3830 }
3831
3832 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3833 {
3834         lockdep_assert_held(&blk_mq_cpuhp_lock);
3835
3836         if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3837             hlist_unhashed(&hctx->cpuhp_online))
3838                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3839                                 &hctx->cpuhp_online);
3840
3841         if (hlist_unhashed(&hctx->cpuhp_dead))
3842                 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3843                                 &hctx->cpuhp_dead);
3844 }
3845
3846 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3847 {
3848         struct blk_mq_hw_ctx *hctx;
3849
3850         lockdep_assert_held(&blk_mq_cpuhp_lock);
3851
3852         list_for_each_entry(hctx, head, hctx_list)
3853                 __blk_mq_remove_cpuhp(hctx);
3854 }
3855
3856 /*
3857  * Unregister cpuhp callbacks from exited hw queues
3858  *
3859  * Safe to call if this `request_queue` is live
3860  */
3861 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3862 {
3863         LIST_HEAD(hctx_list);
3864
3865         spin_lock(&q->unused_hctx_lock);
3866         list_splice_init(&q->unused_hctx_list, &hctx_list);
3867         spin_unlock(&q->unused_hctx_lock);
3868
3869         mutex_lock(&blk_mq_cpuhp_lock);
3870         __blk_mq_remove_cpuhp_list(&hctx_list);
3871         mutex_unlock(&blk_mq_cpuhp_lock);
3872
3873         spin_lock(&q->unused_hctx_lock);
3874         list_splice(&hctx_list, &q->unused_hctx_list);
3875         spin_unlock(&q->unused_hctx_lock);
3876 }
3877
3878 /*
3879  * Register cpuhp callbacks from all hw queues
3880  *
3881  * Safe to call if this `request_queue` is live
3882  */
3883 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3884 {
3885         struct blk_mq_hw_ctx *hctx;
3886         unsigned long i;
3887
3888         mutex_lock(&blk_mq_cpuhp_lock);
3889         queue_for_each_hw_ctx(q, hctx, i)
3890                 __blk_mq_add_cpuhp(hctx);
3891         mutex_unlock(&blk_mq_cpuhp_lock);
3892 }
3893
3894 /*
3895  * Before freeing hw queue, clearing the flush request reference in
3896  * tags->rqs[] for avoiding potential UAF.
3897  */
3898 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3899                 unsigned int queue_depth, struct request *flush_rq)
3900 {
3901         int i;
3902         unsigned long flags;
3903
3904         /* The hw queue may not be mapped yet */
3905         if (!tags)
3906                 return;
3907
3908         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3909
3910         for (i = 0; i < queue_depth; i++)
3911                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3912
3913         /*
3914          * Wait until all pending iteration is done.
3915          *
3916          * Request reference is cleared and it is guaranteed to be observed
3917          * after the ->lock is released.
3918          */
3919         spin_lock_irqsave(&tags->lock, flags);
3920         spin_unlock_irqrestore(&tags->lock, flags);
3921 }
3922
3923 /* hctx->ctxs will be freed in queue's release handler */
3924 static void blk_mq_exit_hctx(struct request_queue *q,
3925                 struct blk_mq_tag_set *set,
3926                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3927 {
3928         struct request *flush_rq = hctx->fq->flush_rq;
3929
3930         if (blk_mq_hw_queue_mapped(hctx))
3931                 blk_mq_tag_idle(hctx);
3932
3933         if (blk_queue_init_done(q))
3934                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3935                                 set->queue_depth, flush_rq);
3936         if (set->ops->exit_request)
3937                 set->ops->exit_request(set, flush_rq, hctx_idx);
3938
3939         if (set->ops->exit_hctx)
3940                 set->ops->exit_hctx(hctx, hctx_idx);
3941
3942         xa_erase(&q->hctx_table, hctx_idx);
3943
3944         spin_lock(&q->unused_hctx_lock);
3945         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3946         spin_unlock(&q->unused_hctx_lock);
3947 }
3948
3949 static void blk_mq_exit_hw_queues(struct request_queue *q,
3950                 struct blk_mq_tag_set *set, int nr_queue)
3951 {
3952         struct blk_mq_hw_ctx *hctx;
3953         unsigned long i;
3954
3955         queue_for_each_hw_ctx(q, hctx, i) {
3956                 if (i == nr_queue)
3957                         break;
3958                 blk_mq_remove_cpuhp(hctx);
3959                 blk_mq_exit_hctx(q, set, hctx, i);
3960         }
3961 }
3962
3963 static int blk_mq_init_hctx(struct request_queue *q,
3964                 struct blk_mq_tag_set *set,
3965                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3966 {
3967         hctx->queue_num = hctx_idx;
3968
3969         hctx->tags = set->tags[hctx_idx];
3970
3971         if (set->ops->init_hctx &&
3972             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3973                 goto fail;
3974
3975         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3976                                 hctx->numa_node))
3977                 goto exit_hctx;
3978
3979         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3980                 goto exit_flush_rq;
3981
3982         return 0;
3983
3984  exit_flush_rq:
3985         if (set->ops->exit_request)
3986                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3987  exit_hctx:
3988         if (set->ops->exit_hctx)
3989                 set->ops->exit_hctx(hctx, hctx_idx);
3990  fail:
3991         return -1;
3992 }
3993
3994 static struct blk_mq_hw_ctx *
3995 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3996                 int node)
3997 {
3998         struct blk_mq_hw_ctx *hctx;
3999         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
4000
4001         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
4002         if (!hctx)
4003                 goto fail_alloc_hctx;
4004
4005         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4006                 goto free_hctx;
4007
4008         atomic_set(&hctx->nr_active, 0);
4009         if (node == NUMA_NO_NODE)
4010                 node = set->numa_node;
4011         hctx->numa_node = node;
4012
4013         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4014         spin_lock_init(&hctx->lock);
4015         INIT_LIST_HEAD(&hctx->dispatch);
4016         INIT_HLIST_NODE(&hctx->cpuhp_dead);
4017         INIT_HLIST_NODE(&hctx->cpuhp_online);
4018         hctx->queue = q;
4019         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4020
4021         INIT_LIST_HEAD(&hctx->hctx_list);
4022
4023         /*
4024          * Allocate space for all possible cpus to avoid allocation at
4025          * runtime
4026          */
4027         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4028                         gfp, node);
4029         if (!hctx->ctxs)
4030                 goto free_cpumask;
4031
4032         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4033                                 gfp, node, false, false))
4034                 goto free_ctxs;
4035         hctx->nr_ctx = 0;
4036
4037         spin_lock_init(&hctx->dispatch_wait_lock);
4038         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4039         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4040
4041         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
4042         if (!hctx->fq)
4043                 goto free_bitmap;
4044
4045         blk_mq_hctx_kobj_init(hctx);
4046
4047         return hctx;
4048
4049  free_bitmap:
4050         sbitmap_free(&hctx->ctx_map);
4051  free_ctxs:
4052         kfree(hctx->ctxs);
4053  free_cpumask:
4054         free_cpumask_var(hctx->cpumask);
4055  free_hctx:
4056         kfree(hctx);
4057  fail_alloc_hctx:
4058         return NULL;
4059 }
4060
4061 static void blk_mq_init_cpu_queues(struct request_queue *q,
4062                                    unsigned int nr_hw_queues)
4063 {
4064         struct blk_mq_tag_set *set = q->tag_set;
4065         unsigned int i, j;
4066
4067         for_each_possible_cpu(i) {
4068                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4069                 struct blk_mq_hw_ctx *hctx;
4070                 int k;
4071
4072                 __ctx->cpu = i;
4073                 spin_lock_init(&__ctx->lock);
4074                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4075                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4076
4077                 __ctx->queue = q;
4078
4079                 /*
4080                  * Set local node, IFF we have more than one hw queue. If
4081                  * not, we remain on the home node of the device
4082                  */
4083                 for (j = 0; j < set->nr_maps; j++) {
4084                         hctx = blk_mq_map_queue_type(q, j, i);
4085                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4086                                 hctx->numa_node = cpu_to_node(i);
4087                 }
4088         }
4089 }
4090
4091 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4092                                              unsigned int hctx_idx,
4093                                              unsigned int depth)
4094 {
4095         struct blk_mq_tags *tags;
4096         int ret;
4097
4098         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4099         if (!tags)
4100                 return NULL;
4101
4102         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4103         if (ret) {
4104                 blk_mq_free_rq_map(tags);
4105                 return NULL;
4106         }
4107
4108         return tags;
4109 }
4110
4111 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4112                                        int hctx_idx)
4113 {
4114         if (blk_mq_is_shared_tags(set->flags)) {
4115                 set->tags[hctx_idx] = set->shared_tags;
4116
4117                 return true;
4118         }
4119
4120         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4121                                                        set->queue_depth);
4122
4123         return set->tags[hctx_idx];
4124 }
4125
4126 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4127                              struct blk_mq_tags *tags,
4128                              unsigned int hctx_idx)
4129 {
4130         if (tags) {
4131                 blk_mq_free_rqs(set, tags, hctx_idx);
4132                 blk_mq_free_rq_map(tags);
4133         }
4134 }
4135
4136 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4137                                       unsigned int hctx_idx)
4138 {
4139         if (!blk_mq_is_shared_tags(set->flags))
4140                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4141
4142         set->tags[hctx_idx] = NULL;
4143 }
4144
4145 static void blk_mq_map_swqueue(struct request_queue *q)
4146 {
4147         unsigned int j, hctx_idx;
4148         unsigned long i;
4149         struct blk_mq_hw_ctx *hctx;
4150         struct blk_mq_ctx *ctx;
4151         struct blk_mq_tag_set *set = q->tag_set;
4152
4153         queue_for_each_hw_ctx(q, hctx, i) {
4154                 cpumask_clear(hctx->cpumask);
4155                 hctx->nr_ctx = 0;
4156                 hctx->dispatch_from = NULL;
4157         }
4158
4159         /*
4160          * Map software to hardware queues.
4161          *
4162          * If the cpu isn't present, the cpu is mapped to first hctx.
4163          */
4164         for_each_possible_cpu(i) {
4165
4166                 ctx = per_cpu_ptr(q->queue_ctx, i);
4167                 for (j = 0; j < set->nr_maps; j++) {
4168                         if (!set->map[j].nr_queues) {
4169                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
4170                                                 HCTX_TYPE_DEFAULT, i);
4171                                 continue;
4172                         }
4173                         hctx_idx = set->map[j].mq_map[i];
4174                         /* unmapped hw queue can be remapped after CPU topo changed */
4175                         if (!set->tags[hctx_idx] &&
4176                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4177                                 /*
4178                                  * If tags initialization fail for some hctx,
4179                                  * that hctx won't be brought online.  In this
4180                                  * case, remap the current ctx to hctx[0] which
4181                                  * is guaranteed to always have tags allocated
4182                                  */
4183                                 set->map[j].mq_map[i] = 0;
4184                         }
4185
4186                         hctx = blk_mq_map_queue_type(q, j, i);
4187                         ctx->hctxs[j] = hctx;
4188                         /*
4189                          * If the CPU is already set in the mask, then we've
4190                          * mapped this one already. This can happen if
4191                          * devices share queues across queue maps.
4192                          */
4193                         if (cpumask_test_cpu(i, hctx->cpumask))
4194                                 continue;
4195
4196                         cpumask_set_cpu(i, hctx->cpumask);
4197                         hctx->type = j;
4198                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
4199                         hctx->ctxs[hctx->nr_ctx++] = ctx;
4200
4201                         /*
4202                          * If the nr_ctx type overflows, we have exceeded the
4203                          * amount of sw queues we can support.
4204                          */
4205                         BUG_ON(!hctx->nr_ctx);
4206                 }
4207
4208                 for (; j < HCTX_MAX_TYPES; j++)
4209                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
4210                                         HCTX_TYPE_DEFAULT, i);
4211         }
4212
4213         queue_for_each_hw_ctx(q, hctx, i) {
4214                 int cpu;
4215
4216                 /*
4217                  * If no software queues are mapped to this hardware queue,
4218                  * disable it and free the request entries.
4219                  */
4220                 if (!hctx->nr_ctx) {
4221                         /* Never unmap queue 0.  We need it as a
4222                          * fallback in case of a new remap fails
4223                          * allocation
4224                          */
4225                         if (i)
4226                                 __blk_mq_free_map_and_rqs(set, i);
4227
4228                         hctx->tags = NULL;
4229                         continue;
4230                 }
4231
4232                 hctx->tags = set->tags[i];
4233                 WARN_ON(!hctx->tags);
4234
4235                 /*
4236                  * Set the map size to the number of mapped software queues.
4237                  * This is more accurate and more efficient than looping
4238                  * over all possibly mapped software queues.
4239                  */
4240                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4241
4242                 /*
4243                  * Rule out isolated CPUs from hctx->cpumask to avoid
4244                  * running block kworker on isolated CPUs
4245                  */
4246                 for_each_cpu(cpu, hctx->cpumask) {
4247                         if (cpu_is_isolated(cpu))
4248                                 cpumask_clear_cpu(cpu, hctx->cpumask);
4249                 }
4250
4251                 /*
4252                  * Initialize batch roundrobin counts
4253                  */
4254                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4255                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4256         }
4257 }
4258
4259 /*
4260  * Caller needs to ensure that we're either frozen/quiesced, or that
4261  * the queue isn't live yet.
4262  */
4263 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4264 {
4265         struct blk_mq_hw_ctx *hctx;
4266         unsigned long i;
4267
4268         queue_for_each_hw_ctx(q, hctx, i) {
4269                 if (shared) {
4270                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4271                 } else {
4272                         blk_mq_tag_idle(hctx);
4273                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4274                 }
4275         }
4276 }
4277
4278 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4279                                          bool shared)
4280 {
4281         struct request_queue *q;
4282         unsigned int memflags;
4283
4284         lockdep_assert_held(&set->tag_list_lock);
4285
4286         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4287                 memflags = blk_mq_freeze_queue(q);
4288                 queue_set_hctx_shared(q, shared);
4289                 blk_mq_unfreeze_queue(q, memflags);
4290         }
4291 }
4292
4293 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4294 {
4295         struct blk_mq_tag_set *set = q->tag_set;
4296
4297         mutex_lock(&set->tag_list_lock);
4298         list_del(&q->tag_set_list);
4299         if (list_is_singular(&set->tag_list)) {
4300                 /* just transitioned to unshared */
4301                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4302                 /* update existing queue */
4303                 blk_mq_update_tag_set_shared(set, false);
4304         }
4305         mutex_unlock(&set->tag_list_lock);
4306         INIT_LIST_HEAD(&q->tag_set_list);
4307 }
4308
4309 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4310                                      struct request_queue *q)
4311 {
4312         mutex_lock(&set->tag_list_lock);
4313
4314         /*
4315          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4316          */
4317         if (!list_empty(&set->tag_list) &&
4318             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4319                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4320                 /* update existing queue */
4321                 blk_mq_update_tag_set_shared(set, true);
4322         }
4323         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4324                 queue_set_hctx_shared(q, true);
4325         list_add_tail(&q->tag_set_list, &set->tag_list);
4326
4327         mutex_unlock(&set->tag_list_lock);
4328 }
4329
4330 /* All allocations will be freed in release handler of q->mq_kobj */
4331 static int blk_mq_alloc_ctxs(struct request_queue *q)
4332 {
4333         struct blk_mq_ctxs *ctxs;
4334         int cpu;
4335
4336         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4337         if (!ctxs)
4338                 return -ENOMEM;
4339
4340         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4341         if (!ctxs->queue_ctx)
4342                 goto fail;
4343
4344         for_each_possible_cpu(cpu) {
4345                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4346                 ctx->ctxs = ctxs;
4347         }
4348
4349         q->mq_kobj = &ctxs->kobj;
4350         q->queue_ctx = ctxs->queue_ctx;
4351
4352         return 0;
4353  fail:
4354         kfree(ctxs);
4355         return -ENOMEM;
4356 }
4357
4358 /*
4359  * It is the actual release handler for mq, but we do it from
4360  * request queue's release handler for avoiding use-after-free
4361  * and headache because q->mq_kobj shouldn't have been introduced,
4362  * but we can't group ctx/kctx kobj without it.
4363  */
4364 void blk_mq_release(struct request_queue *q)
4365 {
4366         struct blk_mq_hw_ctx *hctx, *next;
4367         unsigned long i;
4368
4369         queue_for_each_hw_ctx(q, hctx, i)
4370                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4371
4372         /* all hctx are in .unused_hctx_list now */
4373         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4374                 list_del_init(&hctx->hctx_list);
4375                 kobject_put(&hctx->kobj);
4376         }
4377
4378         xa_destroy(&q->hctx_table);
4379
4380         /*
4381          * release .mq_kobj and sw queue's kobject now because
4382          * both share lifetime with request queue.
4383          */
4384         blk_mq_sysfs_deinit(q);
4385 }
4386
4387 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4388                 struct queue_limits *lim, void *queuedata)
4389 {
4390         struct queue_limits default_lim = { };
4391         struct request_queue *q;
4392         int ret;
4393
4394         if (!lim)
4395                 lim = &default_lim;
4396         lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4397         if (set->nr_maps > HCTX_TYPE_POLL)
4398                 lim->features |= BLK_FEAT_POLL;
4399
4400         q = blk_alloc_queue(lim, set->numa_node);
4401         if (IS_ERR(q))
4402                 return q;
4403         q->queuedata = queuedata;
4404         ret = blk_mq_init_allocated_queue(set, q);
4405         if (ret) {
4406                 blk_put_queue(q);
4407                 return ERR_PTR(ret);
4408         }
4409         return q;
4410 }
4411 EXPORT_SYMBOL(blk_mq_alloc_queue);
4412
4413 /**
4414  * blk_mq_destroy_queue - shutdown a request queue
4415  * @q: request queue to shutdown
4416  *
4417  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4418  * requests will be failed with -ENODEV. The caller is responsible for dropping
4419  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4420  *
4421  * Context: can sleep
4422  */
4423 void blk_mq_destroy_queue(struct request_queue *q)
4424 {
4425         WARN_ON_ONCE(!queue_is_mq(q));
4426         WARN_ON_ONCE(blk_queue_registered(q));
4427
4428         might_sleep();
4429
4430         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4431         blk_queue_start_drain(q);
4432         blk_mq_freeze_queue_wait(q);
4433
4434         blk_sync_queue(q);
4435         blk_mq_cancel_work_sync(q);
4436         blk_mq_exit_queue(q);
4437 }
4438 EXPORT_SYMBOL(blk_mq_destroy_queue);
4439
4440 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4441                 struct queue_limits *lim, void *queuedata,
4442                 struct lock_class_key *lkclass)
4443 {
4444         struct request_queue *q;
4445         struct gendisk *disk;
4446
4447         q = blk_mq_alloc_queue(set, lim, queuedata);
4448         if (IS_ERR(q))
4449                 return ERR_CAST(q);
4450
4451         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4452         if (!disk) {
4453                 blk_mq_destroy_queue(q);
4454                 blk_put_queue(q);
4455                 return ERR_PTR(-ENOMEM);
4456         }
4457         set_bit(GD_OWNS_QUEUE, &disk->state);
4458         return disk;
4459 }
4460 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4461
4462 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4463                 struct lock_class_key *lkclass)
4464 {
4465         struct gendisk *disk;
4466
4467         if (!blk_get_queue(q))
4468                 return NULL;
4469         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4470         if (!disk)
4471                 blk_put_queue(q);
4472         return disk;
4473 }
4474 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4475
4476 /*
4477  * Only hctx removed from cpuhp list can be reused
4478  */
4479 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4480 {
4481         return hlist_unhashed(&hctx->cpuhp_online) &&
4482                 hlist_unhashed(&hctx->cpuhp_dead);
4483 }
4484
4485 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4486                 struct blk_mq_tag_set *set, struct request_queue *q,
4487                 int hctx_idx, int node)
4488 {
4489         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4490
4491         /* reuse dead hctx first */
4492         spin_lock(&q->unused_hctx_lock);
4493         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4494                 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4495                         hctx = tmp;
4496                         break;
4497                 }
4498         }
4499         if (hctx)
4500                 list_del_init(&hctx->hctx_list);
4501         spin_unlock(&q->unused_hctx_lock);
4502
4503         if (!hctx)
4504                 hctx = blk_mq_alloc_hctx(q, set, node);
4505         if (!hctx)
4506                 goto fail;
4507
4508         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4509                 goto free_hctx;
4510
4511         return hctx;
4512
4513  free_hctx:
4514         kobject_put(&hctx->kobj);
4515  fail:
4516         return NULL;
4517 }
4518
4519 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4520                                      struct request_queue *q)
4521 {
4522         struct blk_mq_hw_ctx *hctx;
4523         unsigned long i, j;
4524
4525         for (i = 0; i < set->nr_hw_queues; i++) {
4526                 int old_node;
4527                 int node = blk_mq_get_hctx_node(set, i);
4528                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4529
4530                 if (old_hctx) {
4531                         old_node = old_hctx->numa_node;
4532                         blk_mq_exit_hctx(q, set, old_hctx, i);
4533                 }
4534
4535                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4536                         if (!old_hctx)
4537                                 break;
4538                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4539                                         node, old_node);
4540                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4541                         WARN_ON_ONCE(!hctx);
4542                 }
4543         }
4544         /*
4545          * Increasing nr_hw_queues fails. Free the newly allocated
4546          * hctxs and keep the previous q->nr_hw_queues.
4547          */
4548         if (i != set->nr_hw_queues) {
4549                 j = q->nr_hw_queues;
4550         } else {
4551                 j = i;
4552                 q->nr_hw_queues = set->nr_hw_queues;
4553         }
4554
4555         xa_for_each_start(&q->hctx_table, j, hctx, j)
4556                 blk_mq_exit_hctx(q, set, hctx, j);
4557 }
4558
4559 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4560                                    struct request_queue *q)
4561 {
4562         __blk_mq_realloc_hw_ctxs(set, q);
4563
4564         /* unregister cpuhp callbacks for exited hctxs */
4565         blk_mq_remove_hw_queues_cpuhp(q);
4566
4567         /* register cpuhp for new initialized hctxs */
4568         blk_mq_add_hw_queues_cpuhp(q);
4569 }
4570
4571 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4572                 struct request_queue *q)
4573 {
4574         /* mark the queue as mq asap */
4575         q->mq_ops = set->ops;
4576
4577         /*
4578          * ->tag_set has to be setup before initialize hctx, which cpuphp
4579          * handler needs it for checking queue mapping
4580          */
4581         q->tag_set = set;
4582
4583         if (blk_mq_alloc_ctxs(q))
4584                 goto err_exit;
4585
4586         /* init q->mq_kobj and sw queues' kobjects */
4587         blk_mq_sysfs_init(q);
4588
4589         INIT_LIST_HEAD(&q->unused_hctx_list);
4590         spin_lock_init(&q->unused_hctx_lock);
4591
4592         xa_init(&q->hctx_table);
4593
4594         blk_mq_realloc_hw_ctxs(set, q);
4595         if (!q->nr_hw_queues)
4596                 goto err_hctxs;
4597
4598         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4599         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4600
4601         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4602
4603         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4604         INIT_LIST_HEAD(&q->flush_list);
4605         INIT_LIST_HEAD(&q->requeue_list);
4606         spin_lock_init(&q->requeue_lock);
4607
4608         q->nr_requests = set->queue_depth;
4609
4610         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4611         blk_mq_map_swqueue(q);
4612         blk_mq_add_queue_tag_set(set, q);
4613         return 0;
4614
4615 err_hctxs:
4616         blk_mq_release(q);
4617 err_exit:
4618         q->mq_ops = NULL;
4619         return -ENOMEM;
4620 }
4621 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4622
4623 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4624 void blk_mq_exit_queue(struct request_queue *q)
4625 {
4626         struct blk_mq_tag_set *set = q->tag_set;
4627
4628         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4629         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4630         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4631         blk_mq_del_queue_tag_set(q);
4632 }
4633
4634 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4635 {
4636         int i;
4637
4638         if (blk_mq_is_shared_tags(set->flags)) {
4639                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4640                                                 BLK_MQ_NO_HCTX_IDX,
4641                                                 set->queue_depth);
4642                 if (!set->shared_tags)
4643                         return -ENOMEM;
4644         }
4645
4646         for (i = 0; i < set->nr_hw_queues; i++) {
4647                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4648                         goto out_unwind;
4649                 cond_resched();
4650         }
4651
4652         return 0;
4653
4654 out_unwind:
4655         while (--i >= 0)
4656                 __blk_mq_free_map_and_rqs(set, i);
4657
4658         if (blk_mq_is_shared_tags(set->flags)) {
4659                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4660                                         BLK_MQ_NO_HCTX_IDX);
4661         }
4662
4663         return -ENOMEM;
4664 }
4665
4666 /*
4667  * Allocate the request maps associated with this tag_set. Note that this
4668  * may reduce the depth asked for, if memory is tight. set->queue_depth
4669  * will be updated to reflect the allocated depth.
4670  */
4671 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4672 {
4673         unsigned int depth;
4674         int err;
4675
4676         depth = set->queue_depth;
4677         do {
4678                 err = __blk_mq_alloc_rq_maps(set);
4679                 if (!err)
4680                         break;
4681
4682                 set->queue_depth >>= 1;
4683                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4684                         err = -ENOMEM;
4685                         break;
4686                 }
4687         } while (set->queue_depth);
4688
4689         if (!set->queue_depth || err) {
4690                 pr_err("blk-mq: failed to allocate request map\n");
4691                 return -ENOMEM;
4692         }
4693
4694         if (depth != set->queue_depth)
4695                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4696                                                 depth, set->queue_depth);
4697
4698         return 0;
4699 }
4700
4701 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4702 {
4703         /*
4704          * blk_mq_map_queues() and multiple .map_queues() implementations
4705          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4706          * number of hardware queues.
4707          */
4708         if (set->nr_maps == 1)
4709                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4710
4711         if (set->ops->map_queues) {
4712                 int i;
4713
4714                 /*
4715                  * transport .map_queues is usually done in the following
4716                  * way:
4717                  *
4718                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4719                  *      mask = get_cpu_mask(queue)
4720                  *      for_each_cpu(cpu, mask)
4721                  *              set->map[x].mq_map[cpu] = queue;
4722                  * }
4723                  *
4724                  * When we need to remap, the table has to be cleared for
4725                  * killing stale mapping since one CPU may not be mapped
4726                  * to any hw queue.
4727                  */
4728                 for (i = 0; i < set->nr_maps; i++)
4729                         blk_mq_clear_mq_map(&set->map[i]);
4730
4731                 set->ops->map_queues(set);
4732         } else {
4733                 BUG_ON(set->nr_maps > 1);
4734                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4735         }
4736 }
4737
4738 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4739                                        int new_nr_hw_queues)
4740 {
4741         struct blk_mq_tags **new_tags;
4742         int i;
4743
4744         if (set->nr_hw_queues >= new_nr_hw_queues)
4745                 goto done;
4746
4747         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4748                                 GFP_KERNEL, set->numa_node);
4749         if (!new_tags)
4750                 return -ENOMEM;
4751
4752         if (set->tags)
4753                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4754                        sizeof(*set->tags));
4755         kfree(set->tags);
4756         set->tags = new_tags;
4757
4758         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4759                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4760                         while (--i >= set->nr_hw_queues)
4761                                 __blk_mq_free_map_and_rqs(set, i);
4762                         return -ENOMEM;
4763                 }
4764                 cond_resched();
4765         }
4766
4767 done:
4768         set->nr_hw_queues = new_nr_hw_queues;
4769         return 0;
4770 }
4771
4772 /*
4773  * Alloc a tag set to be associated with one or more request queues.
4774  * May fail with EINVAL for various error conditions. May adjust the
4775  * requested depth down, if it's too large. In that case, the set
4776  * value will be stored in set->queue_depth.
4777  */
4778 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4779 {
4780         int i, ret;
4781
4782         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4783
4784         if (!set->nr_hw_queues)
4785                 return -EINVAL;
4786         if (!set->queue_depth)
4787                 return -EINVAL;
4788         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4789                 return -EINVAL;
4790
4791         if (!set->ops->queue_rq)
4792                 return -EINVAL;
4793
4794         if (!set->ops->get_budget ^ !set->ops->put_budget)
4795                 return -EINVAL;
4796
4797         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4798                 pr_info("blk-mq: reduced tag depth to %u\n",
4799                         BLK_MQ_MAX_DEPTH);
4800                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4801         }
4802
4803         if (!set->nr_maps)
4804                 set->nr_maps = 1;
4805         else if (set->nr_maps > HCTX_MAX_TYPES)
4806                 return -EINVAL;
4807
4808         /*
4809          * If a crashdump is active, then we are potentially in a very
4810          * memory constrained environment. Limit us to  64 tags to prevent
4811          * using too much memory.
4812          */
4813         if (is_kdump_kernel())
4814                 set->queue_depth = min(64U, set->queue_depth);
4815
4816         /*
4817          * There is no use for more h/w queues than cpus if we just have
4818          * a single map
4819          */
4820         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4821                 set->nr_hw_queues = nr_cpu_ids;
4822
4823         if (set->flags & BLK_MQ_F_BLOCKING) {
4824                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4825                 if (!set->srcu)
4826                         return -ENOMEM;
4827                 ret = init_srcu_struct(set->srcu);
4828                 if (ret)
4829                         goto out_free_srcu;
4830         }
4831
4832         init_rwsem(&set->update_nr_hwq_lock);
4833
4834         ret = -ENOMEM;
4835         set->tags = kcalloc_node(set->nr_hw_queues,
4836                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4837                                  set->numa_node);
4838         if (!set->tags)
4839                 goto out_cleanup_srcu;
4840
4841         for (i = 0; i < set->nr_maps; i++) {
4842                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4843                                                   sizeof(set->map[i].mq_map[0]),
4844                                                   GFP_KERNEL, set->numa_node);
4845                 if (!set->map[i].mq_map)
4846                         goto out_free_mq_map;
4847                 set->map[i].nr_queues = set->nr_hw_queues;
4848         }
4849
4850         blk_mq_update_queue_map(set);
4851
4852         ret = blk_mq_alloc_set_map_and_rqs(set);
4853         if (ret)
4854                 goto out_free_mq_map;
4855
4856         mutex_init(&set->tag_list_lock);
4857         INIT_LIST_HEAD(&set->tag_list);
4858
4859         return 0;
4860
4861 out_free_mq_map:
4862         for (i = 0; i < set->nr_maps; i++) {
4863                 kfree(set->map[i].mq_map);
4864                 set->map[i].mq_map = NULL;
4865         }
4866         kfree(set->tags);
4867         set->tags = NULL;
4868 out_cleanup_srcu:
4869         if (set->flags & BLK_MQ_F_BLOCKING)
4870                 cleanup_srcu_struct(set->srcu);
4871 out_free_srcu:
4872         if (set->flags & BLK_MQ_F_BLOCKING)
4873                 kfree(set->srcu);
4874         return ret;
4875 }
4876 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4877
4878 /* allocate and initialize a tagset for a simple single-queue device */
4879 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4880                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4881                 unsigned int set_flags)
4882 {
4883         memset(set, 0, sizeof(*set));
4884         set->ops = ops;
4885         set->nr_hw_queues = 1;
4886         set->nr_maps = 1;
4887         set->queue_depth = queue_depth;
4888         set->numa_node = NUMA_NO_NODE;
4889         set->flags = set_flags;
4890         return blk_mq_alloc_tag_set(set);
4891 }
4892 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4893
4894 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4895 {
4896         int i, j;
4897
4898         for (i = 0; i < set->nr_hw_queues; i++)
4899                 __blk_mq_free_map_and_rqs(set, i);
4900
4901         if (blk_mq_is_shared_tags(set->flags)) {
4902                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4903                                         BLK_MQ_NO_HCTX_IDX);
4904         }
4905
4906         for (j = 0; j < set->nr_maps; j++) {
4907                 kfree(set->map[j].mq_map);
4908                 set->map[j].mq_map = NULL;
4909         }
4910
4911         kfree(set->tags);
4912         set->tags = NULL;
4913         if (set->flags & BLK_MQ_F_BLOCKING) {
4914                 cleanup_srcu_struct(set->srcu);
4915                 kfree(set->srcu);
4916         }
4917 }
4918 EXPORT_SYMBOL(blk_mq_free_tag_set);
4919
4920 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4921 {
4922         struct blk_mq_tag_set *set = q->tag_set;
4923         struct blk_mq_hw_ctx *hctx;
4924         int ret;
4925         unsigned long i;
4926
4927         if (WARN_ON_ONCE(!q->mq_freeze_depth))
4928                 return -EINVAL;
4929
4930         if (!set)
4931                 return -EINVAL;
4932
4933         if (q->nr_requests == nr)
4934                 return 0;
4935
4936         blk_mq_quiesce_queue(q);
4937
4938         ret = 0;
4939         queue_for_each_hw_ctx(q, hctx, i) {
4940                 if (!hctx->tags)
4941                         continue;
4942                 /*
4943                  * If we're using an MQ scheduler, just update the scheduler
4944                  * queue depth. This is similar to what the old code would do.
4945                  */
4946                 if (hctx->sched_tags) {
4947                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4948                                                       nr, true);
4949                 } else {
4950                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4951                                                       false);
4952                 }
4953                 if (ret)
4954                         break;
4955                 if (q->elevator && q->elevator->type->ops.depth_updated)
4956                         q->elevator->type->ops.depth_updated(hctx);
4957         }
4958         if (!ret) {
4959                 q->nr_requests = nr;
4960                 if (blk_mq_is_shared_tags(set->flags)) {
4961                         if (q->elevator)
4962                                 blk_mq_tag_update_sched_shared_tags(q);
4963                         else
4964                                 blk_mq_tag_resize_shared_tags(set, nr);
4965                 }
4966         }
4967
4968         blk_mq_unquiesce_queue(q);
4969
4970         return ret;
4971 }
4972
4973 /*
4974  * Switch back to the elevator type stored in the xarray.
4975  */
4976 static void blk_mq_elv_switch_back(struct request_queue *q,
4977                 struct xarray *elv_tbl, struct xarray *et_tbl)
4978 {
4979         struct elevator_type *e = xa_load(elv_tbl, q->id);
4980         struct elevator_tags *t = xa_load(et_tbl, q->id);
4981
4982         /* The elv_update_nr_hw_queues unfreezes the queue. */
4983         elv_update_nr_hw_queues(q, e, t);
4984
4985         /* Drop the reference acquired in blk_mq_elv_switch_none. */
4986         if (e)
4987                 elevator_put(e);
4988 }
4989
4990 /*
4991  * Stores elevator type in xarray and set current elevator to none. It uses
4992  * q->id as an index to store the elevator type into the xarray.
4993  */
4994 static int blk_mq_elv_switch_none(struct request_queue *q,
4995                 struct xarray *elv_tbl)
4996 {
4997         int ret = 0;
4998
4999         lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock);
5000
5001         /*
5002          * Accessing q->elevator without holding q->elevator_lock is safe here
5003          * because we're called from nr_hw_queue update which is protected by
5004          * set->update_nr_hwq_lock in the writer context. So, scheduler update/
5005          * switch code (which acquires the same lock in the reader context)
5006          * can't run concurrently.
5007          */
5008         if (q->elevator) {
5009
5010                 ret = xa_insert(elv_tbl, q->id, q->elevator->type, GFP_KERNEL);
5011                 if (WARN_ON_ONCE(ret))
5012                         return ret;
5013
5014                 /*
5015                  * Before we switch elevator to 'none', take a reference to
5016                  * the elevator module so that while nr_hw_queue update is
5017                  * running, no one can remove elevator module. We'd put the
5018                  * reference to elevator module later when we switch back
5019                  * elevator.
5020                  */
5021                 __elevator_get(q->elevator->type);
5022
5023                 elevator_set_none(q);
5024         }
5025         return ret;
5026 }
5027
5028 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5029                                                         int nr_hw_queues)
5030 {
5031         struct request_queue *q;
5032         int prev_nr_hw_queues = set->nr_hw_queues;
5033         unsigned int memflags;
5034         int i;
5035         struct xarray elv_tbl, et_tbl;
5036         bool queues_frozen = false;
5037
5038         lockdep_assert_held(&set->tag_list_lock);
5039
5040         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5041                 nr_hw_queues = nr_cpu_ids;
5042         if (nr_hw_queues < 1)
5043                 return;
5044         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5045                 return;
5046
5047         memflags = memalloc_noio_save();
5048
5049         xa_init(&et_tbl);
5050         if (blk_mq_alloc_sched_tags_batch(&et_tbl, set, nr_hw_queues) < 0)
5051                 goto out_memalloc_restore;
5052
5053         xa_init(&elv_tbl);
5054
5055         list_for_each_entry(q, &set->tag_list, tag_set_list) {
5056                 blk_mq_debugfs_unregister_hctxs(q);
5057                 blk_mq_sysfs_unregister_hctxs(q);
5058         }
5059
5060         /*
5061          * Switch IO scheduler to 'none', cleaning up the data associated
5062          * with the previous scheduler. We will switch back once we are done
5063          * updating the new sw to hw queue mappings.
5064          */
5065         list_for_each_entry(q, &set->tag_list, tag_set_list)
5066                 if (blk_mq_elv_switch_none(q, &elv_tbl))
5067                         goto switch_back;
5068
5069         list_for_each_entry(q, &set->tag_list, tag_set_list)
5070                 blk_mq_freeze_queue_nomemsave(q);
5071         queues_frozen = true;
5072         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5073                 goto switch_back;
5074
5075 fallback:
5076         blk_mq_update_queue_map(set);
5077         list_for_each_entry(q, &set->tag_list, tag_set_list) {
5078                 __blk_mq_realloc_hw_ctxs(set, q);
5079
5080                 if (q->nr_hw_queues != set->nr_hw_queues) {
5081                         int i = prev_nr_hw_queues;
5082
5083                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5084                                         nr_hw_queues, prev_nr_hw_queues);
5085                         for (; i < set->nr_hw_queues; i++)
5086                                 __blk_mq_free_map_and_rqs(set, i);
5087
5088                         set->nr_hw_queues = prev_nr_hw_queues;
5089                         goto fallback;
5090                 }
5091                 blk_mq_map_swqueue(q);
5092         }
5093 switch_back:
5094         /* The blk_mq_elv_switch_back unfreezes queue for us. */
5095         list_for_each_entry(q, &set->tag_list, tag_set_list) {
5096                 /* switch_back expects queue to be frozen */
5097                 if (!queues_frozen)
5098                         blk_mq_freeze_queue_nomemsave(q);
5099                 blk_mq_elv_switch_back(q, &elv_tbl, &et_tbl);
5100         }
5101
5102         list_for_each_entry(q, &set->tag_list, tag_set_list) {
5103                 blk_mq_sysfs_register_hctxs(q);
5104                 blk_mq_debugfs_register_hctxs(q);
5105
5106                 blk_mq_remove_hw_queues_cpuhp(q);
5107                 blk_mq_add_hw_queues_cpuhp(q);
5108         }
5109
5110         xa_destroy(&elv_tbl);
5111         xa_destroy(&et_tbl);
5112 out_memalloc_restore:
5113         memalloc_noio_restore(memflags);
5114
5115         /* Free the excess tags when nr_hw_queues shrink. */
5116         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5117                 __blk_mq_free_map_and_rqs(set, i);
5118 }
5119
5120 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5121 {
5122         down_write(&set->update_nr_hwq_lock);
5123         mutex_lock(&set->tag_list_lock);
5124         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5125         mutex_unlock(&set->tag_list_lock);
5126         up_write(&set->update_nr_hwq_lock);
5127 }
5128 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5129
5130 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5131                          struct io_comp_batch *iob, unsigned int flags)
5132 {
5133         long state = get_current_state();
5134         int ret;
5135
5136         do {
5137                 ret = q->mq_ops->poll(hctx, iob);
5138                 if (ret > 0) {
5139                         __set_current_state(TASK_RUNNING);
5140                         return ret;
5141                 }
5142
5143                 if (signal_pending_state(state, current))
5144                         __set_current_state(TASK_RUNNING);
5145                 if (task_is_running(current))
5146                         return 1;
5147
5148                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5149                         break;
5150                 cpu_relax();
5151         } while (!need_resched());
5152
5153         __set_current_state(TASK_RUNNING);
5154         return 0;
5155 }
5156
5157 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5158                 struct io_comp_batch *iob, unsigned int flags)
5159 {
5160         if (!blk_mq_can_poll(q))
5161                 return 0;
5162         return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5163 }
5164
5165 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5166                 unsigned int poll_flags)
5167 {
5168         struct request_queue *q = rq->q;
5169         int ret;
5170
5171         if (!blk_rq_is_poll(rq))
5172                 return 0;
5173         if (!percpu_ref_tryget(&q->q_usage_counter))
5174                 return 0;
5175
5176         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5177         blk_queue_exit(q);
5178
5179         return ret;
5180 }
5181 EXPORT_SYMBOL_GPL(blk_rq_poll);
5182
5183 unsigned int blk_mq_rq_cpu(struct request *rq)
5184 {
5185         return rq->mq_ctx->cpu;
5186 }
5187 EXPORT_SYMBOL(blk_mq_rq_cpu);
5188
5189 void blk_mq_cancel_work_sync(struct request_queue *q)
5190 {
5191         struct blk_mq_hw_ctx *hctx;
5192         unsigned long i;
5193
5194         cancel_delayed_work_sync(&q->requeue_work);
5195
5196         queue_for_each_hw_ctx(q, hctx, i)
5197                 cancel_delayed_work_sync(&hctx->run_work);
5198 }
5199
5200 static int __init blk_mq_init(void)
5201 {
5202         int i;
5203
5204         for_each_possible_cpu(i)
5205                 init_llist_head(&per_cpu(blk_cpu_done, i));
5206         for_each_possible_cpu(i)
5207                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
5208                          __blk_mq_complete_request_remote, NULL);
5209         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5210
5211         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5212                                   "block/softirq:dead", NULL,
5213                                   blk_softirq_cpu_dead);
5214         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5215                                 blk_mq_hctx_notify_dead);
5216         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5217                                 blk_mq_hctx_notify_online,
5218                                 blk_mq_hctx_notify_offline);
5219         return 0;
5220 }
5221 subsys_initcall(blk_mq_init);