Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = blk_time_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334         if (blk_mq_need_time_stamp(rq))
335                 rq->start_time_ns = blk_time_get_ns();
336         else
337                 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340         if (blk_queue_rq_alloc_time(rq->q))
341                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342         else
343                 rq->alloc_time_ns = 0;
344 #endif
345 }
346
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348                 struct blk_mq_tags *tags, unsigned int tag)
349 {
350         struct blk_mq_ctx *ctx = data->ctx;
351         struct blk_mq_hw_ctx *hctx = data->hctx;
352         struct request_queue *q = data->q;
353         struct request *rq = tags->static_rqs[tag];
354
355         rq->q = q;
356         rq->mq_ctx = ctx;
357         rq->mq_hctx = hctx;
358         rq->cmd_flags = data->cmd_flags;
359
360         if (data->flags & BLK_MQ_REQ_PM)
361                 data->rq_flags |= RQF_PM;
362         if (blk_queue_io_stat(q))
363                 data->rq_flags |= RQF_IO_STAT;
364         rq->rq_flags = data->rq_flags;
365
366         if (data->rq_flags & RQF_SCHED_TAGS) {
367                 rq->tag = BLK_MQ_NO_TAG;
368                 rq->internal_tag = tag;
369         } else {
370                 rq->tag = tag;
371                 rq->internal_tag = BLK_MQ_NO_TAG;
372         }
373         rq->timeout = 0;
374
375         rq->part = NULL;
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407         unsigned int tag, tag_offset;
408         struct blk_mq_tags *tags;
409         struct request *rq;
410         unsigned long tag_mask;
411         int i, nr = 0;
412
413         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414         if (unlikely(!tag_mask))
415                 return NULL;
416
417         tags = blk_mq_tags_from_data(data);
418         for (i = 0; tag_mask; i++) {
419                 if (!(tag_mask & (1UL << i)))
420                         continue;
421                 tag = tag_offset + i;
422                 prefetch(tags->static_rqs[tag]);
423                 tag_mask &= ~(1UL << i);
424                 rq = blk_mq_rq_ctx_init(data, tags, tag);
425                 rq_list_add(data->cached_rq, rq);
426                 nr++;
427         }
428         if (!(data->rq_flags & RQF_SCHED_TAGS))
429                 blk_mq_add_active_requests(data->hctx, nr);
430         /* caller already holds a reference, add for remainder */
431         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432         data->nr_tags -= nr;
433
434         return rq_list_pop(data->cached_rq);
435 }
436
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439         struct request_queue *q = data->q;
440         u64 alloc_time_ns = 0;
441         struct request *rq;
442         unsigned int tag;
443
444         /* alloc_time includes depth and tag waits */
445         if (blk_queue_rq_alloc_time(q))
446                 alloc_time_ns = blk_time_get_ns();
447
448         if (data->cmd_flags & REQ_NOWAIT)
449                 data->flags |= BLK_MQ_REQ_NOWAIT;
450
451 retry:
452         data->ctx = blk_mq_get_ctx(q);
453         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
454
455         if (q->elevator) {
456                 /*
457                  * All requests use scheduler tags when an I/O scheduler is
458                  * enabled for the queue.
459                  */
460                 data->rq_flags |= RQF_SCHED_TAGS;
461
462                 /*
463                  * Flush/passthrough requests are special and go directly to the
464                  * dispatch list.
465                  */
466                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
467                     !blk_op_is_passthrough(data->cmd_flags)) {
468                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
469
470                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
471
472                         data->rq_flags |= RQF_USE_SCHED;
473                         if (ops->limit_depth)
474                                 ops->limit_depth(data->cmd_flags, data);
475                 }
476         } else {
477                 blk_mq_tag_busy(data->hctx);
478         }
479
480         if (data->flags & BLK_MQ_REQ_RESERVED)
481                 data->rq_flags |= RQF_RESV;
482
483         /*
484          * Try batched alloc if we want more than 1 tag.
485          */
486         if (data->nr_tags > 1) {
487                 rq = __blk_mq_alloc_requests_batch(data);
488                 if (rq) {
489                         blk_mq_rq_time_init(rq, alloc_time_ns);
490                         return rq;
491                 }
492                 data->nr_tags = 1;
493         }
494
495         /*
496          * Waiting allocations only fail because of an inactive hctx.  In that
497          * case just retry the hctx assignment and tag allocation as CPU hotplug
498          * should have migrated us to an online CPU by now.
499          */
500         tag = blk_mq_get_tag(data);
501         if (tag == BLK_MQ_NO_TAG) {
502                 if (data->flags & BLK_MQ_REQ_NOWAIT)
503                         return NULL;
504                 /*
505                  * Give up the CPU and sleep for a random short time to
506                  * ensure that thread using a realtime scheduling class
507                  * are migrated off the CPU, and thus off the hctx that
508                  * is going away.
509                  */
510                 msleep(3);
511                 goto retry;
512         }
513
514         if (!(data->rq_flags & RQF_SCHED_TAGS))
515                 blk_mq_inc_active_requests(data->hctx);
516         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517         blk_mq_rq_time_init(rq, alloc_time_ns);
518         return rq;
519 }
520
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522                                             struct blk_plug *plug,
523                                             blk_opf_t opf,
524                                             blk_mq_req_flags_t flags)
525 {
526         struct blk_mq_alloc_data data = {
527                 .q              = q,
528                 .flags          = flags,
529                 .cmd_flags      = opf,
530                 .nr_tags        = plug->nr_ios,
531                 .cached_rq      = &plug->cached_rq,
532         };
533         struct request *rq;
534
535         if (blk_queue_enter(q, flags))
536                 return NULL;
537
538         plug->nr_ios = 1;
539
540         rq = __blk_mq_alloc_requests(&data);
541         if (unlikely(!rq))
542                 blk_queue_exit(q);
543         return rq;
544 }
545
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547                                                    blk_opf_t opf,
548                                                    blk_mq_req_flags_t flags)
549 {
550         struct blk_plug *plug = current->plug;
551         struct request *rq;
552
553         if (!plug)
554                 return NULL;
555
556         if (rq_list_empty(plug->cached_rq)) {
557                 if (plug->nr_ios == 1)
558                         return NULL;
559                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560                 if (!rq)
561                         return NULL;
562         } else {
563                 rq = rq_list_peek(&plug->cached_rq);
564                 if (!rq || rq->q != q)
565                         return NULL;
566
567                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568                         return NULL;
569                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570                         return NULL;
571
572                 plug->cached_rq = rq_list_next(rq);
573                 blk_mq_rq_time_init(rq, 0);
574         }
575
576         rq->cmd_flags = opf;
577         INIT_LIST_HEAD(&rq->queuelist);
578         return rq;
579 }
580
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582                 blk_mq_req_flags_t flags)
583 {
584         struct request *rq;
585
586         rq = blk_mq_alloc_cached_request(q, opf, flags);
587         if (!rq) {
588                 struct blk_mq_alloc_data data = {
589                         .q              = q,
590                         .flags          = flags,
591                         .cmd_flags      = opf,
592                         .nr_tags        = 1,
593                 };
594                 int ret;
595
596                 ret = blk_queue_enter(q, flags);
597                 if (ret)
598                         return ERR_PTR(ret);
599
600                 rq = __blk_mq_alloc_requests(&data);
601                 if (!rq)
602                         goto out_queue_exit;
603         }
604         rq->__data_len = 0;
605         rq->__sector = (sector_t) -1;
606         rq->bio = rq->biotail = NULL;
607         return rq;
608 out_queue_exit:
609         blk_queue_exit(q);
610         return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617         struct blk_mq_alloc_data data = {
618                 .q              = q,
619                 .flags          = flags,
620                 .cmd_flags      = opf,
621                 .nr_tags        = 1,
622         };
623         u64 alloc_time_ns = 0;
624         struct request *rq;
625         unsigned int cpu;
626         unsigned int tag;
627         int ret;
628
629         /* alloc_time includes depth and tag waits */
630         if (blk_queue_rq_alloc_time(q))
631                 alloc_time_ns = blk_time_get_ns();
632
633         /*
634          * If the tag allocator sleeps we could get an allocation for a
635          * different hardware context.  No need to complicate the low level
636          * allocator for this for the rare use case of a command tied to
637          * a specific queue.
638          */
639         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641                 return ERR_PTR(-EINVAL);
642
643         if (hctx_idx >= q->nr_hw_queues)
644                 return ERR_PTR(-EIO);
645
646         ret = blk_queue_enter(q, flags);
647         if (ret)
648                 return ERR_PTR(ret);
649
650         /*
651          * Check if the hardware context is actually mapped to anything.
652          * If not tell the caller that it should skip this queue.
653          */
654         ret = -EXDEV;
655         data.hctx = xa_load(&q->hctx_table, hctx_idx);
656         if (!blk_mq_hw_queue_mapped(data.hctx))
657                 goto out_queue_exit;
658         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659         if (cpu >= nr_cpu_ids)
660                 goto out_queue_exit;
661         data.ctx = __blk_mq_get_ctx(q, cpu);
662
663         if (q->elevator)
664                 data.rq_flags |= RQF_SCHED_TAGS;
665         else
666                 blk_mq_tag_busy(data.hctx);
667
668         if (flags & BLK_MQ_REQ_RESERVED)
669                 data.rq_flags |= RQF_RESV;
670
671         ret = -EWOULDBLOCK;
672         tag = blk_mq_get_tag(&data);
673         if (tag == BLK_MQ_NO_TAG)
674                 goto out_queue_exit;
675         if (!(data.rq_flags & RQF_SCHED_TAGS))
676                 blk_mq_inc_active_requests(data.hctx);
677         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678         blk_mq_rq_time_init(rq, alloc_time_ns);
679         rq->__data_len = 0;
680         rq->__sector = (sector_t) -1;
681         rq->bio = rq->biotail = NULL;
682         return rq;
683
684 out_queue_exit:
685         blk_queue_exit(q);
686         return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689
690 static void blk_mq_finish_request(struct request *rq)
691 {
692         struct request_queue *q = rq->q;
693
694         blk_zone_finish_request(rq);
695
696         if (rq->rq_flags & RQF_USE_SCHED) {
697                 q->elevator->type->ops.finish_request(rq);
698                 /*
699                  * For postflush request that may need to be
700                  * completed twice, we should clear this flag
701                  * to avoid double finish_request() on the rq.
702                  */
703                 rq->rq_flags &= ~RQF_USE_SCHED;
704         }
705 }
706
707 static void __blk_mq_free_request(struct request *rq)
708 {
709         struct request_queue *q = rq->q;
710         struct blk_mq_ctx *ctx = rq->mq_ctx;
711         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
712         const int sched_tag = rq->internal_tag;
713
714         blk_crypto_free_request(rq);
715         blk_pm_mark_last_busy(rq);
716         rq->mq_hctx = NULL;
717
718         if (rq->tag != BLK_MQ_NO_TAG) {
719                 blk_mq_dec_active_requests(hctx);
720                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721         }
722         if (sched_tag != BLK_MQ_NO_TAG)
723                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724         blk_mq_sched_restart(hctx);
725         blk_queue_exit(q);
726 }
727
728 void blk_mq_free_request(struct request *rq)
729 {
730         struct request_queue *q = rq->q;
731
732         blk_mq_finish_request(rq);
733
734         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
735                 laptop_io_completion(q->disk->bdi);
736
737         rq_qos_done(q, rq);
738
739         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
740         if (req_ref_put_and_test(rq))
741                 __blk_mq_free_request(rq);
742 }
743 EXPORT_SYMBOL_GPL(blk_mq_free_request);
744
745 void blk_mq_free_plug_rqs(struct blk_plug *plug)
746 {
747         struct request *rq;
748
749         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
750                 blk_mq_free_request(rq);
751 }
752
753 void blk_dump_rq_flags(struct request *rq, char *msg)
754 {
755         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
756                 rq->q->disk ? rq->q->disk->disk_name : "?",
757                 (__force unsigned long long) rq->cmd_flags);
758
759         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
760                (unsigned long long)blk_rq_pos(rq),
761                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
762         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
763                rq->bio, rq->biotail, blk_rq_bytes(rq));
764 }
765 EXPORT_SYMBOL(blk_dump_rq_flags);
766
767 static void blk_account_io_completion(struct request *req, unsigned int bytes)
768 {
769         if (req->part && blk_do_io_stat(req)) {
770                 const int sgrp = op_stat_group(req_op(req));
771
772                 part_stat_lock();
773                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
774                 part_stat_unlock();
775         }
776 }
777
778 static void blk_print_req_error(struct request *req, blk_status_t status)
779 {
780         printk_ratelimited(KERN_ERR
781                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
782                 "phys_seg %u prio class %u\n",
783                 blk_status_to_str(status),
784                 req->q->disk ? req->q->disk->disk_name : "?",
785                 blk_rq_pos(req), (__force u32)req_op(req),
786                 blk_op_str(req_op(req)),
787                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
788                 req->nr_phys_segments,
789                 IOPRIO_PRIO_CLASS(req->ioprio));
790 }
791
792 /*
793  * Fully end IO on a request. Does not support partial completions, or
794  * errors.
795  */
796 static void blk_complete_request(struct request *req)
797 {
798         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
799         int total_bytes = blk_rq_bytes(req);
800         struct bio *bio = req->bio;
801
802         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
803
804         if (!bio)
805                 return;
806
807         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
808                 blk_integrity_complete(req, total_bytes);
809
810         /*
811          * Upper layers may call blk_crypto_evict_key() anytime after the last
812          * bio_endio().  Therefore, the keyslot must be released before that.
813          */
814         blk_crypto_rq_put_keyslot(req);
815
816         blk_account_io_completion(req, total_bytes);
817
818         do {
819                 struct bio *next = bio->bi_next;
820
821                 /* Completion has already been traced */
822                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
823
824                 blk_zone_update_request_bio(req, bio);
825
826                 if (!is_flush)
827                         bio_endio(bio);
828                 bio = next;
829         } while (bio);
830
831         /*
832          * Reset counters so that the request stacking driver
833          * can find how many bytes remain in the request
834          * later.
835          */
836         if (!req->end_io) {
837                 req->bio = NULL;
838                 req->__data_len = 0;
839         }
840 }
841
842 /**
843  * blk_update_request - Complete multiple bytes without completing the request
844  * @req:      the request being processed
845  * @error:    block status code
846  * @nr_bytes: number of bytes to complete for @req
847  *
848  * Description:
849  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
850  *     the request structure even if @req doesn't have leftover.
851  *     If @req has leftover, sets it up for the next range of segments.
852  *
853  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854  *     %false return from this function.
855  *
856  * Note:
857  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858  *      except in the consistency check at the end of this function.
859  *
860  * Return:
861  *     %false - this request doesn't have any more data
862  *     %true  - this request has more data
863  **/
864 bool blk_update_request(struct request *req, blk_status_t error,
865                 unsigned int nr_bytes)
866 {
867         bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
868         bool quiet = req->rq_flags & RQF_QUIET;
869         int total_bytes;
870
871         trace_block_rq_complete(req, error, nr_bytes);
872
873         if (!req->bio)
874                 return false;
875
876         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
877             error == BLK_STS_OK)
878                 blk_integrity_complete(req, nr_bytes);
879
880         /*
881          * Upper layers may call blk_crypto_evict_key() anytime after the last
882          * bio_endio().  Therefore, the keyslot must be released before that.
883          */
884         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885                 __blk_crypto_rq_put_keyslot(req);
886
887         if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
888             !test_bit(GD_DEAD, &req->q->disk->state)) {
889                 blk_print_req_error(req, error);
890                 trace_block_rq_error(req, error, nr_bytes);
891         }
892
893         blk_account_io_completion(req, nr_bytes);
894
895         total_bytes = 0;
896         while (req->bio) {
897                 struct bio *bio = req->bio;
898                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
899
900                 if (unlikely(error))
901                         bio->bi_status = error;
902
903                 if (bio_bytes == bio->bi_iter.bi_size) {
904                         req->bio = bio->bi_next;
905                 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
906                         /*
907                          * Partial zone append completions cannot be supported
908                          * as the BIO fragments may end up not being written
909                          * sequentially.
910                          */
911                         bio->bi_status = BLK_STS_IOERR;
912                 }
913
914                 /* Completion has already been traced */
915                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
916                 if (unlikely(quiet))
917                         bio_set_flag(bio, BIO_QUIET);
918
919                 bio_advance(bio, bio_bytes);
920
921                 /* Don't actually finish bio if it's part of flush sequence */
922                 if (!bio->bi_iter.bi_size) {
923                         blk_zone_update_request_bio(req, bio);
924                         if (!is_flush)
925                                 bio_endio(bio);
926                 }
927
928                 total_bytes += bio_bytes;
929                 nr_bytes -= bio_bytes;
930
931                 if (!nr_bytes)
932                         break;
933         }
934
935         /*
936          * completely done
937          */
938         if (!req->bio) {
939                 /*
940                  * Reset counters so that the request stacking driver
941                  * can find how many bytes remain in the request
942                  * later.
943                  */
944                 req->__data_len = 0;
945                 return false;
946         }
947
948         req->__data_len -= total_bytes;
949
950         /* update sector only for requests with clear definition of sector */
951         if (!blk_rq_is_passthrough(req))
952                 req->__sector += total_bytes >> 9;
953
954         /* mixed attributes always follow the first bio */
955         if (req->rq_flags & RQF_MIXED_MERGE) {
956                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
957                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
958         }
959
960         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
961                 /*
962                  * If total number of sectors is less than the first segment
963                  * size, something has gone terribly wrong.
964                  */
965                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
966                         blk_dump_rq_flags(req, "request botched");
967                         req->__data_len = blk_rq_cur_bytes(req);
968                 }
969
970                 /* recalculate the number of segments */
971                 req->nr_phys_segments = blk_recalc_rq_segments(req);
972         }
973
974         return true;
975 }
976 EXPORT_SYMBOL_GPL(blk_update_request);
977
978 static inline void blk_account_io_done(struct request *req, u64 now)
979 {
980         trace_block_io_done(req);
981
982         /*
983          * Account IO completion.  flush_rq isn't accounted as a
984          * normal IO on queueing nor completion.  Accounting the
985          * containing request is enough.
986          */
987         if (blk_do_io_stat(req) && req->part &&
988             !(req->rq_flags & RQF_FLUSH_SEQ)) {
989                 const int sgrp = op_stat_group(req_op(req));
990
991                 part_stat_lock();
992                 update_io_ticks(req->part, jiffies, true);
993                 part_stat_inc(req->part, ios[sgrp]);
994                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
995                 part_stat_local_dec(req->part,
996                                     in_flight[op_is_write(req_op(req))]);
997                 part_stat_unlock();
998         }
999 }
1000
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003         trace_block_io_start(req);
1004
1005         if (blk_do_io_stat(req)) {
1006                 /*
1007                  * All non-passthrough requests are created from a bio with one
1008                  * exception: when a flush command that is part of a flush sequence
1009                  * generated by the state machine in blk-flush.c is cloned onto the
1010                  * lower device by dm-multipath we can get here without a bio.
1011                  */
1012                 if (req->bio)
1013                         req->part = req->bio->bi_bdev;
1014                 else
1015                         req->part = req->q->disk->part0;
1016
1017                 part_stat_lock();
1018                 update_io_ticks(req->part, jiffies, false);
1019                 part_stat_local_inc(req->part,
1020                                     in_flight[op_is_write(req_op(req))]);
1021                 part_stat_unlock();
1022         }
1023 }
1024
1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026 {
1027         if (rq->rq_flags & RQF_STATS)
1028                 blk_stat_add(rq, now);
1029
1030         blk_mq_sched_completed_request(rq, now);
1031         blk_account_io_done(rq, now);
1032 }
1033
1034 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1035 {
1036         if (blk_mq_need_time_stamp(rq))
1037                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1038
1039         blk_mq_finish_request(rq);
1040
1041         if (rq->end_io) {
1042                 rq_qos_done(rq->q, rq);
1043                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044                         blk_mq_free_request(rq);
1045         } else {
1046                 blk_mq_free_request(rq);
1047         }
1048 }
1049 EXPORT_SYMBOL(__blk_mq_end_request);
1050
1051 void blk_mq_end_request(struct request *rq, blk_status_t error)
1052 {
1053         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054                 BUG();
1055         __blk_mq_end_request(rq, error);
1056 }
1057 EXPORT_SYMBOL(blk_mq_end_request);
1058
1059 #define TAG_COMP_BATCH          32
1060
1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062                                           int *tag_array, int nr_tags)
1063 {
1064         struct request_queue *q = hctx->queue;
1065
1066         blk_mq_sub_active_requests(hctx, nr_tags);
1067
1068         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1069         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1070 }
1071
1072 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1073 {
1074         int tags[TAG_COMP_BATCH], nr_tags = 0;
1075         struct blk_mq_hw_ctx *cur_hctx = NULL;
1076         struct request *rq;
1077         u64 now = 0;
1078
1079         if (iob->need_ts)
1080                 now = blk_time_get_ns();
1081
1082         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1083                 prefetch(rq->bio);
1084                 prefetch(rq->rq_next);
1085
1086                 blk_complete_request(rq);
1087                 if (iob->need_ts)
1088                         __blk_mq_end_request_acct(rq, now);
1089
1090                 blk_mq_finish_request(rq);
1091
1092                 rq_qos_done(rq->q, rq);
1093
1094                 /*
1095                  * If end_io handler returns NONE, then it still has
1096                  * ownership of the request.
1097                  */
1098                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1099                         continue;
1100
1101                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1102                 if (!req_ref_put_and_test(rq))
1103                         continue;
1104
1105                 blk_crypto_free_request(rq);
1106                 blk_pm_mark_last_busy(rq);
1107
1108                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1109                         if (cur_hctx)
1110                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1111                         nr_tags = 0;
1112                         cur_hctx = rq->mq_hctx;
1113                 }
1114                 tags[nr_tags++] = rq->tag;
1115         }
1116
1117         if (nr_tags)
1118                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 }
1120 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1121
1122 static void blk_complete_reqs(struct llist_head *list)
1123 {
1124         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1125         struct request *rq, *next;
1126
1127         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1128                 rq->q->mq_ops->complete(rq);
1129 }
1130
1131 static __latent_entropy void blk_done_softirq(void)
1132 {
1133         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1134 }
1135
1136 static int blk_softirq_cpu_dead(unsigned int cpu)
1137 {
1138         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1139         return 0;
1140 }
1141
1142 static void __blk_mq_complete_request_remote(void *data)
1143 {
1144         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1145 }
1146
1147 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1148 {
1149         int cpu = raw_smp_processor_id();
1150
1151         if (!IS_ENABLED(CONFIG_SMP) ||
1152             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1153                 return false;
1154         /*
1155          * With force threaded interrupts enabled, raising softirq from an SMP
1156          * function call will always result in waking the ksoftirqd thread.
1157          * This is probably worse than completing the request on a different
1158          * cache domain.
1159          */
1160         if (force_irqthreads())
1161                 return false;
1162
1163         /* same CPU or cache domain and capacity?  Complete locally */
1164         if (cpu == rq->mq_ctx->cpu ||
1165             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1166              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1167              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1168                 return false;
1169
1170         /* don't try to IPI to an offline CPU */
1171         return cpu_online(rq->mq_ctx->cpu);
1172 }
1173
1174 static void blk_mq_complete_send_ipi(struct request *rq)
1175 {
1176         unsigned int cpu;
1177
1178         cpu = rq->mq_ctx->cpu;
1179         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1180                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1181 }
1182
1183 static void blk_mq_raise_softirq(struct request *rq)
1184 {
1185         struct llist_head *list;
1186
1187         preempt_disable();
1188         list = this_cpu_ptr(&blk_cpu_done);
1189         if (llist_add(&rq->ipi_list, list))
1190                 raise_softirq(BLOCK_SOFTIRQ);
1191         preempt_enable();
1192 }
1193
1194 bool blk_mq_complete_request_remote(struct request *rq)
1195 {
1196         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1197
1198         /*
1199          * For request which hctx has only one ctx mapping,
1200          * or a polled request, always complete locally,
1201          * it's pointless to redirect the completion.
1202          */
1203         if ((rq->mq_hctx->nr_ctx == 1 &&
1204              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1205              rq->cmd_flags & REQ_POLLED)
1206                 return false;
1207
1208         if (blk_mq_complete_need_ipi(rq)) {
1209                 blk_mq_complete_send_ipi(rq);
1210                 return true;
1211         }
1212
1213         if (rq->q->nr_hw_queues == 1) {
1214                 blk_mq_raise_softirq(rq);
1215                 return true;
1216         }
1217         return false;
1218 }
1219 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1220
1221 /**
1222  * blk_mq_complete_request - end I/O on a request
1223  * @rq:         the request being processed
1224  *
1225  * Description:
1226  *      Complete a request by scheduling the ->complete_rq operation.
1227  **/
1228 void blk_mq_complete_request(struct request *rq)
1229 {
1230         if (!blk_mq_complete_request_remote(rq))
1231                 rq->q->mq_ops->complete(rq);
1232 }
1233 EXPORT_SYMBOL(blk_mq_complete_request);
1234
1235 /**
1236  * blk_mq_start_request - Start processing a request
1237  * @rq: Pointer to request to be started
1238  *
1239  * Function used by device drivers to notify the block layer that a request
1240  * is going to be processed now, so blk layer can do proper initializations
1241  * such as starting the timeout timer.
1242  */
1243 void blk_mq_start_request(struct request *rq)
1244 {
1245         struct request_queue *q = rq->q;
1246
1247         trace_block_rq_issue(rq);
1248
1249         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1250             !blk_rq_is_passthrough(rq)) {
1251                 rq->io_start_time_ns = blk_time_get_ns();
1252                 rq->stats_sectors = blk_rq_sectors(rq);
1253                 rq->rq_flags |= RQF_STATS;
1254                 rq_qos_issue(q, rq);
1255         }
1256
1257         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1258
1259         blk_add_timer(rq);
1260         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1261         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1262
1263         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1264                 blk_integrity_prepare(rq);
1265
1266         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1267                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1268 }
1269 EXPORT_SYMBOL(blk_mq_start_request);
1270
1271 /*
1272  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1273  * queues. This is important for md arrays to benefit from merging
1274  * requests.
1275  */
1276 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1277 {
1278         if (plug->multiple_queues)
1279                 return BLK_MAX_REQUEST_COUNT * 2;
1280         return BLK_MAX_REQUEST_COUNT;
1281 }
1282
1283 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1284 {
1285         struct request *last = rq_list_peek(&plug->mq_list);
1286
1287         if (!plug->rq_count) {
1288                 trace_block_plug(rq->q);
1289         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1290                    (!blk_queue_nomerges(rq->q) &&
1291                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1292                 blk_mq_flush_plug_list(plug, false);
1293                 last = NULL;
1294                 trace_block_plug(rq->q);
1295         }
1296
1297         if (!plug->multiple_queues && last && last->q != rq->q)
1298                 plug->multiple_queues = true;
1299         /*
1300          * Any request allocated from sched tags can't be issued to
1301          * ->queue_rqs() directly
1302          */
1303         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1304                 plug->has_elevator = true;
1305         rq->rq_next = NULL;
1306         rq_list_add(&plug->mq_list, rq);
1307         plug->rq_count++;
1308 }
1309
1310 /**
1311  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312  * @rq:         request to insert
1313  * @at_head:    insert request at head or tail of queue
1314  *
1315  * Description:
1316  *    Insert a fully prepared request at the back of the I/O scheduler queue
1317  *    for execution.  Don't wait for completion.
1318  *
1319  * Note:
1320  *    This function will invoke @done directly if the queue is dead.
1321  */
1322 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323 {
1324         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1325
1326         WARN_ON(irqs_disabled());
1327         WARN_ON(!blk_rq_is_passthrough(rq));
1328
1329         blk_account_io_start(rq);
1330
1331         if (current->plug && !at_head) {
1332                 blk_add_rq_to_plug(current->plug, rq);
1333                 return;
1334         }
1335
1336         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1337         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1338 }
1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
1341 struct blk_rq_wait {
1342         struct completion done;
1343         blk_status_t ret;
1344 };
1345
1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347 {
1348         struct blk_rq_wait *wait = rq->end_io_data;
1349
1350         wait->ret = ret;
1351         complete(&wait->done);
1352         return RQ_END_IO_NONE;
1353 }
1354
1355 bool blk_rq_is_poll(struct request *rq)
1356 {
1357         if (!rq->mq_hctx)
1358                 return false;
1359         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360                 return false;
1361         return true;
1362 }
1363 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1364
1365 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1366 {
1367         do {
1368                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1369                 cond_resched();
1370         } while (!completion_done(wait));
1371 }
1372
1373 /**
1374  * blk_execute_rq - insert a request into queue for execution
1375  * @rq:         request to insert
1376  * @at_head:    insert request at head or tail of queue
1377  *
1378  * Description:
1379  *    Insert a fully prepared request at the back of the I/O scheduler queue
1380  *    for execution and wait for completion.
1381  * Return: The blk_status_t result provided to blk_mq_end_request().
1382  */
1383 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1384 {
1385         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1386         struct blk_rq_wait wait = {
1387                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1388         };
1389
1390         WARN_ON(irqs_disabled());
1391         WARN_ON(!blk_rq_is_passthrough(rq));
1392
1393         rq->end_io_data = &wait;
1394         rq->end_io = blk_end_sync_rq;
1395
1396         blk_account_io_start(rq);
1397         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1398         blk_mq_run_hw_queue(hctx, false);
1399
1400         if (blk_rq_is_poll(rq))
1401                 blk_rq_poll_completion(rq, &wait.done);
1402         else
1403                 blk_wait_io(&wait.done);
1404
1405         return wait.ret;
1406 }
1407 EXPORT_SYMBOL(blk_execute_rq);
1408
1409 static void __blk_mq_requeue_request(struct request *rq)
1410 {
1411         struct request_queue *q = rq->q;
1412
1413         blk_mq_put_driver_tag(rq);
1414
1415         trace_block_rq_requeue(rq);
1416         rq_qos_requeue(q, rq);
1417
1418         if (blk_mq_request_started(rq)) {
1419                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1420                 rq->rq_flags &= ~RQF_TIMED_OUT;
1421         }
1422 }
1423
1424 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1425 {
1426         struct request_queue *q = rq->q;
1427         unsigned long flags;
1428
1429         __blk_mq_requeue_request(rq);
1430
1431         /* this request will be re-inserted to io scheduler queue */
1432         blk_mq_sched_requeue_request(rq);
1433
1434         spin_lock_irqsave(&q->requeue_lock, flags);
1435         list_add_tail(&rq->queuelist, &q->requeue_list);
1436         spin_unlock_irqrestore(&q->requeue_lock, flags);
1437
1438         if (kick_requeue_list)
1439                 blk_mq_kick_requeue_list(q);
1440 }
1441 EXPORT_SYMBOL(blk_mq_requeue_request);
1442
1443 static void blk_mq_requeue_work(struct work_struct *work)
1444 {
1445         struct request_queue *q =
1446                 container_of(work, struct request_queue, requeue_work.work);
1447         LIST_HEAD(rq_list);
1448         LIST_HEAD(flush_list);
1449         struct request *rq;
1450
1451         spin_lock_irq(&q->requeue_lock);
1452         list_splice_init(&q->requeue_list, &rq_list);
1453         list_splice_init(&q->flush_list, &flush_list);
1454         spin_unlock_irq(&q->requeue_lock);
1455
1456         while (!list_empty(&rq_list)) {
1457                 rq = list_entry(rq_list.next, struct request, queuelist);
1458                 /*
1459                  * If RQF_DONTPREP ist set, the request has been started by the
1460                  * driver already and might have driver-specific data allocated
1461                  * already.  Insert it into the hctx dispatch list to avoid
1462                  * block layer merges for the request.
1463                  */
1464                 if (rq->rq_flags & RQF_DONTPREP) {
1465                         list_del_init(&rq->queuelist);
1466                         blk_mq_request_bypass_insert(rq, 0);
1467                 } else {
1468                         list_del_init(&rq->queuelist);
1469                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1470                 }
1471         }
1472
1473         while (!list_empty(&flush_list)) {
1474                 rq = list_entry(flush_list.next, struct request, queuelist);
1475                 list_del_init(&rq->queuelist);
1476                 blk_mq_insert_request(rq, 0);
1477         }
1478
1479         blk_mq_run_hw_queues(q, false);
1480 }
1481
1482 void blk_mq_kick_requeue_list(struct request_queue *q)
1483 {
1484         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1485 }
1486 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1487
1488 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1489                                     unsigned long msecs)
1490 {
1491         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1492                                     msecs_to_jiffies(msecs));
1493 }
1494 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1495
1496 static bool blk_is_flush_data_rq(struct request *rq)
1497 {
1498         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1499 }
1500
1501 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1502 {
1503         /*
1504          * If we find a request that isn't idle we know the queue is busy
1505          * as it's checked in the iter.
1506          * Return false to stop the iteration.
1507          *
1508          * In case of queue quiesce, if one flush data request is completed,
1509          * don't count it as inflight given the flush sequence is suspended,
1510          * and the original flush data request is invisible to driver, just
1511          * like other pending requests because of quiesce
1512          */
1513         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1514                                 blk_is_flush_data_rq(rq) &&
1515                                 blk_mq_request_completed(rq))) {
1516                 bool *busy = priv;
1517
1518                 *busy = true;
1519                 return false;
1520         }
1521
1522         return true;
1523 }
1524
1525 bool blk_mq_queue_inflight(struct request_queue *q)
1526 {
1527         bool busy = false;
1528
1529         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1530         return busy;
1531 }
1532 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1533
1534 static void blk_mq_rq_timed_out(struct request *req)
1535 {
1536         req->rq_flags |= RQF_TIMED_OUT;
1537         if (req->q->mq_ops->timeout) {
1538                 enum blk_eh_timer_return ret;
1539
1540                 ret = req->q->mq_ops->timeout(req);
1541                 if (ret == BLK_EH_DONE)
1542                         return;
1543                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1544         }
1545
1546         blk_add_timer(req);
1547 }
1548
1549 struct blk_expired_data {
1550         bool has_timedout_rq;
1551         unsigned long next;
1552         unsigned long timeout_start;
1553 };
1554
1555 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1556 {
1557         unsigned long deadline;
1558
1559         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1560                 return false;
1561         if (rq->rq_flags & RQF_TIMED_OUT)
1562                 return false;
1563
1564         deadline = READ_ONCE(rq->deadline);
1565         if (time_after_eq(expired->timeout_start, deadline))
1566                 return true;
1567
1568         if (expired->next == 0)
1569                 expired->next = deadline;
1570         else if (time_after(expired->next, deadline))
1571                 expired->next = deadline;
1572         return false;
1573 }
1574
1575 void blk_mq_put_rq_ref(struct request *rq)
1576 {
1577         if (is_flush_rq(rq)) {
1578                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1579                         blk_mq_free_request(rq);
1580         } else if (req_ref_put_and_test(rq)) {
1581                 __blk_mq_free_request(rq);
1582         }
1583 }
1584
1585 static bool blk_mq_check_expired(struct request *rq, void *priv)
1586 {
1587         struct blk_expired_data *expired = priv;
1588
1589         /*
1590          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1591          * be reallocated underneath the timeout handler's processing, then
1592          * the expire check is reliable. If the request is not expired, then
1593          * it was completed and reallocated as a new request after returning
1594          * from blk_mq_check_expired().
1595          */
1596         if (blk_mq_req_expired(rq, expired)) {
1597                 expired->has_timedout_rq = true;
1598                 return false;
1599         }
1600         return true;
1601 }
1602
1603 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1604 {
1605         struct blk_expired_data *expired = priv;
1606
1607         if (blk_mq_req_expired(rq, expired))
1608                 blk_mq_rq_timed_out(rq);
1609         return true;
1610 }
1611
1612 static void blk_mq_timeout_work(struct work_struct *work)
1613 {
1614         struct request_queue *q =
1615                 container_of(work, struct request_queue, timeout_work);
1616         struct blk_expired_data expired = {
1617                 .timeout_start = jiffies,
1618         };
1619         struct blk_mq_hw_ctx *hctx;
1620         unsigned long i;
1621
1622         /* A deadlock might occur if a request is stuck requiring a
1623          * timeout at the same time a queue freeze is waiting
1624          * completion, since the timeout code would not be able to
1625          * acquire the queue reference here.
1626          *
1627          * That's why we don't use blk_queue_enter here; instead, we use
1628          * percpu_ref_tryget directly, because we need to be able to
1629          * obtain a reference even in the short window between the queue
1630          * starting to freeze, by dropping the first reference in
1631          * blk_freeze_queue_start, and the moment the last request is
1632          * consumed, marked by the instant q_usage_counter reaches
1633          * zero.
1634          */
1635         if (!percpu_ref_tryget(&q->q_usage_counter))
1636                 return;
1637
1638         /* check if there is any timed-out request */
1639         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1640         if (expired.has_timedout_rq) {
1641                 /*
1642                  * Before walking tags, we must ensure any submit started
1643                  * before the current time has finished. Since the submit
1644                  * uses srcu or rcu, wait for a synchronization point to
1645                  * ensure all running submits have finished
1646                  */
1647                 blk_mq_wait_quiesce_done(q->tag_set);
1648
1649                 expired.next = 0;
1650                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1651         }
1652
1653         if (expired.next != 0) {
1654                 mod_timer(&q->timeout, expired.next);
1655         } else {
1656                 /*
1657                  * Request timeouts are handled as a forward rolling timer. If
1658                  * we end up here it means that no requests are pending and
1659                  * also that no request has been pending for a while. Mark
1660                  * each hctx as idle.
1661                  */
1662                 queue_for_each_hw_ctx(q, hctx, i) {
1663                         /* the hctx may be unmapped, so check it here */
1664                         if (blk_mq_hw_queue_mapped(hctx))
1665                                 blk_mq_tag_idle(hctx);
1666                 }
1667         }
1668         blk_queue_exit(q);
1669 }
1670
1671 struct flush_busy_ctx_data {
1672         struct blk_mq_hw_ctx *hctx;
1673         struct list_head *list;
1674 };
1675
1676 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1677 {
1678         struct flush_busy_ctx_data *flush_data = data;
1679         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1680         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1681         enum hctx_type type = hctx->type;
1682
1683         spin_lock(&ctx->lock);
1684         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1685         sbitmap_clear_bit(sb, bitnr);
1686         spin_unlock(&ctx->lock);
1687         return true;
1688 }
1689
1690 /*
1691  * Process software queues that have been marked busy, splicing them
1692  * to the for-dispatch
1693  */
1694 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1695 {
1696         struct flush_busy_ctx_data data = {
1697                 .hctx = hctx,
1698                 .list = list,
1699         };
1700
1701         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1702 }
1703 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1704
1705 struct dispatch_rq_data {
1706         struct blk_mq_hw_ctx *hctx;
1707         struct request *rq;
1708 };
1709
1710 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1711                 void *data)
1712 {
1713         struct dispatch_rq_data *dispatch_data = data;
1714         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1715         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1716         enum hctx_type type = hctx->type;
1717
1718         spin_lock(&ctx->lock);
1719         if (!list_empty(&ctx->rq_lists[type])) {
1720                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1721                 list_del_init(&dispatch_data->rq->queuelist);
1722                 if (list_empty(&ctx->rq_lists[type]))
1723                         sbitmap_clear_bit(sb, bitnr);
1724         }
1725         spin_unlock(&ctx->lock);
1726
1727         return !dispatch_data->rq;
1728 }
1729
1730 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1731                                         struct blk_mq_ctx *start)
1732 {
1733         unsigned off = start ? start->index_hw[hctx->type] : 0;
1734         struct dispatch_rq_data data = {
1735                 .hctx = hctx,
1736                 .rq   = NULL,
1737         };
1738
1739         __sbitmap_for_each_set(&hctx->ctx_map, off,
1740                                dispatch_rq_from_ctx, &data);
1741
1742         return data.rq;
1743 }
1744
1745 bool __blk_mq_alloc_driver_tag(struct request *rq)
1746 {
1747         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1748         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1749         int tag;
1750
1751         blk_mq_tag_busy(rq->mq_hctx);
1752
1753         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1754                 bt = &rq->mq_hctx->tags->breserved_tags;
1755                 tag_offset = 0;
1756         } else {
1757                 if (!hctx_may_queue(rq->mq_hctx, bt))
1758                         return false;
1759         }
1760
1761         tag = __sbitmap_queue_get(bt);
1762         if (tag == BLK_MQ_NO_TAG)
1763                 return false;
1764
1765         rq->tag = tag + tag_offset;
1766         blk_mq_inc_active_requests(rq->mq_hctx);
1767         return true;
1768 }
1769
1770 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1771                                 int flags, void *key)
1772 {
1773         struct blk_mq_hw_ctx *hctx;
1774
1775         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1776
1777         spin_lock(&hctx->dispatch_wait_lock);
1778         if (!list_empty(&wait->entry)) {
1779                 struct sbitmap_queue *sbq;
1780
1781                 list_del_init(&wait->entry);
1782                 sbq = &hctx->tags->bitmap_tags;
1783                 atomic_dec(&sbq->ws_active);
1784         }
1785         spin_unlock(&hctx->dispatch_wait_lock);
1786
1787         blk_mq_run_hw_queue(hctx, true);
1788         return 1;
1789 }
1790
1791 /*
1792  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1793  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1794  * restart. For both cases, take care to check the condition again after
1795  * marking us as waiting.
1796  */
1797 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1798                                  struct request *rq)
1799 {
1800         struct sbitmap_queue *sbq;
1801         struct wait_queue_head *wq;
1802         wait_queue_entry_t *wait;
1803         bool ret;
1804
1805         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1806             !(blk_mq_is_shared_tags(hctx->flags))) {
1807                 blk_mq_sched_mark_restart_hctx(hctx);
1808
1809                 /*
1810                  * It's possible that a tag was freed in the window between the
1811                  * allocation failure and adding the hardware queue to the wait
1812                  * queue.
1813                  *
1814                  * Don't clear RESTART here, someone else could have set it.
1815                  * At most this will cost an extra queue run.
1816                  */
1817                 return blk_mq_get_driver_tag(rq);
1818         }
1819
1820         wait = &hctx->dispatch_wait;
1821         if (!list_empty_careful(&wait->entry))
1822                 return false;
1823
1824         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1825                 sbq = &hctx->tags->breserved_tags;
1826         else
1827                 sbq = &hctx->tags->bitmap_tags;
1828         wq = &bt_wait_ptr(sbq, hctx)->wait;
1829
1830         spin_lock_irq(&wq->lock);
1831         spin_lock(&hctx->dispatch_wait_lock);
1832         if (!list_empty(&wait->entry)) {
1833                 spin_unlock(&hctx->dispatch_wait_lock);
1834                 spin_unlock_irq(&wq->lock);
1835                 return false;
1836         }
1837
1838         atomic_inc(&sbq->ws_active);
1839         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1840         __add_wait_queue(wq, wait);
1841
1842         /*
1843          * Add one explicit barrier since blk_mq_get_driver_tag() may
1844          * not imply barrier in case of failure.
1845          *
1846          * Order adding us to wait queue and allocating driver tag.
1847          *
1848          * The pair is the one implied in sbitmap_queue_wake_up() which
1849          * orders clearing sbitmap tag bits and waitqueue_active() in
1850          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1851          *
1852          * Otherwise, re-order of adding wait queue and getting driver tag
1853          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1854          * the waitqueue_active() may not observe us in wait queue.
1855          */
1856         smp_mb();
1857
1858         /*
1859          * It's possible that a tag was freed in the window between the
1860          * allocation failure and adding the hardware queue to the wait
1861          * queue.
1862          */
1863         ret = blk_mq_get_driver_tag(rq);
1864         if (!ret) {
1865                 spin_unlock(&hctx->dispatch_wait_lock);
1866                 spin_unlock_irq(&wq->lock);
1867                 return false;
1868         }
1869
1870         /*
1871          * We got a tag, remove ourselves from the wait queue to ensure
1872          * someone else gets the wakeup.
1873          */
1874         list_del_init(&wait->entry);
1875         atomic_dec(&sbq->ws_active);
1876         spin_unlock(&hctx->dispatch_wait_lock);
1877         spin_unlock_irq(&wq->lock);
1878
1879         return true;
1880 }
1881
1882 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1883 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1884 /*
1885  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1886  * - EWMA is one simple way to compute running average value
1887  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1888  * - take 4 as factor for avoiding to get too small(0) result, and this
1889  *   factor doesn't matter because EWMA decreases exponentially
1890  */
1891 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1892 {
1893         unsigned int ewma;
1894
1895         ewma = hctx->dispatch_busy;
1896
1897         if (!ewma && !busy)
1898                 return;
1899
1900         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1901         if (busy)
1902                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1903         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1904
1905         hctx->dispatch_busy = ewma;
1906 }
1907
1908 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1909
1910 static void blk_mq_handle_dev_resource(struct request *rq,
1911                                        struct list_head *list)
1912 {
1913         list_add(&rq->queuelist, list);
1914         __blk_mq_requeue_request(rq);
1915 }
1916
1917 enum prep_dispatch {
1918         PREP_DISPATCH_OK,
1919         PREP_DISPATCH_NO_TAG,
1920         PREP_DISPATCH_NO_BUDGET,
1921 };
1922
1923 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1924                                                   bool need_budget)
1925 {
1926         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1927         int budget_token = -1;
1928
1929         if (need_budget) {
1930                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1931                 if (budget_token < 0) {
1932                         blk_mq_put_driver_tag(rq);
1933                         return PREP_DISPATCH_NO_BUDGET;
1934                 }
1935                 blk_mq_set_rq_budget_token(rq, budget_token);
1936         }
1937
1938         if (!blk_mq_get_driver_tag(rq)) {
1939                 /*
1940                  * The initial allocation attempt failed, so we need to
1941                  * rerun the hardware queue when a tag is freed. The
1942                  * waitqueue takes care of that. If the queue is run
1943                  * before we add this entry back on the dispatch list,
1944                  * we'll re-run it below.
1945                  */
1946                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1947                         /*
1948                          * All budgets not got from this function will be put
1949                          * together during handling partial dispatch
1950                          */
1951                         if (need_budget)
1952                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1953                         return PREP_DISPATCH_NO_TAG;
1954                 }
1955         }
1956
1957         return PREP_DISPATCH_OK;
1958 }
1959
1960 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1961 static void blk_mq_release_budgets(struct request_queue *q,
1962                 struct list_head *list)
1963 {
1964         struct request *rq;
1965
1966         list_for_each_entry(rq, list, queuelist) {
1967                 int budget_token = blk_mq_get_rq_budget_token(rq);
1968
1969                 if (budget_token >= 0)
1970                         blk_mq_put_dispatch_budget(q, budget_token);
1971         }
1972 }
1973
1974 /*
1975  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1976  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1977  * details)
1978  * Attention, we should explicitly call this in unusual cases:
1979  *  1) did not queue everything initially scheduled to queue
1980  *  2) the last attempt to queue a request failed
1981  */
1982 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1983                               bool from_schedule)
1984 {
1985         if (hctx->queue->mq_ops->commit_rqs && queued) {
1986                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1987                 hctx->queue->mq_ops->commit_rqs(hctx);
1988         }
1989 }
1990
1991 /*
1992  * Returns true if we did some work AND can potentially do more.
1993  */
1994 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1995                              unsigned int nr_budgets)
1996 {
1997         enum prep_dispatch prep;
1998         struct request_queue *q = hctx->queue;
1999         struct request *rq;
2000         int queued;
2001         blk_status_t ret = BLK_STS_OK;
2002         bool needs_resource = false;
2003
2004         if (list_empty(list))
2005                 return false;
2006
2007         /*
2008          * Now process all the entries, sending them to the driver.
2009          */
2010         queued = 0;
2011         do {
2012                 struct blk_mq_queue_data bd;
2013
2014                 rq = list_first_entry(list, struct request, queuelist);
2015
2016                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2017                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2018                 if (prep != PREP_DISPATCH_OK)
2019                         break;
2020
2021                 list_del_init(&rq->queuelist);
2022
2023                 bd.rq = rq;
2024                 bd.last = list_empty(list);
2025
2026                 /*
2027                  * once the request is queued to lld, no need to cover the
2028                  * budget any more
2029                  */
2030                 if (nr_budgets)
2031                         nr_budgets--;
2032                 ret = q->mq_ops->queue_rq(hctx, &bd);
2033                 switch (ret) {
2034                 case BLK_STS_OK:
2035                         queued++;
2036                         break;
2037                 case BLK_STS_RESOURCE:
2038                         needs_resource = true;
2039                         fallthrough;
2040                 case BLK_STS_DEV_RESOURCE:
2041                         blk_mq_handle_dev_resource(rq, list);
2042                         goto out;
2043                 default:
2044                         blk_mq_end_request(rq, ret);
2045                 }
2046         } while (!list_empty(list));
2047 out:
2048         /* If we didn't flush the entire list, we could have told the driver
2049          * there was more coming, but that turned out to be a lie.
2050          */
2051         if (!list_empty(list) || ret != BLK_STS_OK)
2052                 blk_mq_commit_rqs(hctx, queued, false);
2053
2054         /*
2055          * Any items that need requeuing? Stuff them into hctx->dispatch,
2056          * that is where we will continue on next queue run.
2057          */
2058         if (!list_empty(list)) {
2059                 bool needs_restart;
2060                 /* For non-shared tags, the RESTART check will suffice */
2061                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2062                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2063                         blk_mq_is_shared_tags(hctx->flags));
2064
2065                 if (nr_budgets)
2066                         blk_mq_release_budgets(q, list);
2067
2068                 spin_lock(&hctx->lock);
2069                 list_splice_tail_init(list, &hctx->dispatch);
2070                 spin_unlock(&hctx->lock);
2071
2072                 /*
2073                  * Order adding requests to hctx->dispatch and checking
2074                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2075                  * in blk_mq_sched_restart(). Avoid restart code path to
2076                  * miss the new added requests to hctx->dispatch, meantime
2077                  * SCHED_RESTART is observed here.
2078                  */
2079                 smp_mb();
2080
2081                 /*
2082                  * If SCHED_RESTART was set by the caller of this function and
2083                  * it is no longer set that means that it was cleared by another
2084                  * thread and hence that a queue rerun is needed.
2085                  *
2086                  * If 'no_tag' is set, that means that we failed getting
2087                  * a driver tag with an I/O scheduler attached. If our dispatch
2088                  * waitqueue is no longer active, ensure that we run the queue
2089                  * AFTER adding our entries back to the list.
2090                  *
2091                  * If no I/O scheduler has been configured it is possible that
2092                  * the hardware queue got stopped and restarted before requests
2093                  * were pushed back onto the dispatch list. Rerun the queue to
2094                  * avoid starvation. Notes:
2095                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2096                  *   been stopped before rerunning a queue.
2097                  * - Some but not all block drivers stop a queue before
2098                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2099                  *   and dm-rq.
2100                  *
2101                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2102                  * bit is set, run queue after a delay to avoid IO stalls
2103                  * that could otherwise occur if the queue is idle.  We'll do
2104                  * similar if we couldn't get budget or couldn't lock a zone
2105                  * and SCHED_RESTART is set.
2106                  */
2107                 needs_restart = blk_mq_sched_needs_restart(hctx);
2108                 if (prep == PREP_DISPATCH_NO_BUDGET)
2109                         needs_resource = true;
2110                 if (!needs_restart ||
2111                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2112                         blk_mq_run_hw_queue(hctx, true);
2113                 else if (needs_resource)
2114                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2115
2116                 blk_mq_update_dispatch_busy(hctx, true);
2117                 return false;
2118         }
2119
2120         blk_mq_update_dispatch_busy(hctx, false);
2121         return true;
2122 }
2123
2124 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2125 {
2126         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2127
2128         if (cpu >= nr_cpu_ids)
2129                 cpu = cpumask_first(hctx->cpumask);
2130         return cpu;
2131 }
2132
2133 /*
2134  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2135  * it for speeding up the check
2136  */
2137 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2138 {
2139         return hctx->next_cpu >= nr_cpu_ids;
2140 }
2141
2142 /*
2143  * It'd be great if the workqueue API had a way to pass
2144  * in a mask and had some smarts for more clever placement.
2145  * For now we just round-robin here, switching for every
2146  * BLK_MQ_CPU_WORK_BATCH queued items.
2147  */
2148 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2149 {
2150         bool tried = false;
2151         int next_cpu = hctx->next_cpu;
2152
2153         /* Switch to unbound if no allowable CPUs in this hctx */
2154         if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2155                 return WORK_CPU_UNBOUND;
2156
2157         if (--hctx->next_cpu_batch <= 0) {
2158 select_cpu:
2159                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2160                                 cpu_online_mask);
2161                 if (next_cpu >= nr_cpu_ids)
2162                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2163                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2164         }
2165
2166         /*
2167          * Do unbound schedule if we can't find a online CPU for this hctx,
2168          * and it should only happen in the path of handling CPU DEAD.
2169          */
2170         if (!cpu_online(next_cpu)) {
2171                 if (!tried) {
2172                         tried = true;
2173                         goto select_cpu;
2174                 }
2175
2176                 /*
2177                  * Make sure to re-select CPU next time once after CPUs
2178                  * in hctx->cpumask become online again.
2179                  */
2180                 hctx->next_cpu = next_cpu;
2181                 hctx->next_cpu_batch = 1;
2182                 return WORK_CPU_UNBOUND;
2183         }
2184
2185         hctx->next_cpu = next_cpu;
2186         return next_cpu;
2187 }
2188
2189 /**
2190  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2191  * @hctx: Pointer to the hardware queue to run.
2192  * @msecs: Milliseconds of delay to wait before running the queue.
2193  *
2194  * Run a hardware queue asynchronously with a delay of @msecs.
2195  */
2196 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2197 {
2198         if (unlikely(blk_mq_hctx_stopped(hctx)))
2199                 return;
2200         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2201                                     msecs_to_jiffies(msecs));
2202 }
2203 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2204
2205 /**
2206  * blk_mq_run_hw_queue - Start to run a hardware queue.
2207  * @hctx: Pointer to the hardware queue to run.
2208  * @async: If we want to run the queue asynchronously.
2209  *
2210  * Check if the request queue is not in a quiesced state and if there are
2211  * pending requests to be sent. If this is true, run the queue to send requests
2212  * to hardware.
2213  */
2214 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2215 {
2216         bool need_run;
2217
2218         /*
2219          * We can't run the queue inline with interrupts disabled.
2220          */
2221         WARN_ON_ONCE(!async && in_interrupt());
2222
2223         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2224
2225         /*
2226          * When queue is quiesced, we may be switching io scheduler, or
2227          * updating nr_hw_queues, or other things, and we can't run queue
2228          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2229          *
2230          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2231          * quiesced.
2232          */
2233         __blk_mq_run_dispatch_ops(hctx->queue, false,
2234                 need_run = !blk_queue_quiesced(hctx->queue) &&
2235                 blk_mq_hctx_has_pending(hctx));
2236
2237         if (!need_run)
2238                 return;
2239
2240         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2241                 blk_mq_delay_run_hw_queue(hctx, 0);
2242                 return;
2243         }
2244
2245         blk_mq_run_dispatch_ops(hctx->queue,
2246                                 blk_mq_sched_dispatch_requests(hctx));
2247 }
2248 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2249
2250 /*
2251  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2252  * scheduler.
2253  */
2254 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2255 {
2256         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2257         /*
2258          * If the IO scheduler does not respect hardware queues when
2259          * dispatching, we just don't bother with multiple HW queues and
2260          * dispatch from hctx for the current CPU since running multiple queues
2261          * just causes lock contention inside the scheduler and pointless cache
2262          * bouncing.
2263          */
2264         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2265
2266         if (!blk_mq_hctx_stopped(hctx))
2267                 return hctx;
2268         return NULL;
2269 }
2270
2271 /**
2272  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2273  * @q: Pointer to the request queue to run.
2274  * @async: If we want to run the queue asynchronously.
2275  */
2276 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2277 {
2278         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2279         unsigned long i;
2280
2281         sq_hctx = NULL;
2282         if (blk_queue_sq_sched(q))
2283                 sq_hctx = blk_mq_get_sq_hctx(q);
2284         queue_for_each_hw_ctx(q, hctx, i) {
2285                 if (blk_mq_hctx_stopped(hctx))
2286                         continue;
2287                 /*
2288                  * Dispatch from this hctx either if there's no hctx preferred
2289                  * by IO scheduler or if it has requests that bypass the
2290                  * scheduler.
2291                  */
2292                 if (!sq_hctx || sq_hctx == hctx ||
2293                     !list_empty_careful(&hctx->dispatch))
2294                         blk_mq_run_hw_queue(hctx, async);
2295         }
2296 }
2297 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2298
2299 /**
2300  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2301  * @q: Pointer to the request queue to run.
2302  * @msecs: Milliseconds of delay to wait before running the queues.
2303  */
2304 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2305 {
2306         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2307         unsigned long i;
2308
2309         sq_hctx = NULL;
2310         if (blk_queue_sq_sched(q))
2311                 sq_hctx = blk_mq_get_sq_hctx(q);
2312         queue_for_each_hw_ctx(q, hctx, i) {
2313                 if (blk_mq_hctx_stopped(hctx))
2314                         continue;
2315                 /*
2316                  * If there is already a run_work pending, leave the
2317                  * pending delay untouched. Otherwise, a hctx can stall
2318                  * if another hctx is re-delaying the other's work
2319                  * before the work executes.
2320                  */
2321                 if (delayed_work_pending(&hctx->run_work))
2322                         continue;
2323                 /*
2324                  * Dispatch from this hctx either if there's no hctx preferred
2325                  * by IO scheduler or if it has requests that bypass the
2326                  * scheduler.
2327                  */
2328                 if (!sq_hctx || sq_hctx == hctx ||
2329                     !list_empty_careful(&hctx->dispatch))
2330                         blk_mq_delay_run_hw_queue(hctx, msecs);
2331         }
2332 }
2333 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2334
2335 /*
2336  * This function is often used for pausing .queue_rq() by driver when
2337  * there isn't enough resource or some conditions aren't satisfied, and
2338  * BLK_STS_RESOURCE is usually returned.
2339  *
2340  * We do not guarantee that dispatch can be drained or blocked
2341  * after blk_mq_stop_hw_queue() returns. Please use
2342  * blk_mq_quiesce_queue() for that requirement.
2343  */
2344 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2345 {
2346         cancel_delayed_work(&hctx->run_work);
2347
2348         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2349 }
2350 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2351
2352 /*
2353  * This function is often used for pausing .queue_rq() by driver when
2354  * there isn't enough resource or some conditions aren't satisfied, and
2355  * BLK_STS_RESOURCE is usually returned.
2356  *
2357  * We do not guarantee that dispatch can be drained or blocked
2358  * after blk_mq_stop_hw_queues() returns. Please use
2359  * blk_mq_quiesce_queue() for that requirement.
2360  */
2361 void blk_mq_stop_hw_queues(struct request_queue *q)
2362 {
2363         struct blk_mq_hw_ctx *hctx;
2364         unsigned long i;
2365
2366         queue_for_each_hw_ctx(q, hctx, i)
2367                 blk_mq_stop_hw_queue(hctx);
2368 }
2369 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2370
2371 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2372 {
2373         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2374
2375         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2376 }
2377 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2378
2379 void blk_mq_start_hw_queues(struct request_queue *q)
2380 {
2381         struct blk_mq_hw_ctx *hctx;
2382         unsigned long i;
2383
2384         queue_for_each_hw_ctx(q, hctx, i)
2385                 blk_mq_start_hw_queue(hctx);
2386 }
2387 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2388
2389 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2390 {
2391         if (!blk_mq_hctx_stopped(hctx))
2392                 return;
2393
2394         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2395         blk_mq_run_hw_queue(hctx, async);
2396 }
2397 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2398
2399 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2400 {
2401         struct blk_mq_hw_ctx *hctx;
2402         unsigned long i;
2403
2404         queue_for_each_hw_ctx(q, hctx, i)
2405                 blk_mq_start_stopped_hw_queue(hctx, async ||
2406                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2407 }
2408 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2409
2410 static void blk_mq_run_work_fn(struct work_struct *work)
2411 {
2412         struct blk_mq_hw_ctx *hctx =
2413                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2414
2415         blk_mq_run_dispatch_ops(hctx->queue,
2416                                 blk_mq_sched_dispatch_requests(hctx));
2417 }
2418
2419 /**
2420  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2421  * @rq: Pointer to request to be inserted.
2422  * @flags: BLK_MQ_INSERT_*
2423  *
2424  * Should only be used carefully, when the caller knows we want to
2425  * bypass a potential IO scheduler on the target device.
2426  */
2427 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2428 {
2429         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2430
2431         spin_lock(&hctx->lock);
2432         if (flags & BLK_MQ_INSERT_AT_HEAD)
2433                 list_add(&rq->queuelist, &hctx->dispatch);
2434         else
2435                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2436         spin_unlock(&hctx->lock);
2437 }
2438
2439 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2440                 struct blk_mq_ctx *ctx, struct list_head *list,
2441                 bool run_queue_async)
2442 {
2443         struct request *rq;
2444         enum hctx_type type = hctx->type;
2445
2446         /*
2447          * Try to issue requests directly if the hw queue isn't busy to save an
2448          * extra enqueue & dequeue to the sw queue.
2449          */
2450         if (!hctx->dispatch_busy && !run_queue_async) {
2451                 blk_mq_run_dispatch_ops(hctx->queue,
2452                         blk_mq_try_issue_list_directly(hctx, list));
2453                 if (list_empty(list))
2454                         goto out;
2455         }
2456
2457         /*
2458          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2459          * offline now
2460          */
2461         list_for_each_entry(rq, list, queuelist) {
2462                 BUG_ON(rq->mq_ctx != ctx);
2463                 trace_block_rq_insert(rq);
2464                 if (rq->cmd_flags & REQ_NOWAIT)
2465                         run_queue_async = true;
2466         }
2467
2468         spin_lock(&ctx->lock);
2469         list_splice_tail_init(list, &ctx->rq_lists[type]);
2470         blk_mq_hctx_mark_pending(hctx, ctx);
2471         spin_unlock(&ctx->lock);
2472 out:
2473         blk_mq_run_hw_queue(hctx, run_queue_async);
2474 }
2475
2476 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2477 {
2478         struct request_queue *q = rq->q;
2479         struct blk_mq_ctx *ctx = rq->mq_ctx;
2480         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2481
2482         if (blk_rq_is_passthrough(rq)) {
2483                 /*
2484                  * Passthrough request have to be added to hctx->dispatch
2485                  * directly.  The device may be in a situation where it can't
2486                  * handle FS request, and always returns BLK_STS_RESOURCE for
2487                  * them, which gets them added to hctx->dispatch.
2488                  *
2489                  * If a passthrough request is required to unblock the queues,
2490                  * and it is added to the scheduler queue, there is no chance to
2491                  * dispatch it given we prioritize requests in hctx->dispatch.
2492                  */
2493                 blk_mq_request_bypass_insert(rq, flags);
2494         } else if (req_op(rq) == REQ_OP_FLUSH) {
2495                 /*
2496                  * Firstly normal IO request is inserted to scheduler queue or
2497                  * sw queue, meantime we add flush request to dispatch queue(
2498                  * hctx->dispatch) directly and there is at most one in-flight
2499                  * flush request for each hw queue, so it doesn't matter to add
2500                  * flush request to tail or front of the dispatch queue.
2501                  *
2502                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2503                  * command, and queueing it will fail when there is any
2504                  * in-flight normal IO request(NCQ command). When adding flush
2505                  * rq to the front of hctx->dispatch, it is easier to introduce
2506                  * extra time to flush rq's latency because of S_SCHED_RESTART
2507                  * compared with adding to the tail of dispatch queue, then
2508                  * chance of flush merge is increased, and less flush requests
2509                  * will be issued to controller. It is observed that ~10% time
2510                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2511                  * drive when adding flush rq to the front of hctx->dispatch.
2512                  *
2513                  * Simply queue flush rq to the front of hctx->dispatch so that
2514                  * intensive flush workloads can benefit in case of NCQ HW.
2515                  */
2516                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2517         } else if (q->elevator) {
2518                 LIST_HEAD(list);
2519
2520                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2521
2522                 list_add(&rq->queuelist, &list);
2523                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2524         } else {
2525                 trace_block_rq_insert(rq);
2526
2527                 spin_lock(&ctx->lock);
2528                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2529                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2530                 else
2531                         list_add_tail(&rq->queuelist,
2532                                       &ctx->rq_lists[hctx->type]);
2533                 blk_mq_hctx_mark_pending(hctx, ctx);
2534                 spin_unlock(&ctx->lock);
2535         }
2536 }
2537
2538 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2539                 unsigned int nr_segs)
2540 {
2541         int err;
2542
2543         if (bio->bi_opf & REQ_RAHEAD)
2544                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2545
2546         rq->__sector = bio->bi_iter.bi_sector;
2547         rq->write_hint = bio->bi_write_hint;
2548         blk_rq_bio_prep(rq, bio, nr_segs);
2549
2550         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552         WARN_ON_ONCE(err);
2553
2554         blk_account_io_start(rq);
2555 }
2556
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558                                             struct request *rq, bool last)
2559 {
2560         struct request_queue *q = rq->q;
2561         struct blk_mq_queue_data bd = {
2562                 .rq = rq,
2563                 .last = last,
2564         };
2565         blk_status_t ret;
2566
2567         /*
2568          * For OK queue, we are done. For error, caller may kill it.
2569          * Any other error (busy), just add it to our list as we
2570          * previously would have done.
2571          */
2572         ret = q->mq_ops->queue_rq(hctx, &bd);
2573         switch (ret) {
2574         case BLK_STS_OK:
2575                 blk_mq_update_dispatch_busy(hctx, false);
2576                 break;
2577         case BLK_STS_RESOURCE:
2578         case BLK_STS_DEV_RESOURCE:
2579                 blk_mq_update_dispatch_busy(hctx, true);
2580                 __blk_mq_requeue_request(rq);
2581                 break;
2582         default:
2583                 blk_mq_update_dispatch_busy(hctx, false);
2584                 break;
2585         }
2586
2587         return ret;
2588 }
2589
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592         int budget_token;
2593
2594         budget_token = blk_mq_get_dispatch_budget(rq->q);
2595         if (budget_token < 0)
2596                 return false;
2597         blk_mq_set_rq_budget_token(rq, budget_token);
2598         if (!blk_mq_get_driver_tag(rq)) {
2599                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2600                 return false;
2601         }
2602         return true;
2603 }
2604
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616                 struct request *rq)
2617 {
2618         blk_status_t ret;
2619
2620         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621                 blk_mq_insert_request(rq, 0);
2622                 return;
2623         }
2624
2625         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2628                 return;
2629         }
2630
2631         ret = __blk_mq_issue_directly(hctx, rq, true);
2632         switch (ret) {
2633         case BLK_STS_OK:
2634                 break;
2635         case BLK_STS_RESOURCE:
2636         case BLK_STS_DEV_RESOURCE:
2637                 blk_mq_request_bypass_insert(rq, 0);
2638                 blk_mq_run_hw_queue(hctx, false);
2639                 break;
2640         default:
2641                 blk_mq_end_request(rq, ret);
2642                 break;
2643         }
2644 }
2645
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649
2650         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651                 blk_mq_insert_request(rq, 0);
2652                 return BLK_STS_OK;
2653         }
2654
2655         if (!blk_mq_get_budget_and_tag(rq))
2656                 return BLK_STS_RESOURCE;
2657         return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662         struct blk_mq_hw_ctx *hctx = NULL;
2663         struct request *rq;
2664         int queued = 0;
2665         blk_status_t ret = BLK_STS_OK;
2666
2667         while ((rq = rq_list_pop(&plug->mq_list))) {
2668                 bool last = rq_list_empty(plug->mq_list);
2669
2670                 if (hctx != rq->mq_hctx) {
2671                         if (hctx) {
2672                                 blk_mq_commit_rqs(hctx, queued, false);
2673                                 queued = 0;
2674                         }
2675                         hctx = rq->mq_hctx;
2676                 }
2677
2678                 ret = blk_mq_request_issue_directly(rq, last);
2679                 switch (ret) {
2680                 case BLK_STS_OK:
2681                         queued++;
2682                         break;
2683                 case BLK_STS_RESOURCE:
2684                 case BLK_STS_DEV_RESOURCE:
2685                         blk_mq_request_bypass_insert(rq, 0);
2686                         blk_mq_run_hw_queue(hctx, false);
2687                         goto out;
2688                 default:
2689                         blk_mq_end_request(rq, ret);
2690                         break;
2691                 }
2692         }
2693
2694 out:
2695         if (ret != BLK_STS_OK)
2696                 blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700                                      struct blk_plug *plug)
2701 {
2702         if (blk_queue_quiesced(q))
2703                 return;
2704         q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709         struct blk_mq_hw_ctx *this_hctx = NULL;
2710         struct blk_mq_ctx *this_ctx = NULL;
2711         struct request *requeue_list = NULL;
2712         struct request **requeue_lastp = &requeue_list;
2713         unsigned int depth = 0;
2714         bool is_passthrough = false;
2715         LIST_HEAD(list);
2716
2717         do {
2718                 struct request *rq = rq_list_pop(&plug->mq_list);
2719
2720                 if (!this_hctx) {
2721                         this_hctx = rq->mq_hctx;
2722                         this_ctx = rq->mq_ctx;
2723                         is_passthrough = blk_rq_is_passthrough(rq);
2724                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2725                            is_passthrough != blk_rq_is_passthrough(rq)) {
2726                         rq_list_add_tail(&requeue_lastp, rq);
2727                         continue;
2728                 }
2729                 list_add(&rq->queuelist, &list);
2730                 depth++;
2731         } while (!rq_list_empty(plug->mq_list));
2732
2733         plug->mq_list = requeue_list;
2734         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2735
2736         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2737         /* passthrough requests should never be issued to the I/O scheduler */
2738         if (is_passthrough) {
2739                 spin_lock(&this_hctx->lock);
2740                 list_splice_tail_init(&list, &this_hctx->dispatch);
2741                 spin_unlock(&this_hctx->lock);
2742                 blk_mq_run_hw_queue(this_hctx, from_sched);
2743         } else if (this_hctx->queue->elevator) {
2744                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2745                                 &list, 0);
2746                 blk_mq_run_hw_queue(this_hctx, from_sched);
2747         } else {
2748                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749         }
2750         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2751 }
2752
2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 {
2755         struct request *rq;
2756         unsigned int depth;
2757
2758         /*
2759          * We may have been called recursively midway through handling
2760          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2761          * To avoid mq_list changing under our feet, clear rq_count early and
2762          * bail out specifically if rq_count is 0 rather than checking
2763          * whether the mq_list is empty.
2764          */
2765         if (plug->rq_count == 0)
2766                 return;
2767         depth = plug->rq_count;
2768         plug->rq_count = 0;
2769
2770         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2771                 struct request_queue *q;
2772
2773                 rq = rq_list_peek(&plug->mq_list);
2774                 q = rq->q;
2775                 trace_block_unplug(q, depth, true);
2776
2777                 /*
2778                  * Peek first request and see if we have a ->queue_rqs() hook.
2779                  * If we do, we can dispatch the whole plug list in one go. We
2780                  * already know at this point that all requests belong to the
2781                  * same queue, caller must ensure that's the case.
2782                  */
2783                 if (q->mq_ops->queue_rqs) {
2784                         blk_mq_run_dispatch_ops(q,
2785                                 __blk_mq_flush_plug_list(q, plug));
2786                         if (rq_list_empty(plug->mq_list))
2787                                 return;
2788                 }
2789
2790                 blk_mq_run_dispatch_ops(q,
2791                                 blk_mq_plug_issue_direct(plug));
2792                 if (rq_list_empty(plug->mq_list))
2793                         return;
2794         }
2795
2796         do {
2797                 blk_mq_dispatch_plug_list(plug, from_schedule);
2798         } while (!rq_list_empty(plug->mq_list));
2799 }
2800
2801 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2802                 struct list_head *list)
2803 {
2804         int queued = 0;
2805         blk_status_t ret = BLK_STS_OK;
2806
2807         while (!list_empty(list)) {
2808                 struct request *rq = list_first_entry(list, struct request,
2809                                 queuelist);
2810
2811                 list_del_init(&rq->queuelist);
2812                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2813                 switch (ret) {
2814                 case BLK_STS_OK:
2815                         queued++;
2816                         break;
2817                 case BLK_STS_RESOURCE:
2818                 case BLK_STS_DEV_RESOURCE:
2819                         blk_mq_request_bypass_insert(rq, 0);
2820                         if (list_empty(list))
2821                                 blk_mq_run_hw_queue(hctx, false);
2822                         goto out;
2823                 default:
2824                         blk_mq_end_request(rq, ret);
2825                         break;
2826                 }
2827         }
2828
2829 out:
2830         if (ret != BLK_STS_OK)
2831                 blk_mq_commit_rqs(hctx, queued, false);
2832 }
2833
2834 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2835                                      struct bio *bio, unsigned int nr_segs)
2836 {
2837         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2838                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2839                         return true;
2840                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2841                         return true;
2842         }
2843         return false;
2844 }
2845
2846 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2847                                                struct blk_plug *plug,
2848                                                struct bio *bio,
2849                                                unsigned int nsegs)
2850 {
2851         struct blk_mq_alloc_data data = {
2852                 .q              = q,
2853                 .nr_tags        = 1,
2854                 .cmd_flags      = bio->bi_opf,
2855         };
2856         struct request *rq;
2857
2858         rq_qos_throttle(q, bio);
2859
2860         if (plug) {
2861                 data.nr_tags = plug->nr_ios;
2862                 plug->nr_ios = 1;
2863                 data.cached_rq = &plug->cached_rq;
2864         }
2865
2866         rq = __blk_mq_alloc_requests(&data);
2867         if (rq)
2868                 return rq;
2869         rq_qos_cleanup(q, bio);
2870         if (bio->bi_opf & REQ_NOWAIT)
2871                 bio_wouldblock_error(bio);
2872         return NULL;
2873 }
2874
2875 /*
2876  * Check if there is a suitable cached request and return it.
2877  */
2878 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2879                 struct request_queue *q, blk_opf_t opf)
2880 {
2881         enum hctx_type type = blk_mq_get_hctx_type(opf);
2882         struct request *rq;
2883
2884         if (!plug)
2885                 return NULL;
2886         rq = rq_list_peek(&plug->cached_rq);
2887         if (!rq || rq->q != q)
2888                 return NULL;
2889         if (type != rq->mq_hctx->type &&
2890             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2891                 return NULL;
2892         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2893                 return NULL;
2894         return rq;
2895 }
2896
2897 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2898                 struct bio *bio)
2899 {
2900         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2901
2902         /*
2903          * If any qos ->throttle() end up blocking, we will have flushed the
2904          * plug and hence killed the cached_rq list as well. Pop this entry
2905          * before we throttle.
2906          */
2907         plug->cached_rq = rq_list_next(rq);
2908         rq_qos_throttle(rq->q, bio);
2909
2910         blk_mq_rq_time_init(rq, 0);
2911         rq->cmd_flags = bio->bi_opf;
2912         INIT_LIST_HEAD(&rq->queuelist);
2913 }
2914
2915 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
2916 {
2917         unsigned int bs_mask = queue_logical_block_size(q) - 1;
2918
2919         /* .bi_sector of any zero sized bio need to be initialized */
2920         if ((bio->bi_iter.bi_size & bs_mask) ||
2921             ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
2922                 return true;
2923         return false;
2924 }
2925
2926 /**
2927  * blk_mq_submit_bio - Create and send a request to block device.
2928  * @bio: Bio pointer.
2929  *
2930  * Builds up a request structure from @q and @bio and send to the device. The
2931  * request may not be queued directly to hardware if:
2932  * * This request can be merged with another one
2933  * * We want to place request at plug queue for possible future merging
2934  * * There is an IO scheduler active at this queue
2935  *
2936  * It will not queue the request if there is an error with the bio, or at the
2937  * request creation.
2938  */
2939 void blk_mq_submit_bio(struct bio *bio)
2940 {
2941         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2942         struct blk_plug *plug = current->plug;
2943         const int is_sync = op_is_sync(bio->bi_opf);
2944         struct blk_mq_hw_ctx *hctx;
2945         unsigned int nr_segs;
2946         struct request *rq;
2947         blk_status_t ret;
2948
2949         /*
2950          * If the plug has a cached request for this queue, try to use it.
2951          */
2952         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2953
2954         /*
2955          * A BIO that was released from a zone write plug has already been
2956          * through the preparation in this function, already holds a reference
2957          * on the queue usage counter, and is the only write BIO in-flight for
2958          * the target zone. Go straight to preparing a request for it.
2959          */
2960         if (bio_zone_write_plugging(bio)) {
2961                 nr_segs = bio->__bi_nr_segments;
2962                 if (rq)
2963                         blk_queue_exit(q);
2964                 goto new_request;
2965         }
2966
2967         bio = blk_queue_bounce(bio, q);
2968
2969         /*
2970          * The cached request already holds a q_usage_counter reference and we
2971          * don't have to acquire a new one if we use it.
2972          */
2973         if (!rq) {
2974                 if (unlikely(bio_queue_enter(bio)))
2975                         return;
2976         }
2977
2978         /*
2979          * Device reconfiguration may change logical block size, so alignment
2980          * check has to be done with queue usage counter held
2981          */
2982         if (unlikely(bio_unaligned(bio, q))) {
2983                 bio_io_error(bio);
2984                 goto queue_exit;
2985         }
2986
2987         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2988         if (!bio)
2989                 goto queue_exit;
2990
2991         if (!bio_integrity_prep(bio))
2992                 goto queue_exit;
2993
2994         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2995                 goto queue_exit;
2996
2997         if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2998                 goto queue_exit;
2999
3000 new_request:
3001         if (!rq) {
3002                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3003                 if (unlikely(!rq))
3004                         goto queue_exit;
3005         } else {
3006                 blk_mq_use_cached_rq(rq, plug, bio);
3007         }
3008
3009         trace_block_getrq(bio);
3010
3011         rq_qos_track(q, rq, bio);
3012
3013         blk_mq_bio_to_request(rq, bio, nr_segs);
3014
3015         ret = blk_crypto_rq_get_keyslot(rq);
3016         if (ret != BLK_STS_OK) {
3017                 bio->bi_status = ret;
3018                 bio_endio(bio);
3019                 blk_mq_free_request(rq);
3020                 return;
3021         }
3022
3023         if (bio_zone_write_plugging(bio))
3024                 blk_zone_write_plug_init_request(rq);
3025
3026         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3027                 return;
3028
3029         if (plug) {
3030                 blk_add_rq_to_plug(plug, rq);
3031                 return;
3032         }
3033
3034         hctx = rq->mq_hctx;
3035         if ((rq->rq_flags & RQF_USE_SCHED) ||
3036             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3037                 blk_mq_insert_request(rq, 0);
3038                 blk_mq_run_hw_queue(hctx, true);
3039         } else {
3040                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3041         }
3042         return;
3043
3044 queue_exit:
3045         /*
3046          * Don't drop the queue reference if we were trying to use a cached
3047          * request and thus didn't acquire one.
3048          */
3049         if (!rq)
3050                 blk_queue_exit(q);
3051 }
3052
3053 #ifdef CONFIG_BLK_MQ_STACKING
3054 /**
3055  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3056  * @rq: the request being queued
3057  */
3058 blk_status_t blk_insert_cloned_request(struct request *rq)
3059 {
3060         struct request_queue *q = rq->q;
3061         unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3062         unsigned int max_segments = blk_rq_get_max_segments(rq);
3063         blk_status_t ret;
3064
3065         if (blk_rq_sectors(rq) > max_sectors) {
3066                 /*
3067                  * SCSI device does not have a good way to return if
3068                  * Write Same/Zero is actually supported. If a device rejects
3069                  * a non-read/write command (discard, write same,etc.) the
3070                  * low-level device driver will set the relevant queue limit to
3071                  * 0 to prevent blk-lib from issuing more of the offending
3072                  * operations. Commands queued prior to the queue limit being
3073                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3074                  * errors being propagated to upper layers.
3075                  */
3076                 if (max_sectors == 0)
3077                         return BLK_STS_NOTSUPP;
3078
3079                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3080                         __func__, blk_rq_sectors(rq), max_sectors);
3081                 return BLK_STS_IOERR;
3082         }
3083
3084         /*
3085          * The queue settings related to segment counting may differ from the
3086          * original queue.
3087          */
3088         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3089         if (rq->nr_phys_segments > max_segments) {
3090                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3091                         __func__, rq->nr_phys_segments, max_segments);
3092                 return BLK_STS_IOERR;
3093         }
3094
3095         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3096                 return BLK_STS_IOERR;
3097
3098         ret = blk_crypto_rq_get_keyslot(rq);
3099         if (ret != BLK_STS_OK)
3100                 return ret;
3101
3102         blk_account_io_start(rq);
3103
3104         /*
3105          * Since we have a scheduler attached on the top device,
3106          * bypass a potential scheduler on the bottom device for
3107          * insert.
3108          */
3109         blk_mq_run_dispatch_ops(q,
3110                         ret = blk_mq_request_issue_directly(rq, true));
3111         if (ret)
3112                 blk_account_io_done(rq, blk_time_get_ns());
3113         return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3116
3117 /**
3118  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3119  * @rq: the clone request to be cleaned up
3120  *
3121  * Description:
3122  *     Free all bios in @rq for a cloned request.
3123  */
3124 void blk_rq_unprep_clone(struct request *rq)
3125 {
3126         struct bio *bio;
3127
3128         while ((bio = rq->bio) != NULL) {
3129                 rq->bio = bio->bi_next;
3130
3131                 bio_put(bio);
3132         }
3133 }
3134 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3135
3136 /**
3137  * blk_rq_prep_clone - Helper function to setup clone request
3138  * @rq: the request to be setup
3139  * @rq_src: original request to be cloned
3140  * @bs: bio_set that bios for clone are allocated from
3141  * @gfp_mask: memory allocation mask for bio
3142  * @bio_ctr: setup function to be called for each clone bio.
3143  *           Returns %0 for success, non %0 for failure.
3144  * @data: private data to be passed to @bio_ctr
3145  *
3146  * Description:
3147  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3148  *     Also, pages which the original bios are pointing to are not copied
3149  *     and the cloned bios just point same pages.
3150  *     So cloned bios must be completed before original bios, which means
3151  *     the caller must complete @rq before @rq_src.
3152  */
3153 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3154                       struct bio_set *bs, gfp_t gfp_mask,
3155                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3156                       void *data)
3157 {
3158         struct bio *bio, *bio_src;
3159
3160         if (!bs)
3161                 bs = &fs_bio_set;
3162
3163         __rq_for_each_bio(bio_src, rq_src) {
3164                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3165                                       bs);
3166                 if (!bio)
3167                         goto free_and_out;
3168
3169                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3170                         goto free_and_out;
3171
3172                 if (rq->bio) {
3173                         rq->biotail->bi_next = bio;
3174                         rq->biotail = bio;
3175                 } else {
3176                         rq->bio = rq->biotail = bio;
3177                 }
3178                 bio = NULL;
3179         }
3180
3181         /* Copy attributes of the original request to the clone request. */
3182         rq->__sector = blk_rq_pos(rq_src);
3183         rq->__data_len = blk_rq_bytes(rq_src);
3184         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3185                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3186                 rq->special_vec = rq_src->special_vec;
3187         }
3188         rq->nr_phys_segments = rq_src->nr_phys_segments;
3189         rq->ioprio = rq_src->ioprio;
3190         rq->write_hint = rq_src->write_hint;
3191
3192         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3193                 goto free_and_out;
3194
3195         return 0;
3196
3197 free_and_out:
3198         if (bio)
3199                 bio_put(bio);
3200         blk_rq_unprep_clone(rq);
3201
3202         return -ENOMEM;
3203 }
3204 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3205 #endif /* CONFIG_BLK_MQ_STACKING */
3206
3207 /*
3208  * Steal bios from a request and add them to a bio list.
3209  * The request must not have been partially completed before.
3210  */
3211 void blk_steal_bios(struct bio_list *list, struct request *rq)
3212 {
3213         if (rq->bio) {
3214                 if (list->tail)
3215                         list->tail->bi_next = rq->bio;
3216                 else
3217                         list->head = rq->bio;
3218                 list->tail = rq->biotail;
3219
3220                 rq->bio = NULL;
3221                 rq->biotail = NULL;
3222         }
3223
3224         rq->__data_len = 0;
3225 }
3226 EXPORT_SYMBOL_GPL(blk_steal_bios);
3227
3228 static size_t order_to_size(unsigned int order)
3229 {
3230         return (size_t)PAGE_SIZE << order;
3231 }
3232
3233 /* called before freeing request pool in @tags */
3234 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3235                                     struct blk_mq_tags *tags)
3236 {
3237         struct page *page;
3238         unsigned long flags;
3239
3240         /*
3241          * There is no need to clear mapping if driver tags is not initialized
3242          * or the mapping belongs to the driver tags.
3243          */
3244         if (!drv_tags || drv_tags == tags)
3245                 return;
3246
3247         list_for_each_entry(page, &tags->page_list, lru) {
3248                 unsigned long start = (unsigned long)page_address(page);
3249                 unsigned long end = start + order_to_size(page->private);
3250                 int i;
3251
3252                 for (i = 0; i < drv_tags->nr_tags; i++) {
3253                         struct request *rq = drv_tags->rqs[i];
3254                         unsigned long rq_addr = (unsigned long)rq;
3255
3256                         if (rq_addr >= start && rq_addr < end) {
3257                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3258                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3259                         }
3260                 }
3261         }
3262
3263         /*
3264          * Wait until all pending iteration is done.
3265          *
3266          * Request reference is cleared and it is guaranteed to be observed
3267          * after the ->lock is released.
3268          */
3269         spin_lock_irqsave(&drv_tags->lock, flags);
3270         spin_unlock_irqrestore(&drv_tags->lock, flags);
3271 }
3272
3273 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3274                      unsigned int hctx_idx)
3275 {
3276         struct blk_mq_tags *drv_tags;
3277         struct page *page;
3278
3279         if (list_empty(&tags->page_list))
3280                 return;
3281
3282         if (blk_mq_is_shared_tags(set->flags))
3283                 drv_tags = set->shared_tags;
3284         else
3285                 drv_tags = set->tags[hctx_idx];
3286
3287         if (tags->static_rqs && set->ops->exit_request) {
3288                 int i;
3289
3290                 for (i = 0; i < tags->nr_tags; i++) {
3291                         struct request *rq = tags->static_rqs[i];
3292
3293                         if (!rq)
3294                                 continue;
3295                         set->ops->exit_request(set, rq, hctx_idx);
3296                         tags->static_rqs[i] = NULL;
3297                 }
3298         }
3299
3300         blk_mq_clear_rq_mapping(drv_tags, tags);
3301
3302         while (!list_empty(&tags->page_list)) {
3303                 page = list_first_entry(&tags->page_list, struct page, lru);
3304                 list_del_init(&page->lru);
3305                 /*
3306                  * Remove kmemleak object previously allocated in
3307                  * blk_mq_alloc_rqs().
3308                  */
3309                 kmemleak_free(page_address(page));
3310                 __free_pages(page, page->private);
3311         }
3312 }
3313
3314 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3315 {
3316         kfree(tags->rqs);
3317         tags->rqs = NULL;
3318         kfree(tags->static_rqs);
3319         tags->static_rqs = NULL;
3320
3321         blk_mq_free_tags(tags);
3322 }
3323
3324 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3325                 unsigned int hctx_idx)
3326 {
3327         int i;
3328
3329         for (i = 0; i < set->nr_maps; i++) {
3330                 unsigned int start = set->map[i].queue_offset;
3331                 unsigned int end = start + set->map[i].nr_queues;
3332
3333                 if (hctx_idx >= start && hctx_idx < end)
3334                         break;
3335         }
3336
3337         if (i >= set->nr_maps)
3338                 i = HCTX_TYPE_DEFAULT;
3339
3340         return i;
3341 }
3342
3343 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3344                 unsigned int hctx_idx)
3345 {
3346         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3347
3348         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3349 }
3350
3351 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3352                                                unsigned int hctx_idx,
3353                                                unsigned int nr_tags,
3354                                                unsigned int reserved_tags)
3355 {
3356         int node = blk_mq_get_hctx_node(set, hctx_idx);
3357         struct blk_mq_tags *tags;
3358
3359         if (node == NUMA_NO_NODE)
3360                 node = set->numa_node;
3361
3362         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3363                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3364         if (!tags)
3365                 return NULL;
3366
3367         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3368                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3369                                  node);
3370         if (!tags->rqs)
3371                 goto err_free_tags;
3372
3373         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3374                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3375                                         node);
3376         if (!tags->static_rqs)
3377                 goto err_free_rqs;
3378
3379         return tags;
3380
3381 err_free_rqs:
3382         kfree(tags->rqs);
3383 err_free_tags:
3384         blk_mq_free_tags(tags);
3385         return NULL;
3386 }
3387
3388 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3389                                unsigned int hctx_idx, int node)
3390 {
3391         int ret;
3392
3393         if (set->ops->init_request) {
3394                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3395                 if (ret)
3396                         return ret;
3397         }
3398
3399         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3400         return 0;
3401 }
3402
3403 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3404                             struct blk_mq_tags *tags,
3405                             unsigned int hctx_idx, unsigned int depth)
3406 {
3407         unsigned int i, j, entries_per_page, max_order = 4;
3408         int node = blk_mq_get_hctx_node(set, hctx_idx);
3409         size_t rq_size, left;
3410
3411         if (node == NUMA_NO_NODE)
3412                 node = set->numa_node;
3413
3414         INIT_LIST_HEAD(&tags->page_list);
3415
3416         /*
3417          * rq_size is the size of the request plus driver payload, rounded
3418          * to the cacheline size
3419          */
3420         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3421                                 cache_line_size());
3422         left = rq_size * depth;
3423
3424         for (i = 0; i < depth; ) {
3425                 int this_order = max_order;
3426                 struct page *page;
3427                 int to_do;
3428                 void *p;
3429
3430                 while (this_order && left < order_to_size(this_order - 1))
3431                         this_order--;
3432
3433                 do {
3434                         page = alloc_pages_node(node,
3435                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3436                                 this_order);
3437                         if (page)
3438                                 break;
3439                         if (!this_order--)
3440                                 break;
3441                         if (order_to_size(this_order) < rq_size)
3442                                 break;
3443                 } while (1);
3444
3445                 if (!page)
3446                         goto fail;
3447
3448                 page->private = this_order;
3449                 list_add_tail(&page->lru, &tags->page_list);
3450
3451                 p = page_address(page);
3452                 /*
3453                  * Allow kmemleak to scan these pages as they contain pointers
3454                  * to additional allocations like via ops->init_request().
3455                  */
3456                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3457                 entries_per_page = order_to_size(this_order) / rq_size;
3458                 to_do = min(entries_per_page, depth - i);
3459                 left -= to_do * rq_size;
3460                 for (j = 0; j < to_do; j++) {
3461                         struct request *rq = p;
3462
3463                         tags->static_rqs[i] = rq;
3464                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3465                                 tags->static_rqs[i] = NULL;
3466                                 goto fail;
3467                         }
3468
3469                         p += rq_size;
3470                         i++;
3471                 }
3472         }
3473         return 0;
3474
3475 fail:
3476         blk_mq_free_rqs(set, tags, hctx_idx);
3477         return -ENOMEM;
3478 }
3479
3480 struct rq_iter_data {
3481         struct blk_mq_hw_ctx *hctx;
3482         bool has_rq;
3483 };
3484
3485 static bool blk_mq_has_request(struct request *rq, void *data)
3486 {
3487         struct rq_iter_data *iter_data = data;
3488
3489         if (rq->mq_hctx != iter_data->hctx)
3490                 return true;
3491         iter_data->has_rq = true;
3492         return false;
3493 }
3494
3495 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3496 {
3497         struct blk_mq_tags *tags = hctx->sched_tags ?
3498                         hctx->sched_tags : hctx->tags;
3499         struct rq_iter_data data = {
3500                 .hctx   = hctx,
3501         };
3502
3503         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3504         return data.has_rq;
3505 }
3506
3507 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3508                 unsigned int this_cpu)
3509 {
3510         enum hctx_type type = hctx->type;
3511         int cpu;
3512
3513         /*
3514          * hctx->cpumask has to rule out isolated CPUs, but userspace still
3515          * might submit IOs on these isolated CPUs, so use the queue map to
3516          * check if all CPUs mapped to this hctx are offline
3517          */
3518         for_each_online_cpu(cpu) {
3519                 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3520                                 type, cpu);
3521
3522                 if (h != hctx)
3523                         continue;
3524
3525                 /* this hctx has at least one online CPU */
3526                 if (this_cpu != cpu)
3527                         return true;
3528         }
3529
3530         return false;
3531 }
3532
3533 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3534 {
3535         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3536                         struct blk_mq_hw_ctx, cpuhp_online);
3537
3538         if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3539                 return 0;
3540
3541         /*
3542          * Prevent new request from being allocated on the current hctx.
3543          *
3544          * The smp_mb__after_atomic() Pairs with the implied barrier in
3545          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3546          * seen once we return from the tag allocator.
3547          */
3548         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3549         smp_mb__after_atomic();
3550
3551         /*
3552          * Try to grab a reference to the queue and wait for any outstanding
3553          * requests.  If we could not grab a reference the queue has been
3554          * frozen and there are no requests.
3555          */
3556         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3557                 while (blk_mq_hctx_has_requests(hctx))
3558                         msleep(5);
3559                 percpu_ref_put(&hctx->queue->q_usage_counter);
3560         }
3561
3562         return 0;
3563 }
3564
3565 /*
3566  * Check if one CPU is mapped to the specified hctx
3567  *
3568  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3569  * to be used for scheduling kworker only. For other usage, please call this
3570  * helper for checking if one CPU belongs to the specified hctx
3571  */
3572 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3573                 const struct blk_mq_hw_ctx *hctx)
3574 {
3575         struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3576                         hctx->type, cpu);
3577
3578         return mapped_hctx == hctx;
3579 }
3580
3581 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3582 {
3583         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3584                         struct blk_mq_hw_ctx, cpuhp_online);
3585
3586         if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3587                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3588         return 0;
3589 }
3590
3591 /*
3592  * 'cpu' is going away. splice any existing rq_list entries from this
3593  * software queue to the hw queue dispatch list, and ensure that it
3594  * gets run.
3595  */
3596 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3597 {
3598         struct blk_mq_hw_ctx *hctx;
3599         struct blk_mq_ctx *ctx;
3600         LIST_HEAD(tmp);
3601         enum hctx_type type;
3602
3603         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3604         if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3605                 return 0;
3606
3607         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3608         type = hctx->type;
3609
3610         spin_lock(&ctx->lock);
3611         if (!list_empty(&ctx->rq_lists[type])) {
3612                 list_splice_init(&ctx->rq_lists[type], &tmp);
3613                 blk_mq_hctx_clear_pending(hctx, ctx);
3614         }
3615         spin_unlock(&ctx->lock);
3616
3617         if (list_empty(&tmp))
3618                 return 0;
3619
3620         spin_lock(&hctx->lock);
3621         list_splice_tail_init(&tmp, &hctx->dispatch);
3622         spin_unlock(&hctx->lock);
3623
3624         blk_mq_run_hw_queue(hctx, true);
3625         return 0;
3626 }
3627
3628 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3629 {
3630         if (!(hctx->flags & BLK_MQ_F_STACKING))
3631                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3632                                                     &hctx->cpuhp_online);
3633         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3634                                             &hctx->cpuhp_dead);
3635 }
3636
3637 /*
3638  * Before freeing hw queue, clearing the flush request reference in
3639  * tags->rqs[] for avoiding potential UAF.
3640  */
3641 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3642                 unsigned int queue_depth, struct request *flush_rq)
3643 {
3644         int i;
3645         unsigned long flags;
3646
3647         /* The hw queue may not be mapped yet */
3648         if (!tags)
3649                 return;
3650
3651         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3652
3653         for (i = 0; i < queue_depth; i++)
3654                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3655
3656         /*
3657          * Wait until all pending iteration is done.
3658          *
3659          * Request reference is cleared and it is guaranteed to be observed
3660          * after the ->lock is released.
3661          */
3662         spin_lock_irqsave(&tags->lock, flags);
3663         spin_unlock_irqrestore(&tags->lock, flags);
3664 }
3665
3666 /* hctx->ctxs will be freed in queue's release handler */
3667 static void blk_mq_exit_hctx(struct request_queue *q,
3668                 struct blk_mq_tag_set *set,
3669                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3670 {
3671         struct request *flush_rq = hctx->fq->flush_rq;
3672
3673         if (blk_mq_hw_queue_mapped(hctx))
3674                 blk_mq_tag_idle(hctx);
3675
3676         if (blk_queue_init_done(q))
3677                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3678                                 set->queue_depth, flush_rq);
3679         if (set->ops->exit_request)
3680                 set->ops->exit_request(set, flush_rq, hctx_idx);
3681
3682         if (set->ops->exit_hctx)
3683                 set->ops->exit_hctx(hctx, hctx_idx);
3684
3685         blk_mq_remove_cpuhp(hctx);
3686
3687         xa_erase(&q->hctx_table, hctx_idx);
3688
3689         spin_lock(&q->unused_hctx_lock);
3690         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3691         spin_unlock(&q->unused_hctx_lock);
3692 }
3693
3694 static void blk_mq_exit_hw_queues(struct request_queue *q,
3695                 struct blk_mq_tag_set *set, int nr_queue)
3696 {
3697         struct blk_mq_hw_ctx *hctx;
3698         unsigned long i;
3699
3700         queue_for_each_hw_ctx(q, hctx, i) {
3701                 if (i == nr_queue)
3702                         break;
3703                 blk_mq_exit_hctx(q, set, hctx, i);
3704         }
3705 }
3706
3707 static int blk_mq_init_hctx(struct request_queue *q,
3708                 struct blk_mq_tag_set *set,
3709                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3710 {
3711         hctx->queue_num = hctx_idx;
3712
3713         if (!(hctx->flags & BLK_MQ_F_STACKING))
3714                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3715                                 &hctx->cpuhp_online);
3716         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3717
3718         hctx->tags = set->tags[hctx_idx];
3719
3720         if (set->ops->init_hctx &&
3721             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3722                 goto unregister_cpu_notifier;
3723
3724         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3725                                 hctx->numa_node))
3726                 goto exit_hctx;
3727
3728         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3729                 goto exit_flush_rq;
3730
3731         return 0;
3732
3733  exit_flush_rq:
3734         if (set->ops->exit_request)
3735                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3736  exit_hctx:
3737         if (set->ops->exit_hctx)
3738                 set->ops->exit_hctx(hctx, hctx_idx);
3739  unregister_cpu_notifier:
3740         blk_mq_remove_cpuhp(hctx);
3741         return -1;
3742 }
3743
3744 static struct blk_mq_hw_ctx *
3745 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3746                 int node)
3747 {
3748         struct blk_mq_hw_ctx *hctx;
3749         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3750
3751         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3752         if (!hctx)
3753                 goto fail_alloc_hctx;
3754
3755         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3756                 goto free_hctx;
3757
3758         atomic_set(&hctx->nr_active, 0);
3759         if (node == NUMA_NO_NODE)
3760                 node = set->numa_node;
3761         hctx->numa_node = node;
3762
3763         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3764         spin_lock_init(&hctx->lock);
3765         INIT_LIST_HEAD(&hctx->dispatch);
3766         hctx->queue = q;
3767         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3768
3769         INIT_LIST_HEAD(&hctx->hctx_list);
3770
3771         /*
3772          * Allocate space for all possible cpus to avoid allocation at
3773          * runtime
3774          */
3775         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3776                         gfp, node);
3777         if (!hctx->ctxs)
3778                 goto free_cpumask;
3779
3780         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3781                                 gfp, node, false, false))
3782                 goto free_ctxs;
3783         hctx->nr_ctx = 0;
3784
3785         spin_lock_init(&hctx->dispatch_wait_lock);
3786         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3787         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3788
3789         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3790         if (!hctx->fq)
3791                 goto free_bitmap;
3792
3793         blk_mq_hctx_kobj_init(hctx);
3794
3795         return hctx;
3796
3797  free_bitmap:
3798         sbitmap_free(&hctx->ctx_map);
3799  free_ctxs:
3800         kfree(hctx->ctxs);
3801  free_cpumask:
3802         free_cpumask_var(hctx->cpumask);
3803  free_hctx:
3804         kfree(hctx);
3805  fail_alloc_hctx:
3806         return NULL;
3807 }
3808
3809 static void blk_mq_init_cpu_queues(struct request_queue *q,
3810                                    unsigned int nr_hw_queues)
3811 {
3812         struct blk_mq_tag_set *set = q->tag_set;
3813         unsigned int i, j;
3814
3815         for_each_possible_cpu(i) {
3816                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3817                 struct blk_mq_hw_ctx *hctx;
3818                 int k;
3819
3820                 __ctx->cpu = i;
3821                 spin_lock_init(&__ctx->lock);
3822                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3823                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3824
3825                 __ctx->queue = q;
3826
3827                 /*
3828                  * Set local node, IFF we have more than one hw queue. If
3829                  * not, we remain on the home node of the device
3830                  */
3831                 for (j = 0; j < set->nr_maps; j++) {
3832                         hctx = blk_mq_map_queue_type(q, j, i);
3833                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3834                                 hctx->numa_node = cpu_to_node(i);
3835                 }
3836         }
3837 }
3838
3839 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3840                                              unsigned int hctx_idx,
3841                                              unsigned int depth)
3842 {
3843         struct blk_mq_tags *tags;
3844         int ret;
3845
3846         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3847         if (!tags)
3848                 return NULL;
3849
3850         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3851         if (ret) {
3852                 blk_mq_free_rq_map(tags);
3853                 return NULL;
3854         }
3855
3856         return tags;
3857 }
3858
3859 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3860                                        int hctx_idx)
3861 {
3862         if (blk_mq_is_shared_tags(set->flags)) {
3863                 set->tags[hctx_idx] = set->shared_tags;
3864
3865                 return true;
3866         }
3867
3868         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3869                                                        set->queue_depth);
3870
3871         return set->tags[hctx_idx];
3872 }
3873
3874 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3875                              struct blk_mq_tags *tags,
3876                              unsigned int hctx_idx)
3877 {
3878         if (tags) {
3879                 blk_mq_free_rqs(set, tags, hctx_idx);
3880                 blk_mq_free_rq_map(tags);
3881         }
3882 }
3883
3884 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3885                                       unsigned int hctx_idx)
3886 {
3887         if (!blk_mq_is_shared_tags(set->flags))
3888                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3889
3890         set->tags[hctx_idx] = NULL;
3891 }
3892
3893 static void blk_mq_map_swqueue(struct request_queue *q)
3894 {
3895         unsigned int j, hctx_idx;
3896         unsigned long i;
3897         struct blk_mq_hw_ctx *hctx;
3898         struct blk_mq_ctx *ctx;
3899         struct blk_mq_tag_set *set = q->tag_set;
3900
3901         queue_for_each_hw_ctx(q, hctx, i) {
3902                 cpumask_clear(hctx->cpumask);
3903                 hctx->nr_ctx = 0;
3904                 hctx->dispatch_from = NULL;
3905         }
3906
3907         /*
3908          * Map software to hardware queues.
3909          *
3910          * If the cpu isn't present, the cpu is mapped to first hctx.
3911          */
3912         for_each_possible_cpu(i) {
3913
3914                 ctx = per_cpu_ptr(q->queue_ctx, i);
3915                 for (j = 0; j < set->nr_maps; j++) {
3916                         if (!set->map[j].nr_queues) {
3917                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3918                                                 HCTX_TYPE_DEFAULT, i);
3919                                 continue;
3920                         }
3921                         hctx_idx = set->map[j].mq_map[i];
3922                         /* unmapped hw queue can be remapped after CPU topo changed */
3923                         if (!set->tags[hctx_idx] &&
3924                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3925                                 /*
3926                                  * If tags initialization fail for some hctx,
3927                                  * that hctx won't be brought online.  In this
3928                                  * case, remap the current ctx to hctx[0] which
3929                                  * is guaranteed to always have tags allocated
3930                                  */
3931                                 set->map[j].mq_map[i] = 0;
3932                         }
3933
3934                         hctx = blk_mq_map_queue_type(q, j, i);
3935                         ctx->hctxs[j] = hctx;
3936                         /*
3937                          * If the CPU is already set in the mask, then we've
3938                          * mapped this one already. This can happen if
3939                          * devices share queues across queue maps.
3940                          */
3941                         if (cpumask_test_cpu(i, hctx->cpumask))
3942                                 continue;
3943
3944                         cpumask_set_cpu(i, hctx->cpumask);
3945                         hctx->type = j;
3946                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3947                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3948
3949                         /*
3950                          * If the nr_ctx type overflows, we have exceeded the
3951                          * amount of sw queues we can support.
3952                          */
3953                         BUG_ON(!hctx->nr_ctx);
3954                 }
3955
3956                 for (; j < HCTX_MAX_TYPES; j++)
3957                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3958                                         HCTX_TYPE_DEFAULT, i);
3959         }
3960
3961         queue_for_each_hw_ctx(q, hctx, i) {
3962                 int cpu;
3963
3964                 /*
3965                  * If no software queues are mapped to this hardware queue,
3966                  * disable it and free the request entries.
3967                  */
3968                 if (!hctx->nr_ctx) {
3969                         /* Never unmap queue 0.  We need it as a
3970                          * fallback in case of a new remap fails
3971                          * allocation
3972                          */
3973                         if (i)
3974                                 __blk_mq_free_map_and_rqs(set, i);
3975
3976                         hctx->tags = NULL;
3977                         continue;
3978                 }
3979
3980                 hctx->tags = set->tags[i];
3981                 WARN_ON(!hctx->tags);
3982
3983                 /*
3984                  * Set the map size to the number of mapped software queues.
3985                  * This is more accurate and more efficient than looping
3986                  * over all possibly mapped software queues.
3987                  */
3988                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3989
3990                 /*
3991                  * Rule out isolated CPUs from hctx->cpumask to avoid
3992                  * running block kworker on isolated CPUs
3993                  */
3994                 for_each_cpu(cpu, hctx->cpumask) {
3995                         if (cpu_is_isolated(cpu))
3996                                 cpumask_clear_cpu(cpu, hctx->cpumask);
3997                 }
3998
3999                 /*
4000                  * Initialize batch roundrobin counts
4001                  */
4002                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4003                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4004         }
4005 }
4006
4007 /*
4008  * Caller needs to ensure that we're either frozen/quiesced, or that
4009  * the queue isn't live yet.
4010  */
4011 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4012 {
4013         struct blk_mq_hw_ctx *hctx;
4014         unsigned long i;
4015
4016         queue_for_each_hw_ctx(q, hctx, i) {
4017                 if (shared) {
4018                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4019                 } else {
4020                         blk_mq_tag_idle(hctx);
4021                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4022                 }
4023         }
4024 }
4025
4026 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4027                                          bool shared)
4028 {
4029         struct request_queue *q;
4030
4031         lockdep_assert_held(&set->tag_list_lock);
4032
4033         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4034                 blk_mq_freeze_queue(q);
4035                 queue_set_hctx_shared(q, shared);
4036                 blk_mq_unfreeze_queue(q);
4037         }
4038 }
4039
4040 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4041 {
4042         struct blk_mq_tag_set *set = q->tag_set;
4043
4044         mutex_lock(&set->tag_list_lock);
4045         list_del(&q->tag_set_list);
4046         if (list_is_singular(&set->tag_list)) {
4047                 /* just transitioned to unshared */
4048                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4049                 /* update existing queue */
4050                 blk_mq_update_tag_set_shared(set, false);
4051         }
4052         mutex_unlock(&set->tag_list_lock);
4053         INIT_LIST_HEAD(&q->tag_set_list);
4054 }
4055
4056 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4057                                      struct request_queue *q)
4058 {
4059         mutex_lock(&set->tag_list_lock);
4060
4061         /*
4062          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4063          */
4064         if (!list_empty(&set->tag_list) &&
4065             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4066                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4067                 /* update existing queue */
4068                 blk_mq_update_tag_set_shared(set, true);
4069         }
4070         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4071                 queue_set_hctx_shared(q, true);
4072         list_add_tail(&q->tag_set_list, &set->tag_list);
4073
4074         mutex_unlock(&set->tag_list_lock);
4075 }
4076
4077 /* All allocations will be freed in release handler of q->mq_kobj */
4078 static int blk_mq_alloc_ctxs(struct request_queue *q)
4079 {
4080         struct blk_mq_ctxs *ctxs;
4081         int cpu;
4082
4083         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4084         if (!ctxs)
4085                 return -ENOMEM;
4086
4087         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4088         if (!ctxs->queue_ctx)
4089                 goto fail;
4090
4091         for_each_possible_cpu(cpu) {
4092                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4093                 ctx->ctxs = ctxs;
4094         }
4095
4096         q->mq_kobj = &ctxs->kobj;
4097         q->queue_ctx = ctxs->queue_ctx;
4098
4099         return 0;
4100  fail:
4101         kfree(ctxs);
4102         return -ENOMEM;
4103 }
4104
4105 /*
4106  * It is the actual release handler for mq, but we do it from
4107  * request queue's release handler for avoiding use-after-free
4108  * and headache because q->mq_kobj shouldn't have been introduced,
4109  * but we can't group ctx/kctx kobj without it.
4110  */
4111 void blk_mq_release(struct request_queue *q)
4112 {
4113         struct blk_mq_hw_ctx *hctx, *next;
4114         unsigned long i;
4115
4116         queue_for_each_hw_ctx(q, hctx, i)
4117                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4118
4119         /* all hctx are in .unused_hctx_list now */
4120         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4121                 list_del_init(&hctx->hctx_list);
4122                 kobject_put(&hctx->kobj);
4123         }
4124
4125         xa_destroy(&q->hctx_table);
4126
4127         /*
4128          * release .mq_kobj and sw queue's kobject now because
4129          * both share lifetime with request queue.
4130          */
4131         blk_mq_sysfs_deinit(q);
4132 }
4133
4134 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4135 {
4136         return set->nr_maps > HCTX_TYPE_POLL &&
4137                 set->map[HCTX_TYPE_POLL].nr_queues;
4138 }
4139
4140 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4141                 struct queue_limits *lim, void *queuedata)
4142 {
4143         struct queue_limits default_lim = { };
4144         struct request_queue *q;
4145         int ret;
4146
4147         if (!lim)
4148                 lim = &default_lim;
4149         lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4150         if (blk_mq_can_poll(set))
4151                 lim->features |= BLK_FEAT_POLL;
4152
4153         q = blk_alloc_queue(lim, set->numa_node);
4154         if (IS_ERR(q))
4155                 return q;
4156         q->queuedata = queuedata;
4157         ret = blk_mq_init_allocated_queue(set, q);
4158         if (ret) {
4159                 blk_put_queue(q);
4160                 return ERR_PTR(ret);
4161         }
4162         return q;
4163 }
4164 EXPORT_SYMBOL(blk_mq_alloc_queue);
4165
4166 /**
4167  * blk_mq_destroy_queue - shutdown a request queue
4168  * @q: request queue to shutdown
4169  *
4170  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4171  * requests will be failed with -ENODEV. The caller is responsible for dropping
4172  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4173  *
4174  * Context: can sleep
4175  */
4176 void blk_mq_destroy_queue(struct request_queue *q)
4177 {
4178         WARN_ON_ONCE(!queue_is_mq(q));
4179         WARN_ON_ONCE(blk_queue_registered(q));
4180
4181         might_sleep();
4182
4183         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4184         blk_queue_start_drain(q);
4185         blk_mq_freeze_queue_wait(q);
4186
4187         blk_sync_queue(q);
4188         blk_mq_cancel_work_sync(q);
4189         blk_mq_exit_queue(q);
4190 }
4191 EXPORT_SYMBOL(blk_mq_destroy_queue);
4192
4193 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4194                 struct queue_limits *lim, void *queuedata,
4195                 struct lock_class_key *lkclass)
4196 {
4197         struct request_queue *q;
4198         struct gendisk *disk;
4199
4200         q = blk_mq_alloc_queue(set, lim, queuedata);
4201         if (IS_ERR(q))
4202                 return ERR_CAST(q);
4203
4204         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4205         if (!disk) {
4206                 blk_mq_destroy_queue(q);
4207                 blk_put_queue(q);
4208                 return ERR_PTR(-ENOMEM);
4209         }
4210         set_bit(GD_OWNS_QUEUE, &disk->state);
4211         return disk;
4212 }
4213 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4214
4215 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4216                 struct lock_class_key *lkclass)
4217 {
4218         struct gendisk *disk;
4219
4220         if (!blk_get_queue(q))
4221                 return NULL;
4222         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4223         if (!disk)
4224                 blk_put_queue(q);
4225         return disk;
4226 }
4227 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4228
4229 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4230                 struct blk_mq_tag_set *set, struct request_queue *q,
4231                 int hctx_idx, int node)
4232 {
4233         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4234
4235         /* reuse dead hctx first */
4236         spin_lock(&q->unused_hctx_lock);
4237         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4238                 if (tmp->numa_node == node) {
4239                         hctx = tmp;
4240                         break;
4241                 }
4242         }
4243         if (hctx)
4244                 list_del_init(&hctx->hctx_list);
4245         spin_unlock(&q->unused_hctx_lock);
4246
4247         if (!hctx)
4248                 hctx = blk_mq_alloc_hctx(q, set, node);
4249         if (!hctx)
4250                 goto fail;
4251
4252         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4253                 goto free_hctx;
4254
4255         return hctx;
4256
4257  free_hctx:
4258         kobject_put(&hctx->kobj);
4259  fail:
4260         return NULL;
4261 }
4262
4263 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4264                                                 struct request_queue *q)
4265 {
4266         struct blk_mq_hw_ctx *hctx;
4267         unsigned long i, j;
4268
4269         /* protect against switching io scheduler  */
4270         mutex_lock(&q->sysfs_lock);
4271         for (i = 0; i < set->nr_hw_queues; i++) {
4272                 int old_node;
4273                 int node = blk_mq_get_hctx_node(set, i);
4274                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4275
4276                 if (old_hctx) {
4277                         old_node = old_hctx->numa_node;
4278                         blk_mq_exit_hctx(q, set, old_hctx, i);
4279                 }
4280
4281                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4282                         if (!old_hctx)
4283                                 break;
4284                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4285                                         node, old_node);
4286                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4287                         WARN_ON_ONCE(!hctx);
4288                 }
4289         }
4290         /*
4291          * Increasing nr_hw_queues fails. Free the newly allocated
4292          * hctxs and keep the previous q->nr_hw_queues.
4293          */
4294         if (i != set->nr_hw_queues) {
4295                 j = q->nr_hw_queues;
4296         } else {
4297                 j = i;
4298                 q->nr_hw_queues = set->nr_hw_queues;
4299         }
4300
4301         xa_for_each_start(&q->hctx_table, j, hctx, j)
4302                 blk_mq_exit_hctx(q, set, hctx, j);
4303         mutex_unlock(&q->sysfs_lock);
4304 }
4305
4306 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4307                 struct request_queue *q)
4308 {
4309         /* mark the queue as mq asap */
4310         q->mq_ops = set->ops;
4311
4312         if (blk_mq_alloc_ctxs(q))
4313                 goto err_exit;
4314
4315         /* init q->mq_kobj and sw queues' kobjects */
4316         blk_mq_sysfs_init(q);
4317
4318         INIT_LIST_HEAD(&q->unused_hctx_list);
4319         spin_lock_init(&q->unused_hctx_lock);
4320
4321         xa_init(&q->hctx_table);
4322
4323         blk_mq_realloc_hw_ctxs(set, q);
4324         if (!q->nr_hw_queues)
4325                 goto err_hctxs;
4326
4327         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4328         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4329
4330         q->tag_set = set;
4331
4332         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4333
4334         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4335         INIT_LIST_HEAD(&q->flush_list);
4336         INIT_LIST_HEAD(&q->requeue_list);
4337         spin_lock_init(&q->requeue_lock);
4338
4339         q->nr_requests = set->queue_depth;
4340
4341         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4342         blk_mq_add_queue_tag_set(set, q);
4343         blk_mq_map_swqueue(q);
4344         return 0;
4345
4346 err_hctxs:
4347         blk_mq_release(q);
4348 err_exit:
4349         q->mq_ops = NULL;
4350         return -ENOMEM;
4351 }
4352 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4353
4354 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4355 void blk_mq_exit_queue(struct request_queue *q)
4356 {
4357         struct blk_mq_tag_set *set = q->tag_set;
4358
4359         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4360         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4361         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4362         blk_mq_del_queue_tag_set(q);
4363 }
4364
4365 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4366 {
4367         int i;
4368
4369         if (blk_mq_is_shared_tags(set->flags)) {
4370                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4371                                                 BLK_MQ_NO_HCTX_IDX,
4372                                                 set->queue_depth);
4373                 if (!set->shared_tags)
4374                         return -ENOMEM;
4375         }
4376
4377         for (i = 0; i < set->nr_hw_queues; i++) {
4378                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4379                         goto out_unwind;
4380                 cond_resched();
4381         }
4382
4383         return 0;
4384
4385 out_unwind:
4386         while (--i >= 0)
4387                 __blk_mq_free_map_and_rqs(set, i);
4388
4389         if (blk_mq_is_shared_tags(set->flags)) {
4390                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4391                                         BLK_MQ_NO_HCTX_IDX);
4392         }
4393
4394         return -ENOMEM;
4395 }
4396
4397 /*
4398  * Allocate the request maps associated with this tag_set. Note that this
4399  * may reduce the depth asked for, if memory is tight. set->queue_depth
4400  * will be updated to reflect the allocated depth.
4401  */
4402 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4403 {
4404         unsigned int depth;
4405         int err;
4406
4407         depth = set->queue_depth;
4408         do {
4409                 err = __blk_mq_alloc_rq_maps(set);
4410                 if (!err)
4411                         break;
4412
4413                 set->queue_depth >>= 1;
4414                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4415                         err = -ENOMEM;
4416                         break;
4417                 }
4418         } while (set->queue_depth);
4419
4420         if (!set->queue_depth || err) {
4421                 pr_err("blk-mq: failed to allocate request map\n");
4422                 return -ENOMEM;
4423         }
4424
4425         if (depth != set->queue_depth)
4426                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4427                                                 depth, set->queue_depth);
4428
4429         return 0;
4430 }
4431
4432 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4433 {
4434         /*
4435          * blk_mq_map_queues() and multiple .map_queues() implementations
4436          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4437          * number of hardware queues.
4438          */
4439         if (set->nr_maps == 1)
4440                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4441
4442         if (set->ops->map_queues) {
4443                 int i;
4444
4445                 /*
4446                  * transport .map_queues is usually done in the following
4447                  * way:
4448                  *
4449                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4450                  *      mask = get_cpu_mask(queue)
4451                  *      for_each_cpu(cpu, mask)
4452                  *              set->map[x].mq_map[cpu] = queue;
4453                  * }
4454                  *
4455                  * When we need to remap, the table has to be cleared for
4456                  * killing stale mapping since one CPU may not be mapped
4457                  * to any hw queue.
4458                  */
4459                 for (i = 0; i < set->nr_maps; i++)
4460                         blk_mq_clear_mq_map(&set->map[i]);
4461
4462                 set->ops->map_queues(set);
4463         } else {
4464                 BUG_ON(set->nr_maps > 1);
4465                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4466         }
4467 }
4468
4469 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4470                                        int new_nr_hw_queues)
4471 {
4472         struct blk_mq_tags **new_tags;
4473         int i;
4474
4475         if (set->nr_hw_queues >= new_nr_hw_queues)
4476                 goto done;
4477
4478         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4479                                 GFP_KERNEL, set->numa_node);
4480         if (!new_tags)
4481                 return -ENOMEM;
4482
4483         if (set->tags)
4484                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4485                        sizeof(*set->tags));
4486         kfree(set->tags);
4487         set->tags = new_tags;
4488
4489         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4490                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4491                         while (--i >= set->nr_hw_queues)
4492                                 __blk_mq_free_map_and_rqs(set, i);
4493                         return -ENOMEM;
4494                 }
4495                 cond_resched();
4496         }
4497
4498 done:
4499         set->nr_hw_queues = new_nr_hw_queues;
4500         return 0;
4501 }
4502
4503 /*
4504  * Alloc a tag set to be associated with one or more request queues.
4505  * May fail with EINVAL for various error conditions. May adjust the
4506  * requested depth down, if it's too large. In that case, the set
4507  * value will be stored in set->queue_depth.
4508  */
4509 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4510 {
4511         int i, ret;
4512
4513         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4514
4515         if (!set->nr_hw_queues)
4516                 return -EINVAL;
4517         if (!set->queue_depth)
4518                 return -EINVAL;
4519         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4520                 return -EINVAL;
4521
4522         if (!set->ops->queue_rq)
4523                 return -EINVAL;
4524
4525         if (!set->ops->get_budget ^ !set->ops->put_budget)
4526                 return -EINVAL;
4527
4528         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4529                 pr_info("blk-mq: reduced tag depth to %u\n",
4530                         BLK_MQ_MAX_DEPTH);
4531                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4532         }
4533
4534         if (!set->nr_maps)
4535                 set->nr_maps = 1;
4536         else if (set->nr_maps > HCTX_MAX_TYPES)
4537                 return -EINVAL;
4538
4539         /*
4540          * If a crashdump is active, then we are potentially in a very
4541          * memory constrained environment. Limit us to  64 tags to prevent
4542          * using too much memory.
4543          */
4544         if (is_kdump_kernel())
4545                 set->queue_depth = min(64U, set->queue_depth);
4546
4547         /*
4548          * There is no use for more h/w queues than cpus if we just have
4549          * a single map
4550          */
4551         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4552                 set->nr_hw_queues = nr_cpu_ids;
4553
4554         if (set->flags & BLK_MQ_F_BLOCKING) {
4555                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4556                 if (!set->srcu)
4557                         return -ENOMEM;
4558                 ret = init_srcu_struct(set->srcu);
4559                 if (ret)
4560                         goto out_free_srcu;
4561         }
4562
4563         ret = -ENOMEM;
4564         set->tags = kcalloc_node(set->nr_hw_queues,
4565                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4566                                  set->numa_node);
4567         if (!set->tags)
4568                 goto out_cleanup_srcu;
4569
4570         for (i = 0; i < set->nr_maps; i++) {
4571                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4572                                                   sizeof(set->map[i].mq_map[0]),
4573                                                   GFP_KERNEL, set->numa_node);
4574                 if (!set->map[i].mq_map)
4575                         goto out_free_mq_map;
4576                 set->map[i].nr_queues = set->nr_hw_queues;
4577         }
4578
4579         blk_mq_update_queue_map(set);
4580
4581         ret = blk_mq_alloc_set_map_and_rqs(set);
4582         if (ret)
4583                 goto out_free_mq_map;
4584
4585         mutex_init(&set->tag_list_lock);
4586         INIT_LIST_HEAD(&set->tag_list);
4587
4588         return 0;
4589
4590 out_free_mq_map:
4591         for (i = 0; i < set->nr_maps; i++) {
4592                 kfree(set->map[i].mq_map);
4593                 set->map[i].mq_map = NULL;
4594         }
4595         kfree(set->tags);
4596         set->tags = NULL;
4597 out_cleanup_srcu:
4598         if (set->flags & BLK_MQ_F_BLOCKING)
4599                 cleanup_srcu_struct(set->srcu);
4600 out_free_srcu:
4601         if (set->flags & BLK_MQ_F_BLOCKING)
4602                 kfree(set->srcu);
4603         return ret;
4604 }
4605 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4606
4607 /* allocate and initialize a tagset for a simple single-queue device */
4608 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4609                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4610                 unsigned int set_flags)
4611 {
4612         memset(set, 0, sizeof(*set));
4613         set->ops = ops;
4614         set->nr_hw_queues = 1;
4615         set->nr_maps = 1;
4616         set->queue_depth = queue_depth;
4617         set->numa_node = NUMA_NO_NODE;
4618         set->flags = set_flags;
4619         return blk_mq_alloc_tag_set(set);
4620 }
4621 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4622
4623 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4624 {
4625         int i, j;
4626
4627         for (i = 0; i < set->nr_hw_queues; i++)
4628                 __blk_mq_free_map_and_rqs(set, i);
4629
4630         if (blk_mq_is_shared_tags(set->flags)) {
4631                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4632                                         BLK_MQ_NO_HCTX_IDX);
4633         }
4634
4635         for (j = 0; j < set->nr_maps; j++) {
4636                 kfree(set->map[j].mq_map);
4637                 set->map[j].mq_map = NULL;
4638         }
4639
4640         kfree(set->tags);
4641         set->tags = NULL;
4642         if (set->flags & BLK_MQ_F_BLOCKING) {
4643                 cleanup_srcu_struct(set->srcu);
4644                 kfree(set->srcu);
4645         }
4646 }
4647 EXPORT_SYMBOL(blk_mq_free_tag_set);
4648
4649 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4650 {
4651         struct blk_mq_tag_set *set = q->tag_set;
4652         struct blk_mq_hw_ctx *hctx;
4653         int ret;
4654         unsigned long i;
4655
4656         if (WARN_ON_ONCE(!q->mq_freeze_depth))
4657                 return -EINVAL;
4658
4659         if (!set)
4660                 return -EINVAL;
4661
4662         if (q->nr_requests == nr)
4663                 return 0;
4664
4665         blk_mq_quiesce_queue(q);
4666
4667         ret = 0;
4668         queue_for_each_hw_ctx(q, hctx, i) {
4669                 if (!hctx->tags)
4670                         continue;
4671                 /*
4672                  * If we're using an MQ scheduler, just update the scheduler
4673                  * queue depth. This is similar to what the old code would do.
4674                  */
4675                 if (hctx->sched_tags) {
4676                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4677                                                       nr, true);
4678                 } else {
4679                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4680                                                       false);
4681                 }
4682                 if (ret)
4683                         break;
4684                 if (q->elevator && q->elevator->type->ops.depth_updated)
4685                         q->elevator->type->ops.depth_updated(hctx);
4686         }
4687         if (!ret) {
4688                 q->nr_requests = nr;
4689                 if (blk_mq_is_shared_tags(set->flags)) {
4690                         if (q->elevator)
4691                                 blk_mq_tag_update_sched_shared_tags(q);
4692                         else
4693                                 blk_mq_tag_resize_shared_tags(set, nr);
4694                 }
4695         }
4696
4697         blk_mq_unquiesce_queue(q);
4698
4699         return ret;
4700 }
4701
4702 /*
4703  * request_queue and elevator_type pair.
4704  * It is just used by __blk_mq_update_nr_hw_queues to cache
4705  * the elevator_type associated with a request_queue.
4706  */
4707 struct blk_mq_qe_pair {
4708         struct list_head node;
4709         struct request_queue *q;
4710         struct elevator_type *type;
4711 };
4712
4713 /*
4714  * Cache the elevator_type in qe pair list and switch the
4715  * io scheduler to 'none'
4716  */
4717 static bool blk_mq_elv_switch_none(struct list_head *head,
4718                 struct request_queue *q)
4719 {
4720         struct blk_mq_qe_pair *qe;
4721
4722         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4723         if (!qe)
4724                 return false;
4725
4726         /* q->elevator needs protection from ->sysfs_lock */
4727         mutex_lock(&q->sysfs_lock);
4728
4729         /* the check has to be done with holding sysfs_lock */
4730         if (!q->elevator) {
4731                 kfree(qe);
4732                 goto unlock;
4733         }
4734
4735         INIT_LIST_HEAD(&qe->node);
4736         qe->q = q;
4737         qe->type = q->elevator->type;
4738         /* keep a reference to the elevator module as we'll switch back */
4739         __elevator_get(qe->type);
4740         list_add(&qe->node, head);
4741         elevator_disable(q);
4742 unlock:
4743         mutex_unlock(&q->sysfs_lock);
4744
4745         return true;
4746 }
4747
4748 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4749                                                 struct request_queue *q)
4750 {
4751         struct blk_mq_qe_pair *qe;
4752
4753         list_for_each_entry(qe, head, node)
4754                 if (qe->q == q)
4755                         return qe;
4756
4757         return NULL;
4758 }
4759
4760 static void blk_mq_elv_switch_back(struct list_head *head,
4761                                   struct request_queue *q)
4762 {
4763         struct blk_mq_qe_pair *qe;
4764         struct elevator_type *t;
4765
4766         qe = blk_lookup_qe_pair(head, q);
4767         if (!qe)
4768                 return;
4769         t = qe->type;
4770         list_del(&qe->node);
4771         kfree(qe);
4772
4773         mutex_lock(&q->sysfs_lock);
4774         elevator_switch(q, t);
4775         /* drop the reference acquired in blk_mq_elv_switch_none */
4776         elevator_put(t);
4777         mutex_unlock(&q->sysfs_lock);
4778 }
4779
4780 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4781                                                         int nr_hw_queues)
4782 {
4783         struct request_queue *q;
4784         LIST_HEAD(head);
4785         int prev_nr_hw_queues = set->nr_hw_queues;
4786         int i;
4787
4788         lockdep_assert_held(&set->tag_list_lock);
4789
4790         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4791                 nr_hw_queues = nr_cpu_ids;
4792         if (nr_hw_queues < 1)
4793                 return;
4794         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4795                 return;
4796
4797         list_for_each_entry(q, &set->tag_list, tag_set_list)
4798                 blk_mq_freeze_queue(q);
4799         /*
4800          * Switch IO scheduler to 'none', cleaning up the data associated
4801          * with the previous scheduler. We will switch back once we are done
4802          * updating the new sw to hw queue mappings.
4803          */
4804         list_for_each_entry(q, &set->tag_list, tag_set_list)
4805                 if (!blk_mq_elv_switch_none(&head, q))
4806                         goto switch_back;
4807
4808         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4809                 blk_mq_debugfs_unregister_hctxs(q);
4810                 blk_mq_sysfs_unregister_hctxs(q);
4811         }
4812
4813         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4814                 goto reregister;
4815
4816 fallback:
4817         blk_mq_update_queue_map(set);
4818         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4819                 struct queue_limits lim;
4820
4821                 blk_mq_realloc_hw_ctxs(set, q);
4822
4823                 if (q->nr_hw_queues != set->nr_hw_queues) {
4824                         int i = prev_nr_hw_queues;
4825
4826                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4827                                         nr_hw_queues, prev_nr_hw_queues);
4828                         for (; i < set->nr_hw_queues; i++)
4829                                 __blk_mq_free_map_and_rqs(set, i);
4830
4831                         set->nr_hw_queues = prev_nr_hw_queues;
4832                         goto fallback;
4833                 }
4834                 lim = queue_limits_start_update(q);
4835                 if (blk_mq_can_poll(set))
4836                         lim.features |= BLK_FEAT_POLL;
4837                 else
4838                         lim.features &= ~BLK_FEAT_POLL;
4839                 if (queue_limits_commit_update(q, &lim) < 0)
4840                         pr_warn("updating the poll flag failed\n");
4841                 blk_mq_map_swqueue(q);
4842         }
4843
4844 reregister:
4845         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4846                 blk_mq_sysfs_register_hctxs(q);
4847                 blk_mq_debugfs_register_hctxs(q);
4848         }
4849
4850 switch_back:
4851         list_for_each_entry(q, &set->tag_list, tag_set_list)
4852                 blk_mq_elv_switch_back(&head, q);
4853
4854         list_for_each_entry(q, &set->tag_list, tag_set_list)
4855                 blk_mq_unfreeze_queue(q);
4856
4857         /* Free the excess tags when nr_hw_queues shrink. */
4858         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4859                 __blk_mq_free_map_and_rqs(set, i);
4860 }
4861
4862 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4863 {
4864         mutex_lock(&set->tag_list_lock);
4865         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4866         mutex_unlock(&set->tag_list_lock);
4867 }
4868 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4869
4870 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4871                          struct io_comp_batch *iob, unsigned int flags)
4872 {
4873         long state = get_current_state();
4874         int ret;
4875
4876         do {
4877                 ret = q->mq_ops->poll(hctx, iob);
4878                 if (ret > 0) {
4879                         __set_current_state(TASK_RUNNING);
4880                         return ret;
4881                 }
4882
4883                 if (signal_pending_state(state, current))
4884                         __set_current_state(TASK_RUNNING);
4885                 if (task_is_running(current))
4886                         return 1;
4887
4888                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4889                         break;
4890                 cpu_relax();
4891         } while (!need_resched());
4892
4893         __set_current_state(TASK_RUNNING);
4894         return 0;
4895 }
4896
4897 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4898                 struct io_comp_batch *iob, unsigned int flags)
4899 {
4900         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4901
4902         return blk_hctx_poll(q, hctx, iob, flags);
4903 }
4904
4905 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4906                 unsigned int poll_flags)
4907 {
4908         struct request_queue *q = rq->q;
4909         int ret;
4910
4911         if (!blk_rq_is_poll(rq))
4912                 return 0;
4913         if (!percpu_ref_tryget(&q->q_usage_counter))
4914                 return 0;
4915
4916         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4917         blk_queue_exit(q);
4918
4919         return ret;
4920 }
4921 EXPORT_SYMBOL_GPL(blk_rq_poll);
4922
4923 unsigned int blk_mq_rq_cpu(struct request *rq)
4924 {
4925         return rq->mq_ctx->cpu;
4926 }
4927 EXPORT_SYMBOL(blk_mq_rq_cpu);
4928
4929 void blk_mq_cancel_work_sync(struct request_queue *q)
4930 {
4931         struct blk_mq_hw_ctx *hctx;
4932         unsigned long i;
4933
4934         cancel_delayed_work_sync(&q->requeue_work);
4935
4936         queue_for_each_hw_ctx(q, hctx, i)
4937                 cancel_delayed_work_sync(&hctx->run_work);
4938 }
4939
4940 static int __init blk_mq_init(void)
4941 {
4942         int i;
4943
4944         for_each_possible_cpu(i)
4945                 init_llist_head(&per_cpu(blk_cpu_done, i));
4946         for_each_possible_cpu(i)
4947                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4948                          __blk_mq_complete_request_remote, NULL);
4949         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4950
4951         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4952                                   "block/softirq:dead", NULL,
4953                                   blk_softirq_cpu_dead);
4954         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4955                                 blk_mq_hctx_notify_dead);
4956         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4957                                 blk_mq_hctx_notify_online,
4958                                 blk_mq_hctx_notify_offline);
4959         return 0;
4960 }
4961 subsys_initcall(blk_mq_init);