blk-mq: support batched queue_rqs() on shared tags queue
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         if (!(data->rq_flags & RQF_SCHED_TAGS))
430                 blk_mq_add_active_requests(data->hctx, nr);
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 /*
454                  * All requests use scheduler tags when an I/O scheduler is
455                  * enabled for the queue.
456                  */
457                 data->rq_flags |= RQF_SCHED_TAGS;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list.
462                  */
463                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464                     !blk_op_is_passthrough(data->cmd_flags)) {
465                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469                         data->rq_flags |= RQF_USE_SCHED;
470                         if (ops->limit_depth)
471                                 ops->limit_depth(data->cmd_flags, data);
472                 }
473         }
474
475 retry:
476         data->ctx = blk_mq_get_ctx(q);
477         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478         if (!(data->rq_flags & RQF_SCHED_TAGS))
479                 blk_mq_tag_busy(data->hctx);
480
481         if (data->flags & BLK_MQ_REQ_RESERVED)
482                 data->rq_flags |= RQF_RESV;
483
484         /*
485          * Try batched alloc if we want more than 1 tag.
486          */
487         if (data->nr_tags > 1) {
488                 rq = __blk_mq_alloc_requests_batch(data);
489                 if (rq) {
490                         blk_mq_rq_time_init(rq, alloc_time_ns);
491                         return rq;
492                 }
493                 data->nr_tags = 1;
494         }
495
496         /*
497          * Waiting allocations only fail because of an inactive hctx.  In that
498          * case just retry the hctx assignment and tag allocation as CPU hotplug
499          * should have migrated us to an online CPU by now.
500          */
501         tag = blk_mq_get_tag(data);
502         if (tag == BLK_MQ_NO_TAG) {
503                 if (data->flags & BLK_MQ_REQ_NOWAIT)
504                         return NULL;
505                 /*
506                  * Give up the CPU and sleep for a random short time to
507                  * ensure that thread using a realtime scheduling class
508                  * are migrated off the CPU, and thus off the hctx that
509                  * is going away.
510                  */
511                 msleep(3);
512                 goto retry;
513         }
514
515         if (!(data->rq_flags & RQF_SCHED_TAGS))
516                 blk_mq_inc_active_requests(data->hctx);
517         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518         blk_mq_rq_time_init(rq, alloc_time_ns);
519         return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523                                             struct blk_plug *plug,
524                                             blk_opf_t opf,
525                                             blk_mq_req_flags_t flags)
526 {
527         struct blk_mq_alloc_data data = {
528                 .q              = q,
529                 .flags          = flags,
530                 .cmd_flags      = opf,
531                 .nr_tags        = plug->nr_ios,
532                 .cached_rq      = &plug->cached_rq,
533         };
534         struct request *rq;
535
536         if (blk_queue_enter(q, flags))
537                 return NULL;
538
539         plug->nr_ios = 1;
540
541         rq = __blk_mq_alloc_requests(&data);
542         if (unlikely(!rq))
543                 blk_queue_exit(q);
544         return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548                                                    blk_opf_t opf,
549                                                    blk_mq_req_flags_t flags)
550 {
551         struct blk_plug *plug = current->plug;
552         struct request *rq;
553
554         if (!plug)
555                 return NULL;
556
557         if (rq_list_empty(plug->cached_rq)) {
558                 if (plug->nr_ios == 1)
559                         return NULL;
560                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561                 if (!rq)
562                         return NULL;
563         } else {
564                 rq = rq_list_peek(&plug->cached_rq);
565                 if (!rq || rq->q != q)
566                         return NULL;
567
568                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569                         return NULL;
570                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571                         return NULL;
572
573                 plug->cached_rq = rq_list_next(rq);
574                 blk_mq_rq_time_init(rq, 0);
575         }
576
577         rq->cmd_flags = opf;
578         INIT_LIST_HEAD(&rq->queuelist);
579         return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583                 blk_mq_req_flags_t flags)
584 {
585         struct request *rq;
586
587         rq = blk_mq_alloc_cached_request(q, opf, flags);
588         if (!rq) {
589                 struct blk_mq_alloc_data data = {
590                         .q              = q,
591                         .flags          = flags,
592                         .cmd_flags      = opf,
593                         .nr_tags        = 1,
594                 };
595                 int ret;
596
597                 ret = blk_queue_enter(q, flags);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 rq = __blk_mq_alloc_requests(&data);
602                 if (!rq)
603                         goto out_queue_exit;
604         }
605         rq->__data_len = 0;
606         rq->__sector = (sector_t) -1;
607         rq->bio = rq->biotail = NULL;
608         return rq;
609 out_queue_exit:
610         blk_queue_exit(q);
611         return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618         struct blk_mq_alloc_data data = {
619                 .q              = q,
620                 .flags          = flags,
621                 .cmd_flags      = opf,
622                 .nr_tags        = 1,
623         };
624         u64 alloc_time_ns = 0;
625         struct request *rq;
626         unsigned int cpu;
627         unsigned int tag;
628         int ret;
629
630         /* alloc_time includes depth and tag waits */
631         if (blk_queue_rq_alloc_time(q))
632                 alloc_time_ns = ktime_get_ns();
633
634         /*
635          * If the tag allocator sleeps we could get an allocation for a
636          * different hardware context.  No need to complicate the low level
637          * allocator for this for the rare use case of a command tied to
638          * a specific queue.
639          */
640         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642                 return ERR_PTR(-EINVAL);
643
644         if (hctx_idx >= q->nr_hw_queues)
645                 return ERR_PTR(-EIO);
646
647         ret = blk_queue_enter(q, flags);
648         if (ret)
649                 return ERR_PTR(ret);
650
651         /*
652          * Check if the hardware context is actually mapped to anything.
653          * If not tell the caller that it should skip this queue.
654          */
655         ret = -EXDEV;
656         data.hctx = xa_load(&q->hctx_table, hctx_idx);
657         if (!blk_mq_hw_queue_mapped(data.hctx))
658                 goto out_queue_exit;
659         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660         if (cpu >= nr_cpu_ids)
661                 goto out_queue_exit;
662         data.ctx = __blk_mq_get_ctx(q, cpu);
663
664         if (q->elevator)
665                 data.rq_flags |= RQF_SCHED_TAGS;
666         else
667                 blk_mq_tag_busy(data.hctx);
668
669         if (flags & BLK_MQ_REQ_RESERVED)
670                 data.rq_flags |= RQF_RESV;
671
672         ret = -EWOULDBLOCK;
673         tag = blk_mq_get_tag(&data);
674         if (tag == BLK_MQ_NO_TAG)
675                 goto out_queue_exit;
676         if (!(data.rq_flags & RQF_SCHED_TAGS))
677                 blk_mq_inc_active_requests(data.hctx);
678         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679         blk_mq_rq_time_init(rq, alloc_time_ns);
680         rq->__data_len = 0;
681         rq->__sector = (sector_t) -1;
682         rq->bio = rq->biotail = NULL;
683         return rq;
684
685 out_queue_exit:
686         blk_queue_exit(q);
687         return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693         struct request_queue *q = rq->q;
694
695         if (rq->rq_flags & RQF_USE_SCHED) {
696                 q->elevator->type->ops.finish_request(rq);
697                 /*
698                  * For postflush request that may need to be
699                  * completed twice, we should clear this flag
700                  * to avoid double finish_request() on the rq.
701                  */
702                 rq->rq_flags &= ~RQF_USE_SCHED;
703         }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709         struct blk_mq_ctx *ctx = rq->mq_ctx;
710         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711         const int sched_tag = rq->internal_tag;
712
713         blk_crypto_free_request(rq);
714         blk_pm_mark_last_busy(rq);
715         rq->mq_hctx = NULL;
716
717         if (rq->tag != BLK_MQ_NO_TAG) {
718                 blk_mq_dec_active_requests(hctx);
719                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720         }
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730
731         blk_mq_finish_request(rq);
732
733         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734                 laptop_io_completion(q->disk->bdi);
735
736         rq_qos_done(q, rq);
737
738         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739         if (req_ref_put_and_test(rq))
740                 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746         struct request *rq;
747
748         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749                 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755                 rq->q->disk ? rq->q->disk->disk_name : "?",
756                 (__force unsigned long long) rq->cmd_flags);
757
758         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759                (unsigned long long)blk_rq_pos(rq),
760                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762                rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767                           unsigned int nbytes, blk_status_t error)
768 {
769         if (unlikely(error)) {
770                 bio->bi_status = error;
771         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772                 /*
773                  * Partial zone append completions cannot be supported as the
774                  * BIO fragments may end up not being written sequentially.
775                  */
776                 if (bio->bi_iter.bi_size != nbytes)
777                         bio->bi_status = BLK_STS_IOERR;
778                 else
779                         bio->bi_iter.bi_sector = rq->__sector;
780         }
781
782         bio_advance(bio, nbytes);
783
784         if (unlikely(rq->rq_flags & RQF_QUIET))
785                 bio_set_flag(bio, BIO_QUIET);
786         /* don't actually finish bio if it's part of flush sequence */
787         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788                 bio_endio(bio);
789 }
790
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793         if (req->part && blk_do_io_stat(req)) {
794                 const int sgrp = op_stat_group(req_op(req));
795
796                 part_stat_lock();
797                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798                 part_stat_unlock();
799         }
800 }
801
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804         printk_ratelimited(KERN_ERR
805                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806                 "phys_seg %u prio class %u\n",
807                 blk_status_to_str(status),
808                 req->q->disk ? req->q->disk->disk_name : "?",
809                 blk_rq_pos(req), (__force u32)req_op(req),
810                 blk_op_str(req_op(req)),
811                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812                 req->nr_phys_segments,
813                 IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823         int total_bytes = blk_rq_bytes(req);
824         struct bio *bio = req->bio;
825
826         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827
828         if (!bio)
829                 return;
830
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833                 req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835
836         /*
837          * Upper layers may call blk_crypto_evict_key() anytime after the last
838          * bio_endio().  Therefore, the keyslot must be released before that.
839          */
840         blk_crypto_rq_put_keyslot(req);
841
842         blk_account_io_completion(req, total_bytes);
843
844         do {
845                 struct bio *next = bio->bi_next;
846
847                 /* Completion has already been traced */
848                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849
850                 if (req_op(req) == REQ_OP_ZONE_APPEND)
851                         bio->bi_iter.bi_sector = req->__sector;
852
853                 if (!is_flush)
854                         bio_endio(bio);
855                 bio = next;
856         } while (bio);
857
858         /*
859          * Reset counters so that the request stacking driver
860          * can find how many bytes remain in the request
861          * later.
862          */
863         if (!req->end_io) {
864                 req->bio = NULL;
865                 req->__data_len = 0;
866         }
867 }
868
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892                 unsigned int nr_bytes)
893 {
894         int total_bytes;
895
896         trace_block_rq_complete(req, error, nr_bytes);
897
898         if (!req->bio)
899                 return false;
900
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903             error == BLK_STS_OK)
904                 req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906
907         /*
908          * Upper layers may call blk_crypto_evict_key() anytime after the last
909          * bio_endio().  Therefore, the keyslot must be released before that.
910          */
911         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912                 __blk_crypto_rq_put_keyslot(req);
913
914         if (unlikely(error && !blk_rq_is_passthrough(req) &&
915                      !(req->rq_flags & RQF_QUIET)) &&
916                      !test_bit(GD_DEAD, &req->q->disk->state)) {
917                 blk_print_req_error(req, error);
918                 trace_block_rq_error(req, error, nr_bytes);
919         }
920
921         blk_account_io_completion(req, nr_bytes);
922
923         total_bytes = 0;
924         while (req->bio) {
925                 struct bio *bio = req->bio;
926                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927
928                 if (bio_bytes == bio->bi_iter.bi_size)
929                         req->bio = bio->bi_next;
930
931                 /* Completion has already been traced */
932                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933                 req_bio_endio(req, bio, bio_bytes, error);
934
935                 total_bytes += bio_bytes;
936                 nr_bytes -= bio_bytes;
937
938                 if (!nr_bytes)
939                         break;
940         }
941
942         /*
943          * completely done
944          */
945         if (!req->bio) {
946                 /*
947                  * Reset counters so that the request stacking driver
948                  * can find how many bytes remain in the request
949                  * later.
950                  */
951                 req->__data_len = 0;
952                 return false;
953         }
954
955         req->__data_len -= total_bytes;
956
957         /* update sector only for requests with clear definition of sector */
958         if (!blk_rq_is_passthrough(req))
959                 req->__sector += total_bytes >> 9;
960
961         /* mixed attributes always follow the first bio */
962         if (req->rq_flags & RQF_MIXED_MERGE) {
963                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
964                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965         }
966
967         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968                 /*
969                  * If total number of sectors is less than the first segment
970                  * size, something has gone terribly wrong.
971                  */
972                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973                         blk_dump_rq_flags(req, "request botched");
974                         req->__data_len = blk_rq_cur_bytes(req);
975                 }
976
977                 /* recalculate the number of segments */
978                 req->nr_phys_segments = blk_recalc_rq_segments(req);
979         }
980
981         return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987         trace_block_io_done(req);
988
989         /*
990          * Account IO completion.  flush_rq isn't accounted as a
991          * normal IO on queueing nor completion.  Accounting the
992          * containing request is enough.
993          */
994         if (blk_do_io_stat(req) && req->part &&
995             !(req->rq_flags & RQF_FLUSH_SEQ)) {
996                 const int sgrp = op_stat_group(req_op(req));
997
998                 part_stat_lock();
999                 update_io_ticks(req->part, jiffies, true);
1000                 part_stat_inc(req->part, ios[sgrp]);
1001                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002                 part_stat_unlock();
1003         }
1004 }
1005
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008         trace_block_io_start(req);
1009
1010         if (blk_do_io_stat(req)) {
1011                 /*
1012                  * All non-passthrough requests are created from a bio with one
1013                  * exception: when a flush command that is part of a flush sequence
1014                  * generated by the state machine in blk-flush.c is cloned onto the
1015                  * lower device by dm-multipath we can get here without a bio.
1016                  */
1017                 if (req->bio)
1018                         req->part = req->bio->bi_bdev;
1019                 else
1020                         req->part = req->q->disk->part0;
1021
1022                 part_stat_lock();
1023                 update_io_ticks(req->part, jiffies, false);
1024                 part_stat_unlock();
1025         }
1026 }
1027
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030         if (rq->rq_flags & RQF_STATS)
1031                 blk_stat_add(rq, now);
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         blk_mq_finish_request(rq);
1043
1044         if (rq->end_io) {
1045                 rq_qos_done(rq->q, rq);
1046                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047                         blk_mq_free_request(rq);
1048         } else {
1049                 blk_mq_free_request(rq);
1050         }
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057                 BUG();
1058         __blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061
1062 #define TAG_COMP_BATCH          32
1063
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065                                           int *tag_array, int nr_tags)
1066 {
1067         struct request_queue *q = hctx->queue;
1068
1069         blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252                 rq->io_start_time_ns = ktime_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262
1263 #ifdef CONFIG_BLK_DEV_INTEGRITY
1264         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1265                 q->integrity.profile->prepare_fn(rq);
1266 #endif
1267         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1268                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_request);
1271
1272 /*
1273  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1274  * queues. This is important for md arrays to benefit from merging
1275  * requests.
1276  */
1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1278 {
1279         if (plug->multiple_queues)
1280                 return BLK_MAX_REQUEST_COUNT * 2;
1281         return BLK_MAX_REQUEST_COUNT;
1282 }
1283
1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1285 {
1286         struct request *last = rq_list_peek(&plug->mq_list);
1287
1288         if (!plug->rq_count) {
1289                 trace_block_plug(rq->q);
1290         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1291                    (!blk_queue_nomerges(rq->q) &&
1292                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1293                 blk_mq_flush_plug_list(plug, false);
1294                 last = NULL;
1295                 trace_block_plug(rq->q);
1296         }
1297
1298         if (!plug->multiple_queues && last && last->q != rq->q)
1299                 plug->multiple_queues = true;
1300         /*
1301          * Any request allocated from sched tags can't be issued to
1302          * ->queue_rqs() directly
1303          */
1304         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1305                 plug->has_elevator = true;
1306         rq->rq_next = NULL;
1307         rq_list_add(&plug->mq_list, rq);
1308         plug->rq_count++;
1309 }
1310
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:         request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1326
1327         WARN_ON(irqs_disabled());
1328         WARN_ON(!blk_rq_is_passthrough(rq));
1329
1330         blk_account_io_start(rq);
1331
1332         /*
1333          * As plugging can be enabled for passthrough requests on a zoned
1334          * device, directly accessing the plug instead of using blk_mq_plug()
1335          * should not have any consequences.
1336          */
1337         if (current->plug && !at_head) {
1338                 blk_add_rq_to_plug(current->plug, rq);
1339                 return;
1340         }
1341
1342         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1343         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1344 }
1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1346
1347 struct blk_rq_wait {
1348         struct completion done;
1349         blk_status_t ret;
1350 };
1351
1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1353 {
1354         struct blk_rq_wait *wait = rq->end_io_data;
1355
1356         wait->ret = ret;
1357         complete(&wait->done);
1358         return RQ_END_IO_NONE;
1359 }
1360
1361 bool blk_rq_is_poll(struct request *rq)
1362 {
1363         if (!rq->mq_hctx)
1364                 return false;
1365         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1366                 return false;
1367         return true;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1370
1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1372 {
1373         do {
1374                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1375                 cond_resched();
1376         } while (!completion_done(wait));
1377 }
1378
1379 /**
1380  * blk_execute_rq - insert a request into queue for execution
1381  * @rq:         request to insert
1382  * @at_head:    insert request at head or tail of queue
1383  *
1384  * Description:
1385  *    Insert a fully prepared request at the back of the I/O scheduler queue
1386  *    for execution and wait for completion.
1387  * Return: The blk_status_t result provided to blk_mq_end_request().
1388  */
1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1390 {
1391         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1392         struct blk_rq_wait wait = {
1393                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1394         };
1395
1396         WARN_ON(irqs_disabled());
1397         WARN_ON(!blk_rq_is_passthrough(rq));
1398
1399         rq->end_io_data = &wait;
1400         rq->end_io = blk_end_sync_rq;
1401
1402         blk_account_io_start(rq);
1403         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1404         blk_mq_run_hw_queue(hctx, false);
1405
1406         if (blk_rq_is_poll(rq)) {
1407                 blk_rq_poll_completion(rq, &wait.done);
1408         } else {
1409                 /*
1410                  * Prevent hang_check timer from firing at us during very long
1411                  * I/O
1412                  */
1413                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1414
1415                 if (hang_check)
1416                         while (!wait_for_completion_io_timeout(&wait.done,
1417                                         hang_check * (HZ/2)))
1418                                 ;
1419                 else
1420                         wait_for_completion_io(&wait.done);
1421         }
1422
1423         return wait.ret;
1424 }
1425 EXPORT_SYMBOL(blk_execute_rq);
1426
1427 static void __blk_mq_requeue_request(struct request *rq)
1428 {
1429         struct request_queue *q = rq->q;
1430
1431         blk_mq_put_driver_tag(rq);
1432
1433         trace_block_rq_requeue(rq);
1434         rq_qos_requeue(q, rq);
1435
1436         if (blk_mq_request_started(rq)) {
1437                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1438                 rq->rq_flags &= ~RQF_TIMED_OUT;
1439         }
1440 }
1441
1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1443 {
1444         struct request_queue *q = rq->q;
1445         unsigned long flags;
1446
1447         __blk_mq_requeue_request(rq);
1448
1449         /* this request will be re-inserted to io scheduler queue */
1450         blk_mq_sched_requeue_request(rq);
1451
1452         spin_lock_irqsave(&q->requeue_lock, flags);
1453         list_add_tail(&rq->queuelist, &q->requeue_list);
1454         spin_unlock_irqrestore(&q->requeue_lock, flags);
1455
1456         if (kick_requeue_list)
1457                 blk_mq_kick_requeue_list(q);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463         struct request_queue *q =
1464                 container_of(work, struct request_queue, requeue_work.work);
1465         LIST_HEAD(rq_list);
1466         LIST_HEAD(flush_list);
1467         struct request *rq;
1468
1469         spin_lock_irq(&q->requeue_lock);
1470         list_splice_init(&q->requeue_list, &rq_list);
1471         list_splice_init(&q->flush_list, &flush_list);
1472         spin_unlock_irq(&q->requeue_lock);
1473
1474         while (!list_empty(&rq_list)) {
1475                 rq = list_entry(rq_list.next, struct request, queuelist);
1476                 /*
1477                  * If RQF_DONTPREP ist set, the request has been started by the
1478                  * driver already and might have driver-specific data allocated
1479                  * already.  Insert it into the hctx dispatch list to avoid
1480                  * block layer merges for the request.
1481                  */
1482                 if (rq->rq_flags & RQF_DONTPREP) {
1483                         list_del_init(&rq->queuelist);
1484                         blk_mq_request_bypass_insert(rq, 0);
1485                 } else {
1486                         list_del_init(&rq->queuelist);
1487                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1488                 }
1489         }
1490
1491         while (!list_empty(&flush_list)) {
1492                 rq = list_entry(flush_list.next, struct request, queuelist);
1493                 list_del_init(&rq->queuelist);
1494                 blk_mq_insert_request(rq, 0);
1495         }
1496
1497         blk_mq_run_hw_queues(q, false);
1498 }
1499
1500 void blk_mq_kick_requeue_list(struct request_queue *q)
1501 {
1502         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1503 }
1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1505
1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1507                                     unsigned long msecs)
1508 {
1509         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1510                                     msecs_to_jiffies(msecs));
1511 }
1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1513
1514 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1515 {
1516         /*
1517          * If we find a request that isn't idle we know the queue is busy
1518          * as it's checked in the iter.
1519          * Return false to stop the iteration.
1520          */
1521         if (blk_mq_request_started(rq)) {
1522                 bool *busy = priv;
1523
1524                 *busy = true;
1525                 return false;
1526         }
1527
1528         return true;
1529 }
1530
1531 bool blk_mq_queue_inflight(struct request_queue *q)
1532 {
1533         bool busy = false;
1534
1535         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1536         return busy;
1537 }
1538 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1539
1540 static void blk_mq_rq_timed_out(struct request *req)
1541 {
1542         req->rq_flags |= RQF_TIMED_OUT;
1543         if (req->q->mq_ops->timeout) {
1544                 enum blk_eh_timer_return ret;
1545
1546                 ret = req->q->mq_ops->timeout(req);
1547                 if (ret == BLK_EH_DONE)
1548                         return;
1549                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1550         }
1551
1552         blk_add_timer(req);
1553 }
1554
1555 struct blk_expired_data {
1556         bool has_timedout_rq;
1557         unsigned long next;
1558         unsigned long timeout_start;
1559 };
1560
1561 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1562 {
1563         unsigned long deadline;
1564
1565         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1566                 return false;
1567         if (rq->rq_flags & RQF_TIMED_OUT)
1568                 return false;
1569
1570         deadline = READ_ONCE(rq->deadline);
1571         if (time_after_eq(expired->timeout_start, deadline))
1572                 return true;
1573
1574         if (expired->next == 0)
1575                 expired->next = deadline;
1576         else if (time_after(expired->next, deadline))
1577                 expired->next = deadline;
1578         return false;
1579 }
1580
1581 void blk_mq_put_rq_ref(struct request *rq)
1582 {
1583         if (is_flush_rq(rq)) {
1584                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1585                         blk_mq_free_request(rq);
1586         } else if (req_ref_put_and_test(rq)) {
1587                 __blk_mq_free_request(rq);
1588         }
1589 }
1590
1591 static bool blk_mq_check_expired(struct request *rq, void *priv)
1592 {
1593         struct blk_expired_data *expired = priv;
1594
1595         /*
1596          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1597          * be reallocated underneath the timeout handler's processing, then
1598          * the expire check is reliable. If the request is not expired, then
1599          * it was completed and reallocated as a new request after returning
1600          * from blk_mq_check_expired().
1601          */
1602         if (blk_mq_req_expired(rq, expired)) {
1603                 expired->has_timedout_rq = true;
1604                 return false;
1605         }
1606         return true;
1607 }
1608
1609 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1610 {
1611         struct blk_expired_data *expired = priv;
1612
1613         if (blk_mq_req_expired(rq, expired))
1614                 blk_mq_rq_timed_out(rq);
1615         return true;
1616 }
1617
1618 static void blk_mq_timeout_work(struct work_struct *work)
1619 {
1620         struct request_queue *q =
1621                 container_of(work, struct request_queue, timeout_work);
1622         struct blk_expired_data expired = {
1623                 .timeout_start = jiffies,
1624         };
1625         struct blk_mq_hw_ctx *hctx;
1626         unsigned long i;
1627
1628         /* A deadlock might occur if a request is stuck requiring a
1629          * timeout at the same time a queue freeze is waiting
1630          * completion, since the timeout code would not be able to
1631          * acquire the queue reference here.
1632          *
1633          * That's why we don't use blk_queue_enter here; instead, we use
1634          * percpu_ref_tryget directly, because we need to be able to
1635          * obtain a reference even in the short window between the queue
1636          * starting to freeze, by dropping the first reference in
1637          * blk_freeze_queue_start, and the moment the last request is
1638          * consumed, marked by the instant q_usage_counter reaches
1639          * zero.
1640          */
1641         if (!percpu_ref_tryget(&q->q_usage_counter))
1642                 return;
1643
1644         /* check if there is any timed-out request */
1645         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1646         if (expired.has_timedout_rq) {
1647                 /*
1648                  * Before walking tags, we must ensure any submit started
1649                  * before the current time has finished. Since the submit
1650                  * uses srcu or rcu, wait for a synchronization point to
1651                  * ensure all running submits have finished
1652                  */
1653                 blk_mq_wait_quiesce_done(q->tag_set);
1654
1655                 expired.next = 0;
1656                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1657         }
1658
1659         if (expired.next != 0) {
1660                 mod_timer(&q->timeout, expired.next);
1661         } else {
1662                 /*
1663                  * Request timeouts are handled as a forward rolling timer. If
1664                  * we end up here it means that no requests are pending and
1665                  * also that no request has been pending for a while. Mark
1666                  * each hctx as idle.
1667                  */
1668                 queue_for_each_hw_ctx(q, hctx, i) {
1669                         /* the hctx may be unmapped, so check it here */
1670                         if (blk_mq_hw_queue_mapped(hctx))
1671                                 blk_mq_tag_idle(hctx);
1672                 }
1673         }
1674         blk_queue_exit(q);
1675 }
1676
1677 struct flush_busy_ctx_data {
1678         struct blk_mq_hw_ctx *hctx;
1679         struct list_head *list;
1680 };
1681
1682 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1683 {
1684         struct flush_busy_ctx_data *flush_data = data;
1685         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1686         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1687         enum hctx_type type = hctx->type;
1688
1689         spin_lock(&ctx->lock);
1690         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1691         sbitmap_clear_bit(sb, bitnr);
1692         spin_unlock(&ctx->lock);
1693         return true;
1694 }
1695
1696 /*
1697  * Process software queues that have been marked busy, splicing them
1698  * to the for-dispatch
1699  */
1700 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1701 {
1702         struct flush_busy_ctx_data data = {
1703                 .hctx = hctx,
1704                 .list = list,
1705         };
1706
1707         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1708 }
1709 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1710
1711 struct dispatch_rq_data {
1712         struct blk_mq_hw_ctx *hctx;
1713         struct request *rq;
1714 };
1715
1716 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1717                 void *data)
1718 {
1719         struct dispatch_rq_data *dispatch_data = data;
1720         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1721         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1722         enum hctx_type type = hctx->type;
1723
1724         spin_lock(&ctx->lock);
1725         if (!list_empty(&ctx->rq_lists[type])) {
1726                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1727                 list_del_init(&dispatch_data->rq->queuelist);
1728                 if (list_empty(&ctx->rq_lists[type]))
1729                         sbitmap_clear_bit(sb, bitnr);
1730         }
1731         spin_unlock(&ctx->lock);
1732
1733         return !dispatch_data->rq;
1734 }
1735
1736 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1737                                         struct blk_mq_ctx *start)
1738 {
1739         unsigned off = start ? start->index_hw[hctx->type] : 0;
1740         struct dispatch_rq_data data = {
1741                 .hctx = hctx,
1742                 .rq   = NULL,
1743         };
1744
1745         __sbitmap_for_each_set(&hctx->ctx_map, off,
1746                                dispatch_rq_from_ctx, &data);
1747
1748         return data.rq;
1749 }
1750
1751 bool __blk_mq_alloc_driver_tag(struct request *rq)
1752 {
1753         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1754         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1755         int tag;
1756
1757         blk_mq_tag_busy(rq->mq_hctx);
1758
1759         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1760                 bt = &rq->mq_hctx->tags->breserved_tags;
1761                 tag_offset = 0;
1762         } else {
1763                 if (!hctx_may_queue(rq->mq_hctx, bt))
1764                         return false;
1765         }
1766
1767         tag = __sbitmap_queue_get(bt);
1768         if (tag == BLK_MQ_NO_TAG)
1769                 return false;
1770
1771         rq->tag = tag + tag_offset;
1772         blk_mq_inc_active_requests(rq->mq_hctx);
1773         return true;
1774 }
1775
1776 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1777                                 int flags, void *key)
1778 {
1779         struct blk_mq_hw_ctx *hctx;
1780
1781         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1782
1783         spin_lock(&hctx->dispatch_wait_lock);
1784         if (!list_empty(&wait->entry)) {
1785                 struct sbitmap_queue *sbq;
1786
1787                 list_del_init(&wait->entry);
1788                 sbq = &hctx->tags->bitmap_tags;
1789                 atomic_dec(&sbq->ws_active);
1790         }
1791         spin_unlock(&hctx->dispatch_wait_lock);
1792
1793         blk_mq_run_hw_queue(hctx, true);
1794         return 1;
1795 }
1796
1797 /*
1798  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1799  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1800  * restart. For both cases, take care to check the condition again after
1801  * marking us as waiting.
1802  */
1803 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1804                                  struct request *rq)
1805 {
1806         struct sbitmap_queue *sbq;
1807         struct wait_queue_head *wq;
1808         wait_queue_entry_t *wait;
1809         bool ret;
1810
1811         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1812             !(blk_mq_is_shared_tags(hctx->flags))) {
1813                 blk_mq_sched_mark_restart_hctx(hctx);
1814
1815                 /*
1816                  * It's possible that a tag was freed in the window between the
1817                  * allocation failure and adding the hardware queue to the wait
1818                  * queue.
1819                  *
1820                  * Don't clear RESTART here, someone else could have set it.
1821                  * At most this will cost an extra queue run.
1822                  */
1823                 return blk_mq_get_driver_tag(rq);
1824         }
1825
1826         wait = &hctx->dispatch_wait;
1827         if (!list_empty_careful(&wait->entry))
1828                 return false;
1829
1830         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1831                 sbq = &hctx->tags->breserved_tags;
1832         else
1833                 sbq = &hctx->tags->bitmap_tags;
1834         wq = &bt_wait_ptr(sbq, hctx)->wait;
1835
1836         spin_lock_irq(&wq->lock);
1837         spin_lock(&hctx->dispatch_wait_lock);
1838         if (!list_empty(&wait->entry)) {
1839                 spin_unlock(&hctx->dispatch_wait_lock);
1840                 spin_unlock_irq(&wq->lock);
1841                 return false;
1842         }
1843
1844         atomic_inc(&sbq->ws_active);
1845         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1846         __add_wait_queue(wq, wait);
1847
1848         /*
1849          * It's possible that a tag was freed in the window between the
1850          * allocation failure and adding the hardware queue to the wait
1851          * queue.
1852          */
1853         ret = blk_mq_get_driver_tag(rq);
1854         if (!ret) {
1855                 spin_unlock(&hctx->dispatch_wait_lock);
1856                 spin_unlock_irq(&wq->lock);
1857                 return false;
1858         }
1859
1860         /*
1861          * We got a tag, remove ourselves from the wait queue to ensure
1862          * someone else gets the wakeup.
1863          */
1864         list_del_init(&wait->entry);
1865         atomic_dec(&sbq->ws_active);
1866         spin_unlock(&hctx->dispatch_wait_lock);
1867         spin_unlock_irq(&wq->lock);
1868
1869         return true;
1870 }
1871
1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1873 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1874 /*
1875  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1876  * - EWMA is one simple way to compute running average value
1877  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1878  * - take 4 as factor for avoiding to get too small(0) result, and this
1879  *   factor doesn't matter because EWMA decreases exponentially
1880  */
1881 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1882 {
1883         unsigned int ewma;
1884
1885         ewma = hctx->dispatch_busy;
1886
1887         if (!ewma && !busy)
1888                 return;
1889
1890         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1891         if (busy)
1892                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1893         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1894
1895         hctx->dispatch_busy = ewma;
1896 }
1897
1898 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1899
1900 static void blk_mq_handle_dev_resource(struct request *rq,
1901                                        struct list_head *list)
1902 {
1903         list_add(&rq->queuelist, list);
1904         __blk_mq_requeue_request(rq);
1905 }
1906
1907 static void blk_mq_handle_zone_resource(struct request *rq,
1908                                         struct list_head *zone_list)
1909 {
1910         /*
1911          * If we end up here it is because we cannot dispatch a request to a
1912          * specific zone due to LLD level zone-write locking or other zone
1913          * related resource not being available. In this case, set the request
1914          * aside in zone_list for retrying it later.
1915          */
1916         list_add(&rq->queuelist, zone_list);
1917         __blk_mq_requeue_request(rq);
1918 }
1919
1920 enum prep_dispatch {
1921         PREP_DISPATCH_OK,
1922         PREP_DISPATCH_NO_TAG,
1923         PREP_DISPATCH_NO_BUDGET,
1924 };
1925
1926 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1927                                                   bool need_budget)
1928 {
1929         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1930         int budget_token = -1;
1931
1932         if (need_budget) {
1933                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1934                 if (budget_token < 0) {
1935                         blk_mq_put_driver_tag(rq);
1936                         return PREP_DISPATCH_NO_BUDGET;
1937                 }
1938                 blk_mq_set_rq_budget_token(rq, budget_token);
1939         }
1940
1941         if (!blk_mq_get_driver_tag(rq)) {
1942                 /*
1943                  * The initial allocation attempt failed, so we need to
1944                  * rerun the hardware queue when a tag is freed. The
1945                  * waitqueue takes care of that. If the queue is run
1946                  * before we add this entry back on the dispatch list,
1947                  * we'll re-run it below.
1948                  */
1949                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1950                         /*
1951                          * All budgets not got from this function will be put
1952                          * together during handling partial dispatch
1953                          */
1954                         if (need_budget)
1955                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1956                         return PREP_DISPATCH_NO_TAG;
1957                 }
1958         }
1959
1960         return PREP_DISPATCH_OK;
1961 }
1962
1963 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1964 static void blk_mq_release_budgets(struct request_queue *q,
1965                 struct list_head *list)
1966 {
1967         struct request *rq;
1968
1969         list_for_each_entry(rq, list, queuelist) {
1970                 int budget_token = blk_mq_get_rq_budget_token(rq);
1971
1972                 if (budget_token >= 0)
1973                         blk_mq_put_dispatch_budget(q, budget_token);
1974         }
1975 }
1976
1977 /*
1978  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1979  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1980  * details)
1981  * Attention, we should explicitly call this in unusual cases:
1982  *  1) did not queue everything initially scheduled to queue
1983  *  2) the last attempt to queue a request failed
1984  */
1985 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1986                               bool from_schedule)
1987 {
1988         if (hctx->queue->mq_ops->commit_rqs && queued) {
1989                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1990                 hctx->queue->mq_ops->commit_rqs(hctx);
1991         }
1992 }
1993
1994 /*
1995  * Returns true if we did some work AND can potentially do more.
1996  */
1997 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1998                              unsigned int nr_budgets)
1999 {
2000         enum prep_dispatch prep;
2001         struct request_queue *q = hctx->queue;
2002         struct request *rq;
2003         int queued;
2004         blk_status_t ret = BLK_STS_OK;
2005         LIST_HEAD(zone_list);
2006         bool needs_resource = false;
2007
2008         if (list_empty(list))
2009                 return false;
2010
2011         /*
2012          * Now process all the entries, sending them to the driver.
2013          */
2014         queued = 0;
2015         do {
2016                 struct blk_mq_queue_data bd;
2017
2018                 rq = list_first_entry(list, struct request, queuelist);
2019
2020                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2021                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2022                 if (prep != PREP_DISPATCH_OK)
2023                         break;
2024
2025                 list_del_init(&rq->queuelist);
2026
2027                 bd.rq = rq;
2028                 bd.last = list_empty(list);
2029
2030                 /*
2031                  * once the request is queued to lld, no need to cover the
2032                  * budget any more
2033                  */
2034                 if (nr_budgets)
2035                         nr_budgets--;
2036                 ret = q->mq_ops->queue_rq(hctx, &bd);
2037                 switch (ret) {
2038                 case BLK_STS_OK:
2039                         queued++;
2040                         break;
2041                 case BLK_STS_RESOURCE:
2042                         needs_resource = true;
2043                         fallthrough;
2044                 case BLK_STS_DEV_RESOURCE:
2045                         blk_mq_handle_dev_resource(rq, list);
2046                         goto out;
2047                 case BLK_STS_ZONE_RESOURCE:
2048                         /*
2049                          * Move the request to zone_list and keep going through
2050                          * the dispatch list to find more requests the drive can
2051                          * accept.
2052                          */
2053                         blk_mq_handle_zone_resource(rq, &zone_list);
2054                         needs_resource = true;
2055                         break;
2056                 default:
2057                         blk_mq_end_request(rq, ret);
2058                 }
2059         } while (!list_empty(list));
2060 out:
2061         if (!list_empty(&zone_list))
2062                 list_splice_tail_init(&zone_list, list);
2063
2064         /* If we didn't flush the entire list, we could have told the driver
2065          * there was more coming, but that turned out to be a lie.
2066          */
2067         if (!list_empty(list) || ret != BLK_STS_OK)
2068                 blk_mq_commit_rqs(hctx, queued, false);
2069
2070         /*
2071          * Any items that need requeuing? Stuff them into hctx->dispatch,
2072          * that is where we will continue on next queue run.
2073          */
2074         if (!list_empty(list)) {
2075                 bool needs_restart;
2076                 /* For non-shared tags, the RESTART check will suffice */
2077                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2078                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2079                         blk_mq_is_shared_tags(hctx->flags));
2080
2081                 if (nr_budgets)
2082                         blk_mq_release_budgets(q, list);
2083
2084                 spin_lock(&hctx->lock);
2085                 list_splice_tail_init(list, &hctx->dispatch);
2086                 spin_unlock(&hctx->lock);
2087
2088                 /*
2089                  * Order adding requests to hctx->dispatch and checking
2090                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2091                  * in blk_mq_sched_restart(). Avoid restart code path to
2092                  * miss the new added requests to hctx->dispatch, meantime
2093                  * SCHED_RESTART is observed here.
2094                  */
2095                 smp_mb();
2096
2097                 /*
2098                  * If SCHED_RESTART was set by the caller of this function and
2099                  * it is no longer set that means that it was cleared by another
2100                  * thread and hence that a queue rerun is needed.
2101                  *
2102                  * If 'no_tag' is set, that means that we failed getting
2103                  * a driver tag with an I/O scheduler attached. If our dispatch
2104                  * waitqueue is no longer active, ensure that we run the queue
2105                  * AFTER adding our entries back to the list.
2106                  *
2107                  * If no I/O scheduler has been configured it is possible that
2108                  * the hardware queue got stopped and restarted before requests
2109                  * were pushed back onto the dispatch list. Rerun the queue to
2110                  * avoid starvation. Notes:
2111                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2112                  *   been stopped before rerunning a queue.
2113                  * - Some but not all block drivers stop a queue before
2114                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2115                  *   and dm-rq.
2116                  *
2117                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2118                  * bit is set, run queue after a delay to avoid IO stalls
2119                  * that could otherwise occur if the queue is idle.  We'll do
2120                  * similar if we couldn't get budget or couldn't lock a zone
2121                  * and SCHED_RESTART is set.
2122                  */
2123                 needs_restart = blk_mq_sched_needs_restart(hctx);
2124                 if (prep == PREP_DISPATCH_NO_BUDGET)
2125                         needs_resource = true;
2126                 if (!needs_restart ||
2127                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2128                         blk_mq_run_hw_queue(hctx, true);
2129                 else if (needs_resource)
2130                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2131
2132                 blk_mq_update_dispatch_busy(hctx, true);
2133                 return false;
2134         }
2135
2136         blk_mq_update_dispatch_busy(hctx, false);
2137         return true;
2138 }
2139
2140 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2141 {
2142         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2143
2144         if (cpu >= nr_cpu_ids)
2145                 cpu = cpumask_first(hctx->cpumask);
2146         return cpu;
2147 }
2148
2149 /*
2150  * It'd be great if the workqueue API had a way to pass
2151  * in a mask and had some smarts for more clever placement.
2152  * For now we just round-robin here, switching for every
2153  * BLK_MQ_CPU_WORK_BATCH queued items.
2154  */
2155 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2156 {
2157         bool tried = false;
2158         int next_cpu = hctx->next_cpu;
2159
2160         if (hctx->queue->nr_hw_queues == 1)
2161                 return WORK_CPU_UNBOUND;
2162
2163         if (--hctx->next_cpu_batch <= 0) {
2164 select_cpu:
2165                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2166                                 cpu_online_mask);
2167                 if (next_cpu >= nr_cpu_ids)
2168                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2169                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2170         }
2171
2172         /*
2173          * Do unbound schedule if we can't find a online CPU for this hctx,
2174          * and it should only happen in the path of handling CPU DEAD.
2175          */
2176         if (!cpu_online(next_cpu)) {
2177                 if (!tried) {
2178                         tried = true;
2179                         goto select_cpu;
2180                 }
2181
2182                 /*
2183                  * Make sure to re-select CPU next time once after CPUs
2184                  * in hctx->cpumask become online again.
2185                  */
2186                 hctx->next_cpu = next_cpu;
2187                 hctx->next_cpu_batch = 1;
2188                 return WORK_CPU_UNBOUND;
2189         }
2190
2191         hctx->next_cpu = next_cpu;
2192         return next_cpu;
2193 }
2194
2195 /**
2196  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2197  * @hctx: Pointer to the hardware queue to run.
2198  * @msecs: Milliseconds of delay to wait before running the queue.
2199  *
2200  * Run a hardware queue asynchronously with a delay of @msecs.
2201  */
2202 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2203 {
2204         if (unlikely(blk_mq_hctx_stopped(hctx)))
2205                 return;
2206         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2207                                     msecs_to_jiffies(msecs));
2208 }
2209 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2210
2211 /**
2212  * blk_mq_run_hw_queue - Start to run a hardware queue.
2213  * @hctx: Pointer to the hardware queue to run.
2214  * @async: If we want to run the queue asynchronously.
2215  *
2216  * Check if the request queue is not in a quiesced state and if there are
2217  * pending requests to be sent. If this is true, run the queue to send requests
2218  * to hardware.
2219  */
2220 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2221 {
2222         bool need_run;
2223
2224         /*
2225          * We can't run the queue inline with interrupts disabled.
2226          */
2227         WARN_ON_ONCE(!async && in_interrupt());
2228
2229         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2230
2231         /*
2232          * When queue is quiesced, we may be switching io scheduler, or
2233          * updating nr_hw_queues, or other things, and we can't run queue
2234          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2235          *
2236          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2237          * quiesced.
2238          */
2239         __blk_mq_run_dispatch_ops(hctx->queue, false,
2240                 need_run = !blk_queue_quiesced(hctx->queue) &&
2241                 blk_mq_hctx_has_pending(hctx));
2242
2243         if (!need_run)
2244                 return;
2245
2246         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2247                 blk_mq_delay_run_hw_queue(hctx, 0);
2248                 return;
2249         }
2250
2251         blk_mq_run_dispatch_ops(hctx->queue,
2252                                 blk_mq_sched_dispatch_requests(hctx));
2253 }
2254 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2255
2256 /*
2257  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2258  * scheduler.
2259  */
2260 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2261 {
2262         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2263         /*
2264          * If the IO scheduler does not respect hardware queues when
2265          * dispatching, we just don't bother with multiple HW queues and
2266          * dispatch from hctx for the current CPU since running multiple queues
2267          * just causes lock contention inside the scheduler and pointless cache
2268          * bouncing.
2269          */
2270         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2271
2272         if (!blk_mq_hctx_stopped(hctx))
2273                 return hctx;
2274         return NULL;
2275 }
2276
2277 /**
2278  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2279  * @q: Pointer to the request queue to run.
2280  * @async: If we want to run the queue asynchronously.
2281  */
2282 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2283 {
2284         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2285         unsigned long i;
2286
2287         sq_hctx = NULL;
2288         if (blk_queue_sq_sched(q))
2289                 sq_hctx = blk_mq_get_sq_hctx(q);
2290         queue_for_each_hw_ctx(q, hctx, i) {
2291                 if (blk_mq_hctx_stopped(hctx))
2292                         continue;
2293                 /*
2294                  * Dispatch from this hctx either if there's no hctx preferred
2295                  * by IO scheduler or if it has requests that bypass the
2296                  * scheduler.
2297                  */
2298                 if (!sq_hctx || sq_hctx == hctx ||
2299                     !list_empty_careful(&hctx->dispatch))
2300                         blk_mq_run_hw_queue(hctx, async);
2301         }
2302 }
2303 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2304
2305 /**
2306  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2307  * @q: Pointer to the request queue to run.
2308  * @msecs: Milliseconds of delay to wait before running the queues.
2309  */
2310 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2311 {
2312         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2313         unsigned long i;
2314
2315         sq_hctx = NULL;
2316         if (blk_queue_sq_sched(q))
2317                 sq_hctx = blk_mq_get_sq_hctx(q);
2318         queue_for_each_hw_ctx(q, hctx, i) {
2319                 if (blk_mq_hctx_stopped(hctx))
2320                         continue;
2321                 /*
2322                  * If there is already a run_work pending, leave the
2323                  * pending delay untouched. Otherwise, a hctx can stall
2324                  * if another hctx is re-delaying the other's work
2325                  * before the work executes.
2326                  */
2327                 if (delayed_work_pending(&hctx->run_work))
2328                         continue;
2329                 /*
2330                  * Dispatch from this hctx either if there's no hctx preferred
2331                  * by IO scheduler or if it has requests that bypass the
2332                  * scheduler.
2333                  */
2334                 if (!sq_hctx || sq_hctx == hctx ||
2335                     !list_empty_careful(&hctx->dispatch))
2336                         blk_mq_delay_run_hw_queue(hctx, msecs);
2337         }
2338 }
2339 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2340
2341 /*
2342  * This function is often used for pausing .queue_rq() by driver when
2343  * there isn't enough resource or some conditions aren't satisfied, and
2344  * BLK_STS_RESOURCE is usually returned.
2345  *
2346  * We do not guarantee that dispatch can be drained or blocked
2347  * after blk_mq_stop_hw_queue() returns. Please use
2348  * blk_mq_quiesce_queue() for that requirement.
2349  */
2350 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2351 {
2352         cancel_delayed_work(&hctx->run_work);
2353
2354         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2355 }
2356 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2357
2358 /*
2359  * This function is often used for pausing .queue_rq() by driver when
2360  * there isn't enough resource or some conditions aren't satisfied, and
2361  * BLK_STS_RESOURCE is usually returned.
2362  *
2363  * We do not guarantee that dispatch can be drained or blocked
2364  * after blk_mq_stop_hw_queues() returns. Please use
2365  * blk_mq_quiesce_queue() for that requirement.
2366  */
2367 void blk_mq_stop_hw_queues(struct request_queue *q)
2368 {
2369         struct blk_mq_hw_ctx *hctx;
2370         unsigned long i;
2371
2372         queue_for_each_hw_ctx(q, hctx, i)
2373                 blk_mq_stop_hw_queue(hctx);
2374 }
2375 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2376
2377 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2378 {
2379         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2380
2381         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2382 }
2383 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2384
2385 void blk_mq_start_hw_queues(struct request_queue *q)
2386 {
2387         struct blk_mq_hw_ctx *hctx;
2388         unsigned long i;
2389
2390         queue_for_each_hw_ctx(q, hctx, i)
2391                 blk_mq_start_hw_queue(hctx);
2392 }
2393 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2394
2395 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2396 {
2397         if (!blk_mq_hctx_stopped(hctx))
2398                 return;
2399
2400         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401         blk_mq_run_hw_queue(hctx, async);
2402 }
2403 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2404
2405 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2406 {
2407         struct blk_mq_hw_ctx *hctx;
2408         unsigned long i;
2409
2410         queue_for_each_hw_ctx(q, hctx, i)
2411                 blk_mq_start_stopped_hw_queue(hctx, async ||
2412                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2413 }
2414 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2415
2416 static void blk_mq_run_work_fn(struct work_struct *work)
2417 {
2418         struct blk_mq_hw_ctx *hctx =
2419                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2420
2421         blk_mq_run_dispatch_ops(hctx->queue,
2422                                 blk_mq_sched_dispatch_requests(hctx));
2423 }
2424
2425 /**
2426  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2427  * @rq: Pointer to request to be inserted.
2428  * @flags: BLK_MQ_INSERT_*
2429  *
2430  * Should only be used carefully, when the caller knows we want to
2431  * bypass a potential IO scheduler on the target device.
2432  */
2433 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2434 {
2435         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2436
2437         spin_lock(&hctx->lock);
2438         if (flags & BLK_MQ_INSERT_AT_HEAD)
2439                 list_add(&rq->queuelist, &hctx->dispatch);
2440         else
2441                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2442         spin_unlock(&hctx->lock);
2443 }
2444
2445 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2446                 struct blk_mq_ctx *ctx, struct list_head *list,
2447                 bool run_queue_async)
2448 {
2449         struct request *rq;
2450         enum hctx_type type = hctx->type;
2451
2452         /*
2453          * Try to issue requests directly if the hw queue isn't busy to save an
2454          * extra enqueue & dequeue to the sw queue.
2455          */
2456         if (!hctx->dispatch_busy && !run_queue_async) {
2457                 blk_mq_run_dispatch_ops(hctx->queue,
2458                         blk_mq_try_issue_list_directly(hctx, list));
2459                 if (list_empty(list))
2460                         goto out;
2461         }
2462
2463         /*
2464          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2465          * offline now
2466          */
2467         list_for_each_entry(rq, list, queuelist) {
2468                 BUG_ON(rq->mq_ctx != ctx);
2469                 trace_block_rq_insert(rq);
2470                 if (rq->cmd_flags & REQ_NOWAIT)
2471                         run_queue_async = true;
2472         }
2473
2474         spin_lock(&ctx->lock);
2475         list_splice_tail_init(list, &ctx->rq_lists[type]);
2476         blk_mq_hctx_mark_pending(hctx, ctx);
2477         spin_unlock(&ctx->lock);
2478 out:
2479         blk_mq_run_hw_queue(hctx, run_queue_async);
2480 }
2481
2482 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2483 {
2484         struct request_queue *q = rq->q;
2485         struct blk_mq_ctx *ctx = rq->mq_ctx;
2486         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2487
2488         if (blk_rq_is_passthrough(rq)) {
2489                 /*
2490                  * Passthrough request have to be added to hctx->dispatch
2491                  * directly.  The device may be in a situation where it can't
2492                  * handle FS request, and always returns BLK_STS_RESOURCE for
2493                  * them, which gets them added to hctx->dispatch.
2494                  *
2495                  * If a passthrough request is required to unblock the queues,
2496                  * and it is added to the scheduler queue, there is no chance to
2497                  * dispatch it given we prioritize requests in hctx->dispatch.
2498                  */
2499                 blk_mq_request_bypass_insert(rq, flags);
2500         } else if (req_op(rq) == REQ_OP_FLUSH) {
2501                 /*
2502                  * Firstly normal IO request is inserted to scheduler queue or
2503                  * sw queue, meantime we add flush request to dispatch queue(
2504                  * hctx->dispatch) directly and there is at most one in-flight
2505                  * flush request for each hw queue, so it doesn't matter to add
2506                  * flush request to tail or front of the dispatch queue.
2507                  *
2508                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2509                  * command, and queueing it will fail when there is any
2510                  * in-flight normal IO request(NCQ command). When adding flush
2511                  * rq to the front of hctx->dispatch, it is easier to introduce
2512                  * extra time to flush rq's latency because of S_SCHED_RESTART
2513                  * compared with adding to the tail of dispatch queue, then
2514                  * chance of flush merge is increased, and less flush requests
2515                  * will be issued to controller. It is observed that ~10% time
2516                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2517                  * drive when adding flush rq to the front of hctx->dispatch.
2518                  *
2519                  * Simply queue flush rq to the front of hctx->dispatch so that
2520                  * intensive flush workloads can benefit in case of NCQ HW.
2521                  */
2522                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2523         } else if (q->elevator) {
2524                 LIST_HEAD(list);
2525
2526                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2527
2528                 list_add(&rq->queuelist, &list);
2529                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2530         } else {
2531                 trace_block_rq_insert(rq);
2532
2533                 spin_lock(&ctx->lock);
2534                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2535                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2536                 else
2537                         list_add_tail(&rq->queuelist,
2538                                       &ctx->rq_lists[hctx->type]);
2539                 blk_mq_hctx_mark_pending(hctx, ctx);
2540                 spin_unlock(&ctx->lock);
2541         }
2542 }
2543
2544 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2545                 unsigned int nr_segs)
2546 {
2547         int err;
2548
2549         if (bio->bi_opf & REQ_RAHEAD)
2550                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2551
2552         rq->__sector = bio->bi_iter.bi_sector;
2553         blk_rq_bio_prep(rq, bio, nr_segs);
2554
2555         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2556         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2557         WARN_ON_ONCE(err);
2558
2559         blk_account_io_start(rq);
2560 }
2561
2562 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2563                                             struct request *rq, bool last)
2564 {
2565         struct request_queue *q = rq->q;
2566         struct blk_mq_queue_data bd = {
2567                 .rq = rq,
2568                 .last = last,
2569         };
2570         blk_status_t ret;
2571
2572         /*
2573          * For OK queue, we are done. For error, caller may kill it.
2574          * Any other error (busy), just add it to our list as we
2575          * previously would have done.
2576          */
2577         ret = q->mq_ops->queue_rq(hctx, &bd);
2578         switch (ret) {
2579         case BLK_STS_OK:
2580                 blk_mq_update_dispatch_busy(hctx, false);
2581                 break;
2582         case BLK_STS_RESOURCE:
2583         case BLK_STS_DEV_RESOURCE:
2584                 blk_mq_update_dispatch_busy(hctx, true);
2585                 __blk_mq_requeue_request(rq);
2586                 break;
2587         default:
2588                 blk_mq_update_dispatch_busy(hctx, false);
2589                 break;
2590         }
2591
2592         return ret;
2593 }
2594
2595 static bool blk_mq_get_budget_and_tag(struct request *rq)
2596 {
2597         int budget_token;
2598
2599         budget_token = blk_mq_get_dispatch_budget(rq->q);
2600         if (budget_token < 0)
2601                 return false;
2602         blk_mq_set_rq_budget_token(rq, budget_token);
2603         if (!blk_mq_get_driver_tag(rq)) {
2604                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2605                 return false;
2606         }
2607         return true;
2608 }
2609
2610 /**
2611  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2612  * @hctx: Pointer of the associated hardware queue.
2613  * @rq: Pointer to request to be sent.
2614  *
2615  * If the device has enough resources to accept a new request now, send the
2616  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2617  * we can try send it another time in the future. Requests inserted at this
2618  * queue have higher priority.
2619  */
2620 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2621                 struct request *rq)
2622 {
2623         blk_status_t ret;
2624
2625         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 return;
2628         }
2629
2630         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2631                 blk_mq_insert_request(rq, 0);
2632                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2633                 return;
2634         }
2635
2636         ret = __blk_mq_issue_directly(hctx, rq, true);
2637         switch (ret) {
2638         case BLK_STS_OK:
2639                 break;
2640         case BLK_STS_RESOURCE:
2641         case BLK_STS_DEV_RESOURCE:
2642                 blk_mq_request_bypass_insert(rq, 0);
2643                 blk_mq_run_hw_queue(hctx, false);
2644                 break;
2645         default:
2646                 blk_mq_end_request(rq, ret);
2647                 break;
2648         }
2649 }
2650
2651 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2652 {
2653         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2654
2655         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2656                 blk_mq_insert_request(rq, 0);
2657                 return BLK_STS_OK;
2658         }
2659
2660         if (!blk_mq_get_budget_and_tag(rq))
2661                 return BLK_STS_RESOURCE;
2662         return __blk_mq_issue_directly(hctx, rq, last);
2663 }
2664
2665 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2666 {
2667         struct blk_mq_hw_ctx *hctx = NULL;
2668         struct request *rq;
2669         int queued = 0;
2670         blk_status_t ret = BLK_STS_OK;
2671
2672         while ((rq = rq_list_pop(&plug->mq_list))) {
2673                 bool last = rq_list_empty(plug->mq_list);
2674
2675                 if (hctx != rq->mq_hctx) {
2676                         if (hctx) {
2677                                 blk_mq_commit_rqs(hctx, queued, false);
2678                                 queued = 0;
2679                         }
2680                         hctx = rq->mq_hctx;
2681                 }
2682
2683                 ret = blk_mq_request_issue_directly(rq, last);
2684                 switch (ret) {
2685                 case BLK_STS_OK:
2686                         queued++;
2687                         break;
2688                 case BLK_STS_RESOURCE:
2689                 case BLK_STS_DEV_RESOURCE:
2690                         blk_mq_request_bypass_insert(rq, 0);
2691                         blk_mq_run_hw_queue(hctx, false);
2692                         goto out;
2693                 default:
2694                         blk_mq_end_request(rq, ret);
2695                         break;
2696                 }
2697         }
2698
2699 out:
2700         if (ret != BLK_STS_OK)
2701                 blk_mq_commit_rqs(hctx, queued, false);
2702 }
2703
2704 static void __blk_mq_flush_plug_list(struct request_queue *q,
2705                                      struct blk_plug *plug)
2706 {
2707         if (blk_queue_quiesced(q))
2708                 return;
2709         q->mq_ops->queue_rqs(&plug->mq_list);
2710 }
2711
2712 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2713 {
2714         struct blk_mq_hw_ctx *this_hctx = NULL;
2715         struct blk_mq_ctx *this_ctx = NULL;
2716         struct request *requeue_list = NULL;
2717         struct request **requeue_lastp = &requeue_list;
2718         unsigned int depth = 0;
2719         bool is_passthrough = false;
2720         LIST_HEAD(list);
2721
2722         do {
2723                 struct request *rq = rq_list_pop(&plug->mq_list);
2724
2725                 if (!this_hctx) {
2726                         this_hctx = rq->mq_hctx;
2727                         this_ctx = rq->mq_ctx;
2728                         is_passthrough = blk_rq_is_passthrough(rq);
2729                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2730                            is_passthrough != blk_rq_is_passthrough(rq)) {
2731                         rq_list_add_tail(&requeue_lastp, rq);
2732                         continue;
2733                 }
2734                 list_add(&rq->queuelist, &list);
2735                 depth++;
2736         } while (!rq_list_empty(plug->mq_list));
2737
2738         plug->mq_list = requeue_list;
2739         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2740
2741         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2742         /* passthrough requests should never be issued to the I/O scheduler */
2743         if (is_passthrough) {
2744                 spin_lock(&this_hctx->lock);
2745                 list_splice_tail_init(&list, &this_hctx->dispatch);
2746                 spin_unlock(&this_hctx->lock);
2747                 blk_mq_run_hw_queue(this_hctx, from_sched);
2748         } else if (this_hctx->queue->elevator) {
2749                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2750                                 &list, 0);
2751                 blk_mq_run_hw_queue(this_hctx, from_sched);
2752         } else {
2753                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2754         }
2755         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2756 }
2757
2758 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2759 {
2760         struct request *rq;
2761
2762         /*
2763          * We may have been called recursively midway through handling
2764          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2765          * To avoid mq_list changing under our feet, clear rq_count early and
2766          * bail out specifically if rq_count is 0 rather than checking
2767          * whether the mq_list is empty.
2768          */
2769         if (plug->rq_count == 0)
2770                 return;
2771         plug->rq_count = 0;
2772
2773         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2774                 struct request_queue *q;
2775
2776                 rq = rq_list_peek(&plug->mq_list);
2777                 q = rq->q;
2778
2779                 /*
2780                  * Peek first request and see if we have a ->queue_rqs() hook.
2781                  * If we do, we can dispatch the whole plug list in one go. We
2782                  * already know at this point that all requests belong to the
2783                  * same queue, caller must ensure that's the case.
2784                  */
2785                 if (q->mq_ops->queue_rqs) {
2786                         blk_mq_run_dispatch_ops(q,
2787                                 __blk_mq_flush_plug_list(q, plug));
2788                         if (rq_list_empty(plug->mq_list))
2789                                 return;
2790                 }
2791
2792                 blk_mq_run_dispatch_ops(q,
2793                                 blk_mq_plug_issue_direct(plug));
2794                 if (rq_list_empty(plug->mq_list))
2795                         return;
2796         }
2797
2798         do {
2799                 blk_mq_dispatch_plug_list(plug, from_schedule);
2800         } while (!rq_list_empty(plug->mq_list));
2801 }
2802
2803 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2804                 struct list_head *list)
2805 {
2806         int queued = 0;
2807         blk_status_t ret = BLK_STS_OK;
2808
2809         while (!list_empty(list)) {
2810                 struct request *rq = list_first_entry(list, struct request,
2811                                 queuelist);
2812
2813                 list_del_init(&rq->queuelist);
2814                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2815                 switch (ret) {
2816                 case BLK_STS_OK:
2817                         queued++;
2818                         break;
2819                 case BLK_STS_RESOURCE:
2820                 case BLK_STS_DEV_RESOURCE:
2821                         blk_mq_request_bypass_insert(rq, 0);
2822                         if (list_empty(list))
2823                                 blk_mq_run_hw_queue(hctx, false);
2824                         goto out;
2825                 default:
2826                         blk_mq_end_request(rq, ret);
2827                         break;
2828                 }
2829         }
2830
2831 out:
2832         if (ret != BLK_STS_OK)
2833                 blk_mq_commit_rqs(hctx, queued, false);
2834 }
2835
2836 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2837                                      struct bio *bio, unsigned int nr_segs)
2838 {
2839         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2840                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2841                         return true;
2842                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2843                         return true;
2844         }
2845         return false;
2846 }
2847
2848 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2849                                                struct blk_plug *plug,
2850                                                struct bio *bio,
2851                                                unsigned int nsegs)
2852 {
2853         struct blk_mq_alloc_data data = {
2854                 .q              = q,
2855                 .nr_tags        = 1,
2856                 .cmd_flags      = bio->bi_opf,
2857         };
2858         struct request *rq;
2859
2860         if (unlikely(bio_queue_enter(bio)))
2861                 return NULL;
2862
2863         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2864                 goto queue_exit;
2865
2866         rq_qos_throttle(q, bio);
2867
2868         if (plug) {
2869                 data.nr_tags = plug->nr_ios;
2870                 plug->nr_ios = 1;
2871                 data.cached_rq = &plug->cached_rq;
2872         }
2873
2874         rq = __blk_mq_alloc_requests(&data);
2875         if (rq)
2876                 return rq;
2877         rq_qos_cleanup(q, bio);
2878         if (bio->bi_opf & REQ_NOWAIT)
2879                 bio_wouldblock_error(bio);
2880 queue_exit:
2881         blk_queue_exit(q);
2882         return NULL;
2883 }
2884
2885 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2886                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2887 {
2888         struct request *rq;
2889         enum hctx_type type, hctx_type;
2890
2891         if (!plug)
2892                 return NULL;
2893         rq = rq_list_peek(&plug->cached_rq);
2894         if (!rq || rq->q != q)
2895                 return NULL;
2896
2897         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2898                 *bio = NULL;
2899                 return NULL;
2900         }
2901
2902         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2903         hctx_type = rq->mq_hctx->type;
2904         if (type != hctx_type &&
2905             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2906                 return NULL;
2907         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2908                 return NULL;
2909
2910         /*
2911          * If any qos ->throttle() end up blocking, we will have flushed the
2912          * plug and hence killed the cached_rq list as well. Pop this entry
2913          * before we throttle.
2914          */
2915         plug->cached_rq = rq_list_next(rq);
2916         rq_qos_throttle(q, *bio);
2917
2918         blk_mq_rq_time_init(rq, 0);
2919         rq->cmd_flags = (*bio)->bi_opf;
2920         INIT_LIST_HEAD(&rq->queuelist);
2921         return rq;
2922 }
2923
2924 static void bio_set_ioprio(struct bio *bio)
2925 {
2926         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2927         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2928                 bio->bi_ioprio = get_current_ioprio();
2929         blkcg_set_ioprio(bio);
2930 }
2931
2932 /**
2933  * blk_mq_submit_bio - Create and send a request to block device.
2934  * @bio: Bio pointer.
2935  *
2936  * Builds up a request structure from @q and @bio and send to the device. The
2937  * request may not be queued directly to hardware if:
2938  * * This request can be merged with another one
2939  * * We want to place request at plug queue for possible future merging
2940  * * There is an IO scheduler active at this queue
2941  *
2942  * It will not queue the request if there is an error with the bio, or at the
2943  * request creation.
2944  */
2945 void blk_mq_submit_bio(struct bio *bio)
2946 {
2947         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2948         struct blk_plug *plug = blk_mq_plug(bio);
2949         const int is_sync = op_is_sync(bio->bi_opf);
2950         struct blk_mq_hw_ctx *hctx;
2951         struct request *rq;
2952         unsigned int nr_segs = 1;
2953         blk_status_t ret;
2954
2955         bio = blk_queue_bounce(bio, q);
2956         if (bio_may_exceed_limits(bio, &q->limits)) {
2957                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2958                 if (!bio)
2959                         return;
2960         }
2961
2962         if (!bio_integrity_prep(bio))
2963                 return;
2964
2965         bio_set_ioprio(bio);
2966
2967         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2968         if (!rq) {
2969                 if (!bio)
2970                         return;
2971                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2972                 if (unlikely(!rq))
2973                         return;
2974         }
2975
2976         trace_block_getrq(bio);
2977
2978         rq_qos_track(q, rq, bio);
2979
2980         blk_mq_bio_to_request(rq, bio, nr_segs);
2981
2982         ret = blk_crypto_rq_get_keyslot(rq);
2983         if (ret != BLK_STS_OK) {
2984                 bio->bi_status = ret;
2985                 bio_endio(bio);
2986                 blk_mq_free_request(rq);
2987                 return;
2988         }
2989
2990         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2991                 return;
2992
2993         if (plug) {
2994                 blk_add_rq_to_plug(plug, rq);
2995                 return;
2996         }
2997
2998         hctx = rq->mq_hctx;
2999         if ((rq->rq_flags & RQF_USE_SCHED) ||
3000             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3001                 blk_mq_insert_request(rq, 0);
3002                 blk_mq_run_hw_queue(hctx, true);
3003         } else {
3004                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3005         }
3006 }
3007
3008 #ifdef CONFIG_BLK_MQ_STACKING
3009 /**
3010  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3011  * @rq: the request being queued
3012  */
3013 blk_status_t blk_insert_cloned_request(struct request *rq)
3014 {
3015         struct request_queue *q = rq->q;
3016         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3017         unsigned int max_segments = blk_rq_get_max_segments(rq);
3018         blk_status_t ret;
3019
3020         if (blk_rq_sectors(rq) > max_sectors) {
3021                 /*
3022                  * SCSI device does not have a good way to return if
3023                  * Write Same/Zero is actually supported. If a device rejects
3024                  * a non-read/write command (discard, write same,etc.) the
3025                  * low-level device driver will set the relevant queue limit to
3026                  * 0 to prevent blk-lib from issuing more of the offending
3027                  * operations. Commands queued prior to the queue limit being
3028                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3029                  * errors being propagated to upper layers.
3030                  */
3031                 if (max_sectors == 0)
3032                         return BLK_STS_NOTSUPP;
3033
3034                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3035                         __func__, blk_rq_sectors(rq), max_sectors);
3036                 return BLK_STS_IOERR;
3037         }
3038
3039         /*
3040          * The queue settings related to segment counting may differ from the
3041          * original queue.
3042          */
3043         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3044         if (rq->nr_phys_segments > max_segments) {
3045                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3046                         __func__, rq->nr_phys_segments, max_segments);
3047                 return BLK_STS_IOERR;
3048         }
3049
3050         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3051                 return BLK_STS_IOERR;
3052
3053         ret = blk_crypto_rq_get_keyslot(rq);
3054         if (ret != BLK_STS_OK)
3055                 return ret;
3056
3057         blk_account_io_start(rq);
3058
3059         /*
3060          * Since we have a scheduler attached on the top device,
3061          * bypass a potential scheduler on the bottom device for
3062          * insert.
3063          */
3064         blk_mq_run_dispatch_ops(q,
3065                         ret = blk_mq_request_issue_directly(rq, true));
3066         if (ret)
3067                 blk_account_io_done(rq, ktime_get_ns());
3068         return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3071
3072 /**
3073  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3074  * @rq: the clone request to be cleaned up
3075  *
3076  * Description:
3077  *     Free all bios in @rq for a cloned request.
3078  */
3079 void blk_rq_unprep_clone(struct request *rq)
3080 {
3081         struct bio *bio;
3082
3083         while ((bio = rq->bio) != NULL) {
3084                 rq->bio = bio->bi_next;
3085
3086                 bio_put(bio);
3087         }
3088 }
3089 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3090
3091 /**
3092  * blk_rq_prep_clone - Helper function to setup clone request
3093  * @rq: the request to be setup
3094  * @rq_src: original request to be cloned
3095  * @bs: bio_set that bios for clone are allocated from
3096  * @gfp_mask: memory allocation mask for bio
3097  * @bio_ctr: setup function to be called for each clone bio.
3098  *           Returns %0 for success, non %0 for failure.
3099  * @data: private data to be passed to @bio_ctr
3100  *
3101  * Description:
3102  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3103  *     Also, pages which the original bios are pointing to are not copied
3104  *     and the cloned bios just point same pages.
3105  *     So cloned bios must be completed before original bios, which means
3106  *     the caller must complete @rq before @rq_src.
3107  */
3108 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3109                       struct bio_set *bs, gfp_t gfp_mask,
3110                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3111                       void *data)
3112 {
3113         struct bio *bio, *bio_src;
3114
3115         if (!bs)
3116                 bs = &fs_bio_set;
3117
3118         __rq_for_each_bio(bio_src, rq_src) {
3119                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3120                                       bs);
3121                 if (!bio)
3122                         goto free_and_out;
3123
3124                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3125                         goto free_and_out;
3126
3127                 if (rq->bio) {
3128                         rq->biotail->bi_next = bio;
3129                         rq->biotail = bio;
3130                 } else {
3131                         rq->bio = rq->biotail = bio;
3132                 }
3133                 bio = NULL;
3134         }
3135
3136         /* Copy attributes of the original request to the clone request. */
3137         rq->__sector = blk_rq_pos(rq_src);
3138         rq->__data_len = blk_rq_bytes(rq_src);
3139         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3140                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3141                 rq->special_vec = rq_src->special_vec;
3142         }
3143         rq->nr_phys_segments = rq_src->nr_phys_segments;
3144         rq->ioprio = rq_src->ioprio;
3145
3146         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3147                 goto free_and_out;
3148
3149         return 0;
3150
3151 free_and_out:
3152         if (bio)
3153                 bio_put(bio);
3154         blk_rq_unprep_clone(rq);
3155
3156         return -ENOMEM;
3157 }
3158 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3159 #endif /* CONFIG_BLK_MQ_STACKING */
3160
3161 /*
3162  * Steal bios from a request and add them to a bio list.
3163  * The request must not have been partially completed before.
3164  */
3165 void blk_steal_bios(struct bio_list *list, struct request *rq)
3166 {
3167         if (rq->bio) {
3168                 if (list->tail)
3169                         list->tail->bi_next = rq->bio;
3170                 else
3171                         list->head = rq->bio;
3172                 list->tail = rq->biotail;
3173
3174                 rq->bio = NULL;
3175                 rq->biotail = NULL;
3176         }
3177
3178         rq->__data_len = 0;
3179 }
3180 EXPORT_SYMBOL_GPL(blk_steal_bios);
3181
3182 static size_t order_to_size(unsigned int order)
3183 {
3184         return (size_t)PAGE_SIZE << order;
3185 }
3186
3187 /* called before freeing request pool in @tags */
3188 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3189                                     struct blk_mq_tags *tags)
3190 {
3191         struct page *page;
3192         unsigned long flags;
3193
3194         /*
3195          * There is no need to clear mapping if driver tags is not initialized
3196          * or the mapping belongs to the driver tags.
3197          */
3198         if (!drv_tags || drv_tags == tags)
3199                 return;
3200
3201         list_for_each_entry(page, &tags->page_list, lru) {
3202                 unsigned long start = (unsigned long)page_address(page);
3203                 unsigned long end = start + order_to_size(page->private);
3204                 int i;
3205
3206                 for (i = 0; i < drv_tags->nr_tags; i++) {
3207                         struct request *rq = drv_tags->rqs[i];
3208                         unsigned long rq_addr = (unsigned long)rq;
3209
3210                         if (rq_addr >= start && rq_addr < end) {
3211                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3212                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3213                         }
3214                 }
3215         }
3216
3217         /*
3218          * Wait until all pending iteration is done.
3219          *
3220          * Request reference is cleared and it is guaranteed to be observed
3221          * after the ->lock is released.
3222          */
3223         spin_lock_irqsave(&drv_tags->lock, flags);
3224         spin_unlock_irqrestore(&drv_tags->lock, flags);
3225 }
3226
3227 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3228                      unsigned int hctx_idx)
3229 {
3230         struct blk_mq_tags *drv_tags;
3231         struct page *page;
3232
3233         if (list_empty(&tags->page_list))
3234                 return;
3235
3236         if (blk_mq_is_shared_tags(set->flags))
3237                 drv_tags = set->shared_tags;
3238         else
3239                 drv_tags = set->tags[hctx_idx];
3240
3241         if (tags->static_rqs && set->ops->exit_request) {
3242                 int i;
3243
3244                 for (i = 0; i < tags->nr_tags; i++) {
3245                         struct request *rq = tags->static_rqs[i];
3246
3247                         if (!rq)
3248                                 continue;
3249                         set->ops->exit_request(set, rq, hctx_idx);
3250                         tags->static_rqs[i] = NULL;
3251                 }
3252         }
3253
3254         blk_mq_clear_rq_mapping(drv_tags, tags);
3255
3256         while (!list_empty(&tags->page_list)) {
3257                 page = list_first_entry(&tags->page_list, struct page, lru);
3258                 list_del_init(&page->lru);
3259                 /*
3260                  * Remove kmemleak object previously allocated in
3261                  * blk_mq_alloc_rqs().
3262                  */
3263                 kmemleak_free(page_address(page));
3264                 __free_pages(page, page->private);
3265         }
3266 }
3267
3268 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3269 {
3270         kfree(tags->rqs);
3271         tags->rqs = NULL;
3272         kfree(tags->static_rqs);
3273         tags->static_rqs = NULL;
3274
3275         blk_mq_free_tags(tags);
3276 }
3277
3278 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3279                 unsigned int hctx_idx)
3280 {
3281         int i;
3282
3283         for (i = 0; i < set->nr_maps; i++) {
3284                 unsigned int start = set->map[i].queue_offset;
3285                 unsigned int end = start + set->map[i].nr_queues;
3286
3287                 if (hctx_idx >= start && hctx_idx < end)
3288                         break;
3289         }
3290
3291         if (i >= set->nr_maps)
3292                 i = HCTX_TYPE_DEFAULT;
3293
3294         return i;
3295 }
3296
3297 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3298                 unsigned int hctx_idx)
3299 {
3300         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3301
3302         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3303 }
3304
3305 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3306                                                unsigned int hctx_idx,
3307                                                unsigned int nr_tags,
3308                                                unsigned int reserved_tags)
3309 {
3310         int node = blk_mq_get_hctx_node(set, hctx_idx);
3311         struct blk_mq_tags *tags;
3312
3313         if (node == NUMA_NO_NODE)
3314                 node = set->numa_node;
3315
3316         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3317                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3318         if (!tags)
3319                 return NULL;
3320
3321         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3322                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3323                                  node);
3324         if (!tags->rqs)
3325                 goto err_free_tags;
3326
3327         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3328                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3329                                         node);
3330         if (!tags->static_rqs)
3331                 goto err_free_rqs;
3332
3333         return tags;
3334
3335 err_free_rqs:
3336         kfree(tags->rqs);
3337 err_free_tags:
3338         blk_mq_free_tags(tags);
3339         return NULL;
3340 }
3341
3342 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3343                                unsigned int hctx_idx, int node)
3344 {
3345         int ret;
3346
3347         if (set->ops->init_request) {
3348                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3349                 if (ret)
3350                         return ret;
3351         }
3352
3353         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3354         return 0;
3355 }
3356
3357 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3358                             struct blk_mq_tags *tags,
3359                             unsigned int hctx_idx, unsigned int depth)
3360 {
3361         unsigned int i, j, entries_per_page, max_order = 4;
3362         int node = blk_mq_get_hctx_node(set, hctx_idx);
3363         size_t rq_size, left;
3364
3365         if (node == NUMA_NO_NODE)
3366                 node = set->numa_node;
3367
3368         INIT_LIST_HEAD(&tags->page_list);
3369
3370         /*
3371          * rq_size is the size of the request plus driver payload, rounded
3372          * to the cacheline size
3373          */
3374         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3375                                 cache_line_size());
3376         left = rq_size * depth;
3377
3378         for (i = 0; i < depth; ) {
3379                 int this_order = max_order;
3380                 struct page *page;
3381                 int to_do;
3382                 void *p;
3383
3384                 while (this_order && left < order_to_size(this_order - 1))
3385                         this_order--;
3386
3387                 do {
3388                         page = alloc_pages_node(node,
3389                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3390                                 this_order);
3391                         if (page)
3392                                 break;
3393                         if (!this_order--)
3394                                 break;
3395                         if (order_to_size(this_order) < rq_size)
3396                                 break;
3397                 } while (1);
3398
3399                 if (!page)
3400                         goto fail;
3401
3402                 page->private = this_order;
3403                 list_add_tail(&page->lru, &tags->page_list);
3404
3405                 p = page_address(page);
3406                 /*
3407                  * Allow kmemleak to scan these pages as they contain pointers
3408                  * to additional allocations like via ops->init_request().
3409                  */
3410                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3411                 entries_per_page = order_to_size(this_order) / rq_size;
3412                 to_do = min(entries_per_page, depth - i);
3413                 left -= to_do * rq_size;
3414                 for (j = 0; j < to_do; j++) {
3415                         struct request *rq = p;
3416
3417                         tags->static_rqs[i] = rq;
3418                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3419                                 tags->static_rqs[i] = NULL;
3420                                 goto fail;
3421                         }
3422
3423                         p += rq_size;
3424                         i++;
3425                 }
3426         }
3427         return 0;
3428
3429 fail:
3430         blk_mq_free_rqs(set, tags, hctx_idx);
3431         return -ENOMEM;
3432 }
3433
3434 struct rq_iter_data {
3435         struct blk_mq_hw_ctx *hctx;
3436         bool has_rq;
3437 };
3438
3439 static bool blk_mq_has_request(struct request *rq, void *data)
3440 {
3441         struct rq_iter_data *iter_data = data;
3442
3443         if (rq->mq_hctx != iter_data->hctx)
3444                 return true;
3445         iter_data->has_rq = true;
3446         return false;
3447 }
3448
3449 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3450 {
3451         struct blk_mq_tags *tags = hctx->sched_tags ?
3452                         hctx->sched_tags : hctx->tags;
3453         struct rq_iter_data data = {
3454                 .hctx   = hctx,
3455         };
3456
3457         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3458         return data.has_rq;
3459 }
3460
3461 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3462                 struct blk_mq_hw_ctx *hctx)
3463 {
3464         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3465                 return false;
3466         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3467                 return false;
3468         return true;
3469 }
3470
3471 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3472 {
3473         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3474                         struct blk_mq_hw_ctx, cpuhp_online);
3475
3476         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3477             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3478                 return 0;
3479
3480         /*
3481          * Prevent new request from being allocated on the current hctx.
3482          *
3483          * The smp_mb__after_atomic() Pairs with the implied barrier in
3484          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3485          * seen once we return from the tag allocator.
3486          */
3487         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3488         smp_mb__after_atomic();
3489
3490         /*
3491          * Try to grab a reference to the queue and wait for any outstanding
3492          * requests.  If we could not grab a reference the queue has been
3493          * frozen and there are no requests.
3494          */
3495         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3496                 while (blk_mq_hctx_has_requests(hctx))
3497                         msleep(5);
3498                 percpu_ref_put(&hctx->queue->q_usage_counter);
3499         }
3500
3501         return 0;
3502 }
3503
3504 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3505 {
3506         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3507                         struct blk_mq_hw_ctx, cpuhp_online);
3508
3509         if (cpumask_test_cpu(cpu, hctx->cpumask))
3510                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3511         return 0;
3512 }
3513
3514 /*
3515  * 'cpu' is going away. splice any existing rq_list entries from this
3516  * software queue to the hw queue dispatch list, and ensure that it
3517  * gets run.
3518  */
3519 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3520 {
3521         struct blk_mq_hw_ctx *hctx;
3522         struct blk_mq_ctx *ctx;
3523         LIST_HEAD(tmp);
3524         enum hctx_type type;
3525
3526         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3527         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3528                 return 0;
3529
3530         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3531         type = hctx->type;
3532
3533         spin_lock(&ctx->lock);
3534         if (!list_empty(&ctx->rq_lists[type])) {
3535                 list_splice_init(&ctx->rq_lists[type], &tmp);
3536                 blk_mq_hctx_clear_pending(hctx, ctx);
3537         }
3538         spin_unlock(&ctx->lock);
3539
3540         if (list_empty(&tmp))
3541                 return 0;
3542
3543         spin_lock(&hctx->lock);
3544         list_splice_tail_init(&tmp, &hctx->dispatch);
3545         spin_unlock(&hctx->lock);
3546
3547         blk_mq_run_hw_queue(hctx, true);
3548         return 0;
3549 }
3550
3551 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3552 {
3553         if (!(hctx->flags & BLK_MQ_F_STACKING))
3554                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3555                                                     &hctx->cpuhp_online);
3556         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3557                                             &hctx->cpuhp_dead);
3558 }
3559
3560 /*
3561  * Before freeing hw queue, clearing the flush request reference in
3562  * tags->rqs[] for avoiding potential UAF.
3563  */
3564 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3565                 unsigned int queue_depth, struct request *flush_rq)
3566 {
3567         int i;
3568         unsigned long flags;
3569
3570         /* The hw queue may not be mapped yet */
3571         if (!tags)
3572                 return;
3573
3574         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3575
3576         for (i = 0; i < queue_depth; i++)
3577                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3578
3579         /*
3580          * Wait until all pending iteration is done.
3581          *
3582          * Request reference is cleared and it is guaranteed to be observed
3583          * after the ->lock is released.
3584          */
3585         spin_lock_irqsave(&tags->lock, flags);
3586         spin_unlock_irqrestore(&tags->lock, flags);
3587 }
3588
3589 /* hctx->ctxs will be freed in queue's release handler */
3590 static void blk_mq_exit_hctx(struct request_queue *q,
3591                 struct blk_mq_tag_set *set,
3592                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3593 {
3594         struct request *flush_rq = hctx->fq->flush_rq;
3595
3596         if (blk_mq_hw_queue_mapped(hctx))
3597                 blk_mq_tag_idle(hctx);
3598
3599         if (blk_queue_init_done(q))
3600                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3601                                 set->queue_depth, flush_rq);
3602         if (set->ops->exit_request)
3603                 set->ops->exit_request(set, flush_rq, hctx_idx);
3604
3605         if (set->ops->exit_hctx)
3606                 set->ops->exit_hctx(hctx, hctx_idx);
3607
3608         blk_mq_remove_cpuhp(hctx);
3609
3610         xa_erase(&q->hctx_table, hctx_idx);
3611
3612         spin_lock(&q->unused_hctx_lock);
3613         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3614         spin_unlock(&q->unused_hctx_lock);
3615 }
3616
3617 static void blk_mq_exit_hw_queues(struct request_queue *q,
3618                 struct blk_mq_tag_set *set, int nr_queue)
3619 {
3620         struct blk_mq_hw_ctx *hctx;
3621         unsigned long i;
3622
3623         queue_for_each_hw_ctx(q, hctx, i) {
3624                 if (i == nr_queue)
3625                         break;
3626                 blk_mq_exit_hctx(q, set, hctx, i);
3627         }
3628 }
3629
3630 static int blk_mq_init_hctx(struct request_queue *q,
3631                 struct blk_mq_tag_set *set,
3632                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3633 {
3634         hctx->queue_num = hctx_idx;
3635
3636         if (!(hctx->flags & BLK_MQ_F_STACKING))
3637                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3638                                 &hctx->cpuhp_online);
3639         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3640
3641         hctx->tags = set->tags[hctx_idx];
3642
3643         if (set->ops->init_hctx &&
3644             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3645                 goto unregister_cpu_notifier;
3646
3647         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3648                                 hctx->numa_node))
3649                 goto exit_hctx;
3650
3651         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3652                 goto exit_flush_rq;
3653
3654         return 0;
3655
3656  exit_flush_rq:
3657         if (set->ops->exit_request)
3658                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3659  exit_hctx:
3660         if (set->ops->exit_hctx)
3661                 set->ops->exit_hctx(hctx, hctx_idx);
3662  unregister_cpu_notifier:
3663         blk_mq_remove_cpuhp(hctx);
3664         return -1;
3665 }
3666
3667 static struct blk_mq_hw_ctx *
3668 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3669                 int node)
3670 {
3671         struct blk_mq_hw_ctx *hctx;
3672         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3673
3674         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3675         if (!hctx)
3676                 goto fail_alloc_hctx;
3677
3678         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3679                 goto free_hctx;
3680
3681         atomic_set(&hctx->nr_active, 0);
3682         if (node == NUMA_NO_NODE)
3683                 node = set->numa_node;
3684         hctx->numa_node = node;
3685
3686         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3687         spin_lock_init(&hctx->lock);
3688         INIT_LIST_HEAD(&hctx->dispatch);
3689         hctx->queue = q;
3690         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3691
3692         INIT_LIST_HEAD(&hctx->hctx_list);
3693
3694         /*
3695          * Allocate space for all possible cpus to avoid allocation at
3696          * runtime
3697          */
3698         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3699                         gfp, node);
3700         if (!hctx->ctxs)
3701                 goto free_cpumask;
3702
3703         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3704                                 gfp, node, false, false))
3705                 goto free_ctxs;
3706         hctx->nr_ctx = 0;
3707
3708         spin_lock_init(&hctx->dispatch_wait_lock);
3709         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3710         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3711
3712         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3713         if (!hctx->fq)
3714                 goto free_bitmap;
3715
3716         blk_mq_hctx_kobj_init(hctx);
3717
3718         return hctx;
3719
3720  free_bitmap:
3721         sbitmap_free(&hctx->ctx_map);
3722  free_ctxs:
3723         kfree(hctx->ctxs);
3724  free_cpumask:
3725         free_cpumask_var(hctx->cpumask);
3726  free_hctx:
3727         kfree(hctx);
3728  fail_alloc_hctx:
3729         return NULL;
3730 }
3731
3732 static void blk_mq_init_cpu_queues(struct request_queue *q,
3733                                    unsigned int nr_hw_queues)
3734 {
3735         struct blk_mq_tag_set *set = q->tag_set;
3736         unsigned int i, j;
3737
3738         for_each_possible_cpu(i) {
3739                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3740                 struct blk_mq_hw_ctx *hctx;
3741                 int k;
3742
3743                 __ctx->cpu = i;
3744                 spin_lock_init(&__ctx->lock);
3745                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3746                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3747
3748                 __ctx->queue = q;
3749
3750                 /*
3751                  * Set local node, IFF we have more than one hw queue. If
3752                  * not, we remain on the home node of the device
3753                  */
3754                 for (j = 0; j < set->nr_maps; j++) {
3755                         hctx = blk_mq_map_queue_type(q, j, i);
3756                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3757                                 hctx->numa_node = cpu_to_node(i);
3758                 }
3759         }
3760 }
3761
3762 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3763                                              unsigned int hctx_idx,
3764                                              unsigned int depth)
3765 {
3766         struct blk_mq_tags *tags;
3767         int ret;
3768
3769         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3770         if (!tags)
3771                 return NULL;
3772
3773         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3774         if (ret) {
3775                 blk_mq_free_rq_map(tags);
3776                 return NULL;
3777         }
3778
3779         return tags;
3780 }
3781
3782 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3783                                        int hctx_idx)
3784 {
3785         if (blk_mq_is_shared_tags(set->flags)) {
3786                 set->tags[hctx_idx] = set->shared_tags;
3787
3788                 return true;
3789         }
3790
3791         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3792                                                        set->queue_depth);
3793
3794         return set->tags[hctx_idx];
3795 }
3796
3797 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3798                              struct blk_mq_tags *tags,
3799                              unsigned int hctx_idx)
3800 {
3801         if (tags) {
3802                 blk_mq_free_rqs(set, tags, hctx_idx);
3803                 blk_mq_free_rq_map(tags);
3804         }
3805 }
3806
3807 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3808                                       unsigned int hctx_idx)
3809 {
3810         if (!blk_mq_is_shared_tags(set->flags))
3811                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3812
3813         set->tags[hctx_idx] = NULL;
3814 }
3815
3816 static void blk_mq_map_swqueue(struct request_queue *q)
3817 {
3818         unsigned int j, hctx_idx;
3819         unsigned long i;
3820         struct blk_mq_hw_ctx *hctx;
3821         struct blk_mq_ctx *ctx;
3822         struct blk_mq_tag_set *set = q->tag_set;
3823
3824         queue_for_each_hw_ctx(q, hctx, i) {
3825                 cpumask_clear(hctx->cpumask);
3826                 hctx->nr_ctx = 0;
3827                 hctx->dispatch_from = NULL;
3828         }
3829
3830         /*
3831          * Map software to hardware queues.
3832          *
3833          * If the cpu isn't present, the cpu is mapped to first hctx.
3834          */
3835         for_each_possible_cpu(i) {
3836
3837                 ctx = per_cpu_ptr(q->queue_ctx, i);
3838                 for (j = 0; j < set->nr_maps; j++) {
3839                         if (!set->map[j].nr_queues) {
3840                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3841                                                 HCTX_TYPE_DEFAULT, i);
3842                                 continue;
3843                         }
3844                         hctx_idx = set->map[j].mq_map[i];
3845                         /* unmapped hw queue can be remapped after CPU topo changed */
3846                         if (!set->tags[hctx_idx] &&
3847                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3848                                 /*
3849                                  * If tags initialization fail for some hctx,
3850                                  * that hctx won't be brought online.  In this
3851                                  * case, remap the current ctx to hctx[0] which
3852                                  * is guaranteed to always have tags allocated
3853                                  */
3854                                 set->map[j].mq_map[i] = 0;
3855                         }
3856
3857                         hctx = blk_mq_map_queue_type(q, j, i);
3858                         ctx->hctxs[j] = hctx;
3859                         /*
3860                          * If the CPU is already set in the mask, then we've
3861                          * mapped this one already. This can happen if
3862                          * devices share queues across queue maps.
3863                          */
3864                         if (cpumask_test_cpu(i, hctx->cpumask))
3865                                 continue;
3866
3867                         cpumask_set_cpu(i, hctx->cpumask);
3868                         hctx->type = j;
3869                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3870                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3871
3872                         /*
3873                          * If the nr_ctx type overflows, we have exceeded the
3874                          * amount of sw queues we can support.
3875                          */
3876                         BUG_ON(!hctx->nr_ctx);
3877                 }
3878
3879                 for (; j < HCTX_MAX_TYPES; j++)
3880                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3881                                         HCTX_TYPE_DEFAULT, i);
3882         }
3883
3884         queue_for_each_hw_ctx(q, hctx, i) {
3885                 /*
3886                  * If no software queues are mapped to this hardware queue,
3887                  * disable it and free the request entries.
3888                  */
3889                 if (!hctx->nr_ctx) {
3890                         /* Never unmap queue 0.  We need it as a
3891                          * fallback in case of a new remap fails
3892                          * allocation
3893                          */
3894                         if (i)
3895                                 __blk_mq_free_map_and_rqs(set, i);
3896
3897                         hctx->tags = NULL;
3898                         continue;
3899                 }
3900
3901                 hctx->tags = set->tags[i];
3902                 WARN_ON(!hctx->tags);
3903
3904                 /*
3905                  * Set the map size to the number of mapped software queues.
3906                  * This is more accurate and more efficient than looping
3907                  * over all possibly mapped software queues.
3908                  */
3909                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3910
3911                 /*
3912                  * Initialize batch roundrobin counts
3913                  */
3914                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3915                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3916         }
3917 }
3918
3919 /*
3920  * Caller needs to ensure that we're either frozen/quiesced, or that
3921  * the queue isn't live yet.
3922  */
3923 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3924 {
3925         struct blk_mq_hw_ctx *hctx;
3926         unsigned long i;
3927
3928         queue_for_each_hw_ctx(q, hctx, i) {
3929                 if (shared) {
3930                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3931                 } else {
3932                         blk_mq_tag_idle(hctx);
3933                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3934                 }
3935         }
3936 }
3937
3938 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3939                                          bool shared)
3940 {
3941         struct request_queue *q;
3942
3943         lockdep_assert_held(&set->tag_list_lock);
3944
3945         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3946                 blk_mq_freeze_queue(q);
3947                 queue_set_hctx_shared(q, shared);
3948                 blk_mq_unfreeze_queue(q);
3949         }
3950 }
3951
3952 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3953 {
3954         struct blk_mq_tag_set *set = q->tag_set;
3955
3956         mutex_lock(&set->tag_list_lock);
3957         list_del(&q->tag_set_list);
3958         if (list_is_singular(&set->tag_list)) {
3959                 /* just transitioned to unshared */
3960                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3961                 /* update existing queue */
3962                 blk_mq_update_tag_set_shared(set, false);
3963         }
3964         mutex_unlock(&set->tag_list_lock);
3965         INIT_LIST_HEAD(&q->tag_set_list);
3966 }
3967
3968 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3969                                      struct request_queue *q)
3970 {
3971         mutex_lock(&set->tag_list_lock);
3972
3973         /*
3974          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3975          */
3976         if (!list_empty(&set->tag_list) &&
3977             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3978                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3979                 /* update existing queue */
3980                 blk_mq_update_tag_set_shared(set, true);
3981         }
3982         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3983                 queue_set_hctx_shared(q, true);
3984         list_add_tail(&q->tag_set_list, &set->tag_list);
3985
3986         mutex_unlock(&set->tag_list_lock);
3987 }
3988
3989 /* All allocations will be freed in release handler of q->mq_kobj */
3990 static int blk_mq_alloc_ctxs(struct request_queue *q)
3991 {
3992         struct blk_mq_ctxs *ctxs;
3993         int cpu;
3994
3995         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3996         if (!ctxs)
3997                 return -ENOMEM;
3998
3999         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4000         if (!ctxs->queue_ctx)
4001                 goto fail;
4002
4003         for_each_possible_cpu(cpu) {
4004                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4005                 ctx->ctxs = ctxs;
4006         }
4007
4008         q->mq_kobj = &ctxs->kobj;
4009         q->queue_ctx = ctxs->queue_ctx;
4010
4011         return 0;
4012  fail:
4013         kfree(ctxs);
4014         return -ENOMEM;
4015 }
4016
4017 /*
4018  * It is the actual release handler for mq, but we do it from
4019  * request queue's release handler for avoiding use-after-free
4020  * and headache because q->mq_kobj shouldn't have been introduced,
4021  * but we can't group ctx/kctx kobj without it.
4022  */
4023 void blk_mq_release(struct request_queue *q)
4024 {
4025         struct blk_mq_hw_ctx *hctx, *next;
4026         unsigned long i;
4027
4028         queue_for_each_hw_ctx(q, hctx, i)
4029                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4030
4031         /* all hctx are in .unused_hctx_list now */
4032         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4033                 list_del_init(&hctx->hctx_list);
4034                 kobject_put(&hctx->kobj);
4035         }
4036
4037         xa_destroy(&q->hctx_table);
4038
4039         /*
4040          * release .mq_kobj and sw queue's kobject now because
4041          * both share lifetime with request queue.
4042          */
4043         blk_mq_sysfs_deinit(q);
4044 }
4045
4046 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4047                 void *queuedata)
4048 {
4049         struct request_queue *q;
4050         int ret;
4051
4052         q = blk_alloc_queue(set->numa_node);
4053         if (!q)
4054                 return ERR_PTR(-ENOMEM);
4055         q->queuedata = queuedata;
4056         ret = blk_mq_init_allocated_queue(set, q);
4057         if (ret) {
4058                 blk_put_queue(q);
4059                 return ERR_PTR(ret);
4060         }
4061         return q;
4062 }
4063
4064 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4065 {
4066         return blk_mq_init_queue_data(set, NULL);
4067 }
4068 EXPORT_SYMBOL(blk_mq_init_queue);
4069
4070 /**
4071  * blk_mq_destroy_queue - shutdown a request queue
4072  * @q: request queue to shutdown
4073  *
4074  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4075  * requests will be failed with -ENODEV. The caller is responsible for dropping
4076  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4077  *
4078  * Context: can sleep
4079  */
4080 void blk_mq_destroy_queue(struct request_queue *q)
4081 {
4082         WARN_ON_ONCE(!queue_is_mq(q));
4083         WARN_ON_ONCE(blk_queue_registered(q));
4084
4085         might_sleep();
4086
4087         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4088         blk_queue_start_drain(q);
4089         blk_mq_freeze_queue_wait(q);
4090
4091         blk_sync_queue(q);
4092         blk_mq_cancel_work_sync(q);
4093         blk_mq_exit_queue(q);
4094 }
4095 EXPORT_SYMBOL(blk_mq_destroy_queue);
4096
4097 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4098                 struct lock_class_key *lkclass)
4099 {
4100         struct request_queue *q;
4101         struct gendisk *disk;
4102
4103         q = blk_mq_init_queue_data(set, queuedata);
4104         if (IS_ERR(q))
4105                 return ERR_CAST(q);
4106
4107         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4108         if (!disk) {
4109                 blk_mq_destroy_queue(q);
4110                 blk_put_queue(q);
4111                 return ERR_PTR(-ENOMEM);
4112         }
4113         set_bit(GD_OWNS_QUEUE, &disk->state);
4114         return disk;
4115 }
4116 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4117
4118 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4119                 struct lock_class_key *lkclass)
4120 {
4121         struct gendisk *disk;
4122
4123         if (!blk_get_queue(q))
4124                 return NULL;
4125         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4126         if (!disk)
4127                 blk_put_queue(q);
4128         return disk;
4129 }
4130 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4131
4132 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4133                 struct blk_mq_tag_set *set, struct request_queue *q,
4134                 int hctx_idx, int node)
4135 {
4136         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4137
4138         /* reuse dead hctx first */
4139         spin_lock(&q->unused_hctx_lock);
4140         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4141                 if (tmp->numa_node == node) {
4142                         hctx = tmp;
4143                         break;
4144                 }
4145         }
4146         if (hctx)
4147                 list_del_init(&hctx->hctx_list);
4148         spin_unlock(&q->unused_hctx_lock);
4149
4150         if (!hctx)
4151                 hctx = blk_mq_alloc_hctx(q, set, node);
4152         if (!hctx)
4153                 goto fail;
4154
4155         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4156                 goto free_hctx;
4157
4158         return hctx;
4159
4160  free_hctx:
4161         kobject_put(&hctx->kobj);
4162  fail:
4163         return NULL;
4164 }
4165
4166 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4167                                                 struct request_queue *q)
4168 {
4169         struct blk_mq_hw_ctx *hctx;
4170         unsigned long i, j;
4171
4172         /* protect against switching io scheduler  */
4173         mutex_lock(&q->sysfs_lock);
4174         for (i = 0; i < set->nr_hw_queues; i++) {
4175                 int old_node;
4176                 int node = blk_mq_get_hctx_node(set, i);
4177                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4178
4179                 if (old_hctx) {
4180                         old_node = old_hctx->numa_node;
4181                         blk_mq_exit_hctx(q, set, old_hctx, i);
4182                 }
4183
4184                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4185                         if (!old_hctx)
4186                                 break;
4187                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4188                                         node, old_node);
4189                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4190                         WARN_ON_ONCE(!hctx);
4191                 }
4192         }
4193         /*
4194          * Increasing nr_hw_queues fails. Free the newly allocated
4195          * hctxs and keep the previous q->nr_hw_queues.
4196          */
4197         if (i != set->nr_hw_queues) {
4198                 j = q->nr_hw_queues;
4199         } else {
4200                 j = i;
4201                 q->nr_hw_queues = set->nr_hw_queues;
4202         }
4203
4204         xa_for_each_start(&q->hctx_table, j, hctx, j)
4205                 blk_mq_exit_hctx(q, set, hctx, j);
4206         mutex_unlock(&q->sysfs_lock);
4207 }
4208
4209 static void blk_mq_update_poll_flag(struct request_queue *q)
4210 {
4211         struct blk_mq_tag_set *set = q->tag_set;
4212
4213         if (set->nr_maps > HCTX_TYPE_POLL &&
4214             set->map[HCTX_TYPE_POLL].nr_queues)
4215                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4216         else
4217                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4218 }
4219
4220 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4221                 struct request_queue *q)
4222 {
4223         /* mark the queue as mq asap */
4224         q->mq_ops = set->ops;
4225
4226         if (blk_mq_alloc_ctxs(q))
4227                 goto err_exit;
4228
4229         /* init q->mq_kobj and sw queues' kobjects */
4230         blk_mq_sysfs_init(q);
4231
4232         INIT_LIST_HEAD(&q->unused_hctx_list);
4233         spin_lock_init(&q->unused_hctx_lock);
4234
4235         xa_init(&q->hctx_table);
4236
4237         blk_mq_realloc_hw_ctxs(set, q);
4238         if (!q->nr_hw_queues)
4239                 goto err_hctxs;
4240
4241         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4242         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4243
4244         q->tag_set = set;
4245
4246         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4247         blk_mq_update_poll_flag(q);
4248
4249         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4250         INIT_LIST_HEAD(&q->flush_list);
4251         INIT_LIST_HEAD(&q->requeue_list);
4252         spin_lock_init(&q->requeue_lock);
4253
4254         q->nr_requests = set->queue_depth;
4255
4256         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4257         blk_mq_add_queue_tag_set(set, q);
4258         blk_mq_map_swqueue(q);
4259         return 0;
4260
4261 err_hctxs:
4262         blk_mq_release(q);
4263 err_exit:
4264         q->mq_ops = NULL;
4265         return -ENOMEM;
4266 }
4267 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4268
4269 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4270 void blk_mq_exit_queue(struct request_queue *q)
4271 {
4272         struct blk_mq_tag_set *set = q->tag_set;
4273
4274         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4275         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4276         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4277         blk_mq_del_queue_tag_set(q);
4278 }
4279
4280 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4281 {
4282         int i;
4283
4284         if (blk_mq_is_shared_tags(set->flags)) {
4285                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4286                                                 BLK_MQ_NO_HCTX_IDX,
4287                                                 set->queue_depth);
4288                 if (!set->shared_tags)
4289                         return -ENOMEM;
4290         }
4291
4292         for (i = 0; i < set->nr_hw_queues; i++) {
4293                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4294                         goto out_unwind;
4295                 cond_resched();
4296         }
4297
4298         return 0;
4299
4300 out_unwind:
4301         while (--i >= 0)
4302                 __blk_mq_free_map_and_rqs(set, i);
4303
4304         if (blk_mq_is_shared_tags(set->flags)) {
4305                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4306                                         BLK_MQ_NO_HCTX_IDX);
4307         }
4308
4309         return -ENOMEM;
4310 }
4311
4312 /*
4313  * Allocate the request maps associated with this tag_set. Note that this
4314  * may reduce the depth asked for, if memory is tight. set->queue_depth
4315  * will be updated to reflect the allocated depth.
4316  */
4317 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4318 {
4319         unsigned int depth;
4320         int err;
4321
4322         depth = set->queue_depth;
4323         do {
4324                 err = __blk_mq_alloc_rq_maps(set);
4325                 if (!err)
4326                         break;
4327
4328                 set->queue_depth >>= 1;
4329                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4330                         err = -ENOMEM;
4331                         break;
4332                 }
4333         } while (set->queue_depth);
4334
4335         if (!set->queue_depth || err) {
4336                 pr_err("blk-mq: failed to allocate request map\n");
4337                 return -ENOMEM;
4338         }
4339
4340         if (depth != set->queue_depth)
4341                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4342                                                 depth, set->queue_depth);
4343
4344         return 0;
4345 }
4346
4347 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4348 {
4349         /*
4350          * blk_mq_map_queues() and multiple .map_queues() implementations
4351          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4352          * number of hardware queues.
4353          */
4354         if (set->nr_maps == 1)
4355                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4356
4357         if (set->ops->map_queues && !is_kdump_kernel()) {
4358                 int i;
4359
4360                 /*
4361                  * transport .map_queues is usually done in the following
4362                  * way:
4363                  *
4364                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4365                  *      mask = get_cpu_mask(queue)
4366                  *      for_each_cpu(cpu, mask)
4367                  *              set->map[x].mq_map[cpu] = queue;
4368                  * }
4369                  *
4370                  * When we need to remap, the table has to be cleared for
4371                  * killing stale mapping since one CPU may not be mapped
4372                  * to any hw queue.
4373                  */
4374                 for (i = 0; i < set->nr_maps; i++)
4375                         blk_mq_clear_mq_map(&set->map[i]);
4376
4377                 set->ops->map_queues(set);
4378         } else {
4379                 BUG_ON(set->nr_maps > 1);
4380                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4381         }
4382 }
4383
4384 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4385                                        int new_nr_hw_queues)
4386 {
4387         struct blk_mq_tags **new_tags;
4388         int i;
4389
4390         if (set->nr_hw_queues >= new_nr_hw_queues)
4391                 goto done;
4392
4393         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4394                                 GFP_KERNEL, set->numa_node);
4395         if (!new_tags)
4396                 return -ENOMEM;
4397
4398         if (set->tags)
4399                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4400                        sizeof(*set->tags));
4401         kfree(set->tags);
4402         set->tags = new_tags;
4403
4404         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4405                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4406                         while (--i >= set->nr_hw_queues)
4407                                 __blk_mq_free_map_and_rqs(set, i);
4408                         return -ENOMEM;
4409                 }
4410                 cond_resched();
4411         }
4412
4413 done:
4414         set->nr_hw_queues = new_nr_hw_queues;
4415         return 0;
4416 }
4417
4418 /*
4419  * Alloc a tag set to be associated with one or more request queues.
4420  * May fail with EINVAL for various error conditions. May adjust the
4421  * requested depth down, if it's too large. In that case, the set
4422  * value will be stored in set->queue_depth.
4423  */
4424 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4425 {
4426         int i, ret;
4427
4428         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4429
4430         if (!set->nr_hw_queues)
4431                 return -EINVAL;
4432         if (!set->queue_depth)
4433                 return -EINVAL;
4434         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4435                 return -EINVAL;
4436
4437         if (!set->ops->queue_rq)
4438                 return -EINVAL;
4439
4440         if (!set->ops->get_budget ^ !set->ops->put_budget)
4441                 return -EINVAL;
4442
4443         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4444                 pr_info("blk-mq: reduced tag depth to %u\n",
4445                         BLK_MQ_MAX_DEPTH);
4446                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4447         }
4448
4449         if (!set->nr_maps)
4450                 set->nr_maps = 1;
4451         else if (set->nr_maps > HCTX_MAX_TYPES)
4452                 return -EINVAL;
4453
4454         /*
4455          * If a crashdump is active, then we are potentially in a very
4456          * memory constrained environment. Limit us to 1 queue and
4457          * 64 tags to prevent using too much memory.
4458          */
4459         if (is_kdump_kernel()) {
4460                 set->nr_hw_queues = 1;
4461                 set->nr_maps = 1;
4462                 set->queue_depth = min(64U, set->queue_depth);
4463         }
4464         /*
4465          * There is no use for more h/w queues than cpus if we just have
4466          * a single map
4467          */
4468         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4469                 set->nr_hw_queues = nr_cpu_ids;
4470
4471         if (set->flags & BLK_MQ_F_BLOCKING) {
4472                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4473                 if (!set->srcu)
4474                         return -ENOMEM;
4475                 ret = init_srcu_struct(set->srcu);
4476                 if (ret)
4477                         goto out_free_srcu;
4478         }
4479
4480         ret = -ENOMEM;
4481         set->tags = kcalloc_node(set->nr_hw_queues,
4482                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4483                                  set->numa_node);
4484         if (!set->tags)
4485                 goto out_cleanup_srcu;
4486
4487         for (i = 0; i < set->nr_maps; i++) {
4488                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4489                                                   sizeof(set->map[i].mq_map[0]),
4490                                                   GFP_KERNEL, set->numa_node);
4491                 if (!set->map[i].mq_map)
4492                         goto out_free_mq_map;
4493                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4494         }
4495
4496         blk_mq_update_queue_map(set);
4497
4498         ret = blk_mq_alloc_set_map_and_rqs(set);
4499         if (ret)
4500                 goto out_free_mq_map;
4501
4502         mutex_init(&set->tag_list_lock);
4503         INIT_LIST_HEAD(&set->tag_list);
4504
4505         return 0;
4506
4507 out_free_mq_map:
4508         for (i = 0; i < set->nr_maps; i++) {
4509                 kfree(set->map[i].mq_map);
4510                 set->map[i].mq_map = NULL;
4511         }
4512         kfree(set->tags);
4513         set->tags = NULL;
4514 out_cleanup_srcu:
4515         if (set->flags & BLK_MQ_F_BLOCKING)
4516                 cleanup_srcu_struct(set->srcu);
4517 out_free_srcu:
4518         if (set->flags & BLK_MQ_F_BLOCKING)
4519                 kfree(set->srcu);
4520         return ret;
4521 }
4522 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4523
4524 /* allocate and initialize a tagset for a simple single-queue device */
4525 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4526                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4527                 unsigned int set_flags)
4528 {
4529         memset(set, 0, sizeof(*set));
4530         set->ops = ops;
4531         set->nr_hw_queues = 1;
4532         set->nr_maps = 1;
4533         set->queue_depth = queue_depth;
4534         set->numa_node = NUMA_NO_NODE;
4535         set->flags = set_flags;
4536         return blk_mq_alloc_tag_set(set);
4537 }
4538 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4539
4540 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4541 {
4542         int i, j;
4543
4544         for (i = 0; i < set->nr_hw_queues; i++)
4545                 __blk_mq_free_map_and_rqs(set, i);
4546
4547         if (blk_mq_is_shared_tags(set->flags)) {
4548                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4549                                         BLK_MQ_NO_HCTX_IDX);
4550         }
4551
4552         for (j = 0; j < set->nr_maps; j++) {
4553                 kfree(set->map[j].mq_map);
4554                 set->map[j].mq_map = NULL;
4555         }
4556
4557         kfree(set->tags);
4558         set->tags = NULL;
4559         if (set->flags & BLK_MQ_F_BLOCKING) {
4560                 cleanup_srcu_struct(set->srcu);
4561                 kfree(set->srcu);
4562         }
4563 }
4564 EXPORT_SYMBOL(blk_mq_free_tag_set);
4565
4566 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4567 {
4568         struct blk_mq_tag_set *set = q->tag_set;
4569         struct blk_mq_hw_ctx *hctx;
4570         int ret;
4571         unsigned long i;
4572
4573         if (!set)
4574                 return -EINVAL;
4575
4576         if (q->nr_requests == nr)
4577                 return 0;
4578
4579         blk_mq_freeze_queue(q);
4580         blk_mq_quiesce_queue(q);
4581
4582         ret = 0;
4583         queue_for_each_hw_ctx(q, hctx, i) {
4584                 if (!hctx->tags)
4585                         continue;
4586                 /*
4587                  * If we're using an MQ scheduler, just update the scheduler
4588                  * queue depth. This is similar to what the old code would do.
4589                  */
4590                 if (hctx->sched_tags) {
4591                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4592                                                       nr, true);
4593                 } else {
4594                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4595                                                       false);
4596                 }
4597                 if (ret)
4598                         break;
4599                 if (q->elevator && q->elevator->type->ops.depth_updated)
4600                         q->elevator->type->ops.depth_updated(hctx);
4601         }
4602         if (!ret) {
4603                 q->nr_requests = nr;
4604                 if (blk_mq_is_shared_tags(set->flags)) {
4605                         if (q->elevator)
4606                                 blk_mq_tag_update_sched_shared_tags(q);
4607                         else
4608                                 blk_mq_tag_resize_shared_tags(set, nr);
4609                 }
4610         }
4611
4612         blk_mq_unquiesce_queue(q);
4613         blk_mq_unfreeze_queue(q);
4614
4615         return ret;
4616 }
4617
4618 /*
4619  * request_queue and elevator_type pair.
4620  * It is just used by __blk_mq_update_nr_hw_queues to cache
4621  * the elevator_type associated with a request_queue.
4622  */
4623 struct blk_mq_qe_pair {
4624         struct list_head node;
4625         struct request_queue *q;
4626         struct elevator_type *type;
4627 };
4628
4629 /*
4630  * Cache the elevator_type in qe pair list and switch the
4631  * io scheduler to 'none'
4632  */
4633 static bool blk_mq_elv_switch_none(struct list_head *head,
4634                 struct request_queue *q)
4635 {
4636         struct blk_mq_qe_pair *qe;
4637
4638         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4639         if (!qe)
4640                 return false;
4641
4642         /* q->elevator needs protection from ->sysfs_lock */
4643         mutex_lock(&q->sysfs_lock);
4644
4645         /* the check has to be done with holding sysfs_lock */
4646         if (!q->elevator) {
4647                 kfree(qe);
4648                 goto unlock;
4649         }
4650
4651         INIT_LIST_HEAD(&qe->node);
4652         qe->q = q;
4653         qe->type = q->elevator->type;
4654         /* keep a reference to the elevator module as we'll switch back */
4655         __elevator_get(qe->type);
4656         list_add(&qe->node, head);
4657         elevator_disable(q);
4658 unlock:
4659         mutex_unlock(&q->sysfs_lock);
4660
4661         return true;
4662 }
4663
4664 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4665                                                 struct request_queue *q)
4666 {
4667         struct blk_mq_qe_pair *qe;
4668
4669         list_for_each_entry(qe, head, node)
4670                 if (qe->q == q)
4671                         return qe;
4672
4673         return NULL;
4674 }
4675
4676 static void blk_mq_elv_switch_back(struct list_head *head,
4677                                   struct request_queue *q)
4678 {
4679         struct blk_mq_qe_pair *qe;
4680         struct elevator_type *t;
4681
4682         qe = blk_lookup_qe_pair(head, q);
4683         if (!qe)
4684                 return;
4685         t = qe->type;
4686         list_del(&qe->node);
4687         kfree(qe);
4688
4689         mutex_lock(&q->sysfs_lock);
4690         elevator_switch(q, t);
4691         /* drop the reference acquired in blk_mq_elv_switch_none */
4692         elevator_put(t);
4693         mutex_unlock(&q->sysfs_lock);
4694 }
4695
4696 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4697                                                         int nr_hw_queues)
4698 {
4699         struct request_queue *q;
4700         LIST_HEAD(head);
4701         int prev_nr_hw_queues = set->nr_hw_queues;
4702         int i;
4703
4704         lockdep_assert_held(&set->tag_list_lock);
4705
4706         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4707                 nr_hw_queues = nr_cpu_ids;
4708         if (nr_hw_queues < 1)
4709                 return;
4710         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4711                 return;
4712
4713         list_for_each_entry(q, &set->tag_list, tag_set_list)
4714                 blk_mq_freeze_queue(q);
4715         /*
4716          * Switch IO scheduler to 'none', cleaning up the data associated
4717          * with the previous scheduler. We will switch back once we are done
4718          * updating the new sw to hw queue mappings.
4719          */
4720         list_for_each_entry(q, &set->tag_list, tag_set_list)
4721                 if (!blk_mq_elv_switch_none(&head, q))
4722                         goto switch_back;
4723
4724         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4725                 blk_mq_debugfs_unregister_hctxs(q);
4726                 blk_mq_sysfs_unregister_hctxs(q);
4727         }
4728
4729         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4730                 goto reregister;
4731
4732 fallback:
4733         blk_mq_update_queue_map(set);
4734         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4735                 blk_mq_realloc_hw_ctxs(set, q);
4736                 blk_mq_update_poll_flag(q);
4737                 if (q->nr_hw_queues != set->nr_hw_queues) {
4738                         int i = prev_nr_hw_queues;
4739
4740                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4741                                         nr_hw_queues, prev_nr_hw_queues);
4742                         for (; i < set->nr_hw_queues; i++)
4743                                 __blk_mq_free_map_and_rqs(set, i);
4744
4745                         set->nr_hw_queues = prev_nr_hw_queues;
4746                         goto fallback;
4747                 }
4748                 blk_mq_map_swqueue(q);
4749         }
4750
4751 reregister:
4752         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4753                 blk_mq_sysfs_register_hctxs(q);
4754                 blk_mq_debugfs_register_hctxs(q);
4755         }
4756
4757 switch_back:
4758         list_for_each_entry(q, &set->tag_list, tag_set_list)
4759                 blk_mq_elv_switch_back(&head, q);
4760
4761         list_for_each_entry(q, &set->tag_list, tag_set_list)
4762                 blk_mq_unfreeze_queue(q);
4763
4764         /* Free the excess tags when nr_hw_queues shrink. */
4765         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4766                 __blk_mq_free_map_and_rqs(set, i);
4767 }
4768
4769 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4770 {
4771         mutex_lock(&set->tag_list_lock);
4772         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4773         mutex_unlock(&set->tag_list_lock);
4774 }
4775 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4776
4777 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4778                          struct io_comp_batch *iob, unsigned int flags)
4779 {
4780         long state = get_current_state();
4781         int ret;
4782
4783         do {
4784                 ret = q->mq_ops->poll(hctx, iob);
4785                 if (ret > 0) {
4786                         __set_current_state(TASK_RUNNING);
4787                         return ret;
4788                 }
4789
4790                 if (signal_pending_state(state, current))
4791                         __set_current_state(TASK_RUNNING);
4792                 if (task_is_running(current))
4793                         return 1;
4794
4795                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4796                         break;
4797                 cpu_relax();
4798         } while (!need_resched());
4799
4800         __set_current_state(TASK_RUNNING);
4801         return 0;
4802 }
4803
4804 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4805                 struct io_comp_batch *iob, unsigned int flags)
4806 {
4807         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4808
4809         return blk_hctx_poll(q, hctx, iob, flags);
4810 }
4811
4812 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4813                 unsigned int poll_flags)
4814 {
4815         struct request_queue *q = rq->q;
4816         int ret;
4817
4818         if (!blk_rq_is_poll(rq))
4819                 return 0;
4820         if (!percpu_ref_tryget(&q->q_usage_counter))
4821                 return 0;
4822
4823         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4824         blk_queue_exit(q);
4825
4826         return ret;
4827 }
4828 EXPORT_SYMBOL_GPL(blk_rq_poll);
4829
4830 unsigned int blk_mq_rq_cpu(struct request *rq)
4831 {
4832         return rq->mq_ctx->cpu;
4833 }
4834 EXPORT_SYMBOL(blk_mq_rq_cpu);
4835
4836 void blk_mq_cancel_work_sync(struct request_queue *q)
4837 {
4838         struct blk_mq_hw_ctx *hctx;
4839         unsigned long i;
4840
4841         cancel_delayed_work_sync(&q->requeue_work);
4842
4843         queue_for_each_hw_ctx(q, hctx, i)
4844                 cancel_delayed_work_sync(&hctx->run_work);
4845 }
4846
4847 static int __init blk_mq_init(void)
4848 {
4849         int i;
4850
4851         for_each_possible_cpu(i)
4852                 init_llist_head(&per_cpu(blk_cpu_done, i));
4853         for_each_possible_cpu(i)
4854                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4855                          __blk_mq_complete_request_remote, NULL);
4856         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4857
4858         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4859                                   "block/softirq:dead", NULL,
4860                                   blk_softirq_cpu_dead);
4861         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4862                                 blk_mq_hctx_notify_dead);
4863         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4864                                 blk_mq_hctx_notify_online,
4865                                 blk_mq_hctx_notify_offline);
4866         return 0;
4867 }
4868 subsys_initcall(blk_mq_init);