Merge tag 'pull-write-one-page' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266         if (set->flags & BLK_MQ_F_BLOCKING)
267                 synchronize_srcu(set->srcu);
268         else
269                 synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284         blk_mq_quiesce_queue_nowait(q);
285         /* nothing to wait for non-mq queues */
286         if (queue_is_mq(q))
287                 blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300         unsigned long flags;
301         bool run_queue = false;
302
303         spin_lock_irqsave(&q->queue_lock, flags);
304         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305                 ;
306         } else if (!--q->quiesce_depth) {
307                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308                 run_queue = true;
309         }
310         spin_unlock_irqrestore(&q->queue_lock, flags);
311
312         /* dispatch requests which are inserted during quiescing */
313         if (run_queue)
314                 blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320         struct request_queue *q;
321
322         mutex_lock(&set->tag_list_lock);
323         list_for_each_entry(q, &set->tag_list, tag_set_list) {
324                 if (!blk_queue_skip_tagset_quiesce(q))
325                         blk_mq_quiesce_queue_nowait(q);
326         }
327         blk_mq_wait_quiesce_done(set);
328         mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334         struct request_queue *q;
335
336         mutex_lock(&set->tag_list_lock);
337         list_for_each_entry(q, &set->tag_list, tag_set_list) {
338                 if (!blk_queue_skip_tagset_quiesce(q))
339                         blk_mq_unquiesce_queue(q);
340         }
341         mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347         struct blk_mq_hw_ctx *hctx;
348         unsigned long i;
349
350         queue_for_each_hw_ctx(q, hctx, i)
351                 if (blk_mq_hw_queue_mapped(hctx))
352                         blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357         memset(rq, 0, sizeof(*rq));
358
359         INIT_LIST_HEAD(&rq->queuelist);
360         rq->q = q;
361         rq->__sector = (sector_t) -1;
362         INIT_HLIST_NODE(&rq->hash);
363         RB_CLEAR_NODE(&rq->rb_node);
364         rq->tag = BLK_MQ_NO_TAG;
365         rq->internal_tag = BLK_MQ_NO_TAG;
366         rq->start_time_ns = ktime_get_ns();
367         rq->part = NULL;
368         blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375         struct blk_mq_ctx *ctx = data->ctx;
376         struct blk_mq_hw_ctx *hctx = data->hctx;
377         struct request_queue *q = data->q;
378         struct request *rq = tags->static_rqs[tag];
379
380         rq->q = q;
381         rq->mq_ctx = ctx;
382         rq->mq_hctx = hctx;
383         rq->cmd_flags = data->cmd_flags;
384
385         if (data->flags & BLK_MQ_REQ_PM)
386                 data->rq_flags |= RQF_PM;
387         if (blk_queue_io_stat(q))
388                 data->rq_flags |= RQF_IO_STAT;
389         rq->rq_flags = data->rq_flags;
390
391         if (!(data->rq_flags & RQF_ELV)) {
392                 rq->tag = tag;
393                 rq->internal_tag = BLK_MQ_NO_TAG;
394         } else {
395                 rq->tag = BLK_MQ_NO_TAG;
396                 rq->internal_tag = tag;
397         }
398         rq->timeout = 0;
399
400         if (blk_mq_need_time_stamp(rq))
401                 rq->start_time_ns = ktime_get_ns();
402         else
403                 rq->start_time_ns = 0;
404         rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406         rq->alloc_time_ns = alloc_time_ns;
407 #endif
408         rq->io_start_time_ns = 0;
409         rq->stats_sectors = 0;
410         rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412         rq->nr_integrity_segments = 0;
413 #endif
414         rq->end_io = NULL;
415         rq->end_io_data = NULL;
416
417         blk_crypto_rq_set_defaults(rq);
418         INIT_LIST_HEAD(&rq->queuelist);
419         /* tag was already set */
420         WRITE_ONCE(rq->deadline, 0);
421         req_ref_set(rq, 1);
422
423         if (rq->rq_flags & RQF_ELV) {
424                 struct elevator_queue *e = data->q->elevator;
425
426                 INIT_HLIST_NODE(&rq->hash);
427                 RB_CLEAR_NODE(&rq->rb_node);
428
429                 if (!op_is_flush(data->cmd_flags) &&
430                     e->type->ops.prepare_request) {
431                         e->type->ops.prepare_request(rq);
432                         rq->rq_flags |= RQF_ELVPRIV;
433                 }
434         }
435
436         return rq;
437 }
438
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441                 u64 alloc_time_ns)
442 {
443         unsigned int tag, tag_offset;
444         struct blk_mq_tags *tags;
445         struct request *rq;
446         unsigned long tag_mask;
447         int i, nr = 0;
448
449         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450         if (unlikely(!tag_mask))
451                 return NULL;
452
453         tags = blk_mq_tags_from_data(data);
454         for (i = 0; tag_mask; i++) {
455                 if (!(tag_mask & (1UL << i)))
456                         continue;
457                 tag = tag_offset + i;
458                 prefetch(tags->static_rqs[tag]);
459                 tag_mask &= ~(1UL << i);
460                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461                 rq_list_add(data->cached_rq, rq);
462                 nr++;
463         }
464         /* caller already holds a reference, add for remainder */
465         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466         data->nr_tags -= nr;
467
468         return rq_list_pop(data->cached_rq);
469 }
470
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473         struct request_queue *q = data->q;
474         u64 alloc_time_ns = 0;
475         struct request *rq;
476         unsigned int tag;
477
478         /* alloc_time includes depth and tag waits */
479         if (blk_queue_rq_alloc_time(q))
480                 alloc_time_ns = ktime_get_ns();
481
482         if (data->cmd_flags & REQ_NOWAIT)
483                 data->flags |= BLK_MQ_REQ_NOWAIT;
484
485         if (q->elevator) {
486                 struct elevator_queue *e = q->elevator;
487
488                 data->rq_flags |= RQF_ELV;
489
490                 /*
491                  * Flush/passthrough requests are special and go directly to the
492                  * dispatch list. Don't include reserved tags in the
493                  * limiting, as it isn't useful.
494                  */
495                 if (!op_is_flush(data->cmd_flags) &&
496                     !blk_op_is_passthrough(data->cmd_flags) &&
497                     e->type->ops.limit_depth &&
498                     !(data->flags & BLK_MQ_REQ_RESERVED))
499                         e->type->ops.limit_depth(data->cmd_flags, data);
500         }
501
502 retry:
503         data->ctx = blk_mq_get_ctx(q);
504         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505         if (!(data->rq_flags & RQF_ELV))
506                 blk_mq_tag_busy(data->hctx);
507
508         if (data->flags & BLK_MQ_REQ_RESERVED)
509                 data->rq_flags |= RQF_RESV;
510
511         /*
512          * Try batched alloc if we want more than 1 tag.
513          */
514         if (data->nr_tags > 1) {
515                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516                 if (rq)
517                         return rq;
518                 data->nr_tags = 1;
519         }
520
521         /*
522          * Waiting allocations only fail because of an inactive hctx.  In that
523          * case just retry the hctx assignment and tag allocation as CPU hotplug
524          * should have migrated us to an online CPU by now.
525          */
526         tag = blk_mq_get_tag(data);
527         if (tag == BLK_MQ_NO_TAG) {
528                 if (data->flags & BLK_MQ_REQ_NOWAIT)
529                         return NULL;
530                 /*
531                  * Give up the CPU and sleep for a random short time to
532                  * ensure that thread using a realtime scheduling class
533                  * are migrated off the CPU, and thus off the hctx that
534                  * is going away.
535                  */
536                 msleep(3);
537                 goto retry;
538         }
539
540         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541                                         alloc_time_ns);
542 }
543
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545                                             struct blk_plug *plug,
546                                             blk_opf_t opf,
547                                             blk_mq_req_flags_t flags)
548 {
549         struct blk_mq_alloc_data data = {
550                 .q              = q,
551                 .flags          = flags,
552                 .cmd_flags      = opf,
553                 .nr_tags        = plug->nr_ios,
554                 .cached_rq      = &plug->cached_rq,
555         };
556         struct request *rq;
557
558         if (blk_queue_enter(q, flags))
559                 return NULL;
560
561         plug->nr_ios = 1;
562
563         rq = __blk_mq_alloc_requests(&data);
564         if (unlikely(!rq))
565                 blk_queue_exit(q);
566         return rq;
567 }
568
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570                                                    blk_opf_t opf,
571                                                    blk_mq_req_flags_t flags)
572 {
573         struct blk_plug *plug = current->plug;
574         struct request *rq;
575
576         if (!plug)
577                 return NULL;
578
579         if (rq_list_empty(plug->cached_rq)) {
580                 if (plug->nr_ios == 1)
581                         return NULL;
582                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583                 if (!rq)
584                         return NULL;
585         } else {
586                 rq = rq_list_peek(&plug->cached_rq);
587                 if (!rq || rq->q != q)
588                         return NULL;
589
590                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591                         return NULL;
592                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593                         return NULL;
594
595                 plug->cached_rq = rq_list_next(rq);
596         }
597
598         rq->cmd_flags = opf;
599         INIT_LIST_HEAD(&rq->queuelist);
600         return rq;
601 }
602
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604                 blk_mq_req_flags_t flags)
605 {
606         struct request *rq;
607
608         rq = blk_mq_alloc_cached_request(q, opf, flags);
609         if (!rq) {
610                 struct blk_mq_alloc_data data = {
611                         .q              = q,
612                         .flags          = flags,
613                         .cmd_flags      = opf,
614                         .nr_tags        = 1,
615                 };
616                 int ret;
617
618                 ret = blk_queue_enter(q, flags);
619                 if (ret)
620                         return ERR_PTR(ret);
621
622                 rq = __blk_mq_alloc_requests(&data);
623                 if (!rq)
624                         goto out_queue_exit;
625         }
626         rq->__data_len = 0;
627         rq->__sector = (sector_t) -1;
628         rq->bio = rq->biotail = NULL;
629         return rq;
630 out_queue_exit:
631         blk_queue_exit(q);
632         return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639         struct blk_mq_alloc_data data = {
640                 .q              = q,
641                 .flags          = flags,
642                 .cmd_flags      = opf,
643                 .nr_tags        = 1,
644         };
645         u64 alloc_time_ns = 0;
646         struct request *rq;
647         unsigned int cpu;
648         unsigned int tag;
649         int ret;
650
651         /* alloc_time includes depth and tag waits */
652         if (blk_queue_rq_alloc_time(q))
653                 alloc_time_ns = ktime_get_ns();
654
655         /*
656          * If the tag allocator sleeps we could get an allocation for a
657          * different hardware context.  No need to complicate the low level
658          * allocator for this for the rare use case of a command tied to
659          * a specific queue.
660          */
661         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663                 return ERR_PTR(-EINVAL);
664
665         if (hctx_idx >= q->nr_hw_queues)
666                 return ERR_PTR(-EIO);
667
668         ret = blk_queue_enter(q, flags);
669         if (ret)
670                 return ERR_PTR(ret);
671
672         /*
673          * Check if the hardware context is actually mapped to anything.
674          * If not tell the caller that it should skip this queue.
675          */
676         ret = -EXDEV;
677         data.hctx = xa_load(&q->hctx_table, hctx_idx);
678         if (!blk_mq_hw_queue_mapped(data.hctx))
679                 goto out_queue_exit;
680         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681         if (cpu >= nr_cpu_ids)
682                 goto out_queue_exit;
683         data.ctx = __blk_mq_get_ctx(q, cpu);
684
685         if (!q->elevator)
686                 blk_mq_tag_busy(data.hctx);
687         else
688                 data.rq_flags |= RQF_ELV;
689
690         if (flags & BLK_MQ_REQ_RESERVED)
691                 data.rq_flags |= RQF_RESV;
692
693         ret = -EWOULDBLOCK;
694         tag = blk_mq_get_tag(&data);
695         if (tag == BLK_MQ_NO_TAG)
696                 goto out_queue_exit;
697         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698                                         alloc_time_ns);
699         rq->__data_len = 0;
700         rq->__sector = (sector_t) -1;
701         rq->bio = rq->biotail = NULL;
702         return rq;
703
704 out_queue_exit:
705         blk_queue_exit(q);
706         return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709
710 static void __blk_mq_free_request(struct request *rq)
711 {
712         struct request_queue *q = rq->q;
713         struct blk_mq_ctx *ctx = rq->mq_ctx;
714         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715         const int sched_tag = rq->internal_tag;
716
717         blk_crypto_free_request(rq);
718         blk_pm_mark_last_busy(rq);
719         rq->mq_hctx = NULL;
720         if (rq->tag != BLK_MQ_NO_TAG)
721                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722         if (sched_tag != BLK_MQ_NO_TAG)
723                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724         blk_mq_sched_restart(hctx);
725         blk_queue_exit(q);
726 }
727
728 void blk_mq_free_request(struct request *rq)
729 {
730         struct request_queue *q = rq->q;
731         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732
733         if ((rq->rq_flags & RQF_ELVPRIV) &&
734             q->elevator->type->ops.finish_request)
735                 q->elevator->type->ops.finish_request(rq);
736
737         if (rq->rq_flags & RQF_MQ_INFLIGHT)
738                 __blk_mq_dec_active_requests(hctx);
739
740         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741                 laptop_io_completion(q->disk->bdi);
742
743         rq_qos_done(q, rq);
744
745         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746         if (req_ref_put_and_test(rq))
747                 __blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753         struct request *rq;
754
755         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756                 blk_mq_free_request(rq);
757 }
758
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762                 rq->q->disk ? rq->q->disk->disk_name : "?",
763                 (__force unsigned long long) rq->cmd_flags);
764
765         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766                (unsigned long long)blk_rq_pos(rq),
767                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769                rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774                           unsigned int nbytes, blk_status_t error)
775 {
776         if (unlikely(error)) {
777                 bio->bi_status = error;
778         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779                 /*
780                  * Partial zone append completions cannot be supported as the
781                  * BIO fragments may end up not being written sequentially.
782                  */
783                 if (bio->bi_iter.bi_size != nbytes)
784                         bio->bi_status = BLK_STS_IOERR;
785                 else
786                         bio->bi_iter.bi_sector = rq->__sector;
787         }
788
789         bio_advance(bio, nbytes);
790
791         if (unlikely(rq->rq_flags & RQF_QUIET))
792                 bio_set_flag(bio, BIO_QUIET);
793         /* don't actually finish bio if it's part of flush sequence */
794         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795                 bio_endio(bio);
796 }
797
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800         if (req->part && blk_do_io_stat(req)) {
801                 const int sgrp = op_stat_group(req_op(req));
802
803                 part_stat_lock();
804                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805                 part_stat_unlock();
806         }
807 }
808
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811         printk_ratelimited(KERN_ERR
812                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813                 "phys_seg %u prio class %u\n",
814                 blk_status_to_str(status),
815                 req->q->disk ? req->q->disk->disk_name : "?",
816                 blk_rq_pos(req), (__force u32)req_op(req),
817                 blk_op_str(req_op(req)),
818                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819                 req->nr_phys_segments,
820                 IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830         int total_bytes = blk_rq_bytes(req);
831         struct bio *bio = req->bio;
832
833         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834
835         if (!bio)
836                 return;
837
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840                 req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842
843         blk_account_io_completion(req, total_bytes);
844
845         do {
846                 struct bio *next = bio->bi_next;
847
848                 /* Completion has already been traced */
849                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850
851                 if (req_op(req) == REQ_OP_ZONE_APPEND)
852                         bio->bi_iter.bi_sector = req->__sector;
853
854                 if (!is_flush)
855                         bio_endio(bio);
856                 bio = next;
857         } while (bio);
858
859         /*
860          * Reset counters so that the request stacking driver
861          * can find how many bytes remain in the request
862          * later.
863          */
864         if (!req->end_io) {
865                 req->bio = NULL;
866                 req->__data_len = 0;
867         }
868 }
869
870 /**
871  * blk_update_request - Complete multiple bytes without completing the request
872  * @req:      the request being processed
873  * @error:    block status code
874  * @nr_bytes: number of bytes to complete for @req
875  *
876  * Description:
877  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
878  *     the request structure even if @req doesn't have leftover.
879  *     If @req has leftover, sets it up for the next range of segments.
880  *
881  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882  *     %false return from this function.
883  *
884  * Note:
885  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886  *      except in the consistency check at the end of this function.
887  *
888  * Return:
889  *     %false - this request doesn't have any more data
890  *     %true  - this request has more data
891  **/
892 bool blk_update_request(struct request *req, blk_status_t error,
893                 unsigned int nr_bytes)
894 {
895         int total_bytes;
896
897         trace_block_rq_complete(req, error, nr_bytes);
898
899         if (!req->bio)
900                 return false;
901
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904             error == BLK_STS_OK)
905                 req->q->integrity.profile->complete_fn(req, nr_bytes);
906 #endif
907
908         if (unlikely(error && !blk_rq_is_passthrough(req) &&
909                      !(req->rq_flags & RQF_QUIET)) &&
910                      !test_bit(GD_DEAD, &req->q->disk->state)) {
911                 blk_print_req_error(req, error);
912                 trace_block_rq_error(req, error, nr_bytes);
913         }
914
915         blk_account_io_completion(req, nr_bytes);
916
917         total_bytes = 0;
918         while (req->bio) {
919                 struct bio *bio = req->bio;
920                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921
922                 if (bio_bytes == bio->bi_iter.bi_size)
923                         req->bio = bio->bi_next;
924
925                 /* Completion has already been traced */
926                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927                 req_bio_endio(req, bio, bio_bytes, error);
928
929                 total_bytes += bio_bytes;
930                 nr_bytes -= bio_bytes;
931
932                 if (!nr_bytes)
933                         break;
934         }
935
936         /*
937          * completely done
938          */
939         if (!req->bio) {
940                 /*
941                  * Reset counters so that the request stacking driver
942                  * can find how many bytes remain in the request
943                  * later.
944                  */
945                 req->__data_len = 0;
946                 return false;
947         }
948
949         req->__data_len -= total_bytes;
950
951         /* update sector only for requests with clear definition of sector */
952         if (!blk_rq_is_passthrough(req))
953                 req->__sector += total_bytes >> 9;
954
955         /* mixed attributes always follow the first bio */
956         if (req->rq_flags & RQF_MIXED_MERGE) {
957                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
958                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959         }
960
961         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962                 /*
963                  * If total number of sectors is less than the first segment
964                  * size, something has gone terribly wrong.
965                  */
966                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967                         blk_dump_rq_flags(req, "request botched");
968                         req->__data_len = blk_rq_cur_bytes(req);
969                 }
970
971                 /* recalculate the number of segments */
972                 req->nr_phys_segments = blk_recalc_rq_segments(req);
973         }
974
975         return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978
979 static void __blk_account_io_done(struct request *req, u64 now)
980 {
981         const int sgrp = op_stat_group(req_op(req));
982
983         part_stat_lock();
984         update_io_ticks(req->part, jiffies, true);
985         part_stat_inc(req->part, ios[sgrp]);
986         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
987         part_stat_unlock();
988 }
989
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992         /*
993          * Account IO completion.  flush_rq isn't accounted as a
994          * normal IO on queueing nor completion.  Accounting the
995          * containing request is enough.
996          */
997         if (blk_do_io_stat(req) && req->part &&
998             !(req->rq_flags & RQF_FLUSH_SEQ))
999                 __blk_account_io_done(req, now);
1000 }
1001
1002 static void __blk_account_io_start(struct request *rq)
1003 {
1004         /*
1005          * All non-passthrough requests are created from a bio with one
1006          * exception: when a flush command that is part of a flush sequence
1007          * generated by the state machine in blk-flush.c is cloned onto the
1008          * lower device by dm-multipath we can get here without a bio.
1009          */
1010         if (rq->bio)
1011                 rq->part = rq->bio->bi_bdev;
1012         else
1013                 rq->part = rq->q->disk->part0;
1014
1015         part_stat_lock();
1016         update_io_ticks(rq->part, jiffies, false);
1017         part_stat_unlock();
1018 }
1019
1020 static inline void blk_account_io_start(struct request *req)
1021 {
1022         if (blk_do_io_stat(req))
1023                 __blk_account_io_start(req);
1024 }
1025
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028         if (rq->rq_flags & RQF_STATS) {
1029                 blk_mq_poll_stats_start(rq->q);
1030                 blk_stat_add(rq, now);
1031         }
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         if (rq->end_io) {
1043                 rq_qos_done(rq->q, rq);
1044                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045                         blk_mq_free_request(rq);
1046         } else {
1047                 blk_mq_free_request(rq);
1048         }
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055                 BUG();
1056         __blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059
1060 #define TAG_COMP_BATCH          32
1061
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063                                           int *tag_array, int nr_tags)
1064 {
1065         struct request_queue *q = hctx->queue;
1066
1067         /*
1068          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069          * update hctx->nr_active in batch
1070          */
1071         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072                 __blk_mq_sub_active_requests(hctx, nr_tags);
1073
1074         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080         int tags[TAG_COMP_BATCH], nr_tags = 0;
1081         struct blk_mq_hw_ctx *cur_hctx = NULL;
1082         struct request *rq;
1083         u64 now = 0;
1084
1085         if (iob->need_ts)
1086                 now = ktime_get_ns();
1087
1088         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089                 prefetch(rq->bio);
1090                 prefetch(rq->rq_next);
1091
1092                 blk_complete_request(rq);
1093                 if (iob->need_ts)
1094                         __blk_mq_end_request_acct(rq, now);
1095
1096                 rq_qos_done(rq->q, rq);
1097
1098                 /*
1099                  * If end_io handler returns NONE, then it still has
1100                  * ownership of the request.
1101                  */
1102                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103                         continue;
1104
1105                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106                 if (!req_ref_put_and_test(rq))
1107                         continue;
1108
1109                 blk_crypto_free_request(rq);
1110                 blk_pm_mark_last_busy(rq);
1111
1112                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113                         if (cur_hctx)
1114                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115                         nr_tags = 0;
1116                         cur_hctx = rq->mq_hctx;
1117                 }
1118                 tags[nr_tags++] = rq->tag;
1119         }
1120
1121         if (nr_tags)
1122                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129         struct request *rq, *next;
1130
1131         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132                 rq->q->mq_ops->complete(rq);
1133 }
1134
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143         return 0;
1144 }
1145
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153         int cpu = raw_smp_processor_id();
1154
1155         if (!IS_ENABLED(CONFIG_SMP) ||
1156             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157                 return false;
1158         /*
1159          * With force threaded interrupts enabled, raising softirq from an SMP
1160          * function call will always result in waking the ksoftirqd thread.
1161          * This is probably worse than completing the request on a different
1162          * cache domain.
1163          */
1164         if (force_irqthreads())
1165                 return false;
1166
1167         /* same CPU or cache domain?  Complete locally */
1168         if (cpu == rq->mq_ctx->cpu ||
1169             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1171                 return false;
1172
1173         /* don't try to IPI to an offline CPU */
1174         return cpu_online(rq->mq_ctx->cpu);
1175 }
1176
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1178 {
1179         struct llist_head *list;
1180         unsigned int cpu;
1181
1182         cpu = rq->mq_ctx->cpu;
1183         list = &per_cpu(blk_cpu_done, cpu);
1184         if (llist_add(&rq->ipi_list, list)) {
1185                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186                 smp_call_function_single_async(cpu, &rq->csd);
1187         }
1188 }
1189
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192         struct llist_head *list;
1193
1194         preempt_disable();
1195         list = this_cpu_ptr(&blk_cpu_done);
1196         if (llist_add(&rq->ipi_list, list))
1197                 raise_softirq(BLOCK_SOFTIRQ);
1198         preempt_enable();
1199 }
1200
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205         /*
1206          * For request which hctx has only one ctx mapping,
1207          * or a polled request, always complete locally,
1208          * it's pointless to redirect the completion.
1209          */
1210         if (rq->mq_hctx->nr_ctx == 1 ||
1211                 rq->cmd_flags & REQ_POLLED)
1212                 return false;
1213
1214         if (blk_mq_complete_need_ipi(rq)) {
1215                 blk_mq_complete_send_ipi(rq);
1216                 return true;
1217         }
1218
1219         if (rq->q->nr_hw_queues == 1) {
1220                 blk_mq_raise_softirq(rq);
1221                 return true;
1222         }
1223         return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:         the request being processed
1230  *
1231  * Description:
1232  *      Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236         if (!blk_mq_complete_request_remote(rq))
1237                 rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251         struct request_queue *q = rq->q;
1252
1253         trace_block_rq_issue(rq);
1254
1255         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256                 rq->io_start_time_ns = ktime_get_ns();
1257                 rq->stats_sectors = blk_rq_sectors(rq);
1258                 rq->rq_flags |= RQF_STATS;
1259                 rq_qos_issue(q, rq);
1260         }
1261
1262         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263
1264         blk_add_timer(rq);
1265         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269                 q->integrity.profile->prepare_fn(rq);
1270 #endif
1271         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283         if (plug->multiple_queues)
1284                 return BLK_MAX_REQUEST_COUNT * 2;
1285         return BLK_MAX_REQUEST_COUNT;
1286 }
1287
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290         struct request *last = rq_list_peek(&plug->mq_list);
1291
1292         if (!plug->rq_count) {
1293                 trace_block_plug(rq->q);
1294         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295                    (!blk_queue_nomerges(rq->q) &&
1296                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297                 blk_mq_flush_plug_list(plug, false);
1298                 last = NULL;
1299                 trace_block_plug(rq->q);
1300         }
1301
1302         if (!plug->multiple_queues && last && last->q != rq->q)
1303                 plug->multiple_queues = true;
1304         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305                 plug->has_elevator = true;
1306         rq->rq_next = NULL;
1307         rq_list_add(&plug->mq_list, rq);
1308         plug->rq_count++;
1309 }
1310
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:         request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325         WARN_ON(irqs_disabled());
1326         WARN_ON(!blk_rq_is_passthrough(rq));
1327
1328         blk_account_io_start(rq);
1329
1330         /*
1331          * As plugging can be enabled for passthrough requests on a zoned
1332          * device, directly accessing the plug instead of using blk_mq_plug()
1333          * should not have any consequences.
1334          */
1335         if (current->plug)
1336                 blk_add_rq_to_plug(current->plug, rq);
1337         else
1338                 blk_mq_sched_insert_request(rq, at_head, true, false);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341
1342 struct blk_rq_wait {
1343         struct completion done;
1344         blk_status_t ret;
1345 };
1346
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 {
1349         struct blk_rq_wait *wait = rq->end_io_data;
1350
1351         wait->ret = ret;
1352         complete(&wait->done);
1353         return RQ_END_IO_NONE;
1354 }
1355
1356 bool blk_rq_is_poll(struct request *rq)
1357 {
1358         if (!rq->mq_hctx)
1359                 return false;
1360         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361                 return false;
1362         return true;
1363 }
1364 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1365
1366 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1367 {
1368         do {
1369                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1370                 cond_resched();
1371         } while (!completion_done(wait));
1372 }
1373
1374 /**
1375  * blk_execute_rq - insert a request into queue for execution
1376  * @rq:         request to insert
1377  * @at_head:    insert request at head or tail of queue
1378  *
1379  * Description:
1380  *    Insert a fully prepared request at the back of the I/O scheduler queue
1381  *    for execution and wait for completion.
1382  * Return: The blk_status_t result provided to blk_mq_end_request().
1383  */
1384 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1385 {
1386         struct blk_rq_wait wait = {
1387                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1388         };
1389
1390         WARN_ON(irqs_disabled());
1391         WARN_ON(!blk_rq_is_passthrough(rq));
1392
1393         rq->end_io_data = &wait;
1394         rq->end_io = blk_end_sync_rq;
1395
1396         blk_account_io_start(rq);
1397         blk_mq_sched_insert_request(rq, at_head, true, false);
1398
1399         if (blk_rq_is_poll(rq)) {
1400                 blk_rq_poll_completion(rq, &wait.done);
1401         } else {
1402                 /*
1403                  * Prevent hang_check timer from firing at us during very long
1404                  * I/O
1405                  */
1406                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1407
1408                 if (hang_check)
1409                         while (!wait_for_completion_io_timeout(&wait.done,
1410                                         hang_check * (HZ/2)))
1411                                 ;
1412                 else
1413                         wait_for_completion_io(&wait.done);
1414         }
1415
1416         return wait.ret;
1417 }
1418 EXPORT_SYMBOL(blk_execute_rq);
1419
1420 static void __blk_mq_requeue_request(struct request *rq)
1421 {
1422         struct request_queue *q = rq->q;
1423
1424         blk_mq_put_driver_tag(rq);
1425
1426         trace_block_rq_requeue(rq);
1427         rq_qos_requeue(q, rq);
1428
1429         if (blk_mq_request_started(rq)) {
1430                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1431                 rq->rq_flags &= ~RQF_TIMED_OUT;
1432         }
1433 }
1434
1435 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1436 {
1437         __blk_mq_requeue_request(rq);
1438
1439         /* this request will be re-inserted to io scheduler queue */
1440         blk_mq_sched_requeue_request(rq);
1441
1442         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1443 }
1444 EXPORT_SYMBOL(blk_mq_requeue_request);
1445
1446 static void blk_mq_requeue_work(struct work_struct *work)
1447 {
1448         struct request_queue *q =
1449                 container_of(work, struct request_queue, requeue_work.work);
1450         LIST_HEAD(rq_list);
1451         struct request *rq, *next;
1452
1453         spin_lock_irq(&q->requeue_lock);
1454         list_splice_init(&q->requeue_list, &rq_list);
1455         spin_unlock_irq(&q->requeue_lock);
1456
1457         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1458                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1459                         continue;
1460
1461                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1462                 list_del_init(&rq->queuelist);
1463                 /*
1464                  * If RQF_DONTPREP, rq has contained some driver specific
1465                  * data, so insert it to hctx dispatch list to avoid any
1466                  * merge.
1467                  */
1468                 if (rq->rq_flags & RQF_DONTPREP)
1469                         blk_mq_request_bypass_insert(rq, false, false);
1470                 else
1471                         blk_mq_sched_insert_request(rq, true, false, false);
1472         }
1473
1474         while (!list_empty(&rq_list)) {
1475                 rq = list_entry(rq_list.next, struct request, queuelist);
1476                 list_del_init(&rq->queuelist);
1477                 blk_mq_sched_insert_request(rq, false, false, false);
1478         }
1479
1480         blk_mq_run_hw_queues(q, false);
1481 }
1482
1483 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1484                                 bool kick_requeue_list)
1485 {
1486         struct request_queue *q = rq->q;
1487         unsigned long flags;
1488
1489         /*
1490          * We abuse this flag that is otherwise used by the I/O scheduler to
1491          * request head insertion from the workqueue.
1492          */
1493         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1494
1495         spin_lock_irqsave(&q->requeue_lock, flags);
1496         if (at_head) {
1497                 rq->rq_flags |= RQF_SOFTBARRIER;
1498                 list_add(&rq->queuelist, &q->requeue_list);
1499         } else {
1500                 list_add_tail(&rq->queuelist, &q->requeue_list);
1501         }
1502         spin_unlock_irqrestore(&q->requeue_lock, flags);
1503
1504         if (kick_requeue_list)
1505                 blk_mq_kick_requeue_list(q);
1506 }
1507
1508 void blk_mq_kick_requeue_list(struct request_queue *q)
1509 {
1510         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1511 }
1512 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1513
1514 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1515                                     unsigned long msecs)
1516 {
1517         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1518                                     msecs_to_jiffies(msecs));
1519 }
1520 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1521
1522 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1523 {
1524         /*
1525          * If we find a request that isn't idle we know the queue is busy
1526          * as it's checked in the iter.
1527          * Return false to stop the iteration.
1528          */
1529         if (blk_mq_request_started(rq)) {
1530                 bool *busy = priv;
1531
1532                 *busy = true;
1533                 return false;
1534         }
1535
1536         return true;
1537 }
1538
1539 bool blk_mq_queue_inflight(struct request_queue *q)
1540 {
1541         bool busy = false;
1542
1543         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1544         return busy;
1545 }
1546 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1547
1548 static void blk_mq_rq_timed_out(struct request *req)
1549 {
1550         req->rq_flags |= RQF_TIMED_OUT;
1551         if (req->q->mq_ops->timeout) {
1552                 enum blk_eh_timer_return ret;
1553
1554                 ret = req->q->mq_ops->timeout(req);
1555                 if (ret == BLK_EH_DONE)
1556                         return;
1557                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1558         }
1559
1560         blk_add_timer(req);
1561 }
1562
1563 struct blk_expired_data {
1564         bool has_timedout_rq;
1565         unsigned long next;
1566         unsigned long timeout_start;
1567 };
1568
1569 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1570 {
1571         unsigned long deadline;
1572
1573         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1574                 return false;
1575         if (rq->rq_flags & RQF_TIMED_OUT)
1576                 return false;
1577
1578         deadline = READ_ONCE(rq->deadline);
1579         if (time_after_eq(expired->timeout_start, deadline))
1580                 return true;
1581
1582         if (expired->next == 0)
1583                 expired->next = deadline;
1584         else if (time_after(expired->next, deadline))
1585                 expired->next = deadline;
1586         return false;
1587 }
1588
1589 void blk_mq_put_rq_ref(struct request *rq)
1590 {
1591         if (is_flush_rq(rq)) {
1592                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1593                         blk_mq_free_request(rq);
1594         } else if (req_ref_put_and_test(rq)) {
1595                 __blk_mq_free_request(rq);
1596         }
1597 }
1598
1599 static bool blk_mq_check_expired(struct request *rq, void *priv)
1600 {
1601         struct blk_expired_data *expired = priv;
1602
1603         /*
1604          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1605          * be reallocated underneath the timeout handler's processing, then
1606          * the expire check is reliable. If the request is not expired, then
1607          * it was completed and reallocated as a new request after returning
1608          * from blk_mq_check_expired().
1609          */
1610         if (blk_mq_req_expired(rq, expired)) {
1611                 expired->has_timedout_rq = true;
1612                 return false;
1613         }
1614         return true;
1615 }
1616
1617 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1618 {
1619         struct blk_expired_data *expired = priv;
1620
1621         if (blk_mq_req_expired(rq, expired))
1622                 blk_mq_rq_timed_out(rq);
1623         return true;
1624 }
1625
1626 static void blk_mq_timeout_work(struct work_struct *work)
1627 {
1628         struct request_queue *q =
1629                 container_of(work, struct request_queue, timeout_work);
1630         struct blk_expired_data expired = {
1631                 .timeout_start = jiffies,
1632         };
1633         struct blk_mq_hw_ctx *hctx;
1634         unsigned long i;
1635
1636         /* A deadlock might occur if a request is stuck requiring a
1637          * timeout at the same time a queue freeze is waiting
1638          * completion, since the timeout code would not be able to
1639          * acquire the queue reference here.
1640          *
1641          * That's why we don't use blk_queue_enter here; instead, we use
1642          * percpu_ref_tryget directly, because we need to be able to
1643          * obtain a reference even in the short window between the queue
1644          * starting to freeze, by dropping the first reference in
1645          * blk_freeze_queue_start, and the moment the last request is
1646          * consumed, marked by the instant q_usage_counter reaches
1647          * zero.
1648          */
1649         if (!percpu_ref_tryget(&q->q_usage_counter))
1650                 return;
1651
1652         /* check if there is any timed-out request */
1653         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1654         if (expired.has_timedout_rq) {
1655                 /*
1656                  * Before walking tags, we must ensure any submit started
1657                  * before the current time has finished. Since the submit
1658                  * uses srcu or rcu, wait for a synchronization point to
1659                  * ensure all running submits have finished
1660                  */
1661                 blk_mq_wait_quiesce_done(q->tag_set);
1662
1663                 expired.next = 0;
1664                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1665         }
1666
1667         if (expired.next != 0) {
1668                 mod_timer(&q->timeout, expired.next);
1669         } else {
1670                 /*
1671                  * Request timeouts are handled as a forward rolling timer. If
1672                  * we end up here it means that no requests are pending and
1673                  * also that no request has been pending for a while. Mark
1674                  * each hctx as idle.
1675                  */
1676                 queue_for_each_hw_ctx(q, hctx, i) {
1677                         /* the hctx may be unmapped, so check it here */
1678                         if (blk_mq_hw_queue_mapped(hctx))
1679                                 blk_mq_tag_idle(hctx);
1680                 }
1681         }
1682         blk_queue_exit(q);
1683 }
1684
1685 struct flush_busy_ctx_data {
1686         struct blk_mq_hw_ctx *hctx;
1687         struct list_head *list;
1688 };
1689
1690 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1691 {
1692         struct flush_busy_ctx_data *flush_data = data;
1693         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1694         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1695         enum hctx_type type = hctx->type;
1696
1697         spin_lock(&ctx->lock);
1698         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1699         sbitmap_clear_bit(sb, bitnr);
1700         spin_unlock(&ctx->lock);
1701         return true;
1702 }
1703
1704 /*
1705  * Process software queues that have been marked busy, splicing them
1706  * to the for-dispatch
1707  */
1708 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1709 {
1710         struct flush_busy_ctx_data data = {
1711                 .hctx = hctx,
1712                 .list = list,
1713         };
1714
1715         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1716 }
1717 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1718
1719 struct dispatch_rq_data {
1720         struct blk_mq_hw_ctx *hctx;
1721         struct request *rq;
1722 };
1723
1724 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1725                 void *data)
1726 {
1727         struct dispatch_rq_data *dispatch_data = data;
1728         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1729         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1730         enum hctx_type type = hctx->type;
1731
1732         spin_lock(&ctx->lock);
1733         if (!list_empty(&ctx->rq_lists[type])) {
1734                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1735                 list_del_init(&dispatch_data->rq->queuelist);
1736                 if (list_empty(&ctx->rq_lists[type]))
1737                         sbitmap_clear_bit(sb, bitnr);
1738         }
1739         spin_unlock(&ctx->lock);
1740
1741         return !dispatch_data->rq;
1742 }
1743
1744 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1745                                         struct blk_mq_ctx *start)
1746 {
1747         unsigned off = start ? start->index_hw[hctx->type] : 0;
1748         struct dispatch_rq_data data = {
1749                 .hctx = hctx,
1750                 .rq   = NULL,
1751         };
1752
1753         __sbitmap_for_each_set(&hctx->ctx_map, off,
1754                                dispatch_rq_from_ctx, &data);
1755
1756         return data.rq;
1757 }
1758
1759 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1760 {
1761         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1762         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1763         int tag;
1764
1765         blk_mq_tag_busy(rq->mq_hctx);
1766
1767         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1768                 bt = &rq->mq_hctx->tags->breserved_tags;
1769                 tag_offset = 0;
1770         } else {
1771                 if (!hctx_may_queue(rq->mq_hctx, bt))
1772                         return false;
1773         }
1774
1775         tag = __sbitmap_queue_get(bt);
1776         if (tag == BLK_MQ_NO_TAG)
1777                 return false;
1778
1779         rq->tag = tag + tag_offset;
1780         return true;
1781 }
1782
1783 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1784 {
1785         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1786                 return false;
1787
1788         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1789                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1790                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1791                 __blk_mq_inc_active_requests(hctx);
1792         }
1793         hctx->tags->rqs[rq->tag] = rq;
1794         return true;
1795 }
1796
1797 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1798                                 int flags, void *key)
1799 {
1800         struct blk_mq_hw_ctx *hctx;
1801
1802         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1803
1804         spin_lock(&hctx->dispatch_wait_lock);
1805         if (!list_empty(&wait->entry)) {
1806                 struct sbitmap_queue *sbq;
1807
1808                 list_del_init(&wait->entry);
1809                 sbq = &hctx->tags->bitmap_tags;
1810                 atomic_dec(&sbq->ws_active);
1811         }
1812         spin_unlock(&hctx->dispatch_wait_lock);
1813
1814         blk_mq_run_hw_queue(hctx, true);
1815         return 1;
1816 }
1817
1818 /*
1819  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1820  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1821  * restart. For both cases, take care to check the condition again after
1822  * marking us as waiting.
1823  */
1824 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1825                                  struct request *rq)
1826 {
1827         struct sbitmap_queue *sbq;
1828         struct wait_queue_head *wq;
1829         wait_queue_entry_t *wait;
1830         bool ret;
1831
1832         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1833             !(blk_mq_is_shared_tags(hctx->flags))) {
1834                 blk_mq_sched_mark_restart_hctx(hctx);
1835
1836                 /*
1837                  * It's possible that a tag was freed in the window between the
1838                  * allocation failure and adding the hardware queue to the wait
1839                  * queue.
1840                  *
1841                  * Don't clear RESTART here, someone else could have set it.
1842                  * At most this will cost an extra queue run.
1843                  */
1844                 return blk_mq_get_driver_tag(rq);
1845         }
1846
1847         wait = &hctx->dispatch_wait;
1848         if (!list_empty_careful(&wait->entry))
1849                 return false;
1850
1851         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1852                 sbq = &hctx->tags->breserved_tags;
1853         else
1854                 sbq = &hctx->tags->bitmap_tags;
1855         wq = &bt_wait_ptr(sbq, hctx)->wait;
1856
1857         spin_lock_irq(&wq->lock);
1858         spin_lock(&hctx->dispatch_wait_lock);
1859         if (!list_empty(&wait->entry)) {
1860                 spin_unlock(&hctx->dispatch_wait_lock);
1861                 spin_unlock_irq(&wq->lock);
1862                 return false;
1863         }
1864
1865         atomic_inc(&sbq->ws_active);
1866         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1867         __add_wait_queue(wq, wait);
1868
1869         /*
1870          * It's possible that a tag was freed in the window between the
1871          * allocation failure and adding the hardware queue to the wait
1872          * queue.
1873          */
1874         ret = blk_mq_get_driver_tag(rq);
1875         if (!ret) {
1876                 spin_unlock(&hctx->dispatch_wait_lock);
1877                 spin_unlock_irq(&wq->lock);
1878                 return false;
1879         }
1880
1881         /*
1882          * We got a tag, remove ourselves from the wait queue to ensure
1883          * someone else gets the wakeup.
1884          */
1885         list_del_init(&wait->entry);
1886         atomic_dec(&sbq->ws_active);
1887         spin_unlock(&hctx->dispatch_wait_lock);
1888         spin_unlock_irq(&wq->lock);
1889
1890         return true;
1891 }
1892
1893 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1895 /*
1896  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1897  * - EWMA is one simple way to compute running average value
1898  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1899  * - take 4 as factor for avoiding to get too small(0) result, and this
1900  *   factor doesn't matter because EWMA decreases exponentially
1901  */
1902 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1903 {
1904         unsigned int ewma;
1905
1906         ewma = hctx->dispatch_busy;
1907
1908         if (!ewma && !busy)
1909                 return;
1910
1911         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1912         if (busy)
1913                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1914         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1915
1916         hctx->dispatch_busy = ewma;
1917 }
1918
1919 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1920
1921 static void blk_mq_handle_dev_resource(struct request *rq,
1922                                        struct list_head *list)
1923 {
1924         list_add(&rq->queuelist, list);
1925         __blk_mq_requeue_request(rq);
1926 }
1927
1928 static void blk_mq_handle_zone_resource(struct request *rq,
1929                                         struct list_head *zone_list)
1930 {
1931         /*
1932          * If we end up here it is because we cannot dispatch a request to a
1933          * specific zone due to LLD level zone-write locking or other zone
1934          * related resource not being available. In this case, set the request
1935          * aside in zone_list for retrying it later.
1936          */
1937         list_add(&rq->queuelist, zone_list);
1938         __blk_mq_requeue_request(rq);
1939 }
1940
1941 enum prep_dispatch {
1942         PREP_DISPATCH_OK,
1943         PREP_DISPATCH_NO_TAG,
1944         PREP_DISPATCH_NO_BUDGET,
1945 };
1946
1947 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1948                                                   bool need_budget)
1949 {
1950         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1951         int budget_token = -1;
1952
1953         if (need_budget) {
1954                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1955                 if (budget_token < 0) {
1956                         blk_mq_put_driver_tag(rq);
1957                         return PREP_DISPATCH_NO_BUDGET;
1958                 }
1959                 blk_mq_set_rq_budget_token(rq, budget_token);
1960         }
1961
1962         if (!blk_mq_get_driver_tag(rq)) {
1963                 /*
1964                  * The initial allocation attempt failed, so we need to
1965                  * rerun the hardware queue when a tag is freed. The
1966                  * waitqueue takes care of that. If the queue is run
1967                  * before we add this entry back on the dispatch list,
1968                  * we'll re-run it below.
1969                  */
1970                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1971                         /*
1972                          * All budgets not got from this function will be put
1973                          * together during handling partial dispatch
1974                          */
1975                         if (need_budget)
1976                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1977                         return PREP_DISPATCH_NO_TAG;
1978                 }
1979         }
1980
1981         return PREP_DISPATCH_OK;
1982 }
1983
1984 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1985 static void blk_mq_release_budgets(struct request_queue *q,
1986                 struct list_head *list)
1987 {
1988         struct request *rq;
1989
1990         list_for_each_entry(rq, list, queuelist) {
1991                 int budget_token = blk_mq_get_rq_budget_token(rq);
1992
1993                 if (budget_token >= 0)
1994                         blk_mq_put_dispatch_budget(q, budget_token);
1995         }
1996 }
1997
1998 /*
1999  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2000  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2001  * details)
2002  * Attention, we should explicitly call this in unusual cases:
2003  *  1) did not queue everything initially scheduled to queue
2004  *  2) the last attempt to queue a request failed
2005  */
2006 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2007                               bool from_schedule)
2008 {
2009         if (hctx->queue->mq_ops->commit_rqs && queued) {
2010                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2011                 hctx->queue->mq_ops->commit_rqs(hctx);
2012         }
2013 }
2014
2015 /*
2016  * Returns true if we did some work AND can potentially do more.
2017  */
2018 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2019                              unsigned int nr_budgets)
2020 {
2021         enum prep_dispatch prep;
2022         struct request_queue *q = hctx->queue;
2023         struct request *rq;
2024         int queued;
2025         blk_status_t ret = BLK_STS_OK;
2026         LIST_HEAD(zone_list);
2027         bool needs_resource = false;
2028
2029         if (list_empty(list))
2030                 return false;
2031
2032         /*
2033          * Now process all the entries, sending them to the driver.
2034          */
2035         queued = 0;
2036         do {
2037                 struct blk_mq_queue_data bd;
2038
2039                 rq = list_first_entry(list, struct request, queuelist);
2040
2041                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2042                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2043                 if (prep != PREP_DISPATCH_OK)
2044                         break;
2045
2046                 list_del_init(&rq->queuelist);
2047
2048                 bd.rq = rq;
2049                 bd.last = list_empty(list);
2050
2051                 /*
2052                  * once the request is queued to lld, no need to cover the
2053                  * budget any more
2054                  */
2055                 if (nr_budgets)
2056                         nr_budgets--;
2057                 ret = q->mq_ops->queue_rq(hctx, &bd);
2058                 switch (ret) {
2059                 case BLK_STS_OK:
2060                         queued++;
2061                         break;
2062                 case BLK_STS_RESOURCE:
2063                         needs_resource = true;
2064                         fallthrough;
2065                 case BLK_STS_DEV_RESOURCE:
2066                         blk_mq_handle_dev_resource(rq, list);
2067                         goto out;
2068                 case BLK_STS_ZONE_RESOURCE:
2069                         /*
2070                          * Move the request to zone_list and keep going through
2071                          * the dispatch list to find more requests the drive can
2072                          * accept.
2073                          */
2074                         blk_mq_handle_zone_resource(rq, &zone_list);
2075                         needs_resource = true;
2076                         break;
2077                 default:
2078                         blk_mq_end_request(rq, ret);
2079                 }
2080         } while (!list_empty(list));
2081 out:
2082         if (!list_empty(&zone_list))
2083                 list_splice_tail_init(&zone_list, list);
2084
2085         /* If we didn't flush the entire list, we could have told the driver
2086          * there was more coming, but that turned out to be a lie.
2087          */
2088         if (!list_empty(list) || ret != BLK_STS_OK)
2089                 blk_mq_commit_rqs(hctx, queued, false);
2090
2091         /*
2092          * Any items that need requeuing? Stuff them into hctx->dispatch,
2093          * that is where we will continue on next queue run.
2094          */
2095         if (!list_empty(list)) {
2096                 bool needs_restart;
2097                 /* For non-shared tags, the RESTART check will suffice */
2098                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2100                         blk_mq_is_shared_tags(hctx->flags));
2101
2102                 if (nr_budgets)
2103                         blk_mq_release_budgets(q, list);
2104
2105                 spin_lock(&hctx->lock);
2106                 list_splice_tail_init(list, &hctx->dispatch);
2107                 spin_unlock(&hctx->lock);
2108
2109                 /*
2110                  * Order adding requests to hctx->dispatch and checking
2111                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2112                  * in blk_mq_sched_restart(). Avoid restart code path to
2113                  * miss the new added requests to hctx->dispatch, meantime
2114                  * SCHED_RESTART is observed here.
2115                  */
2116                 smp_mb();
2117
2118                 /*
2119                  * If SCHED_RESTART was set by the caller of this function and
2120                  * it is no longer set that means that it was cleared by another
2121                  * thread and hence that a queue rerun is needed.
2122                  *
2123                  * If 'no_tag' is set, that means that we failed getting
2124                  * a driver tag with an I/O scheduler attached. If our dispatch
2125                  * waitqueue is no longer active, ensure that we run the queue
2126                  * AFTER adding our entries back to the list.
2127                  *
2128                  * If no I/O scheduler has been configured it is possible that
2129                  * the hardware queue got stopped and restarted before requests
2130                  * were pushed back onto the dispatch list. Rerun the queue to
2131                  * avoid starvation. Notes:
2132                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2133                  *   been stopped before rerunning a queue.
2134                  * - Some but not all block drivers stop a queue before
2135                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2136                  *   and dm-rq.
2137                  *
2138                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2139                  * bit is set, run queue after a delay to avoid IO stalls
2140                  * that could otherwise occur if the queue is idle.  We'll do
2141                  * similar if we couldn't get budget or couldn't lock a zone
2142                  * and SCHED_RESTART is set.
2143                  */
2144                 needs_restart = blk_mq_sched_needs_restart(hctx);
2145                 if (prep == PREP_DISPATCH_NO_BUDGET)
2146                         needs_resource = true;
2147                 if (!needs_restart ||
2148                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2149                         blk_mq_run_hw_queue(hctx, true);
2150                 else if (needs_resource)
2151                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2152
2153                 blk_mq_update_dispatch_busy(hctx, true);
2154                 return false;
2155         }
2156
2157         blk_mq_update_dispatch_busy(hctx, false);
2158         return true;
2159 }
2160
2161 /**
2162  * __blk_mq_run_hw_queue - Run a hardware queue.
2163  * @hctx: Pointer to the hardware queue to run.
2164  *
2165  * Send pending requests to the hardware.
2166  */
2167 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2168 {
2169         /*
2170          * We can't run the queue inline with ints disabled. Ensure that
2171          * we catch bad users of this early.
2172          */
2173         WARN_ON_ONCE(in_interrupt());
2174
2175         blk_mq_run_dispatch_ops(hctx->queue,
2176                         blk_mq_sched_dispatch_requests(hctx));
2177 }
2178
2179 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2180 {
2181         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2182
2183         if (cpu >= nr_cpu_ids)
2184                 cpu = cpumask_first(hctx->cpumask);
2185         return cpu;
2186 }
2187
2188 /*
2189  * It'd be great if the workqueue API had a way to pass
2190  * in a mask and had some smarts for more clever placement.
2191  * For now we just round-robin here, switching for every
2192  * BLK_MQ_CPU_WORK_BATCH queued items.
2193  */
2194 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2195 {
2196         bool tried = false;
2197         int next_cpu = hctx->next_cpu;
2198
2199         if (hctx->queue->nr_hw_queues == 1)
2200                 return WORK_CPU_UNBOUND;
2201
2202         if (--hctx->next_cpu_batch <= 0) {
2203 select_cpu:
2204                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2205                                 cpu_online_mask);
2206                 if (next_cpu >= nr_cpu_ids)
2207                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2208                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2209         }
2210
2211         /*
2212          * Do unbound schedule if we can't find a online CPU for this hctx,
2213          * and it should only happen in the path of handling CPU DEAD.
2214          */
2215         if (!cpu_online(next_cpu)) {
2216                 if (!tried) {
2217                         tried = true;
2218                         goto select_cpu;
2219                 }
2220
2221                 /*
2222                  * Make sure to re-select CPU next time once after CPUs
2223                  * in hctx->cpumask become online again.
2224                  */
2225                 hctx->next_cpu = next_cpu;
2226                 hctx->next_cpu_batch = 1;
2227                 return WORK_CPU_UNBOUND;
2228         }
2229
2230         hctx->next_cpu = next_cpu;
2231         return next_cpu;
2232 }
2233
2234 /**
2235  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2236  * @hctx: Pointer to the hardware queue to run.
2237  * @async: If we want to run the queue asynchronously.
2238  * @msecs: Milliseconds of delay to wait before running the queue.
2239  *
2240  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2241  * with a delay of @msecs.
2242  */
2243 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2244                                         unsigned long msecs)
2245 {
2246         if (unlikely(blk_mq_hctx_stopped(hctx)))
2247                 return;
2248
2249         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2250                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2251                         __blk_mq_run_hw_queue(hctx);
2252                         return;
2253                 }
2254         }
2255
2256         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2257                                     msecs_to_jiffies(msecs));
2258 }
2259
2260 /**
2261  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2262  * @hctx: Pointer to the hardware queue to run.
2263  * @msecs: Milliseconds of delay to wait before running the queue.
2264  *
2265  * Run a hardware queue asynchronously with a delay of @msecs.
2266  */
2267 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2268 {
2269         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2270 }
2271 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2272
2273 /**
2274  * blk_mq_run_hw_queue - Start to run a hardware queue.
2275  * @hctx: Pointer to the hardware queue to run.
2276  * @async: If we want to run the queue asynchronously.
2277  *
2278  * Check if the request queue is not in a quiesced state and if there are
2279  * pending requests to be sent. If this is true, run the queue to send requests
2280  * to hardware.
2281  */
2282 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2283 {
2284         bool need_run;
2285
2286         /*
2287          * When queue is quiesced, we may be switching io scheduler, or
2288          * updating nr_hw_queues, or other things, and we can't run queue
2289          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2290          *
2291          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2292          * quiesced.
2293          */
2294         __blk_mq_run_dispatch_ops(hctx->queue, false,
2295                 need_run = !blk_queue_quiesced(hctx->queue) &&
2296                 blk_mq_hctx_has_pending(hctx));
2297
2298         if (need_run)
2299                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2302
2303 /*
2304  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2305  * scheduler.
2306  */
2307 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2308 {
2309         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2310         /*
2311          * If the IO scheduler does not respect hardware queues when
2312          * dispatching, we just don't bother with multiple HW queues and
2313          * dispatch from hctx for the current CPU since running multiple queues
2314          * just causes lock contention inside the scheduler and pointless cache
2315          * bouncing.
2316          */
2317         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2318
2319         if (!blk_mq_hctx_stopped(hctx))
2320                 return hctx;
2321         return NULL;
2322 }
2323
2324 /**
2325  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2326  * @q: Pointer to the request queue to run.
2327  * @async: If we want to run the queue asynchronously.
2328  */
2329 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2330 {
2331         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2332         unsigned long i;
2333
2334         sq_hctx = NULL;
2335         if (blk_queue_sq_sched(q))
2336                 sq_hctx = blk_mq_get_sq_hctx(q);
2337         queue_for_each_hw_ctx(q, hctx, i) {
2338                 if (blk_mq_hctx_stopped(hctx))
2339                         continue;
2340                 /*
2341                  * Dispatch from this hctx either if there's no hctx preferred
2342                  * by IO scheduler or if it has requests that bypass the
2343                  * scheduler.
2344                  */
2345                 if (!sq_hctx || sq_hctx == hctx ||
2346                     !list_empty_careful(&hctx->dispatch))
2347                         blk_mq_run_hw_queue(hctx, async);
2348         }
2349 }
2350 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2351
2352 /**
2353  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2354  * @q: Pointer to the request queue to run.
2355  * @msecs: Milliseconds of delay to wait before running the queues.
2356  */
2357 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2358 {
2359         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2360         unsigned long i;
2361
2362         sq_hctx = NULL;
2363         if (blk_queue_sq_sched(q))
2364                 sq_hctx = blk_mq_get_sq_hctx(q);
2365         queue_for_each_hw_ctx(q, hctx, i) {
2366                 if (blk_mq_hctx_stopped(hctx))
2367                         continue;
2368                 /*
2369                  * If there is already a run_work pending, leave the
2370                  * pending delay untouched. Otherwise, a hctx can stall
2371                  * if another hctx is re-delaying the other's work
2372                  * before the work executes.
2373                  */
2374                 if (delayed_work_pending(&hctx->run_work))
2375                         continue;
2376                 /*
2377                  * Dispatch from this hctx either if there's no hctx preferred
2378                  * by IO scheduler or if it has requests that bypass the
2379                  * scheduler.
2380                  */
2381                 if (!sq_hctx || sq_hctx == hctx ||
2382                     !list_empty_careful(&hctx->dispatch))
2383                         blk_mq_delay_run_hw_queue(hctx, msecs);
2384         }
2385 }
2386 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2387
2388 /*
2389  * This function is often used for pausing .queue_rq() by driver when
2390  * there isn't enough resource or some conditions aren't satisfied, and
2391  * BLK_STS_RESOURCE is usually returned.
2392  *
2393  * We do not guarantee that dispatch can be drained or blocked
2394  * after blk_mq_stop_hw_queue() returns. Please use
2395  * blk_mq_quiesce_queue() for that requirement.
2396  */
2397 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2398 {
2399         cancel_delayed_work(&hctx->run_work);
2400
2401         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402 }
2403 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2404
2405 /*
2406  * This function is often used for pausing .queue_rq() by driver when
2407  * there isn't enough resource or some conditions aren't satisfied, and
2408  * BLK_STS_RESOURCE is usually returned.
2409  *
2410  * We do not guarantee that dispatch can be drained or blocked
2411  * after blk_mq_stop_hw_queues() returns. Please use
2412  * blk_mq_quiesce_queue() for that requirement.
2413  */
2414 void blk_mq_stop_hw_queues(struct request_queue *q)
2415 {
2416         struct blk_mq_hw_ctx *hctx;
2417         unsigned long i;
2418
2419         queue_for_each_hw_ctx(q, hctx, i)
2420                 blk_mq_stop_hw_queue(hctx);
2421 }
2422 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2423
2424 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2425 {
2426         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2427
2428         blk_mq_run_hw_queue(hctx, false);
2429 }
2430 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2431
2432 void blk_mq_start_hw_queues(struct request_queue *q)
2433 {
2434         struct blk_mq_hw_ctx *hctx;
2435         unsigned long i;
2436
2437         queue_for_each_hw_ctx(q, hctx, i)
2438                 blk_mq_start_hw_queue(hctx);
2439 }
2440 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2441
2442 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2443 {
2444         if (!blk_mq_hctx_stopped(hctx))
2445                 return;
2446
2447         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2448         blk_mq_run_hw_queue(hctx, async);
2449 }
2450 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2451
2452 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2453 {
2454         struct blk_mq_hw_ctx *hctx;
2455         unsigned long i;
2456
2457         queue_for_each_hw_ctx(q, hctx, i)
2458                 blk_mq_start_stopped_hw_queue(hctx, async);
2459 }
2460 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2461
2462 static void blk_mq_run_work_fn(struct work_struct *work)
2463 {
2464         struct blk_mq_hw_ctx *hctx;
2465
2466         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2467
2468         /*
2469          * If we are stopped, don't run the queue.
2470          */
2471         if (blk_mq_hctx_stopped(hctx))
2472                 return;
2473
2474         __blk_mq_run_hw_queue(hctx);
2475 }
2476
2477 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2478                                             struct request *rq,
2479                                             bool at_head)
2480 {
2481         struct blk_mq_ctx *ctx = rq->mq_ctx;
2482         enum hctx_type type = hctx->type;
2483
2484         lockdep_assert_held(&ctx->lock);
2485
2486         trace_block_rq_insert(rq);
2487
2488         if (at_head)
2489                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2490         else
2491                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2492 }
2493
2494 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2495                              bool at_head)
2496 {
2497         struct blk_mq_ctx *ctx = rq->mq_ctx;
2498
2499         lockdep_assert_held(&ctx->lock);
2500
2501         __blk_mq_insert_req_list(hctx, rq, at_head);
2502         blk_mq_hctx_mark_pending(hctx, ctx);
2503 }
2504
2505 /**
2506  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2507  * @rq: Pointer to request to be inserted.
2508  * @at_head: true if the request should be inserted at the head of the list.
2509  * @run_queue: If we should run the hardware queue after inserting the request.
2510  *
2511  * Should only be used carefully, when the caller knows we want to
2512  * bypass a potential IO scheduler on the target device.
2513  */
2514 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2515                                   bool run_queue)
2516 {
2517         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2518
2519         spin_lock(&hctx->lock);
2520         if (at_head)
2521                 list_add(&rq->queuelist, &hctx->dispatch);
2522         else
2523                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2524         spin_unlock(&hctx->lock);
2525
2526         if (run_queue)
2527                 blk_mq_run_hw_queue(hctx, false);
2528 }
2529
2530 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2531                             struct list_head *list)
2532
2533 {
2534         struct request *rq;
2535         enum hctx_type type = hctx->type;
2536
2537         /*
2538          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2539          * offline now
2540          */
2541         list_for_each_entry(rq, list, queuelist) {
2542                 BUG_ON(rq->mq_ctx != ctx);
2543                 trace_block_rq_insert(rq);
2544         }
2545
2546         spin_lock(&ctx->lock);
2547         list_splice_tail_init(list, &ctx->rq_lists[type]);
2548         blk_mq_hctx_mark_pending(hctx, ctx);
2549         spin_unlock(&ctx->lock);
2550 }
2551
2552 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2553                 unsigned int nr_segs)
2554 {
2555         int err;
2556
2557         if (bio->bi_opf & REQ_RAHEAD)
2558                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2559
2560         rq->__sector = bio->bi_iter.bi_sector;
2561         blk_rq_bio_prep(rq, bio, nr_segs);
2562
2563         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2564         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2565         WARN_ON_ONCE(err);
2566
2567         blk_account_io_start(rq);
2568 }
2569
2570 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2571                                             struct request *rq, bool last)
2572 {
2573         struct request_queue *q = rq->q;
2574         struct blk_mq_queue_data bd = {
2575                 .rq = rq,
2576                 .last = last,
2577         };
2578         blk_status_t ret;
2579
2580         /*
2581          * For OK queue, we are done. For error, caller may kill it.
2582          * Any other error (busy), just add it to our list as we
2583          * previously would have done.
2584          */
2585         ret = q->mq_ops->queue_rq(hctx, &bd);
2586         switch (ret) {
2587         case BLK_STS_OK:
2588                 blk_mq_update_dispatch_busy(hctx, false);
2589                 break;
2590         case BLK_STS_RESOURCE:
2591         case BLK_STS_DEV_RESOURCE:
2592                 blk_mq_update_dispatch_busy(hctx, true);
2593                 __blk_mq_requeue_request(rq);
2594                 break;
2595         default:
2596                 blk_mq_update_dispatch_busy(hctx, false);
2597                 break;
2598         }
2599
2600         return ret;
2601 }
2602
2603 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2604                                                 struct request *rq,
2605                                                 bool bypass_insert, bool last)
2606 {
2607         struct request_queue *q = rq->q;
2608         bool run_queue = true;
2609         int budget_token;
2610
2611         /*
2612          * RCU or SRCU read lock is needed before checking quiesced flag.
2613          *
2614          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2615          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2616          * and avoid driver to try to dispatch again.
2617          */
2618         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2619                 run_queue = false;
2620                 bypass_insert = false;
2621                 goto insert;
2622         }
2623
2624         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2625                 goto insert;
2626
2627         budget_token = blk_mq_get_dispatch_budget(q);
2628         if (budget_token < 0)
2629                 goto insert;
2630
2631         blk_mq_set_rq_budget_token(rq, budget_token);
2632
2633         if (!blk_mq_get_driver_tag(rq)) {
2634                 blk_mq_put_dispatch_budget(q, budget_token);
2635                 goto insert;
2636         }
2637
2638         return __blk_mq_issue_directly(hctx, rq, last);
2639 insert:
2640         if (bypass_insert)
2641                 return BLK_STS_RESOURCE;
2642
2643         blk_mq_sched_insert_request(rq, false, run_queue, false);
2644
2645         return BLK_STS_OK;
2646 }
2647
2648 /**
2649  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2650  * @hctx: Pointer of the associated hardware queue.
2651  * @rq: Pointer to request to be sent.
2652  *
2653  * If the device has enough resources to accept a new request now, send the
2654  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2655  * we can try send it another time in the future. Requests inserted at this
2656  * queue have higher priority.
2657  */
2658 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2659                 struct request *rq)
2660 {
2661         blk_status_t ret =
2662                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2663
2664         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2665                 blk_mq_request_bypass_insert(rq, false, true);
2666         else if (ret != BLK_STS_OK)
2667                 blk_mq_end_request(rq, ret);
2668 }
2669
2670 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2671 {
2672         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2673 }
2674
2675 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2676 {
2677         struct blk_mq_hw_ctx *hctx = NULL;
2678         struct request *rq;
2679         int queued = 0;
2680         blk_status_t ret = BLK_STS_OK;
2681
2682         while ((rq = rq_list_pop(&plug->mq_list))) {
2683                 bool last = rq_list_empty(plug->mq_list);
2684
2685                 if (hctx != rq->mq_hctx) {
2686                         if (hctx) {
2687                                 blk_mq_commit_rqs(hctx, queued, false);
2688                                 queued = 0;
2689                         }
2690                         hctx = rq->mq_hctx;
2691                 }
2692
2693                 ret = blk_mq_request_issue_directly(rq, last);
2694                 switch (ret) {
2695                 case BLK_STS_OK:
2696                         queued++;
2697                         break;
2698                 case BLK_STS_RESOURCE:
2699                 case BLK_STS_DEV_RESOURCE:
2700                         blk_mq_request_bypass_insert(rq, false, true);
2701                         goto out;
2702                 default:
2703                         blk_mq_end_request(rq, ret);
2704                         break;
2705                 }
2706         }
2707
2708 out:
2709         if (ret != BLK_STS_OK)
2710                 blk_mq_commit_rqs(hctx, queued, false);
2711 }
2712
2713 static void __blk_mq_flush_plug_list(struct request_queue *q,
2714                                      struct blk_plug *plug)
2715 {
2716         if (blk_queue_quiesced(q))
2717                 return;
2718         q->mq_ops->queue_rqs(&plug->mq_list);
2719 }
2720
2721 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2722 {
2723         struct blk_mq_hw_ctx *this_hctx = NULL;
2724         struct blk_mq_ctx *this_ctx = NULL;
2725         struct request *requeue_list = NULL;
2726         struct request **requeue_lastp = &requeue_list;
2727         unsigned int depth = 0;
2728         LIST_HEAD(list);
2729
2730         do {
2731                 struct request *rq = rq_list_pop(&plug->mq_list);
2732
2733                 if (!this_hctx) {
2734                         this_hctx = rq->mq_hctx;
2735                         this_ctx = rq->mq_ctx;
2736                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2737                         rq_list_add_tail(&requeue_lastp, rq);
2738                         continue;
2739                 }
2740                 list_add(&rq->queuelist, &list);
2741                 depth++;
2742         } while (!rq_list_empty(plug->mq_list));
2743
2744         plug->mq_list = requeue_list;
2745         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2746         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2747 }
2748
2749 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2750 {
2751         struct request *rq;
2752
2753         if (rq_list_empty(plug->mq_list))
2754                 return;
2755         plug->rq_count = 0;
2756
2757         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2758                 struct request_queue *q;
2759
2760                 rq = rq_list_peek(&plug->mq_list);
2761                 q = rq->q;
2762
2763                 /*
2764                  * Peek first request and see if we have a ->queue_rqs() hook.
2765                  * If we do, we can dispatch the whole plug list in one go. We
2766                  * already know at this point that all requests belong to the
2767                  * same queue, caller must ensure that's the case.
2768                  *
2769                  * Since we pass off the full list to the driver at this point,
2770                  * we do not increment the active request count for the queue.
2771                  * Bypass shared tags for now because of that.
2772                  */
2773                 if (q->mq_ops->queue_rqs &&
2774                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2775                         blk_mq_run_dispatch_ops(q,
2776                                 __blk_mq_flush_plug_list(q, plug));
2777                         if (rq_list_empty(plug->mq_list))
2778                                 return;
2779                 }
2780
2781                 blk_mq_run_dispatch_ops(q,
2782                                 blk_mq_plug_issue_direct(plug));
2783                 if (rq_list_empty(plug->mq_list))
2784                         return;
2785         }
2786
2787         do {
2788                 blk_mq_dispatch_plug_list(plug, from_schedule);
2789         } while (!rq_list_empty(plug->mq_list));
2790 }
2791
2792 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2793                 struct list_head *list)
2794 {
2795         int queued = 0;
2796         blk_status_t ret = BLK_STS_OK;
2797
2798         while (!list_empty(list)) {
2799                 struct request *rq = list_first_entry(list, struct request,
2800                                 queuelist);
2801
2802                 list_del_init(&rq->queuelist);
2803                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2804                 switch (ret) {
2805                 case BLK_STS_OK:
2806                         queued++;
2807                         break;
2808                 case BLK_STS_RESOURCE:
2809                 case BLK_STS_DEV_RESOURCE:
2810                         blk_mq_request_bypass_insert(rq, false,
2811                                                      list_empty(list));
2812                         goto out;
2813                 default:
2814                         blk_mq_end_request(rq, ret);
2815                         break;
2816                 }
2817         }
2818
2819 out:
2820         if (ret != BLK_STS_OK)
2821                 blk_mq_commit_rqs(hctx, queued, false);
2822 }
2823
2824 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2825                                      struct bio *bio, unsigned int nr_segs)
2826 {
2827         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2828                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2829                         return true;
2830                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2831                         return true;
2832         }
2833         return false;
2834 }
2835
2836 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2837                                                struct blk_plug *plug,
2838                                                struct bio *bio,
2839                                                unsigned int nsegs)
2840 {
2841         struct blk_mq_alloc_data data = {
2842                 .q              = q,
2843                 .nr_tags        = 1,
2844                 .cmd_flags      = bio->bi_opf,
2845         };
2846         struct request *rq;
2847
2848         if (unlikely(bio_queue_enter(bio)))
2849                 return NULL;
2850
2851         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2852                 goto queue_exit;
2853
2854         rq_qos_throttle(q, bio);
2855
2856         if (plug) {
2857                 data.nr_tags = plug->nr_ios;
2858                 plug->nr_ios = 1;
2859                 data.cached_rq = &plug->cached_rq;
2860         }
2861
2862         rq = __blk_mq_alloc_requests(&data);
2863         if (rq)
2864                 return rq;
2865         rq_qos_cleanup(q, bio);
2866         if (bio->bi_opf & REQ_NOWAIT)
2867                 bio_wouldblock_error(bio);
2868 queue_exit:
2869         blk_queue_exit(q);
2870         return NULL;
2871 }
2872
2873 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2874                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2875 {
2876         struct request *rq;
2877         enum hctx_type type, hctx_type;
2878
2879         if (!plug)
2880                 return NULL;
2881         rq = rq_list_peek(&plug->cached_rq);
2882         if (!rq || rq->q != q)
2883                 return NULL;
2884
2885         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2886                 *bio = NULL;
2887                 return NULL;
2888         }
2889
2890         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2891         hctx_type = rq->mq_hctx->type;
2892         if (type != hctx_type &&
2893             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2894                 return NULL;
2895         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2896                 return NULL;
2897
2898         /*
2899          * If any qos ->throttle() end up blocking, we will have flushed the
2900          * plug and hence killed the cached_rq list as well. Pop this entry
2901          * before we throttle.
2902          */
2903         plug->cached_rq = rq_list_next(rq);
2904         rq_qos_throttle(q, *bio);
2905
2906         rq->cmd_flags = (*bio)->bi_opf;
2907         INIT_LIST_HEAD(&rq->queuelist);
2908         return rq;
2909 }
2910
2911 static void bio_set_ioprio(struct bio *bio)
2912 {
2913         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2914         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2915                 bio->bi_ioprio = get_current_ioprio();
2916         blkcg_set_ioprio(bio);
2917 }
2918
2919 /**
2920  * blk_mq_submit_bio - Create and send a request to block device.
2921  * @bio: Bio pointer.
2922  *
2923  * Builds up a request structure from @q and @bio and send to the device. The
2924  * request may not be queued directly to hardware if:
2925  * * This request can be merged with another one
2926  * * We want to place request at plug queue for possible future merging
2927  * * There is an IO scheduler active at this queue
2928  *
2929  * It will not queue the request if there is an error with the bio, or at the
2930  * request creation.
2931  */
2932 void blk_mq_submit_bio(struct bio *bio)
2933 {
2934         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2935         struct blk_plug *plug = blk_mq_plug(bio);
2936         const int is_sync = op_is_sync(bio->bi_opf);
2937         struct request *rq;
2938         unsigned int nr_segs = 1;
2939         blk_status_t ret;
2940
2941         bio = blk_queue_bounce(bio, q);
2942         if (bio_may_exceed_limits(bio, &q->limits)) {
2943                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2944                 if (!bio)
2945                         return;
2946         }
2947
2948         if (!bio_integrity_prep(bio))
2949                 return;
2950
2951         bio_set_ioprio(bio);
2952
2953         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2954         if (!rq) {
2955                 if (!bio)
2956                         return;
2957                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2958                 if (unlikely(!rq))
2959                         return;
2960         }
2961
2962         trace_block_getrq(bio);
2963
2964         rq_qos_track(q, rq, bio);
2965
2966         blk_mq_bio_to_request(rq, bio, nr_segs);
2967
2968         ret = blk_crypto_init_request(rq);
2969         if (ret != BLK_STS_OK) {
2970                 bio->bi_status = ret;
2971                 bio_endio(bio);
2972                 blk_mq_free_request(rq);
2973                 return;
2974         }
2975
2976         if (op_is_flush(bio->bi_opf)) {
2977                 blk_insert_flush(rq);
2978                 return;
2979         }
2980
2981         if (plug)
2982                 blk_add_rq_to_plug(plug, rq);
2983         else if ((rq->rq_flags & RQF_ELV) ||
2984                  (rq->mq_hctx->dispatch_busy &&
2985                   (q->nr_hw_queues == 1 || !is_sync)))
2986                 blk_mq_sched_insert_request(rq, false, true, true);
2987         else
2988                 blk_mq_run_dispatch_ops(rq->q,
2989                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2990 }
2991
2992 #ifdef CONFIG_BLK_MQ_STACKING
2993 /**
2994  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2995  * @rq: the request being queued
2996  */
2997 blk_status_t blk_insert_cloned_request(struct request *rq)
2998 {
2999         struct request_queue *q = rq->q;
3000         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3001         unsigned int max_segments = blk_rq_get_max_segments(rq);
3002         blk_status_t ret;
3003
3004         if (blk_rq_sectors(rq) > max_sectors) {
3005                 /*
3006                  * SCSI device does not have a good way to return if
3007                  * Write Same/Zero is actually supported. If a device rejects
3008                  * a non-read/write command (discard, write same,etc.) the
3009                  * low-level device driver will set the relevant queue limit to
3010                  * 0 to prevent blk-lib from issuing more of the offending
3011                  * operations. Commands queued prior to the queue limit being
3012                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3013                  * errors being propagated to upper layers.
3014                  */
3015                 if (max_sectors == 0)
3016                         return BLK_STS_NOTSUPP;
3017
3018                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3019                         __func__, blk_rq_sectors(rq), max_sectors);
3020                 return BLK_STS_IOERR;
3021         }
3022
3023         /*
3024          * The queue settings related to segment counting may differ from the
3025          * original queue.
3026          */
3027         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3028         if (rq->nr_phys_segments > max_segments) {
3029                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3030                         __func__, rq->nr_phys_segments, max_segments);
3031                 return BLK_STS_IOERR;
3032         }
3033
3034         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3035                 return BLK_STS_IOERR;
3036
3037         if (blk_crypto_insert_cloned_request(rq))
3038                 return BLK_STS_IOERR;
3039
3040         blk_account_io_start(rq);
3041
3042         /*
3043          * Since we have a scheduler attached on the top device,
3044          * bypass a potential scheduler on the bottom device for
3045          * insert.
3046          */
3047         blk_mq_run_dispatch_ops(q,
3048                         ret = blk_mq_request_issue_directly(rq, true));
3049         if (ret)
3050                 blk_account_io_done(rq, ktime_get_ns());
3051         return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3054
3055 /**
3056  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3057  * @rq: the clone request to be cleaned up
3058  *
3059  * Description:
3060  *     Free all bios in @rq for a cloned request.
3061  */
3062 void blk_rq_unprep_clone(struct request *rq)
3063 {
3064         struct bio *bio;
3065
3066         while ((bio = rq->bio) != NULL) {
3067                 rq->bio = bio->bi_next;
3068
3069                 bio_put(bio);
3070         }
3071 }
3072 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3073
3074 /**
3075  * blk_rq_prep_clone - Helper function to setup clone request
3076  * @rq: the request to be setup
3077  * @rq_src: original request to be cloned
3078  * @bs: bio_set that bios for clone are allocated from
3079  * @gfp_mask: memory allocation mask for bio
3080  * @bio_ctr: setup function to be called for each clone bio.
3081  *           Returns %0 for success, non %0 for failure.
3082  * @data: private data to be passed to @bio_ctr
3083  *
3084  * Description:
3085  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3086  *     Also, pages which the original bios are pointing to are not copied
3087  *     and the cloned bios just point same pages.
3088  *     So cloned bios must be completed before original bios, which means
3089  *     the caller must complete @rq before @rq_src.
3090  */
3091 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3092                       struct bio_set *bs, gfp_t gfp_mask,
3093                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3094                       void *data)
3095 {
3096         struct bio *bio, *bio_src;
3097
3098         if (!bs)
3099                 bs = &fs_bio_set;
3100
3101         __rq_for_each_bio(bio_src, rq_src) {
3102                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3103                                       bs);
3104                 if (!bio)
3105                         goto free_and_out;
3106
3107                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3108                         goto free_and_out;
3109
3110                 if (rq->bio) {
3111                         rq->biotail->bi_next = bio;
3112                         rq->biotail = bio;
3113                 } else {
3114                         rq->bio = rq->biotail = bio;
3115                 }
3116                 bio = NULL;
3117         }
3118
3119         /* Copy attributes of the original request to the clone request. */
3120         rq->__sector = blk_rq_pos(rq_src);
3121         rq->__data_len = blk_rq_bytes(rq_src);
3122         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3123                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3124                 rq->special_vec = rq_src->special_vec;
3125         }
3126         rq->nr_phys_segments = rq_src->nr_phys_segments;
3127         rq->ioprio = rq_src->ioprio;
3128
3129         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3130                 goto free_and_out;
3131
3132         return 0;
3133
3134 free_and_out:
3135         if (bio)
3136                 bio_put(bio);
3137         blk_rq_unprep_clone(rq);
3138
3139         return -ENOMEM;
3140 }
3141 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3142 #endif /* CONFIG_BLK_MQ_STACKING */
3143
3144 /*
3145  * Steal bios from a request and add them to a bio list.
3146  * The request must not have been partially completed before.
3147  */
3148 void blk_steal_bios(struct bio_list *list, struct request *rq)
3149 {
3150         if (rq->bio) {
3151                 if (list->tail)
3152                         list->tail->bi_next = rq->bio;
3153                 else
3154                         list->head = rq->bio;
3155                 list->tail = rq->biotail;
3156
3157                 rq->bio = NULL;
3158                 rq->biotail = NULL;
3159         }
3160
3161         rq->__data_len = 0;
3162 }
3163 EXPORT_SYMBOL_GPL(blk_steal_bios);
3164
3165 static size_t order_to_size(unsigned int order)
3166 {
3167         return (size_t)PAGE_SIZE << order;
3168 }
3169
3170 /* called before freeing request pool in @tags */
3171 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3172                                     struct blk_mq_tags *tags)
3173 {
3174         struct page *page;
3175         unsigned long flags;
3176
3177         /*
3178          * There is no need to clear mapping if driver tags is not initialized
3179          * or the mapping belongs to the driver tags.
3180          */
3181         if (!drv_tags || drv_tags == tags)
3182                 return;
3183
3184         list_for_each_entry(page, &tags->page_list, lru) {
3185                 unsigned long start = (unsigned long)page_address(page);
3186                 unsigned long end = start + order_to_size(page->private);
3187                 int i;
3188
3189                 for (i = 0; i < drv_tags->nr_tags; i++) {
3190                         struct request *rq = drv_tags->rqs[i];
3191                         unsigned long rq_addr = (unsigned long)rq;
3192
3193                         if (rq_addr >= start && rq_addr < end) {
3194                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3195                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3196                         }
3197                 }
3198         }
3199
3200         /*
3201          * Wait until all pending iteration is done.
3202          *
3203          * Request reference is cleared and it is guaranteed to be observed
3204          * after the ->lock is released.
3205          */
3206         spin_lock_irqsave(&drv_tags->lock, flags);
3207         spin_unlock_irqrestore(&drv_tags->lock, flags);
3208 }
3209
3210 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3211                      unsigned int hctx_idx)
3212 {
3213         struct blk_mq_tags *drv_tags;
3214         struct page *page;
3215
3216         if (list_empty(&tags->page_list))
3217                 return;
3218
3219         if (blk_mq_is_shared_tags(set->flags))
3220                 drv_tags = set->shared_tags;
3221         else
3222                 drv_tags = set->tags[hctx_idx];
3223
3224         if (tags->static_rqs && set->ops->exit_request) {
3225                 int i;
3226
3227                 for (i = 0; i < tags->nr_tags; i++) {
3228                         struct request *rq = tags->static_rqs[i];
3229
3230                         if (!rq)
3231                                 continue;
3232                         set->ops->exit_request(set, rq, hctx_idx);
3233                         tags->static_rqs[i] = NULL;
3234                 }
3235         }
3236
3237         blk_mq_clear_rq_mapping(drv_tags, tags);
3238
3239         while (!list_empty(&tags->page_list)) {
3240                 page = list_first_entry(&tags->page_list, struct page, lru);
3241                 list_del_init(&page->lru);
3242                 /*
3243                  * Remove kmemleak object previously allocated in
3244                  * blk_mq_alloc_rqs().
3245                  */
3246                 kmemleak_free(page_address(page));
3247                 __free_pages(page, page->private);
3248         }
3249 }
3250
3251 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3252 {
3253         kfree(tags->rqs);
3254         tags->rqs = NULL;
3255         kfree(tags->static_rqs);
3256         tags->static_rqs = NULL;
3257
3258         blk_mq_free_tags(tags);
3259 }
3260
3261 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3262                 unsigned int hctx_idx)
3263 {
3264         int i;
3265
3266         for (i = 0; i < set->nr_maps; i++) {
3267                 unsigned int start = set->map[i].queue_offset;
3268                 unsigned int end = start + set->map[i].nr_queues;
3269
3270                 if (hctx_idx >= start && hctx_idx < end)
3271                         break;
3272         }
3273
3274         if (i >= set->nr_maps)
3275                 i = HCTX_TYPE_DEFAULT;
3276
3277         return i;
3278 }
3279
3280 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3281                 unsigned int hctx_idx)
3282 {
3283         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3284
3285         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3286 }
3287
3288 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3289                                                unsigned int hctx_idx,
3290                                                unsigned int nr_tags,
3291                                                unsigned int reserved_tags)
3292 {
3293         int node = blk_mq_get_hctx_node(set, hctx_idx);
3294         struct blk_mq_tags *tags;
3295
3296         if (node == NUMA_NO_NODE)
3297                 node = set->numa_node;
3298
3299         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3300                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3301         if (!tags)
3302                 return NULL;
3303
3304         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3305                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3306                                  node);
3307         if (!tags->rqs)
3308                 goto err_free_tags;
3309
3310         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3311                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3312                                         node);
3313         if (!tags->static_rqs)
3314                 goto err_free_rqs;
3315
3316         return tags;
3317
3318 err_free_rqs:
3319         kfree(tags->rqs);
3320 err_free_tags:
3321         blk_mq_free_tags(tags);
3322         return NULL;
3323 }
3324
3325 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3326                                unsigned int hctx_idx, int node)
3327 {
3328         int ret;
3329
3330         if (set->ops->init_request) {
3331                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3332                 if (ret)
3333                         return ret;
3334         }
3335
3336         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3337         return 0;
3338 }
3339
3340 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3341                             struct blk_mq_tags *tags,
3342                             unsigned int hctx_idx, unsigned int depth)
3343 {
3344         unsigned int i, j, entries_per_page, max_order = 4;
3345         int node = blk_mq_get_hctx_node(set, hctx_idx);
3346         size_t rq_size, left;
3347
3348         if (node == NUMA_NO_NODE)
3349                 node = set->numa_node;
3350
3351         INIT_LIST_HEAD(&tags->page_list);
3352
3353         /*
3354          * rq_size is the size of the request plus driver payload, rounded
3355          * to the cacheline size
3356          */
3357         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3358                                 cache_line_size());
3359         left = rq_size * depth;
3360
3361         for (i = 0; i < depth; ) {
3362                 int this_order = max_order;
3363                 struct page *page;
3364                 int to_do;
3365                 void *p;
3366
3367                 while (this_order && left < order_to_size(this_order - 1))
3368                         this_order--;
3369
3370                 do {
3371                         page = alloc_pages_node(node,
3372                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3373                                 this_order);
3374                         if (page)
3375                                 break;
3376                         if (!this_order--)
3377                                 break;
3378                         if (order_to_size(this_order) < rq_size)
3379                                 break;
3380                 } while (1);
3381
3382                 if (!page)
3383                         goto fail;
3384
3385                 page->private = this_order;
3386                 list_add_tail(&page->lru, &tags->page_list);
3387
3388                 p = page_address(page);
3389                 /*
3390                  * Allow kmemleak to scan these pages as they contain pointers
3391                  * to additional allocations like via ops->init_request().
3392                  */
3393                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3394                 entries_per_page = order_to_size(this_order) / rq_size;
3395                 to_do = min(entries_per_page, depth - i);
3396                 left -= to_do * rq_size;
3397                 for (j = 0; j < to_do; j++) {
3398                         struct request *rq = p;
3399
3400                         tags->static_rqs[i] = rq;
3401                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3402                                 tags->static_rqs[i] = NULL;
3403                                 goto fail;
3404                         }
3405
3406                         p += rq_size;
3407                         i++;
3408                 }
3409         }
3410         return 0;
3411
3412 fail:
3413         blk_mq_free_rqs(set, tags, hctx_idx);
3414         return -ENOMEM;
3415 }
3416
3417 struct rq_iter_data {
3418         struct blk_mq_hw_ctx *hctx;
3419         bool has_rq;
3420 };
3421
3422 static bool blk_mq_has_request(struct request *rq, void *data)
3423 {
3424         struct rq_iter_data *iter_data = data;
3425
3426         if (rq->mq_hctx != iter_data->hctx)
3427                 return true;
3428         iter_data->has_rq = true;
3429         return false;
3430 }
3431
3432 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3433 {
3434         struct blk_mq_tags *tags = hctx->sched_tags ?
3435                         hctx->sched_tags : hctx->tags;
3436         struct rq_iter_data data = {
3437                 .hctx   = hctx,
3438         };
3439
3440         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3441         return data.has_rq;
3442 }
3443
3444 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3445                 struct blk_mq_hw_ctx *hctx)
3446 {
3447         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3448                 return false;
3449         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3450                 return false;
3451         return true;
3452 }
3453
3454 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3455 {
3456         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3457                         struct blk_mq_hw_ctx, cpuhp_online);
3458
3459         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3460             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3461                 return 0;
3462
3463         /*
3464          * Prevent new request from being allocated on the current hctx.
3465          *
3466          * The smp_mb__after_atomic() Pairs with the implied barrier in
3467          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3468          * seen once we return from the tag allocator.
3469          */
3470         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3471         smp_mb__after_atomic();
3472
3473         /*
3474          * Try to grab a reference to the queue and wait for any outstanding
3475          * requests.  If we could not grab a reference the queue has been
3476          * frozen and there are no requests.
3477          */
3478         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3479                 while (blk_mq_hctx_has_requests(hctx))
3480                         msleep(5);
3481                 percpu_ref_put(&hctx->queue->q_usage_counter);
3482         }
3483
3484         return 0;
3485 }
3486
3487 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3488 {
3489         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3490                         struct blk_mq_hw_ctx, cpuhp_online);
3491
3492         if (cpumask_test_cpu(cpu, hctx->cpumask))
3493                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3494         return 0;
3495 }
3496
3497 /*
3498  * 'cpu' is going away. splice any existing rq_list entries from this
3499  * software queue to the hw queue dispatch list, and ensure that it
3500  * gets run.
3501  */
3502 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3503 {
3504         struct blk_mq_hw_ctx *hctx;
3505         struct blk_mq_ctx *ctx;
3506         LIST_HEAD(tmp);
3507         enum hctx_type type;
3508
3509         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3510         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3511                 return 0;
3512
3513         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3514         type = hctx->type;
3515
3516         spin_lock(&ctx->lock);
3517         if (!list_empty(&ctx->rq_lists[type])) {
3518                 list_splice_init(&ctx->rq_lists[type], &tmp);
3519                 blk_mq_hctx_clear_pending(hctx, ctx);
3520         }
3521         spin_unlock(&ctx->lock);
3522
3523         if (list_empty(&tmp))
3524                 return 0;
3525
3526         spin_lock(&hctx->lock);
3527         list_splice_tail_init(&tmp, &hctx->dispatch);
3528         spin_unlock(&hctx->lock);
3529
3530         blk_mq_run_hw_queue(hctx, true);
3531         return 0;
3532 }
3533
3534 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3535 {
3536         if (!(hctx->flags & BLK_MQ_F_STACKING))
3537                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3538                                                     &hctx->cpuhp_online);
3539         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3540                                             &hctx->cpuhp_dead);
3541 }
3542
3543 /*
3544  * Before freeing hw queue, clearing the flush request reference in
3545  * tags->rqs[] for avoiding potential UAF.
3546  */
3547 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3548                 unsigned int queue_depth, struct request *flush_rq)
3549 {
3550         int i;
3551         unsigned long flags;
3552
3553         /* The hw queue may not be mapped yet */
3554         if (!tags)
3555                 return;
3556
3557         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3558
3559         for (i = 0; i < queue_depth; i++)
3560                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3561
3562         /*
3563          * Wait until all pending iteration is done.
3564          *
3565          * Request reference is cleared and it is guaranteed to be observed
3566          * after the ->lock is released.
3567          */
3568         spin_lock_irqsave(&tags->lock, flags);
3569         spin_unlock_irqrestore(&tags->lock, flags);
3570 }
3571
3572 /* hctx->ctxs will be freed in queue's release handler */
3573 static void blk_mq_exit_hctx(struct request_queue *q,
3574                 struct blk_mq_tag_set *set,
3575                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3576 {
3577         struct request *flush_rq = hctx->fq->flush_rq;
3578
3579         if (blk_mq_hw_queue_mapped(hctx))
3580                 blk_mq_tag_idle(hctx);
3581
3582         if (blk_queue_init_done(q))
3583                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3584                                 set->queue_depth, flush_rq);
3585         if (set->ops->exit_request)
3586                 set->ops->exit_request(set, flush_rq, hctx_idx);
3587
3588         if (set->ops->exit_hctx)
3589                 set->ops->exit_hctx(hctx, hctx_idx);
3590
3591         blk_mq_remove_cpuhp(hctx);
3592
3593         xa_erase(&q->hctx_table, hctx_idx);
3594
3595         spin_lock(&q->unused_hctx_lock);
3596         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3597         spin_unlock(&q->unused_hctx_lock);
3598 }
3599
3600 static void blk_mq_exit_hw_queues(struct request_queue *q,
3601                 struct blk_mq_tag_set *set, int nr_queue)
3602 {
3603         struct blk_mq_hw_ctx *hctx;
3604         unsigned long i;
3605
3606         queue_for_each_hw_ctx(q, hctx, i) {
3607                 if (i == nr_queue)
3608                         break;
3609                 blk_mq_exit_hctx(q, set, hctx, i);
3610         }
3611 }
3612
3613 static int blk_mq_init_hctx(struct request_queue *q,
3614                 struct blk_mq_tag_set *set,
3615                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3616 {
3617         hctx->queue_num = hctx_idx;
3618
3619         if (!(hctx->flags & BLK_MQ_F_STACKING))
3620                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3621                                 &hctx->cpuhp_online);
3622         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3623
3624         hctx->tags = set->tags[hctx_idx];
3625
3626         if (set->ops->init_hctx &&
3627             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3628                 goto unregister_cpu_notifier;
3629
3630         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3631                                 hctx->numa_node))
3632                 goto exit_hctx;
3633
3634         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3635                 goto exit_flush_rq;
3636
3637         return 0;
3638
3639  exit_flush_rq:
3640         if (set->ops->exit_request)
3641                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3642  exit_hctx:
3643         if (set->ops->exit_hctx)
3644                 set->ops->exit_hctx(hctx, hctx_idx);
3645  unregister_cpu_notifier:
3646         blk_mq_remove_cpuhp(hctx);
3647         return -1;
3648 }
3649
3650 static struct blk_mq_hw_ctx *
3651 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3652                 int node)
3653 {
3654         struct blk_mq_hw_ctx *hctx;
3655         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3656
3657         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3658         if (!hctx)
3659                 goto fail_alloc_hctx;
3660
3661         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3662                 goto free_hctx;
3663
3664         atomic_set(&hctx->nr_active, 0);
3665         if (node == NUMA_NO_NODE)
3666                 node = set->numa_node;
3667         hctx->numa_node = node;
3668
3669         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3670         spin_lock_init(&hctx->lock);
3671         INIT_LIST_HEAD(&hctx->dispatch);
3672         hctx->queue = q;
3673         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3674
3675         INIT_LIST_HEAD(&hctx->hctx_list);
3676
3677         /*
3678          * Allocate space for all possible cpus to avoid allocation at
3679          * runtime
3680          */
3681         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3682                         gfp, node);
3683         if (!hctx->ctxs)
3684                 goto free_cpumask;
3685
3686         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3687                                 gfp, node, false, false))
3688                 goto free_ctxs;
3689         hctx->nr_ctx = 0;
3690
3691         spin_lock_init(&hctx->dispatch_wait_lock);
3692         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3693         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3694
3695         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3696         if (!hctx->fq)
3697                 goto free_bitmap;
3698
3699         blk_mq_hctx_kobj_init(hctx);
3700
3701         return hctx;
3702
3703  free_bitmap:
3704         sbitmap_free(&hctx->ctx_map);
3705  free_ctxs:
3706         kfree(hctx->ctxs);
3707  free_cpumask:
3708         free_cpumask_var(hctx->cpumask);
3709  free_hctx:
3710         kfree(hctx);
3711  fail_alloc_hctx:
3712         return NULL;
3713 }
3714
3715 static void blk_mq_init_cpu_queues(struct request_queue *q,
3716                                    unsigned int nr_hw_queues)
3717 {
3718         struct blk_mq_tag_set *set = q->tag_set;
3719         unsigned int i, j;
3720
3721         for_each_possible_cpu(i) {
3722                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3723                 struct blk_mq_hw_ctx *hctx;
3724                 int k;
3725
3726                 __ctx->cpu = i;
3727                 spin_lock_init(&__ctx->lock);
3728                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3729                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3730
3731                 __ctx->queue = q;
3732
3733                 /*
3734                  * Set local node, IFF we have more than one hw queue. If
3735                  * not, we remain on the home node of the device
3736                  */
3737                 for (j = 0; j < set->nr_maps; j++) {
3738                         hctx = blk_mq_map_queue_type(q, j, i);
3739                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3740                                 hctx->numa_node = cpu_to_node(i);
3741                 }
3742         }
3743 }
3744
3745 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3746                                              unsigned int hctx_idx,
3747                                              unsigned int depth)
3748 {
3749         struct blk_mq_tags *tags;
3750         int ret;
3751
3752         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3753         if (!tags)
3754                 return NULL;
3755
3756         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3757         if (ret) {
3758                 blk_mq_free_rq_map(tags);
3759                 return NULL;
3760         }
3761
3762         return tags;
3763 }
3764
3765 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3766                                        int hctx_idx)
3767 {
3768         if (blk_mq_is_shared_tags(set->flags)) {
3769                 set->tags[hctx_idx] = set->shared_tags;
3770
3771                 return true;
3772         }
3773
3774         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3775                                                        set->queue_depth);
3776
3777         return set->tags[hctx_idx];
3778 }
3779
3780 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3781                              struct blk_mq_tags *tags,
3782                              unsigned int hctx_idx)
3783 {
3784         if (tags) {
3785                 blk_mq_free_rqs(set, tags, hctx_idx);
3786                 blk_mq_free_rq_map(tags);
3787         }
3788 }
3789
3790 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3791                                       unsigned int hctx_idx)
3792 {
3793         if (!blk_mq_is_shared_tags(set->flags))
3794                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3795
3796         set->tags[hctx_idx] = NULL;
3797 }
3798
3799 static void blk_mq_map_swqueue(struct request_queue *q)
3800 {
3801         unsigned int j, hctx_idx;
3802         unsigned long i;
3803         struct blk_mq_hw_ctx *hctx;
3804         struct blk_mq_ctx *ctx;
3805         struct blk_mq_tag_set *set = q->tag_set;
3806
3807         queue_for_each_hw_ctx(q, hctx, i) {
3808                 cpumask_clear(hctx->cpumask);
3809                 hctx->nr_ctx = 0;
3810                 hctx->dispatch_from = NULL;
3811         }
3812
3813         /*
3814          * Map software to hardware queues.
3815          *
3816          * If the cpu isn't present, the cpu is mapped to first hctx.
3817          */
3818         for_each_possible_cpu(i) {
3819
3820                 ctx = per_cpu_ptr(q->queue_ctx, i);
3821                 for (j = 0; j < set->nr_maps; j++) {
3822                         if (!set->map[j].nr_queues) {
3823                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3824                                                 HCTX_TYPE_DEFAULT, i);
3825                                 continue;
3826                         }
3827                         hctx_idx = set->map[j].mq_map[i];
3828                         /* unmapped hw queue can be remapped after CPU topo changed */
3829                         if (!set->tags[hctx_idx] &&
3830                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3831                                 /*
3832                                  * If tags initialization fail for some hctx,
3833                                  * that hctx won't be brought online.  In this
3834                                  * case, remap the current ctx to hctx[0] which
3835                                  * is guaranteed to always have tags allocated
3836                                  */
3837                                 set->map[j].mq_map[i] = 0;
3838                         }
3839
3840                         hctx = blk_mq_map_queue_type(q, j, i);
3841                         ctx->hctxs[j] = hctx;
3842                         /*
3843                          * If the CPU is already set in the mask, then we've
3844                          * mapped this one already. This can happen if
3845                          * devices share queues across queue maps.
3846                          */
3847                         if (cpumask_test_cpu(i, hctx->cpumask))
3848                                 continue;
3849
3850                         cpumask_set_cpu(i, hctx->cpumask);
3851                         hctx->type = j;
3852                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3853                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3854
3855                         /*
3856                          * If the nr_ctx type overflows, we have exceeded the
3857                          * amount of sw queues we can support.
3858                          */
3859                         BUG_ON(!hctx->nr_ctx);
3860                 }
3861
3862                 for (; j < HCTX_MAX_TYPES; j++)
3863                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3864                                         HCTX_TYPE_DEFAULT, i);
3865         }
3866
3867         queue_for_each_hw_ctx(q, hctx, i) {
3868                 /*
3869                  * If no software queues are mapped to this hardware queue,
3870                  * disable it and free the request entries.
3871                  */
3872                 if (!hctx->nr_ctx) {
3873                         /* Never unmap queue 0.  We need it as a
3874                          * fallback in case of a new remap fails
3875                          * allocation
3876                          */
3877                         if (i)
3878                                 __blk_mq_free_map_and_rqs(set, i);
3879
3880                         hctx->tags = NULL;
3881                         continue;
3882                 }
3883
3884                 hctx->tags = set->tags[i];
3885                 WARN_ON(!hctx->tags);
3886
3887                 /*
3888                  * Set the map size to the number of mapped software queues.
3889                  * This is more accurate and more efficient than looping
3890                  * over all possibly mapped software queues.
3891                  */
3892                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3893
3894                 /*
3895                  * Initialize batch roundrobin counts
3896                  */
3897                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3898                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3899         }
3900 }
3901
3902 /*
3903  * Caller needs to ensure that we're either frozen/quiesced, or that
3904  * the queue isn't live yet.
3905  */
3906 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3907 {
3908         struct blk_mq_hw_ctx *hctx;
3909         unsigned long i;
3910
3911         queue_for_each_hw_ctx(q, hctx, i) {
3912                 if (shared) {
3913                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3914                 } else {
3915                         blk_mq_tag_idle(hctx);
3916                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3917                 }
3918         }
3919 }
3920
3921 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3922                                          bool shared)
3923 {
3924         struct request_queue *q;
3925
3926         lockdep_assert_held(&set->tag_list_lock);
3927
3928         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3929                 blk_mq_freeze_queue(q);
3930                 queue_set_hctx_shared(q, shared);
3931                 blk_mq_unfreeze_queue(q);
3932         }
3933 }
3934
3935 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3936 {
3937         struct blk_mq_tag_set *set = q->tag_set;
3938
3939         mutex_lock(&set->tag_list_lock);
3940         list_del(&q->tag_set_list);
3941         if (list_is_singular(&set->tag_list)) {
3942                 /* just transitioned to unshared */
3943                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3944                 /* update existing queue */
3945                 blk_mq_update_tag_set_shared(set, false);
3946         }
3947         mutex_unlock(&set->tag_list_lock);
3948         INIT_LIST_HEAD(&q->tag_set_list);
3949 }
3950
3951 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3952                                      struct request_queue *q)
3953 {
3954         mutex_lock(&set->tag_list_lock);
3955
3956         /*
3957          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3958          */
3959         if (!list_empty(&set->tag_list) &&
3960             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3961                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3962                 /* update existing queue */
3963                 blk_mq_update_tag_set_shared(set, true);
3964         }
3965         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3966                 queue_set_hctx_shared(q, true);
3967         list_add_tail(&q->tag_set_list, &set->tag_list);
3968
3969         mutex_unlock(&set->tag_list_lock);
3970 }
3971
3972 /* All allocations will be freed in release handler of q->mq_kobj */
3973 static int blk_mq_alloc_ctxs(struct request_queue *q)
3974 {
3975         struct blk_mq_ctxs *ctxs;
3976         int cpu;
3977
3978         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3979         if (!ctxs)
3980                 return -ENOMEM;
3981
3982         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3983         if (!ctxs->queue_ctx)
3984                 goto fail;
3985
3986         for_each_possible_cpu(cpu) {
3987                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3988                 ctx->ctxs = ctxs;
3989         }
3990
3991         q->mq_kobj = &ctxs->kobj;
3992         q->queue_ctx = ctxs->queue_ctx;
3993
3994         return 0;
3995  fail:
3996         kfree(ctxs);
3997         return -ENOMEM;
3998 }
3999
4000 /*
4001  * It is the actual release handler for mq, but we do it from
4002  * request queue's release handler for avoiding use-after-free
4003  * and headache because q->mq_kobj shouldn't have been introduced,
4004  * but we can't group ctx/kctx kobj without it.
4005  */
4006 void blk_mq_release(struct request_queue *q)
4007 {
4008         struct blk_mq_hw_ctx *hctx, *next;
4009         unsigned long i;
4010
4011         queue_for_each_hw_ctx(q, hctx, i)
4012                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4013
4014         /* all hctx are in .unused_hctx_list now */
4015         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4016                 list_del_init(&hctx->hctx_list);
4017                 kobject_put(&hctx->kobj);
4018         }
4019
4020         xa_destroy(&q->hctx_table);
4021
4022         /*
4023          * release .mq_kobj and sw queue's kobject now because
4024          * both share lifetime with request queue.
4025          */
4026         blk_mq_sysfs_deinit(q);
4027 }
4028
4029 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4030                 void *queuedata)
4031 {
4032         struct request_queue *q;
4033         int ret;
4034
4035         q = blk_alloc_queue(set->numa_node);
4036         if (!q)
4037                 return ERR_PTR(-ENOMEM);
4038         q->queuedata = queuedata;
4039         ret = blk_mq_init_allocated_queue(set, q);
4040         if (ret) {
4041                 blk_put_queue(q);
4042                 return ERR_PTR(ret);
4043         }
4044         return q;
4045 }
4046
4047 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4048 {
4049         return blk_mq_init_queue_data(set, NULL);
4050 }
4051 EXPORT_SYMBOL(blk_mq_init_queue);
4052
4053 /**
4054  * blk_mq_destroy_queue - shutdown a request queue
4055  * @q: request queue to shutdown
4056  *
4057  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4058  * requests will be failed with -ENODEV. The caller is responsible for dropping
4059  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4060  *
4061  * Context: can sleep
4062  */
4063 void blk_mq_destroy_queue(struct request_queue *q)
4064 {
4065         WARN_ON_ONCE(!queue_is_mq(q));
4066         WARN_ON_ONCE(blk_queue_registered(q));
4067
4068         might_sleep();
4069
4070         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4071         blk_queue_start_drain(q);
4072         blk_mq_freeze_queue_wait(q);
4073
4074         blk_sync_queue(q);
4075         blk_mq_cancel_work_sync(q);
4076         blk_mq_exit_queue(q);
4077 }
4078 EXPORT_SYMBOL(blk_mq_destroy_queue);
4079
4080 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4081                 struct lock_class_key *lkclass)
4082 {
4083         struct request_queue *q;
4084         struct gendisk *disk;
4085
4086         q = blk_mq_init_queue_data(set, queuedata);
4087         if (IS_ERR(q))
4088                 return ERR_CAST(q);
4089
4090         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4091         if (!disk) {
4092                 blk_mq_destroy_queue(q);
4093                 blk_put_queue(q);
4094                 return ERR_PTR(-ENOMEM);
4095         }
4096         set_bit(GD_OWNS_QUEUE, &disk->state);
4097         return disk;
4098 }
4099 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4100
4101 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4102                 struct lock_class_key *lkclass)
4103 {
4104         struct gendisk *disk;
4105
4106         if (!blk_get_queue(q))
4107                 return NULL;
4108         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4109         if (!disk)
4110                 blk_put_queue(q);
4111         return disk;
4112 }
4113 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4114
4115 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4116                 struct blk_mq_tag_set *set, struct request_queue *q,
4117                 int hctx_idx, int node)
4118 {
4119         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4120
4121         /* reuse dead hctx first */
4122         spin_lock(&q->unused_hctx_lock);
4123         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4124                 if (tmp->numa_node == node) {
4125                         hctx = tmp;
4126                         break;
4127                 }
4128         }
4129         if (hctx)
4130                 list_del_init(&hctx->hctx_list);
4131         spin_unlock(&q->unused_hctx_lock);
4132
4133         if (!hctx)
4134                 hctx = blk_mq_alloc_hctx(q, set, node);
4135         if (!hctx)
4136                 goto fail;
4137
4138         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4139                 goto free_hctx;
4140
4141         return hctx;
4142
4143  free_hctx:
4144         kobject_put(&hctx->kobj);
4145  fail:
4146         return NULL;
4147 }
4148
4149 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4150                                                 struct request_queue *q)
4151 {
4152         struct blk_mq_hw_ctx *hctx;
4153         unsigned long i, j;
4154
4155         /* protect against switching io scheduler  */
4156         mutex_lock(&q->sysfs_lock);
4157         for (i = 0; i < set->nr_hw_queues; i++) {
4158                 int old_node;
4159                 int node = blk_mq_get_hctx_node(set, i);
4160                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4161
4162                 if (old_hctx) {
4163                         old_node = old_hctx->numa_node;
4164                         blk_mq_exit_hctx(q, set, old_hctx, i);
4165                 }
4166
4167                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4168                         if (!old_hctx)
4169                                 break;
4170                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4171                                         node, old_node);
4172                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4173                         WARN_ON_ONCE(!hctx);
4174                 }
4175         }
4176         /*
4177          * Increasing nr_hw_queues fails. Free the newly allocated
4178          * hctxs and keep the previous q->nr_hw_queues.
4179          */
4180         if (i != set->nr_hw_queues) {
4181                 j = q->nr_hw_queues;
4182         } else {
4183                 j = i;
4184                 q->nr_hw_queues = set->nr_hw_queues;
4185         }
4186
4187         xa_for_each_start(&q->hctx_table, j, hctx, j)
4188                 blk_mq_exit_hctx(q, set, hctx, j);
4189         mutex_unlock(&q->sysfs_lock);
4190 }
4191
4192 static void blk_mq_update_poll_flag(struct request_queue *q)
4193 {
4194         struct blk_mq_tag_set *set = q->tag_set;
4195
4196         if (set->nr_maps > HCTX_TYPE_POLL &&
4197             set->map[HCTX_TYPE_POLL].nr_queues)
4198                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4199         else
4200                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4201 }
4202
4203 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4204                 struct request_queue *q)
4205 {
4206         /* mark the queue as mq asap */
4207         q->mq_ops = set->ops;
4208
4209         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4210                                              blk_mq_poll_stats_bkt,
4211                                              BLK_MQ_POLL_STATS_BKTS, q);
4212         if (!q->poll_cb)
4213                 goto err_exit;
4214
4215         if (blk_mq_alloc_ctxs(q))
4216                 goto err_poll;
4217
4218         /* init q->mq_kobj and sw queues' kobjects */
4219         blk_mq_sysfs_init(q);
4220
4221         INIT_LIST_HEAD(&q->unused_hctx_list);
4222         spin_lock_init(&q->unused_hctx_lock);
4223
4224         xa_init(&q->hctx_table);
4225
4226         blk_mq_realloc_hw_ctxs(set, q);
4227         if (!q->nr_hw_queues)
4228                 goto err_hctxs;
4229
4230         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4231         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4232
4233         q->tag_set = set;
4234
4235         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4236         blk_mq_update_poll_flag(q);
4237
4238         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4239         INIT_LIST_HEAD(&q->requeue_list);
4240         spin_lock_init(&q->requeue_lock);
4241
4242         q->nr_requests = set->queue_depth;
4243
4244         /*
4245          * Default to classic polling
4246          */
4247         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4248
4249         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4250         blk_mq_add_queue_tag_set(set, q);
4251         blk_mq_map_swqueue(q);
4252         return 0;
4253
4254 err_hctxs:
4255         blk_mq_release(q);
4256 err_poll:
4257         blk_stat_free_callback(q->poll_cb);
4258         q->poll_cb = NULL;
4259 err_exit:
4260         q->mq_ops = NULL;
4261         return -ENOMEM;
4262 }
4263 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4264
4265 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4266 void blk_mq_exit_queue(struct request_queue *q)
4267 {
4268         struct blk_mq_tag_set *set = q->tag_set;
4269
4270         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4271         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4272         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4273         blk_mq_del_queue_tag_set(q);
4274 }
4275
4276 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4277 {
4278         int i;
4279
4280         if (blk_mq_is_shared_tags(set->flags)) {
4281                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4282                                                 BLK_MQ_NO_HCTX_IDX,
4283                                                 set->queue_depth);
4284                 if (!set->shared_tags)
4285                         return -ENOMEM;
4286         }
4287
4288         for (i = 0; i < set->nr_hw_queues; i++) {
4289                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4290                         goto out_unwind;
4291                 cond_resched();
4292         }
4293
4294         return 0;
4295
4296 out_unwind:
4297         while (--i >= 0)
4298                 __blk_mq_free_map_and_rqs(set, i);
4299
4300         if (blk_mq_is_shared_tags(set->flags)) {
4301                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4302                                         BLK_MQ_NO_HCTX_IDX);
4303         }
4304
4305         return -ENOMEM;
4306 }
4307
4308 /*
4309  * Allocate the request maps associated with this tag_set. Note that this
4310  * may reduce the depth asked for, if memory is tight. set->queue_depth
4311  * will be updated to reflect the allocated depth.
4312  */
4313 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4314 {
4315         unsigned int depth;
4316         int err;
4317
4318         depth = set->queue_depth;
4319         do {
4320                 err = __blk_mq_alloc_rq_maps(set);
4321                 if (!err)
4322                         break;
4323
4324                 set->queue_depth >>= 1;
4325                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4326                         err = -ENOMEM;
4327                         break;
4328                 }
4329         } while (set->queue_depth);
4330
4331         if (!set->queue_depth || err) {
4332                 pr_err("blk-mq: failed to allocate request map\n");
4333                 return -ENOMEM;
4334         }
4335
4336         if (depth != set->queue_depth)
4337                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4338                                                 depth, set->queue_depth);
4339
4340         return 0;
4341 }
4342
4343 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4344 {
4345         /*
4346          * blk_mq_map_queues() and multiple .map_queues() implementations
4347          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4348          * number of hardware queues.
4349          */
4350         if (set->nr_maps == 1)
4351                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4352
4353         if (set->ops->map_queues && !is_kdump_kernel()) {
4354                 int i;
4355
4356                 /*
4357                  * transport .map_queues is usually done in the following
4358                  * way:
4359                  *
4360                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4361                  *      mask = get_cpu_mask(queue)
4362                  *      for_each_cpu(cpu, mask)
4363                  *              set->map[x].mq_map[cpu] = queue;
4364                  * }
4365                  *
4366                  * When we need to remap, the table has to be cleared for
4367                  * killing stale mapping since one CPU may not be mapped
4368                  * to any hw queue.
4369                  */
4370                 for (i = 0; i < set->nr_maps; i++)
4371                         blk_mq_clear_mq_map(&set->map[i]);
4372
4373                 set->ops->map_queues(set);
4374         } else {
4375                 BUG_ON(set->nr_maps > 1);
4376                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4377         }
4378 }
4379
4380 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4381                                        int new_nr_hw_queues)
4382 {
4383         struct blk_mq_tags **new_tags;
4384
4385         if (set->nr_hw_queues >= new_nr_hw_queues)
4386                 goto done;
4387
4388         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4389                                 GFP_KERNEL, set->numa_node);
4390         if (!new_tags)
4391                 return -ENOMEM;
4392
4393         if (set->tags)
4394                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4395                        sizeof(*set->tags));
4396         kfree(set->tags);
4397         set->tags = new_tags;
4398 done:
4399         set->nr_hw_queues = new_nr_hw_queues;
4400         return 0;
4401 }
4402
4403 /*
4404  * Alloc a tag set to be associated with one or more request queues.
4405  * May fail with EINVAL for various error conditions. May adjust the
4406  * requested depth down, if it's too large. In that case, the set
4407  * value will be stored in set->queue_depth.
4408  */
4409 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4410 {
4411         int i, ret;
4412
4413         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4414
4415         if (!set->nr_hw_queues)
4416                 return -EINVAL;
4417         if (!set->queue_depth)
4418                 return -EINVAL;
4419         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4420                 return -EINVAL;
4421
4422         if (!set->ops->queue_rq)
4423                 return -EINVAL;
4424
4425         if (!set->ops->get_budget ^ !set->ops->put_budget)
4426                 return -EINVAL;
4427
4428         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4429                 pr_info("blk-mq: reduced tag depth to %u\n",
4430                         BLK_MQ_MAX_DEPTH);
4431                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4432         }
4433
4434         if (!set->nr_maps)
4435                 set->nr_maps = 1;
4436         else if (set->nr_maps > HCTX_MAX_TYPES)
4437                 return -EINVAL;
4438
4439         /*
4440          * If a crashdump is active, then we are potentially in a very
4441          * memory constrained environment. Limit us to 1 queue and
4442          * 64 tags to prevent using too much memory.
4443          */
4444         if (is_kdump_kernel()) {
4445                 set->nr_hw_queues = 1;
4446                 set->nr_maps = 1;
4447                 set->queue_depth = min(64U, set->queue_depth);
4448         }
4449         /*
4450          * There is no use for more h/w queues than cpus if we just have
4451          * a single map
4452          */
4453         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4454                 set->nr_hw_queues = nr_cpu_ids;
4455
4456         if (set->flags & BLK_MQ_F_BLOCKING) {
4457                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4458                 if (!set->srcu)
4459                         return -ENOMEM;
4460                 ret = init_srcu_struct(set->srcu);
4461                 if (ret)
4462                         goto out_free_srcu;
4463         }
4464
4465         ret = -ENOMEM;
4466         set->tags = kcalloc_node(set->nr_hw_queues,
4467                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4468                                  set->numa_node);
4469         if (!set->tags)
4470                 goto out_cleanup_srcu;
4471
4472         for (i = 0; i < set->nr_maps; i++) {
4473                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4474                                                   sizeof(set->map[i].mq_map[0]),
4475                                                   GFP_KERNEL, set->numa_node);
4476                 if (!set->map[i].mq_map)
4477                         goto out_free_mq_map;
4478                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4479         }
4480
4481         blk_mq_update_queue_map(set);
4482
4483         ret = blk_mq_alloc_set_map_and_rqs(set);
4484         if (ret)
4485                 goto out_free_mq_map;
4486
4487         mutex_init(&set->tag_list_lock);
4488         INIT_LIST_HEAD(&set->tag_list);
4489
4490         return 0;
4491
4492 out_free_mq_map:
4493         for (i = 0; i < set->nr_maps; i++) {
4494                 kfree(set->map[i].mq_map);
4495                 set->map[i].mq_map = NULL;
4496         }
4497         kfree(set->tags);
4498         set->tags = NULL;
4499 out_cleanup_srcu:
4500         if (set->flags & BLK_MQ_F_BLOCKING)
4501                 cleanup_srcu_struct(set->srcu);
4502 out_free_srcu:
4503         if (set->flags & BLK_MQ_F_BLOCKING)
4504                 kfree(set->srcu);
4505         return ret;
4506 }
4507 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4508
4509 /* allocate and initialize a tagset for a simple single-queue device */
4510 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4511                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4512                 unsigned int set_flags)
4513 {
4514         memset(set, 0, sizeof(*set));
4515         set->ops = ops;
4516         set->nr_hw_queues = 1;
4517         set->nr_maps = 1;
4518         set->queue_depth = queue_depth;
4519         set->numa_node = NUMA_NO_NODE;
4520         set->flags = set_flags;
4521         return blk_mq_alloc_tag_set(set);
4522 }
4523 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4524
4525 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4526 {
4527         int i, j;
4528
4529         for (i = 0; i < set->nr_hw_queues; i++)
4530                 __blk_mq_free_map_and_rqs(set, i);
4531
4532         if (blk_mq_is_shared_tags(set->flags)) {
4533                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4534                                         BLK_MQ_NO_HCTX_IDX);
4535         }
4536
4537         for (j = 0; j < set->nr_maps; j++) {
4538                 kfree(set->map[j].mq_map);
4539                 set->map[j].mq_map = NULL;
4540         }
4541
4542         kfree(set->tags);
4543         set->tags = NULL;
4544         if (set->flags & BLK_MQ_F_BLOCKING) {
4545                 cleanup_srcu_struct(set->srcu);
4546                 kfree(set->srcu);
4547         }
4548 }
4549 EXPORT_SYMBOL(blk_mq_free_tag_set);
4550
4551 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4552 {
4553         struct blk_mq_tag_set *set = q->tag_set;
4554         struct blk_mq_hw_ctx *hctx;
4555         int ret;
4556         unsigned long i;
4557
4558         if (!set)
4559                 return -EINVAL;
4560
4561         if (q->nr_requests == nr)
4562                 return 0;
4563
4564         blk_mq_freeze_queue(q);
4565         blk_mq_quiesce_queue(q);
4566
4567         ret = 0;
4568         queue_for_each_hw_ctx(q, hctx, i) {
4569                 if (!hctx->tags)
4570                         continue;
4571                 /*
4572                  * If we're using an MQ scheduler, just update the scheduler
4573                  * queue depth. This is similar to what the old code would do.
4574                  */
4575                 if (hctx->sched_tags) {
4576                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4577                                                       nr, true);
4578                 } else {
4579                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4580                                                       false);
4581                 }
4582                 if (ret)
4583                         break;
4584                 if (q->elevator && q->elevator->type->ops.depth_updated)
4585                         q->elevator->type->ops.depth_updated(hctx);
4586         }
4587         if (!ret) {
4588                 q->nr_requests = nr;
4589                 if (blk_mq_is_shared_tags(set->flags)) {
4590                         if (q->elevator)
4591                                 blk_mq_tag_update_sched_shared_tags(q);
4592                         else
4593                                 blk_mq_tag_resize_shared_tags(set, nr);
4594                 }
4595         }
4596
4597         blk_mq_unquiesce_queue(q);
4598         blk_mq_unfreeze_queue(q);
4599
4600         return ret;
4601 }
4602
4603 /*
4604  * request_queue and elevator_type pair.
4605  * It is just used by __blk_mq_update_nr_hw_queues to cache
4606  * the elevator_type associated with a request_queue.
4607  */
4608 struct blk_mq_qe_pair {
4609         struct list_head node;
4610         struct request_queue *q;
4611         struct elevator_type *type;
4612 };
4613
4614 /*
4615  * Cache the elevator_type in qe pair list and switch the
4616  * io scheduler to 'none'
4617  */
4618 static bool blk_mq_elv_switch_none(struct list_head *head,
4619                 struct request_queue *q)
4620 {
4621         struct blk_mq_qe_pair *qe;
4622
4623         if (!q->elevator)
4624                 return true;
4625
4626         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4627         if (!qe)
4628                 return false;
4629
4630         /* q->elevator needs protection from ->sysfs_lock */
4631         mutex_lock(&q->sysfs_lock);
4632
4633         INIT_LIST_HEAD(&qe->node);
4634         qe->q = q;
4635         qe->type = q->elevator->type;
4636         /* keep a reference to the elevator module as we'll switch back */
4637         __elevator_get(qe->type);
4638         list_add(&qe->node, head);
4639         elevator_disable(q);
4640         mutex_unlock(&q->sysfs_lock);
4641
4642         return true;
4643 }
4644
4645 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4646                                                 struct request_queue *q)
4647 {
4648         struct blk_mq_qe_pair *qe;
4649
4650         list_for_each_entry(qe, head, node)
4651                 if (qe->q == q)
4652                         return qe;
4653
4654         return NULL;
4655 }
4656
4657 static void blk_mq_elv_switch_back(struct list_head *head,
4658                                   struct request_queue *q)
4659 {
4660         struct blk_mq_qe_pair *qe;
4661         struct elevator_type *t;
4662
4663         qe = blk_lookup_qe_pair(head, q);
4664         if (!qe)
4665                 return;
4666         t = qe->type;
4667         list_del(&qe->node);
4668         kfree(qe);
4669
4670         mutex_lock(&q->sysfs_lock);
4671         elevator_switch(q, t);
4672         /* drop the reference acquired in blk_mq_elv_switch_none */
4673         elevator_put(t);
4674         mutex_unlock(&q->sysfs_lock);
4675 }
4676
4677 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4678                                                         int nr_hw_queues)
4679 {
4680         struct request_queue *q;
4681         LIST_HEAD(head);
4682         int prev_nr_hw_queues;
4683
4684         lockdep_assert_held(&set->tag_list_lock);
4685
4686         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4687                 nr_hw_queues = nr_cpu_ids;
4688         if (nr_hw_queues < 1)
4689                 return;
4690         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4691                 return;
4692
4693         list_for_each_entry(q, &set->tag_list, tag_set_list)
4694                 blk_mq_freeze_queue(q);
4695         /*
4696          * Switch IO scheduler to 'none', cleaning up the data associated
4697          * with the previous scheduler. We will switch back once we are done
4698          * updating the new sw to hw queue mappings.
4699          */
4700         list_for_each_entry(q, &set->tag_list, tag_set_list)
4701                 if (!blk_mq_elv_switch_none(&head, q))
4702                         goto switch_back;
4703
4704         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4705                 blk_mq_debugfs_unregister_hctxs(q);
4706                 blk_mq_sysfs_unregister_hctxs(q);
4707         }
4708
4709         prev_nr_hw_queues = set->nr_hw_queues;
4710         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4711                 goto reregister;
4712
4713 fallback:
4714         blk_mq_update_queue_map(set);
4715         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4716                 blk_mq_realloc_hw_ctxs(set, q);
4717                 blk_mq_update_poll_flag(q);
4718                 if (q->nr_hw_queues != set->nr_hw_queues) {
4719                         int i = prev_nr_hw_queues;
4720
4721                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4722                                         nr_hw_queues, prev_nr_hw_queues);
4723                         for (; i < set->nr_hw_queues; i++)
4724                                 __blk_mq_free_map_and_rqs(set, i);
4725
4726                         set->nr_hw_queues = prev_nr_hw_queues;
4727                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4728                         goto fallback;
4729                 }
4730                 blk_mq_map_swqueue(q);
4731         }
4732
4733 reregister:
4734         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4735                 blk_mq_sysfs_register_hctxs(q);
4736                 blk_mq_debugfs_register_hctxs(q);
4737         }
4738
4739 switch_back:
4740         list_for_each_entry(q, &set->tag_list, tag_set_list)
4741                 blk_mq_elv_switch_back(&head, q);
4742
4743         list_for_each_entry(q, &set->tag_list, tag_set_list)
4744                 blk_mq_unfreeze_queue(q);
4745 }
4746
4747 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4748 {
4749         mutex_lock(&set->tag_list_lock);
4750         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4751         mutex_unlock(&set->tag_list_lock);
4752 }
4753 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4754
4755 /* Enable polling stats and return whether they were already enabled. */
4756 static bool blk_poll_stats_enable(struct request_queue *q)
4757 {
4758         if (q->poll_stat)
4759                 return true;
4760
4761         return blk_stats_alloc_enable(q);
4762 }
4763
4764 static void blk_mq_poll_stats_start(struct request_queue *q)
4765 {
4766         /*
4767          * We don't arm the callback if polling stats are not enabled or the
4768          * callback is already active.
4769          */
4770         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4771                 return;
4772
4773         blk_stat_activate_msecs(q->poll_cb, 100);
4774 }
4775
4776 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4777 {
4778         struct request_queue *q = cb->data;
4779         int bucket;
4780
4781         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4782                 if (cb->stat[bucket].nr_samples)
4783                         q->poll_stat[bucket] = cb->stat[bucket];
4784         }
4785 }
4786
4787 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4788                                        struct request *rq)
4789 {
4790         unsigned long ret = 0;
4791         int bucket;
4792
4793         /*
4794          * If stats collection isn't on, don't sleep but turn it on for
4795          * future users
4796          */
4797         if (!blk_poll_stats_enable(q))
4798                 return 0;
4799
4800         /*
4801          * As an optimistic guess, use half of the mean service time
4802          * for this type of request. We can (and should) make this smarter.
4803          * For instance, if the completion latencies are tight, we can
4804          * get closer than just half the mean. This is especially
4805          * important on devices where the completion latencies are longer
4806          * than ~10 usec. We do use the stats for the relevant IO size
4807          * if available which does lead to better estimates.
4808          */
4809         bucket = blk_mq_poll_stats_bkt(rq);
4810         if (bucket < 0)
4811                 return ret;
4812
4813         if (q->poll_stat[bucket].nr_samples)
4814                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4815
4816         return ret;
4817 }
4818
4819 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4820 {
4821         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4822         struct request *rq = blk_qc_to_rq(hctx, qc);
4823         struct hrtimer_sleeper hs;
4824         enum hrtimer_mode mode;
4825         unsigned int nsecs;
4826         ktime_t kt;
4827
4828         /*
4829          * If a request has completed on queue that uses an I/O scheduler, we
4830          * won't get back a request from blk_qc_to_rq.
4831          */
4832         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4833                 return false;
4834
4835         /*
4836          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4837          *
4838          *  0:  use half of prev avg
4839          * >0:  use this specific value
4840          */
4841         if (q->poll_nsec > 0)
4842                 nsecs = q->poll_nsec;
4843         else
4844                 nsecs = blk_mq_poll_nsecs(q, rq);
4845
4846         if (!nsecs)
4847                 return false;
4848
4849         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4850
4851         /*
4852          * This will be replaced with the stats tracking code, using
4853          * 'avg_completion_time / 2' as the pre-sleep target.
4854          */
4855         kt = nsecs;
4856
4857         mode = HRTIMER_MODE_REL;
4858         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4859         hrtimer_set_expires(&hs.timer, kt);
4860
4861         do {
4862                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4863                         break;
4864                 set_current_state(TASK_UNINTERRUPTIBLE);
4865                 hrtimer_sleeper_start_expires(&hs, mode);
4866                 if (hs.task)
4867                         io_schedule();
4868                 hrtimer_cancel(&hs.timer);
4869                 mode = HRTIMER_MODE_ABS;
4870         } while (hs.task && !signal_pending(current));
4871
4872         __set_current_state(TASK_RUNNING);
4873         destroy_hrtimer_on_stack(&hs.timer);
4874
4875         /*
4876          * If we sleep, have the caller restart the poll loop to reset the
4877          * state.  Like for the other success return cases, the caller is
4878          * responsible for checking if the IO completed.  If the IO isn't
4879          * complete, we'll get called again and will go straight to the busy
4880          * poll loop.
4881          */
4882         return true;
4883 }
4884
4885 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4886                                struct io_comp_batch *iob, unsigned int flags)
4887 {
4888         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4889         long state = get_current_state();
4890         int ret;
4891
4892         do {
4893                 ret = q->mq_ops->poll(hctx, iob);
4894                 if (ret > 0) {
4895                         __set_current_state(TASK_RUNNING);
4896                         return ret;
4897                 }
4898
4899                 if (signal_pending_state(state, current))
4900                         __set_current_state(TASK_RUNNING);
4901                 if (task_is_running(current))
4902                         return 1;
4903
4904                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4905                         break;
4906                 cpu_relax();
4907         } while (!need_resched());
4908
4909         __set_current_state(TASK_RUNNING);
4910         return 0;
4911 }
4912
4913 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4914                 unsigned int flags)
4915 {
4916         if (!(flags & BLK_POLL_NOSLEEP) &&
4917             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4918                 if (blk_mq_poll_hybrid(q, cookie))
4919                         return 1;
4920         }
4921         return blk_mq_poll_classic(q, cookie, iob, flags);
4922 }
4923
4924 unsigned int blk_mq_rq_cpu(struct request *rq)
4925 {
4926         return rq->mq_ctx->cpu;
4927 }
4928 EXPORT_SYMBOL(blk_mq_rq_cpu);
4929
4930 void blk_mq_cancel_work_sync(struct request_queue *q)
4931 {
4932         struct blk_mq_hw_ctx *hctx;
4933         unsigned long i;
4934
4935         cancel_delayed_work_sync(&q->requeue_work);
4936
4937         queue_for_each_hw_ctx(q, hctx, i)
4938                 cancel_delayed_work_sync(&hctx->run_work);
4939 }
4940
4941 static int __init blk_mq_init(void)
4942 {
4943         int i;
4944
4945         for_each_possible_cpu(i)
4946                 init_llist_head(&per_cpu(blk_cpu_done, i));
4947         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4948
4949         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4950                                   "block/softirq:dead", NULL,
4951                                   blk_softirq_cpu_dead);
4952         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4953                                 blk_mq_hctx_notify_dead);
4954         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4955                                 blk_mq_hctx_notify_online,
4956                                 blk_mq_hctx_notify_offline);
4957         return 0;
4958 }
4959 subsys_initcall(blk_mq_init);