block: make rq sector size accessible for block stats
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29
30 #include <trace/events/block.h>
31
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, sectors, bucket;
48
49         ddir = rq_data_dir(rq);
50         sectors = blk_rq_stats_sectors(rq);
51
52         bucket = ddir + 2 * ilog2(sectors);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return !list_empty_careful(&hctx->dispatch) ||
69                 sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         const int bit = ctx->index_hw[hctx->type];
80
81         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82                 sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86                                       struct blk_mq_ctx *ctx)
87 {
88         const int bit = ctx->index_hw[hctx->type];
89
90         sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92
93 struct mq_inflight {
94         struct hd_struct *part;
95         unsigned int *inflight;
96 };
97
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99                                   struct request *rq, void *priv,
100                                   bool reserved)
101 {
102         struct mq_inflight *mi = priv;
103
104         /*
105          * index[0] counts the specific partition that was asked for.
106          */
107         if (rq->part == mi->part)
108                 mi->inflight[0]++;
109
110         return true;
111 }
112
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115         unsigned inflight[2];
116         struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118         inflight[0] = inflight[1] = 0;
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121         return inflight[0];
122 }
123
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125                                      struct request *rq, void *priv,
126                                      bool reserved)
127 {
128         struct mq_inflight *mi = priv;
129
130         if (rq->part == mi->part)
131                 mi->inflight[rq_data_dir(rq)]++;
132
133         return true;
134 }
135
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137                          unsigned int inflight[2])
138 {
139         struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141         inflight[0] = inflight[1] = 0;
142         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147         mutex_lock(&q->mq_freeze_lock);
148         if (++q->mq_freeze_depth == 1) {
149                 percpu_ref_kill(&q->q_usage_counter);
150                 mutex_unlock(&q->mq_freeze_lock);
151                 if (queue_is_mq(q))
152                         blk_mq_run_hw_queues(q, false);
153         } else {
154                 mutex_unlock(&q->mq_freeze_lock);
155         }
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166                                      unsigned long timeout)
167 {
168         return wait_event_timeout(q->mq_freeze_wq,
169                                         percpu_ref_is_zero(&q->q_usage_counter),
170                                         timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173
174 /*
175  * Guarantee no request is in use, so we can change any data structure of
176  * the queue afterward.
177  */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180         /*
181          * In the !blk_mq case we are only calling this to kill the
182          * q_usage_counter, otherwise this increases the freeze depth
183          * and waits for it to return to zero.  For this reason there is
184          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185          * exported to drivers as the only user for unfreeze is blk_mq.
186          */
187         blk_freeze_queue_start(q);
188         blk_mq_freeze_queue_wait(q);
189 }
190
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193         /*
194          * ...just an alias to keep freeze and unfreeze actions balanced
195          * in the blk_mq_* namespace
196          */
197         blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203         mutex_lock(&q->mq_freeze_lock);
204         q->mq_freeze_depth--;
205         WARN_ON_ONCE(q->mq_freeze_depth < 0);
206         if (!q->mq_freeze_depth) {
207                 percpu_ref_resurrect(&q->q_usage_counter);
208                 wake_up_all(&q->mq_freeze_wq);
209         }
210         mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213
214 /*
215  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216  * mpt3sas driver such that this function can be removed.
217  */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
224 /**
225  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226  * @q: request queue.
227  *
228  * Note: this function does not prevent that the struct request end_io()
229  * callback function is invoked. Once this function is returned, we make
230  * sure no dispatch can happen until the queue is unquiesced via
231  * blk_mq_unquiesce_queue().
232  */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235         struct blk_mq_hw_ctx *hctx;
236         unsigned int i;
237         bool rcu = false;
238
239         blk_mq_quiesce_queue_nowait(q);
240
241         queue_for_each_hw_ctx(q, hctx, i) {
242                 if (hctx->flags & BLK_MQ_F_BLOCKING)
243                         synchronize_srcu(hctx->srcu);
244                 else
245                         rcu = true;
246         }
247         if (rcu)
248                 synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
252 /*
253  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254  * @q: request queue.
255  *
256  * This function recovers queue into the state before quiescing
257  * which is done by blk_mq_quiesce_queue.
258  */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262
263         /* dispatch requests which are inserted during quiescing */
264         blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270         struct blk_mq_hw_ctx *hctx;
271         unsigned int i;
272
273         queue_for_each_hw_ctx(q, hctx, i)
274                 if (blk_mq_hw_queue_mapped(hctx))
275                         blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280         return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283
284 /*
285  * Only need start/end time stamping if we have stats enabled, or using
286  * an IO scheduler.
287  */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290         return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294                 unsigned int tag, unsigned int op, u64 alloc_time_ns)
295 {
296         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297         struct request *rq = tags->static_rqs[tag];
298         req_flags_t rq_flags = 0;
299
300         if (data->flags & BLK_MQ_REQ_INTERNAL) {
301                 rq->tag = -1;
302                 rq->internal_tag = tag;
303         } else {
304                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305                         rq_flags = RQF_MQ_INFLIGHT;
306                         atomic_inc(&data->hctx->nr_active);
307                 }
308                 rq->tag = tag;
309                 rq->internal_tag = -1;
310                 data->hctx->tags->rqs[rq->tag] = rq;
311         }
312
313         /* csd/requeue_work/fifo_time is initialized before use */
314         rq->q = data->q;
315         rq->mq_ctx = data->ctx;
316         rq->mq_hctx = data->hctx;
317         rq->rq_flags = rq_flags;
318         rq->cmd_flags = op;
319         if (data->flags & BLK_MQ_REQ_PREEMPT)
320                 rq->rq_flags |= RQF_PREEMPT;
321         if (blk_queue_io_stat(data->q))
322                 rq->rq_flags |= RQF_IO_STAT;
323         INIT_LIST_HEAD(&rq->queuelist);
324         INIT_HLIST_NODE(&rq->hash);
325         RB_CLEAR_NODE(&rq->rb_node);
326         rq->rq_disk = NULL;
327         rq->part = NULL;
328 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
329         rq->alloc_time_ns = alloc_time_ns;
330 #endif
331         if (blk_mq_need_time_stamp(rq))
332                 rq->start_time_ns = ktime_get_ns();
333         else
334                 rq->start_time_ns = 0;
335         rq->io_start_time_ns = 0;
336         rq->stats_sectors = 0;
337         rq->nr_phys_segments = 0;
338 #if defined(CONFIG_BLK_DEV_INTEGRITY)
339         rq->nr_integrity_segments = 0;
340 #endif
341         /* tag was already set */
342         rq->extra_len = 0;
343         WRITE_ONCE(rq->deadline, 0);
344
345         rq->timeout = 0;
346
347         rq->end_io = NULL;
348         rq->end_io_data = NULL;
349
350         data->ctx->rq_dispatched[op_is_sync(op)]++;
351         refcount_set(&rq->ref, 1);
352         return rq;
353 }
354
355 static struct request *blk_mq_get_request(struct request_queue *q,
356                                           struct bio *bio,
357                                           struct blk_mq_alloc_data *data)
358 {
359         struct elevator_queue *e = q->elevator;
360         struct request *rq;
361         unsigned int tag;
362         bool clear_ctx_on_error = false;
363         u64 alloc_time_ns = 0;
364
365         blk_queue_enter_live(q);
366
367         /* alloc_time includes depth and tag waits */
368         if (blk_queue_rq_alloc_time(q))
369                 alloc_time_ns = ktime_get_ns();
370
371         data->q = q;
372         if (likely(!data->ctx)) {
373                 data->ctx = blk_mq_get_ctx(q);
374                 clear_ctx_on_error = true;
375         }
376         if (likely(!data->hctx))
377                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
378                                                 data->ctx);
379         if (data->cmd_flags & REQ_NOWAIT)
380                 data->flags |= BLK_MQ_REQ_NOWAIT;
381
382         if (e) {
383                 data->flags |= BLK_MQ_REQ_INTERNAL;
384
385                 /*
386                  * Flush requests are special and go directly to the
387                  * dispatch list. Don't include reserved tags in the
388                  * limiting, as it isn't useful.
389                  */
390                 if (!op_is_flush(data->cmd_flags) &&
391                     e->type->ops.limit_depth &&
392                     !(data->flags & BLK_MQ_REQ_RESERVED))
393                         e->type->ops.limit_depth(data->cmd_flags, data);
394         } else {
395                 blk_mq_tag_busy(data->hctx);
396         }
397
398         tag = blk_mq_get_tag(data);
399         if (tag == BLK_MQ_TAG_FAIL) {
400                 if (clear_ctx_on_error)
401                         data->ctx = NULL;
402                 blk_queue_exit(q);
403                 return NULL;
404         }
405
406         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
407         if (!op_is_flush(data->cmd_flags)) {
408                 rq->elv.icq = NULL;
409                 if (e && e->type->ops.prepare_request) {
410                         if (e->type->icq_cache)
411                                 blk_mq_sched_assign_ioc(rq);
412
413                         e->type->ops.prepare_request(rq, bio);
414                         rq->rq_flags |= RQF_ELVPRIV;
415                 }
416         }
417         data->hctx->queued++;
418         return rq;
419 }
420
421 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
422                 blk_mq_req_flags_t flags)
423 {
424         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
425         struct request *rq;
426         int ret;
427
428         ret = blk_queue_enter(q, flags);
429         if (ret)
430                 return ERR_PTR(ret);
431
432         rq = blk_mq_get_request(q, NULL, &alloc_data);
433         blk_queue_exit(q);
434
435         if (!rq)
436                 return ERR_PTR(-EWOULDBLOCK);
437
438         rq->__data_len = 0;
439         rq->__sector = (sector_t) -1;
440         rq->bio = rq->biotail = NULL;
441         return rq;
442 }
443 EXPORT_SYMBOL(blk_mq_alloc_request);
444
445 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
446         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
447 {
448         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
449         struct request *rq;
450         unsigned int cpu;
451         int ret;
452
453         /*
454          * If the tag allocator sleeps we could get an allocation for a
455          * different hardware context.  No need to complicate the low level
456          * allocator for this for the rare use case of a command tied to
457          * a specific queue.
458          */
459         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
460                 return ERR_PTR(-EINVAL);
461
462         if (hctx_idx >= q->nr_hw_queues)
463                 return ERR_PTR(-EIO);
464
465         ret = blk_queue_enter(q, flags);
466         if (ret)
467                 return ERR_PTR(ret);
468
469         /*
470          * Check if the hardware context is actually mapped to anything.
471          * If not tell the caller that it should skip this queue.
472          */
473         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
474         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
475                 blk_queue_exit(q);
476                 return ERR_PTR(-EXDEV);
477         }
478         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
479         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
480
481         rq = blk_mq_get_request(q, NULL, &alloc_data);
482         blk_queue_exit(q);
483
484         if (!rq)
485                 return ERR_PTR(-EWOULDBLOCK);
486
487         return rq;
488 }
489 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
490
491 static void __blk_mq_free_request(struct request *rq)
492 {
493         struct request_queue *q = rq->q;
494         struct blk_mq_ctx *ctx = rq->mq_ctx;
495         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
496         const int sched_tag = rq->internal_tag;
497
498         blk_pm_mark_last_busy(rq);
499         rq->mq_hctx = NULL;
500         if (rq->tag != -1)
501                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
502         if (sched_tag != -1)
503                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
504         blk_mq_sched_restart(hctx);
505         blk_queue_exit(q);
506 }
507
508 void blk_mq_free_request(struct request *rq)
509 {
510         struct request_queue *q = rq->q;
511         struct elevator_queue *e = q->elevator;
512         struct blk_mq_ctx *ctx = rq->mq_ctx;
513         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
514
515         if (rq->rq_flags & RQF_ELVPRIV) {
516                 if (e && e->type->ops.finish_request)
517                         e->type->ops.finish_request(rq);
518                 if (rq->elv.icq) {
519                         put_io_context(rq->elv.icq->ioc);
520                         rq->elv.icq = NULL;
521                 }
522         }
523
524         ctx->rq_completed[rq_is_sync(rq)]++;
525         if (rq->rq_flags & RQF_MQ_INFLIGHT)
526                 atomic_dec(&hctx->nr_active);
527
528         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
529                 laptop_io_completion(q->backing_dev_info);
530
531         rq_qos_done(q, rq);
532
533         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
534         if (refcount_dec_and_test(&rq->ref))
535                 __blk_mq_free_request(rq);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_free_request);
538
539 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
540 {
541         u64 now = 0;
542
543         if (blk_mq_need_time_stamp(rq))
544                 now = ktime_get_ns();
545
546         if (rq->rq_flags & RQF_STATS) {
547                 blk_mq_poll_stats_start(rq->q);
548                 blk_stat_add(rq, now);
549         }
550
551         if (rq->internal_tag != -1)
552                 blk_mq_sched_completed_request(rq, now);
553
554         blk_account_io_done(rq, now);
555
556         if (rq->end_io) {
557                 rq_qos_done(rq->q, rq);
558                 rq->end_io(rq, error);
559         } else {
560                 blk_mq_free_request(rq);
561         }
562 }
563 EXPORT_SYMBOL(__blk_mq_end_request);
564
565 void blk_mq_end_request(struct request *rq, blk_status_t error)
566 {
567         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
568                 BUG();
569         __blk_mq_end_request(rq, error);
570 }
571 EXPORT_SYMBOL(blk_mq_end_request);
572
573 static void __blk_mq_complete_request_remote(void *data)
574 {
575         struct request *rq = data;
576         struct request_queue *q = rq->q;
577
578         q->mq_ops->complete(rq);
579 }
580
581 static void __blk_mq_complete_request(struct request *rq)
582 {
583         struct blk_mq_ctx *ctx = rq->mq_ctx;
584         struct request_queue *q = rq->q;
585         bool shared = false;
586         int cpu;
587
588         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
589         /*
590          * Most of single queue controllers, there is only one irq vector
591          * for handling IO completion, and the only irq's affinity is set
592          * as all possible CPUs. On most of ARCHs, this affinity means the
593          * irq is handled on one specific CPU.
594          *
595          * So complete IO reqeust in softirq context in case of single queue
596          * for not degrading IO performance by irqsoff latency.
597          */
598         if (q->nr_hw_queues == 1) {
599                 __blk_complete_request(rq);
600                 return;
601         }
602
603         /*
604          * For a polled request, always complete locallly, it's pointless
605          * to redirect the completion.
606          */
607         if ((rq->cmd_flags & REQ_HIPRI) ||
608             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
609                 q->mq_ops->complete(rq);
610                 return;
611         }
612
613         cpu = get_cpu();
614         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
615                 shared = cpus_share_cache(cpu, ctx->cpu);
616
617         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
618                 rq->csd.func = __blk_mq_complete_request_remote;
619                 rq->csd.info = rq;
620                 rq->csd.flags = 0;
621                 smp_call_function_single_async(ctx->cpu, &rq->csd);
622         } else {
623                 q->mq_ops->complete(rq);
624         }
625         put_cpu();
626 }
627
628 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
629         __releases(hctx->srcu)
630 {
631         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
632                 rcu_read_unlock();
633         else
634                 srcu_read_unlock(hctx->srcu, srcu_idx);
635 }
636
637 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
638         __acquires(hctx->srcu)
639 {
640         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
641                 /* shut up gcc false positive */
642                 *srcu_idx = 0;
643                 rcu_read_lock();
644         } else
645                 *srcu_idx = srcu_read_lock(hctx->srcu);
646 }
647
648 /**
649  * blk_mq_complete_request - end I/O on a request
650  * @rq:         the request being processed
651  *
652  * Description:
653  *      Ends all I/O on a request. It does not handle partial completions.
654  *      The actual completion happens out-of-order, through a IPI handler.
655  **/
656 bool blk_mq_complete_request(struct request *rq)
657 {
658         if (unlikely(blk_should_fake_timeout(rq->q)))
659                 return false;
660         __blk_mq_complete_request(rq);
661         return true;
662 }
663 EXPORT_SYMBOL(blk_mq_complete_request);
664
665 int blk_mq_request_started(struct request *rq)
666 {
667         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
668 }
669 EXPORT_SYMBOL_GPL(blk_mq_request_started);
670
671 int blk_mq_request_completed(struct request *rq)
672 {
673         return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_request_completed);
676
677 void blk_mq_start_request(struct request *rq)
678 {
679         struct request_queue *q = rq->q;
680
681         trace_block_rq_issue(q, rq);
682
683         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
684                 rq->io_start_time_ns = ktime_get_ns();
685                 rq->stats_sectors = blk_rq_sectors(rq);
686                 rq->rq_flags |= RQF_STATS;
687                 rq_qos_issue(q, rq);
688         }
689
690         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
691
692         blk_add_timer(rq);
693         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
694
695         if (q->dma_drain_size && blk_rq_bytes(rq)) {
696                 /*
697                  * Make sure space for the drain appears.  We know we can do
698                  * this because max_hw_segments has been adjusted to be one
699                  * fewer than the device can handle.
700                  */
701                 rq->nr_phys_segments++;
702         }
703 }
704 EXPORT_SYMBOL(blk_mq_start_request);
705
706 static void __blk_mq_requeue_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709
710         blk_mq_put_driver_tag(rq);
711
712         trace_block_rq_requeue(q, rq);
713         rq_qos_requeue(q, rq);
714
715         if (blk_mq_request_started(rq)) {
716                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
717                 rq->rq_flags &= ~RQF_TIMED_OUT;
718                 if (q->dma_drain_size && blk_rq_bytes(rq))
719                         rq->nr_phys_segments--;
720         }
721 }
722
723 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
724 {
725         __blk_mq_requeue_request(rq);
726
727         /* this request will be re-inserted to io scheduler queue */
728         blk_mq_sched_requeue_request(rq);
729
730         BUG_ON(!list_empty(&rq->queuelist));
731         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
732 }
733 EXPORT_SYMBOL(blk_mq_requeue_request);
734
735 static void blk_mq_requeue_work(struct work_struct *work)
736 {
737         struct request_queue *q =
738                 container_of(work, struct request_queue, requeue_work.work);
739         LIST_HEAD(rq_list);
740         struct request *rq, *next;
741
742         spin_lock_irq(&q->requeue_lock);
743         list_splice_init(&q->requeue_list, &rq_list);
744         spin_unlock_irq(&q->requeue_lock);
745
746         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
747                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
748                         continue;
749
750                 rq->rq_flags &= ~RQF_SOFTBARRIER;
751                 list_del_init(&rq->queuelist);
752                 /*
753                  * If RQF_DONTPREP, rq has contained some driver specific
754                  * data, so insert it to hctx dispatch list to avoid any
755                  * merge.
756                  */
757                 if (rq->rq_flags & RQF_DONTPREP)
758                         blk_mq_request_bypass_insert(rq, false);
759                 else
760                         blk_mq_sched_insert_request(rq, true, false, false);
761         }
762
763         while (!list_empty(&rq_list)) {
764                 rq = list_entry(rq_list.next, struct request, queuelist);
765                 list_del_init(&rq->queuelist);
766                 blk_mq_sched_insert_request(rq, false, false, false);
767         }
768
769         blk_mq_run_hw_queues(q, false);
770 }
771
772 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
773                                 bool kick_requeue_list)
774 {
775         struct request_queue *q = rq->q;
776         unsigned long flags;
777
778         /*
779          * We abuse this flag that is otherwise used by the I/O scheduler to
780          * request head insertion from the workqueue.
781          */
782         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
783
784         spin_lock_irqsave(&q->requeue_lock, flags);
785         if (at_head) {
786                 rq->rq_flags |= RQF_SOFTBARRIER;
787                 list_add(&rq->queuelist, &q->requeue_list);
788         } else {
789                 list_add_tail(&rq->queuelist, &q->requeue_list);
790         }
791         spin_unlock_irqrestore(&q->requeue_lock, flags);
792
793         if (kick_requeue_list)
794                 blk_mq_kick_requeue_list(q);
795 }
796
797 void blk_mq_kick_requeue_list(struct request_queue *q)
798 {
799         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
800 }
801 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
802
803 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
804                                     unsigned long msecs)
805 {
806         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
807                                     msecs_to_jiffies(msecs));
808 }
809 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
810
811 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
812 {
813         if (tag < tags->nr_tags) {
814                 prefetch(tags->rqs[tag]);
815                 return tags->rqs[tag];
816         }
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(blk_mq_tag_to_rq);
821
822 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
823                                void *priv, bool reserved)
824 {
825         /*
826          * If we find a request that is inflight and the queue matches,
827          * we know the queue is busy. Return false to stop the iteration.
828          */
829         if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
830                 bool *busy = priv;
831
832                 *busy = true;
833                 return false;
834         }
835
836         return true;
837 }
838
839 bool blk_mq_queue_inflight(struct request_queue *q)
840 {
841         bool busy = false;
842
843         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
844         return busy;
845 }
846 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
847
848 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
849 {
850         req->rq_flags |= RQF_TIMED_OUT;
851         if (req->q->mq_ops->timeout) {
852                 enum blk_eh_timer_return ret;
853
854                 ret = req->q->mq_ops->timeout(req, reserved);
855                 if (ret == BLK_EH_DONE)
856                         return;
857                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
858         }
859
860         blk_add_timer(req);
861 }
862
863 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
864 {
865         unsigned long deadline;
866
867         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
868                 return false;
869         if (rq->rq_flags & RQF_TIMED_OUT)
870                 return false;
871
872         deadline = READ_ONCE(rq->deadline);
873         if (time_after_eq(jiffies, deadline))
874                 return true;
875
876         if (*next == 0)
877                 *next = deadline;
878         else if (time_after(*next, deadline))
879                 *next = deadline;
880         return false;
881 }
882
883 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
884                 struct request *rq, void *priv, bool reserved)
885 {
886         unsigned long *next = priv;
887
888         /*
889          * Just do a quick check if it is expired before locking the request in
890          * so we're not unnecessarilly synchronizing across CPUs.
891          */
892         if (!blk_mq_req_expired(rq, next))
893                 return true;
894
895         /*
896          * We have reason to believe the request may be expired. Take a
897          * reference on the request to lock this request lifetime into its
898          * currently allocated context to prevent it from being reallocated in
899          * the event the completion by-passes this timeout handler.
900          *
901          * If the reference was already released, then the driver beat the
902          * timeout handler to posting a natural completion.
903          */
904         if (!refcount_inc_not_zero(&rq->ref))
905                 return true;
906
907         /*
908          * The request is now locked and cannot be reallocated underneath the
909          * timeout handler's processing. Re-verify this exact request is truly
910          * expired; if it is not expired, then the request was completed and
911          * reallocated as a new request.
912          */
913         if (blk_mq_req_expired(rq, next))
914                 blk_mq_rq_timed_out(rq, reserved);
915         if (refcount_dec_and_test(&rq->ref))
916                 __blk_mq_free_request(rq);
917
918         return true;
919 }
920
921 static void blk_mq_timeout_work(struct work_struct *work)
922 {
923         struct request_queue *q =
924                 container_of(work, struct request_queue, timeout_work);
925         unsigned long next = 0;
926         struct blk_mq_hw_ctx *hctx;
927         int i;
928
929         /* A deadlock might occur if a request is stuck requiring a
930          * timeout at the same time a queue freeze is waiting
931          * completion, since the timeout code would not be able to
932          * acquire the queue reference here.
933          *
934          * That's why we don't use blk_queue_enter here; instead, we use
935          * percpu_ref_tryget directly, because we need to be able to
936          * obtain a reference even in the short window between the queue
937          * starting to freeze, by dropping the first reference in
938          * blk_freeze_queue_start, and the moment the last request is
939          * consumed, marked by the instant q_usage_counter reaches
940          * zero.
941          */
942         if (!percpu_ref_tryget(&q->q_usage_counter))
943                 return;
944
945         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
946
947         if (next != 0) {
948                 mod_timer(&q->timeout, next);
949         } else {
950                 /*
951                  * Request timeouts are handled as a forward rolling timer. If
952                  * we end up here it means that no requests are pending and
953                  * also that no request has been pending for a while. Mark
954                  * each hctx as idle.
955                  */
956                 queue_for_each_hw_ctx(q, hctx, i) {
957                         /* the hctx may be unmapped, so check it here */
958                         if (blk_mq_hw_queue_mapped(hctx))
959                                 blk_mq_tag_idle(hctx);
960                 }
961         }
962         blk_queue_exit(q);
963 }
964
965 struct flush_busy_ctx_data {
966         struct blk_mq_hw_ctx *hctx;
967         struct list_head *list;
968 };
969
970 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
971 {
972         struct flush_busy_ctx_data *flush_data = data;
973         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
974         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
975         enum hctx_type type = hctx->type;
976
977         spin_lock(&ctx->lock);
978         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
979         sbitmap_clear_bit(sb, bitnr);
980         spin_unlock(&ctx->lock);
981         return true;
982 }
983
984 /*
985  * Process software queues that have been marked busy, splicing them
986  * to the for-dispatch
987  */
988 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
989 {
990         struct flush_busy_ctx_data data = {
991                 .hctx = hctx,
992                 .list = list,
993         };
994
995         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
996 }
997 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
998
999 struct dispatch_rq_data {
1000         struct blk_mq_hw_ctx *hctx;
1001         struct request *rq;
1002 };
1003
1004 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1005                 void *data)
1006 {
1007         struct dispatch_rq_data *dispatch_data = data;
1008         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1009         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1010         enum hctx_type type = hctx->type;
1011
1012         spin_lock(&ctx->lock);
1013         if (!list_empty(&ctx->rq_lists[type])) {
1014                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1015                 list_del_init(&dispatch_data->rq->queuelist);
1016                 if (list_empty(&ctx->rq_lists[type]))
1017                         sbitmap_clear_bit(sb, bitnr);
1018         }
1019         spin_unlock(&ctx->lock);
1020
1021         return !dispatch_data->rq;
1022 }
1023
1024 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1025                                         struct blk_mq_ctx *start)
1026 {
1027         unsigned off = start ? start->index_hw[hctx->type] : 0;
1028         struct dispatch_rq_data data = {
1029                 .hctx = hctx,
1030                 .rq   = NULL,
1031         };
1032
1033         __sbitmap_for_each_set(&hctx->ctx_map, off,
1034                                dispatch_rq_from_ctx, &data);
1035
1036         return data.rq;
1037 }
1038
1039 static inline unsigned int queued_to_index(unsigned int queued)
1040 {
1041         if (!queued)
1042                 return 0;
1043
1044         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1045 }
1046
1047 bool blk_mq_get_driver_tag(struct request *rq)
1048 {
1049         struct blk_mq_alloc_data data = {
1050                 .q = rq->q,
1051                 .hctx = rq->mq_hctx,
1052                 .flags = BLK_MQ_REQ_NOWAIT,
1053                 .cmd_flags = rq->cmd_flags,
1054         };
1055         bool shared;
1056
1057         if (rq->tag != -1)
1058                 goto done;
1059
1060         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1061                 data.flags |= BLK_MQ_REQ_RESERVED;
1062
1063         shared = blk_mq_tag_busy(data.hctx);
1064         rq->tag = blk_mq_get_tag(&data);
1065         if (rq->tag >= 0) {
1066                 if (shared) {
1067                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1068                         atomic_inc(&data.hctx->nr_active);
1069                 }
1070                 data.hctx->tags->rqs[rq->tag] = rq;
1071         }
1072
1073 done:
1074         return rq->tag != -1;
1075 }
1076
1077 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1078                                 int flags, void *key)
1079 {
1080         struct blk_mq_hw_ctx *hctx;
1081
1082         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1083
1084         spin_lock(&hctx->dispatch_wait_lock);
1085         if (!list_empty(&wait->entry)) {
1086                 struct sbitmap_queue *sbq;
1087
1088                 list_del_init(&wait->entry);
1089                 sbq = &hctx->tags->bitmap_tags;
1090                 atomic_dec(&sbq->ws_active);
1091         }
1092         spin_unlock(&hctx->dispatch_wait_lock);
1093
1094         blk_mq_run_hw_queue(hctx, true);
1095         return 1;
1096 }
1097
1098 /*
1099  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1100  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1101  * restart. For both cases, take care to check the condition again after
1102  * marking us as waiting.
1103  */
1104 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1105                                  struct request *rq)
1106 {
1107         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1108         struct wait_queue_head *wq;
1109         wait_queue_entry_t *wait;
1110         bool ret;
1111
1112         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1113                 blk_mq_sched_mark_restart_hctx(hctx);
1114
1115                 /*
1116                  * It's possible that a tag was freed in the window between the
1117                  * allocation failure and adding the hardware queue to the wait
1118                  * queue.
1119                  *
1120                  * Don't clear RESTART here, someone else could have set it.
1121                  * At most this will cost an extra queue run.
1122                  */
1123                 return blk_mq_get_driver_tag(rq);
1124         }
1125
1126         wait = &hctx->dispatch_wait;
1127         if (!list_empty_careful(&wait->entry))
1128                 return false;
1129
1130         wq = &bt_wait_ptr(sbq, hctx)->wait;
1131
1132         spin_lock_irq(&wq->lock);
1133         spin_lock(&hctx->dispatch_wait_lock);
1134         if (!list_empty(&wait->entry)) {
1135                 spin_unlock(&hctx->dispatch_wait_lock);
1136                 spin_unlock_irq(&wq->lock);
1137                 return false;
1138         }
1139
1140         atomic_inc(&sbq->ws_active);
1141         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1142         __add_wait_queue(wq, wait);
1143
1144         /*
1145          * It's possible that a tag was freed in the window between the
1146          * allocation failure and adding the hardware queue to the wait
1147          * queue.
1148          */
1149         ret = blk_mq_get_driver_tag(rq);
1150         if (!ret) {
1151                 spin_unlock(&hctx->dispatch_wait_lock);
1152                 spin_unlock_irq(&wq->lock);
1153                 return false;
1154         }
1155
1156         /*
1157          * We got a tag, remove ourselves from the wait queue to ensure
1158          * someone else gets the wakeup.
1159          */
1160         list_del_init(&wait->entry);
1161         atomic_dec(&sbq->ws_active);
1162         spin_unlock(&hctx->dispatch_wait_lock);
1163         spin_unlock_irq(&wq->lock);
1164
1165         return true;
1166 }
1167
1168 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1169 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1170 /*
1171  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1172  * - EWMA is one simple way to compute running average value
1173  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1174  * - take 4 as factor for avoiding to get too small(0) result, and this
1175  *   factor doesn't matter because EWMA decreases exponentially
1176  */
1177 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1178 {
1179         unsigned int ewma;
1180
1181         if (hctx->queue->elevator)
1182                 return;
1183
1184         ewma = hctx->dispatch_busy;
1185
1186         if (!ewma && !busy)
1187                 return;
1188
1189         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1190         if (busy)
1191                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1192         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1193
1194         hctx->dispatch_busy = ewma;
1195 }
1196
1197 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1198
1199 /*
1200  * Returns true if we did some work AND can potentially do more.
1201  */
1202 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1203                              bool got_budget)
1204 {
1205         struct blk_mq_hw_ctx *hctx;
1206         struct request *rq, *nxt;
1207         bool no_tag = false;
1208         int errors, queued;
1209         blk_status_t ret = BLK_STS_OK;
1210
1211         if (list_empty(list))
1212                 return false;
1213
1214         WARN_ON(!list_is_singular(list) && got_budget);
1215
1216         /*
1217          * Now process all the entries, sending them to the driver.
1218          */
1219         errors = queued = 0;
1220         do {
1221                 struct blk_mq_queue_data bd;
1222
1223                 rq = list_first_entry(list, struct request, queuelist);
1224
1225                 hctx = rq->mq_hctx;
1226                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1227                         break;
1228
1229                 if (!blk_mq_get_driver_tag(rq)) {
1230                         /*
1231                          * The initial allocation attempt failed, so we need to
1232                          * rerun the hardware queue when a tag is freed. The
1233                          * waitqueue takes care of that. If the queue is run
1234                          * before we add this entry back on the dispatch list,
1235                          * we'll re-run it below.
1236                          */
1237                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1238                                 blk_mq_put_dispatch_budget(hctx);
1239                                 /*
1240                                  * For non-shared tags, the RESTART check
1241                                  * will suffice.
1242                                  */
1243                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1244                                         no_tag = true;
1245                                 break;
1246                         }
1247                 }
1248
1249                 list_del_init(&rq->queuelist);
1250
1251                 bd.rq = rq;
1252
1253                 /*
1254                  * Flag last if we have no more requests, or if we have more
1255                  * but can't assign a driver tag to it.
1256                  */
1257                 if (list_empty(list))
1258                         bd.last = true;
1259                 else {
1260                         nxt = list_first_entry(list, struct request, queuelist);
1261                         bd.last = !blk_mq_get_driver_tag(nxt);
1262                 }
1263
1264                 ret = q->mq_ops->queue_rq(hctx, &bd);
1265                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1266                         /*
1267                          * If an I/O scheduler has been configured and we got a
1268                          * driver tag for the next request already, free it
1269                          * again.
1270                          */
1271                         if (!list_empty(list)) {
1272                                 nxt = list_first_entry(list, struct request, queuelist);
1273                                 blk_mq_put_driver_tag(nxt);
1274                         }
1275                         list_add(&rq->queuelist, list);
1276                         __blk_mq_requeue_request(rq);
1277                         break;
1278                 }
1279
1280                 if (unlikely(ret != BLK_STS_OK)) {
1281                         errors++;
1282                         blk_mq_end_request(rq, BLK_STS_IOERR);
1283                         continue;
1284                 }
1285
1286                 queued++;
1287         } while (!list_empty(list));
1288
1289         hctx->dispatched[queued_to_index(queued)]++;
1290
1291         /*
1292          * Any items that need requeuing? Stuff them into hctx->dispatch,
1293          * that is where we will continue on next queue run.
1294          */
1295         if (!list_empty(list)) {
1296                 bool needs_restart;
1297
1298                 /*
1299                  * If we didn't flush the entire list, we could have told
1300                  * the driver there was more coming, but that turned out to
1301                  * be a lie.
1302                  */
1303                 if (q->mq_ops->commit_rqs)
1304                         q->mq_ops->commit_rqs(hctx);
1305
1306                 spin_lock(&hctx->lock);
1307                 list_splice_init(list, &hctx->dispatch);
1308                 spin_unlock(&hctx->lock);
1309
1310                 /*
1311                  * If SCHED_RESTART was set by the caller of this function and
1312                  * it is no longer set that means that it was cleared by another
1313                  * thread and hence that a queue rerun is needed.
1314                  *
1315                  * If 'no_tag' is set, that means that we failed getting
1316                  * a driver tag with an I/O scheduler attached. If our dispatch
1317                  * waitqueue is no longer active, ensure that we run the queue
1318                  * AFTER adding our entries back to the list.
1319                  *
1320                  * If no I/O scheduler has been configured it is possible that
1321                  * the hardware queue got stopped and restarted before requests
1322                  * were pushed back onto the dispatch list. Rerun the queue to
1323                  * avoid starvation. Notes:
1324                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1325                  *   been stopped before rerunning a queue.
1326                  * - Some but not all block drivers stop a queue before
1327                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1328                  *   and dm-rq.
1329                  *
1330                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1331                  * bit is set, run queue after a delay to avoid IO stalls
1332                  * that could otherwise occur if the queue is idle.
1333                  */
1334                 needs_restart = blk_mq_sched_needs_restart(hctx);
1335                 if (!needs_restart ||
1336                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1337                         blk_mq_run_hw_queue(hctx, true);
1338                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1339                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1340
1341                 blk_mq_update_dispatch_busy(hctx, true);
1342                 return false;
1343         } else
1344                 blk_mq_update_dispatch_busy(hctx, false);
1345
1346         /*
1347          * If the host/device is unable to accept more work, inform the
1348          * caller of that.
1349          */
1350         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1351                 return false;
1352
1353         return (queued + errors) != 0;
1354 }
1355
1356 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1357 {
1358         int srcu_idx;
1359
1360         /*
1361          * We should be running this queue from one of the CPUs that
1362          * are mapped to it.
1363          *
1364          * There are at least two related races now between setting
1365          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1366          * __blk_mq_run_hw_queue():
1367          *
1368          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1369          *   but later it becomes online, then this warning is harmless
1370          *   at all
1371          *
1372          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1373          *   but later it becomes offline, then the warning can't be
1374          *   triggered, and we depend on blk-mq timeout handler to
1375          *   handle dispatched requests to this hctx
1376          */
1377         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1378                 cpu_online(hctx->next_cpu)) {
1379                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1380                         raw_smp_processor_id(),
1381                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1382                 dump_stack();
1383         }
1384
1385         /*
1386          * We can't run the queue inline with ints disabled. Ensure that
1387          * we catch bad users of this early.
1388          */
1389         WARN_ON_ONCE(in_interrupt());
1390
1391         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1392
1393         hctx_lock(hctx, &srcu_idx);
1394         blk_mq_sched_dispatch_requests(hctx);
1395         hctx_unlock(hctx, srcu_idx);
1396 }
1397
1398 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1399 {
1400         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1401
1402         if (cpu >= nr_cpu_ids)
1403                 cpu = cpumask_first(hctx->cpumask);
1404         return cpu;
1405 }
1406
1407 /*
1408  * It'd be great if the workqueue API had a way to pass
1409  * in a mask and had some smarts for more clever placement.
1410  * For now we just round-robin here, switching for every
1411  * BLK_MQ_CPU_WORK_BATCH queued items.
1412  */
1413 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1414 {
1415         bool tried = false;
1416         int next_cpu = hctx->next_cpu;
1417
1418         if (hctx->queue->nr_hw_queues == 1)
1419                 return WORK_CPU_UNBOUND;
1420
1421         if (--hctx->next_cpu_batch <= 0) {
1422 select_cpu:
1423                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1424                                 cpu_online_mask);
1425                 if (next_cpu >= nr_cpu_ids)
1426                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1427                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1428         }
1429
1430         /*
1431          * Do unbound schedule if we can't find a online CPU for this hctx,
1432          * and it should only happen in the path of handling CPU DEAD.
1433          */
1434         if (!cpu_online(next_cpu)) {
1435                 if (!tried) {
1436                         tried = true;
1437                         goto select_cpu;
1438                 }
1439
1440                 /*
1441                  * Make sure to re-select CPU next time once after CPUs
1442                  * in hctx->cpumask become online again.
1443                  */
1444                 hctx->next_cpu = next_cpu;
1445                 hctx->next_cpu_batch = 1;
1446                 return WORK_CPU_UNBOUND;
1447         }
1448
1449         hctx->next_cpu = next_cpu;
1450         return next_cpu;
1451 }
1452
1453 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1454                                         unsigned long msecs)
1455 {
1456         if (unlikely(blk_mq_hctx_stopped(hctx)))
1457                 return;
1458
1459         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1460                 int cpu = get_cpu();
1461                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1462                         __blk_mq_run_hw_queue(hctx);
1463                         put_cpu();
1464                         return;
1465                 }
1466
1467                 put_cpu();
1468         }
1469
1470         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1471                                     msecs_to_jiffies(msecs));
1472 }
1473
1474 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1475 {
1476         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1477 }
1478 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1479
1480 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1481 {
1482         int srcu_idx;
1483         bool need_run;
1484
1485         /*
1486          * When queue is quiesced, we may be switching io scheduler, or
1487          * updating nr_hw_queues, or other things, and we can't run queue
1488          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1489          *
1490          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1491          * quiesced.
1492          */
1493         hctx_lock(hctx, &srcu_idx);
1494         need_run = !blk_queue_quiesced(hctx->queue) &&
1495                 blk_mq_hctx_has_pending(hctx);
1496         hctx_unlock(hctx, srcu_idx);
1497
1498         if (need_run) {
1499                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1500                 return true;
1501         }
1502
1503         return false;
1504 }
1505 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1506
1507 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1508 {
1509         struct blk_mq_hw_ctx *hctx;
1510         int i;
1511
1512         queue_for_each_hw_ctx(q, hctx, i) {
1513                 if (blk_mq_hctx_stopped(hctx))
1514                         continue;
1515
1516                 blk_mq_run_hw_queue(hctx, async);
1517         }
1518 }
1519 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1520
1521 /**
1522  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1523  * @q: request queue.
1524  *
1525  * The caller is responsible for serializing this function against
1526  * blk_mq_{start,stop}_hw_queue().
1527  */
1528 bool blk_mq_queue_stopped(struct request_queue *q)
1529 {
1530         struct blk_mq_hw_ctx *hctx;
1531         int i;
1532
1533         queue_for_each_hw_ctx(q, hctx, i)
1534                 if (blk_mq_hctx_stopped(hctx))
1535                         return true;
1536
1537         return false;
1538 }
1539 EXPORT_SYMBOL(blk_mq_queue_stopped);
1540
1541 /*
1542  * This function is often used for pausing .queue_rq() by driver when
1543  * there isn't enough resource or some conditions aren't satisfied, and
1544  * BLK_STS_RESOURCE is usually returned.
1545  *
1546  * We do not guarantee that dispatch can be drained or blocked
1547  * after blk_mq_stop_hw_queue() returns. Please use
1548  * blk_mq_quiesce_queue() for that requirement.
1549  */
1550 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1551 {
1552         cancel_delayed_work(&hctx->run_work);
1553
1554         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1555 }
1556 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1557
1558 /*
1559  * This function is often used for pausing .queue_rq() by driver when
1560  * there isn't enough resource or some conditions aren't satisfied, and
1561  * BLK_STS_RESOURCE is usually returned.
1562  *
1563  * We do not guarantee that dispatch can be drained or blocked
1564  * after blk_mq_stop_hw_queues() returns. Please use
1565  * blk_mq_quiesce_queue() for that requirement.
1566  */
1567 void blk_mq_stop_hw_queues(struct request_queue *q)
1568 {
1569         struct blk_mq_hw_ctx *hctx;
1570         int i;
1571
1572         queue_for_each_hw_ctx(q, hctx, i)
1573                 blk_mq_stop_hw_queue(hctx);
1574 }
1575 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1576
1577 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1578 {
1579         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1580
1581         blk_mq_run_hw_queue(hctx, false);
1582 }
1583 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1584
1585 void blk_mq_start_hw_queues(struct request_queue *q)
1586 {
1587         struct blk_mq_hw_ctx *hctx;
1588         int i;
1589
1590         queue_for_each_hw_ctx(q, hctx, i)
1591                 blk_mq_start_hw_queue(hctx);
1592 }
1593 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1594
1595 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1596 {
1597         if (!blk_mq_hctx_stopped(hctx))
1598                 return;
1599
1600         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1601         blk_mq_run_hw_queue(hctx, async);
1602 }
1603 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1604
1605 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1606 {
1607         struct blk_mq_hw_ctx *hctx;
1608         int i;
1609
1610         queue_for_each_hw_ctx(q, hctx, i)
1611                 blk_mq_start_stopped_hw_queue(hctx, async);
1612 }
1613 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1614
1615 static void blk_mq_run_work_fn(struct work_struct *work)
1616 {
1617         struct blk_mq_hw_ctx *hctx;
1618
1619         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1620
1621         /*
1622          * If we are stopped, don't run the queue.
1623          */
1624         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1625                 return;
1626
1627         __blk_mq_run_hw_queue(hctx);
1628 }
1629
1630 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1631                                             struct request *rq,
1632                                             bool at_head)
1633 {
1634         struct blk_mq_ctx *ctx = rq->mq_ctx;
1635         enum hctx_type type = hctx->type;
1636
1637         lockdep_assert_held(&ctx->lock);
1638
1639         trace_block_rq_insert(hctx->queue, rq);
1640
1641         if (at_head)
1642                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1643         else
1644                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1645 }
1646
1647 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1648                              bool at_head)
1649 {
1650         struct blk_mq_ctx *ctx = rq->mq_ctx;
1651
1652         lockdep_assert_held(&ctx->lock);
1653
1654         __blk_mq_insert_req_list(hctx, rq, at_head);
1655         blk_mq_hctx_mark_pending(hctx, ctx);
1656 }
1657
1658 /*
1659  * Should only be used carefully, when the caller knows we want to
1660  * bypass a potential IO scheduler on the target device.
1661  */
1662 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1663 {
1664         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1665
1666         spin_lock(&hctx->lock);
1667         list_add_tail(&rq->queuelist, &hctx->dispatch);
1668         spin_unlock(&hctx->lock);
1669
1670         if (run_queue)
1671                 blk_mq_run_hw_queue(hctx, false);
1672 }
1673
1674 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1675                             struct list_head *list)
1676
1677 {
1678         struct request *rq;
1679         enum hctx_type type = hctx->type;
1680
1681         /*
1682          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1683          * offline now
1684          */
1685         list_for_each_entry(rq, list, queuelist) {
1686                 BUG_ON(rq->mq_ctx != ctx);
1687                 trace_block_rq_insert(hctx->queue, rq);
1688         }
1689
1690         spin_lock(&ctx->lock);
1691         list_splice_tail_init(list, &ctx->rq_lists[type]);
1692         blk_mq_hctx_mark_pending(hctx, ctx);
1693         spin_unlock(&ctx->lock);
1694 }
1695
1696 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1697 {
1698         struct request *rqa = container_of(a, struct request, queuelist);
1699         struct request *rqb = container_of(b, struct request, queuelist);
1700
1701         if (rqa->mq_ctx < rqb->mq_ctx)
1702                 return -1;
1703         else if (rqa->mq_ctx > rqb->mq_ctx)
1704                 return 1;
1705         else if (rqa->mq_hctx < rqb->mq_hctx)
1706                 return -1;
1707         else if (rqa->mq_hctx > rqb->mq_hctx)
1708                 return 1;
1709
1710         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1711 }
1712
1713 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1714 {
1715         struct blk_mq_hw_ctx *this_hctx;
1716         struct blk_mq_ctx *this_ctx;
1717         struct request_queue *this_q;
1718         struct request *rq;
1719         LIST_HEAD(list);
1720         LIST_HEAD(rq_list);
1721         unsigned int depth;
1722
1723         list_splice_init(&plug->mq_list, &list);
1724
1725         if (plug->rq_count > 2 && plug->multiple_queues)
1726                 list_sort(NULL, &list, plug_rq_cmp);
1727
1728         plug->rq_count = 0;
1729
1730         this_q = NULL;
1731         this_hctx = NULL;
1732         this_ctx = NULL;
1733         depth = 0;
1734
1735         while (!list_empty(&list)) {
1736                 rq = list_entry_rq(list.next);
1737                 list_del_init(&rq->queuelist);
1738                 BUG_ON(!rq->q);
1739                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1740                         if (this_hctx) {
1741                                 trace_block_unplug(this_q, depth, !from_schedule);
1742                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1743                                                                 &rq_list,
1744                                                                 from_schedule);
1745                         }
1746
1747                         this_q = rq->q;
1748                         this_ctx = rq->mq_ctx;
1749                         this_hctx = rq->mq_hctx;
1750                         depth = 0;
1751                 }
1752
1753                 depth++;
1754                 list_add_tail(&rq->queuelist, &rq_list);
1755         }
1756
1757         /*
1758          * If 'this_hctx' is set, we know we have entries to complete
1759          * on 'rq_list'. Do those.
1760          */
1761         if (this_hctx) {
1762                 trace_block_unplug(this_q, depth, !from_schedule);
1763                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1764                                                 from_schedule);
1765         }
1766 }
1767
1768 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1769                 unsigned int nr_segs)
1770 {
1771         if (bio->bi_opf & REQ_RAHEAD)
1772                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1773
1774         rq->__sector = bio->bi_iter.bi_sector;
1775         rq->write_hint = bio->bi_write_hint;
1776         blk_rq_bio_prep(rq, bio, nr_segs);
1777
1778         blk_account_io_start(rq, true);
1779 }
1780
1781 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1782                                             struct request *rq,
1783                                             blk_qc_t *cookie, bool last)
1784 {
1785         struct request_queue *q = rq->q;
1786         struct blk_mq_queue_data bd = {
1787                 .rq = rq,
1788                 .last = last,
1789         };
1790         blk_qc_t new_cookie;
1791         blk_status_t ret;
1792
1793         new_cookie = request_to_qc_t(hctx, rq);
1794
1795         /*
1796          * For OK queue, we are done. For error, caller may kill it.
1797          * Any other error (busy), just add it to our list as we
1798          * previously would have done.
1799          */
1800         ret = q->mq_ops->queue_rq(hctx, &bd);
1801         switch (ret) {
1802         case BLK_STS_OK:
1803                 blk_mq_update_dispatch_busy(hctx, false);
1804                 *cookie = new_cookie;
1805                 break;
1806         case BLK_STS_RESOURCE:
1807         case BLK_STS_DEV_RESOURCE:
1808                 blk_mq_update_dispatch_busy(hctx, true);
1809                 __blk_mq_requeue_request(rq);
1810                 break;
1811         default:
1812                 blk_mq_update_dispatch_busy(hctx, false);
1813                 *cookie = BLK_QC_T_NONE;
1814                 break;
1815         }
1816
1817         return ret;
1818 }
1819
1820 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1821                                                 struct request *rq,
1822                                                 blk_qc_t *cookie,
1823                                                 bool bypass_insert, bool last)
1824 {
1825         struct request_queue *q = rq->q;
1826         bool run_queue = true;
1827
1828         /*
1829          * RCU or SRCU read lock is needed before checking quiesced flag.
1830          *
1831          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1832          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1833          * and avoid driver to try to dispatch again.
1834          */
1835         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1836                 run_queue = false;
1837                 bypass_insert = false;
1838                 goto insert;
1839         }
1840
1841         if (q->elevator && !bypass_insert)
1842                 goto insert;
1843
1844         if (!blk_mq_get_dispatch_budget(hctx))
1845                 goto insert;
1846
1847         if (!blk_mq_get_driver_tag(rq)) {
1848                 blk_mq_put_dispatch_budget(hctx);
1849                 goto insert;
1850         }
1851
1852         return __blk_mq_issue_directly(hctx, rq, cookie, last);
1853 insert:
1854         if (bypass_insert)
1855                 return BLK_STS_RESOURCE;
1856
1857         blk_mq_request_bypass_insert(rq, run_queue);
1858         return BLK_STS_OK;
1859 }
1860
1861 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1862                 struct request *rq, blk_qc_t *cookie)
1863 {
1864         blk_status_t ret;
1865         int srcu_idx;
1866
1867         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1868
1869         hctx_lock(hctx, &srcu_idx);
1870
1871         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1872         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1873                 blk_mq_request_bypass_insert(rq, true);
1874         else if (ret != BLK_STS_OK)
1875                 blk_mq_end_request(rq, ret);
1876
1877         hctx_unlock(hctx, srcu_idx);
1878 }
1879
1880 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1881 {
1882         blk_status_t ret;
1883         int srcu_idx;
1884         blk_qc_t unused_cookie;
1885         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1886
1887         hctx_lock(hctx, &srcu_idx);
1888         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1889         hctx_unlock(hctx, srcu_idx);
1890
1891         return ret;
1892 }
1893
1894 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1895                 struct list_head *list)
1896 {
1897         while (!list_empty(list)) {
1898                 blk_status_t ret;
1899                 struct request *rq = list_first_entry(list, struct request,
1900                                 queuelist);
1901
1902                 list_del_init(&rq->queuelist);
1903                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1904                 if (ret != BLK_STS_OK) {
1905                         if (ret == BLK_STS_RESOURCE ||
1906                                         ret == BLK_STS_DEV_RESOURCE) {
1907                                 blk_mq_request_bypass_insert(rq,
1908                                                         list_empty(list));
1909                                 break;
1910                         }
1911                         blk_mq_end_request(rq, ret);
1912                 }
1913         }
1914
1915         /*
1916          * If we didn't flush the entire list, we could have told
1917          * the driver there was more coming, but that turned out to
1918          * be a lie.
1919          */
1920         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1921                 hctx->queue->mq_ops->commit_rqs(hctx);
1922 }
1923
1924 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1925 {
1926         list_add_tail(&rq->queuelist, &plug->mq_list);
1927         plug->rq_count++;
1928         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1929                 struct request *tmp;
1930
1931                 tmp = list_first_entry(&plug->mq_list, struct request,
1932                                                 queuelist);
1933                 if (tmp->q != rq->q)
1934                         plug->multiple_queues = true;
1935         }
1936 }
1937
1938 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1939 {
1940         const int is_sync = op_is_sync(bio->bi_opf);
1941         const int is_flush_fua = op_is_flush(bio->bi_opf);
1942         struct blk_mq_alloc_data data = { .flags = 0};
1943         struct request *rq;
1944         struct blk_plug *plug;
1945         struct request *same_queue_rq = NULL;
1946         unsigned int nr_segs;
1947         blk_qc_t cookie;
1948
1949         blk_queue_bounce(q, &bio);
1950         __blk_queue_split(q, &bio, &nr_segs);
1951
1952         if (!bio_integrity_prep(bio))
1953                 return BLK_QC_T_NONE;
1954
1955         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1956             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1957                 return BLK_QC_T_NONE;
1958
1959         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1960                 return BLK_QC_T_NONE;
1961
1962         rq_qos_throttle(q, bio);
1963
1964         data.cmd_flags = bio->bi_opf;
1965         rq = blk_mq_get_request(q, bio, &data);
1966         if (unlikely(!rq)) {
1967                 rq_qos_cleanup(q, bio);
1968
1969                 cookie = BLK_QC_T_NONE;
1970                 if (bio->bi_opf & REQ_NOWAIT_INLINE)
1971                         cookie = BLK_QC_T_EAGAIN;
1972                 else if (bio->bi_opf & REQ_NOWAIT)
1973                         bio_wouldblock_error(bio);
1974                 return cookie;
1975         }
1976
1977         trace_block_getrq(q, bio, bio->bi_opf);
1978
1979         rq_qos_track(q, rq, bio);
1980
1981         cookie = request_to_qc_t(data.hctx, rq);
1982
1983         blk_mq_bio_to_request(rq, bio, nr_segs);
1984
1985         plug = blk_mq_plug(q, bio);
1986         if (unlikely(is_flush_fua)) {
1987                 /* bypass scheduler for flush rq */
1988                 blk_insert_flush(rq);
1989                 blk_mq_run_hw_queue(data.hctx, true);
1990         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1991                 /*
1992                  * Use plugging if we have a ->commit_rqs() hook as well, as
1993                  * we know the driver uses bd->last in a smart fashion.
1994                  */
1995                 unsigned int request_count = plug->rq_count;
1996                 struct request *last = NULL;
1997
1998                 if (!request_count)
1999                         trace_block_plug(q);
2000                 else
2001                         last = list_entry_rq(plug->mq_list.prev);
2002
2003                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2004                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2005                         blk_flush_plug_list(plug, false);
2006                         trace_block_plug(q);
2007                 }
2008
2009                 blk_add_rq_to_plug(plug, rq);
2010         } else if (plug && !blk_queue_nomerges(q)) {
2011                 /*
2012                  * We do limited plugging. If the bio can be merged, do that.
2013                  * Otherwise the existing request in the plug list will be
2014                  * issued. So the plug list will have one request at most
2015                  * The plug list might get flushed before this. If that happens,
2016                  * the plug list is empty, and same_queue_rq is invalid.
2017                  */
2018                 if (list_empty(&plug->mq_list))
2019                         same_queue_rq = NULL;
2020                 if (same_queue_rq) {
2021                         list_del_init(&same_queue_rq->queuelist);
2022                         plug->rq_count--;
2023                 }
2024                 blk_add_rq_to_plug(plug, rq);
2025                 trace_block_plug(q);
2026
2027                 if (same_queue_rq) {
2028                         data.hctx = same_queue_rq->mq_hctx;
2029                         trace_block_unplug(q, 1, true);
2030                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2031                                         &cookie);
2032                 }
2033         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2034                         !data.hctx->dispatch_busy)) {
2035                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2036         } else {
2037                 blk_mq_sched_insert_request(rq, false, true, true);
2038         }
2039
2040         return cookie;
2041 }
2042
2043 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2044                      unsigned int hctx_idx)
2045 {
2046         struct page *page;
2047
2048         if (tags->rqs && set->ops->exit_request) {
2049                 int i;
2050
2051                 for (i = 0; i < tags->nr_tags; i++) {
2052                         struct request *rq = tags->static_rqs[i];
2053
2054                         if (!rq)
2055                                 continue;
2056                         set->ops->exit_request(set, rq, hctx_idx);
2057                         tags->static_rqs[i] = NULL;
2058                 }
2059         }
2060
2061         while (!list_empty(&tags->page_list)) {
2062                 page = list_first_entry(&tags->page_list, struct page, lru);
2063                 list_del_init(&page->lru);
2064                 /*
2065                  * Remove kmemleak object previously allocated in
2066                  * blk_mq_alloc_rqs().
2067                  */
2068                 kmemleak_free(page_address(page));
2069                 __free_pages(page, page->private);
2070         }
2071 }
2072
2073 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2074 {
2075         kfree(tags->rqs);
2076         tags->rqs = NULL;
2077         kfree(tags->static_rqs);
2078         tags->static_rqs = NULL;
2079
2080         blk_mq_free_tags(tags);
2081 }
2082
2083 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2084                                         unsigned int hctx_idx,
2085                                         unsigned int nr_tags,
2086                                         unsigned int reserved_tags)
2087 {
2088         struct blk_mq_tags *tags;
2089         int node;
2090
2091         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2092         if (node == NUMA_NO_NODE)
2093                 node = set->numa_node;
2094
2095         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2096                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2097         if (!tags)
2098                 return NULL;
2099
2100         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2101                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2102                                  node);
2103         if (!tags->rqs) {
2104                 blk_mq_free_tags(tags);
2105                 return NULL;
2106         }
2107
2108         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2109                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2110                                         node);
2111         if (!tags->static_rqs) {
2112                 kfree(tags->rqs);
2113                 blk_mq_free_tags(tags);
2114                 return NULL;
2115         }
2116
2117         return tags;
2118 }
2119
2120 static size_t order_to_size(unsigned int order)
2121 {
2122         return (size_t)PAGE_SIZE << order;
2123 }
2124
2125 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2126                                unsigned int hctx_idx, int node)
2127 {
2128         int ret;
2129
2130         if (set->ops->init_request) {
2131                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2132                 if (ret)
2133                         return ret;
2134         }
2135
2136         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2137         return 0;
2138 }
2139
2140 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2141                      unsigned int hctx_idx, unsigned int depth)
2142 {
2143         unsigned int i, j, entries_per_page, max_order = 4;
2144         size_t rq_size, left;
2145         int node;
2146
2147         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2148         if (node == NUMA_NO_NODE)
2149                 node = set->numa_node;
2150
2151         INIT_LIST_HEAD(&tags->page_list);
2152
2153         /*
2154          * rq_size is the size of the request plus driver payload, rounded
2155          * to the cacheline size
2156          */
2157         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2158                                 cache_line_size());
2159         left = rq_size * depth;
2160
2161         for (i = 0; i < depth; ) {
2162                 int this_order = max_order;
2163                 struct page *page;
2164                 int to_do;
2165                 void *p;
2166
2167                 while (this_order && left < order_to_size(this_order - 1))
2168                         this_order--;
2169
2170                 do {
2171                         page = alloc_pages_node(node,
2172                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2173                                 this_order);
2174                         if (page)
2175                                 break;
2176                         if (!this_order--)
2177                                 break;
2178                         if (order_to_size(this_order) < rq_size)
2179                                 break;
2180                 } while (1);
2181
2182                 if (!page)
2183                         goto fail;
2184
2185                 page->private = this_order;
2186                 list_add_tail(&page->lru, &tags->page_list);
2187
2188                 p = page_address(page);
2189                 /*
2190                  * Allow kmemleak to scan these pages as they contain pointers
2191                  * to additional allocations like via ops->init_request().
2192                  */
2193                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2194                 entries_per_page = order_to_size(this_order) / rq_size;
2195                 to_do = min(entries_per_page, depth - i);
2196                 left -= to_do * rq_size;
2197                 for (j = 0; j < to_do; j++) {
2198                         struct request *rq = p;
2199
2200                         tags->static_rqs[i] = rq;
2201                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2202                                 tags->static_rqs[i] = NULL;
2203                                 goto fail;
2204                         }
2205
2206                         p += rq_size;
2207                         i++;
2208                 }
2209         }
2210         return 0;
2211
2212 fail:
2213         blk_mq_free_rqs(set, tags, hctx_idx);
2214         return -ENOMEM;
2215 }
2216
2217 /*
2218  * 'cpu' is going away. splice any existing rq_list entries from this
2219  * software queue to the hw queue dispatch list, and ensure that it
2220  * gets run.
2221  */
2222 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2223 {
2224         struct blk_mq_hw_ctx *hctx;
2225         struct blk_mq_ctx *ctx;
2226         LIST_HEAD(tmp);
2227         enum hctx_type type;
2228
2229         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2230         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2231         type = hctx->type;
2232
2233         spin_lock(&ctx->lock);
2234         if (!list_empty(&ctx->rq_lists[type])) {
2235                 list_splice_init(&ctx->rq_lists[type], &tmp);
2236                 blk_mq_hctx_clear_pending(hctx, ctx);
2237         }
2238         spin_unlock(&ctx->lock);
2239
2240         if (list_empty(&tmp))
2241                 return 0;
2242
2243         spin_lock(&hctx->lock);
2244         list_splice_tail_init(&tmp, &hctx->dispatch);
2245         spin_unlock(&hctx->lock);
2246
2247         blk_mq_run_hw_queue(hctx, true);
2248         return 0;
2249 }
2250
2251 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2252 {
2253         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2254                                             &hctx->cpuhp_dead);
2255 }
2256
2257 /* hctx->ctxs will be freed in queue's release handler */
2258 static void blk_mq_exit_hctx(struct request_queue *q,
2259                 struct blk_mq_tag_set *set,
2260                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2261 {
2262         if (blk_mq_hw_queue_mapped(hctx))
2263                 blk_mq_tag_idle(hctx);
2264
2265         if (set->ops->exit_request)
2266                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2267
2268         if (set->ops->exit_hctx)
2269                 set->ops->exit_hctx(hctx, hctx_idx);
2270
2271         blk_mq_remove_cpuhp(hctx);
2272
2273         spin_lock(&q->unused_hctx_lock);
2274         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2275         spin_unlock(&q->unused_hctx_lock);
2276 }
2277
2278 static void blk_mq_exit_hw_queues(struct request_queue *q,
2279                 struct blk_mq_tag_set *set, int nr_queue)
2280 {
2281         struct blk_mq_hw_ctx *hctx;
2282         unsigned int i;
2283
2284         queue_for_each_hw_ctx(q, hctx, i) {
2285                 if (i == nr_queue)
2286                         break;
2287                 blk_mq_debugfs_unregister_hctx(hctx);
2288                 blk_mq_exit_hctx(q, set, hctx, i);
2289         }
2290 }
2291
2292 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2293 {
2294         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2295
2296         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2297                            __alignof__(struct blk_mq_hw_ctx)) !=
2298                      sizeof(struct blk_mq_hw_ctx));
2299
2300         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2301                 hw_ctx_size += sizeof(struct srcu_struct);
2302
2303         return hw_ctx_size;
2304 }
2305
2306 static int blk_mq_init_hctx(struct request_queue *q,
2307                 struct blk_mq_tag_set *set,
2308                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2309 {
2310         hctx->queue_num = hctx_idx;
2311
2312         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2313
2314         hctx->tags = set->tags[hctx_idx];
2315
2316         if (set->ops->init_hctx &&
2317             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2318                 goto unregister_cpu_notifier;
2319
2320         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2321                                 hctx->numa_node))
2322                 goto exit_hctx;
2323         return 0;
2324
2325  exit_hctx:
2326         if (set->ops->exit_hctx)
2327                 set->ops->exit_hctx(hctx, hctx_idx);
2328  unregister_cpu_notifier:
2329         blk_mq_remove_cpuhp(hctx);
2330         return -1;
2331 }
2332
2333 static struct blk_mq_hw_ctx *
2334 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2335                 int node)
2336 {
2337         struct blk_mq_hw_ctx *hctx;
2338         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2339
2340         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2341         if (!hctx)
2342                 goto fail_alloc_hctx;
2343
2344         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2345                 goto free_hctx;
2346
2347         atomic_set(&hctx->nr_active, 0);
2348         if (node == NUMA_NO_NODE)
2349                 node = set->numa_node;
2350         hctx->numa_node = node;
2351
2352         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2353         spin_lock_init(&hctx->lock);
2354         INIT_LIST_HEAD(&hctx->dispatch);
2355         hctx->queue = q;
2356         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2357
2358         INIT_LIST_HEAD(&hctx->hctx_list);
2359
2360         /*
2361          * Allocate space for all possible cpus to avoid allocation at
2362          * runtime
2363          */
2364         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2365                         gfp, node);
2366         if (!hctx->ctxs)
2367                 goto free_cpumask;
2368
2369         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2370                                 gfp, node))
2371                 goto free_ctxs;
2372         hctx->nr_ctx = 0;
2373
2374         spin_lock_init(&hctx->dispatch_wait_lock);
2375         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2376         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2377
2378         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2379                         gfp);
2380         if (!hctx->fq)
2381                 goto free_bitmap;
2382
2383         if (hctx->flags & BLK_MQ_F_BLOCKING)
2384                 init_srcu_struct(hctx->srcu);
2385         blk_mq_hctx_kobj_init(hctx);
2386
2387         return hctx;
2388
2389  free_bitmap:
2390         sbitmap_free(&hctx->ctx_map);
2391  free_ctxs:
2392         kfree(hctx->ctxs);
2393  free_cpumask:
2394         free_cpumask_var(hctx->cpumask);
2395  free_hctx:
2396         kfree(hctx);
2397  fail_alloc_hctx:
2398         return NULL;
2399 }
2400
2401 static void blk_mq_init_cpu_queues(struct request_queue *q,
2402                                    unsigned int nr_hw_queues)
2403 {
2404         struct blk_mq_tag_set *set = q->tag_set;
2405         unsigned int i, j;
2406
2407         for_each_possible_cpu(i) {
2408                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2409                 struct blk_mq_hw_ctx *hctx;
2410                 int k;
2411
2412                 __ctx->cpu = i;
2413                 spin_lock_init(&__ctx->lock);
2414                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2415                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2416
2417                 __ctx->queue = q;
2418
2419                 /*
2420                  * Set local node, IFF we have more than one hw queue. If
2421                  * not, we remain on the home node of the device
2422                  */
2423                 for (j = 0; j < set->nr_maps; j++) {
2424                         hctx = blk_mq_map_queue_type(q, j, i);
2425                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2426                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2427                 }
2428         }
2429 }
2430
2431 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2432 {
2433         int ret = 0;
2434
2435         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2436                                         set->queue_depth, set->reserved_tags);
2437         if (!set->tags[hctx_idx])
2438                 return false;
2439
2440         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2441                                 set->queue_depth);
2442         if (!ret)
2443                 return true;
2444
2445         blk_mq_free_rq_map(set->tags[hctx_idx]);
2446         set->tags[hctx_idx] = NULL;
2447         return false;
2448 }
2449
2450 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2451                                          unsigned int hctx_idx)
2452 {
2453         if (set->tags && set->tags[hctx_idx]) {
2454                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2455                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2456                 set->tags[hctx_idx] = NULL;
2457         }
2458 }
2459
2460 static void blk_mq_map_swqueue(struct request_queue *q)
2461 {
2462         unsigned int i, j, hctx_idx;
2463         struct blk_mq_hw_ctx *hctx;
2464         struct blk_mq_ctx *ctx;
2465         struct blk_mq_tag_set *set = q->tag_set;
2466
2467         queue_for_each_hw_ctx(q, hctx, i) {
2468                 cpumask_clear(hctx->cpumask);
2469                 hctx->nr_ctx = 0;
2470                 hctx->dispatch_from = NULL;
2471         }
2472
2473         /*
2474          * Map software to hardware queues.
2475          *
2476          * If the cpu isn't present, the cpu is mapped to first hctx.
2477          */
2478         for_each_possible_cpu(i) {
2479                 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2480                 /* unmapped hw queue can be remapped after CPU topo changed */
2481                 if (!set->tags[hctx_idx] &&
2482                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2483                         /*
2484                          * If tags initialization fail for some hctx,
2485                          * that hctx won't be brought online.  In this
2486                          * case, remap the current ctx to hctx[0] which
2487                          * is guaranteed to always have tags allocated
2488                          */
2489                         set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2490                 }
2491
2492                 ctx = per_cpu_ptr(q->queue_ctx, i);
2493                 for (j = 0; j < set->nr_maps; j++) {
2494                         if (!set->map[j].nr_queues) {
2495                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2496                                                 HCTX_TYPE_DEFAULT, i);
2497                                 continue;
2498                         }
2499
2500                         hctx = blk_mq_map_queue_type(q, j, i);
2501                         ctx->hctxs[j] = hctx;
2502                         /*
2503                          * If the CPU is already set in the mask, then we've
2504                          * mapped this one already. This can happen if
2505                          * devices share queues across queue maps.
2506                          */
2507                         if (cpumask_test_cpu(i, hctx->cpumask))
2508                                 continue;
2509
2510                         cpumask_set_cpu(i, hctx->cpumask);
2511                         hctx->type = j;
2512                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2513                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2514
2515                         /*
2516                          * If the nr_ctx type overflows, we have exceeded the
2517                          * amount of sw queues we can support.
2518                          */
2519                         BUG_ON(!hctx->nr_ctx);
2520                 }
2521
2522                 for (; j < HCTX_MAX_TYPES; j++)
2523                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2524                                         HCTX_TYPE_DEFAULT, i);
2525         }
2526
2527         queue_for_each_hw_ctx(q, hctx, i) {
2528                 /*
2529                  * If no software queues are mapped to this hardware queue,
2530                  * disable it and free the request entries.
2531                  */
2532                 if (!hctx->nr_ctx) {
2533                         /* Never unmap queue 0.  We need it as a
2534                          * fallback in case of a new remap fails
2535                          * allocation
2536                          */
2537                         if (i && set->tags[i])
2538                                 blk_mq_free_map_and_requests(set, i);
2539
2540                         hctx->tags = NULL;
2541                         continue;
2542                 }
2543
2544                 hctx->tags = set->tags[i];
2545                 WARN_ON(!hctx->tags);
2546
2547                 /*
2548                  * Set the map size to the number of mapped software queues.
2549                  * This is more accurate and more efficient than looping
2550                  * over all possibly mapped software queues.
2551                  */
2552                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2553
2554                 /*
2555                  * Initialize batch roundrobin counts
2556                  */
2557                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2558                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2559         }
2560 }
2561
2562 /*
2563  * Caller needs to ensure that we're either frozen/quiesced, or that
2564  * the queue isn't live yet.
2565  */
2566 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2567 {
2568         struct blk_mq_hw_ctx *hctx;
2569         int i;
2570
2571         queue_for_each_hw_ctx(q, hctx, i) {
2572                 if (shared)
2573                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2574                 else
2575                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2576         }
2577 }
2578
2579 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2580                                         bool shared)
2581 {
2582         struct request_queue *q;
2583
2584         lockdep_assert_held(&set->tag_list_lock);
2585
2586         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2587                 blk_mq_freeze_queue(q);
2588                 queue_set_hctx_shared(q, shared);
2589                 blk_mq_unfreeze_queue(q);
2590         }
2591 }
2592
2593 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2594 {
2595         struct blk_mq_tag_set *set = q->tag_set;
2596
2597         mutex_lock(&set->tag_list_lock);
2598         list_del_rcu(&q->tag_set_list);
2599         if (list_is_singular(&set->tag_list)) {
2600                 /* just transitioned to unshared */
2601                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2602                 /* update existing queue */
2603                 blk_mq_update_tag_set_depth(set, false);
2604         }
2605         mutex_unlock(&set->tag_list_lock);
2606         INIT_LIST_HEAD(&q->tag_set_list);
2607 }
2608
2609 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2610                                      struct request_queue *q)
2611 {
2612         mutex_lock(&set->tag_list_lock);
2613
2614         /*
2615          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2616          */
2617         if (!list_empty(&set->tag_list) &&
2618             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2619                 set->flags |= BLK_MQ_F_TAG_SHARED;
2620                 /* update existing queue */
2621                 blk_mq_update_tag_set_depth(set, true);
2622         }
2623         if (set->flags & BLK_MQ_F_TAG_SHARED)
2624                 queue_set_hctx_shared(q, true);
2625         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2626
2627         mutex_unlock(&set->tag_list_lock);
2628 }
2629
2630 /* All allocations will be freed in release handler of q->mq_kobj */
2631 static int blk_mq_alloc_ctxs(struct request_queue *q)
2632 {
2633         struct blk_mq_ctxs *ctxs;
2634         int cpu;
2635
2636         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2637         if (!ctxs)
2638                 return -ENOMEM;
2639
2640         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2641         if (!ctxs->queue_ctx)
2642                 goto fail;
2643
2644         for_each_possible_cpu(cpu) {
2645                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2646                 ctx->ctxs = ctxs;
2647         }
2648
2649         q->mq_kobj = &ctxs->kobj;
2650         q->queue_ctx = ctxs->queue_ctx;
2651
2652         return 0;
2653  fail:
2654         kfree(ctxs);
2655         return -ENOMEM;
2656 }
2657
2658 /*
2659  * It is the actual release handler for mq, but we do it from
2660  * request queue's release handler for avoiding use-after-free
2661  * and headache because q->mq_kobj shouldn't have been introduced,
2662  * but we can't group ctx/kctx kobj without it.
2663  */
2664 void blk_mq_release(struct request_queue *q)
2665 {
2666         struct blk_mq_hw_ctx *hctx, *next;
2667         int i;
2668
2669         cancel_delayed_work_sync(&q->requeue_work);
2670
2671         queue_for_each_hw_ctx(q, hctx, i)
2672                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2673
2674         /* all hctx are in .unused_hctx_list now */
2675         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2676                 list_del_init(&hctx->hctx_list);
2677                 kobject_put(&hctx->kobj);
2678         }
2679
2680         kfree(q->queue_hw_ctx);
2681
2682         /*
2683          * release .mq_kobj and sw queue's kobject now because
2684          * both share lifetime with request queue.
2685          */
2686         blk_mq_sysfs_deinit(q);
2687 }
2688
2689 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2690 {
2691         struct request_queue *uninit_q, *q;
2692
2693         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2694         if (!uninit_q)
2695                 return ERR_PTR(-ENOMEM);
2696
2697         /*
2698          * Initialize the queue without an elevator. device_add_disk() will do
2699          * the initialization.
2700          */
2701         q = blk_mq_init_allocated_queue(set, uninit_q, false);
2702         if (IS_ERR(q))
2703                 blk_cleanup_queue(uninit_q);
2704
2705         return q;
2706 }
2707 EXPORT_SYMBOL(blk_mq_init_queue);
2708
2709 /*
2710  * Helper for setting up a queue with mq ops, given queue depth, and
2711  * the passed in mq ops flags.
2712  */
2713 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2714                                            const struct blk_mq_ops *ops,
2715                                            unsigned int queue_depth,
2716                                            unsigned int set_flags)
2717 {
2718         struct request_queue *q;
2719         int ret;
2720
2721         memset(set, 0, sizeof(*set));
2722         set->ops = ops;
2723         set->nr_hw_queues = 1;
2724         set->nr_maps = 1;
2725         set->queue_depth = queue_depth;
2726         set->numa_node = NUMA_NO_NODE;
2727         set->flags = set_flags;
2728
2729         ret = blk_mq_alloc_tag_set(set);
2730         if (ret)
2731                 return ERR_PTR(ret);
2732
2733         q = blk_mq_init_queue(set);
2734         if (IS_ERR(q)) {
2735                 blk_mq_free_tag_set(set);
2736                 return q;
2737         }
2738
2739         return q;
2740 }
2741 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2742
2743 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2744                 struct blk_mq_tag_set *set, struct request_queue *q,
2745                 int hctx_idx, int node)
2746 {
2747         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2748
2749         /* reuse dead hctx first */
2750         spin_lock(&q->unused_hctx_lock);
2751         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2752                 if (tmp->numa_node == node) {
2753                         hctx = tmp;
2754                         break;
2755                 }
2756         }
2757         if (hctx)
2758                 list_del_init(&hctx->hctx_list);
2759         spin_unlock(&q->unused_hctx_lock);
2760
2761         if (!hctx)
2762                 hctx = blk_mq_alloc_hctx(q, set, node);
2763         if (!hctx)
2764                 goto fail;
2765
2766         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2767                 goto free_hctx;
2768
2769         return hctx;
2770
2771  free_hctx:
2772         kobject_put(&hctx->kobj);
2773  fail:
2774         return NULL;
2775 }
2776
2777 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2778                                                 struct request_queue *q)
2779 {
2780         int i, j, end;
2781         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2782
2783         /* protect against switching io scheduler  */
2784         mutex_lock(&q->sysfs_lock);
2785         for (i = 0; i < set->nr_hw_queues; i++) {
2786                 int node;
2787                 struct blk_mq_hw_ctx *hctx;
2788
2789                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2790                 /*
2791                  * If the hw queue has been mapped to another numa node,
2792                  * we need to realloc the hctx. If allocation fails, fallback
2793                  * to use the previous one.
2794                  */
2795                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2796                         continue;
2797
2798                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2799                 if (hctx) {
2800                         if (hctxs[i])
2801                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2802                         hctxs[i] = hctx;
2803                 } else {
2804                         if (hctxs[i])
2805                                 pr_warn("Allocate new hctx on node %d fails,\
2806                                                 fallback to previous one on node %d\n",
2807                                                 node, hctxs[i]->numa_node);
2808                         else
2809                                 break;
2810                 }
2811         }
2812         /*
2813          * Increasing nr_hw_queues fails. Free the newly allocated
2814          * hctxs and keep the previous q->nr_hw_queues.
2815          */
2816         if (i != set->nr_hw_queues) {
2817                 j = q->nr_hw_queues;
2818                 end = i;
2819         } else {
2820                 j = i;
2821                 end = q->nr_hw_queues;
2822                 q->nr_hw_queues = set->nr_hw_queues;
2823         }
2824
2825         for (; j < end; j++) {
2826                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2827
2828                 if (hctx) {
2829                         if (hctx->tags)
2830                                 blk_mq_free_map_and_requests(set, j);
2831                         blk_mq_exit_hctx(q, set, hctx, j);
2832                         hctxs[j] = NULL;
2833                 }
2834         }
2835         mutex_unlock(&q->sysfs_lock);
2836 }
2837
2838 /*
2839  * Maximum number of hardware queues we support. For single sets, we'll never
2840  * have more than the CPUs (software queues). For multiple sets, the tag_set
2841  * user may have set ->nr_hw_queues larger.
2842  */
2843 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2844 {
2845         if (set->nr_maps == 1)
2846                 return nr_cpu_ids;
2847
2848         return max(set->nr_hw_queues, nr_cpu_ids);
2849 }
2850
2851 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2852                                                   struct request_queue *q,
2853                                                   bool elevator_init)
2854 {
2855         /* mark the queue as mq asap */
2856         q->mq_ops = set->ops;
2857
2858         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2859                                              blk_mq_poll_stats_bkt,
2860                                              BLK_MQ_POLL_STATS_BKTS, q);
2861         if (!q->poll_cb)
2862                 goto err_exit;
2863
2864         if (blk_mq_alloc_ctxs(q))
2865                 goto err_poll;
2866
2867         /* init q->mq_kobj and sw queues' kobjects */
2868         blk_mq_sysfs_init(q);
2869
2870         q->nr_queues = nr_hw_queues(set);
2871         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2872                                                 GFP_KERNEL, set->numa_node);
2873         if (!q->queue_hw_ctx)
2874                 goto err_sys_init;
2875
2876         INIT_LIST_HEAD(&q->unused_hctx_list);
2877         spin_lock_init(&q->unused_hctx_lock);
2878
2879         blk_mq_realloc_hw_ctxs(set, q);
2880         if (!q->nr_hw_queues)
2881                 goto err_hctxs;
2882
2883         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2884         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2885
2886         q->tag_set = set;
2887
2888         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2889         if (set->nr_maps > HCTX_TYPE_POLL &&
2890             set->map[HCTX_TYPE_POLL].nr_queues)
2891                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2892
2893         q->sg_reserved_size = INT_MAX;
2894
2895         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2896         INIT_LIST_HEAD(&q->requeue_list);
2897         spin_lock_init(&q->requeue_lock);
2898
2899         blk_queue_make_request(q, blk_mq_make_request);
2900
2901         /*
2902          * Do this after blk_queue_make_request() overrides it...
2903          */
2904         q->nr_requests = set->queue_depth;
2905
2906         /*
2907          * Default to classic polling
2908          */
2909         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2910
2911         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2912         blk_mq_add_queue_tag_set(set, q);
2913         blk_mq_map_swqueue(q);
2914
2915         if (elevator_init)
2916                 elevator_init_mq(q);
2917
2918         return q;
2919
2920 err_hctxs:
2921         kfree(q->queue_hw_ctx);
2922         q->nr_hw_queues = 0;
2923 err_sys_init:
2924         blk_mq_sysfs_deinit(q);
2925 err_poll:
2926         blk_stat_free_callback(q->poll_cb);
2927         q->poll_cb = NULL;
2928 err_exit:
2929         q->mq_ops = NULL;
2930         return ERR_PTR(-ENOMEM);
2931 }
2932 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2933
2934 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2935 void blk_mq_exit_queue(struct request_queue *q)
2936 {
2937         struct blk_mq_tag_set   *set = q->tag_set;
2938
2939         blk_mq_del_queue_tag_set(q);
2940         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2941 }
2942
2943 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2944 {
2945         int i;
2946
2947         for (i = 0; i < set->nr_hw_queues; i++)
2948                 if (!__blk_mq_alloc_rq_map(set, i))
2949                         goto out_unwind;
2950
2951         return 0;
2952
2953 out_unwind:
2954         while (--i >= 0)
2955                 blk_mq_free_rq_map(set->tags[i]);
2956
2957         return -ENOMEM;
2958 }
2959
2960 /*
2961  * Allocate the request maps associated with this tag_set. Note that this
2962  * may reduce the depth asked for, if memory is tight. set->queue_depth
2963  * will be updated to reflect the allocated depth.
2964  */
2965 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2966 {
2967         unsigned int depth;
2968         int err;
2969
2970         depth = set->queue_depth;
2971         do {
2972                 err = __blk_mq_alloc_rq_maps(set);
2973                 if (!err)
2974                         break;
2975
2976                 set->queue_depth >>= 1;
2977                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2978                         err = -ENOMEM;
2979                         break;
2980                 }
2981         } while (set->queue_depth);
2982
2983         if (!set->queue_depth || err) {
2984                 pr_err("blk-mq: failed to allocate request map\n");
2985                 return -ENOMEM;
2986         }
2987
2988         if (depth != set->queue_depth)
2989                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2990                                                 depth, set->queue_depth);
2991
2992         return 0;
2993 }
2994
2995 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2996 {
2997         if (set->ops->map_queues && !is_kdump_kernel()) {
2998                 int i;
2999
3000                 /*
3001                  * transport .map_queues is usually done in the following
3002                  * way:
3003                  *
3004                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3005                  *      mask = get_cpu_mask(queue)
3006                  *      for_each_cpu(cpu, mask)
3007                  *              set->map[x].mq_map[cpu] = queue;
3008                  * }
3009                  *
3010                  * When we need to remap, the table has to be cleared for
3011                  * killing stale mapping since one CPU may not be mapped
3012                  * to any hw queue.
3013                  */
3014                 for (i = 0; i < set->nr_maps; i++)
3015                         blk_mq_clear_mq_map(&set->map[i]);
3016
3017                 return set->ops->map_queues(set);
3018         } else {
3019                 BUG_ON(set->nr_maps > 1);
3020                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3021         }
3022 }
3023
3024 /*
3025  * Alloc a tag set to be associated with one or more request queues.
3026  * May fail with EINVAL for various error conditions. May adjust the
3027  * requested depth down, if it's too large. In that case, the set
3028  * value will be stored in set->queue_depth.
3029  */
3030 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3031 {
3032         int i, ret;
3033
3034         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3035
3036         if (!set->nr_hw_queues)
3037                 return -EINVAL;
3038         if (!set->queue_depth)
3039                 return -EINVAL;
3040         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3041                 return -EINVAL;
3042
3043         if (!set->ops->queue_rq)
3044                 return -EINVAL;
3045
3046         if (!set->ops->get_budget ^ !set->ops->put_budget)
3047                 return -EINVAL;
3048
3049         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3050                 pr_info("blk-mq: reduced tag depth to %u\n",
3051                         BLK_MQ_MAX_DEPTH);
3052                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3053         }
3054
3055         if (!set->nr_maps)
3056                 set->nr_maps = 1;
3057         else if (set->nr_maps > HCTX_MAX_TYPES)
3058                 return -EINVAL;
3059
3060         /*
3061          * If a crashdump is active, then we are potentially in a very
3062          * memory constrained environment. Limit us to 1 queue and
3063          * 64 tags to prevent using too much memory.
3064          */
3065         if (is_kdump_kernel()) {
3066                 set->nr_hw_queues = 1;
3067                 set->nr_maps = 1;
3068                 set->queue_depth = min(64U, set->queue_depth);
3069         }
3070         /*
3071          * There is no use for more h/w queues than cpus if we just have
3072          * a single map
3073          */
3074         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3075                 set->nr_hw_queues = nr_cpu_ids;
3076
3077         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3078                                  GFP_KERNEL, set->numa_node);
3079         if (!set->tags)
3080                 return -ENOMEM;
3081
3082         ret = -ENOMEM;
3083         for (i = 0; i < set->nr_maps; i++) {
3084                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3085                                                   sizeof(set->map[i].mq_map[0]),
3086                                                   GFP_KERNEL, set->numa_node);
3087                 if (!set->map[i].mq_map)
3088                         goto out_free_mq_map;
3089                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3090         }
3091
3092         ret = blk_mq_update_queue_map(set);
3093         if (ret)
3094                 goto out_free_mq_map;
3095
3096         ret = blk_mq_alloc_rq_maps(set);
3097         if (ret)
3098                 goto out_free_mq_map;
3099
3100         mutex_init(&set->tag_list_lock);
3101         INIT_LIST_HEAD(&set->tag_list);
3102
3103         return 0;
3104
3105 out_free_mq_map:
3106         for (i = 0; i < set->nr_maps; i++) {
3107                 kfree(set->map[i].mq_map);
3108                 set->map[i].mq_map = NULL;
3109         }
3110         kfree(set->tags);
3111         set->tags = NULL;
3112         return ret;
3113 }
3114 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3115
3116 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3117 {
3118         int i, j;
3119
3120         for (i = 0; i < nr_hw_queues(set); i++)
3121                 blk_mq_free_map_and_requests(set, i);
3122
3123         for (j = 0; j < set->nr_maps; j++) {
3124                 kfree(set->map[j].mq_map);
3125                 set->map[j].mq_map = NULL;
3126         }
3127
3128         kfree(set->tags);
3129         set->tags = NULL;
3130 }
3131 EXPORT_SYMBOL(blk_mq_free_tag_set);
3132
3133 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3134 {
3135         struct blk_mq_tag_set *set = q->tag_set;
3136         struct blk_mq_hw_ctx *hctx;
3137         int i, ret;
3138
3139         if (!set)
3140                 return -EINVAL;
3141
3142         if (q->nr_requests == nr)
3143                 return 0;
3144
3145         blk_mq_freeze_queue(q);
3146         blk_mq_quiesce_queue(q);
3147
3148         ret = 0;
3149         queue_for_each_hw_ctx(q, hctx, i) {
3150                 if (!hctx->tags)
3151                         continue;
3152                 /*
3153                  * If we're using an MQ scheduler, just update the scheduler
3154                  * queue depth. This is similar to what the old code would do.
3155                  */
3156                 if (!hctx->sched_tags) {
3157                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3158                                                         false);
3159                 } else {
3160                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3161                                                         nr, true);
3162                 }
3163                 if (ret)
3164                         break;
3165                 if (q->elevator && q->elevator->type->ops.depth_updated)
3166                         q->elevator->type->ops.depth_updated(hctx);
3167         }
3168
3169         if (!ret)
3170                 q->nr_requests = nr;
3171
3172         blk_mq_unquiesce_queue(q);
3173         blk_mq_unfreeze_queue(q);
3174
3175         return ret;
3176 }
3177
3178 /*
3179  * request_queue and elevator_type pair.
3180  * It is just used by __blk_mq_update_nr_hw_queues to cache
3181  * the elevator_type associated with a request_queue.
3182  */
3183 struct blk_mq_qe_pair {
3184         struct list_head node;
3185         struct request_queue *q;
3186         struct elevator_type *type;
3187 };
3188
3189 /*
3190  * Cache the elevator_type in qe pair list and switch the
3191  * io scheduler to 'none'
3192  */
3193 static bool blk_mq_elv_switch_none(struct list_head *head,
3194                 struct request_queue *q)
3195 {
3196         struct blk_mq_qe_pair *qe;
3197
3198         if (!q->elevator)
3199                 return true;
3200
3201         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3202         if (!qe)
3203                 return false;
3204
3205         INIT_LIST_HEAD(&qe->node);
3206         qe->q = q;
3207         qe->type = q->elevator->type;
3208         list_add(&qe->node, head);
3209
3210         mutex_lock(&q->sysfs_lock);
3211         /*
3212          * After elevator_switch_mq, the previous elevator_queue will be
3213          * released by elevator_release. The reference of the io scheduler
3214          * module get by elevator_get will also be put. So we need to get
3215          * a reference of the io scheduler module here to prevent it to be
3216          * removed.
3217          */
3218         __module_get(qe->type->elevator_owner);
3219         elevator_switch_mq(q, NULL);
3220         mutex_unlock(&q->sysfs_lock);
3221
3222         return true;
3223 }
3224
3225 static void blk_mq_elv_switch_back(struct list_head *head,
3226                 struct request_queue *q)
3227 {
3228         struct blk_mq_qe_pair *qe;
3229         struct elevator_type *t = NULL;
3230
3231         list_for_each_entry(qe, head, node)
3232                 if (qe->q == q) {
3233                         t = qe->type;
3234                         break;
3235                 }
3236
3237         if (!t)
3238                 return;
3239
3240         list_del(&qe->node);
3241         kfree(qe);
3242
3243         mutex_lock(&q->sysfs_lock);
3244         elevator_switch_mq(q, t);
3245         mutex_unlock(&q->sysfs_lock);
3246 }
3247
3248 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3249                                                         int nr_hw_queues)
3250 {
3251         struct request_queue *q;
3252         LIST_HEAD(head);
3253         int prev_nr_hw_queues;
3254
3255         lockdep_assert_held(&set->tag_list_lock);
3256
3257         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3258                 nr_hw_queues = nr_cpu_ids;
3259         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3260                 return;
3261
3262         list_for_each_entry(q, &set->tag_list, tag_set_list)
3263                 blk_mq_freeze_queue(q);
3264         /*
3265          * Sync with blk_mq_queue_tag_busy_iter.
3266          */
3267         synchronize_rcu();
3268         /*
3269          * Switch IO scheduler to 'none', cleaning up the data associated
3270          * with the previous scheduler. We will switch back once we are done
3271          * updating the new sw to hw queue mappings.
3272          */
3273         list_for_each_entry(q, &set->tag_list, tag_set_list)
3274                 if (!blk_mq_elv_switch_none(&head, q))
3275                         goto switch_back;
3276
3277         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3278                 blk_mq_debugfs_unregister_hctxs(q);
3279                 blk_mq_sysfs_unregister(q);
3280         }
3281
3282         prev_nr_hw_queues = set->nr_hw_queues;
3283         set->nr_hw_queues = nr_hw_queues;
3284         blk_mq_update_queue_map(set);
3285 fallback:
3286         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287                 blk_mq_realloc_hw_ctxs(set, q);
3288                 if (q->nr_hw_queues != set->nr_hw_queues) {
3289                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3290                                         nr_hw_queues, prev_nr_hw_queues);
3291                         set->nr_hw_queues = prev_nr_hw_queues;
3292                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3293                         goto fallback;
3294                 }
3295                 blk_mq_map_swqueue(q);
3296         }
3297
3298         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3299                 blk_mq_sysfs_register(q);
3300                 blk_mq_debugfs_register_hctxs(q);
3301         }
3302
3303 switch_back:
3304         list_for_each_entry(q, &set->tag_list, tag_set_list)
3305                 blk_mq_elv_switch_back(&head, q);
3306
3307         list_for_each_entry(q, &set->tag_list, tag_set_list)
3308                 blk_mq_unfreeze_queue(q);
3309 }
3310
3311 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3312 {
3313         mutex_lock(&set->tag_list_lock);
3314         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3315         mutex_unlock(&set->tag_list_lock);
3316 }
3317 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3318
3319 /* Enable polling stats and return whether they were already enabled. */
3320 static bool blk_poll_stats_enable(struct request_queue *q)
3321 {
3322         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3323             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3324                 return true;
3325         blk_stat_add_callback(q, q->poll_cb);
3326         return false;
3327 }
3328
3329 static void blk_mq_poll_stats_start(struct request_queue *q)
3330 {
3331         /*
3332          * We don't arm the callback if polling stats are not enabled or the
3333          * callback is already active.
3334          */
3335         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3336             blk_stat_is_active(q->poll_cb))
3337                 return;
3338
3339         blk_stat_activate_msecs(q->poll_cb, 100);
3340 }
3341
3342 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3343 {
3344         struct request_queue *q = cb->data;
3345         int bucket;
3346
3347         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3348                 if (cb->stat[bucket].nr_samples)
3349                         q->poll_stat[bucket] = cb->stat[bucket];
3350         }
3351 }
3352
3353 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3354                                        struct blk_mq_hw_ctx *hctx,
3355                                        struct request *rq)
3356 {
3357         unsigned long ret = 0;
3358         int bucket;
3359
3360         /*
3361          * If stats collection isn't on, don't sleep but turn it on for
3362          * future users
3363          */
3364         if (!blk_poll_stats_enable(q))
3365                 return 0;
3366
3367         /*
3368          * As an optimistic guess, use half of the mean service time
3369          * for this type of request. We can (and should) make this smarter.
3370          * For instance, if the completion latencies are tight, we can
3371          * get closer than just half the mean. This is especially
3372          * important on devices where the completion latencies are longer
3373          * than ~10 usec. We do use the stats for the relevant IO size
3374          * if available which does lead to better estimates.
3375          */
3376         bucket = blk_mq_poll_stats_bkt(rq);
3377         if (bucket < 0)
3378                 return ret;
3379
3380         if (q->poll_stat[bucket].nr_samples)
3381                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3382
3383         return ret;
3384 }
3385
3386 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3387                                      struct blk_mq_hw_ctx *hctx,
3388                                      struct request *rq)
3389 {
3390         struct hrtimer_sleeper hs;
3391         enum hrtimer_mode mode;
3392         unsigned int nsecs;
3393         ktime_t kt;
3394
3395         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3396                 return false;
3397
3398         /*
3399          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3400          *
3401          *  0:  use half of prev avg
3402          * >0:  use this specific value
3403          */
3404         if (q->poll_nsec > 0)
3405                 nsecs = q->poll_nsec;
3406         else
3407                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3408
3409         if (!nsecs)
3410                 return false;
3411
3412         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3413
3414         /*
3415          * This will be replaced with the stats tracking code, using
3416          * 'avg_completion_time / 2' as the pre-sleep target.
3417          */
3418         kt = nsecs;
3419
3420         mode = HRTIMER_MODE_REL;
3421         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3422         hrtimer_set_expires(&hs.timer, kt);
3423
3424         hrtimer_init_sleeper(&hs, current);
3425         do {
3426                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3427                         break;
3428                 set_current_state(TASK_UNINTERRUPTIBLE);
3429                 hrtimer_start_expires(&hs.timer, mode);
3430                 if (hs.task)
3431                         io_schedule();
3432                 hrtimer_cancel(&hs.timer);
3433                 mode = HRTIMER_MODE_ABS;
3434         } while (hs.task && !signal_pending(current));
3435
3436         __set_current_state(TASK_RUNNING);
3437         destroy_hrtimer_on_stack(&hs.timer);
3438         return true;
3439 }
3440
3441 static bool blk_mq_poll_hybrid(struct request_queue *q,
3442                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3443 {
3444         struct request *rq;
3445
3446         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3447                 return false;
3448
3449         if (!blk_qc_t_is_internal(cookie))
3450                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3451         else {
3452                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3453                 /*
3454                  * With scheduling, if the request has completed, we'll
3455                  * get a NULL return here, as we clear the sched tag when
3456                  * that happens. The request still remains valid, like always,
3457                  * so we should be safe with just the NULL check.
3458                  */
3459                 if (!rq)
3460                         return false;
3461         }
3462
3463         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3464 }
3465
3466 /**
3467  * blk_poll - poll for IO completions
3468  * @q:  the queue
3469  * @cookie: cookie passed back at IO submission time
3470  * @spin: whether to spin for completions
3471  *
3472  * Description:
3473  *    Poll for completions on the passed in queue. Returns number of
3474  *    completed entries found. If @spin is true, then blk_poll will continue
3475  *    looping until at least one completion is found, unless the task is
3476  *    otherwise marked running (or we need to reschedule).
3477  */
3478 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3479 {
3480         struct blk_mq_hw_ctx *hctx;
3481         long state;
3482
3483         if (!blk_qc_t_valid(cookie) ||
3484             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3485                 return 0;
3486
3487         if (current->plug)
3488                 blk_flush_plug_list(current->plug, false);
3489
3490         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3491
3492         /*
3493          * If we sleep, have the caller restart the poll loop to reset
3494          * the state. Like for the other success return cases, the
3495          * caller is responsible for checking if the IO completed. If
3496          * the IO isn't complete, we'll get called again and will go
3497          * straight to the busy poll loop.
3498          */
3499         if (blk_mq_poll_hybrid(q, hctx, cookie))
3500                 return 1;
3501
3502         hctx->poll_considered++;
3503
3504         state = current->state;
3505         do {
3506                 int ret;
3507
3508                 hctx->poll_invoked++;
3509
3510                 ret = q->mq_ops->poll(hctx);
3511                 if (ret > 0) {
3512                         hctx->poll_success++;
3513                         __set_current_state(TASK_RUNNING);
3514                         return ret;
3515                 }
3516
3517                 if (signal_pending_state(state, current))
3518                         __set_current_state(TASK_RUNNING);
3519
3520                 if (current->state == TASK_RUNNING)
3521                         return 1;
3522                 if (ret < 0 || !spin)
3523                         break;
3524                 cpu_relax();
3525         } while (!need_resched());
3526
3527         __set_current_state(TASK_RUNNING);
3528         return 0;
3529 }
3530 EXPORT_SYMBOL_GPL(blk_poll);
3531
3532 unsigned int blk_mq_rq_cpu(struct request *rq)
3533 {
3534         return rq->mq_ctx->cpu;
3535 }
3536 EXPORT_SYMBOL(blk_mq_rq_cpu);
3537
3538 static int __init blk_mq_init(void)
3539 {
3540         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3541                                 blk_mq_hctx_notify_dead);
3542         return 0;
3543 }
3544 subsys_initcall(blk_mq_init);