mm/memory.c: fix race when faulting a device private page
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
514                 blk_mq_req_flags_t flags)
515 {
516         struct blk_mq_alloc_data data = {
517                 .q              = q,
518                 .flags          = flags,
519                 .cmd_flags      = opf,
520                 .nr_tags        = 1,
521         };
522         struct request *rq;
523         int ret;
524
525         ret = blk_queue_enter(q, flags);
526         if (ret)
527                 return ERR_PTR(ret);
528
529         rq = __blk_mq_alloc_requests(&data);
530         if (!rq)
531                 goto out_queue_exit;
532         rq->__data_len = 0;
533         rq->__sector = (sector_t) -1;
534         rq->bio = rq->biotail = NULL;
535         return rq;
536 out_queue_exit:
537         blk_queue_exit(q);
538         return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545         struct blk_mq_alloc_data data = {
546                 .q              = q,
547                 .flags          = flags,
548                 .cmd_flags      = opf,
549                 .nr_tags        = 1,
550         };
551         u64 alloc_time_ns = 0;
552         unsigned int cpu;
553         unsigned int tag;
554         int ret;
555
556         /* alloc_time includes depth and tag waits */
557         if (blk_queue_rq_alloc_time(q))
558                 alloc_time_ns = ktime_get_ns();
559
560         /*
561          * If the tag allocator sleeps we could get an allocation for a
562          * different hardware context.  No need to complicate the low level
563          * allocator for this for the rare use case of a command tied to
564          * a specific queue.
565          */
566         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567                 return ERR_PTR(-EINVAL);
568
569         if (hctx_idx >= q->nr_hw_queues)
570                 return ERR_PTR(-EIO);
571
572         ret = blk_queue_enter(q, flags);
573         if (ret)
574                 return ERR_PTR(ret);
575
576         /*
577          * Check if the hardware context is actually mapped to anything.
578          * If not tell the caller that it should skip this queue.
579          */
580         ret = -EXDEV;
581         data.hctx = xa_load(&q->hctx_table, hctx_idx);
582         if (!blk_mq_hw_queue_mapped(data.hctx))
583                 goto out_queue_exit;
584         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585         if (cpu >= nr_cpu_ids)
586                 goto out_queue_exit;
587         data.ctx = __blk_mq_get_ctx(q, cpu);
588
589         if (!q->elevator)
590                 blk_mq_tag_busy(data.hctx);
591         else
592                 data.rq_flags |= RQF_ELV;
593
594         if (flags & BLK_MQ_REQ_RESERVED)
595                 data.rq_flags |= RQF_RESV;
596
597         ret = -EWOULDBLOCK;
598         tag = blk_mq_get_tag(&data);
599         if (tag == BLK_MQ_NO_TAG)
600                 goto out_queue_exit;
601         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602                                         alloc_time_ns);
603
604 out_queue_exit:
605         blk_queue_exit(q);
606         return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609
610 static void __blk_mq_free_request(struct request *rq)
611 {
612         struct request_queue *q = rq->q;
613         struct blk_mq_ctx *ctx = rq->mq_ctx;
614         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615         const int sched_tag = rq->internal_tag;
616
617         blk_crypto_free_request(rq);
618         blk_pm_mark_last_busy(rq);
619         rq->mq_hctx = NULL;
620         if (rq->tag != BLK_MQ_NO_TAG)
621                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622         if (sched_tag != BLK_MQ_NO_TAG)
623                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624         blk_mq_sched_restart(hctx);
625         blk_queue_exit(q);
626 }
627
628 void blk_mq_free_request(struct request *rq)
629 {
630         struct request_queue *q = rq->q;
631         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632
633         if ((rq->rq_flags & RQF_ELVPRIV) &&
634             q->elevator->type->ops.finish_request)
635                 q->elevator->type->ops.finish_request(rq);
636
637         if (rq->rq_flags & RQF_MQ_INFLIGHT)
638                 __blk_mq_dec_active_requests(hctx);
639
640         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641                 laptop_io_completion(q->disk->bdi);
642
643         rq_qos_done(q, rq);
644
645         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646         if (req_ref_put_and_test(rq))
647                 __blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653         struct request *rq;
654
655         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656                 blk_mq_free_request(rq);
657 }
658
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662                 rq->q->disk ? rq->q->disk->disk_name : "?",
663                 (__force unsigned long long) rq->cmd_flags);
664
665         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666                (unsigned long long)blk_rq_pos(rq),
667                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669                rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674                           unsigned int nbytes, blk_status_t error)
675 {
676         if (unlikely(error)) {
677                 bio->bi_status = error;
678         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679                 /*
680                  * Partial zone append completions cannot be supported as the
681                  * BIO fragments may end up not being written sequentially.
682                  */
683                 if (bio->bi_iter.bi_size != nbytes)
684                         bio->bi_status = BLK_STS_IOERR;
685                 else
686                         bio->bi_iter.bi_sector = rq->__sector;
687         }
688
689         bio_advance(bio, nbytes);
690
691         if (unlikely(rq->rq_flags & RQF_QUIET))
692                 bio_set_flag(bio, BIO_QUIET);
693         /* don't actually finish bio if it's part of flush sequence */
694         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695                 bio_endio(bio);
696 }
697
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700         if (req->part && blk_do_io_stat(req)) {
701                 const int sgrp = op_stat_group(req_op(req));
702
703                 part_stat_lock();
704                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705                 part_stat_unlock();
706         }
707 }
708
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711         printk_ratelimited(KERN_ERR
712                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713                 "phys_seg %u prio class %u\n",
714                 blk_status_to_str(status),
715                 req->q->disk ? req->q->disk->disk_name : "?",
716                 blk_rq_pos(req), (__force u32)req_op(req),
717                 blk_op_str(req_op(req)),
718                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
719                 req->nr_phys_segments,
720                 IOPRIO_PRIO_CLASS(req->ioprio));
721 }
722
723 /*
724  * Fully end IO on a request. Does not support partial completions, or
725  * errors.
726  */
727 static void blk_complete_request(struct request *req)
728 {
729         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
730         int total_bytes = blk_rq_bytes(req);
731         struct bio *bio = req->bio;
732
733         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
734
735         if (!bio)
736                 return;
737
738 #ifdef CONFIG_BLK_DEV_INTEGRITY
739         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
740                 req->q->integrity.profile->complete_fn(req, total_bytes);
741 #endif
742
743         blk_account_io_completion(req, total_bytes);
744
745         do {
746                 struct bio *next = bio->bi_next;
747
748                 /* Completion has already been traced */
749                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
750
751                 if (req_op(req) == REQ_OP_ZONE_APPEND)
752                         bio->bi_iter.bi_sector = req->__sector;
753
754                 if (!is_flush)
755                         bio_endio(bio);
756                 bio = next;
757         } while (bio);
758
759         /*
760          * Reset counters so that the request stacking driver
761          * can find how many bytes remain in the request
762          * later.
763          */
764         req->bio = NULL;
765         req->__data_len = 0;
766 }
767
768 /**
769  * blk_update_request - Complete multiple bytes without completing the request
770  * @req:      the request being processed
771  * @error:    block status code
772  * @nr_bytes: number of bytes to complete for @req
773  *
774  * Description:
775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
776  *     the request structure even if @req doesn't have leftover.
777  *     If @req has leftover, sets it up for the next range of segments.
778  *
779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
780  *     %false return from this function.
781  *
782  * Note:
783  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
784  *      except in the consistency check at the end of this function.
785  *
786  * Return:
787  *     %false - this request doesn't have any more data
788  *     %true  - this request has more data
789  **/
790 bool blk_update_request(struct request *req, blk_status_t error,
791                 unsigned int nr_bytes)
792 {
793         int total_bytes;
794
795         trace_block_rq_complete(req, error, nr_bytes);
796
797         if (!req->bio)
798                 return false;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
802             error == BLK_STS_OK)
803                 req->q->integrity.profile->complete_fn(req, nr_bytes);
804 #endif
805
806         if (unlikely(error && !blk_rq_is_passthrough(req) &&
807                      !(req->rq_flags & RQF_QUIET)) &&
808                      !test_bit(GD_DEAD, &req->q->disk->state)) {
809                 blk_print_req_error(req, error);
810                 trace_block_rq_error(req, error, nr_bytes);
811         }
812
813         blk_account_io_completion(req, nr_bytes);
814
815         total_bytes = 0;
816         while (req->bio) {
817                 struct bio *bio = req->bio;
818                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
819
820                 if (bio_bytes == bio->bi_iter.bi_size)
821                         req->bio = bio->bi_next;
822
823                 /* Completion has already been traced */
824                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825                 req_bio_endio(req, bio, bio_bytes, error);
826
827                 total_bytes += bio_bytes;
828                 nr_bytes -= bio_bytes;
829
830                 if (!nr_bytes)
831                         break;
832         }
833
834         /*
835          * completely done
836          */
837         if (!req->bio) {
838                 /*
839                  * Reset counters so that the request stacking driver
840                  * can find how many bytes remain in the request
841                  * later.
842                  */
843                 req->__data_len = 0;
844                 return false;
845         }
846
847         req->__data_len -= total_bytes;
848
849         /* update sector only for requests with clear definition of sector */
850         if (!blk_rq_is_passthrough(req))
851                 req->__sector += total_bytes >> 9;
852
853         /* mixed attributes always follow the first bio */
854         if (req->rq_flags & RQF_MIXED_MERGE) {
855                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
856                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
857         }
858
859         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
860                 /*
861                  * If total number of sectors is less than the first segment
862                  * size, something has gone terribly wrong.
863                  */
864                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
865                         blk_dump_rq_flags(req, "request botched");
866                         req->__data_len = blk_rq_cur_bytes(req);
867                 }
868
869                 /* recalculate the number of segments */
870                 req->nr_phys_segments = blk_recalc_rq_segments(req);
871         }
872
873         return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_update_request);
876
877 static void __blk_account_io_done(struct request *req, u64 now)
878 {
879         const int sgrp = op_stat_group(req_op(req));
880
881         part_stat_lock();
882         update_io_ticks(req->part, jiffies, true);
883         part_stat_inc(req->part, ios[sgrp]);
884         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
885         part_stat_unlock();
886 }
887
888 static inline void blk_account_io_done(struct request *req, u64 now)
889 {
890         /*
891          * Account IO completion.  flush_rq isn't accounted as a
892          * normal IO on queueing nor completion.  Accounting the
893          * containing request is enough.
894          */
895         if (blk_do_io_stat(req) && req->part &&
896             !(req->rq_flags & RQF_FLUSH_SEQ))
897                 __blk_account_io_done(req, now);
898 }
899
900 static void __blk_account_io_start(struct request *rq)
901 {
902         /*
903          * All non-passthrough requests are created from a bio with one
904          * exception: when a flush command that is part of a flush sequence
905          * generated by the state machine in blk-flush.c is cloned onto the
906          * lower device by dm-multipath we can get here without a bio.
907          */
908         if (rq->bio)
909                 rq->part = rq->bio->bi_bdev;
910         else
911                 rq->part = rq->q->disk->part0;
912
913         part_stat_lock();
914         update_io_ticks(rq->part, jiffies, false);
915         part_stat_unlock();
916 }
917
918 static inline void blk_account_io_start(struct request *req)
919 {
920         if (blk_do_io_stat(req))
921                 __blk_account_io_start(req);
922 }
923
924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
925 {
926         if (rq->rq_flags & RQF_STATS) {
927                 blk_mq_poll_stats_start(rq->q);
928                 blk_stat_add(rq, now);
929         }
930
931         blk_mq_sched_completed_request(rq, now);
932         blk_account_io_done(rq, now);
933 }
934
935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
936 {
937         if (blk_mq_need_time_stamp(rq))
938                 __blk_mq_end_request_acct(rq, ktime_get_ns());
939
940         if (rq->end_io) {
941                 rq_qos_done(rq->q, rq);
942                 rq->end_io(rq, error);
943         } else {
944                 blk_mq_free_request(rq);
945         }
946 }
947 EXPORT_SYMBOL(__blk_mq_end_request);
948
949 void blk_mq_end_request(struct request *rq, blk_status_t error)
950 {
951         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
952                 BUG();
953         __blk_mq_end_request(rq, error);
954 }
955 EXPORT_SYMBOL(blk_mq_end_request);
956
957 #define TAG_COMP_BATCH          32
958
959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
960                                           int *tag_array, int nr_tags)
961 {
962         struct request_queue *q = hctx->queue;
963
964         /*
965          * All requests should have been marked as RQF_MQ_INFLIGHT, so
966          * update hctx->nr_active in batch
967          */
968         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
969                 __blk_mq_sub_active_requests(hctx, nr_tags);
970
971         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
972         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
973 }
974
975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
976 {
977         int tags[TAG_COMP_BATCH], nr_tags = 0;
978         struct blk_mq_hw_ctx *cur_hctx = NULL;
979         struct request *rq;
980         u64 now = 0;
981
982         if (iob->need_ts)
983                 now = ktime_get_ns();
984
985         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
986                 prefetch(rq->bio);
987                 prefetch(rq->rq_next);
988
989                 blk_complete_request(rq);
990                 if (iob->need_ts)
991                         __blk_mq_end_request_acct(rq, now);
992
993                 rq_qos_done(rq->q, rq);
994
995                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
996                 if (!req_ref_put_and_test(rq))
997                         continue;
998
999                 blk_crypto_free_request(rq);
1000                 blk_pm_mark_last_busy(rq);
1001
1002                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003                         if (cur_hctx)
1004                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005                         nr_tags = 0;
1006                         cur_hctx = rq->mq_hctx;
1007                 }
1008                 tags[nr_tags++] = rq->tag;
1009         }
1010
1011         if (nr_tags)
1012                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019         struct request *rq, *next;
1020
1021         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022                 rq->q->mq_ops->complete(rq);
1023 }
1024
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033         return 0;
1034 }
1035
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043         int cpu = raw_smp_processor_id();
1044
1045         if (!IS_ENABLED(CONFIG_SMP) ||
1046             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047                 return false;
1048         /*
1049          * With force threaded interrupts enabled, raising softirq from an SMP
1050          * function call will always result in waking the ksoftirqd thread.
1051          * This is probably worse than completing the request on a different
1052          * cache domain.
1053          */
1054         if (force_irqthreads())
1055                 return false;
1056
1057         /* same CPU or cache domain?  Complete locally */
1058         if (cpu == rq->mq_ctx->cpu ||
1059             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061                 return false;
1062
1063         /* don't try to IPI to an offline CPU */
1064         return cpu_online(rq->mq_ctx->cpu);
1065 }
1066
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069         struct llist_head *list;
1070         unsigned int cpu;
1071
1072         cpu = rq->mq_ctx->cpu;
1073         list = &per_cpu(blk_cpu_done, cpu);
1074         if (llist_add(&rq->ipi_list, list)) {
1075                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076                 smp_call_function_single_async(cpu, &rq->csd);
1077         }
1078 }
1079
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082         struct llist_head *list;
1083
1084         preempt_disable();
1085         list = this_cpu_ptr(&blk_cpu_done);
1086         if (llist_add(&rq->ipi_list, list))
1087                 raise_softirq(BLOCK_SOFTIRQ);
1088         preempt_enable();
1089 }
1090
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094
1095         /*
1096          * For a polled request, always complete locally, it's pointless
1097          * to redirect the completion.
1098          */
1099         if (rq->cmd_flags & REQ_POLLED)
1100                 return false;
1101
1102         if (blk_mq_complete_need_ipi(rq)) {
1103                 blk_mq_complete_send_ipi(rq);
1104                 return true;
1105         }
1106
1107         if (rq->q->nr_hw_queues == 1) {
1108                 blk_mq_raise_softirq(rq);
1109                 return true;
1110         }
1111         return false;
1112 }
1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1114
1115 /**
1116  * blk_mq_complete_request - end I/O on a request
1117  * @rq:         the request being processed
1118  *
1119  * Description:
1120  *      Complete a request by scheduling the ->complete_rq operation.
1121  **/
1122 void blk_mq_complete_request(struct request *rq)
1123 {
1124         if (!blk_mq_complete_request_remote(rq))
1125                 rq->q->mq_ops->complete(rq);
1126 }
1127 EXPORT_SYMBOL(blk_mq_complete_request);
1128
1129 /**
1130  * blk_mq_start_request - Start processing a request
1131  * @rq: Pointer to request to be started
1132  *
1133  * Function used by device drivers to notify the block layer that a request
1134  * is going to be processed now, so blk layer can do proper initializations
1135  * such as starting the timeout timer.
1136  */
1137 void blk_mq_start_request(struct request *rq)
1138 {
1139         struct request_queue *q = rq->q;
1140
1141         trace_block_rq_issue(rq);
1142
1143         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1144                 rq->io_start_time_ns = ktime_get_ns();
1145                 rq->stats_sectors = blk_rq_sectors(rq);
1146                 rq->rq_flags |= RQF_STATS;
1147                 rq_qos_issue(q, rq);
1148         }
1149
1150         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1151
1152         blk_add_timer(rq);
1153         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1154
1155 #ifdef CONFIG_BLK_DEV_INTEGRITY
1156         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1157                 q->integrity.profile->prepare_fn(rq);
1158 #endif
1159         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1160                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1161 }
1162 EXPORT_SYMBOL(blk_mq_start_request);
1163
1164 /*
1165  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1166  * queues. This is important for md arrays to benefit from merging
1167  * requests.
1168  */
1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1170 {
1171         if (plug->multiple_queues)
1172                 return BLK_MAX_REQUEST_COUNT * 2;
1173         return BLK_MAX_REQUEST_COUNT;
1174 }
1175
1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1177 {
1178         struct request *last = rq_list_peek(&plug->mq_list);
1179
1180         if (!plug->rq_count) {
1181                 trace_block_plug(rq->q);
1182         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1183                    (!blk_queue_nomerges(rq->q) &&
1184                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1185                 blk_mq_flush_plug_list(plug, false);
1186                 trace_block_plug(rq->q);
1187         }
1188
1189         if (!plug->multiple_queues && last && last->q != rq->q)
1190                 plug->multiple_queues = true;
1191         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1192                 plug->has_elevator = true;
1193         rq->rq_next = NULL;
1194         rq_list_add(&plug->mq_list, rq);
1195         plug->rq_count++;
1196 }
1197
1198 /**
1199  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1200  * @rq:         request to insert
1201  * @at_head:    insert request at head or tail of queue
1202  *
1203  * Description:
1204  *    Insert a fully prepared request at the back of the I/O scheduler queue
1205  *    for execution.  Don't wait for completion.
1206  *
1207  * Note:
1208  *    This function will invoke @done directly if the queue is dead.
1209  */
1210 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1211 {
1212         WARN_ON(irqs_disabled());
1213         WARN_ON(!blk_rq_is_passthrough(rq));
1214
1215         blk_account_io_start(rq);
1216         if (current->plug)
1217                 blk_add_rq_to_plug(current->plug, rq);
1218         else
1219                 blk_mq_sched_insert_request(rq, at_head, true, false);
1220 }
1221 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1222
1223 struct blk_rq_wait {
1224         struct completion done;
1225         blk_status_t ret;
1226 };
1227
1228 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1229 {
1230         struct blk_rq_wait *wait = rq->end_io_data;
1231
1232         wait->ret = ret;
1233         complete(&wait->done);
1234 }
1235
1236 static bool blk_rq_is_poll(struct request *rq)
1237 {
1238         if (!rq->mq_hctx)
1239                 return false;
1240         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1241                 return false;
1242         if (WARN_ON_ONCE(!rq->bio))
1243                 return false;
1244         return true;
1245 }
1246
1247 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1248 {
1249         do {
1250                 bio_poll(rq->bio, NULL, 0);
1251                 cond_resched();
1252         } while (!completion_done(wait));
1253 }
1254
1255 /**
1256  * blk_execute_rq - insert a request into queue for execution
1257  * @rq:         request to insert
1258  * @at_head:    insert request at head or tail of queue
1259  *
1260  * Description:
1261  *    Insert a fully prepared request at the back of the I/O scheduler queue
1262  *    for execution and wait for completion.
1263  * Return: The blk_status_t result provided to blk_mq_end_request().
1264  */
1265 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1266 {
1267         struct blk_rq_wait wait = {
1268                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1269         };
1270
1271         WARN_ON(irqs_disabled());
1272         WARN_ON(!blk_rq_is_passthrough(rq));
1273
1274         rq->end_io_data = &wait;
1275         rq->end_io = blk_end_sync_rq;
1276
1277         blk_account_io_start(rq);
1278         blk_mq_sched_insert_request(rq, at_head, true, false);
1279
1280         if (blk_rq_is_poll(rq)) {
1281                 blk_rq_poll_completion(rq, &wait.done);
1282         } else {
1283                 /*
1284                  * Prevent hang_check timer from firing at us during very long
1285                  * I/O
1286                  */
1287                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1288
1289                 if (hang_check)
1290                         while (!wait_for_completion_io_timeout(&wait.done,
1291                                         hang_check * (HZ/2)))
1292                                 ;
1293                 else
1294                         wait_for_completion_io(&wait.done);
1295         }
1296
1297         return wait.ret;
1298 }
1299 EXPORT_SYMBOL(blk_execute_rq);
1300
1301 static void __blk_mq_requeue_request(struct request *rq)
1302 {
1303         struct request_queue *q = rq->q;
1304
1305         blk_mq_put_driver_tag(rq);
1306
1307         trace_block_rq_requeue(rq);
1308         rq_qos_requeue(q, rq);
1309
1310         if (blk_mq_request_started(rq)) {
1311                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1312                 rq->rq_flags &= ~RQF_TIMED_OUT;
1313         }
1314 }
1315
1316 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1317 {
1318         __blk_mq_requeue_request(rq);
1319
1320         /* this request will be re-inserted to io scheduler queue */
1321         blk_mq_sched_requeue_request(rq);
1322
1323         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1324 }
1325 EXPORT_SYMBOL(blk_mq_requeue_request);
1326
1327 static void blk_mq_requeue_work(struct work_struct *work)
1328 {
1329         struct request_queue *q =
1330                 container_of(work, struct request_queue, requeue_work.work);
1331         LIST_HEAD(rq_list);
1332         struct request *rq, *next;
1333
1334         spin_lock_irq(&q->requeue_lock);
1335         list_splice_init(&q->requeue_list, &rq_list);
1336         spin_unlock_irq(&q->requeue_lock);
1337
1338         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1339                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1340                         continue;
1341
1342                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1343                 list_del_init(&rq->queuelist);
1344                 /*
1345                  * If RQF_DONTPREP, rq has contained some driver specific
1346                  * data, so insert it to hctx dispatch list to avoid any
1347                  * merge.
1348                  */
1349                 if (rq->rq_flags & RQF_DONTPREP)
1350                         blk_mq_request_bypass_insert(rq, false, false);
1351                 else
1352                         blk_mq_sched_insert_request(rq, true, false, false);
1353         }
1354
1355         while (!list_empty(&rq_list)) {
1356                 rq = list_entry(rq_list.next, struct request, queuelist);
1357                 list_del_init(&rq->queuelist);
1358                 blk_mq_sched_insert_request(rq, false, false, false);
1359         }
1360
1361         blk_mq_run_hw_queues(q, false);
1362 }
1363
1364 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1365                                 bool kick_requeue_list)
1366 {
1367         struct request_queue *q = rq->q;
1368         unsigned long flags;
1369
1370         /*
1371          * We abuse this flag that is otherwise used by the I/O scheduler to
1372          * request head insertion from the workqueue.
1373          */
1374         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1375
1376         spin_lock_irqsave(&q->requeue_lock, flags);
1377         if (at_head) {
1378                 rq->rq_flags |= RQF_SOFTBARRIER;
1379                 list_add(&rq->queuelist, &q->requeue_list);
1380         } else {
1381                 list_add_tail(&rq->queuelist, &q->requeue_list);
1382         }
1383         spin_unlock_irqrestore(&q->requeue_lock, flags);
1384
1385         if (kick_requeue_list)
1386                 blk_mq_kick_requeue_list(q);
1387 }
1388
1389 void blk_mq_kick_requeue_list(struct request_queue *q)
1390 {
1391         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1392 }
1393 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1394
1395 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1396                                     unsigned long msecs)
1397 {
1398         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1399                                     msecs_to_jiffies(msecs));
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1402
1403 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1404 {
1405         /*
1406          * If we find a request that isn't idle we know the queue is busy
1407          * as it's checked in the iter.
1408          * Return false to stop the iteration.
1409          */
1410         if (blk_mq_request_started(rq)) {
1411                 bool *busy = priv;
1412
1413                 *busy = true;
1414                 return false;
1415         }
1416
1417         return true;
1418 }
1419
1420 bool blk_mq_queue_inflight(struct request_queue *q)
1421 {
1422         bool busy = false;
1423
1424         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1425         return busy;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1428
1429 static void blk_mq_rq_timed_out(struct request *req)
1430 {
1431         req->rq_flags |= RQF_TIMED_OUT;
1432         if (req->q->mq_ops->timeout) {
1433                 enum blk_eh_timer_return ret;
1434
1435                 ret = req->q->mq_ops->timeout(req);
1436                 if (ret == BLK_EH_DONE)
1437                         return;
1438                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1439         }
1440
1441         blk_add_timer(req);
1442 }
1443
1444 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1445 {
1446         unsigned long deadline;
1447
1448         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1449                 return false;
1450         if (rq->rq_flags & RQF_TIMED_OUT)
1451                 return false;
1452
1453         deadline = READ_ONCE(rq->deadline);
1454         if (time_after_eq(jiffies, deadline))
1455                 return true;
1456
1457         if (*next == 0)
1458                 *next = deadline;
1459         else if (time_after(*next, deadline))
1460                 *next = deadline;
1461         return false;
1462 }
1463
1464 void blk_mq_put_rq_ref(struct request *rq)
1465 {
1466         if (is_flush_rq(rq))
1467                 rq->end_io(rq, 0);
1468         else if (req_ref_put_and_test(rq))
1469                 __blk_mq_free_request(rq);
1470 }
1471
1472 static bool blk_mq_check_expired(struct request *rq, void *priv)
1473 {
1474         unsigned long *next = priv;
1475
1476         /*
1477          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1478          * be reallocated underneath the timeout handler's processing, then
1479          * the expire check is reliable. If the request is not expired, then
1480          * it was completed and reallocated as a new request after returning
1481          * from blk_mq_check_expired().
1482          */
1483         if (blk_mq_req_expired(rq, next))
1484                 blk_mq_rq_timed_out(rq);
1485         return true;
1486 }
1487
1488 static void blk_mq_timeout_work(struct work_struct *work)
1489 {
1490         struct request_queue *q =
1491                 container_of(work, struct request_queue, timeout_work);
1492         unsigned long next = 0;
1493         struct blk_mq_hw_ctx *hctx;
1494         unsigned long i;
1495
1496         /* A deadlock might occur if a request is stuck requiring a
1497          * timeout at the same time a queue freeze is waiting
1498          * completion, since the timeout code would not be able to
1499          * acquire the queue reference here.
1500          *
1501          * That's why we don't use blk_queue_enter here; instead, we use
1502          * percpu_ref_tryget directly, because we need to be able to
1503          * obtain a reference even in the short window between the queue
1504          * starting to freeze, by dropping the first reference in
1505          * blk_freeze_queue_start, and the moment the last request is
1506          * consumed, marked by the instant q_usage_counter reaches
1507          * zero.
1508          */
1509         if (!percpu_ref_tryget(&q->q_usage_counter))
1510                 return;
1511
1512         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1513
1514         if (next != 0) {
1515                 mod_timer(&q->timeout, next);
1516         } else {
1517                 /*
1518                  * Request timeouts are handled as a forward rolling timer. If
1519                  * we end up here it means that no requests are pending and
1520                  * also that no request has been pending for a while. Mark
1521                  * each hctx as idle.
1522                  */
1523                 queue_for_each_hw_ctx(q, hctx, i) {
1524                         /* the hctx may be unmapped, so check it here */
1525                         if (blk_mq_hw_queue_mapped(hctx))
1526                                 blk_mq_tag_idle(hctx);
1527                 }
1528         }
1529         blk_queue_exit(q);
1530 }
1531
1532 struct flush_busy_ctx_data {
1533         struct blk_mq_hw_ctx *hctx;
1534         struct list_head *list;
1535 };
1536
1537 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1538 {
1539         struct flush_busy_ctx_data *flush_data = data;
1540         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1541         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1542         enum hctx_type type = hctx->type;
1543
1544         spin_lock(&ctx->lock);
1545         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1546         sbitmap_clear_bit(sb, bitnr);
1547         spin_unlock(&ctx->lock);
1548         return true;
1549 }
1550
1551 /*
1552  * Process software queues that have been marked busy, splicing them
1553  * to the for-dispatch
1554  */
1555 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1556 {
1557         struct flush_busy_ctx_data data = {
1558                 .hctx = hctx,
1559                 .list = list,
1560         };
1561
1562         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1563 }
1564 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1565
1566 struct dispatch_rq_data {
1567         struct blk_mq_hw_ctx *hctx;
1568         struct request *rq;
1569 };
1570
1571 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1572                 void *data)
1573 {
1574         struct dispatch_rq_data *dispatch_data = data;
1575         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1576         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1577         enum hctx_type type = hctx->type;
1578
1579         spin_lock(&ctx->lock);
1580         if (!list_empty(&ctx->rq_lists[type])) {
1581                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1582                 list_del_init(&dispatch_data->rq->queuelist);
1583                 if (list_empty(&ctx->rq_lists[type]))
1584                         sbitmap_clear_bit(sb, bitnr);
1585         }
1586         spin_unlock(&ctx->lock);
1587
1588         return !dispatch_data->rq;
1589 }
1590
1591 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1592                                         struct blk_mq_ctx *start)
1593 {
1594         unsigned off = start ? start->index_hw[hctx->type] : 0;
1595         struct dispatch_rq_data data = {
1596                 .hctx = hctx,
1597                 .rq   = NULL,
1598         };
1599
1600         __sbitmap_for_each_set(&hctx->ctx_map, off,
1601                                dispatch_rq_from_ctx, &data);
1602
1603         return data.rq;
1604 }
1605
1606 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1607 {
1608         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1609         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1610         int tag;
1611
1612         blk_mq_tag_busy(rq->mq_hctx);
1613
1614         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1615                 bt = &rq->mq_hctx->tags->breserved_tags;
1616                 tag_offset = 0;
1617         } else {
1618                 if (!hctx_may_queue(rq->mq_hctx, bt))
1619                         return false;
1620         }
1621
1622         tag = __sbitmap_queue_get(bt);
1623         if (tag == BLK_MQ_NO_TAG)
1624                 return false;
1625
1626         rq->tag = tag + tag_offset;
1627         return true;
1628 }
1629
1630 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1631 {
1632         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1633                 return false;
1634
1635         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1636                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1637                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1638                 __blk_mq_inc_active_requests(hctx);
1639         }
1640         hctx->tags->rqs[rq->tag] = rq;
1641         return true;
1642 }
1643
1644 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1645                                 int flags, void *key)
1646 {
1647         struct blk_mq_hw_ctx *hctx;
1648
1649         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1650
1651         spin_lock(&hctx->dispatch_wait_lock);
1652         if (!list_empty(&wait->entry)) {
1653                 struct sbitmap_queue *sbq;
1654
1655                 list_del_init(&wait->entry);
1656                 sbq = &hctx->tags->bitmap_tags;
1657                 atomic_dec(&sbq->ws_active);
1658         }
1659         spin_unlock(&hctx->dispatch_wait_lock);
1660
1661         blk_mq_run_hw_queue(hctx, true);
1662         return 1;
1663 }
1664
1665 /*
1666  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1667  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1668  * restart. For both cases, take care to check the condition again after
1669  * marking us as waiting.
1670  */
1671 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1672                                  struct request *rq)
1673 {
1674         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1675         struct wait_queue_head *wq;
1676         wait_queue_entry_t *wait;
1677         bool ret;
1678
1679         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1680                 blk_mq_sched_mark_restart_hctx(hctx);
1681
1682                 /*
1683                  * It's possible that a tag was freed in the window between the
1684                  * allocation failure and adding the hardware queue to the wait
1685                  * queue.
1686                  *
1687                  * Don't clear RESTART here, someone else could have set it.
1688                  * At most this will cost an extra queue run.
1689                  */
1690                 return blk_mq_get_driver_tag(rq);
1691         }
1692
1693         wait = &hctx->dispatch_wait;
1694         if (!list_empty_careful(&wait->entry))
1695                 return false;
1696
1697         wq = &bt_wait_ptr(sbq, hctx)->wait;
1698
1699         spin_lock_irq(&wq->lock);
1700         spin_lock(&hctx->dispatch_wait_lock);
1701         if (!list_empty(&wait->entry)) {
1702                 spin_unlock(&hctx->dispatch_wait_lock);
1703                 spin_unlock_irq(&wq->lock);
1704                 return false;
1705         }
1706
1707         atomic_inc(&sbq->ws_active);
1708         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1709         __add_wait_queue(wq, wait);
1710
1711         /*
1712          * It's possible that a tag was freed in the window between the
1713          * allocation failure and adding the hardware queue to the wait
1714          * queue.
1715          */
1716         ret = blk_mq_get_driver_tag(rq);
1717         if (!ret) {
1718                 spin_unlock(&hctx->dispatch_wait_lock);
1719                 spin_unlock_irq(&wq->lock);
1720                 return false;
1721         }
1722
1723         /*
1724          * We got a tag, remove ourselves from the wait queue to ensure
1725          * someone else gets the wakeup.
1726          */
1727         list_del_init(&wait->entry);
1728         atomic_dec(&sbq->ws_active);
1729         spin_unlock(&hctx->dispatch_wait_lock);
1730         spin_unlock_irq(&wq->lock);
1731
1732         return true;
1733 }
1734
1735 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1737 /*
1738  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1739  * - EWMA is one simple way to compute running average value
1740  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1741  * - take 4 as factor for avoiding to get too small(0) result, and this
1742  *   factor doesn't matter because EWMA decreases exponentially
1743  */
1744 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1745 {
1746         unsigned int ewma;
1747
1748         ewma = hctx->dispatch_busy;
1749
1750         if (!ewma && !busy)
1751                 return;
1752
1753         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1754         if (busy)
1755                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1756         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1757
1758         hctx->dispatch_busy = ewma;
1759 }
1760
1761 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1762
1763 static void blk_mq_handle_dev_resource(struct request *rq,
1764                                        struct list_head *list)
1765 {
1766         struct request *next =
1767                 list_first_entry_or_null(list, struct request, queuelist);
1768
1769         /*
1770          * If an I/O scheduler has been configured and we got a driver tag for
1771          * the next request already, free it.
1772          */
1773         if (next)
1774                 blk_mq_put_driver_tag(next);
1775
1776         list_add(&rq->queuelist, list);
1777         __blk_mq_requeue_request(rq);
1778 }
1779
1780 static void blk_mq_handle_zone_resource(struct request *rq,
1781                                         struct list_head *zone_list)
1782 {
1783         /*
1784          * If we end up here it is because we cannot dispatch a request to a
1785          * specific zone due to LLD level zone-write locking or other zone
1786          * related resource not being available. In this case, set the request
1787          * aside in zone_list for retrying it later.
1788          */
1789         list_add(&rq->queuelist, zone_list);
1790         __blk_mq_requeue_request(rq);
1791 }
1792
1793 enum prep_dispatch {
1794         PREP_DISPATCH_OK,
1795         PREP_DISPATCH_NO_TAG,
1796         PREP_DISPATCH_NO_BUDGET,
1797 };
1798
1799 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1800                                                   bool need_budget)
1801 {
1802         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1803         int budget_token = -1;
1804
1805         if (need_budget) {
1806                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1807                 if (budget_token < 0) {
1808                         blk_mq_put_driver_tag(rq);
1809                         return PREP_DISPATCH_NO_BUDGET;
1810                 }
1811                 blk_mq_set_rq_budget_token(rq, budget_token);
1812         }
1813
1814         if (!blk_mq_get_driver_tag(rq)) {
1815                 /*
1816                  * The initial allocation attempt failed, so we need to
1817                  * rerun the hardware queue when a tag is freed. The
1818                  * waitqueue takes care of that. If the queue is run
1819                  * before we add this entry back on the dispatch list,
1820                  * we'll re-run it below.
1821                  */
1822                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1823                         /*
1824                          * All budgets not got from this function will be put
1825                          * together during handling partial dispatch
1826                          */
1827                         if (need_budget)
1828                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1829                         return PREP_DISPATCH_NO_TAG;
1830                 }
1831         }
1832
1833         return PREP_DISPATCH_OK;
1834 }
1835
1836 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1837 static void blk_mq_release_budgets(struct request_queue *q,
1838                 struct list_head *list)
1839 {
1840         struct request *rq;
1841
1842         list_for_each_entry(rq, list, queuelist) {
1843                 int budget_token = blk_mq_get_rq_budget_token(rq);
1844
1845                 if (budget_token >= 0)
1846                         blk_mq_put_dispatch_budget(q, budget_token);
1847         }
1848 }
1849
1850 /*
1851  * Returns true if we did some work AND can potentially do more.
1852  */
1853 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1854                              unsigned int nr_budgets)
1855 {
1856         enum prep_dispatch prep;
1857         struct request_queue *q = hctx->queue;
1858         struct request *rq, *nxt;
1859         int errors, queued;
1860         blk_status_t ret = BLK_STS_OK;
1861         LIST_HEAD(zone_list);
1862         bool needs_resource = false;
1863
1864         if (list_empty(list))
1865                 return false;
1866
1867         /*
1868          * Now process all the entries, sending them to the driver.
1869          */
1870         errors = queued = 0;
1871         do {
1872                 struct blk_mq_queue_data bd;
1873
1874                 rq = list_first_entry(list, struct request, queuelist);
1875
1876                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1877                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1878                 if (prep != PREP_DISPATCH_OK)
1879                         break;
1880
1881                 list_del_init(&rq->queuelist);
1882
1883                 bd.rq = rq;
1884
1885                 /*
1886                  * Flag last if we have no more requests, or if we have more
1887                  * but can't assign a driver tag to it.
1888                  */
1889                 if (list_empty(list))
1890                         bd.last = true;
1891                 else {
1892                         nxt = list_first_entry(list, struct request, queuelist);
1893                         bd.last = !blk_mq_get_driver_tag(nxt);
1894                 }
1895
1896                 /*
1897                  * once the request is queued to lld, no need to cover the
1898                  * budget any more
1899                  */
1900                 if (nr_budgets)
1901                         nr_budgets--;
1902                 ret = q->mq_ops->queue_rq(hctx, &bd);
1903                 switch (ret) {
1904                 case BLK_STS_OK:
1905                         queued++;
1906                         break;
1907                 case BLK_STS_RESOURCE:
1908                         needs_resource = true;
1909                         fallthrough;
1910                 case BLK_STS_DEV_RESOURCE:
1911                         blk_mq_handle_dev_resource(rq, list);
1912                         goto out;
1913                 case BLK_STS_ZONE_RESOURCE:
1914                         /*
1915                          * Move the request to zone_list and keep going through
1916                          * the dispatch list to find more requests the drive can
1917                          * accept.
1918                          */
1919                         blk_mq_handle_zone_resource(rq, &zone_list);
1920                         needs_resource = true;
1921                         break;
1922                 default:
1923                         errors++;
1924                         blk_mq_end_request(rq, ret);
1925                 }
1926         } while (!list_empty(list));
1927 out:
1928         if (!list_empty(&zone_list))
1929                 list_splice_tail_init(&zone_list, list);
1930
1931         /* If we didn't flush the entire list, we could have told the driver
1932          * there was more coming, but that turned out to be a lie.
1933          */
1934         if ((!list_empty(list) || errors || needs_resource ||
1935              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1936                 q->mq_ops->commit_rqs(hctx);
1937         /*
1938          * Any items that need requeuing? Stuff them into hctx->dispatch,
1939          * that is where we will continue on next queue run.
1940          */
1941         if (!list_empty(list)) {
1942                 bool needs_restart;
1943                 /* For non-shared tags, the RESTART check will suffice */
1944                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1945                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1946
1947                 if (nr_budgets)
1948                         blk_mq_release_budgets(q, list);
1949
1950                 spin_lock(&hctx->lock);
1951                 list_splice_tail_init(list, &hctx->dispatch);
1952                 spin_unlock(&hctx->lock);
1953
1954                 /*
1955                  * Order adding requests to hctx->dispatch and checking
1956                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1957                  * in blk_mq_sched_restart(). Avoid restart code path to
1958                  * miss the new added requests to hctx->dispatch, meantime
1959                  * SCHED_RESTART is observed here.
1960                  */
1961                 smp_mb();
1962
1963                 /*
1964                  * If SCHED_RESTART was set by the caller of this function and
1965                  * it is no longer set that means that it was cleared by another
1966                  * thread and hence that a queue rerun is needed.
1967                  *
1968                  * If 'no_tag' is set, that means that we failed getting
1969                  * a driver tag with an I/O scheduler attached. If our dispatch
1970                  * waitqueue is no longer active, ensure that we run the queue
1971                  * AFTER adding our entries back to the list.
1972                  *
1973                  * If no I/O scheduler has been configured it is possible that
1974                  * the hardware queue got stopped and restarted before requests
1975                  * were pushed back onto the dispatch list. Rerun the queue to
1976                  * avoid starvation. Notes:
1977                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1978                  *   been stopped before rerunning a queue.
1979                  * - Some but not all block drivers stop a queue before
1980                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1981                  *   and dm-rq.
1982                  *
1983                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1984                  * bit is set, run queue after a delay to avoid IO stalls
1985                  * that could otherwise occur if the queue is idle.  We'll do
1986                  * similar if we couldn't get budget or couldn't lock a zone
1987                  * and SCHED_RESTART is set.
1988                  */
1989                 needs_restart = blk_mq_sched_needs_restart(hctx);
1990                 if (prep == PREP_DISPATCH_NO_BUDGET)
1991                         needs_resource = true;
1992                 if (!needs_restart ||
1993                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1994                         blk_mq_run_hw_queue(hctx, true);
1995                 else if (needs_restart && needs_resource)
1996                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1997
1998                 blk_mq_update_dispatch_busy(hctx, true);
1999                 return false;
2000         } else
2001                 blk_mq_update_dispatch_busy(hctx, false);
2002
2003         return (queued + errors) != 0;
2004 }
2005
2006 /**
2007  * __blk_mq_run_hw_queue - Run a hardware queue.
2008  * @hctx: Pointer to the hardware queue to run.
2009  *
2010  * Send pending requests to the hardware.
2011  */
2012 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2013 {
2014         /*
2015          * We can't run the queue inline with ints disabled. Ensure that
2016          * we catch bad users of this early.
2017          */
2018         WARN_ON_ONCE(in_interrupt());
2019
2020         blk_mq_run_dispatch_ops(hctx->queue,
2021                         blk_mq_sched_dispatch_requests(hctx));
2022 }
2023
2024 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2025 {
2026         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2027
2028         if (cpu >= nr_cpu_ids)
2029                 cpu = cpumask_first(hctx->cpumask);
2030         return cpu;
2031 }
2032
2033 /*
2034  * It'd be great if the workqueue API had a way to pass
2035  * in a mask and had some smarts for more clever placement.
2036  * For now we just round-robin here, switching for every
2037  * BLK_MQ_CPU_WORK_BATCH queued items.
2038  */
2039 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2040 {
2041         bool tried = false;
2042         int next_cpu = hctx->next_cpu;
2043
2044         if (hctx->queue->nr_hw_queues == 1)
2045                 return WORK_CPU_UNBOUND;
2046
2047         if (--hctx->next_cpu_batch <= 0) {
2048 select_cpu:
2049                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2050                                 cpu_online_mask);
2051                 if (next_cpu >= nr_cpu_ids)
2052                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2053                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2054         }
2055
2056         /*
2057          * Do unbound schedule if we can't find a online CPU for this hctx,
2058          * and it should only happen in the path of handling CPU DEAD.
2059          */
2060         if (!cpu_online(next_cpu)) {
2061                 if (!tried) {
2062                         tried = true;
2063                         goto select_cpu;
2064                 }
2065
2066                 /*
2067                  * Make sure to re-select CPU next time once after CPUs
2068                  * in hctx->cpumask become online again.
2069                  */
2070                 hctx->next_cpu = next_cpu;
2071                 hctx->next_cpu_batch = 1;
2072                 return WORK_CPU_UNBOUND;
2073         }
2074
2075         hctx->next_cpu = next_cpu;
2076         return next_cpu;
2077 }
2078
2079 /**
2080  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2081  * @hctx: Pointer to the hardware queue to run.
2082  * @async: If we want to run the queue asynchronously.
2083  * @msecs: Milliseconds of delay to wait before running the queue.
2084  *
2085  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2086  * with a delay of @msecs.
2087  */
2088 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2089                                         unsigned long msecs)
2090 {
2091         if (unlikely(blk_mq_hctx_stopped(hctx)))
2092                 return;
2093
2094         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2095                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2096                         __blk_mq_run_hw_queue(hctx);
2097                         return;
2098                 }
2099         }
2100
2101         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2102                                     msecs_to_jiffies(msecs));
2103 }
2104
2105 /**
2106  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2107  * @hctx: Pointer to the hardware queue to run.
2108  * @msecs: Milliseconds of delay to wait before running the queue.
2109  *
2110  * Run a hardware queue asynchronously with a delay of @msecs.
2111  */
2112 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2113 {
2114         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2115 }
2116 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2117
2118 /**
2119  * blk_mq_run_hw_queue - Start to run a hardware queue.
2120  * @hctx: Pointer to the hardware queue to run.
2121  * @async: If we want to run the queue asynchronously.
2122  *
2123  * Check if the request queue is not in a quiesced state and if there are
2124  * pending requests to be sent. If this is true, run the queue to send requests
2125  * to hardware.
2126  */
2127 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2128 {
2129         bool need_run;
2130
2131         /*
2132          * When queue is quiesced, we may be switching io scheduler, or
2133          * updating nr_hw_queues, or other things, and we can't run queue
2134          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2135          *
2136          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2137          * quiesced.
2138          */
2139         __blk_mq_run_dispatch_ops(hctx->queue, false,
2140                 need_run = !blk_queue_quiesced(hctx->queue) &&
2141                 blk_mq_hctx_has_pending(hctx));
2142
2143         if (need_run)
2144                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2145 }
2146 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2147
2148 /*
2149  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2150  * scheduler.
2151  */
2152 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2153 {
2154         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2155         /*
2156          * If the IO scheduler does not respect hardware queues when
2157          * dispatching, we just don't bother with multiple HW queues and
2158          * dispatch from hctx for the current CPU since running multiple queues
2159          * just causes lock contention inside the scheduler and pointless cache
2160          * bouncing.
2161          */
2162         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2163
2164         if (!blk_mq_hctx_stopped(hctx))
2165                 return hctx;
2166         return NULL;
2167 }
2168
2169 /**
2170  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2171  * @q: Pointer to the request queue to run.
2172  * @async: If we want to run the queue asynchronously.
2173  */
2174 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2175 {
2176         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2177         unsigned long i;
2178
2179         sq_hctx = NULL;
2180         if (blk_queue_sq_sched(q))
2181                 sq_hctx = blk_mq_get_sq_hctx(q);
2182         queue_for_each_hw_ctx(q, hctx, i) {
2183                 if (blk_mq_hctx_stopped(hctx))
2184                         continue;
2185                 /*
2186                  * Dispatch from this hctx either if there's no hctx preferred
2187                  * by IO scheduler or if it has requests that bypass the
2188                  * scheduler.
2189                  */
2190                 if (!sq_hctx || sq_hctx == hctx ||
2191                     !list_empty_careful(&hctx->dispatch))
2192                         blk_mq_run_hw_queue(hctx, async);
2193         }
2194 }
2195 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2196
2197 /**
2198  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2199  * @q: Pointer to the request queue to run.
2200  * @msecs: Milliseconds of delay to wait before running the queues.
2201  */
2202 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2203 {
2204         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2205         unsigned long i;
2206
2207         sq_hctx = NULL;
2208         if (blk_queue_sq_sched(q))
2209                 sq_hctx = blk_mq_get_sq_hctx(q);
2210         queue_for_each_hw_ctx(q, hctx, i) {
2211                 if (blk_mq_hctx_stopped(hctx))
2212                         continue;
2213                 /*
2214                  * If there is already a run_work pending, leave the
2215                  * pending delay untouched. Otherwise, a hctx can stall
2216                  * if another hctx is re-delaying the other's work
2217                  * before the work executes.
2218                  */
2219                 if (delayed_work_pending(&hctx->run_work))
2220                         continue;
2221                 /*
2222                  * Dispatch from this hctx either if there's no hctx preferred
2223                  * by IO scheduler or if it has requests that bypass the
2224                  * scheduler.
2225                  */
2226                 if (!sq_hctx || sq_hctx == hctx ||
2227                     !list_empty_careful(&hctx->dispatch))
2228                         blk_mq_delay_run_hw_queue(hctx, msecs);
2229         }
2230 }
2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2232
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queue() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2243 {
2244         cancel_delayed_work(&hctx->run_work);
2245
2246         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2247 }
2248 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2249
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queues() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queues(struct request_queue *q)
2260 {
2261         struct blk_mq_hw_ctx *hctx;
2262         unsigned long i;
2263
2264         queue_for_each_hw_ctx(q, hctx, i)
2265                 blk_mq_stop_hw_queue(hctx);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2268
2269 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2270 {
2271         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272
2273         blk_mq_run_hw_queue(hctx, false);
2274 }
2275 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2276
2277 void blk_mq_start_hw_queues(struct request_queue *q)
2278 {
2279         struct blk_mq_hw_ctx *hctx;
2280         unsigned long i;
2281
2282         queue_for_each_hw_ctx(q, hctx, i)
2283                 blk_mq_start_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2286
2287 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2288 {
2289         if (!blk_mq_hctx_stopped(hctx))
2290                 return;
2291
2292         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2293         blk_mq_run_hw_queue(hctx, async);
2294 }
2295 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2296
2297 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2298 {
2299         struct blk_mq_hw_ctx *hctx;
2300         unsigned long i;
2301
2302         queue_for_each_hw_ctx(q, hctx, i)
2303                 blk_mq_start_stopped_hw_queue(hctx, async);
2304 }
2305 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2306
2307 static void blk_mq_run_work_fn(struct work_struct *work)
2308 {
2309         struct blk_mq_hw_ctx *hctx;
2310
2311         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2312
2313         /*
2314          * If we are stopped, don't run the queue.
2315          */
2316         if (blk_mq_hctx_stopped(hctx))
2317                 return;
2318
2319         __blk_mq_run_hw_queue(hctx);
2320 }
2321
2322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2323                                             struct request *rq,
2324                                             bool at_head)
2325 {
2326         struct blk_mq_ctx *ctx = rq->mq_ctx;
2327         enum hctx_type type = hctx->type;
2328
2329         lockdep_assert_held(&ctx->lock);
2330
2331         trace_block_rq_insert(rq);
2332
2333         if (at_head)
2334                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2335         else
2336                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2337 }
2338
2339 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2340                              bool at_head)
2341 {
2342         struct blk_mq_ctx *ctx = rq->mq_ctx;
2343
2344         lockdep_assert_held(&ctx->lock);
2345
2346         __blk_mq_insert_req_list(hctx, rq, at_head);
2347         blk_mq_hctx_mark_pending(hctx, ctx);
2348 }
2349
2350 /**
2351  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2352  * @rq: Pointer to request to be inserted.
2353  * @at_head: true if the request should be inserted at the head of the list.
2354  * @run_queue: If we should run the hardware queue after inserting the request.
2355  *
2356  * Should only be used carefully, when the caller knows we want to
2357  * bypass a potential IO scheduler on the target device.
2358  */
2359 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2360                                   bool run_queue)
2361 {
2362         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2363
2364         spin_lock(&hctx->lock);
2365         if (at_head)
2366                 list_add(&rq->queuelist, &hctx->dispatch);
2367         else
2368                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2369         spin_unlock(&hctx->lock);
2370
2371         if (run_queue)
2372                 blk_mq_run_hw_queue(hctx, false);
2373 }
2374
2375 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2376                             struct list_head *list)
2377
2378 {
2379         struct request *rq;
2380         enum hctx_type type = hctx->type;
2381
2382         /*
2383          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2384          * offline now
2385          */
2386         list_for_each_entry(rq, list, queuelist) {
2387                 BUG_ON(rq->mq_ctx != ctx);
2388                 trace_block_rq_insert(rq);
2389         }
2390
2391         spin_lock(&ctx->lock);
2392         list_splice_tail_init(list, &ctx->rq_lists[type]);
2393         blk_mq_hctx_mark_pending(hctx, ctx);
2394         spin_unlock(&ctx->lock);
2395 }
2396
2397 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2398                               bool from_schedule)
2399 {
2400         if (hctx->queue->mq_ops->commit_rqs) {
2401                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2402                 hctx->queue->mq_ops->commit_rqs(hctx);
2403         }
2404         *queued = 0;
2405 }
2406
2407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2408                 unsigned int nr_segs)
2409 {
2410         int err;
2411
2412         if (bio->bi_opf & REQ_RAHEAD)
2413                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2414
2415         rq->__sector = bio->bi_iter.bi_sector;
2416         blk_rq_bio_prep(rq, bio, nr_segs);
2417
2418         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2419         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2420         WARN_ON_ONCE(err);
2421
2422         blk_account_io_start(rq);
2423 }
2424
2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2426                                             struct request *rq, bool last)
2427 {
2428         struct request_queue *q = rq->q;
2429         struct blk_mq_queue_data bd = {
2430                 .rq = rq,
2431                 .last = last,
2432         };
2433         blk_status_t ret;
2434
2435         /*
2436          * For OK queue, we are done. For error, caller may kill it.
2437          * Any other error (busy), just add it to our list as we
2438          * previously would have done.
2439          */
2440         ret = q->mq_ops->queue_rq(hctx, &bd);
2441         switch (ret) {
2442         case BLK_STS_OK:
2443                 blk_mq_update_dispatch_busy(hctx, false);
2444                 break;
2445         case BLK_STS_RESOURCE:
2446         case BLK_STS_DEV_RESOURCE:
2447                 blk_mq_update_dispatch_busy(hctx, true);
2448                 __blk_mq_requeue_request(rq);
2449                 break;
2450         default:
2451                 blk_mq_update_dispatch_busy(hctx, false);
2452                 break;
2453         }
2454
2455         return ret;
2456 }
2457
2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2459                                                 struct request *rq,
2460                                                 bool bypass_insert, bool last)
2461 {
2462         struct request_queue *q = rq->q;
2463         bool run_queue = true;
2464         int budget_token;
2465
2466         /*
2467          * RCU or SRCU read lock is needed before checking quiesced flag.
2468          *
2469          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2470          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2471          * and avoid driver to try to dispatch again.
2472          */
2473         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2474                 run_queue = false;
2475                 bypass_insert = false;
2476                 goto insert;
2477         }
2478
2479         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2480                 goto insert;
2481
2482         budget_token = blk_mq_get_dispatch_budget(q);
2483         if (budget_token < 0)
2484                 goto insert;
2485
2486         blk_mq_set_rq_budget_token(rq, budget_token);
2487
2488         if (!blk_mq_get_driver_tag(rq)) {
2489                 blk_mq_put_dispatch_budget(q, budget_token);
2490                 goto insert;
2491         }
2492
2493         return __blk_mq_issue_directly(hctx, rq, last);
2494 insert:
2495         if (bypass_insert)
2496                 return BLK_STS_RESOURCE;
2497
2498         blk_mq_sched_insert_request(rq, false, run_queue, false);
2499
2500         return BLK_STS_OK;
2501 }
2502
2503 /**
2504  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2505  * @hctx: Pointer of the associated hardware queue.
2506  * @rq: Pointer to request to be sent.
2507  *
2508  * If the device has enough resources to accept a new request now, send the
2509  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2510  * we can try send it another time in the future. Requests inserted at this
2511  * queue have higher priority.
2512  */
2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2514                 struct request *rq)
2515 {
2516         blk_status_t ret =
2517                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2518
2519         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2520                 blk_mq_request_bypass_insert(rq, false, true);
2521         else if (ret != BLK_STS_OK)
2522                 blk_mq_end_request(rq, ret);
2523 }
2524
2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2526 {
2527         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2528 }
2529
2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2531 {
2532         struct blk_mq_hw_ctx *hctx = NULL;
2533         struct request *rq;
2534         int queued = 0;
2535         int errors = 0;
2536
2537         while ((rq = rq_list_pop(&plug->mq_list))) {
2538                 bool last = rq_list_empty(plug->mq_list);
2539                 blk_status_t ret;
2540
2541                 if (hctx != rq->mq_hctx) {
2542                         if (hctx)
2543                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2544                         hctx = rq->mq_hctx;
2545                 }
2546
2547                 ret = blk_mq_request_issue_directly(rq, last);
2548                 switch (ret) {
2549                 case BLK_STS_OK:
2550                         queued++;
2551                         break;
2552                 case BLK_STS_RESOURCE:
2553                 case BLK_STS_DEV_RESOURCE:
2554                         blk_mq_request_bypass_insert(rq, false, true);
2555                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2556                         return;
2557                 default:
2558                         blk_mq_end_request(rq, ret);
2559                         errors++;
2560                         break;
2561                 }
2562         }
2563
2564         /*
2565          * If we didn't flush the entire list, we could have told the driver
2566          * there was more coming, but that turned out to be a lie.
2567          */
2568         if (errors)
2569                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2570 }
2571
2572 static void __blk_mq_flush_plug_list(struct request_queue *q,
2573                                      struct blk_plug *plug)
2574 {
2575         if (blk_queue_quiesced(q))
2576                 return;
2577         q->mq_ops->queue_rqs(&plug->mq_list);
2578 }
2579
2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2581 {
2582         struct blk_mq_hw_ctx *this_hctx = NULL;
2583         struct blk_mq_ctx *this_ctx = NULL;
2584         struct request *requeue_list = NULL;
2585         unsigned int depth = 0;
2586         LIST_HEAD(list);
2587
2588         do {
2589                 struct request *rq = rq_list_pop(&plug->mq_list);
2590
2591                 if (!this_hctx) {
2592                         this_hctx = rq->mq_hctx;
2593                         this_ctx = rq->mq_ctx;
2594                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2595                         rq_list_add(&requeue_list, rq);
2596                         continue;
2597                 }
2598                 list_add_tail(&rq->queuelist, &list);
2599                 depth++;
2600         } while (!rq_list_empty(plug->mq_list));
2601
2602         plug->mq_list = requeue_list;
2603         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2604         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2605 }
2606
2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2608 {
2609         struct request *rq;
2610
2611         if (rq_list_empty(plug->mq_list))
2612                 return;
2613         plug->rq_count = 0;
2614
2615         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2616                 struct request_queue *q;
2617
2618                 rq = rq_list_peek(&plug->mq_list);
2619                 q = rq->q;
2620
2621                 /*
2622                  * Peek first request and see if we have a ->queue_rqs() hook.
2623                  * If we do, we can dispatch the whole plug list in one go. We
2624                  * already know at this point that all requests belong to the
2625                  * same queue, caller must ensure that's the case.
2626                  *
2627                  * Since we pass off the full list to the driver at this point,
2628                  * we do not increment the active request count for the queue.
2629                  * Bypass shared tags for now because of that.
2630                  */
2631                 if (q->mq_ops->queue_rqs &&
2632                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2633                         blk_mq_run_dispatch_ops(q,
2634                                 __blk_mq_flush_plug_list(q, plug));
2635                         if (rq_list_empty(plug->mq_list))
2636                                 return;
2637                 }
2638
2639                 blk_mq_run_dispatch_ops(q,
2640                                 blk_mq_plug_issue_direct(plug, false));
2641                 if (rq_list_empty(plug->mq_list))
2642                         return;
2643         }
2644
2645         do {
2646                 blk_mq_dispatch_plug_list(plug, from_schedule);
2647         } while (!rq_list_empty(plug->mq_list));
2648 }
2649
2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2651                 struct list_head *list)
2652 {
2653         int queued = 0;
2654         int errors = 0;
2655
2656         while (!list_empty(list)) {
2657                 blk_status_t ret;
2658                 struct request *rq = list_first_entry(list, struct request,
2659                                 queuelist);
2660
2661                 list_del_init(&rq->queuelist);
2662                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2663                 if (ret != BLK_STS_OK) {
2664                         errors++;
2665                         if (ret == BLK_STS_RESOURCE ||
2666                                         ret == BLK_STS_DEV_RESOURCE) {
2667                                 blk_mq_request_bypass_insert(rq, false,
2668                                                         list_empty(list));
2669                                 break;
2670                         }
2671                         blk_mq_end_request(rq, ret);
2672                 } else
2673                         queued++;
2674         }
2675
2676         /*
2677          * If we didn't flush the entire list, we could have told
2678          * the driver there was more coming, but that turned out to
2679          * be a lie.
2680          */
2681         if ((!list_empty(list) || errors) &&
2682              hctx->queue->mq_ops->commit_rqs && queued)
2683                 hctx->queue->mq_ops->commit_rqs(hctx);
2684 }
2685
2686 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2687                                      struct bio *bio, unsigned int nr_segs)
2688 {
2689         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2690                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2691                         return true;
2692                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2693                         return true;
2694         }
2695         return false;
2696 }
2697
2698 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2699                                                struct blk_plug *plug,
2700                                                struct bio *bio,
2701                                                unsigned int nsegs)
2702 {
2703         struct blk_mq_alloc_data data = {
2704                 .q              = q,
2705                 .nr_tags        = 1,
2706                 .cmd_flags      = bio->bi_opf,
2707         };
2708         struct request *rq;
2709
2710         if (unlikely(bio_queue_enter(bio)))
2711                 return NULL;
2712
2713         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2714                 goto queue_exit;
2715
2716         rq_qos_throttle(q, bio);
2717
2718         if (plug) {
2719                 data.nr_tags = plug->nr_ios;
2720                 plug->nr_ios = 1;
2721                 data.cached_rq = &plug->cached_rq;
2722         }
2723
2724         rq = __blk_mq_alloc_requests(&data);
2725         if (rq)
2726                 return rq;
2727         rq_qos_cleanup(q, bio);
2728         if (bio->bi_opf & REQ_NOWAIT)
2729                 bio_wouldblock_error(bio);
2730 queue_exit:
2731         blk_queue_exit(q);
2732         return NULL;
2733 }
2734
2735 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2736                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2737 {
2738         struct request *rq;
2739
2740         if (!plug)
2741                 return NULL;
2742         rq = rq_list_peek(&plug->cached_rq);
2743         if (!rq || rq->q != q)
2744                 return NULL;
2745
2746         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2747                 *bio = NULL;
2748                 return NULL;
2749         }
2750
2751         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2752                 return NULL;
2753         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2754                 return NULL;
2755
2756         /*
2757          * If any qos ->throttle() end up blocking, we will have flushed the
2758          * plug and hence killed the cached_rq list as well. Pop this entry
2759          * before we throttle.
2760          */
2761         plug->cached_rq = rq_list_next(rq);
2762         rq_qos_throttle(q, *bio);
2763
2764         rq->cmd_flags = (*bio)->bi_opf;
2765         INIT_LIST_HEAD(&rq->queuelist);
2766         return rq;
2767 }
2768
2769 static void bio_set_ioprio(struct bio *bio)
2770 {
2771         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2772         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2773                 bio->bi_ioprio = get_current_ioprio();
2774         blkcg_set_ioprio(bio);
2775 }
2776
2777 /**
2778  * blk_mq_submit_bio - Create and send a request to block device.
2779  * @bio: Bio pointer.
2780  *
2781  * Builds up a request structure from @q and @bio and send to the device. The
2782  * request may not be queued directly to hardware if:
2783  * * This request can be merged with another one
2784  * * We want to place request at plug queue for possible future merging
2785  * * There is an IO scheduler active at this queue
2786  *
2787  * It will not queue the request if there is an error with the bio, or at the
2788  * request creation.
2789  */
2790 void blk_mq_submit_bio(struct bio *bio)
2791 {
2792         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2793         struct blk_plug *plug = blk_mq_plug(bio);
2794         const int is_sync = op_is_sync(bio->bi_opf);
2795         struct request *rq;
2796         unsigned int nr_segs = 1;
2797         blk_status_t ret;
2798
2799         bio = blk_queue_bounce(bio, q);
2800         if (bio_may_exceed_limits(bio, &q->limits))
2801                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2802
2803         if (!bio_integrity_prep(bio))
2804                 return;
2805
2806         bio_set_ioprio(bio);
2807
2808         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2809         if (!rq) {
2810                 if (!bio)
2811                         return;
2812                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2813                 if (unlikely(!rq))
2814                         return;
2815         }
2816
2817         trace_block_getrq(bio);
2818
2819         rq_qos_track(q, rq, bio);
2820
2821         blk_mq_bio_to_request(rq, bio, nr_segs);
2822
2823         ret = blk_crypto_init_request(rq);
2824         if (ret != BLK_STS_OK) {
2825                 bio->bi_status = ret;
2826                 bio_endio(bio);
2827                 blk_mq_free_request(rq);
2828                 return;
2829         }
2830
2831         if (op_is_flush(bio->bi_opf)) {
2832                 blk_insert_flush(rq);
2833                 return;
2834         }
2835
2836         if (plug)
2837                 blk_add_rq_to_plug(plug, rq);
2838         else if ((rq->rq_flags & RQF_ELV) ||
2839                  (rq->mq_hctx->dispatch_busy &&
2840                   (q->nr_hw_queues == 1 || !is_sync)))
2841                 blk_mq_sched_insert_request(rq, false, true, true);
2842         else
2843                 blk_mq_run_dispatch_ops(rq->q,
2844                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2845 }
2846
2847 #ifdef CONFIG_BLK_MQ_STACKING
2848 /**
2849  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2850  * @rq: the request being queued
2851  */
2852 blk_status_t blk_insert_cloned_request(struct request *rq)
2853 {
2854         struct request_queue *q = rq->q;
2855         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2856         blk_status_t ret;
2857
2858         if (blk_rq_sectors(rq) > max_sectors) {
2859                 /*
2860                  * SCSI device does not have a good way to return if
2861                  * Write Same/Zero is actually supported. If a device rejects
2862                  * a non-read/write command (discard, write same,etc.) the
2863                  * low-level device driver will set the relevant queue limit to
2864                  * 0 to prevent blk-lib from issuing more of the offending
2865                  * operations. Commands queued prior to the queue limit being
2866                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2867                  * errors being propagated to upper layers.
2868                  */
2869                 if (max_sectors == 0)
2870                         return BLK_STS_NOTSUPP;
2871
2872                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2873                         __func__, blk_rq_sectors(rq), max_sectors);
2874                 return BLK_STS_IOERR;
2875         }
2876
2877         /*
2878          * The queue settings related to segment counting may differ from the
2879          * original queue.
2880          */
2881         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2882         if (rq->nr_phys_segments > queue_max_segments(q)) {
2883                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2884                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2885                 return BLK_STS_IOERR;
2886         }
2887
2888         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2889                 return BLK_STS_IOERR;
2890
2891         if (blk_crypto_insert_cloned_request(rq))
2892                 return BLK_STS_IOERR;
2893
2894         blk_account_io_start(rq);
2895
2896         /*
2897          * Since we have a scheduler attached on the top device,
2898          * bypass a potential scheduler on the bottom device for
2899          * insert.
2900          */
2901         blk_mq_run_dispatch_ops(q,
2902                         ret = blk_mq_request_issue_directly(rq, true));
2903         if (ret)
2904                 blk_account_io_done(rq, ktime_get_ns());
2905         return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2908
2909 /**
2910  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2911  * @rq: the clone request to be cleaned up
2912  *
2913  * Description:
2914  *     Free all bios in @rq for a cloned request.
2915  */
2916 void blk_rq_unprep_clone(struct request *rq)
2917 {
2918         struct bio *bio;
2919
2920         while ((bio = rq->bio) != NULL) {
2921                 rq->bio = bio->bi_next;
2922
2923                 bio_put(bio);
2924         }
2925 }
2926 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2927
2928 /**
2929  * blk_rq_prep_clone - Helper function to setup clone request
2930  * @rq: the request to be setup
2931  * @rq_src: original request to be cloned
2932  * @bs: bio_set that bios for clone are allocated from
2933  * @gfp_mask: memory allocation mask for bio
2934  * @bio_ctr: setup function to be called for each clone bio.
2935  *           Returns %0 for success, non %0 for failure.
2936  * @data: private data to be passed to @bio_ctr
2937  *
2938  * Description:
2939  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2940  *     Also, pages which the original bios are pointing to are not copied
2941  *     and the cloned bios just point same pages.
2942  *     So cloned bios must be completed before original bios, which means
2943  *     the caller must complete @rq before @rq_src.
2944  */
2945 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2946                       struct bio_set *bs, gfp_t gfp_mask,
2947                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2948                       void *data)
2949 {
2950         struct bio *bio, *bio_src;
2951
2952         if (!bs)
2953                 bs = &fs_bio_set;
2954
2955         __rq_for_each_bio(bio_src, rq_src) {
2956                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2957                                       bs);
2958                 if (!bio)
2959                         goto free_and_out;
2960
2961                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2962                         goto free_and_out;
2963
2964                 if (rq->bio) {
2965                         rq->biotail->bi_next = bio;
2966                         rq->biotail = bio;
2967                 } else {
2968                         rq->bio = rq->biotail = bio;
2969                 }
2970                 bio = NULL;
2971         }
2972
2973         /* Copy attributes of the original request to the clone request. */
2974         rq->__sector = blk_rq_pos(rq_src);
2975         rq->__data_len = blk_rq_bytes(rq_src);
2976         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2977                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2978                 rq->special_vec = rq_src->special_vec;
2979         }
2980         rq->nr_phys_segments = rq_src->nr_phys_segments;
2981         rq->ioprio = rq_src->ioprio;
2982
2983         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2984                 goto free_and_out;
2985
2986         return 0;
2987
2988 free_and_out:
2989         if (bio)
2990                 bio_put(bio);
2991         blk_rq_unprep_clone(rq);
2992
2993         return -ENOMEM;
2994 }
2995 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2996 #endif /* CONFIG_BLK_MQ_STACKING */
2997
2998 /*
2999  * Steal bios from a request and add them to a bio list.
3000  * The request must not have been partially completed before.
3001  */
3002 void blk_steal_bios(struct bio_list *list, struct request *rq)
3003 {
3004         if (rq->bio) {
3005                 if (list->tail)
3006                         list->tail->bi_next = rq->bio;
3007                 else
3008                         list->head = rq->bio;
3009                 list->tail = rq->biotail;
3010
3011                 rq->bio = NULL;
3012                 rq->biotail = NULL;
3013         }
3014
3015         rq->__data_len = 0;
3016 }
3017 EXPORT_SYMBOL_GPL(blk_steal_bios);
3018
3019 static size_t order_to_size(unsigned int order)
3020 {
3021         return (size_t)PAGE_SIZE << order;
3022 }
3023
3024 /* called before freeing request pool in @tags */
3025 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3026                                     struct blk_mq_tags *tags)
3027 {
3028         struct page *page;
3029         unsigned long flags;
3030
3031         /* There is no need to clear a driver tags own mapping */
3032         if (drv_tags == tags)
3033                 return;
3034
3035         list_for_each_entry(page, &tags->page_list, lru) {
3036                 unsigned long start = (unsigned long)page_address(page);
3037                 unsigned long end = start + order_to_size(page->private);
3038                 int i;
3039
3040                 for (i = 0; i < drv_tags->nr_tags; i++) {
3041                         struct request *rq = drv_tags->rqs[i];
3042                         unsigned long rq_addr = (unsigned long)rq;
3043
3044                         if (rq_addr >= start && rq_addr < end) {
3045                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3046                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3047                         }
3048                 }
3049         }
3050
3051         /*
3052          * Wait until all pending iteration is done.
3053          *
3054          * Request reference is cleared and it is guaranteed to be observed
3055          * after the ->lock is released.
3056          */
3057         spin_lock_irqsave(&drv_tags->lock, flags);
3058         spin_unlock_irqrestore(&drv_tags->lock, flags);
3059 }
3060
3061 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3062                      unsigned int hctx_idx)
3063 {
3064         struct blk_mq_tags *drv_tags;
3065         struct page *page;
3066
3067         if (list_empty(&tags->page_list))
3068                 return;
3069
3070         if (blk_mq_is_shared_tags(set->flags))
3071                 drv_tags = set->shared_tags;
3072         else
3073                 drv_tags = set->tags[hctx_idx];
3074
3075         if (tags->static_rqs && set->ops->exit_request) {
3076                 int i;
3077
3078                 for (i = 0; i < tags->nr_tags; i++) {
3079                         struct request *rq = tags->static_rqs[i];
3080
3081                         if (!rq)
3082                                 continue;
3083                         set->ops->exit_request(set, rq, hctx_idx);
3084                         tags->static_rqs[i] = NULL;
3085                 }
3086         }
3087
3088         blk_mq_clear_rq_mapping(drv_tags, tags);
3089
3090         while (!list_empty(&tags->page_list)) {
3091                 page = list_first_entry(&tags->page_list, struct page, lru);
3092                 list_del_init(&page->lru);
3093                 /*
3094                  * Remove kmemleak object previously allocated in
3095                  * blk_mq_alloc_rqs().
3096                  */
3097                 kmemleak_free(page_address(page));
3098                 __free_pages(page, page->private);
3099         }
3100 }
3101
3102 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3103 {
3104         kfree(tags->rqs);
3105         tags->rqs = NULL;
3106         kfree(tags->static_rqs);
3107         tags->static_rqs = NULL;
3108
3109         blk_mq_free_tags(tags);
3110 }
3111
3112 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3113                 unsigned int hctx_idx)
3114 {
3115         int i;
3116
3117         for (i = 0; i < set->nr_maps; i++) {
3118                 unsigned int start = set->map[i].queue_offset;
3119                 unsigned int end = start + set->map[i].nr_queues;
3120
3121                 if (hctx_idx >= start && hctx_idx < end)
3122                         break;
3123         }
3124
3125         if (i >= set->nr_maps)
3126                 i = HCTX_TYPE_DEFAULT;
3127
3128         return i;
3129 }
3130
3131 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3132                 unsigned int hctx_idx)
3133 {
3134         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3135
3136         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3137 }
3138
3139 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3140                                                unsigned int hctx_idx,
3141                                                unsigned int nr_tags,
3142                                                unsigned int reserved_tags)
3143 {
3144         int node = blk_mq_get_hctx_node(set, hctx_idx);
3145         struct blk_mq_tags *tags;
3146
3147         if (node == NUMA_NO_NODE)
3148                 node = set->numa_node;
3149
3150         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3151                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3152         if (!tags)
3153                 return NULL;
3154
3155         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3156                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3157                                  node);
3158         if (!tags->rqs) {
3159                 blk_mq_free_tags(tags);
3160                 return NULL;
3161         }
3162
3163         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3164                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3165                                         node);
3166         if (!tags->static_rqs) {
3167                 kfree(tags->rqs);
3168                 blk_mq_free_tags(tags);
3169                 return NULL;
3170         }
3171
3172         return tags;
3173 }
3174
3175 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3176                                unsigned int hctx_idx, int node)
3177 {
3178         int ret;
3179
3180         if (set->ops->init_request) {
3181                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3182                 if (ret)
3183                         return ret;
3184         }
3185
3186         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3187         return 0;
3188 }
3189
3190 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3191                             struct blk_mq_tags *tags,
3192                             unsigned int hctx_idx, unsigned int depth)
3193 {
3194         unsigned int i, j, entries_per_page, max_order = 4;
3195         int node = blk_mq_get_hctx_node(set, hctx_idx);
3196         size_t rq_size, left;
3197
3198         if (node == NUMA_NO_NODE)
3199                 node = set->numa_node;
3200
3201         INIT_LIST_HEAD(&tags->page_list);
3202
3203         /*
3204          * rq_size is the size of the request plus driver payload, rounded
3205          * to the cacheline size
3206          */
3207         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3208                                 cache_line_size());
3209         left = rq_size * depth;
3210
3211         for (i = 0; i < depth; ) {
3212                 int this_order = max_order;
3213                 struct page *page;
3214                 int to_do;
3215                 void *p;
3216
3217                 while (this_order && left < order_to_size(this_order - 1))
3218                         this_order--;
3219
3220                 do {
3221                         page = alloc_pages_node(node,
3222                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3223                                 this_order);
3224                         if (page)
3225                                 break;
3226                         if (!this_order--)
3227                                 break;
3228                         if (order_to_size(this_order) < rq_size)
3229                                 break;
3230                 } while (1);
3231
3232                 if (!page)
3233                         goto fail;
3234
3235                 page->private = this_order;
3236                 list_add_tail(&page->lru, &tags->page_list);
3237
3238                 p = page_address(page);
3239                 /*
3240                  * Allow kmemleak to scan these pages as they contain pointers
3241                  * to additional allocations like via ops->init_request().
3242                  */
3243                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3244                 entries_per_page = order_to_size(this_order) / rq_size;
3245                 to_do = min(entries_per_page, depth - i);
3246                 left -= to_do * rq_size;
3247                 for (j = 0; j < to_do; j++) {
3248                         struct request *rq = p;
3249
3250                         tags->static_rqs[i] = rq;
3251                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3252                                 tags->static_rqs[i] = NULL;
3253                                 goto fail;
3254                         }
3255
3256                         p += rq_size;
3257                         i++;
3258                 }
3259         }
3260         return 0;
3261
3262 fail:
3263         blk_mq_free_rqs(set, tags, hctx_idx);
3264         return -ENOMEM;
3265 }
3266
3267 struct rq_iter_data {
3268         struct blk_mq_hw_ctx *hctx;
3269         bool has_rq;
3270 };
3271
3272 static bool blk_mq_has_request(struct request *rq, void *data)
3273 {
3274         struct rq_iter_data *iter_data = data;
3275
3276         if (rq->mq_hctx != iter_data->hctx)
3277                 return true;
3278         iter_data->has_rq = true;
3279         return false;
3280 }
3281
3282 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3283 {
3284         struct blk_mq_tags *tags = hctx->sched_tags ?
3285                         hctx->sched_tags : hctx->tags;
3286         struct rq_iter_data data = {
3287                 .hctx   = hctx,
3288         };
3289
3290         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3291         return data.has_rq;
3292 }
3293
3294 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3295                 struct blk_mq_hw_ctx *hctx)
3296 {
3297         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3298                 return false;
3299         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3300                 return false;
3301         return true;
3302 }
3303
3304 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3305 {
3306         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3307                         struct blk_mq_hw_ctx, cpuhp_online);
3308
3309         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3310             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3311                 return 0;
3312
3313         /*
3314          * Prevent new request from being allocated on the current hctx.
3315          *
3316          * The smp_mb__after_atomic() Pairs with the implied barrier in
3317          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3318          * seen once we return from the tag allocator.
3319          */
3320         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3321         smp_mb__after_atomic();
3322
3323         /*
3324          * Try to grab a reference to the queue and wait for any outstanding
3325          * requests.  If we could not grab a reference the queue has been
3326          * frozen and there are no requests.
3327          */
3328         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3329                 while (blk_mq_hctx_has_requests(hctx))
3330                         msleep(5);
3331                 percpu_ref_put(&hctx->queue->q_usage_counter);
3332         }
3333
3334         return 0;
3335 }
3336
3337 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3338 {
3339         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3340                         struct blk_mq_hw_ctx, cpuhp_online);
3341
3342         if (cpumask_test_cpu(cpu, hctx->cpumask))
3343                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3344         return 0;
3345 }
3346
3347 /*
3348  * 'cpu' is going away. splice any existing rq_list entries from this
3349  * software queue to the hw queue dispatch list, and ensure that it
3350  * gets run.
3351  */
3352 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3353 {
3354         struct blk_mq_hw_ctx *hctx;
3355         struct blk_mq_ctx *ctx;
3356         LIST_HEAD(tmp);
3357         enum hctx_type type;
3358
3359         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3360         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3361                 return 0;
3362
3363         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3364         type = hctx->type;
3365
3366         spin_lock(&ctx->lock);
3367         if (!list_empty(&ctx->rq_lists[type])) {
3368                 list_splice_init(&ctx->rq_lists[type], &tmp);
3369                 blk_mq_hctx_clear_pending(hctx, ctx);
3370         }
3371         spin_unlock(&ctx->lock);
3372
3373         if (list_empty(&tmp))
3374                 return 0;
3375
3376         spin_lock(&hctx->lock);
3377         list_splice_tail_init(&tmp, &hctx->dispatch);
3378         spin_unlock(&hctx->lock);
3379
3380         blk_mq_run_hw_queue(hctx, true);
3381         return 0;
3382 }
3383
3384 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3385 {
3386         if (!(hctx->flags & BLK_MQ_F_STACKING))
3387                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3388                                                     &hctx->cpuhp_online);
3389         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3390                                             &hctx->cpuhp_dead);
3391 }
3392
3393 /*
3394  * Before freeing hw queue, clearing the flush request reference in
3395  * tags->rqs[] for avoiding potential UAF.
3396  */
3397 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3398                 unsigned int queue_depth, struct request *flush_rq)
3399 {
3400         int i;
3401         unsigned long flags;
3402
3403         /* The hw queue may not be mapped yet */
3404         if (!tags)
3405                 return;
3406
3407         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3408
3409         for (i = 0; i < queue_depth; i++)
3410                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3411
3412         /*
3413          * Wait until all pending iteration is done.
3414          *
3415          * Request reference is cleared and it is guaranteed to be observed
3416          * after the ->lock is released.
3417          */
3418         spin_lock_irqsave(&tags->lock, flags);
3419         spin_unlock_irqrestore(&tags->lock, flags);
3420 }
3421
3422 /* hctx->ctxs will be freed in queue's release handler */
3423 static void blk_mq_exit_hctx(struct request_queue *q,
3424                 struct blk_mq_tag_set *set,
3425                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3426 {
3427         struct request *flush_rq = hctx->fq->flush_rq;
3428
3429         if (blk_mq_hw_queue_mapped(hctx))
3430                 blk_mq_tag_idle(hctx);
3431
3432         if (blk_queue_init_done(q))
3433                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3434                                 set->queue_depth, flush_rq);
3435         if (set->ops->exit_request)
3436                 set->ops->exit_request(set, flush_rq, hctx_idx);
3437
3438         if (set->ops->exit_hctx)
3439                 set->ops->exit_hctx(hctx, hctx_idx);
3440
3441         blk_mq_remove_cpuhp(hctx);
3442
3443         xa_erase(&q->hctx_table, hctx_idx);
3444
3445         spin_lock(&q->unused_hctx_lock);
3446         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3447         spin_unlock(&q->unused_hctx_lock);
3448 }
3449
3450 static void blk_mq_exit_hw_queues(struct request_queue *q,
3451                 struct blk_mq_tag_set *set, int nr_queue)
3452 {
3453         struct blk_mq_hw_ctx *hctx;
3454         unsigned long i;
3455
3456         queue_for_each_hw_ctx(q, hctx, i) {
3457                 if (i == nr_queue)
3458                         break;
3459                 blk_mq_exit_hctx(q, set, hctx, i);
3460         }
3461 }
3462
3463 static int blk_mq_init_hctx(struct request_queue *q,
3464                 struct blk_mq_tag_set *set,
3465                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3466 {
3467         hctx->queue_num = hctx_idx;
3468
3469         if (!(hctx->flags & BLK_MQ_F_STACKING))
3470                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3471                                 &hctx->cpuhp_online);
3472         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3473
3474         hctx->tags = set->tags[hctx_idx];
3475
3476         if (set->ops->init_hctx &&
3477             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3478                 goto unregister_cpu_notifier;
3479
3480         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3481                                 hctx->numa_node))
3482                 goto exit_hctx;
3483
3484         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3485                 goto exit_flush_rq;
3486
3487         return 0;
3488
3489  exit_flush_rq:
3490         if (set->ops->exit_request)
3491                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3492  exit_hctx:
3493         if (set->ops->exit_hctx)
3494                 set->ops->exit_hctx(hctx, hctx_idx);
3495  unregister_cpu_notifier:
3496         blk_mq_remove_cpuhp(hctx);
3497         return -1;
3498 }
3499
3500 static struct blk_mq_hw_ctx *
3501 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3502                 int node)
3503 {
3504         struct blk_mq_hw_ctx *hctx;
3505         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3506
3507         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3508         if (!hctx)
3509                 goto fail_alloc_hctx;
3510
3511         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3512                 goto free_hctx;
3513
3514         atomic_set(&hctx->nr_active, 0);
3515         if (node == NUMA_NO_NODE)
3516                 node = set->numa_node;
3517         hctx->numa_node = node;
3518
3519         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3520         spin_lock_init(&hctx->lock);
3521         INIT_LIST_HEAD(&hctx->dispatch);
3522         hctx->queue = q;
3523         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3524
3525         INIT_LIST_HEAD(&hctx->hctx_list);
3526
3527         /*
3528          * Allocate space for all possible cpus to avoid allocation at
3529          * runtime
3530          */
3531         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3532                         gfp, node);
3533         if (!hctx->ctxs)
3534                 goto free_cpumask;
3535
3536         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3537                                 gfp, node, false, false))
3538                 goto free_ctxs;
3539         hctx->nr_ctx = 0;
3540
3541         spin_lock_init(&hctx->dispatch_wait_lock);
3542         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3543         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3544
3545         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3546         if (!hctx->fq)
3547                 goto free_bitmap;
3548
3549         blk_mq_hctx_kobj_init(hctx);
3550
3551         return hctx;
3552
3553  free_bitmap:
3554         sbitmap_free(&hctx->ctx_map);
3555  free_ctxs:
3556         kfree(hctx->ctxs);
3557  free_cpumask:
3558         free_cpumask_var(hctx->cpumask);
3559  free_hctx:
3560         kfree(hctx);
3561  fail_alloc_hctx:
3562         return NULL;
3563 }
3564
3565 static void blk_mq_init_cpu_queues(struct request_queue *q,
3566                                    unsigned int nr_hw_queues)
3567 {
3568         struct blk_mq_tag_set *set = q->tag_set;
3569         unsigned int i, j;
3570
3571         for_each_possible_cpu(i) {
3572                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3573                 struct blk_mq_hw_ctx *hctx;
3574                 int k;
3575
3576                 __ctx->cpu = i;
3577                 spin_lock_init(&__ctx->lock);
3578                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3579                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3580
3581                 __ctx->queue = q;
3582
3583                 /*
3584                  * Set local node, IFF we have more than one hw queue. If
3585                  * not, we remain on the home node of the device
3586                  */
3587                 for (j = 0; j < set->nr_maps; j++) {
3588                         hctx = blk_mq_map_queue_type(q, j, i);
3589                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3590                                 hctx->numa_node = cpu_to_node(i);
3591                 }
3592         }
3593 }
3594
3595 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3596                                              unsigned int hctx_idx,
3597                                              unsigned int depth)
3598 {
3599         struct blk_mq_tags *tags;
3600         int ret;
3601
3602         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3603         if (!tags)
3604                 return NULL;
3605
3606         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3607         if (ret) {
3608                 blk_mq_free_rq_map(tags);
3609                 return NULL;
3610         }
3611
3612         return tags;
3613 }
3614
3615 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3616                                        int hctx_idx)
3617 {
3618         if (blk_mq_is_shared_tags(set->flags)) {
3619                 set->tags[hctx_idx] = set->shared_tags;
3620
3621                 return true;
3622         }
3623
3624         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3625                                                        set->queue_depth);
3626
3627         return set->tags[hctx_idx];
3628 }
3629
3630 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3631                              struct blk_mq_tags *tags,
3632                              unsigned int hctx_idx)
3633 {
3634         if (tags) {
3635                 blk_mq_free_rqs(set, tags, hctx_idx);
3636                 blk_mq_free_rq_map(tags);
3637         }
3638 }
3639
3640 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3641                                       unsigned int hctx_idx)
3642 {
3643         if (!blk_mq_is_shared_tags(set->flags))
3644                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3645
3646         set->tags[hctx_idx] = NULL;
3647 }
3648
3649 static void blk_mq_map_swqueue(struct request_queue *q)
3650 {
3651         unsigned int j, hctx_idx;
3652         unsigned long i;
3653         struct blk_mq_hw_ctx *hctx;
3654         struct blk_mq_ctx *ctx;
3655         struct blk_mq_tag_set *set = q->tag_set;
3656
3657         queue_for_each_hw_ctx(q, hctx, i) {
3658                 cpumask_clear(hctx->cpumask);
3659                 hctx->nr_ctx = 0;
3660                 hctx->dispatch_from = NULL;
3661         }
3662
3663         /*
3664          * Map software to hardware queues.
3665          *
3666          * If the cpu isn't present, the cpu is mapped to first hctx.
3667          */
3668         for_each_possible_cpu(i) {
3669
3670                 ctx = per_cpu_ptr(q->queue_ctx, i);
3671                 for (j = 0; j < set->nr_maps; j++) {
3672                         if (!set->map[j].nr_queues) {
3673                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3674                                                 HCTX_TYPE_DEFAULT, i);
3675                                 continue;
3676                         }
3677                         hctx_idx = set->map[j].mq_map[i];
3678                         /* unmapped hw queue can be remapped after CPU topo changed */
3679                         if (!set->tags[hctx_idx] &&
3680                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3681                                 /*
3682                                  * If tags initialization fail for some hctx,
3683                                  * that hctx won't be brought online.  In this
3684                                  * case, remap the current ctx to hctx[0] which
3685                                  * is guaranteed to always have tags allocated
3686                                  */
3687                                 set->map[j].mq_map[i] = 0;
3688                         }
3689
3690                         hctx = blk_mq_map_queue_type(q, j, i);
3691                         ctx->hctxs[j] = hctx;
3692                         /*
3693                          * If the CPU is already set in the mask, then we've
3694                          * mapped this one already. This can happen if
3695                          * devices share queues across queue maps.
3696                          */
3697                         if (cpumask_test_cpu(i, hctx->cpumask))
3698                                 continue;
3699
3700                         cpumask_set_cpu(i, hctx->cpumask);
3701                         hctx->type = j;
3702                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3703                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3704
3705                         /*
3706                          * If the nr_ctx type overflows, we have exceeded the
3707                          * amount of sw queues we can support.
3708                          */
3709                         BUG_ON(!hctx->nr_ctx);
3710                 }
3711
3712                 for (; j < HCTX_MAX_TYPES; j++)
3713                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3714                                         HCTX_TYPE_DEFAULT, i);
3715         }
3716
3717         queue_for_each_hw_ctx(q, hctx, i) {
3718                 /*
3719                  * If no software queues are mapped to this hardware queue,
3720                  * disable it and free the request entries.
3721                  */
3722                 if (!hctx->nr_ctx) {
3723                         /* Never unmap queue 0.  We need it as a
3724                          * fallback in case of a new remap fails
3725                          * allocation
3726                          */
3727                         if (i)
3728                                 __blk_mq_free_map_and_rqs(set, i);
3729
3730                         hctx->tags = NULL;
3731                         continue;
3732                 }
3733
3734                 hctx->tags = set->tags[i];
3735                 WARN_ON(!hctx->tags);
3736
3737                 /*
3738                  * Set the map size to the number of mapped software queues.
3739                  * This is more accurate and more efficient than looping
3740                  * over all possibly mapped software queues.
3741                  */
3742                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3743
3744                 /*
3745                  * Initialize batch roundrobin counts
3746                  */
3747                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3748                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3749         }
3750 }
3751
3752 /*
3753  * Caller needs to ensure that we're either frozen/quiesced, or that
3754  * the queue isn't live yet.
3755  */
3756 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3757 {
3758         struct blk_mq_hw_ctx *hctx;
3759         unsigned long i;
3760
3761         queue_for_each_hw_ctx(q, hctx, i) {
3762                 if (shared) {
3763                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3764                 } else {
3765                         blk_mq_tag_idle(hctx);
3766                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3767                 }
3768         }
3769 }
3770
3771 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3772                                          bool shared)
3773 {
3774         struct request_queue *q;
3775
3776         lockdep_assert_held(&set->tag_list_lock);
3777
3778         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3779                 blk_mq_freeze_queue(q);
3780                 queue_set_hctx_shared(q, shared);
3781                 blk_mq_unfreeze_queue(q);
3782         }
3783 }
3784
3785 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3786 {
3787         struct blk_mq_tag_set *set = q->tag_set;
3788
3789         mutex_lock(&set->tag_list_lock);
3790         list_del(&q->tag_set_list);
3791         if (list_is_singular(&set->tag_list)) {
3792                 /* just transitioned to unshared */
3793                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3794                 /* update existing queue */
3795                 blk_mq_update_tag_set_shared(set, false);
3796         }
3797         mutex_unlock(&set->tag_list_lock);
3798         INIT_LIST_HEAD(&q->tag_set_list);
3799 }
3800
3801 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3802                                      struct request_queue *q)
3803 {
3804         mutex_lock(&set->tag_list_lock);
3805
3806         /*
3807          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3808          */
3809         if (!list_empty(&set->tag_list) &&
3810             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3811                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3812                 /* update existing queue */
3813                 blk_mq_update_tag_set_shared(set, true);
3814         }
3815         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3816                 queue_set_hctx_shared(q, true);
3817         list_add_tail(&q->tag_set_list, &set->tag_list);
3818
3819         mutex_unlock(&set->tag_list_lock);
3820 }
3821
3822 /* All allocations will be freed in release handler of q->mq_kobj */
3823 static int blk_mq_alloc_ctxs(struct request_queue *q)
3824 {
3825         struct blk_mq_ctxs *ctxs;
3826         int cpu;
3827
3828         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3829         if (!ctxs)
3830                 return -ENOMEM;
3831
3832         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3833         if (!ctxs->queue_ctx)
3834                 goto fail;
3835
3836         for_each_possible_cpu(cpu) {
3837                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3838                 ctx->ctxs = ctxs;
3839         }
3840
3841         q->mq_kobj = &ctxs->kobj;
3842         q->queue_ctx = ctxs->queue_ctx;
3843
3844         return 0;
3845  fail:
3846         kfree(ctxs);
3847         return -ENOMEM;
3848 }
3849
3850 /*
3851  * It is the actual release handler for mq, but we do it from
3852  * request queue's release handler for avoiding use-after-free
3853  * and headache because q->mq_kobj shouldn't have been introduced,
3854  * but we can't group ctx/kctx kobj without it.
3855  */
3856 void blk_mq_release(struct request_queue *q)
3857 {
3858         struct blk_mq_hw_ctx *hctx, *next;
3859         unsigned long i;
3860
3861         queue_for_each_hw_ctx(q, hctx, i)
3862                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3863
3864         /* all hctx are in .unused_hctx_list now */
3865         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3866                 list_del_init(&hctx->hctx_list);
3867                 kobject_put(&hctx->kobj);
3868         }
3869
3870         xa_destroy(&q->hctx_table);
3871
3872         /*
3873          * release .mq_kobj and sw queue's kobject now because
3874          * both share lifetime with request queue.
3875          */
3876         blk_mq_sysfs_deinit(q);
3877 }
3878
3879 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3880                 void *queuedata)
3881 {
3882         struct request_queue *q;
3883         int ret;
3884
3885         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3886         if (!q)
3887                 return ERR_PTR(-ENOMEM);
3888         q->queuedata = queuedata;
3889         ret = blk_mq_init_allocated_queue(set, q);
3890         if (ret) {
3891                 blk_put_queue(q);
3892                 return ERR_PTR(ret);
3893         }
3894         return q;
3895 }
3896
3897 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3898 {
3899         return blk_mq_init_queue_data(set, NULL);
3900 }
3901 EXPORT_SYMBOL(blk_mq_init_queue);
3902
3903 /**
3904  * blk_mq_destroy_queue - shutdown a request queue
3905  * @q: request queue to shutdown
3906  *
3907  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3908  * the initial reference.  All future requests will failed with -ENODEV.
3909  *
3910  * Context: can sleep
3911  */
3912 void blk_mq_destroy_queue(struct request_queue *q)
3913 {
3914         WARN_ON_ONCE(!queue_is_mq(q));
3915         WARN_ON_ONCE(blk_queue_registered(q));
3916
3917         might_sleep();
3918
3919         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3920         blk_queue_start_drain(q);
3921         blk_freeze_queue(q);
3922
3923         blk_sync_queue(q);
3924         blk_mq_cancel_work_sync(q);
3925         blk_mq_exit_queue(q);
3926
3927         /* @q is and will stay empty, shutdown and put */
3928         blk_put_queue(q);
3929 }
3930 EXPORT_SYMBOL(blk_mq_destroy_queue);
3931
3932 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3933                 struct lock_class_key *lkclass)
3934 {
3935         struct request_queue *q;
3936         struct gendisk *disk;
3937
3938         q = blk_mq_init_queue_data(set, queuedata);
3939         if (IS_ERR(q))
3940                 return ERR_CAST(q);
3941
3942         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3943         if (!disk) {
3944                 blk_mq_destroy_queue(q);
3945                 return ERR_PTR(-ENOMEM);
3946         }
3947         set_bit(GD_OWNS_QUEUE, &disk->state);
3948         return disk;
3949 }
3950 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3951
3952 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3953                 struct lock_class_key *lkclass)
3954 {
3955         if (!blk_get_queue(q))
3956                 return NULL;
3957         return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3958 }
3959 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3960
3961 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3962                 struct blk_mq_tag_set *set, struct request_queue *q,
3963                 int hctx_idx, int node)
3964 {
3965         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3966
3967         /* reuse dead hctx first */
3968         spin_lock(&q->unused_hctx_lock);
3969         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3970                 if (tmp->numa_node == node) {
3971                         hctx = tmp;
3972                         break;
3973                 }
3974         }
3975         if (hctx)
3976                 list_del_init(&hctx->hctx_list);
3977         spin_unlock(&q->unused_hctx_lock);
3978
3979         if (!hctx)
3980                 hctx = blk_mq_alloc_hctx(q, set, node);
3981         if (!hctx)
3982                 goto fail;
3983
3984         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3985                 goto free_hctx;
3986
3987         return hctx;
3988
3989  free_hctx:
3990         kobject_put(&hctx->kobj);
3991  fail:
3992         return NULL;
3993 }
3994
3995 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3996                                                 struct request_queue *q)
3997 {
3998         struct blk_mq_hw_ctx *hctx;
3999         unsigned long i, j;
4000
4001         /* protect against switching io scheduler  */
4002         mutex_lock(&q->sysfs_lock);
4003         for (i = 0; i < set->nr_hw_queues; i++) {
4004                 int old_node;
4005                 int node = blk_mq_get_hctx_node(set, i);
4006                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4007
4008                 if (old_hctx) {
4009                         old_node = old_hctx->numa_node;
4010                         blk_mq_exit_hctx(q, set, old_hctx, i);
4011                 }
4012
4013                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4014                         if (!old_hctx)
4015                                 break;
4016                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4017                                         node, old_node);
4018                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4019                         WARN_ON_ONCE(!hctx);
4020                 }
4021         }
4022         /*
4023          * Increasing nr_hw_queues fails. Free the newly allocated
4024          * hctxs and keep the previous q->nr_hw_queues.
4025          */
4026         if (i != set->nr_hw_queues) {
4027                 j = q->nr_hw_queues;
4028         } else {
4029                 j = i;
4030                 q->nr_hw_queues = set->nr_hw_queues;
4031         }
4032
4033         xa_for_each_start(&q->hctx_table, j, hctx, j)
4034                 blk_mq_exit_hctx(q, set, hctx, j);
4035         mutex_unlock(&q->sysfs_lock);
4036 }
4037
4038 static void blk_mq_update_poll_flag(struct request_queue *q)
4039 {
4040         struct blk_mq_tag_set *set = q->tag_set;
4041
4042         if (set->nr_maps > HCTX_TYPE_POLL &&
4043             set->map[HCTX_TYPE_POLL].nr_queues)
4044                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4045         else
4046                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4047 }
4048
4049 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4050                 struct request_queue *q)
4051 {
4052         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4053                         !!(set->flags & BLK_MQ_F_BLOCKING));
4054
4055         /* mark the queue as mq asap */
4056         q->mq_ops = set->ops;
4057
4058         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4059                                              blk_mq_poll_stats_bkt,
4060                                              BLK_MQ_POLL_STATS_BKTS, q);
4061         if (!q->poll_cb)
4062                 goto err_exit;
4063
4064         if (blk_mq_alloc_ctxs(q))
4065                 goto err_poll;
4066
4067         /* init q->mq_kobj and sw queues' kobjects */
4068         blk_mq_sysfs_init(q);
4069
4070         INIT_LIST_HEAD(&q->unused_hctx_list);
4071         spin_lock_init(&q->unused_hctx_lock);
4072
4073         xa_init(&q->hctx_table);
4074
4075         blk_mq_realloc_hw_ctxs(set, q);
4076         if (!q->nr_hw_queues)
4077                 goto err_hctxs;
4078
4079         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4080         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4081
4082         q->tag_set = set;
4083
4084         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4085         blk_mq_update_poll_flag(q);
4086
4087         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4088         INIT_LIST_HEAD(&q->requeue_list);
4089         spin_lock_init(&q->requeue_lock);
4090
4091         q->nr_requests = set->queue_depth;
4092
4093         /*
4094          * Default to classic polling
4095          */
4096         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4097
4098         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4099         blk_mq_add_queue_tag_set(set, q);
4100         blk_mq_map_swqueue(q);
4101         return 0;
4102
4103 err_hctxs:
4104         xa_destroy(&q->hctx_table);
4105         q->nr_hw_queues = 0;
4106         blk_mq_sysfs_deinit(q);
4107 err_poll:
4108         blk_stat_free_callback(q->poll_cb);
4109         q->poll_cb = NULL;
4110 err_exit:
4111         q->mq_ops = NULL;
4112         return -ENOMEM;
4113 }
4114 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4115
4116 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4117 void blk_mq_exit_queue(struct request_queue *q)
4118 {
4119         struct blk_mq_tag_set *set = q->tag_set;
4120
4121         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4122         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4123         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4124         blk_mq_del_queue_tag_set(q);
4125 }
4126
4127 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4128 {
4129         int i;
4130
4131         if (blk_mq_is_shared_tags(set->flags)) {
4132                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4133                                                 BLK_MQ_NO_HCTX_IDX,
4134                                                 set->queue_depth);
4135                 if (!set->shared_tags)
4136                         return -ENOMEM;
4137         }
4138
4139         for (i = 0; i < set->nr_hw_queues; i++) {
4140                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4141                         goto out_unwind;
4142                 cond_resched();
4143         }
4144
4145         return 0;
4146
4147 out_unwind:
4148         while (--i >= 0)
4149                 __blk_mq_free_map_and_rqs(set, i);
4150
4151         if (blk_mq_is_shared_tags(set->flags)) {
4152                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4153                                         BLK_MQ_NO_HCTX_IDX);
4154         }
4155
4156         return -ENOMEM;
4157 }
4158
4159 /*
4160  * Allocate the request maps associated with this tag_set. Note that this
4161  * may reduce the depth asked for, if memory is tight. set->queue_depth
4162  * will be updated to reflect the allocated depth.
4163  */
4164 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4165 {
4166         unsigned int depth;
4167         int err;
4168
4169         depth = set->queue_depth;
4170         do {
4171                 err = __blk_mq_alloc_rq_maps(set);
4172                 if (!err)
4173                         break;
4174
4175                 set->queue_depth >>= 1;
4176                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4177                         err = -ENOMEM;
4178                         break;
4179                 }
4180         } while (set->queue_depth);
4181
4182         if (!set->queue_depth || err) {
4183                 pr_err("blk-mq: failed to allocate request map\n");
4184                 return -ENOMEM;
4185         }
4186
4187         if (depth != set->queue_depth)
4188                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4189                                                 depth, set->queue_depth);
4190
4191         return 0;
4192 }
4193
4194 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4195 {
4196         /*
4197          * blk_mq_map_queues() and multiple .map_queues() implementations
4198          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4199          * number of hardware queues.
4200          */
4201         if (set->nr_maps == 1)
4202                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4203
4204         if (set->ops->map_queues && !is_kdump_kernel()) {
4205                 int i;
4206
4207                 /*
4208                  * transport .map_queues is usually done in the following
4209                  * way:
4210                  *
4211                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4212                  *      mask = get_cpu_mask(queue)
4213                  *      for_each_cpu(cpu, mask)
4214                  *              set->map[x].mq_map[cpu] = queue;
4215                  * }
4216                  *
4217                  * When we need to remap, the table has to be cleared for
4218                  * killing stale mapping since one CPU may not be mapped
4219                  * to any hw queue.
4220                  */
4221                 for (i = 0; i < set->nr_maps; i++)
4222                         blk_mq_clear_mq_map(&set->map[i]);
4223
4224                 return set->ops->map_queues(set);
4225         } else {
4226                 BUG_ON(set->nr_maps > 1);
4227                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4228         }
4229 }
4230
4231 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4232                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4233 {
4234         struct blk_mq_tags **new_tags;
4235
4236         if (cur_nr_hw_queues >= new_nr_hw_queues)
4237                 return 0;
4238
4239         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4240                                 GFP_KERNEL, set->numa_node);
4241         if (!new_tags)
4242                 return -ENOMEM;
4243
4244         if (set->tags)
4245                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4246                        sizeof(*set->tags));
4247         kfree(set->tags);
4248         set->tags = new_tags;
4249         set->nr_hw_queues = new_nr_hw_queues;
4250
4251         return 0;
4252 }
4253
4254 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4255                                 int new_nr_hw_queues)
4256 {
4257         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4258 }
4259
4260 /*
4261  * Alloc a tag set to be associated with one or more request queues.
4262  * May fail with EINVAL for various error conditions. May adjust the
4263  * requested depth down, if it's too large. In that case, the set
4264  * value will be stored in set->queue_depth.
4265  */
4266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4267 {
4268         int i, ret;
4269
4270         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4271
4272         if (!set->nr_hw_queues)
4273                 return -EINVAL;
4274         if (!set->queue_depth)
4275                 return -EINVAL;
4276         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4277                 return -EINVAL;
4278
4279         if (!set->ops->queue_rq)
4280                 return -EINVAL;
4281
4282         if (!set->ops->get_budget ^ !set->ops->put_budget)
4283                 return -EINVAL;
4284
4285         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4286                 pr_info("blk-mq: reduced tag depth to %u\n",
4287                         BLK_MQ_MAX_DEPTH);
4288                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4289         }
4290
4291         if (!set->nr_maps)
4292                 set->nr_maps = 1;
4293         else if (set->nr_maps > HCTX_MAX_TYPES)
4294                 return -EINVAL;
4295
4296         /*
4297          * If a crashdump is active, then we are potentially in a very
4298          * memory constrained environment. Limit us to 1 queue and
4299          * 64 tags to prevent using too much memory.
4300          */
4301         if (is_kdump_kernel()) {
4302                 set->nr_hw_queues = 1;
4303                 set->nr_maps = 1;
4304                 set->queue_depth = min(64U, set->queue_depth);
4305         }
4306         /*
4307          * There is no use for more h/w queues than cpus if we just have
4308          * a single map
4309          */
4310         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4311                 set->nr_hw_queues = nr_cpu_ids;
4312
4313         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4314                 return -ENOMEM;
4315
4316         ret = -ENOMEM;
4317         for (i = 0; i < set->nr_maps; i++) {
4318                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4319                                                   sizeof(set->map[i].mq_map[0]),
4320                                                   GFP_KERNEL, set->numa_node);
4321                 if (!set->map[i].mq_map)
4322                         goto out_free_mq_map;
4323                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4324         }
4325
4326         ret = blk_mq_update_queue_map(set);
4327         if (ret)
4328                 goto out_free_mq_map;
4329
4330         ret = blk_mq_alloc_set_map_and_rqs(set);
4331         if (ret)
4332                 goto out_free_mq_map;
4333
4334         mutex_init(&set->tag_list_lock);
4335         INIT_LIST_HEAD(&set->tag_list);
4336
4337         return 0;
4338
4339 out_free_mq_map:
4340         for (i = 0; i < set->nr_maps; i++) {
4341                 kfree(set->map[i].mq_map);
4342                 set->map[i].mq_map = NULL;
4343         }
4344         kfree(set->tags);
4345         set->tags = NULL;
4346         return ret;
4347 }
4348 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4349
4350 /* allocate and initialize a tagset for a simple single-queue device */
4351 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4352                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4353                 unsigned int set_flags)
4354 {
4355         memset(set, 0, sizeof(*set));
4356         set->ops = ops;
4357         set->nr_hw_queues = 1;
4358         set->nr_maps = 1;
4359         set->queue_depth = queue_depth;
4360         set->numa_node = NUMA_NO_NODE;
4361         set->flags = set_flags;
4362         return blk_mq_alloc_tag_set(set);
4363 }
4364 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4365
4366 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4367 {
4368         int i, j;
4369
4370         for (i = 0; i < set->nr_hw_queues; i++)
4371                 __blk_mq_free_map_and_rqs(set, i);
4372
4373         if (blk_mq_is_shared_tags(set->flags)) {
4374                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4375                                         BLK_MQ_NO_HCTX_IDX);
4376         }
4377
4378         for (j = 0; j < set->nr_maps; j++) {
4379                 kfree(set->map[j].mq_map);
4380                 set->map[j].mq_map = NULL;
4381         }
4382
4383         kfree(set->tags);
4384         set->tags = NULL;
4385 }
4386 EXPORT_SYMBOL(blk_mq_free_tag_set);
4387
4388 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4389 {
4390         struct blk_mq_tag_set *set = q->tag_set;
4391         struct blk_mq_hw_ctx *hctx;
4392         int ret;
4393         unsigned long i;
4394
4395         if (!set)
4396                 return -EINVAL;
4397
4398         if (q->nr_requests == nr)
4399                 return 0;
4400
4401         blk_mq_freeze_queue(q);
4402         blk_mq_quiesce_queue(q);
4403
4404         ret = 0;
4405         queue_for_each_hw_ctx(q, hctx, i) {
4406                 if (!hctx->tags)
4407                         continue;
4408                 /*
4409                  * If we're using an MQ scheduler, just update the scheduler
4410                  * queue depth. This is similar to what the old code would do.
4411                  */
4412                 if (hctx->sched_tags) {
4413                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4414                                                       nr, true);
4415                 } else {
4416                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4417                                                       false);
4418                 }
4419                 if (ret)
4420                         break;
4421                 if (q->elevator && q->elevator->type->ops.depth_updated)
4422                         q->elevator->type->ops.depth_updated(hctx);
4423         }
4424         if (!ret) {
4425                 q->nr_requests = nr;
4426                 if (blk_mq_is_shared_tags(set->flags)) {
4427                         if (q->elevator)
4428                                 blk_mq_tag_update_sched_shared_tags(q);
4429                         else
4430                                 blk_mq_tag_resize_shared_tags(set, nr);
4431                 }
4432         }
4433
4434         blk_mq_unquiesce_queue(q);
4435         blk_mq_unfreeze_queue(q);
4436
4437         return ret;
4438 }
4439
4440 /*
4441  * request_queue and elevator_type pair.
4442  * It is just used by __blk_mq_update_nr_hw_queues to cache
4443  * the elevator_type associated with a request_queue.
4444  */
4445 struct blk_mq_qe_pair {
4446         struct list_head node;
4447         struct request_queue *q;
4448         struct elevator_type *type;
4449 };
4450
4451 /*
4452  * Cache the elevator_type in qe pair list and switch the
4453  * io scheduler to 'none'
4454  */
4455 static bool blk_mq_elv_switch_none(struct list_head *head,
4456                 struct request_queue *q)
4457 {
4458         struct blk_mq_qe_pair *qe;
4459
4460         if (!q->elevator)
4461                 return true;
4462
4463         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4464         if (!qe)
4465                 return false;
4466
4467         /* q->elevator needs protection from ->sysfs_lock */
4468         mutex_lock(&q->sysfs_lock);
4469
4470         INIT_LIST_HEAD(&qe->node);
4471         qe->q = q;
4472         qe->type = q->elevator->type;
4473         list_add(&qe->node, head);
4474
4475         /*
4476          * After elevator_switch_mq, the previous elevator_queue will be
4477          * released by elevator_release. The reference of the io scheduler
4478          * module get by elevator_get will also be put. So we need to get
4479          * a reference of the io scheduler module here to prevent it to be
4480          * removed.
4481          */
4482         __module_get(qe->type->elevator_owner);
4483         elevator_switch_mq(q, NULL);
4484         mutex_unlock(&q->sysfs_lock);
4485
4486         return true;
4487 }
4488
4489 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4490                                                 struct request_queue *q)
4491 {
4492         struct blk_mq_qe_pair *qe;
4493
4494         list_for_each_entry(qe, head, node)
4495                 if (qe->q == q)
4496                         return qe;
4497
4498         return NULL;
4499 }
4500
4501 static void blk_mq_elv_switch_back(struct list_head *head,
4502                                   struct request_queue *q)
4503 {
4504         struct blk_mq_qe_pair *qe;
4505         struct elevator_type *t;
4506
4507         qe = blk_lookup_qe_pair(head, q);
4508         if (!qe)
4509                 return;
4510         t = qe->type;
4511         list_del(&qe->node);
4512         kfree(qe);
4513
4514         mutex_lock(&q->sysfs_lock);
4515         elevator_switch_mq(q, t);
4516         mutex_unlock(&q->sysfs_lock);
4517 }
4518
4519 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4520                                                         int nr_hw_queues)
4521 {
4522         struct request_queue *q;
4523         LIST_HEAD(head);
4524         int prev_nr_hw_queues;
4525
4526         lockdep_assert_held(&set->tag_list_lock);
4527
4528         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4529                 nr_hw_queues = nr_cpu_ids;
4530         if (nr_hw_queues < 1)
4531                 return;
4532         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4533                 return;
4534
4535         list_for_each_entry(q, &set->tag_list, tag_set_list)
4536                 blk_mq_freeze_queue(q);
4537         /*
4538          * Switch IO scheduler to 'none', cleaning up the data associated
4539          * with the previous scheduler. We will switch back once we are done
4540          * updating the new sw to hw queue mappings.
4541          */
4542         list_for_each_entry(q, &set->tag_list, tag_set_list)
4543                 if (!blk_mq_elv_switch_none(&head, q))
4544                         goto switch_back;
4545
4546         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547                 blk_mq_debugfs_unregister_hctxs(q);
4548                 blk_mq_sysfs_unregister_hctxs(q);
4549         }
4550
4551         prev_nr_hw_queues = set->nr_hw_queues;
4552         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4553             0)
4554                 goto reregister;
4555
4556         set->nr_hw_queues = nr_hw_queues;
4557 fallback:
4558         blk_mq_update_queue_map(set);
4559         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4560                 blk_mq_realloc_hw_ctxs(set, q);
4561                 blk_mq_update_poll_flag(q);
4562                 if (q->nr_hw_queues != set->nr_hw_queues) {
4563                         int i = prev_nr_hw_queues;
4564
4565                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4566                                         nr_hw_queues, prev_nr_hw_queues);
4567                         for (; i < set->nr_hw_queues; i++)
4568                                 __blk_mq_free_map_and_rqs(set, i);
4569
4570                         set->nr_hw_queues = prev_nr_hw_queues;
4571                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4572                         goto fallback;
4573                 }
4574                 blk_mq_map_swqueue(q);
4575         }
4576
4577 reregister:
4578         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4579                 blk_mq_sysfs_register_hctxs(q);
4580                 blk_mq_debugfs_register_hctxs(q);
4581         }
4582
4583 switch_back:
4584         list_for_each_entry(q, &set->tag_list, tag_set_list)
4585                 blk_mq_elv_switch_back(&head, q);
4586
4587         list_for_each_entry(q, &set->tag_list, tag_set_list)
4588                 blk_mq_unfreeze_queue(q);
4589 }
4590
4591 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4592 {
4593         mutex_lock(&set->tag_list_lock);
4594         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4595         mutex_unlock(&set->tag_list_lock);
4596 }
4597 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4598
4599 /* Enable polling stats and return whether they were already enabled. */
4600 static bool blk_poll_stats_enable(struct request_queue *q)
4601 {
4602         if (q->poll_stat)
4603                 return true;
4604
4605         return blk_stats_alloc_enable(q);
4606 }
4607
4608 static void blk_mq_poll_stats_start(struct request_queue *q)
4609 {
4610         /*
4611          * We don't arm the callback if polling stats are not enabled or the
4612          * callback is already active.
4613          */
4614         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4615                 return;
4616
4617         blk_stat_activate_msecs(q->poll_cb, 100);
4618 }
4619
4620 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4621 {
4622         struct request_queue *q = cb->data;
4623         int bucket;
4624
4625         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4626                 if (cb->stat[bucket].nr_samples)
4627                         q->poll_stat[bucket] = cb->stat[bucket];
4628         }
4629 }
4630
4631 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4632                                        struct request *rq)
4633 {
4634         unsigned long ret = 0;
4635         int bucket;
4636
4637         /*
4638          * If stats collection isn't on, don't sleep but turn it on for
4639          * future users
4640          */
4641         if (!blk_poll_stats_enable(q))
4642                 return 0;
4643
4644         /*
4645          * As an optimistic guess, use half of the mean service time
4646          * for this type of request. We can (and should) make this smarter.
4647          * For instance, if the completion latencies are tight, we can
4648          * get closer than just half the mean. This is especially
4649          * important on devices where the completion latencies are longer
4650          * than ~10 usec. We do use the stats for the relevant IO size
4651          * if available which does lead to better estimates.
4652          */
4653         bucket = blk_mq_poll_stats_bkt(rq);
4654         if (bucket < 0)
4655                 return ret;
4656
4657         if (q->poll_stat[bucket].nr_samples)
4658                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4659
4660         return ret;
4661 }
4662
4663 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4664 {
4665         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4666         struct request *rq = blk_qc_to_rq(hctx, qc);
4667         struct hrtimer_sleeper hs;
4668         enum hrtimer_mode mode;
4669         unsigned int nsecs;
4670         ktime_t kt;
4671
4672         /*
4673          * If a request has completed on queue that uses an I/O scheduler, we
4674          * won't get back a request from blk_qc_to_rq.
4675          */
4676         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4677                 return false;
4678
4679         /*
4680          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4681          *
4682          *  0:  use half of prev avg
4683          * >0:  use this specific value
4684          */
4685         if (q->poll_nsec > 0)
4686                 nsecs = q->poll_nsec;
4687         else
4688                 nsecs = blk_mq_poll_nsecs(q, rq);
4689
4690         if (!nsecs)
4691                 return false;
4692
4693         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4694
4695         /*
4696          * This will be replaced with the stats tracking code, using
4697          * 'avg_completion_time / 2' as the pre-sleep target.
4698          */
4699         kt = nsecs;
4700
4701         mode = HRTIMER_MODE_REL;
4702         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4703         hrtimer_set_expires(&hs.timer, kt);
4704
4705         do {
4706                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4707                         break;
4708                 set_current_state(TASK_UNINTERRUPTIBLE);
4709                 hrtimer_sleeper_start_expires(&hs, mode);
4710                 if (hs.task)
4711                         io_schedule();
4712                 hrtimer_cancel(&hs.timer);
4713                 mode = HRTIMER_MODE_ABS;
4714         } while (hs.task && !signal_pending(current));
4715
4716         __set_current_state(TASK_RUNNING);
4717         destroy_hrtimer_on_stack(&hs.timer);
4718
4719         /*
4720          * If we sleep, have the caller restart the poll loop to reset the
4721          * state.  Like for the other success return cases, the caller is
4722          * responsible for checking if the IO completed.  If the IO isn't
4723          * complete, we'll get called again and will go straight to the busy
4724          * poll loop.
4725          */
4726         return true;
4727 }
4728
4729 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4730                                struct io_comp_batch *iob, unsigned int flags)
4731 {
4732         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4733         long state = get_current_state();
4734         int ret;
4735
4736         do {
4737                 ret = q->mq_ops->poll(hctx, iob);
4738                 if (ret > 0) {
4739                         __set_current_state(TASK_RUNNING);
4740                         return ret;
4741                 }
4742
4743                 if (signal_pending_state(state, current))
4744                         __set_current_state(TASK_RUNNING);
4745                 if (task_is_running(current))
4746                         return 1;
4747
4748                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4749                         break;
4750                 cpu_relax();
4751         } while (!need_resched());
4752
4753         __set_current_state(TASK_RUNNING);
4754         return 0;
4755 }
4756
4757 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4758                 unsigned int flags)
4759 {
4760         if (!(flags & BLK_POLL_NOSLEEP) &&
4761             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4762                 if (blk_mq_poll_hybrid(q, cookie))
4763                         return 1;
4764         }
4765         return blk_mq_poll_classic(q, cookie, iob, flags);
4766 }
4767
4768 unsigned int blk_mq_rq_cpu(struct request *rq)
4769 {
4770         return rq->mq_ctx->cpu;
4771 }
4772 EXPORT_SYMBOL(blk_mq_rq_cpu);
4773
4774 void blk_mq_cancel_work_sync(struct request_queue *q)
4775 {
4776         if (queue_is_mq(q)) {
4777                 struct blk_mq_hw_ctx *hctx;
4778                 unsigned long i;
4779
4780                 cancel_delayed_work_sync(&q->requeue_work);
4781
4782                 queue_for_each_hw_ctx(q, hctx, i)
4783                         cancel_delayed_work_sync(&hctx->run_work);
4784         }
4785 }
4786
4787 static int __init blk_mq_init(void)
4788 {
4789         int i;
4790
4791         for_each_possible_cpu(i)
4792                 init_llist_head(&per_cpu(blk_cpu_done, i));
4793         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4794
4795         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4796                                   "block/softirq:dead", NULL,
4797                                   blk_softirq_cpu_dead);
4798         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4799                                 blk_mq_hctx_notify_dead);
4800         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4801                                 blk_mq_hctx_notify_online,
4802                                 blk_mq_hctx_notify_offline);
4803         return 0;
4804 }
4805 subsys_initcall(blk_mq_init);