blk-mq: prepare for implementing hctx table via xarray
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78                 blk_qc_t qc)
79 {
80         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82         if (qc & BLK_QC_T_INTERNAL)
83                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84         return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90                 (rq->tag != -1 ?
91                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93
94 /*
95  * Check if any of the ctx, dispatch list or elevator
96  * have pending work in this hardware queue.
97  */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100         return !list_empty_careful(&hctx->dispatch) ||
101                 sbitmap_any_bit_set(&hctx->ctx_map) ||
102                         blk_mq_sched_has_work(hctx);
103 }
104
105 /*
106  * Mark this ctx as having pending work in this hardware queue
107  */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109                                      struct blk_mq_ctx *ctx)
110 {
111         const int bit = ctx->index_hw[hctx->type];
112
113         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114                 sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118                                       struct blk_mq_ctx *ctx)
119 {
120         const int bit = ctx->index_hw[hctx->type];
121
122         sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124
125 struct mq_inflight {
126         struct block_device *part;
127         unsigned int inflight[2];
128 };
129
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         if (blk_queue_has_srcu(q))
263                 synchronize_srcu(q->srcu);
264         else
265                 synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268
269 /**
270  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271  * @q: request queue.
272  *
273  * Note: this function does not prevent that the struct request end_io()
274  * callback function is invoked. Once this function is returned, we make
275  * sure no dispatch can happen until the queue is unquiesced via
276  * blk_mq_unquiesce_queue().
277  */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280         blk_mq_quiesce_queue_nowait(q);
281         blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284
285 /*
286  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287  * @q: request queue.
288  *
289  * This function recovers queue into the state before quiescing
290  * which is done by blk_mq_quiesce_queue.
291  */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294         unsigned long flags;
295         bool run_queue = false;
296
297         spin_lock_irqsave(&q->queue_lock, flags);
298         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299                 ;
300         } else if (!--q->quiesce_depth) {
301                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302                 run_queue = true;
303         }
304         spin_unlock_irqrestore(&q->queue_lock, flags);
305
306         /* dispatch requests which are inserted during quiescing */
307         if (run_queue)
308                 blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314         struct blk_mq_hw_ctx *hctx;
315         unsigned long i;
316
317         queue_for_each_hw_ctx(q, hctx, i)
318                 if (blk_mq_hw_queue_mapped(hctx))
319                         blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324         memset(rq, 0, sizeof(*rq));
325
326         INIT_LIST_HEAD(&rq->queuelist);
327         rq->q = q;
328         rq->__sector = (sector_t) -1;
329         INIT_HLIST_NODE(&rq->hash);
330         RB_CLEAR_NODE(&rq->rb_node);
331         rq->tag = BLK_MQ_NO_TAG;
332         rq->internal_tag = BLK_MQ_NO_TAG;
333         rq->start_time_ns = ktime_get_ns();
334         rq->part = NULL;
335         blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342         struct blk_mq_ctx *ctx = data->ctx;
343         struct blk_mq_hw_ctx *hctx = data->hctx;
344         struct request_queue *q = data->q;
345         struct request *rq = tags->static_rqs[tag];
346
347         rq->q = q;
348         rq->mq_ctx = ctx;
349         rq->mq_hctx = hctx;
350         rq->cmd_flags = data->cmd_flags;
351
352         if (data->flags & BLK_MQ_REQ_PM)
353                 data->rq_flags |= RQF_PM;
354         if (blk_queue_io_stat(q))
355                 data->rq_flags |= RQF_IO_STAT;
356         rq->rq_flags = data->rq_flags;
357
358         if (!(data->rq_flags & RQF_ELV)) {
359                 rq->tag = tag;
360                 rq->internal_tag = BLK_MQ_NO_TAG;
361         } else {
362                 rq->tag = BLK_MQ_NO_TAG;
363                 rq->internal_tag = tag;
364         }
365         rq->timeout = 0;
366
367         if (blk_mq_need_time_stamp(rq))
368                 rq->start_time_ns = ktime_get_ns();
369         else
370                 rq->start_time_ns = 0;
371         rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373         rq->alloc_time_ns = alloc_time_ns;
374 #endif
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_ELV) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (!op_is_flush(data->cmd_flags) &&
397                     e->type->ops.prepare_request) {
398                         e->type->ops.prepare_request(rq);
399                         rq->rq_flags |= RQF_ELVPRIV;
400                 }
401         }
402
403         return rq;
404 }
405
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408                 u64 alloc_time_ns)
409 {
410         unsigned int tag, tag_offset;
411         struct blk_mq_tags *tags;
412         struct request *rq;
413         unsigned long tag_mask;
414         int i, nr = 0;
415
416         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417         if (unlikely(!tag_mask))
418                 return NULL;
419
420         tags = blk_mq_tags_from_data(data);
421         for (i = 0; tag_mask; i++) {
422                 if (!(tag_mask & (1UL << i)))
423                         continue;
424                 tag = tag_offset + i;
425                 prefetch(tags->static_rqs[tag]);
426                 tag_mask &= ~(1UL << i);
427                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428                 rq_list_add(data->cached_rq, rq);
429                 nr++;
430         }
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 struct elevator_queue *e = q->elevator;
454
455                 data->rq_flags |= RQF_ELV;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list. Don't include reserved tags in the
460                  * limiting, as it isn't useful.
461                  */
462                 if (!op_is_flush(data->cmd_flags) &&
463                     !blk_op_is_passthrough(data->cmd_flags) &&
464                     e->type->ops.limit_depth &&
465                     !(data->flags & BLK_MQ_REQ_RESERVED))
466                         e->type->ops.limit_depth(data->cmd_flags, data);
467         }
468
469 retry:
470         data->ctx = blk_mq_get_ctx(q);
471         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472         if (!(data->rq_flags & RQF_ELV))
473                 blk_mq_tag_busy(data->hctx);
474
475         /*
476          * Try batched alloc if we want more than 1 tag.
477          */
478         if (data->nr_tags > 1) {
479                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480                 if (rq)
481                         return rq;
482                 data->nr_tags = 1;
483         }
484
485         /*
486          * Waiting allocations only fail because of an inactive hctx.  In that
487          * case just retry the hctx assignment and tag allocation as CPU hotplug
488          * should have migrated us to an online CPU by now.
489          */
490         tag = blk_mq_get_tag(data);
491         if (tag == BLK_MQ_NO_TAG) {
492                 if (data->flags & BLK_MQ_REQ_NOWAIT)
493                         return NULL;
494                 /*
495                  * Give up the CPU and sleep for a random short time to
496                  * ensure that thread using a realtime scheduling class
497                  * are migrated off the CPU, and thus off the hctx that
498                  * is going away.
499                  */
500                 msleep(3);
501                 goto retry;
502         }
503
504         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505                                         alloc_time_ns);
506 }
507
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509                 blk_mq_req_flags_t flags)
510 {
511         struct blk_mq_alloc_data data = {
512                 .q              = q,
513                 .flags          = flags,
514                 .cmd_flags      = op,
515                 .nr_tags        = 1,
516         };
517         struct request *rq;
518         int ret;
519
520         ret = blk_queue_enter(q, flags);
521         if (ret)
522                 return ERR_PTR(ret);
523
524         rq = __blk_mq_alloc_requests(&data);
525         if (!rq)
526                 goto out_queue_exit;
527         rq->__data_len = 0;
528         rq->__sector = (sector_t) -1;
529         rq->bio = rq->biotail = NULL;
530         return rq;
531 out_queue_exit:
532         blk_queue_exit(q);
533         return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540         struct blk_mq_alloc_data data = {
541                 .q              = q,
542                 .flags          = flags,
543                 .cmd_flags      = op,
544                 .nr_tags        = 1,
545         };
546         u64 alloc_time_ns = 0;
547         unsigned int cpu;
548         unsigned int tag;
549         int ret;
550
551         /* alloc_time includes depth and tag waits */
552         if (blk_queue_rq_alloc_time(q))
553                 alloc_time_ns = ktime_get_ns();
554
555         /*
556          * If the tag allocator sleeps we could get an allocation for a
557          * different hardware context.  No need to complicate the low level
558          * allocator for this for the rare use case of a command tied to
559          * a specific queue.
560          */
561         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562                 return ERR_PTR(-EINVAL);
563
564         if (hctx_idx >= q->nr_hw_queues)
565                 return ERR_PTR(-EIO);
566
567         ret = blk_queue_enter(q, flags);
568         if (ret)
569                 return ERR_PTR(ret);
570
571         /*
572          * Check if the hardware context is actually mapped to anything.
573          * If not tell the caller that it should skip this queue.
574          */
575         ret = -EXDEV;
576         data.hctx = q->queue_hw_ctx[hctx_idx];
577         if (!blk_mq_hw_queue_mapped(data.hctx))
578                 goto out_queue_exit;
579         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580         data.ctx = __blk_mq_get_ctx(q, cpu);
581
582         if (!q->elevator)
583                 blk_mq_tag_busy(data.hctx);
584         else
585                 data.rq_flags |= RQF_ELV;
586
587         ret = -EWOULDBLOCK;
588         tag = blk_mq_get_tag(&data);
589         if (tag == BLK_MQ_NO_TAG)
590                 goto out_queue_exit;
591         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592                                         alloc_time_ns);
593
594 out_queue_exit:
595         blk_queue_exit(q);
596         return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599
600 static void __blk_mq_free_request(struct request *rq)
601 {
602         struct request_queue *q = rq->q;
603         struct blk_mq_ctx *ctx = rq->mq_ctx;
604         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605         const int sched_tag = rq->internal_tag;
606
607         blk_crypto_free_request(rq);
608         blk_pm_mark_last_busy(rq);
609         rq->mq_hctx = NULL;
610         if (rq->tag != BLK_MQ_NO_TAG)
611                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612         if (sched_tag != BLK_MQ_NO_TAG)
613                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614         blk_mq_sched_restart(hctx);
615         blk_queue_exit(q);
616 }
617
618 void blk_mq_free_request(struct request *rq)
619 {
620         struct request_queue *q = rq->q;
621         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622
623         if ((rq->rq_flags & RQF_ELVPRIV) &&
624             q->elevator->type->ops.finish_request)
625                 q->elevator->type->ops.finish_request(rq);
626
627         if (rq->rq_flags & RQF_MQ_INFLIGHT)
628                 __blk_mq_dec_active_requests(hctx);
629
630         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631                 laptop_io_completion(q->disk->bdi);
632
633         rq_qos_done(q, rq);
634
635         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636         if (req_ref_put_and_test(rq))
637                 __blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643         struct request *rq;
644
645         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646                 blk_mq_free_request(rq);
647 }
648
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652                 rq->q->disk ? rq->q->disk->disk_name : "?",
653                 (unsigned long long) rq->cmd_flags);
654
655         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
656                (unsigned long long)blk_rq_pos(rq),
657                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
659                rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664                           unsigned int nbytes, blk_status_t error)
665 {
666         if (unlikely(error)) {
667                 bio->bi_status = error;
668         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669                 /*
670                  * Partial zone append completions cannot be supported as the
671                  * BIO fragments may end up not being written sequentially.
672                  */
673                 if (bio->bi_iter.bi_size != nbytes)
674                         bio->bi_status = BLK_STS_IOERR;
675                 else
676                         bio->bi_iter.bi_sector = rq->__sector;
677         }
678
679         bio_advance(bio, nbytes);
680
681         if (unlikely(rq->rq_flags & RQF_QUIET))
682                 bio_set_flag(bio, BIO_QUIET);
683         /* don't actually finish bio if it's part of flush sequence */
684         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685                 bio_endio(bio);
686 }
687
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690         if (req->part && blk_do_io_stat(req)) {
691                 const int sgrp = op_stat_group(req_op(req));
692
693                 part_stat_lock();
694                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695                 part_stat_unlock();
696         }
697 }
698
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701         printk_ratelimited(KERN_ERR
702                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703                 "phys_seg %u prio class %u\n",
704                 blk_status_to_str(status),
705                 req->q->disk ? req->q->disk->disk_name : "?",
706                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707                 req->cmd_flags & ~REQ_OP_MASK,
708                 req->nr_phys_segments,
709                 IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711
712 /*
713  * Fully end IO on a request. Does not support partial completions, or
714  * errors.
715  */
716 static void blk_complete_request(struct request *req)
717 {
718         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719         int total_bytes = blk_rq_bytes(req);
720         struct bio *bio = req->bio;
721
722         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723
724         if (!bio)
725                 return;
726
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729                 req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731
732         blk_account_io_completion(req, total_bytes);
733
734         do {
735                 struct bio *next = bio->bi_next;
736
737                 /* Completion has already been traced */
738                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739                 if (!is_flush)
740                         bio_endio(bio);
741                 bio = next;
742         } while (bio);
743
744         /*
745          * Reset counters so that the request stacking driver
746          * can find how many bytes remain in the request
747          * later.
748          */
749         req->bio = NULL;
750         req->__data_len = 0;
751 }
752
753 /**
754  * blk_update_request - Complete multiple bytes without completing the request
755  * @req:      the request being processed
756  * @error:    block status code
757  * @nr_bytes: number of bytes to complete for @req
758  *
759  * Description:
760  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
761  *     the request structure even if @req doesn't have leftover.
762  *     If @req has leftover, sets it up for the next range of segments.
763  *
764  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
765  *     %false return from this function.
766  *
767  * Note:
768  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
769  *      except in the consistency check at the end of this function.
770  *
771  * Return:
772  *     %false - this request doesn't have any more data
773  *     %true  - this request has more data
774  **/
775 bool blk_update_request(struct request *req, blk_status_t error,
776                 unsigned int nr_bytes)
777 {
778         int total_bytes;
779
780         trace_block_rq_complete(req, error, nr_bytes);
781
782         if (!req->bio)
783                 return false;
784
785 #ifdef CONFIG_BLK_DEV_INTEGRITY
786         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
787             error == BLK_STS_OK)
788                 req->q->integrity.profile->complete_fn(req, nr_bytes);
789 #endif
790
791         if (unlikely(error && !blk_rq_is_passthrough(req) &&
792                      !(req->rq_flags & RQF_QUIET))) {
793                 blk_print_req_error(req, error);
794                 trace_block_rq_error(req, error, nr_bytes);
795         }
796
797         blk_account_io_completion(req, nr_bytes);
798
799         total_bytes = 0;
800         while (req->bio) {
801                 struct bio *bio = req->bio;
802                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
803
804                 if (bio_bytes == bio->bi_iter.bi_size)
805                         req->bio = bio->bi_next;
806
807                 /* Completion has already been traced */
808                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
809                 req_bio_endio(req, bio, bio_bytes, error);
810
811                 total_bytes += bio_bytes;
812                 nr_bytes -= bio_bytes;
813
814                 if (!nr_bytes)
815                         break;
816         }
817
818         /*
819          * completely done
820          */
821         if (!req->bio) {
822                 /*
823                  * Reset counters so that the request stacking driver
824                  * can find how many bytes remain in the request
825                  * later.
826                  */
827                 req->__data_len = 0;
828                 return false;
829         }
830
831         req->__data_len -= total_bytes;
832
833         /* update sector only for requests with clear definition of sector */
834         if (!blk_rq_is_passthrough(req))
835                 req->__sector += total_bytes >> 9;
836
837         /* mixed attributes always follow the first bio */
838         if (req->rq_flags & RQF_MIXED_MERGE) {
839                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
840                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
841         }
842
843         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
844                 /*
845                  * If total number of sectors is less than the first segment
846                  * size, something has gone terribly wrong.
847                  */
848                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
849                         blk_dump_rq_flags(req, "request botched");
850                         req->__data_len = blk_rq_cur_bytes(req);
851                 }
852
853                 /* recalculate the number of segments */
854                 req->nr_phys_segments = blk_recalc_rq_segments(req);
855         }
856
857         return true;
858 }
859 EXPORT_SYMBOL_GPL(blk_update_request);
860
861 static void __blk_account_io_done(struct request *req, u64 now)
862 {
863         const int sgrp = op_stat_group(req_op(req));
864
865         part_stat_lock();
866         update_io_ticks(req->part, jiffies, true);
867         part_stat_inc(req->part, ios[sgrp]);
868         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
869         part_stat_unlock();
870 }
871
872 static inline void blk_account_io_done(struct request *req, u64 now)
873 {
874         /*
875          * Account IO completion.  flush_rq isn't accounted as a
876          * normal IO on queueing nor completion.  Accounting the
877          * containing request is enough.
878          */
879         if (blk_do_io_stat(req) && req->part &&
880             !(req->rq_flags & RQF_FLUSH_SEQ))
881                 __blk_account_io_done(req, now);
882 }
883
884 static void __blk_account_io_start(struct request *rq)
885 {
886         /* passthrough requests can hold bios that do not have ->bi_bdev set */
887         if (rq->bio && rq->bio->bi_bdev)
888                 rq->part = rq->bio->bi_bdev;
889         else if (rq->q->disk)
890                 rq->part = rq->q->disk->part0;
891
892         part_stat_lock();
893         update_io_ticks(rq->part, jiffies, false);
894         part_stat_unlock();
895 }
896
897 static inline void blk_account_io_start(struct request *req)
898 {
899         if (blk_do_io_stat(req))
900                 __blk_account_io_start(req);
901 }
902
903 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
904 {
905         if (rq->rq_flags & RQF_STATS) {
906                 blk_mq_poll_stats_start(rq->q);
907                 blk_stat_add(rq, now);
908         }
909
910         blk_mq_sched_completed_request(rq, now);
911         blk_account_io_done(rq, now);
912 }
913
914 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
915 {
916         if (blk_mq_need_time_stamp(rq))
917                 __blk_mq_end_request_acct(rq, ktime_get_ns());
918
919         if (rq->end_io) {
920                 rq_qos_done(rq->q, rq);
921                 rq->end_io(rq, error);
922         } else {
923                 blk_mq_free_request(rq);
924         }
925 }
926 EXPORT_SYMBOL(__blk_mq_end_request);
927
928 void blk_mq_end_request(struct request *rq, blk_status_t error)
929 {
930         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
931                 BUG();
932         __blk_mq_end_request(rq, error);
933 }
934 EXPORT_SYMBOL(blk_mq_end_request);
935
936 #define TAG_COMP_BATCH          32
937
938 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
939                                           int *tag_array, int nr_tags)
940 {
941         struct request_queue *q = hctx->queue;
942
943         /*
944          * All requests should have been marked as RQF_MQ_INFLIGHT, so
945          * update hctx->nr_active in batch
946          */
947         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
948                 __blk_mq_sub_active_requests(hctx, nr_tags);
949
950         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
951         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
952 }
953
954 void blk_mq_end_request_batch(struct io_comp_batch *iob)
955 {
956         int tags[TAG_COMP_BATCH], nr_tags = 0;
957         struct blk_mq_hw_ctx *cur_hctx = NULL;
958         struct request *rq;
959         u64 now = 0;
960
961         if (iob->need_ts)
962                 now = ktime_get_ns();
963
964         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
965                 prefetch(rq->bio);
966                 prefetch(rq->rq_next);
967
968                 blk_complete_request(rq);
969                 if (iob->need_ts)
970                         __blk_mq_end_request_acct(rq, now);
971
972                 rq_qos_done(rq->q, rq);
973
974                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
975                 if (!req_ref_put_and_test(rq))
976                         continue;
977
978                 blk_crypto_free_request(rq);
979                 blk_pm_mark_last_busy(rq);
980
981                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
982                         if (cur_hctx)
983                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
984                         nr_tags = 0;
985                         cur_hctx = rq->mq_hctx;
986                 }
987                 tags[nr_tags++] = rq->tag;
988         }
989
990         if (nr_tags)
991                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
992 }
993 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
994
995 static void blk_complete_reqs(struct llist_head *list)
996 {
997         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
998         struct request *rq, *next;
999
1000         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1001                 rq->q->mq_ops->complete(rq);
1002 }
1003
1004 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1005 {
1006         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1007 }
1008
1009 static int blk_softirq_cpu_dead(unsigned int cpu)
1010 {
1011         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1012         return 0;
1013 }
1014
1015 static void __blk_mq_complete_request_remote(void *data)
1016 {
1017         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1018 }
1019
1020 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1021 {
1022         int cpu = raw_smp_processor_id();
1023
1024         if (!IS_ENABLED(CONFIG_SMP) ||
1025             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1026                 return false;
1027         /*
1028          * With force threaded interrupts enabled, raising softirq from an SMP
1029          * function call will always result in waking the ksoftirqd thread.
1030          * This is probably worse than completing the request on a different
1031          * cache domain.
1032          */
1033         if (force_irqthreads())
1034                 return false;
1035
1036         /* same CPU or cache domain?  Complete locally */
1037         if (cpu == rq->mq_ctx->cpu ||
1038             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1039              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1040                 return false;
1041
1042         /* don't try to IPI to an offline CPU */
1043         return cpu_online(rq->mq_ctx->cpu);
1044 }
1045
1046 static void blk_mq_complete_send_ipi(struct request *rq)
1047 {
1048         struct llist_head *list;
1049         unsigned int cpu;
1050
1051         cpu = rq->mq_ctx->cpu;
1052         list = &per_cpu(blk_cpu_done, cpu);
1053         if (llist_add(&rq->ipi_list, list)) {
1054                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1055                 smp_call_function_single_async(cpu, &rq->csd);
1056         }
1057 }
1058
1059 static void blk_mq_raise_softirq(struct request *rq)
1060 {
1061         struct llist_head *list;
1062
1063         preempt_disable();
1064         list = this_cpu_ptr(&blk_cpu_done);
1065         if (llist_add(&rq->ipi_list, list))
1066                 raise_softirq(BLOCK_SOFTIRQ);
1067         preempt_enable();
1068 }
1069
1070 bool blk_mq_complete_request_remote(struct request *rq)
1071 {
1072         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1073
1074         /*
1075          * For a polled request, always complete locallly, it's pointless
1076          * to redirect the completion.
1077          */
1078         if (rq->cmd_flags & REQ_POLLED)
1079                 return false;
1080
1081         if (blk_mq_complete_need_ipi(rq)) {
1082                 blk_mq_complete_send_ipi(rq);
1083                 return true;
1084         }
1085
1086         if (rq->q->nr_hw_queues == 1) {
1087                 blk_mq_raise_softirq(rq);
1088                 return true;
1089         }
1090         return false;
1091 }
1092 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1093
1094 /**
1095  * blk_mq_complete_request - end I/O on a request
1096  * @rq:         the request being processed
1097  *
1098  * Description:
1099  *      Complete a request by scheduling the ->complete_rq operation.
1100  **/
1101 void blk_mq_complete_request(struct request *rq)
1102 {
1103         if (!blk_mq_complete_request_remote(rq))
1104                 rq->q->mq_ops->complete(rq);
1105 }
1106 EXPORT_SYMBOL(blk_mq_complete_request);
1107
1108 /**
1109  * blk_mq_start_request - Start processing a request
1110  * @rq: Pointer to request to be started
1111  *
1112  * Function used by device drivers to notify the block layer that a request
1113  * is going to be processed now, so blk layer can do proper initializations
1114  * such as starting the timeout timer.
1115  */
1116 void blk_mq_start_request(struct request *rq)
1117 {
1118         struct request_queue *q = rq->q;
1119
1120         trace_block_rq_issue(rq);
1121
1122         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1123                 u64 start_time;
1124 #ifdef CONFIG_BLK_CGROUP
1125                 if (rq->bio)
1126                         start_time = bio_issue_time(&rq->bio->bi_issue);
1127                 else
1128 #endif
1129                         start_time = ktime_get_ns();
1130                 rq->io_start_time_ns = start_time;
1131                 rq->stats_sectors = blk_rq_sectors(rq);
1132                 rq->rq_flags |= RQF_STATS;
1133                 rq_qos_issue(q, rq);
1134         }
1135
1136         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1137
1138         blk_add_timer(rq);
1139         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1140
1141 #ifdef CONFIG_BLK_DEV_INTEGRITY
1142         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1143                 q->integrity.profile->prepare_fn(rq);
1144 #endif
1145         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1146                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1147 }
1148 EXPORT_SYMBOL(blk_mq_start_request);
1149
1150 /**
1151  * blk_end_sync_rq - executes a completion event on a request
1152  * @rq: request to complete
1153  * @error: end I/O status of the request
1154  */
1155 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1156 {
1157         struct completion *waiting = rq->end_io_data;
1158
1159         rq->end_io_data = (void *)(uintptr_t)error;
1160
1161         /*
1162          * complete last, if this is a stack request the process (and thus
1163          * the rq pointer) could be invalid right after this complete()
1164          */
1165         complete(waiting);
1166 }
1167
1168 /**
1169  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1170  * @rq:         request to insert
1171  * @at_head:    insert request at head or tail of queue
1172  * @done:       I/O completion handler
1173  *
1174  * Description:
1175  *    Insert a fully prepared request at the back of the I/O scheduler queue
1176  *    for execution.  Don't wait for completion.
1177  *
1178  * Note:
1179  *    This function will invoke @done directly if the queue is dead.
1180  */
1181 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1182 {
1183         WARN_ON(irqs_disabled());
1184         WARN_ON(!blk_rq_is_passthrough(rq));
1185
1186         rq->end_io = done;
1187
1188         blk_account_io_start(rq);
1189
1190         /*
1191          * don't check dying flag for MQ because the request won't
1192          * be reused after dying flag is set
1193          */
1194         blk_mq_sched_insert_request(rq, at_head, true, false);
1195 }
1196 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1197
1198 static bool blk_rq_is_poll(struct request *rq)
1199 {
1200         if (!rq->mq_hctx)
1201                 return false;
1202         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1203                 return false;
1204         if (WARN_ON_ONCE(!rq->bio))
1205                 return false;
1206         return true;
1207 }
1208
1209 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1210 {
1211         do {
1212                 bio_poll(rq->bio, NULL, 0);
1213                 cond_resched();
1214         } while (!completion_done(wait));
1215 }
1216
1217 /**
1218  * blk_execute_rq - insert a request into queue for execution
1219  * @rq:         request to insert
1220  * @at_head:    insert request at head or tail of queue
1221  *
1222  * Description:
1223  *    Insert a fully prepared request at the back of the I/O scheduler queue
1224  *    for execution and wait for completion.
1225  * Return: The blk_status_t result provided to blk_mq_end_request().
1226  */
1227 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1228 {
1229         DECLARE_COMPLETION_ONSTACK(wait);
1230         unsigned long hang_check;
1231
1232         rq->end_io_data = &wait;
1233         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1234
1235         /* Prevent hang_check timer from firing at us during very long I/O */
1236         hang_check = sysctl_hung_task_timeout_secs;
1237
1238         if (blk_rq_is_poll(rq))
1239                 blk_rq_poll_completion(rq, &wait);
1240         else if (hang_check)
1241                 while (!wait_for_completion_io_timeout(&wait,
1242                                 hang_check * (HZ/2)))
1243                         ;
1244         else
1245                 wait_for_completion_io(&wait);
1246
1247         return (blk_status_t)(uintptr_t)rq->end_io_data;
1248 }
1249 EXPORT_SYMBOL(blk_execute_rq);
1250
1251 static void __blk_mq_requeue_request(struct request *rq)
1252 {
1253         struct request_queue *q = rq->q;
1254
1255         blk_mq_put_driver_tag(rq);
1256
1257         trace_block_rq_requeue(rq);
1258         rq_qos_requeue(q, rq);
1259
1260         if (blk_mq_request_started(rq)) {
1261                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1262                 rq->rq_flags &= ~RQF_TIMED_OUT;
1263         }
1264 }
1265
1266 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1267 {
1268         __blk_mq_requeue_request(rq);
1269
1270         /* this request will be re-inserted to io scheduler queue */
1271         blk_mq_sched_requeue_request(rq);
1272
1273         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1274 }
1275 EXPORT_SYMBOL(blk_mq_requeue_request);
1276
1277 static void blk_mq_requeue_work(struct work_struct *work)
1278 {
1279         struct request_queue *q =
1280                 container_of(work, struct request_queue, requeue_work.work);
1281         LIST_HEAD(rq_list);
1282         struct request *rq, *next;
1283
1284         spin_lock_irq(&q->requeue_lock);
1285         list_splice_init(&q->requeue_list, &rq_list);
1286         spin_unlock_irq(&q->requeue_lock);
1287
1288         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1289                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1290                         continue;
1291
1292                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1293                 list_del_init(&rq->queuelist);
1294                 /*
1295                  * If RQF_DONTPREP, rq has contained some driver specific
1296                  * data, so insert it to hctx dispatch list to avoid any
1297                  * merge.
1298                  */
1299                 if (rq->rq_flags & RQF_DONTPREP)
1300                         blk_mq_request_bypass_insert(rq, false, false);
1301                 else
1302                         blk_mq_sched_insert_request(rq, true, false, false);
1303         }
1304
1305         while (!list_empty(&rq_list)) {
1306                 rq = list_entry(rq_list.next, struct request, queuelist);
1307                 list_del_init(&rq->queuelist);
1308                 blk_mq_sched_insert_request(rq, false, false, false);
1309         }
1310
1311         blk_mq_run_hw_queues(q, false);
1312 }
1313
1314 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1315                                 bool kick_requeue_list)
1316 {
1317         struct request_queue *q = rq->q;
1318         unsigned long flags;
1319
1320         /*
1321          * We abuse this flag that is otherwise used by the I/O scheduler to
1322          * request head insertion from the workqueue.
1323          */
1324         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1325
1326         spin_lock_irqsave(&q->requeue_lock, flags);
1327         if (at_head) {
1328                 rq->rq_flags |= RQF_SOFTBARRIER;
1329                 list_add(&rq->queuelist, &q->requeue_list);
1330         } else {
1331                 list_add_tail(&rq->queuelist, &q->requeue_list);
1332         }
1333         spin_unlock_irqrestore(&q->requeue_lock, flags);
1334
1335         if (kick_requeue_list)
1336                 blk_mq_kick_requeue_list(q);
1337 }
1338
1339 void blk_mq_kick_requeue_list(struct request_queue *q)
1340 {
1341         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1342 }
1343 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1344
1345 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1346                                     unsigned long msecs)
1347 {
1348         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1349                                     msecs_to_jiffies(msecs));
1350 }
1351 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1352
1353 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1354                                bool reserved)
1355 {
1356         /*
1357          * If we find a request that isn't idle we know the queue is busy
1358          * as it's checked in the iter.
1359          * Return false to stop the iteration.
1360          */
1361         if (blk_mq_request_started(rq)) {
1362                 bool *busy = priv;
1363
1364                 *busy = true;
1365                 return false;
1366         }
1367
1368         return true;
1369 }
1370
1371 bool blk_mq_queue_inflight(struct request_queue *q)
1372 {
1373         bool busy = false;
1374
1375         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1376         return busy;
1377 }
1378 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1379
1380 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1381 {
1382         req->rq_flags |= RQF_TIMED_OUT;
1383         if (req->q->mq_ops->timeout) {
1384                 enum blk_eh_timer_return ret;
1385
1386                 ret = req->q->mq_ops->timeout(req, reserved);
1387                 if (ret == BLK_EH_DONE)
1388                         return;
1389                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1390         }
1391
1392         blk_add_timer(req);
1393 }
1394
1395 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1396 {
1397         unsigned long deadline;
1398
1399         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1400                 return false;
1401         if (rq->rq_flags & RQF_TIMED_OUT)
1402                 return false;
1403
1404         deadline = READ_ONCE(rq->deadline);
1405         if (time_after_eq(jiffies, deadline))
1406                 return true;
1407
1408         if (*next == 0)
1409                 *next = deadline;
1410         else if (time_after(*next, deadline))
1411                 *next = deadline;
1412         return false;
1413 }
1414
1415 void blk_mq_put_rq_ref(struct request *rq)
1416 {
1417         if (is_flush_rq(rq))
1418                 rq->end_io(rq, 0);
1419         else if (req_ref_put_and_test(rq))
1420                 __blk_mq_free_request(rq);
1421 }
1422
1423 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1424 {
1425         unsigned long *next = priv;
1426
1427         /*
1428          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1429          * be reallocated underneath the timeout handler's processing, then
1430          * the expire check is reliable. If the request is not expired, then
1431          * it was completed and reallocated as a new request after returning
1432          * from blk_mq_check_expired().
1433          */
1434         if (blk_mq_req_expired(rq, next))
1435                 blk_mq_rq_timed_out(rq, reserved);
1436         return true;
1437 }
1438
1439 static void blk_mq_timeout_work(struct work_struct *work)
1440 {
1441         struct request_queue *q =
1442                 container_of(work, struct request_queue, timeout_work);
1443         unsigned long next = 0;
1444         struct blk_mq_hw_ctx *hctx;
1445         unsigned long i;
1446
1447         /* A deadlock might occur if a request is stuck requiring a
1448          * timeout at the same time a queue freeze is waiting
1449          * completion, since the timeout code would not be able to
1450          * acquire the queue reference here.
1451          *
1452          * That's why we don't use blk_queue_enter here; instead, we use
1453          * percpu_ref_tryget directly, because we need to be able to
1454          * obtain a reference even in the short window between the queue
1455          * starting to freeze, by dropping the first reference in
1456          * blk_freeze_queue_start, and the moment the last request is
1457          * consumed, marked by the instant q_usage_counter reaches
1458          * zero.
1459          */
1460         if (!percpu_ref_tryget(&q->q_usage_counter))
1461                 return;
1462
1463         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1464
1465         if (next != 0) {
1466                 mod_timer(&q->timeout, next);
1467         } else {
1468                 /*
1469                  * Request timeouts are handled as a forward rolling timer. If
1470                  * we end up here it means that no requests are pending and
1471                  * also that no request has been pending for a while. Mark
1472                  * each hctx as idle.
1473                  */
1474                 queue_for_each_hw_ctx(q, hctx, i) {
1475                         /* the hctx may be unmapped, so check it here */
1476                         if (blk_mq_hw_queue_mapped(hctx))
1477                                 blk_mq_tag_idle(hctx);
1478                 }
1479         }
1480         blk_queue_exit(q);
1481 }
1482
1483 struct flush_busy_ctx_data {
1484         struct blk_mq_hw_ctx *hctx;
1485         struct list_head *list;
1486 };
1487
1488 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1489 {
1490         struct flush_busy_ctx_data *flush_data = data;
1491         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1492         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1493         enum hctx_type type = hctx->type;
1494
1495         spin_lock(&ctx->lock);
1496         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1497         sbitmap_clear_bit(sb, bitnr);
1498         spin_unlock(&ctx->lock);
1499         return true;
1500 }
1501
1502 /*
1503  * Process software queues that have been marked busy, splicing them
1504  * to the for-dispatch
1505  */
1506 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1507 {
1508         struct flush_busy_ctx_data data = {
1509                 .hctx = hctx,
1510                 .list = list,
1511         };
1512
1513         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1514 }
1515 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1516
1517 struct dispatch_rq_data {
1518         struct blk_mq_hw_ctx *hctx;
1519         struct request *rq;
1520 };
1521
1522 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1523                 void *data)
1524 {
1525         struct dispatch_rq_data *dispatch_data = data;
1526         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1527         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1528         enum hctx_type type = hctx->type;
1529
1530         spin_lock(&ctx->lock);
1531         if (!list_empty(&ctx->rq_lists[type])) {
1532                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1533                 list_del_init(&dispatch_data->rq->queuelist);
1534                 if (list_empty(&ctx->rq_lists[type]))
1535                         sbitmap_clear_bit(sb, bitnr);
1536         }
1537         spin_unlock(&ctx->lock);
1538
1539         return !dispatch_data->rq;
1540 }
1541
1542 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1543                                         struct blk_mq_ctx *start)
1544 {
1545         unsigned off = start ? start->index_hw[hctx->type] : 0;
1546         struct dispatch_rq_data data = {
1547                 .hctx = hctx,
1548                 .rq   = NULL,
1549         };
1550
1551         __sbitmap_for_each_set(&hctx->ctx_map, off,
1552                                dispatch_rq_from_ctx, &data);
1553
1554         return data.rq;
1555 }
1556
1557 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1558 {
1559         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1560         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1561         int tag;
1562
1563         blk_mq_tag_busy(rq->mq_hctx);
1564
1565         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1566                 bt = &rq->mq_hctx->tags->breserved_tags;
1567                 tag_offset = 0;
1568         } else {
1569                 if (!hctx_may_queue(rq->mq_hctx, bt))
1570                         return false;
1571         }
1572
1573         tag = __sbitmap_queue_get(bt);
1574         if (tag == BLK_MQ_NO_TAG)
1575                 return false;
1576
1577         rq->tag = tag + tag_offset;
1578         return true;
1579 }
1580
1581 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1582 {
1583         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1584                 return false;
1585
1586         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1587                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1588                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1589                 __blk_mq_inc_active_requests(hctx);
1590         }
1591         hctx->tags->rqs[rq->tag] = rq;
1592         return true;
1593 }
1594
1595 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1596                                 int flags, void *key)
1597 {
1598         struct blk_mq_hw_ctx *hctx;
1599
1600         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1601
1602         spin_lock(&hctx->dispatch_wait_lock);
1603         if (!list_empty(&wait->entry)) {
1604                 struct sbitmap_queue *sbq;
1605
1606                 list_del_init(&wait->entry);
1607                 sbq = &hctx->tags->bitmap_tags;
1608                 atomic_dec(&sbq->ws_active);
1609         }
1610         spin_unlock(&hctx->dispatch_wait_lock);
1611
1612         blk_mq_run_hw_queue(hctx, true);
1613         return 1;
1614 }
1615
1616 /*
1617  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1618  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1619  * restart. For both cases, take care to check the condition again after
1620  * marking us as waiting.
1621  */
1622 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1623                                  struct request *rq)
1624 {
1625         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1626         struct wait_queue_head *wq;
1627         wait_queue_entry_t *wait;
1628         bool ret;
1629
1630         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1631                 blk_mq_sched_mark_restart_hctx(hctx);
1632
1633                 /*
1634                  * It's possible that a tag was freed in the window between the
1635                  * allocation failure and adding the hardware queue to the wait
1636                  * queue.
1637                  *
1638                  * Don't clear RESTART here, someone else could have set it.
1639                  * At most this will cost an extra queue run.
1640                  */
1641                 return blk_mq_get_driver_tag(rq);
1642         }
1643
1644         wait = &hctx->dispatch_wait;
1645         if (!list_empty_careful(&wait->entry))
1646                 return false;
1647
1648         wq = &bt_wait_ptr(sbq, hctx)->wait;
1649
1650         spin_lock_irq(&wq->lock);
1651         spin_lock(&hctx->dispatch_wait_lock);
1652         if (!list_empty(&wait->entry)) {
1653                 spin_unlock(&hctx->dispatch_wait_lock);
1654                 spin_unlock_irq(&wq->lock);
1655                 return false;
1656         }
1657
1658         atomic_inc(&sbq->ws_active);
1659         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1660         __add_wait_queue(wq, wait);
1661
1662         /*
1663          * It's possible that a tag was freed in the window between the
1664          * allocation failure and adding the hardware queue to the wait
1665          * queue.
1666          */
1667         ret = blk_mq_get_driver_tag(rq);
1668         if (!ret) {
1669                 spin_unlock(&hctx->dispatch_wait_lock);
1670                 spin_unlock_irq(&wq->lock);
1671                 return false;
1672         }
1673
1674         /*
1675          * We got a tag, remove ourselves from the wait queue to ensure
1676          * someone else gets the wakeup.
1677          */
1678         list_del_init(&wait->entry);
1679         atomic_dec(&sbq->ws_active);
1680         spin_unlock(&hctx->dispatch_wait_lock);
1681         spin_unlock_irq(&wq->lock);
1682
1683         return true;
1684 }
1685
1686 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1687 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1688 /*
1689  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1690  * - EWMA is one simple way to compute running average value
1691  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1692  * - take 4 as factor for avoiding to get too small(0) result, and this
1693  *   factor doesn't matter because EWMA decreases exponentially
1694  */
1695 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1696 {
1697         unsigned int ewma;
1698
1699         ewma = hctx->dispatch_busy;
1700
1701         if (!ewma && !busy)
1702                 return;
1703
1704         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1705         if (busy)
1706                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1707         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1708
1709         hctx->dispatch_busy = ewma;
1710 }
1711
1712 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1713
1714 static void blk_mq_handle_dev_resource(struct request *rq,
1715                                        struct list_head *list)
1716 {
1717         struct request *next =
1718                 list_first_entry_or_null(list, struct request, queuelist);
1719
1720         /*
1721          * If an I/O scheduler has been configured and we got a driver tag for
1722          * the next request already, free it.
1723          */
1724         if (next)
1725                 blk_mq_put_driver_tag(next);
1726
1727         list_add(&rq->queuelist, list);
1728         __blk_mq_requeue_request(rq);
1729 }
1730
1731 static void blk_mq_handle_zone_resource(struct request *rq,
1732                                         struct list_head *zone_list)
1733 {
1734         /*
1735          * If we end up here it is because we cannot dispatch a request to a
1736          * specific zone due to LLD level zone-write locking or other zone
1737          * related resource not being available. In this case, set the request
1738          * aside in zone_list for retrying it later.
1739          */
1740         list_add(&rq->queuelist, zone_list);
1741         __blk_mq_requeue_request(rq);
1742 }
1743
1744 enum prep_dispatch {
1745         PREP_DISPATCH_OK,
1746         PREP_DISPATCH_NO_TAG,
1747         PREP_DISPATCH_NO_BUDGET,
1748 };
1749
1750 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1751                                                   bool need_budget)
1752 {
1753         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1754         int budget_token = -1;
1755
1756         if (need_budget) {
1757                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1758                 if (budget_token < 0) {
1759                         blk_mq_put_driver_tag(rq);
1760                         return PREP_DISPATCH_NO_BUDGET;
1761                 }
1762                 blk_mq_set_rq_budget_token(rq, budget_token);
1763         }
1764
1765         if (!blk_mq_get_driver_tag(rq)) {
1766                 /*
1767                  * The initial allocation attempt failed, so we need to
1768                  * rerun the hardware queue when a tag is freed. The
1769                  * waitqueue takes care of that. If the queue is run
1770                  * before we add this entry back on the dispatch list,
1771                  * we'll re-run it below.
1772                  */
1773                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1774                         /*
1775                          * All budgets not got from this function will be put
1776                          * together during handling partial dispatch
1777                          */
1778                         if (need_budget)
1779                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1780                         return PREP_DISPATCH_NO_TAG;
1781                 }
1782         }
1783
1784         return PREP_DISPATCH_OK;
1785 }
1786
1787 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1788 static void blk_mq_release_budgets(struct request_queue *q,
1789                 struct list_head *list)
1790 {
1791         struct request *rq;
1792
1793         list_for_each_entry(rq, list, queuelist) {
1794                 int budget_token = blk_mq_get_rq_budget_token(rq);
1795
1796                 if (budget_token >= 0)
1797                         blk_mq_put_dispatch_budget(q, budget_token);
1798         }
1799 }
1800
1801 /*
1802  * Returns true if we did some work AND can potentially do more.
1803  */
1804 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1805                              unsigned int nr_budgets)
1806 {
1807         enum prep_dispatch prep;
1808         struct request_queue *q = hctx->queue;
1809         struct request *rq, *nxt;
1810         int errors, queued;
1811         blk_status_t ret = BLK_STS_OK;
1812         LIST_HEAD(zone_list);
1813         bool needs_resource = false;
1814
1815         if (list_empty(list))
1816                 return false;
1817
1818         /*
1819          * Now process all the entries, sending them to the driver.
1820          */
1821         errors = queued = 0;
1822         do {
1823                 struct blk_mq_queue_data bd;
1824
1825                 rq = list_first_entry(list, struct request, queuelist);
1826
1827                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1828                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1829                 if (prep != PREP_DISPATCH_OK)
1830                         break;
1831
1832                 list_del_init(&rq->queuelist);
1833
1834                 bd.rq = rq;
1835
1836                 /*
1837                  * Flag last if we have no more requests, or if we have more
1838                  * but can't assign a driver tag to it.
1839                  */
1840                 if (list_empty(list))
1841                         bd.last = true;
1842                 else {
1843                         nxt = list_first_entry(list, struct request, queuelist);
1844                         bd.last = !blk_mq_get_driver_tag(nxt);
1845                 }
1846
1847                 /*
1848                  * once the request is queued to lld, no need to cover the
1849                  * budget any more
1850                  */
1851                 if (nr_budgets)
1852                         nr_budgets--;
1853                 ret = q->mq_ops->queue_rq(hctx, &bd);
1854                 switch (ret) {
1855                 case BLK_STS_OK:
1856                         queued++;
1857                         break;
1858                 case BLK_STS_RESOURCE:
1859                         needs_resource = true;
1860                         fallthrough;
1861                 case BLK_STS_DEV_RESOURCE:
1862                         blk_mq_handle_dev_resource(rq, list);
1863                         goto out;
1864                 case BLK_STS_ZONE_RESOURCE:
1865                         /*
1866                          * Move the request to zone_list and keep going through
1867                          * the dispatch list to find more requests the drive can
1868                          * accept.
1869                          */
1870                         blk_mq_handle_zone_resource(rq, &zone_list);
1871                         needs_resource = true;
1872                         break;
1873                 default:
1874                         errors++;
1875                         blk_mq_end_request(rq, ret);
1876                 }
1877         } while (!list_empty(list));
1878 out:
1879         if (!list_empty(&zone_list))
1880                 list_splice_tail_init(&zone_list, list);
1881
1882         /* If we didn't flush the entire list, we could have told the driver
1883          * there was more coming, but that turned out to be a lie.
1884          */
1885         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1886                 q->mq_ops->commit_rqs(hctx);
1887         /*
1888          * Any items that need requeuing? Stuff them into hctx->dispatch,
1889          * that is where we will continue on next queue run.
1890          */
1891         if (!list_empty(list)) {
1892                 bool needs_restart;
1893                 /* For non-shared tags, the RESTART check will suffice */
1894                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1895                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1896
1897                 if (nr_budgets)
1898                         blk_mq_release_budgets(q, list);
1899
1900                 spin_lock(&hctx->lock);
1901                 list_splice_tail_init(list, &hctx->dispatch);
1902                 spin_unlock(&hctx->lock);
1903
1904                 /*
1905                  * Order adding requests to hctx->dispatch and checking
1906                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1907                  * in blk_mq_sched_restart(). Avoid restart code path to
1908                  * miss the new added requests to hctx->dispatch, meantime
1909                  * SCHED_RESTART is observed here.
1910                  */
1911                 smp_mb();
1912
1913                 /*
1914                  * If SCHED_RESTART was set by the caller of this function and
1915                  * it is no longer set that means that it was cleared by another
1916                  * thread and hence that a queue rerun is needed.
1917                  *
1918                  * If 'no_tag' is set, that means that we failed getting
1919                  * a driver tag with an I/O scheduler attached. If our dispatch
1920                  * waitqueue is no longer active, ensure that we run the queue
1921                  * AFTER adding our entries back to the list.
1922                  *
1923                  * If no I/O scheduler has been configured it is possible that
1924                  * the hardware queue got stopped and restarted before requests
1925                  * were pushed back onto the dispatch list. Rerun the queue to
1926                  * avoid starvation. Notes:
1927                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1928                  *   been stopped before rerunning a queue.
1929                  * - Some but not all block drivers stop a queue before
1930                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1931                  *   and dm-rq.
1932                  *
1933                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1934                  * bit is set, run queue after a delay to avoid IO stalls
1935                  * that could otherwise occur if the queue is idle.  We'll do
1936                  * similar if we couldn't get budget or couldn't lock a zone
1937                  * and SCHED_RESTART is set.
1938                  */
1939                 needs_restart = blk_mq_sched_needs_restart(hctx);
1940                 if (prep == PREP_DISPATCH_NO_BUDGET)
1941                         needs_resource = true;
1942                 if (!needs_restart ||
1943                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1944                         blk_mq_run_hw_queue(hctx, true);
1945                 else if (needs_restart && needs_resource)
1946                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1947
1948                 blk_mq_update_dispatch_busy(hctx, true);
1949                 return false;
1950         } else
1951                 blk_mq_update_dispatch_busy(hctx, false);
1952
1953         return (queued + errors) != 0;
1954 }
1955
1956 /**
1957  * __blk_mq_run_hw_queue - Run a hardware queue.
1958  * @hctx: Pointer to the hardware queue to run.
1959  *
1960  * Send pending requests to the hardware.
1961  */
1962 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1963 {
1964         /*
1965          * We can't run the queue inline with ints disabled. Ensure that
1966          * we catch bad users of this early.
1967          */
1968         WARN_ON_ONCE(in_interrupt());
1969
1970         blk_mq_run_dispatch_ops(hctx->queue,
1971                         blk_mq_sched_dispatch_requests(hctx));
1972 }
1973
1974 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1975 {
1976         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1977
1978         if (cpu >= nr_cpu_ids)
1979                 cpu = cpumask_first(hctx->cpumask);
1980         return cpu;
1981 }
1982
1983 /*
1984  * It'd be great if the workqueue API had a way to pass
1985  * in a mask and had some smarts for more clever placement.
1986  * For now we just round-robin here, switching for every
1987  * BLK_MQ_CPU_WORK_BATCH queued items.
1988  */
1989 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1990 {
1991         bool tried = false;
1992         int next_cpu = hctx->next_cpu;
1993
1994         if (hctx->queue->nr_hw_queues == 1)
1995                 return WORK_CPU_UNBOUND;
1996
1997         if (--hctx->next_cpu_batch <= 0) {
1998 select_cpu:
1999                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2000                                 cpu_online_mask);
2001                 if (next_cpu >= nr_cpu_ids)
2002                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2003                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2004         }
2005
2006         /*
2007          * Do unbound schedule if we can't find a online CPU for this hctx,
2008          * and it should only happen in the path of handling CPU DEAD.
2009          */
2010         if (!cpu_online(next_cpu)) {
2011                 if (!tried) {
2012                         tried = true;
2013                         goto select_cpu;
2014                 }
2015
2016                 /*
2017                  * Make sure to re-select CPU next time once after CPUs
2018                  * in hctx->cpumask become online again.
2019                  */
2020                 hctx->next_cpu = next_cpu;
2021                 hctx->next_cpu_batch = 1;
2022                 return WORK_CPU_UNBOUND;
2023         }
2024
2025         hctx->next_cpu = next_cpu;
2026         return next_cpu;
2027 }
2028
2029 /**
2030  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2031  * @hctx: Pointer to the hardware queue to run.
2032  * @async: If we want to run the queue asynchronously.
2033  * @msecs: Milliseconds of delay to wait before running the queue.
2034  *
2035  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2036  * with a delay of @msecs.
2037  */
2038 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2039                                         unsigned long msecs)
2040 {
2041         if (unlikely(blk_mq_hctx_stopped(hctx)))
2042                 return;
2043
2044         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2045                 int cpu = get_cpu();
2046                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2047                         __blk_mq_run_hw_queue(hctx);
2048                         put_cpu();
2049                         return;
2050                 }
2051
2052                 put_cpu();
2053         }
2054
2055         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2056                                     msecs_to_jiffies(msecs));
2057 }
2058
2059 /**
2060  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2061  * @hctx: Pointer to the hardware queue to run.
2062  * @msecs: Milliseconds of delay to wait before running the queue.
2063  *
2064  * Run a hardware queue asynchronously with a delay of @msecs.
2065  */
2066 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2067 {
2068         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2069 }
2070 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2071
2072 /**
2073  * blk_mq_run_hw_queue - Start to run a hardware queue.
2074  * @hctx: Pointer to the hardware queue to run.
2075  * @async: If we want to run the queue asynchronously.
2076  *
2077  * Check if the request queue is not in a quiesced state and if there are
2078  * pending requests to be sent. If this is true, run the queue to send requests
2079  * to hardware.
2080  */
2081 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2082 {
2083         bool need_run;
2084
2085         /*
2086          * When queue is quiesced, we may be switching io scheduler, or
2087          * updating nr_hw_queues, or other things, and we can't run queue
2088          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2089          *
2090          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2091          * quiesced.
2092          */
2093         __blk_mq_run_dispatch_ops(hctx->queue, false,
2094                 need_run = !blk_queue_quiesced(hctx->queue) &&
2095                 blk_mq_hctx_has_pending(hctx));
2096
2097         if (need_run)
2098                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2099 }
2100 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2101
2102 /*
2103  * Is the request queue handled by an IO scheduler that does not respect
2104  * hardware queues when dispatching?
2105  */
2106 static bool blk_mq_has_sqsched(struct request_queue *q)
2107 {
2108         struct elevator_queue *e = q->elevator;
2109
2110         if (e && e->type->ops.dispatch_request &&
2111             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2112                 return true;
2113         return false;
2114 }
2115
2116 /*
2117  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2118  * scheduler.
2119  */
2120 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2121 {
2122         struct blk_mq_hw_ctx *hctx;
2123
2124         /*
2125          * If the IO scheduler does not respect hardware queues when
2126          * dispatching, we just don't bother with multiple HW queues and
2127          * dispatch from hctx for the current CPU since running multiple queues
2128          * just causes lock contention inside the scheduler and pointless cache
2129          * bouncing.
2130          */
2131         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2132                                      raw_smp_processor_id());
2133         if (!blk_mq_hctx_stopped(hctx))
2134                 return hctx;
2135         return NULL;
2136 }
2137
2138 /**
2139  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2140  * @q: Pointer to the request queue to run.
2141  * @async: If we want to run the queue asynchronously.
2142  */
2143 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2144 {
2145         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2146         unsigned long i;
2147
2148         sq_hctx = NULL;
2149         if (blk_mq_has_sqsched(q))
2150                 sq_hctx = blk_mq_get_sq_hctx(q);
2151         queue_for_each_hw_ctx(q, hctx, i) {
2152                 if (blk_mq_hctx_stopped(hctx))
2153                         continue;
2154                 /*
2155                  * Dispatch from this hctx either if there's no hctx preferred
2156                  * by IO scheduler or if it has requests that bypass the
2157                  * scheduler.
2158                  */
2159                 if (!sq_hctx || sq_hctx == hctx ||
2160                     !list_empty_careful(&hctx->dispatch))
2161                         blk_mq_run_hw_queue(hctx, async);
2162         }
2163 }
2164 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2165
2166 /**
2167  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2168  * @q: Pointer to the request queue to run.
2169  * @msecs: Milliseconds of delay to wait before running the queues.
2170  */
2171 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2172 {
2173         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2174         unsigned long i;
2175
2176         sq_hctx = NULL;
2177         if (blk_mq_has_sqsched(q))
2178                 sq_hctx = blk_mq_get_sq_hctx(q);
2179         queue_for_each_hw_ctx(q, hctx, i) {
2180                 if (blk_mq_hctx_stopped(hctx))
2181                         continue;
2182                 /*
2183                  * If there is already a run_work pending, leave the
2184                  * pending delay untouched. Otherwise, a hctx can stall
2185                  * if another hctx is re-delaying the other's work
2186                  * before the work executes.
2187                  */
2188                 if (delayed_work_pending(&hctx->run_work))
2189                         continue;
2190                 /*
2191                  * Dispatch from this hctx either if there's no hctx preferred
2192                  * by IO scheduler or if it has requests that bypass the
2193                  * scheduler.
2194                  */
2195                 if (!sq_hctx || sq_hctx == hctx ||
2196                     !list_empty_careful(&hctx->dispatch))
2197                         blk_mq_delay_run_hw_queue(hctx, msecs);
2198         }
2199 }
2200 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2201
2202 /**
2203  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2204  * @q: request queue.
2205  *
2206  * The caller is responsible for serializing this function against
2207  * blk_mq_{start,stop}_hw_queue().
2208  */
2209 bool blk_mq_queue_stopped(struct request_queue *q)
2210 {
2211         struct blk_mq_hw_ctx *hctx;
2212         unsigned long i;
2213
2214         queue_for_each_hw_ctx(q, hctx, i)
2215                 if (blk_mq_hctx_stopped(hctx))
2216                         return true;
2217
2218         return false;
2219 }
2220 EXPORT_SYMBOL(blk_mq_queue_stopped);
2221
2222 /*
2223  * This function is often used for pausing .queue_rq() by driver when
2224  * there isn't enough resource or some conditions aren't satisfied, and
2225  * BLK_STS_RESOURCE is usually returned.
2226  *
2227  * We do not guarantee that dispatch can be drained or blocked
2228  * after blk_mq_stop_hw_queue() returns. Please use
2229  * blk_mq_quiesce_queue() for that requirement.
2230  */
2231 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2232 {
2233         cancel_delayed_work(&hctx->run_work);
2234
2235         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2236 }
2237 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2238
2239 /*
2240  * This function is often used for pausing .queue_rq() by driver when
2241  * there isn't enough resource or some conditions aren't satisfied, and
2242  * BLK_STS_RESOURCE is usually returned.
2243  *
2244  * We do not guarantee that dispatch can be drained or blocked
2245  * after blk_mq_stop_hw_queues() returns. Please use
2246  * blk_mq_quiesce_queue() for that requirement.
2247  */
2248 void blk_mq_stop_hw_queues(struct request_queue *q)
2249 {
2250         struct blk_mq_hw_ctx *hctx;
2251         unsigned long i;
2252
2253         queue_for_each_hw_ctx(q, hctx, i)
2254                 blk_mq_stop_hw_queue(hctx);
2255 }
2256 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2257
2258 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2259 {
2260         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2261
2262         blk_mq_run_hw_queue(hctx, false);
2263 }
2264 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2265
2266 void blk_mq_start_hw_queues(struct request_queue *q)
2267 {
2268         struct blk_mq_hw_ctx *hctx;
2269         unsigned long i;
2270
2271         queue_for_each_hw_ctx(q, hctx, i)
2272                 blk_mq_start_hw_queue(hctx);
2273 }
2274 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2275
2276 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2277 {
2278         if (!blk_mq_hctx_stopped(hctx))
2279                 return;
2280
2281         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2282         blk_mq_run_hw_queue(hctx, async);
2283 }
2284 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2285
2286 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2287 {
2288         struct blk_mq_hw_ctx *hctx;
2289         unsigned long i;
2290
2291         queue_for_each_hw_ctx(q, hctx, i)
2292                 blk_mq_start_stopped_hw_queue(hctx, async);
2293 }
2294 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2295
2296 static void blk_mq_run_work_fn(struct work_struct *work)
2297 {
2298         struct blk_mq_hw_ctx *hctx;
2299
2300         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2301
2302         /*
2303          * If we are stopped, don't run the queue.
2304          */
2305         if (blk_mq_hctx_stopped(hctx))
2306                 return;
2307
2308         __blk_mq_run_hw_queue(hctx);
2309 }
2310
2311 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2312                                             struct request *rq,
2313                                             bool at_head)
2314 {
2315         struct blk_mq_ctx *ctx = rq->mq_ctx;
2316         enum hctx_type type = hctx->type;
2317
2318         lockdep_assert_held(&ctx->lock);
2319
2320         trace_block_rq_insert(rq);
2321
2322         if (at_head)
2323                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2324         else
2325                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2326 }
2327
2328 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2329                              bool at_head)
2330 {
2331         struct blk_mq_ctx *ctx = rq->mq_ctx;
2332
2333         lockdep_assert_held(&ctx->lock);
2334
2335         __blk_mq_insert_req_list(hctx, rq, at_head);
2336         blk_mq_hctx_mark_pending(hctx, ctx);
2337 }
2338
2339 /**
2340  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2341  * @rq: Pointer to request to be inserted.
2342  * @at_head: true if the request should be inserted at the head of the list.
2343  * @run_queue: If we should run the hardware queue after inserting the request.
2344  *
2345  * Should only be used carefully, when the caller knows we want to
2346  * bypass a potential IO scheduler on the target device.
2347  */
2348 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2349                                   bool run_queue)
2350 {
2351         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2352
2353         spin_lock(&hctx->lock);
2354         if (at_head)
2355                 list_add(&rq->queuelist, &hctx->dispatch);
2356         else
2357                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2358         spin_unlock(&hctx->lock);
2359
2360         if (run_queue)
2361                 blk_mq_run_hw_queue(hctx, false);
2362 }
2363
2364 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2365                             struct list_head *list)
2366
2367 {
2368         struct request *rq;
2369         enum hctx_type type = hctx->type;
2370
2371         /*
2372          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2373          * offline now
2374          */
2375         list_for_each_entry(rq, list, queuelist) {
2376                 BUG_ON(rq->mq_ctx != ctx);
2377                 trace_block_rq_insert(rq);
2378         }
2379
2380         spin_lock(&ctx->lock);
2381         list_splice_tail_init(list, &ctx->rq_lists[type]);
2382         blk_mq_hctx_mark_pending(hctx, ctx);
2383         spin_unlock(&ctx->lock);
2384 }
2385
2386 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2387                               bool from_schedule)
2388 {
2389         if (hctx->queue->mq_ops->commit_rqs) {
2390                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2391                 hctx->queue->mq_ops->commit_rqs(hctx);
2392         }
2393         *queued = 0;
2394 }
2395
2396 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2397                 unsigned int nr_segs)
2398 {
2399         int err;
2400
2401         if (bio->bi_opf & REQ_RAHEAD)
2402                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2403
2404         rq->__sector = bio->bi_iter.bi_sector;
2405         rq->write_hint = bio->bi_write_hint;
2406         blk_rq_bio_prep(rq, bio, nr_segs);
2407
2408         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2409         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2410         WARN_ON_ONCE(err);
2411
2412         blk_account_io_start(rq);
2413 }
2414
2415 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2416                                             struct request *rq, bool last)
2417 {
2418         struct request_queue *q = rq->q;
2419         struct blk_mq_queue_data bd = {
2420                 .rq = rq,
2421                 .last = last,
2422         };
2423         blk_status_t ret;
2424
2425         /*
2426          * For OK queue, we are done. For error, caller may kill it.
2427          * Any other error (busy), just add it to our list as we
2428          * previously would have done.
2429          */
2430         ret = q->mq_ops->queue_rq(hctx, &bd);
2431         switch (ret) {
2432         case BLK_STS_OK:
2433                 blk_mq_update_dispatch_busy(hctx, false);
2434                 break;
2435         case BLK_STS_RESOURCE:
2436         case BLK_STS_DEV_RESOURCE:
2437                 blk_mq_update_dispatch_busy(hctx, true);
2438                 __blk_mq_requeue_request(rq);
2439                 break;
2440         default:
2441                 blk_mq_update_dispatch_busy(hctx, false);
2442                 break;
2443         }
2444
2445         return ret;
2446 }
2447
2448 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2449                                                 struct request *rq,
2450                                                 bool bypass_insert, bool last)
2451 {
2452         struct request_queue *q = rq->q;
2453         bool run_queue = true;
2454         int budget_token;
2455
2456         /*
2457          * RCU or SRCU read lock is needed before checking quiesced flag.
2458          *
2459          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2460          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2461          * and avoid driver to try to dispatch again.
2462          */
2463         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2464                 run_queue = false;
2465                 bypass_insert = false;
2466                 goto insert;
2467         }
2468
2469         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2470                 goto insert;
2471
2472         budget_token = blk_mq_get_dispatch_budget(q);
2473         if (budget_token < 0)
2474                 goto insert;
2475
2476         blk_mq_set_rq_budget_token(rq, budget_token);
2477
2478         if (!blk_mq_get_driver_tag(rq)) {
2479                 blk_mq_put_dispatch_budget(q, budget_token);
2480                 goto insert;
2481         }
2482
2483         return __blk_mq_issue_directly(hctx, rq, last);
2484 insert:
2485         if (bypass_insert)
2486                 return BLK_STS_RESOURCE;
2487
2488         blk_mq_sched_insert_request(rq, false, run_queue, false);
2489
2490         return BLK_STS_OK;
2491 }
2492
2493 /**
2494  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2495  * @hctx: Pointer of the associated hardware queue.
2496  * @rq: Pointer to request to be sent.
2497  *
2498  * If the device has enough resources to accept a new request now, send the
2499  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2500  * we can try send it another time in the future. Requests inserted at this
2501  * queue have higher priority.
2502  */
2503 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2504                 struct request *rq)
2505 {
2506         blk_status_t ret =
2507                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2508
2509         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2510                 blk_mq_request_bypass_insert(rq, false, true);
2511         else if (ret != BLK_STS_OK)
2512                 blk_mq_end_request(rq, ret);
2513 }
2514
2515 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2516 {
2517         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2518 }
2519
2520 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2521 {
2522         struct blk_mq_hw_ctx *hctx = NULL;
2523         struct request *rq;
2524         int queued = 0;
2525         int errors = 0;
2526
2527         while ((rq = rq_list_pop(&plug->mq_list))) {
2528                 bool last = rq_list_empty(plug->mq_list);
2529                 blk_status_t ret;
2530
2531                 if (hctx != rq->mq_hctx) {
2532                         if (hctx)
2533                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2534                         hctx = rq->mq_hctx;
2535                 }
2536
2537                 ret = blk_mq_request_issue_directly(rq, last);
2538                 switch (ret) {
2539                 case BLK_STS_OK:
2540                         queued++;
2541                         break;
2542                 case BLK_STS_RESOURCE:
2543                 case BLK_STS_DEV_RESOURCE:
2544                         blk_mq_request_bypass_insert(rq, false, last);
2545                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2546                         return;
2547                 default:
2548                         blk_mq_end_request(rq, ret);
2549                         errors++;
2550                         break;
2551                 }
2552         }
2553
2554         /*
2555          * If we didn't flush the entire list, we could have told the driver
2556          * there was more coming, but that turned out to be a lie.
2557          */
2558         if (errors)
2559                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2560 }
2561
2562 static void __blk_mq_flush_plug_list(struct request_queue *q,
2563                                      struct blk_plug *plug)
2564 {
2565         if (blk_queue_quiesced(q))
2566                 return;
2567         q->mq_ops->queue_rqs(&plug->mq_list);
2568 }
2569
2570 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2571 {
2572         struct blk_mq_hw_ctx *this_hctx;
2573         struct blk_mq_ctx *this_ctx;
2574         struct request *rq;
2575         unsigned int depth;
2576         LIST_HEAD(list);
2577
2578         if (rq_list_empty(plug->mq_list))
2579                 return;
2580         plug->rq_count = 0;
2581
2582         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2583                 struct request_queue *q;
2584
2585                 rq = rq_list_peek(&plug->mq_list);
2586                 q = rq->q;
2587
2588                 /*
2589                  * Peek first request and see if we have a ->queue_rqs() hook.
2590                  * If we do, we can dispatch the whole plug list in one go. We
2591                  * already know at this point that all requests belong to the
2592                  * same queue, caller must ensure that's the case.
2593                  *
2594                  * Since we pass off the full list to the driver at this point,
2595                  * we do not increment the active request count for the queue.
2596                  * Bypass shared tags for now because of that.
2597                  */
2598                 if (q->mq_ops->queue_rqs &&
2599                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2600                         blk_mq_run_dispatch_ops(q,
2601                                 __blk_mq_flush_plug_list(q, plug));
2602                         if (rq_list_empty(plug->mq_list))
2603                                 return;
2604                 }
2605
2606                 blk_mq_run_dispatch_ops(q,
2607                                 blk_mq_plug_issue_direct(plug, false));
2608                 if (rq_list_empty(plug->mq_list))
2609                         return;
2610         }
2611
2612         this_hctx = NULL;
2613         this_ctx = NULL;
2614         depth = 0;
2615         do {
2616                 rq = rq_list_pop(&plug->mq_list);
2617
2618                 if (!this_hctx) {
2619                         this_hctx = rq->mq_hctx;
2620                         this_ctx = rq->mq_ctx;
2621                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2622                         trace_block_unplug(this_hctx->queue, depth,
2623                                                 !from_schedule);
2624                         blk_mq_sched_insert_requests(this_hctx, this_ctx,
2625                                                 &list, from_schedule);
2626                         depth = 0;
2627                         this_hctx = rq->mq_hctx;
2628                         this_ctx = rq->mq_ctx;
2629
2630                 }
2631
2632                 list_add(&rq->queuelist, &list);
2633                 depth++;
2634         } while (!rq_list_empty(plug->mq_list));
2635
2636         if (!list_empty(&list)) {
2637                 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2638                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2639                                                 from_schedule);
2640         }
2641 }
2642
2643 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2644                 struct list_head *list)
2645 {
2646         int queued = 0;
2647         int errors = 0;
2648
2649         while (!list_empty(list)) {
2650                 blk_status_t ret;
2651                 struct request *rq = list_first_entry(list, struct request,
2652                                 queuelist);
2653
2654                 list_del_init(&rq->queuelist);
2655                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2656                 if (ret != BLK_STS_OK) {
2657                         if (ret == BLK_STS_RESOURCE ||
2658                                         ret == BLK_STS_DEV_RESOURCE) {
2659                                 blk_mq_request_bypass_insert(rq, false,
2660                                                         list_empty(list));
2661                                 break;
2662                         }
2663                         blk_mq_end_request(rq, ret);
2664                         errors++;
2665                 } else
2666                         queued++;
2667         }
2668
2669         /*
2670          * If we didn't flush the entire list, we could have told
2671          * the driver there was more coming, but that turned out to
2672          * be a lie.
2673          */
2674         if ((!list_empty(list) || errors) &&
2675              hctx->queue->mq_ops->commit_rqs && queued)
2676                 hctx->queue->mq_ops->commit_rqs(hctx);
2677 }
2678
2679 /*
2680  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2681  * queues. This is important for md arrays to benefit from merging
2682  * requests.
2683  */
2684 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2685 {
2686         if (plug->multiple_queues)
2687                 return BLK_MAX_REQUEST_COUNT * 2;
2688         return BLK_MAX_REQUEST_COUNT;
2689 }
2690
2691 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2692 {
2693         struct request *last = rq_list_peek(&plug->mq_list);
2694
2695         if (!plug->rq_count) {
2696                 trace_block_plug(rq->q);
2697         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2698                    (!blk_queue_nomerges(rq->q) &&
2699                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2700                 blk_mq_flush_plug_list(plug, false);
2701                 trace_block_plug(rq->q);
2702         }
2703
2704         if (!plug->multiple_queues && last && last->q != rq->q)
2705                 plug->multiple_queues = true;
2706         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2707                 plug->has_elevator = true;
2708         rq->rq_next = NULL;
2709         rq_list_add(&plug->mq_list, rq);
2710         plug->rq_count++;
2711 }
2712
2713 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2714                                      struct bio *bio, unsigned int nr_segs)
2715 {
2716         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2717                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2718                         return true;
2719                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2720                         return true;
2721         }
2722         return false;
2723 }
2724
2725 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2726                                                struct blk_plug *plug,
2727                                                struct bio *bio)
2728 {
2729         struct blk_mq_alloc_data data = {
2730                 .q              = q,
2731                 .nr_tags        = 1,
2732                 .cmd_flags      = bio->bi_opf,
2733         };
2734         struct request *rq;
2735
2736         if (unlikely(bio_queue_enter(bio)))
2737                 return NULL;
2738
2739         if (plug) {
2740                 data.nr_tags = plug->nr_ios;
2741                 plug->nr_ios = 1;
2742                 data.cached_rq = &plug->cached_rq;
2743         }
2744
2745         rq = __blk_mq_alloc_requests(&data);
2746         if (rq)
2747                 return rq;
2748         rq_qos_cleanup(q, bio);
2749         if (bio->bi_opf & REQ_NOWAIT)
2750                 bio_wouldblock_error(bio);
2751         blk_queue_exit(q);
2752         return NULL;
2753 }
2754
2755 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2756                 struct blk_plug *plug, struct bio *bio)
2757 {
2758         struct request *rq;
2759
2760         if (!plug)
2761                 return NULL;
2762         rq = rq_list_peek(&plug->cached_rq);
2763         if (!rq || rq->q != q)
2764                 return NULL;
2765
2766         if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2767                 return NULL;
2768         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2769                 return NULL;
2770
2771         rq->cmd_flags = bio->bi_opf;
2772         plug->cached_rq = rq_list_next(rq);
2773         INIT_LIST_HEAD(&rq->queuelist);
2774         return rq;
2775 }
2776
2777 /**
2778  * blk_mq_submit_bio - Create and send a request to block device.
2779  * @bio: Bio pointer.
2780  *
2781  * Builds up a request structure from @q and @bio and send to the device. The
2782  * request may not be queued directly to hardware if:
2783  * * This request can be merged with another one
2784  * * We want to place request at plug queue for possible future merging
2785  * * There is an IO scheduler active at this queue
2786  *
2787  * It will not queue the request if there is an error with the bio, or at the
2788  * request creation.
2789  */
2790 void blk_mq_submit_bio(struct bio *bio)
2791 {
2792         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2793         struct blk_plug *plug = blk_mq_plug(q, bio);
2794         const int is_sync = op_is_sync(bio->bi_opf);
2795         struct request *rq;
2796         unsigned int nr_segs = 1;
2797         blk_status_t ret;
2798
2799         blk_queue_bounce(q, &bio);
2800         if (blk_may_split(q, bio))
2801                 __blk_queue_split(q, &bio, &nr_segs);
2802
2803         if (!bio_integrity_prep(bio))
2804                 return;
2805
2806         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2807                 return;
2808
2809         rq_qos_throttle(q, bio);
2810
2811         rq = blk_mq_get_cached_request(q, plug, bio);
2812         if (!rq) {
2813                 rq = blk_mq_get_new_requests(q, plug, bio);
2814                 if (unlikely(!rq))
2815                         return;
2816         }
2817
2818         trace_block_getrq(bio);
2819
2820         rq_qos_track(q, rq, bio);
2821
2822         blk_mq_bio_to_request(rq, bio, nr_segs);
2823
2824         ret = blk_crypto_init_request(rq);
2825         if (ret != BLK_STS_OK) {
2826                 bio->bi_status = ret;
2827                 bio_endio(bio);
2828                 blk_mq_free_request(rq);
2829                 return;
2830         }
2831
2832         if (op_is_flush(bio->bi_opf)) {
2833                 blk_insert_flush(rq);
2834                 return;
2835         }
2836
2837         if (plug)
2838                 blk_add_rq_to_plug(plug, rq);
2839         else if ((rq->rq_flags & RQF_ELV) ||
2840                  (rq->mq_hctx->dispatch_busy &&
2841                   (q->nr_hw_queues == 1 || !is_sync)))
2842                 blk_mq_sched_insert_request(rq, false, true, true);
2843         else
2844                 blk_mq_run_dispatch_ops(rq->q,
2845                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2846 }
2847
2848 #ifdef CONFIG_BLK_MQ_STACKING
2849 /**
2850  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2851  * @rq: the request being queued
2852  */
2853 blk_status_t blk_insert_cloned_request(struct request *rq)
2854 {
2855         struct request_queue *q = rq->q;
2856         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2857         blk_status_t ret;
2858
2859         if (blk_rq_sectors(rq) > max_sectors) {
2860                 /*
2861                  * SCSI device does not have a good way to return if
2862                  * Write Same/Zero is actually supported. If a device rejects
2863                  * a non-read/write command (discard, write same,etc.) the
2864                  * low-level device driver will set the relevant queue limit to
2865                  * 0 to prevent blk-lib from issuing more of the offending
2866                  * operations. Commands queued prior to the queue limit being
2867                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2868                  * errors being propagated to upper layers.
2869                  */
2870                 if (max_sectors == 0)
2871                         return BLK_STS_NOTSUPP;
2872
2873                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2874                         __func__, blk_rq_sectors(rq), max_sectors);
2875                 return BLK_STS_IOERR;
2876         }
2877
2878         /*
2879          * The queue settings related to segment counting may differ from the
2880          * original queue.
2881          */
2882         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2883         if (rq->nr_phys_segments > queue_max_segments(q)) {
2884                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2885                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2886                 return BLK_STS_IOERR;
2887         }
2888
2889         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2890                 return BLK_STS_IOERR;
2891
2892         if (blk_crypto_insert_cloned_request(rq))
2893                 return BLK_STS_IOERR;
2894
2895         blk_account_io_start(rq);
2896
2897         /*
2898          * Since we have a scheduler attached on the top device,
2899          * bypass a potential scheduler on the bottom device for
2900          * insert.
2901          */
2902         blk_mq_run_dispatch_ops(q,
2903                         ret = blk_mq_request_issue_directly(rq, true));
2904         if (ret)
2905                 blk_account_io_done(rq, ktime_get_ns());
2906         return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2909
2910 /**
2911  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2912  * @rq: the clone request to be cleaned up
2913  *
2914  * Description:
2915  *     Free all bios in @rq for a cloned request.
2916  */
2917 void blk_rq_unprep_clone(struct request *rq)
2918 {
2919         struct bio *bio;
2920
2921         while ((bio = rq->bio) != NULL) {
2922                 rq->bio = bio->bi_next;
2923
2924                 bio_put(bio);
2925         }
2926 }
2927 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2928
2929 /**
2930  * blk_rq_prep_clone - Helper function to setup clone request
2931  * @rq: the request to be setup
2932  * @rq_src: original request to be cloned
2933  * @bs: bio_set that bios for clone are allocated from
2934  * @gfp_mask: memory allocation mask for bio
2935  * @bio_ctr: setup function to be called for each clone bio.
2936  *           Returns %0 for success, non %0 for failure.
2937  * @data: private data to be passed to @bio_ctr
2938  *
2939  * Description:
2940  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2941  *     Also, pages which the original bios are pointing to are not copied
2942  *     and the cloned bios just point same pages.
2943  *     So cloned bios must be completed before original bios, which means
2944  *     the caller must complete @rq before @rq_src.
2945  */
2946 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2947                       struct bio_set *bs, gfp_t gfp_mask,
2948                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2949                       void *data)
2950 {
2951         struct bio *bio, *bio_src;
2952
2953         if (!bs)
2954                 bs = &fs_bio_set;
2955
2956         __rq_for_each_bio(bio_src, rq_src) {
2957                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2958                                       bs);
2959                 if (!bio)
2960                         goto free_and_out;
2961
2962                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2963                         goto free_and_out;
2964
2965                 if (rq->bio) {
2966                         rq->biotail->bi_next = bio;
2967                         rq->biotail = bio;
2968                 } else {
2969                         rq->bio = rq->biotail = bio;
2970                 }
2971                 bio = NULL;
2972         }
2973
2974         /* Copy attributes of the original request to the clone request. */
2975         rq->__sector = blk_rq_pos(rq_src);
2976         rq->__data_len = blk_rq_bytes(rq_src);
2977         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2978                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2979                 rq->special_vec = rq_src->special_vec;
2980         }
2981         rq->nr_phys_segments = rq_src->nr_phys_segments;
2982         rq->ioprio = rq_src->ioprio;
2983
2984         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2985                 goto free_and_out;
2986
2987         return 0;
2988
2989 free_and_out:
2990         if (bio)
2991                 bio_put(bio);
2992         blk_rq_unprep_clone(rq);
2993
2994         return -ENOMEM;
2995 }
2996 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2997 #endif /* CONFIG_BLK_MQ_STACKING */
2998
2999 /*
3000  * Steal bios from a request and add them to a bio list.
3001  * The request must not have been partially completed before.
3002  */
3003 void blk_steal_bios(struct bio_list *list, struct request *rq)
3004 {
3005         if (rq->bio) {
3006                 if (list->tail)
3007                         list->tail->bi_next = rq->bio;
3008                 else
3009                         list->head = rq->bio;
3010                 list->tail = rq->biotail;
3011
3012                 rq->bio = NULL;
3013                 rq->biotail = NULL;
3014         }
3015
3016         rq->__data_len = 0;
3017 }
3018 EXPORT_SYMBOL_GPL(blk_steal_bios);
3019
3020 static size_t order_to_size(unsigned int order)
3021 {
3022         return (size_t)PAGE_SIZE << order;
3023 }
3024
3025 /* called before freeing request pool in @tags */
3026 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3027                                     struct blk_mq_tags *tags)
3028 {
3029         struct page *page;
3030         unsigned long flags;
3031
3032         /* There is no need to clear a driver tags own mapping */
3033         if (drv_tags == tags)
3034                 return;
3035
3036         list_for_each_entry(page, &tags->page_list, lru) {
3037                 unsigned long start = (unsigned long)page_address(page);
3038                 unsigned long end = start + order_to_size(page->private);
3039                 int i;
3040
3041                 for (i = 0; i < drv_tags->nr_tags; i++) {
3042                         struct request *rq = drv_tags->rqs[i];
3043                         unsigned long rq_addr = (unsigned long)rq;
3044
3045                         if (rq_addr >= start && rq_addr < end) {
3046                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3047                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3048                         }
3049                 }
3050         }
3051
3052         /*
3053          * Wait until all pending iteration is done.
3054          *
3055          * Request reference is cleared and it is guaranteed to be observed
3056          * after the ->lock is released.
3057          */
3058         spin_lock_irqsave(&drv_tags->lock, flags);
3059         spin_unlock_irqrestore(&drv_tags->lock, flags);
3060 }
3061
3062 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3063                      unsigned int hctx_idx)
3064 {
3065         struct blk_mq_tags *drv_tags;
3066         struct page *page;
3067
3068         if (blk_mq_is_shared_tags(set->flags))
3069                 drv_tags = set->shared_tags;
3070         else
3071                 drv_tags = set->tags[hctx_idx];
3072
3073         if (tags->static_rqs && set->ops->exit_request) {
3074                 int i;
3075
3076                 for (i = 0; i < tags->nr_tags; i++) {
3077                         struct request *rq = tags->static_rqs[i];
3078
3079                         if (!rq)
3080                                 continue;
3081                         set->ops->exit_request(set, rq, hctx_idx);
3082                         tags->static_rqs[i] = NULL;
3083                 }
3084         }
3085
3086         blk_mq_clear_rq_mapping(drv_tags, tags);
3087
3088         while (!list_empty(&tags->page_list)) {
3089                 page = list_first_entry(&tags->page_list, struct page, lru);
3090                 list_del_init(&page->lru);
3091                 /*
3092                  * Remove kmemleak object previously allocated in
3093                  * blk_mq_alloc_rqs().
3094                  */
3095                 kmemleak_free(page_address(page));
3096                 __free_pages(page, page->private);
3097         }
3098 }
3099
3100 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3101 {
3102         kfree(tags->rqs);
3103         tags->rqs = NULL;
3104         kfree(tags->static_rqs);
3105         tags->static_rqs = NULL;
3106
3107         blk_mq_free_tags(tags);
3108 }
3109
3110 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3111                 unsigned int hctx_idx)
3112 {
3113         int i;
3114
3115         for (i = 0; i < set->nr_maps; i++) {
3116                 unsigned int start = set->map[i].queue_offset;
3117                 unsigned int end = start + set->map[i].nr_queues;
3118
3119                 if (hctx_idx >= start && hctx_idx < end)
3120                         break;
3121         }
3122
3123         if (i >= set->nr_maps)
3124                 i = HCTX_TYPE_DEFAULT;
3125
3126         return i;
3127 }
3128
3129 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3130                 unsigned int hctx_idx)
3131 {
3132         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3133
3134         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3135 }
3136
3137 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3138                                                unsigned int hctx_idx,
3139                                                unsigned int nr_tags,
3140                                                unsigned int reserved_tags)
3141 {
3142         int node = blk_mq_get_hctx_node(set, hctx_idx);
3143         struct blk_mq_tags *tags;
3144
3145         if (node == NUMA_NO_NODE)
3146                 node = set->numa_node;
3147
3148         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3149                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3150         if (!tags)
3151                 return NULL;
3152
3153         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3154                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3155                                  node);
3156         if (!tags->rqs) {
3157                 blk_mq_free_tags(tags);
3158                 return NULL;
3159         }
3160
3161         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3162                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3163                                         node);
3164         if (!tags->static_rqs) {
3165                 kfree(tags->rqs);
3166                 blk_mq_free_tags(tags);
3167                 return NULL;
3168         }
3169
3170         return tags;
3171 }
3172
3173 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3174                                unsigned int hctx_idx, int node)
3175 {
3176         int ret;
3177
3178         if (set->ops->init_request) {
3179                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3180                 if (ret)
3181                         return ret;
3182         }
3183
3184         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3185         return 0;
3186 }
3187
3188 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3189                             struct blk_mq_tags *tags,
3190                             unsigned int hctx_idx, unsigned int depth)
3191 {
3192         unsigned int i, j, entries_per_page, max_order = 4;
3193         int node = blk_mq_get_hctx_node(set, hctx_idx);
3194         size_t rq_size, left;
3195
3196         if (node == NUMA_NO_NODE)
3197                 node = set->numa_node;
3198
3199         INIT_LIST_HEAD(&tags->page_list);
3200
3201         /*
3202          * rq_size is the size of the request plus driver payload, rounded
3203          * to the cacheline size
3204          */
3205         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3206                                 cache_line_size());
3207         left = rq_size * depth;
3208
3209         for (i = 0; i < depth; ) {
3210                 int this_order = max_order;
3211                 struct page *page;
3212                 int to_do;
3213                 void *p;
3214
3215                 while (this_order && left < order_to_size(this_order - 1))
3216                         this_order--;
3217
3218                 do {
3219                         page = alloc_pages_node(node,
3220                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3221                                 this_order);
3222                         if (page)
3223                                 break;
3224                         if (!this_order--)
3225                                 break;
3226                         if (order_to_size(this_order) < rq_size)
3227                                 break;
3228                 } while (1);
3229
3230                 if (!page)
3231                         goto fail;
3232
3233                 page->private = this_order;
3234                 list_add_tail(&page->lru, &tags->page_list);
3235
3236                 p = page_address(page);
3237                 /*
3238                  * Allow kmemleak to scan these pages as they contain pointers
3239                  * to additional allocations like via ops->init_request().
3240                  */
3241                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3242                 entries_per_page = order_to_size(this_order) / rq_size;
3243                 to_do = min(entries_per_page, depth - i);
3244                 left -= to_do * rq_size;
3245                 for (j = 0; j < to_do; j++) {
3246                         struct request *rq = p;
3247
3248                         tags->static_rqs[i] = rq;
3249                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3250                                 tags->static_rqs[i] = NULL;
3251                                 goto fail;
3252                         }
3253
3254                         p += rq_size;
3255                         i++;
3256                 }
3257         }
3258         return 0;
3259
3260 fail:
3261         blk_mq_free_rqs(set, tags, hctx_idx);
3262         return -ENOMEM;
3263 }
3264
3265 struct rq_iter_data {
3266         struct blk_mq_hw_ctx *hctx;
3267         bool has_rq;
3268 };
3269
3270 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3271 {
3272         struct rq_iter_data *iter_data = data;
3273
3274         if (rq->mq_hctx != iter_data->hctx)
3275                 return true;
3276         iter_data->has_rq = true;
3277         return false;
3278 }
3279
3280 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3281 {
3282         struct blk_mq_tags *tags = hctx->sched_tags ?
3283                         hctx->sched_tags : hctx->tags;
3284         struct rq_iter_data data = {
3285                 .hctx   = hctx,
3286         };
3287
3288         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3289         return data.has_rq;
3290 }
3291
3292 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3293                 struct blk_mq_hw_ctx *hctx)
3294 {
3295         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3296                 return false;
3297         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3298                 return false;
3299         return true;
3300 }
3301
3302 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3303 {
3304         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3305                         struct blk_mq_hw_ctx, cpuhp_online);
3306
3307         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3308             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3309                 return 0;
3310
3311         /*
3312          * Prevent new request from being allocated on the current hctx.
3313          *
3314          * The smp_mb__after_atomic() Pairs with the implied barrier in
3315          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3316          * seen once we return from the tag allocator.
3317          */
3318         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3319         smp_mb__after_atomic();
3320
3321         /*
3322          * Try to grab a reference to the queue and wait for any outstanding
3323          * requests.  If we could not grab a reference the queue has been
3324          * frozen and there are no requests.
3325          */
3326         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3327                 while (blk_mq_hctx_has_requests(hctx))
3328                         msleep(5);
3329                 percpu_ref_put(&hctx->queue->q_usage_counter);
3330         }
3331
3332         return 0;
3333 }
3334
3335 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3336 {
3337         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3338                         struct blk_mq_hw_ctx, cpuhp_online);
3339
3340         if (cpumask_test_cpu(cpu, hctx->cpumask))
3341                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3342         return 0;
3343 }
3344
3345 /*
3346  * 'cpu' is going away. splice any existing rq_list entries from this
3347  * software queue to the hw queue dispatch list, and ensure that it
3348  * gets run.
3349  */
3350 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3351 {
3352         struct blk_mq_hw_ctx *hctx;
3353         struct blk_mq_ctx *ctx;
3354         LIST_HEAD(tmp);
3355         enum hctx_type type;
3356
3357         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3358         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3359                 return 0;
3360
3361         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3362         type = hctx->type;
3363
3364         spin_lock(&ctx->lock);
3365         if (!list_empty(&ctx->rq_lists[type])) {
3366                 list_splice_init(&ctx->rq_lists[type], &tmp);
3367                 blk_mq_hctx_clear_pending(hctx, ctx);
3368         }
3369         spin_unlock(&ctx->lock);
3370
3371         if (list_empty(&tmp))
3372                 return 0;
3373
3374         spin_lock(&hctx->lock);
3375         list_splice_tail_init(&tmp, &hctx->dispatch);
3376         spin_unlock(&hctx->lock);
3377
3378         blk_mq_run_hw_queue(hctx, true);
3379         return 0;
3380 }
3381
3382 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3383 {
3384         if (!(hctx->flags & BLK_MQ_F_STACKING))
3385                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3386                                                     &hctx->cpuhp_online);
3387         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3388                                             &hctx->cpuhp_dead);
3389 }
3390
3391 /*
3392  * Before freeing hw queue, clearing the flush request reference in
3393  * tags->rqs[] for avoiding potential UAF.
3394  */
3395 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3396                 unsigned int queue_depth, struct request *flush_rq)
3397 {
3398         int i;
3399         unsigned long flags;
3400
3401         /* The hw queue may not be mapped yet */
3402         if (!tags)
3403                 return;
3404
3405         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3406
3407         for (i = 0; i < queue_depth; i++)
3408                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3409
3410         /*
3411          * Wait until all pending iteration is done.
3412          *
3413          * Request reference is cleared and it is guaranteed to be observed
3414          * after the ->lock is released.
3415          */
3416         spin_lock_irqsave(&tags->lock, flags);
3417         spin_unlock_irqrestore(&tags->lock, flags);
3418 }
3419
3420 /* hctx->ctxs will be freed in queue's release handler */
3421 static void blk_mq_exit_hctx(struct request_queue *q,
3422                 struct blk_mq_tag_set *set,
3423                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3424 {
3425         struct request *flush_rq = hctx->fq->flush_rq;
3426
3427         if (blk_mq_hw_queue_mapped(hctx))
3428                 blk_mq_tag_idle(hctx);
3429
3430         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3431                         set->queue_depth, flush_rq);
3432         if (set->ops->exit_request)
3433                 set->ops->exit_request(set, flush_rq, hctx_idx);
3434
3435         if (set->ops->exit_hctx)
3436                 set->ops->exit_hctx(hctx, hctx_idx);
3437
3438         blk_mq_remove_cpuhp(hctx);
3439
3440         spin_lock(&q->unused_hctx_lock);
3441         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3442         spin_unlock(&q->unused_hctx_lock);
3443 }
3444
3445 static void blk_mq_exit_hw_queues(struct request_queue *q,
3446                 struct blk_mq_tag_set *set, int nr_queue)
3447 {
3448         struct blk_mq_hw_ctx *hctx;
3449         unsigned long i;
3450
3451         queue_for_each_hw_ctx(q, hctx, i) {
3452                 if (i == nr_queue)
3453                         break;
3454                 blk_mq_debugfs_unregister_hctx(hctx);
3455                 blk_mq_exit_hctx(q, set, hctx, i);
3456         }
3457 }
3458
3459 static int blk_mq_init_hctx(struct request_queue *q,
3460                 struct blk_mq_tag_set *set,
3461                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3462 {
3463         hctx->queue_num = hctx_idx;
3464
3465         if (!(hctx->flags & BLK_MQ_F_STACKING))
3466                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3467                                 &hctx->cpuhp_online);
3468         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3469
3470         hctx->tags = set->tags[hctx_idx];
3471
3472         if (set->ops->init_hctx &&
3473             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3474                 goto unregister_cpu_notifier;
3475
3476         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3477                                 hctx->numa_node))
3478                 goto exit_hctx;
3479         return 0;
3480
3481  exit_hctx:
3482         if (set->ops->exit_hctx)
3483                 set->ops->exit_hctx(hctx, hctx_idx);
3484  unregister_cpu_notifier:
3485         blk_mq_remove_cpuhp(hctx);
3486         return -1;
3487 }
3488
3489 static struct blk_mq_hw_ctx *
3490 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3491                 int node)
3492 {
3493         struct blk_mq_hw_ctx *hctx;
3494         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3495
3496         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3497         if (!hctx)
3498                 goto fail_alloc_hctx;
3499
3500         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3501                 goto free_hctx;
3502
3503         atomic_set(&hctx->nr_active, 0);
3504         if (node == NUMA_NO_NODE)
3505                 node = set->numa_node;
3506         hctx->numa_node = node;
3507
3508         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3509         spin_lock_init(&hctx->lock);
3510         INIT_LIST_HEAD(&hctx->dispatch);
3511         hctx->queue = q;
3512         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3513
3514         INIT_LIST_HEAD(&hctx->hctx_list);
3515
3516         /*
3517          * Allocate space for all possible cpus to avoid allocation at
3518          * runtime
3519          */
3520         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3521                         gfp, node);
3522         if (!hctx->ctxs)
3523                 goto free_cpumask;
3524
3525         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3526                                 gfp, node, false, false))
3527                 goto free_ctxs;
3528         hctx->nr_ctx = 0;
3529
3530         spin_lock_init(&hctx->dispatch_wait_lock);
3531         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3532         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3533
3534         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3535         if (!hctx->fq)
3536                 goto free_bitmap;
3537
3538         blk_mq_hctx_kobj_init(hctx);
3539
3540         return hctx;
3541
3542  free_bitmap:
3543         sbitmap_free(&hctx->ctx_map);
3544  free_ctxs:
3545         kfree(hctx->ctxs);
3546  free_cpumask:
3547         free_cpumask_var(hctx->cpumask);
3548  free_hctx:
3549         kfree(hctx);
3550  fail_alloc_hctx:
3551         return NULL;
3552 }
3553
3554 static void blk_mq_init_cpu_queues(struct request_queue *q,
3555                                    unsigned int nr_hw_queues)
3556 {
3557         struct blk_mq_tag_set *set = q->tag_set;
3558         unsigned int i, j;
3559
3560         for_each_possible_cpu(i) {
3561                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3562                 struct blk_mq_hw_ctx *hctx;
3563                 int k;
3564
3565                 __ctx->cpu = i;
3566                 spin_lock_init(&__ctx->lock);
3567                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3568                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3569
3570                 __ctx->queue = q;
3571
3572                 /*
3573                  * Set local node, IFF we have more than one hw queue. If
3574                  * not, we remain on the home node of the device
3575                  */
3576                 for (j = 0; j < set->nr_maps; j++) {
3577                         hctx = blk_mq_map_queue_type(q, j, i);
3578                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3579                                 hctx->numa_node = cpu_to_node(i);
3580                 }
3581         }
3582 }
3583
3584 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3585                                              unsigned int hctx_idx,
3586                                              unsigned int depth)
3587 {
3588         struct blk_mq_tags *tags;
3589         int ret;
3590
3591         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3592         if (!tags)
3593                 return NULL;
3594
3595         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3596         if (ret) {
3597                 blk_mq_free_rq_map(tags);
3598                 return NULL;
3599         }
3600
3601         return tags;
3602 }
3603
3604 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3605                                        int hctx_idx)
3606 {
3607         if (blk_mq_is_shared_tags(set->flags)) {
3608                 set->tags[hctx_idx] = set->shared_tags;
3609
3610                 return true;
3611         }
3612
3613         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3614                                                        set->queue_depth);
3615
3616         return set->tags[hctx_idx];
3617 }
3618
3619 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3620                              struct blk_mq_tags *tags,
3621                              unsigned int hctx_idx)
3622 {
3623         if (tags) {
3624                 blk_mq_free_rqs(set, tags, hctx_idx);
3625                 blk_mq_free_rq_map(tags);
3626         }
3627 }
3628
3629 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3630                                       unsigned int hctx_idx)
3631 {
3632         if (!blk_mq_is_shared_tags(set->flags))
3633                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3634
3635         set->tags[hctx_idx] = NULL;
3636 }
3637
3638 static void blk_mq_map_swqueue(struct request_queue *q)
3639 {
3640         unsigned int j, hctx_idx;
3641         unsigned long i;
3642         struct blk_mq_hw_ctx *hctx;
3643         struct blk_mq_ctx *ctx;
3644         struct blk_mq_tag_set *set = q->tag_set;
3645
3646         queue_for_each_hw_ctx(q, hctx, i) {
3647                 cpumask_clear(hctx->cpumask);
3648                 hctx->nr_ctx = 0;
3649                 hctx->dispatch_from = NULL;
3650         }
3651
3652         /*
3653          * Map software to hardware queues.
3654          *
3655          * If the cpu isn't present, the cpu is mapped to first hctx.
3656          */
3657         for_each_possible_cpu(i) {
3658
3659                 ctx = per_cpu_ptr(q->queue_ctx, i);
3660                 for (j = 0; j < set->nr_maps; j++) {
3661                         if (!set->map[j].nr_queues) {
3662                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3663                                                 HCTX_TYPE_DEFAULT, i);
3664                                 continue;
3665                         }
3666                         hctx_idx = set->map[j].mq_map[i];
3667                         /* unmapped hw queue can be remapped after CPU topo changed */
3668                         if (!set->tags[hctx_idx] &&
3669                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3670                                 /*
3671                                  * If tags initialization fail for some hctx,
3672                                  * that hctx won't be brought online.  In this
3673                                  * case, remap the current ctx to hctx[0] which
3674                                  * is guaranteed to always have tags allocated
3675                                  */
3676                                 set->map[j].mq_map[i] = 0;
3677                         }
3678
3679                         hctx = blk_mq_map_queue_type(q, j, i);
3680                         ctx->hctxs[j] = hctx;
3681                         /*
3682                          * If the CPU is already set in the mask, then we've
3683                          * mapped this one already. This can happen if
3684                          * devices share queues across queue maps.
3685                          */
3686                         if (cpumask_test_cpu(i, hctx->cpumask))
3687                                 continue;
3688
3689                         cpumask_set_cpu(i, hctx->cpumask);
3690                         hctx->type = j;
3691                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3692                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3693
3694                         /*
3695                          * If the nr_ctx type overflows, we have exceeded the
3696                          * amount of sw queues we can support.
3697                          */
3698                         BUG_ON(!hctx->nr_ctx);
3699                 }
3700
3701                 for (; j < HCTX_MAX_TYPES; j++)
3702                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3703                                         HCTX_TYPE_DEFAULT, i);
3704         }
3705
3706         queue_for_each_hw_ctx(q, hctx, i) {
3707                 /*
3708                  * If no software queues are mapped to this hardware queue,
3709                  * disable it and free the request entries.
3710                  */
3711                 if (!hctx->nr_ctx) {
3712                         /* Never unmap queue 0.  We need it as a
3713                          * fallback in case of a new remap fails
3714                          * allocation
3715                          */
3716                         if (i)
3717                                 __blk_mq_free_map_and_rqs(set, i);
3718
3719                         hctx->tags = NULL;
3720                         continue;
3721                 }
3722
3723                 hctx->tags = set->tags[i];
3724                 WARN_ON(!hctx->tags);
3725
3726                 /*
3727                  * Set the map size to the number of mapped software queues.
3728                  * This is more accurate and more efficient than looping
3729                  * over all possibly mapped software queues.
3730                  */
3731                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3732
3733                 /*
3734                  * Initialize batch roundrobin counts
3735                  */
3736                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3737                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3738         }
3739 }
3740
3741 /*
3742  * Caller needs to ensure that we're either frozen/quiesced, or that
3743  * the queue isn't live yet.
3744  */
3745 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3746 {
3747         struct blk_mq_hw_ctx *hctx;
3748         unsigned long i;
3749
3750         queue_for_each_hw_ctx(q, hctx, i) {
3751                 if (shared) {
3752                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3753                 } else {
3754                         blk_mq_tag_idle(hctx);
3755                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3756                 }
3757         }
3758 }
3759
3760 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3761                                          bool shared)
3762 {
3763         struct request_queue *q;
3764
3765         lockdep_assert_held(&set->tag_list_lock);
3766
3767         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3768                 blk_mq_freeze_queue(q);
3769                 queue_set_hctx_shared(q, shared);
3770                 blk_mq_unfreeze_queue(q);
3771         }
3772 }
3773
3774 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3775 {
3776         struct blk_mq_tag_set *set = q->tag_set;
3777
3778         mutex_lock(&set->tag_list_lock);
3779         list_del(&q->tag_set_list);
3780         if (list_is_singular(&set->tag_list)) {
3781                 /* just transitioned to unshared */
3782                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3783                 /* update existing queue */
3784                 blk_mq_update_tag_set_shared(set, false);
3785         }
3786         mutex_unlock(&set->tag_list_lock);
3787         INIT_LIST_HEAD(&q->tag_set_list);
3788 }
3789
3790 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3791                                      struct request_queue *q)
3792 {
3793         mutex_lock(&set->tag_list_lock);
3794
3795         /*
3796          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3797          */
3798         if (!list_empty(&set->tag_list) &&
3799             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3800                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3801                 /* update existing queue */
3802                 blk_mq_update_tag_set_shared(set, true);
3803         }
3804         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3805                 queue_set_hctx_shared(q, true);
3806         list_add_tail(&q->tag_set_list, &set->tag_list);
3807
3808         mutex_unlock(&set->tag_list_lock);
3809 }
3810
3811 /* All allocations will be freed in release handler of q->mq_kobj */
3812 static int blk_mq_alloc_ctxs(struct request_queue *q)
3813 {
3814         struct blk_mq_ctxs *ctxs;
3815         int cpu;
3816
3817         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3818         if (!ctxs)
3819                 return -ENOMEM;
3820
3821         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3822         if (!ctxs->queue_ctx)
3823                 goto fail;
3824
3825         for_each_possible_cpu(cpu) {
3826                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3827                 ctx->ctxs = ctxs;
3828         }
3829
3830         q->mq_kobj = &ctxs->kobj;
3831         q->queue_ctx = ctxs->queue_ctx;
3832
3833         return 0;
3834  fail:
3835         kfree(ctxs);
3836         return -ENOMEM;
3837 }
3838
3839 /*
3840  * It is the actual release handler for mq, but we do it from
3841  * request queue's release handler for avoiding use-after-free
3842  * and headache because q->mq_kobj shouldn't have been introduced,
3843  * but we can't group ctx/kctx kobj without it.
3844  */
3845 void blk_mq_release(struct request_queue *q)
3846 {
3847         struct blk_mq_hw_ctx *hctx, *next;
3848         unsigned long i;
3849
3850         queue_for_each_hw_ctx(q, hctx, i)
3851                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3852
3853         /* all hctx are in .unused_hctx_list now */
3854         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3855                 list_del_init(&hctx->hctx_list);
3856                 kobject_put(&hctx->kobj);
3857         }
3858
3859         kfree(q->queue_hw_ctx);
3860
3861         /*
3862          * release .mq_kobj and sw queue's kobject now because
3863          * both share lifetime with request queue.
3864          */
3865         blk_mq_sysfs_deinit(q);
3866 }
3867
3868 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3869                 void *queuedata)
3870 {
3871         struct request_queue *q;
3872         int ret;
3873
3874         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3875         if (!q)
3876                 return ERR_PTR(-ENOMEM);
3877         q->queuedata = queuedata;
3878         ret = blk_mq_init_allocated_queue(set, q);
3879         if (ret) {
3880                 blk_cleanup_queue(q);
3881                 return ERR_PTR(ret);
3882         }
3883         return q;
3884 }
3885
3886 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3887 {
3888         return blk_mq_init_queue_data(set, NULL);
3889 }
3890 EXPORT_SYMBOL(blk_mq_init_queue);
3891
3892 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3893                 struct lock_class_key *lkclass)
3894 {
3895         struct request_queue *q;
3896         struct gendisk *disk;
3897
3898         q = blk_mq_init_queue_data(set, queuedata);
3899         if (IS_ERR(q))
3900                 return ERR_CAST(q);
3901
3902         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3903         if (!disk) {
3904                 blk_cleanup_queue(q);
3905                 return ERR_PTR(-ENOMEM);
3906         }
3907         return disk;
3908 }
3909 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3910
3911 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3912                 struct blk_mq_tag_set *set, struct request_queue *q,
3913                 int hctx_idx, int node)
3914 {
3915         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3916
3917         /* reuse dead hctx first */
3918         spin_lock(&q->unused_hctx_lock);
3919         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3920                 if (tmp->numa_node == node) {
3921                         hctx = tmp;
3922                         break;
3923                 }
3924         }
3925         if (hctx)
3926                 list_del_init(&hctx->hctx_list);
3927         spin_unlock(&q->unused_hctx_lock);
3928
3929         if (!hctx)
3930                 hctx = blk_mq_alloc_hctx(q, set, node);
3931         if (!hctx)
3932                 goto fail;
3933
3934         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3935                 goto free_hctx;
3936
3937         return hctx;
3938
3939  free_hctx:
3940         kobject_put(&hctx->kobj);
3941  fail:
3942         return NULL;
3943 }
3944
3945 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3946                                                 struct request_queue *q)
3947 {
3948         int i, j, end;
3949         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3950
3951         if (q->nr_hw_queues < set->nr_hw_queues) {
3952                 struct blk_mq_hw_ctx **new_hctxs;
3953
3954                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3955                                        sizeof(*new_hctxs), GFP_KERNEL,
3956                                        set->numa_node);
3957                 if (!new_hctxs)
3958                         return;
3959                 if (hctxs)
3960                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3961                                sizeof(*hctxs));
3962                 q->queue_hw_ctx = new_hctxs;
3963                 kfree(hctxs);
3964                 hctxs = new_hctxs;
3965         }
3966
3967         /* protect against switching io scheduler  */
3968         mutex_lock(&q->sysfs_lock);
3969         for (i = 0; i < set->nr_hw_queues; i++) {
3970                 int old_node;
3971                 int node = blk_mq_get_hctx_node(set, i);
3972                 struct blk_mq_hw_ctx *old_hctx = hctxs[i];
3973
3974                 if (old_hctx) {
3975                         old_node = old_hctx->numa_node;
3976                         blk_mq_exit_hctx(q, set, old_hctx, i);
3977                 }
3978
3979                 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node);
3980                 if (!hctxs[i]) {
3981                         if (!old_hctx)
3982                                 break;
3983                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3984                                         node, old_node);
3985                         hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i,
3986                                         old_node);
3987                         WARN_ON_ONCE(!hctxs[i]);
3988                 }
3989         }
3990         /*
3991          * Increasing nr_hw_queues fails. Free the newly allocated
3992          * hctxs and keep the previous q->nr_hw_queues.
3993          */
3994         if (i != set->nr_hw_queues) {
3995                 j = q->nr_hw_queues;
3996                 end = i;
3997         } else {
3998                 j = i;
3999                 end = q->nr_hw_queues;
4000                 q->nr_hw_queues = set->nr_hw_queues;
4001         }
4002
4003         for (; j < end; j++) {
4004                 struct blk_mq_hw_ctx *hctx = hctxs[j];
4005
4006                 if (hctx) {
4007                         blk_mq_exit_hctx(q, set, hctx, j);
4008                         hctxs[j] = NULL;
4009                 }
4010         }
4011         mutex_unlock(&q->sysfs_lock);
4012 }
4013
4014 static void blk_mq_update_poll_flag(struct request_queue *q)
4015 {
4016         struct blk_mq_tag_set *set = q->tag_set;
4017
4018         if (set->nr_maps > HCTX_TYPE_POLL &&
4019             set->map[HCTX_TYPE_POLL].nr_queues)
4020                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4021         else
4022                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4023 }
4024
4025 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4026                 struct request_queue *q)
4027 {
4028         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4029                         !!(set->flags & BLK_MQ_F_BLOCKING));
4030
4031         /* mark the queue as mq asap */
4032         q->mq_ops = set->ops;
4033
4034         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4035                                              blk_mq_poll_stats_bkt,
4036                                              BLK_MQ_POLL_STATS_BKTS, q);
4037         if (!q->poll_cb)
4038                 goto err_exit;
4039
4040         if (blk_mq_alloc_ctxs(q))
4041                 goto err_poll;
4042
4043         /* init q->mq_kobj and sw queues' kobjects */
4044         blk_mq_sysfs_init(q);
4045
4046         INIT_LIST_HEAD(&q->unused_hctx_list);
4047         spin_lock_init(&q->unused_hctx_lock);
4048
4049         blk_mq_realloc_hw_ctxs(set, q);
4050         if (!q->nr_hw_queues)
4051                 goto err_hctxs;
4052
4053         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4054         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4055
4056         q->tag_set = set;
4057
4058         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4059         blk_mq_update_poll_flag(q);
4060
4061         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4062         INIT_LIST_HEAD(&q->requeue_list);
4063         spin_lock_init(&q->requeue_lock);
4064
4065         q->nr_requests = set->queue_depth;
4066
4067         /*
4068          * Default to classic polling
4069          */
4070         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4071
4072         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4073         blk_mq_add_queue_tag_set(set, q);
4074         blk_mq_map_swqueue(q);
4075         return 0;
4076
4077 err_hctxs:
4078         kfree(q->queue_hw_ctx);
4079         q->nr_hw_queues = 0;
4080         blk_mq_sysfs_deinit(q);
4081 err_poll:
4082         blk_stat_free_callback(q->poll_cb);
4083         q->poll_cb = NULL;
4084 err_exit:
4085         q->mq_ops = NULL;
4086         return -ENOMEM;
4087 }
4088 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4089
4090 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4091 void blk_mq_exit_queue(struct request_queue *q)
4092 {
4093         struct blk_mq_tag_set *set = q->tag_set;
4094
4095         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4096         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4097         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4098         blk_mq_del_queue_tag_set(q);
4099 }
4100
4101 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4102 {
4103         int i;
4104
4105         if (blk_mq_is_shared_tags(set->flags)) {
4106                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4107                                                 BLK_MQ_NO_HCTX_IDX,
4108                                                 set->queue_depth);
4109                 if (!set->shared_tags)
4110                         return -ENOMEM;
4111         }
4112
4113         for (i = 0; i < set->nr_hw_queues; i++) {
4114                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4115                         goto out_unwind;
4116                 cond_resched();
4117         }
4118
4119         return 0;
4120
4121 out_unwind:
4122         while (--i >= 0)
4123                 __blk_mq_free_map_and_rqs(set, i);
4124
4125         if (blk_mq_is_shared_tags(set->flags)) {
4126                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4127                                         BLK_MQ_NO_HCTX_IDX);
4128         }
4129
4130         return -ENOMEM;
4131 }
4132
4133 /*
4134  * Allocate the request maps associated with this tag_set. Note that this
4135  * may reduce the depth asked for, if memory is tight. set->queue_depth
4136  * will be updated to reflect the allocated depth.
4137  */
4138 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4139 {
4140         unsigned int depth;
4141         int err;
4142
4143         depth = set->queue_depth;
4144         do {
4145                 err = __blk_mq_alloc_rq_maps(set);
4146                 if (!err)
4147                         break;
4148
4149                 set->queue_depth >>= 1;
4150                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4151                         err = -ENOMEM;
4152                         break;
4153                 }
4154         } while (set->queue_depth);
4155
4156         if (!set->queue_depth || err) {
4157                 pr_err("blk-mq: failed to allocate request map\n");
4158                 return -ENOMEM;
4159         }
4160
4161         if (depth != set->queue_depth)
4162                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4163                                                 depth, set->queue_depth);
4164
4165         return 0;
4166 }
4167
4168 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4169 {
4170         /*
4171          * blk_mq_map_queues() and multiple .map_queues() implementations
4172          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4173          * number of hardware queues.
4174          */
4175         if (set->nr_maps == 1)
4176                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4177
4178         if (set->ops->map_queues && !is_kdump_kernel()) {
4179                 int i;
4180
4181                 /*
4182                  * transport .map_queues is usually done in the following
4183                  * way:
4184                  *
4185                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4186                  *      mask = get_cpu_mask(queue)
4187                  *      for_each_cpu(cpu, mask)
4188                  *              set->map[x].mq_map[cpu] = queue;
4189                  * }
4190                  *
4191                  * When we need to remap, the table has to be cleared for
4192                  * killing stale mapping since one CPU may not be mapped
4193                  * to any hw queue.
4194                  */
4195                 for (i = 0; i < set->nr_maps; i++)
4196                         blk_mq_clear_mq_map(&set->map[i]);
4197
4198                 return set->ops->map_queues(set);
4199         } else {
4200                 BUG_ON(set->nr_maps > 1);
4201                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4202         }
4203 }
4204
4205 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4206                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4207 {
4208         struct blk_mq_tags **new_tags;
4209
4210         if (cur_nr_hw_queues >= new_nr_hw_queues)
4211                 return 0;
4212
4213         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4214                                 GFP_KERNEL, set->numa_node);
4215         if (!new_tags)
4216                 return -ENOMEM;
4217
4218         if (set->tags)
4219                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4220                        sizeof(*set->tags));
4221         kfree(set->tags);
4222         set->tags = new_tags;
4223         set->nr_hw_queues = new_nr_hw_queues;
4224
4225         return 0;
4226 }
4227
4228 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4229                                 int new_nr_hw_queues)
4230 {
4231         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4232 }
4233
4234 /*
4235  * Alloc a tag set to be associated with one or more request queues.
4236  * May fail with EINVAL for various error conditions. May adjust the
4237  * requested depth down, if it's too large. In that case, the set
4238  * value will be stored in set->queue_depth.
4239  */
4240 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4241 {
4242         int i, ret;
4243
4244         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4245
4246         if (!set->nr_hw_queues)
4247                 return -EINVAL;
4248         if (!set->queue_depth)
4249                 return -EINVAL;
4250         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4251                 return -EINVAL;
4252
4253         if (!set->ops->queue_rq)
4254                 return -EINVAL;
4255
4256         if (!set->ops->get_budget ^ !set->ops->put_budget)
4257                 return -EINVAL;
4258
4259         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4260                 pr_info("blk-mq: reduced tag depth to %u\n",
4261                         BLK_MQ_MAX_DEPTH);
4262                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4263         }
4264
4265         if (!set->nr_maps)
4266                 set->nr_maps = 1;
4267         else if (set->nr_maps > HCTX_MAX_TYPES)
4268                 return -EINVAL;
4269
4270         /*
4271          * If a crashdump is active, then we are potentially in a very
4272          * memory constrained environment. Limit us to 1 queue and
4273          * 64 tags to prevent using too much memory.
4274          */
4275         if (is_kdump_kernel()) {
4276                 set->nr_hw_queues = 1;
4277                 set->nr_maps = 1;
4278                 set->queue_depth = min(64U, set->queue_depth);
4279         }
4280         /*
4281          * There is no use for more h/w queues than cpus if we just have
4282          * a single map
4283          */
4284         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4285                 set->nr_hw_queues = nr_cpu_ids;
4286
4287         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4288                 return -ENOMEM;
4289
4290         ret = -ENOMEM;
4291         for (i = 0; i < set->nr_maps; i++) {
4292                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4293                                                   sizeof(set->map[i].mq_map[0]),
4294                                                   GFP_KERNEL, set->numa_node);
4295                 if (!set->map[i].mq_map)
4296                         goto out_free_mq_map;
4297                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4298         }
4299
4300         ret = blk_mq_update_queue_map(set);
4301         if (ret)
4302                 goto out_free_mq_map;
4303
4304         ret = blk_mq_alloc_set_map_and_rqs(set);
4305         if (ret)
4306                 goto out_free_mq_map;
4307
4308         mutex_init(&set->tag_list_lock);
4309         INIT_LIST_HEAD(&set->tag_list);
4310
4311         return 0;
4312
4313 out_free_mq_map:
4314         for (i = 0; i < set->nr_maps; i++) {
4315                 kfree(set->map[i].mq_map);
4316                 set->map[i].mq_map = NULL;
4317         }
4318         kfree(set->tags);
4319         set->tags = NULL;
4320         return ret;
4321 }
4322 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4323
4324 /* allocate and initialize a tagset for a simple single-queue device */
4325 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4326                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4327                 unsigned int set_flags)
4328 {
4329         memset(set, 0, sizeof(*set));
4330         set->ops = ops;
4331         set->nr_hw_queues = 1;
4332         set->nr_maps = 1;
4333         set->queue_depth = queue_depth;
4334         set->numa_node = NUMA_NO_NODE;
4335         set->flags = set_flags;
4336         return blk_mq_alloc_tag_set(set);
4337 }
4338 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4339
4340 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4341 {
4342         int i, j;
4343
4344         for (i = 0; i < set->nr_hw_queues; i++)
4345                 __blk_mq_free_map_and_rqs(set, i);
4346
4347         if (blk_mq_is_shared_tags(set->flags)) {
4348                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4349                                         BLK_MQ_NO_HCTX_IDX);
4350         }
4351
4352         for (j = 0; j < set->nr_maps; j++) {
4353                 kfree(set->map[j].mq_map);
4354                 set->map[j].mq_map = NULL;
4355         }
4356
4357         kfree(set->tags);
4358         set->tags = NULL;
4359 }
4360 EXPORT_SYMBOL(blk_mq_free_tag_set);
4361
4362 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4363 {
4364         struct blk_mq_tag_set *set = q->tag_set;
4365         struct blk_mq_hw_ctx *hctx;
4366         int ret;
4367         unsigned long i;
4368
4369         if (!set)
4370                 return -EINVAL;
4371
4372         if (q->nr_requests == nr)
4373                 return 0;
4374
4375         blk_mq_freeze_queue(q);
4376         blk_mq_quiesce_queue(q);
4377
4378         ret = 0;
4379         queue_for_each_hw_ctx(q, hctx, i) {
4380                 if (!hctx->tags)
4381                         continue;
4382                 /*
4383                  * If we're using an MQ scheduler, just update the scheduler
4384                  * queue depth. This is similar to what the old code would do.
4385                  */
4386                 if (hctx->sched_tags) {
4387                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4388                                                       nr, true);
4389                 } else {
4390                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4391                                                       false);
4392                 }
4393                 if (ret)
4394                         break;
4395                 if (q->elevator && q->elevator->type->ops.depth_updated)
4396                         q->elevator->type->ops.depth_updated(hctx);
4397         }
4398         if (!ret) {
4399                 q->nr_requests = nr;
4400                 if (blk_mq_is_shared_tags(set->flags)) {
4401                         if (q->elevator)
4402                                 blk_mq_tag_update_sched_shared_tags(q);
4403                         else
4404                                 blk_mq_tag_resize_shared_tags(set, nr);
4405                 }
4406         }
4407
4408         blk_mq_unquiesce_queue(q);
4409         blk_mq_unfreeze_queue(q);
4410
4411         return ret;
4412 }
4413
4414 /*
4415  * request_queue and elevator_type pair.
4416  * It is just used by __blk_mq_update_nr_hw_queues to cache
4417  * the elevator_type associated with a request_queue.
4418  */
4419 struct blk_mq_qe_pair {
4420         struct list_head node;
4421         struct request_queue *q;
4422         struct elevator_type *type;
4423 };
4424
4425 /*
4426  * Cache the elevator_type in qe pair list and switch the
4427  * io scheduler to 'none'
4428  */
4429 static bool blk_mq_elv_switch_none(struct list_head *head,
4430                 struct request_queue *q)
4431 {
4432         struct blk_mq_qe_pair *qe;
4433
4434         if (!q->elevator)
4435                 return true;
4436
4437         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4438         if (!qe)
4439                 return false;
4440
4441         INIT_LIST_HEAD(&qe->node);
4442         qe->q = q;
4443         qe->type = q->elevator->type;
4444         list_add(&qe->node, head);
4445
4446         mutex_lock(&q->sysfs_lock);
4447         /*
4448          * After elevator_switch_mq, the previous elevator_queue will be
4449          * released by elevator_release. The reference of the io scheduler
4450          * module get by elevator_get will also be put. So we need to get
4451          * a reference of the io scheduler module here to prevent it to be
4452          * removed.
4453          */
4454         __module_get(qe->type->elevator_owner);
4455         elevator_switch_mq(q, NULL);
4456         mutex_unlock(&q->sysfs_lock);
4457
4458         return true;
4459 }
4460
4461 static void blk_mq_elv_switch_back(struct list_head *head,
4462                 struct request_queue *q)
4463 {
4464         struct blk_mq_qe_pair *qe;
4465         struct elevator_type *t = NULL;
4466
4467         list_for_each_entry(qe, head, node)
4468                 if (qe->q == q) {
4469                         t = qe->type;
4470                         break;
4471                 }
4472
4473         if (!t)
4474                 return;
4475
4476         list_del(&qe->node);
4477         kfree(qe);
4478
4479         mutex_lock(&q->sysfs_lock);
4480         elevator_switch_mq(q, t);
4481         mutex_unlock(&q->sysfs_lock);
4482 }
4483
4484 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4485                                                         int nr_hw_queues)
4486 {
4487         struct request_queue *q;
4488         LIST_HEAD(head);
4489         int prev_nr_hw_queues;
4490
4491         lockdep_assert_held(&set->tag_list_lock);
4492
4493         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4494                 nr_hw_queues = nr_cpu_ids;
4495         if (nr_hw_queues < 1)
4496                 return;
4497         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4498                 return;
4499
4500         list_for_each_entry(q, &set->tag_list, tag_set_list)
4501                 blk_mq_freeze_queue(q);
4502         /*
4503          * Switch IO scheduler to 'none', cleaning up the data associated
4504          * with the previous scheduler. We will switch back once we are done
4505          * updating the new sw to hw queue mappings.
4506          */
4507         list_for_each_entry(q, &set->tag_list, tag_set_list)
4508                 if (!blk_mq_elv_switch_none(&head, q))
4509                         goto switch_back;
4510
4511         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4512                 blk_mq_debugfs_unregister_hctxs(q);
4513                 blk_mq_sysfs_unregister(q);
4514         }
4515
4516         prev_nr_hw_queues = set->nr_hw_queues;
4517         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4518             0)
4519                 goto reregister;
4520
4521         set->nr_hw_queues = nr_hw_queues;
4522 fallback:
4523         blk_mq_update_queue_map(set);
4524         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4525                 blk_mq_realloc_hw_ctxs(set, q);
4526                 blk_mq_update_poll_flag(q);
4527                 if (q->nr_hw_queues != set->nr_hw_queues) {
4528                         int i = prev_nr_hw_queues;
4529
4530                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4531                                         nr_hw_queues, prev_nr_hw_queues);
4532                         for (; i < set->nr_hw_queues; i++)
4533                                 __blk_mq_free_map_and_rqs(set, i);
4534
4535                         set->nr_hw_queues = prev_nr_hw_queues;
4536                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4537                         goto fallback;
4538                 }
4539                 blk_mq_map_swqueue(q);
4540         }
4541
4542 reregister:
4543         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4544                 blk_mq_sysfs_register(q);
4545                 blk_mq_debugfs_register_hctxs(q);
4546         }
4547
4548 switch_back:
4549         list_for_each_entry(q, &set->tag_list, tag_set_list)
4550                 blk_mq_elv_switch_back(&head, q);
4551
4552         list_for_each_entry(q, &set->tag_list, tag_set_list)
4553                 blk_mq_unfreeze_queue(q);
4554 }
4555
4556 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4557 {
4558         mutex_lock(&set->tag_list_lock);
4559         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4560         mutex_unlock(&set->tag_list_lock);
4561 }
4562 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4563
4564 /* Enable polling stats and return whether they were already enabled. */
4565 static bool blk_poll_stats_enable(struct request_queue *q)
4566 {
4567         if (q->poll_stat)
4568                 return true;
4569
4570         return blk_stats_alloc_enable(q);
4571 }
4572
4573 static void blk_mq_poll_stats_start(struct request_queue *q)
4574 {
4575         /*
4576          * We don't arm the callback if polling stats are not enabled or the
4577          * callback is already active.
4578          */
4579         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4580                 return;
4581
4582         blk_stat_activate_msecs(q->poll_cb, 100);
4583 }
4584
4585 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4586 {
4587         struct request_queue *q = cb->data;
4588         int bucket;
4589
4590         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4591                 if (cb->stat[bucket].nr_samples)
4592                         q->poll_stat[bucket] = cb->stat[bucket];
4593         }
4594 }
4595
4596 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4597                                        struct request *rq)
4598 {
4599         unsigned long ret = 0;
4600         int bucket;
4601
4602         /*
4603          * If stats collection isn't on, don't sleep but turn it on for
4604          * future users
4605          */
4606         if (!blk_poll_stats_enable(q))
4607                 return 0;
4608
4609         /*
4610          * As an optimistic guess, use half of the mean service time
4611          * for this type of request. We can (and should) make this smarter.
4612          * For instance, if the completion latencies are tight, we can
4613          * get closer than just half the mean. This is especially
4614          * important on devices where the completion latencies are longer
4615          * than ~10 usec. We do use the stats for the relevant IO size
4616          * if available which does lead to better estimates.
4617          */
4618         bucket = blk_mq_poll_stats_bkt(rq);
4619         if (bucket < 0)
4620                 return ret;
4621
4622         if (q->poll_stat[bucket].nr_samples)
4623                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4624
4625         return ret;
4626 }
4627
4628 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4629 {
4630         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4631         struct request *rq = blk_qc_to_rq(hctx, qc);
4632         struct hrtimer_sleeper hs;
4633         enum hrtimer_mode mode;
4634         unsigned int nsecs;
4635         ktime_t kt;
4636
4637         /*
4638          * If a request has completed on queue that uses an I/O scheduler, we
4639          * won't get back a request from blk_qc_to_rq.
4640          */
4641         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4642                 return false;
4643
4644         /*
4645          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4646          *
4647          *  0:  use half of prev avg
4648          * >0:  use this specific value
4649          */
4650         if (q->poll_nsec > 0)
4651                 nsecs = q->poll_nsec;
4652         else
4653                 nsecs = blk_mq_poll_nsecs(q, rq);
4654
4655         if (!nsecs)
4656                 return false;
4657
4658         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4659
4660         /*
4661          * This will be replaced with the stats tracking code, using
4662          * 'avg_completion_time / 2' as the pre-sleep target.
4663          */
4664         kt = nsecs;
4665
4666         mode = HRTIMER_MODE_REL;
4667         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4668         hrtimer_set_expires(&hs.timer, kt);
4669
4670         do {
4671                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4672                         break;
4673                 set_current_state(TASK_UNINTERRUPTIBLE);
4674                 hrtimer_sleeper_start_expires(&hs, mode);
4675                 if (hs.task)
4676                         io_schedule();
4677                 hrtimer_cancel(&hs.timer);
4678                 mode = HRTIMER_MODE_ABS;
4679         } while (hs.task && !signal_pending(current));
4680
4681         __set_current_state(TASK_RUNNING);
4682         destroy_hrtimer_on_stack(&hs.timer);
4683
4684         /*
4685          * If we sleep, have the caller restart the poll loop to reset the
4686          * state.  Like for the other success return cases, the caller is
4687          * responsible for checking if the IO completed.  If the IO isn't
4688          * complete, we'll get called again and will go straight to the busy
4689          * poll loop.
4690          */
4691         return true;
4692 }
4693
4694 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4695                                struct io_comp_batch *iob, unsigned int flags)
4696 {
4697         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4698         long state = get_current_state();
4699         int ret;
4700
4701         do {
4702                 ret = q->mq_ops->poll(hctx, iob);
4703                 if (ret > 0) {
4704                         __set_current_state(TASK_RUNNING);
4705                         return ret;
4706                 }
4707
4708                 if (signal_pending_state(state, current))
4709                         __set_current_state(TASK_RUNNING);
4710                 if (task_is_running(current))
4711                         return 1;
4712
4713                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4714                         break;
4715                 cpu_relax();
4716         } while (!need_resched());
4717
4718         __set_current_state(TASK_RUNNING);
4719         return 0;
4720 }
4721
4722 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4723                 unsigned int flags)
4724 {
4725         if (!(flags & BLK_POLL_NOSLEEP) &&
4726             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4727                 if (blk_mq_poll_hybrid(q, cookie))
4728                         return 1;
4729         }
4730         return blk_mq_poll_classic(q, cookie, iob, flags);
4731 }
4732
4733 unsigned int blk_mq_rq_cpu(struct request *rq)
4734 {
4735         return rq->mq_ctx->cpu;
4736 }
4737 EXPORT_SYMBOL(blk_mq_rq_cpu);
4738
4739 void blk_mq_cancel_work_sync(struct request_queue *q)
4740 {
4741         if (queue_is_mq(q)) {
4742                 struct blk_mq_hw_ctx *hctx;
4743                 unsigned long i;
4744
4745                 cancel_delayed_work_sync(&q->requeue_work);
4746
4747                 queue_for_each_hw_ctx(q, hctx, i)
4748                         cancel_delayed_work_sync(&hctx->run_work);
4749         }
4750 }
4751
4752 static int __init blk_mq_init(void)
4753 {
4754         int i;
4755
4756         for_each_possible_cpu(i)
4757                 init_llist_head(&per_cpu(blk_cpu_done, i));
4758         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4759
4760         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4761                                   "block/softirq:dead", NULL,
4762                                   blk_softirq_cpu_dead);
4763         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4764                                 blk_mq_hctx_notify_dead);
4765         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4766                                 blk_mq_hctx_notify_online,
4767                                 blk_mq_hctx_notify_offline);
4768         return 0;
4769 }
4770 subsys_initcall(blk_mq_init);