blk-mq: don't schedule block kworker on isolated CPUs
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!mi->part->bd_partno || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = blk_time_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334         if (blk_mq_need_time_stamp(rq))
335                 rq->start_time_ns = blk_time_get_ns();
336         else
337                 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340         if (blk_queue_rq_alloc_time(rq->q))
341                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342         else
343                 rq->alloc_time_ns = 0;
344 #endif
345 }
346
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348                 struct blk_mq_tags *tags, unsigned int tag)
349 {
350         struct blk_mq_ctx *ctx = data->ctx;
351         struct blk_mq_hw_ctx *hctx = data->hctx;
352         struct request_queue *q = data->q;
353         struct request *rq = tags->static_rqs[tag];
354
355         rq->q = q;
356         rq->mq_ctx = ctx;
357         rq->mq_hctx = hctx;
358         rq->cmd_flags = data->cmd_flags;
359
360         if (data->flags & BLK_MQ_REQ_PM)
361                 data->rq_flags |= RQF_PM;
362         if (blk_queue_io_stat(q))
363                 data->rq_flags |= RQF_IO_STAT;
364         rq->rq_flags = data->rq_flags;
365
366         if (data->rq_flags & RQF_SCHED_TAGS) {
367                 rq->tag = BLK_MQ_NO_TAG;
368                 rq->internal_tag = tag;
369         } else {
370                 rq->tag = tag;
371                 rq->internal_tag = BLK_MQ_NO_TAG;
372         }
373         rq->timeout = 0;
374
375         rq->part = NULL;
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407         unsigned int tag, tag_offset;
408         struct blk_mq_tags *tags;
409         struct request *rq;
410         unsigned long tag_mask;
411         int i, nr = 0;
412
413         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414         if (unlikely(!tag_mask))
415                 return NULL;
416
417         tags = blk_mq_tags_from_data(data);
418         for (i = 0; tag_mask; i++) {
419                 if (!(tag_mask & (1UL << i)))
420                         continue;
421                 tag = tag_offset + i;
422                 prefetch(tags->static_rqs[tag]);
423                 tag_mask &= ~(1UL << i);
424                 rq = blk_mq_rq_ctx_init(data, tags, tag);
425                 rq_list_add(data->cached_rq, rq);
426                 nr++;
427         }
428         if (!(data->rq_flags & RQF_SCHED_TAGS))
429                 blk_mq_add_active_requests(data->hctx, nr);
430         /* caller already holds a reference, add for remainder */
431         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432         data->nr_tags -= nr;
433
434         return rq_list_pop(data->cached_rq);
435 }
436
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439         struct request_queue *q = data->q;
440         u64 alloc_time_ns = 0;
441         struct request *rq;
442         unsigned int tag;
443
444         /* alloc_time includes depth and tag waits */
445         if (blk_queue_rq_alloc_time(q))
446                 alloc_time_ns = blk_time_get_ns();
447
448         if (data->cmd_flags & REQ_NOWAIT)
449                 data->flags |= BLK_MQ_REQ_NOWAIT;
450
451         if (q->elevator) {
452                 /*
453                  * All requests use scheduler tags when an I/O scheduler is
454                  * enabled for the queue.
455                  */
456                 data->rq_flags |= RQF_SCHED_TAGS;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list.
461                  */
462                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
463                     !blk_op_is_passthrough(data->cmd_flags)) {
464                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
465
466                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
467
468                         data->rq_flags |= RQF_USE_SCHED;
469                         if (ops->limit_depth)
470                                 ops->limit_depth(data->cmd_flags, data);
471                 }
472         }
473
474 retry:
475         data->ctx = blk_mq_get_ctx(q);
476         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
477         if (!(data->rq_flags & RQF_SCHED_TAGS))
478                 blk_mq_tag_busy(data->hctx);
479
480         if (data->flags & BLK_MQ_REQ_RESERVED)
481                 data->rq_flags |= RQF_RESV;
482
483         /*
484          * Try batched alloc if we want more than 1 tag.
485          */
486         if (data->nr_tags > 1) {
487                 rq = __blk_mq_alloc_requests_batch(data);
488                 if (rq) {
489                         blk_mq_rq_time_init(rq, alloc_time_ns);
490                         return rq;
491                 }
492                 data->nr_tags = 1;
493         }
494
495         /*
496          * Waiting allocations only fail because of an inactive hctx.  In that
497          * case just retry the hctx assignment and tag allocation as CPU hotplug
498          * should have migrated us to an online CPU by now.
499          */
500         tag = blk_mq_get_tag(data);
501         if (tag == BLK_MQ_NO_TAG) {
502                 if (data->flags & BLK_MQ_REQ_NOWAIT)
503                         return NULL;
504                 /*
505                  * Give up the CPU and sleep for a random short time to
506                  * ensure that thread using a realtime scheduling class
507                  * are migrated off the CPU, and thus off the hctx that
508                  * is going away.
509                  */
510                 msleep(3);
511                 goto retry;
512         }
513
514         if (!(data->rq_flags & RQF_SCHED_TAGS))
515                 blk_mq_inc_active_requests(data->hctx);
516         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517         blk_mq_rq_time_init(rq, alloc_time_ns);
518         return rq;
519 }
520
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522                                             struct blk_plug *plug,
523                                             blk_opf_t opf,
524                                             blk_mq_req_flags_t flags)
525 {
526         struct blk_mq_alloc_data data = {
527                 .q              = q,
528                 .flags          = flags,
529                 .cmd_flags      = opf,
530                 .nr_tags        = plug->nr_ios,
531                 .cached_rq      = &plug->cached_rq,
532         };
533         struct request *rq;
534
535         if (blk_queue_enter(q, flags))
536                 return NULL;
537
538         plug->nr_ios = 1;
539
540         rq = __blk_mq_alloc_requests(&data);
541         if (unlikely(!rq))
542                 blk_queue_exit(q);
543         return rq;
544 }
545
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547                                                    blk_opf_t opf,
548                                                    blk_mq_req_flags_t flags)
549 {
550         struct blk_plug *plug = current->plug;
551         struct request *rq;
552
553         if (!plug)
554                 return NULL;
555
556         if (rq_list_empty(plug->cached_rq)) {
557                 if (plug->nr_ios == 1)
558                         return NULL;
559                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560                 if (!rq)
561                         return NULL;
562         } else {
563                 rq = rq_list_peek(&plug->cached_rq);
564                 if (!rq || rq->q != q)
565                         return NULL;
566
567                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568                         return NULL;
569                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570                         return NULL;
571
572                 plug->cached_rq = rq_list_next(rq);
573                 blk_mq_rq_time_init(rq, 0);
574         }
575
576         rq->cmd_flags = opf;
577         INIT_LIST_HEAD(&rq->queuelist);
578         return rq;
579 }
580
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582                 blk_mq_req_flags_t flags)
583 {
584         struct request *rq;
585
586         rq = blk_mq_alloc_cached_request(q, opf, flags);
587         if (!rq) {
588                 struct blk_mq_alloc_data data = {
589                         .q              = q,
590                         .flags          = flags,
591                         .cmd_flags      = opf,
592                         .nr_tags        = 1,
593                 };
594                 int ret;
595
596                 ret = blk_queue_enter(q, flags);
597                 if (ret)
598                         return ERR_PTR(ret);
599
600                 rq = __blk_mq_alloc_requests(&data);
601                 if (!rq)
602                         goto out_queue_exit;
603         }
604         rq->__data_len = 0;
605         rq->__sector = (sector_t) -1;
606         rq->bio = rq->biotail = NULL;
607         return rq;
608 out_queue_exit:
609         blk_queue_exit(q);
610         return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617         struct blk_mq_alloc_data data = {
618                 .q              = q,
619                 .flags          = flags,
620                 .cmd_flags      = opf,
621                 .nr_tags        = 1,
622         };
623         u64 alloc_time_ns = 0;
624         struct request *rq;
625         unsigned int cpu;
626         unsigned int tag;
627         int ret;
628
629         /* alloc_time includes depth and tag waits */
630         if (blk_queue_rq_alloc_time(q))
631                 alloc_time_ns = blk_time_get_ns();
632
633         /*
634          * If the tag allocator sleeps we could get an allocation for a
635          * different hardware context.  No need to complicate the low level
636          * allocator for this for the rare use case of a command tied to
637          * a specific queue.
638          */
639         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641                 return ERR_PTR(-EINVAL);
642
643         if (hctx_idx >= q->nr_hw_queues)
644                 return ERR_PTR(-EIO);
645
646         ret = blk_queue_enter(q, flags);
647         if (ret)
648                 return ERR_PTR(ret);
649
650         /*
651          * Check if the hardware context is actually mapped to anything.
652          * If not tell the caller that it should skip this queue.
653          */
654         ret = -EXDEV;
655         data.hctx = xa_load(&q->hctx_table, hctx_idx);
656         if (!blk_mq_hw_queue_mapped(data.hctx))
657                 goto out_queue_exit;
658         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659         if (cpu >= nr_cpu_ids)
660                 goto out_queue_exit;
661         data.ctx = __blk_mq_get_ctx(q, cpu);
662
663         if (q->elevator)
664                 data.rq_flags |= RQF_SCHED_TAGS;
665         else
666                 blk_mq_tag_busy(data.hctx);
667
668         if (flags & BLK_MQ_REQ_RESERVED)
669                 data.rq_flags |= RQF_RESV;
670
671         ret = -EWOULDBLOCK;
672         tag = blk_mq_get_tag(&data);
673         if (tag == BLK_MQ_NO_TAG)
674                 goto out_queue_exit;
675         if (!(data.rq_flags & RQF_SCHED_TAGS))
676                 blk_mq_inc_active_requests(data.hctx);
677         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678         blk_mq_rq_time_init(rq, alloc_time_ns);
679         rq->__data_len = 0;
680         rq->__sector = (sector_t) -1;
681         rq->bio = rq->biotail = NULL;
682         return rq;
683
684 out_queue_exit:
685         blk_queue_exit(q);
686         return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689
690 static void blk_mq_finish_request(struct request *rq)
691 {
692         struct request_queue *q = rq->q;
693
694         if (rq->rq_flags & RQF_USE_SCHED) {
695                 q->elevator->type->ops.finish_request(rq);
696                 /*
697                  * For postflush request that may need to be
698                  * completed twice, we should clear this flag
699                  * to avoid double finish_request() on the rq.
700                  */
701                 rq->rq_flags &= ~RQF_USE_SCHED;
702         }
703 }
704
705 static void __blk_mq_free_request(struct request *rq)
706 {
707         struct request_queue *q = rq->q;
708         struct blk_mq_ctx *ctx = rq->mq_ctx;
709         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
710         const int sched_tag = rq->internal_tag;
711
712         blk_crypto_free_request(rq);
713         blk_pm_mark_last_busy(rq);
714         rq->mq_hctx = NULL;
715
716         if (rq->tag != BLK_MQ_NO_TAG) {
717                 blk_mq_dec_active_requests(hctx);
718                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
719         }
720         if (sched_tag != BLK_MQ_NO_TAG)
721                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
722         blk_mq_sched_restart(hctx);
723         blk_queue_exit(q);
724 }
725
726 void blk_mq_free_request(struct request *rq)
727 {
728         struct request_queue *q = rq->q;
729
730         blk_mq_finish_request(rq);
731
732         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
733                 laptop_io_completion(q->disk->bdi);
734
735         rq_qos_done(q, rq);
736
737         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
738         if (req_ref_put_and_test(rq))
739                 __blk_mq_free_request(rq);
740 }
741 EXPORT_SYMBOL_GPL(blk_mq_free_request);
742
743 void blk_mq_free_plug_rqs(struct blk_plug *plug)
744 {
745         struct request *rq;
746
747         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
748                 blk_mq_free_request(rq);
749 }
750
751 void blk_dump_rq_flags(struct request *rq, char *msg)
752 {
753         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
754                 rq->q->disk ? rq->q->disk->disk_name : "?",
755                 (__force unsigned long long) rq->cmd_flags);
756
757         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
758                (unsigned long long)blk_rq_pos(rq),
759                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
760         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
761                rq->bio, rq->biotail, blk_rq_bytes(rq));
762 }
763 EXPORT_SYMBOL(blk_dump_rq_flags);
764
765 static void req_bio_endio(struct request *rq, struct bio *bio,
766                           unsigned int nbytes, blk_status_t error)
767 {
768         if (unlikely(error)) {
769                 bio->bi_status = error;
770         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
771                 /*
772                  * Partial zone append completions cannot be supported as the
773                  * BIO fragments may end up not being written sequentially.
774                  */
775                 if (bio->bi_iter.bi_size != nbytes)
776                         bio->bi_status = BLK_STS_IOERR;
777                 else
778                         bio->bi_iter.bi_sector = rq->__sector;
779         }
780
781         bio_advance(bio, nbytes);
782
783         if (unlikely(rq->rq_flags & RQF_QUIET))
784                 bio_set_flag(bio, BIO_QUIET);
785         /* don't actually finish bio if it's part of flush sequence */
786         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
787                 bio_endio(bio);
788 }
789
790 static void blk_account_io_completion(struct request *req, unsigned int bytes)
791 {
792         if (req->part && blk_do_io_stat(req)) {
793                 const int sgrp = op_stat_group(req_op(req));
794
795                 part_stat_lock();
796                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
797                 part_stat_unlock();
798         }
799 }
800
801 static void blk_print_req_error(struct request *req, blk_status_t status)
802 {
803         printk_ratelimited(KERN_ERR
804                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
805                 "phys_seg %u prio class %u\n",
806                 blk_status_to_str(status),
807                 req->q->disk ? req->q->disk->disk_name : "?",
808                 blk_rq_pos(req), (__force u32)req_op(req),
809                 blk_op_str(req_op(req)),
810                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
811                 req->nr_phys_segments,
812                 IOPRIO_PRIO_CLASS(req->ioprio));
813 }
814
815 /*
816  * Fully end IO on a request. Does not support partial completions, or
817  * errors.
818  */
819 static void blk_complete_request(struct request *req)
820 {
821         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
822         int total_bytes = blk_rq_bytes(req);
823         struct bio *bio = req->bio;
824
825         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
826
827         if (!bio)
828                 return;
829
830 #ifdef CONFIG_BLK_DEV_INTEGRITY
831         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
832                 req->q->integrity.profile->complete_fn(req, total_bytes);
833 #endif
834
835         /*
836          * Upper layers may call blk_crypto_evict_key() anytime after the last
837          * bio_endio().  Therefore, the keyslot must be released before that.
838          */
839         blk_crypto_rq_put_keyslot(req);
840
841         blk_account_io_completion(req, total_bytes);
842
843         do {
844                 struct bio *next = bio->bi_next;
845
846                 /* Completion has already been traced */
847                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
848
849                 if (req_op(req) == REQ_OP_ZONE_APPEND)
850                         bio->bi_iter.bi_sector = req->__sector;
851
852                 if (!is_flush)
853                         bio_endio(bio);
854                 bio = next;
855         } while (bio);
856
857         /*
858          * Reset counters so that the request stacking driver
859          * can find how many bytes remain in the request
860          * later.
861          */
862         if (!req->end_io) {
863                 req->bio = NULL;
864                 req->__data_len = 0;
865         }
866 }
867
868 /**
869  * blk_update_request - Complete multiple bytes without completing the request
870  * @req:      the request being processed
871  * @error:    block status code
872  * @nr_bytes: number of bytes to complete for @req
873  *
874  * Description:
875  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
876  *     the request structure even if @req doesn't have leftover.
877  *     If @req has leftover, sets it up for the next range of segments.
878  *
879  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
880  *     %false return from this function.
881  *
882  * Note:
883  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
884  *      except in the consistency check at the end of this function.
885  *
886  * Return:
887  *     %false - this request doesn't have any more data
888  *     %true  - this request has more data
889  **/
890 bool blk_update_request(struct request *req, blk_status_t error,
891                 unsigned int nr_bytes)
892 {
893         int total_bytes;
894
895         trace_block_rq_complete(req, error, nr_bytes);
896
897         if (!req->bio)
898                 return false;
899
900 #ifdef CONFIG_BLK_DEV_INTEGRITY
901         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
902             error == BLK_STS_OK)
903                 req->q->integrity.profile->complete_fn(req, nr_bytes);
904 #endif
905
906         /*
907          * Upper layers may call blk_crypto_evict_key() anytime after the last
908          * bio_endio().  Therefore, the keyslot must be released before that.
909          */
910         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
911                 __blk_crypto_rq_put_keyslot(req);
912
913         if (unlikely(error && !blk_rq_is_passthrough(req) &&
914                      !(req->rq_flags & RQF_QUIET)) &&
915                      !test_bit(GD_DEAD, &req->q->disk->state)) {
916                 blk_print_req_error(req, error);
917                 trace_block_rq_error(req, error, nr_bytes);
918         }
919
920         blk_account_io_completion(req, nr_bytes);
921
922         total_bytes = 0;
923         while (req->bio) {
924                 struct bio *bio = req->bio;
925                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
926
927                 if (bio_bytes == bio->bi_iter.bi_size)
928                         req->bio = bio->bi_next;
929
930                 /* Completion has already been traced */
931                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
932                 req_bio_endio(req, bio, bio_bytes, error);
933
934                 total_bytes += bio_bytes;
935                 nr_bytes -= bio_bytes;
936
937                 if (!nr_bytes)
938                         break;
939         }
940
941         /*
942          * completely done
943          */
944         if (!req->bio) {
945                 /*
946                  * Reset counters so that the request stacking driver
947                  * can find how many bytes remain in the request
948                  * later.
949                  */
950                 req->__data_len = 0;
951                 return false;
952         }
953
954         req->__data_len -= total_bytes;
955
956         /* update sector only for requests with clear definition of sector */
957         if (!blk_rq_is_passthrough(req))
958                 req->__sector += total_bytes >> 9;
959
960         /* mixed attributes always follow the first bio */
961         if (req->rq_flags & RQF_MIXED_MERGE) {
962                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
963                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
964         }
965
966         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
967                 /*
968                  * If total number of sectors is less than the first segment
969                  * size, something has gone terribly wrong.
970                  */
971                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
972                         blk_dump_rq_flags(req, "request botched");
973                         req->__data_len = blk_rq_cur_bytes(req);
974                 }
975
976                 /* recalculate the number of segments */
977                 req->nr_phys_segments = blk_recalc_rq_segments(req);
978         }
979
980         return true;
981 }
982 EXPORT_SYMBOL_GPL(blk_update_request);
983
984 static inline void blk_account_io_done(struct request *req, u64 now)
985 {
986         trace_block_io_done(req);
987
988         /*
989          * Account IO completion.  flush_rq isn't accounted as a
990          * normal IO on queueing nor completion.  Accounting the
991          * containing request is enough.
992          */
993         if (blk_do_io_stat(req) && req->part &&
994             !(req->rq_flags & RQF_FLUSH_SEQ)) {
995                 const int sgrp = op_stat_group(req_op(req));
996
997                 part_stat_lock();
998                 update_io_ticks(req->part, jiffies, true);
999                 part_stat_inc(req->part, ios[sgrp]);
1000                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1001                 part_stat_unlock();
1002         }
1003 }
1004
1005 static inline void blk_account_io_start(struct request *req)
1006 {
1007         trace_block_io_start(req);
1008
1009         if (blk_do_io_stat(req)) {
1010                 /*
1011                  * All non-passthrough requests are created from a bio with one
1012                  * exception: when a flush command that is part of a flush sequence
1013                  * generated by the state machine in blk-flush.c is cloned onto the
1014                  * lower device by dm-multipath we can get here without a bio.
1015                  */
1016                 if (req->bio)
1017                         req->part = req->bio->bi_bdev;
1018                 else
1019                         req->part = req->q->disk->part0;
1020
1021                 part_stat_lock();
1022                 update_io_ticks(req->part, jiffies, false);
1023                 part_stat_unlock();
1024         }
1025 }
1026
1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1028 {
1029         if (rq->rq_flags & RQF_STATS)
1030                 blk_stat_add(rq, now);
1031
1032         blk_mq_sched_completed_request(rq, now);
1033         blk_account_io_done(rq, now);
1034 }
1035
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038         if (blk_mq_need_time_stamp(rq))
1039                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1040
1041         blk_mq_finish_request(rq);
1042
1043         if (rq->end_io) {
1044                 rq_qos_done(rq->q, rq);
1045                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1046                         blk_mq_free_request(rq);
1047         } else {
1048                 blk_mq_free_request(rq);
1049         }
1050 }
1051 EXPORT_SYMBOL(__blk_mq_end_request);
1052
1053 void blk_mq_end_request(struct request *rq, blk_status_t error)
1054 {
1055         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1056                 BUG();
1057         __blk_mq_end_request(rq, error);
1058 }
1059 EXPORT_SYMBOL(blk_mq_end_request);
1060
1061 #define TAG_COMP_BATCH          32
1062
1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1064                                           int *tag_array, int nr_tags)
1065 {
1066         struct request_queue *q = hctx->queue;
1067
1068         blk_mq_sub_active_requests(hctx, nr_tags);
1069
1070         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1071         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1072 }
1073
1074 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1075 {
1076         int tags[TAG_COMP_BATCH], nr_tags = 0;
1077         struct blk_mq_hw_ctx *cur_hctx = NULL;
1078         struct request *rq;
1079         u64 now = 0;
1080
1081         if (iob->need_ts)
1082                 now = blk_time_get_ns();
1083
1084         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1085                 prefetch(rq->bio);
1086                 prefetch(rq->rq_next);
1087
1088                 blk_complete_request(rq);
1089                 if (iob->need_ts)
1090                         __blk_mq_end_request_acct(rq, now);
1091
1092                 blk_mq_finish_request(rq);
1093
1094                 rq_qos_done(rq->q, rq);
1095
1096                 /*
1097                  * If end_io handler returns NONE, then it still has
1098                  * ownership of the request.
1099                  */
1100                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1101                         continue;
1102
1103                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1104                 if (!req_ref_put_and_test(rq))
1105                         continue;
1106
1107                 blk_crypto_free_request(rq);
1108                 blk_pm_mark_last_busy(rq);
1109
1110                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1111                         if (cur_hctx)
1112                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1113                         nr_tags = 0;
1114                         cur_hctx = rq->mq_hctx;
1115                 }
1116                 tags[nr_tags++] = rq->tag;
1117         }
1118
1119         if (nr_tags)
1120                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1121 }
1122 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1123
1124 static void blk_complete_reqs(struct llist_head *list)
1125 {
1126         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1127         struct request *rq, *next;
1128
1129         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1130                 rq->q->mq_ops->complete(rq);
1131 }
1132
1133 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1134 {
1135         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1136 }
1137
1138 static int blk_softirq_cpu_dead(unsigned int cpu)
1139 {
1140         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1141         return 0;
1142 }
1143
1144 static void __blk_mq_complete_request_remote(void *data)
1145 {
1146         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1147 }
1148
1149 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1150 {
1151         int cpu = raw_smp_processor_id();
1152
1153         if (!IS_ENABLED(CONFIG_SMP) ||
1154             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1155                 return false;
1156         /*
1157          * With force threaded interrupts enabled, raising softirq from an SMP
1158          * function call will always result in waking the ksoftirqd thread.
1159          * This is probably worse than completing the request on a different
1160          * cache domain.
1161          */
1162         if (force_irqthreads())
1163                 return false;
1164
1165         /* same CPU or cache domain and capacity?  Complete locally */
1166         if (cpu == rq->mq_ctx->cpu ||
1167             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1168              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1169              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1252             !blk_rq_is_passthrough(rq)) {
1253                 rq->io_start_time_ns = blk_time_get_ns();
1254                 rq->stats_sectors = blk_rq_sectors(rq);
1255                 rq->rq_flags |= RQF_STATS;
1256                 rq_qos_issue(q, rq);
1257         }
1258
1259         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1260
1261         blk_add_timer(rq);
1262         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1263         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1264
1265 #ifdef CONFIG_BLK_DEV_INTEGRITY
1266         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1267                 q->integrity.profile->prepare_fn(rq);
1268 #endif
1269         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1270                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1271 }
1272 EXPORT_SYMBOL(blk_mq_start_request);
1273
1274 /*
1275  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1276  * queues. This is important for md arrays to benefit from merging
1277  * requests.
1278  */
1279 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1280 {
1281         if (plug->multiple_queues)
1282                 return BLK_MAX_REQUEST_COUNT * 2;
1283         return BLK_MAX_REQUEST_COUNT;
1284 }
1285
1286 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1287 {
1288         struct request *last = rq_list_peek(&plug->mq_list);
1289
1290         if (!plug->rq_count) {
1291                 trace_block_plug(rq->q);
1292         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1293                    (!blk_queue_nomerges(rq->q) &&
1294                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1295                 blk_mq_flush_plug_list(plug, false);
1296                 last = NULL;
1297                 trace_block_plug(rq->q);
1298         }
1299
1300         if (!plug->multiple_queues && last && last->q != rq->q)
1301                 plug->multiple_queues = true;
1302         /*
1303          * Any request allocated from sched tags can't be issued to
1304          * ->queue_rqs() directly
1305          */
1306         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1307                 plug->has_elevator = true;
1308         rq->rq_next = NULL;
1309         rq_list_add(&plug->mq_list, rq);
1310         plug->rq_count++;
1311 }
1312
1313 /**
1314  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1315  * @rq:         request to insert
1316  * @at_head:    insert request at head or tail of queue
1317  *
1318  * Description:
1319  *    Insert a fully prepared request at the back of the I/O scheduler queue
1320  *    for execution.  Don't wait for completion.
1321  *
1322  * Note:
1323  *    This function will invoke @done directly if the queue is dead.
1324  */
1325 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1326 {
1327         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1328
1329         WARN_ON(irqs_disabled());
1330         WARN_ON(!blk_rq_is_passthrough(rq));
1331
1332         blk_account_io_start(rq);
1333
1334         /*
1335          * As plugging can be enabled for passthrough requests on a zoned
1336          * device, directly accessing the plug instead of using blk_mq_plug()
1337          * should not have any consequences.
1338          */
1339         if (current->plug && !at_head) {
1340                 blk_add_rq_to_plug(current->plug, rq);
1341                 return;
1342         }
1343
1344         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1345         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1346 }
1347 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1348
1349 struct blk_rq_wait {
1350         struct completion done;
1351         blk_status_t ret;
1352 };
1353
1354 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1355 {
1356         struct blk_rq_wait *wait = rq->end_io_data;
1357
1358         wait->ret = ret;
1359         complete(&wait->done);
1360         return RQ_END_IO_NONE;
1361 }
1362
1363 bool blk_rq_is_poll(struct request *rq)
1364 {
1365         if (!rq->mq_hctx)
1366                 return false;
1367         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1368                 return false;
1369         return true;
1370 }
1371 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1372
1373 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1374 {
1375         do {
1376                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1377                 cond_resched();
1378         } while (!completion_done(wait));
1379 }
1380
1381 /**
1382  * blk_execute_rq - insert a request into queue for execution
1383  * @rq:         request to insert
1384  * @at_head:    insert request at head or tail of queue
1385  *
1386  * Description:
1387  *    Insert a fully prepared request at the back of the I/O scheduler queue
1388  *    for execution and wait for completion.
1389  * Return: The blk_status_t result provided to blk_mq_end_request().
1390  */
1391 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1392 {
1393         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1394         struct blk_rq_wait wait = {
1395                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1396         };
1397
1398         WARN_ON(irqs_disabled());
1399         WARN_ON(!blk_rq_is_passthrough(rq));
1400
1401         rq->end_io_data = &wait;
1402         rq->end_io = blk_end_sync_rq;
1403
1404         blk_account_io_start(rq);
1405         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1406         blk_mq_run_hw_queue(hctx, false);
1407
1408         if (blk_rq_is_poll(rq))
1409                 blk_rq_poll_completion(rq, &wait.done);
1410         else
1411                 blk_wait_io(&wait.done);
1412
1413         return wait.ret;
1414 }
1415 EXPORT_SYMBOL(blk_execute_rq);
1416
1417 static void __blk_mq_requeue_request(struct request *rq)
1418 {
1419         struct request_queue *q = rq->q;
1420
1421         blk_mq_put_driver_tag(rq);
1422
1423         trace_block_rq_requeue(rq);
1424         rq_qos_requeue(q, rq);
1425
1426         if (blk_mq_request_started(rq)) {
1427                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1428                 rq->rq_flags &= ~RQF_TIMED_OUT;
1429         }
1430 }
1431
1432 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1433 {
1434         struct request_queue *q = rq->q;
1435         unsigned long flags;
1436
1437         __blk_mq_requeue_request(rq);
1438
1439         /* this request will be re-inserted to io scheduler queue */
1440         blk_mq_sched_requeue_request(rq);
1441
1442         spin_lock_irqsave(&q->requeue_lock, flags);
1443         list_add_tail(&rq->queuelist, &q->requeue_list);
1444         spin_unlock_irqrestore(&q->requeue_lock, flags);
1445
1446         if (kick_requeue_list)
1447                 blk_mq_kick_requeue_list(q);
1448 }
1449 EXPORT_SYMBOL(blk_mq_requeue_request);
1450
1451 static void blk_mq_requeue_work(struct work_struct *work)
1452 {
1453         struct request_queue *q =
1454                 container_of(work, struct request_queue, requeue_work.work);
1455         LIST_HEAD(rq_list);
1456         LIST_HEAD(flush_list);
1457         struct request *rq;
1458
1459         spin_lock_irq(&q->requeue_lock);
1460         list_splice_init(&q->requeue_list, &rq_list);
1461         list_splice_init(&q->flush_list, &flush_list);
1462         spin_unlock_irq(&q->requeue_lock);
1463
1464         while (!list_empty(&rq_list)) {
1465                 rq = list_entry(rq_list.next, struct request, queuelist);
1466                 /*
1467                  * If RQF_DONTPREP ist set, the request has been started by the
1468                  * driver already and might have driver-specific data allocated
1469                  * already.  Insert it into the hctx dispatch list to avoid
1470                  * block layer merges for the request.
1471                  */
1472                 if (rq->rq_flags & RQF_DONTPREP) {
1473                         list_del_init(&rq->queuelist);
1474                         blk_mq_request_bypass_insert(rq, 0);
1475                 } else {
1476                         list_del_init(&rq->queuelist);
1477                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1478                 }
1479         }
1480
1481         while (!list_empty(&flush_list)) {
1482                 rq = list_entry(flush_list.next, struct request, queuelist);
1483                 list_del_init(&rq->queuelist);
1484                 blk_mq_insert_request(rq, 0);
1485         }
1486
1487         blk_mq_run_hw_queues(q, false);
1488 }
1489
1490 void blk_mq_kick_requeue_list(struct request_queue *q)
1491 {
1492         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1493 }
1494 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1495
1496 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1497                                     unsigned long msecs)
1498 {
1499         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1500                                     msecs_to_jiffies(msecs));
1501 }
1502 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1503
1504 static bool blk_is_flush_data_rq(struct request *rq)
1505 {
1506         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1507 }
1508
1509 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1510 {
1511         /*
1512          * If we find a request that isn't idle we know the queue is busy
1513          * as it's checked in the iter.
1514          * Return false to stop the iteration.
1515          *
1516          * In case of queue quiesce, if one flush data request is completed,
1517          * don't count it as inflight given the flush sequence is suspended,
1518          * and the original flush data request is invisible to driver, just
1519          * like other pending requests because of quiesce
1520          */
1521         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1522                                 blk_is_flush_data_rq(rq) &&
1523                                 blk_mq_request_completed(rq))) {
1524                 bool *busy = priv;
1525
1526                 *busy = true;
1527                 return false;
1528         }
1529
1530         return true;
1531 }
1532
1533 bool blk_mq_queue_inflight(struct request_queue *q)
1534 {
1535         bool busy = false;
1536
1537         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1538         return busy;
1539 }
1540 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1541
1542 static void blk_mq_rq_timed_out(struct request *req)
1543 {
1544         req->rq_flags |= RQF_TIMED_OUT;
1545         if (req->q->mq_ops->timeout) {
1546                 enum blk_eh_timer_return ret;
1547
1548                 ret = req->q->mq_ops->timeout(req);
1549                 if (ret == BLK_EH_DONE)
1550                         return;
1551                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1552         }
1553
1554         blk_add_timer(req);
1555 }
1556
1557 struct blk_expired_data {
1558         bool has_timedout_rq;
1559         unsigned long next;
1560         unsigned long timeout_start;
1561 };
1562
1563 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1564 {
1565         unsigned long deadline;
1566
1567         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1568                 return false;
1569         if (rq->rq_flags & RQF_TIMED_OUT)
1570                 return false;
1571
1572         deadline = READ_ONCE(rq->deadline);
1573         if (time_after_eq(expired->timeout_start, deadline))
1574                 return true;
1575
1576         if (expired->next == 0)
1577                 expired->next = deadline;
1578         else if (time_after(expired->next, deadline))
1579                 expired->next = deadline;
1580         return false;
1581 }
1582
1583 void blk_mq_put_rq_ref(struct request *rq)
1584 {
1585         if (is_flush_rq(rq)) {
1586                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1587                         blk_mq_free_request(rq);
1588         } else if (req_ref_put_and_test(rq)) {
1589                 __blk_mq_free_request(rq);
1590         }
1591 }
1592
1593 static bool blk_mq_check_expired(struct request *rq, void *priv)
1594 {
1595         struct blk_expired_data *expired = priv;
1596
1597         /*
1598          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1599          * be reallocated underneath the timeout handler's processing, then
1600          * the expire check is reliable. If the request is not expired, then
1601          * it was completed and reallocated as a new request after returning
1602          * from blk_mq_check_expired().
1603          */
1604         if (blk_mq_req_expired(rq, expired)) {
1605                 expired->has_timedout_rq = true;
1606                 return false;
1607         }
1608         return true;
1609 }
1610
1611 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1612 {
1613         struct blk_expired_data *expired = priv;
1614
1615         if (blk_mq_req_expired(rq, expired))
1616                 blk_mq_rq_timed_out(rq);
1617         return true;
1618 }
1619
1620 static void blk_mq_timeout_work(struct work_struct *work)
1621 {
1622         struct request_queue *q =
1623                 container_of(work, struct request_queue, timeout_work);
1624         struct blk_expired_data expired = {
1625                 .timeout_start = jiffies,
1626         };
1627         struct blk_mq_hw_ctx *hctx;
1628         unsigned long i;
1629
1630         /* A deadlock might occur if a request is stuck requiring a
1631          * timeout at the same time a queue freeze is waiting
1632          * completion, since the timeout code would not be able to
1633          * acquire the queue reference here.
1634          *
1635          * That's why we don't use blk_queue_enter here; instead, we use
1636          * percpu_ref_tryget directly, because we need to be able to
1637          * obtain a reference even in the short window between the queue
1638          * starting to freeze, by dropping the first reference in
1639          * blk_freeze_queue_start, and the moment the last request is
1640          * consumed, marked by the instant q_usage_counter reaches
1641          * zero.
1642          */
1643         if (!percpu_ref_tryget(&q->q_usage_counter))
1644                 return;
1645
1646         /* check if there is any timed-out request */
1647         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1648         if (expired.has_timedout_rq) {
1649                 /*
1650                  * Before walking tags, we must ensure any submit started
1651                  * before the current time has finished. Since the submit
1652                  * uses srcu or rcu, wait for a synchronization point to
1653                  * ensure all running submits have finished
1654                  */
1655                 blk_mq_wait_quiesce_done(q->tag_set);
1656
1657                 expired.next = 0;
1658                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1659         }
1660
1661         if (expired.next != 0) {
1662                 mod_timer(&q->timeout, expired.next);
1663         } else {
1664                 /*
1665                  * Request timeouts are handled as a forward rolling timer. If
1666                  * we end up here it means that no requests are pending and
1667                  * also that no request has been pending for a while. Mark
1668                  * each hctx as idle.
1669                  */
1670                 queue_for_each_hw_ctx(q, hctx, i) {
1671                         /* the hctx may be unmapped, so check it here */
1672                         if (blk_mq_hw_queue_mapped(hctx))
1673                                 blk_mq_tag_idle(hctx);
1674                 }
1675         }
1676         blk_queue_exit(q);
1677 }
1678
1679 struct flush_busy_ctx_data {
1680         struct blk_mq_hw_ctx *hctx;
1681         struct list_head *list;
1682 };
1683
1684 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1685 {
1686         struct flush_busy_ctx_data *flush_data = data;
1687         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1688         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1689         enum hctx_type type = hctx->type;
1690
1691         spin_lock(&ctx->lock);
1692         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1693         sbitmap_clear_bit(sb, bitnr);
1694         spin_unlock(&ctx->lock);
1695         return true;
1696 }
1697
1698 /*
1699  * Process software queues that have been marked busy, splicing them
1700  * to the for-dispatch
1701  */
1702 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1703 {
1704         struct flush_busy_ctx_data data = {
1705                 .hctx = hctx,
1706                 .list = list,
1707         };
1708
1709         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1710 }
1711 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1712
1713 struct dispatch_rq_data {
1714         struct blk_mq_hw_ctx *hctx;
1715         struct request *rq;
1716 };
1717
1718 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1719                 void *data)
1720 {
1721         struct dispatch_rq_data *dispatch_data = data;
1722         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1723         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1724         enum hctx_type type = hctx->type;
1725
1726         spin_lock(&ctx->lock);
1727         if (!list_empty(&ctx->rq_lists[type])) {
1728                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1729                 list_del_init(&dispatch_data->rq->queuelist);
1730                 if (list_empty(&ctx->rq_lists[type]))
1731                         sbitmap_clear_bit(sb, bitnr);
1732         }
1733         spin_unlock(&ctx->lock);
1734
1735         return !dispatch_data->rq;
1736 }
1737
1738 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1739                                         struct blk_mq_ctx *start)
1740 {
1741         unsigned off = start ? start->index_hw[hctx->type] : 0;
1742         struct dispatch_rq_data data = {
1743                 .hctx = hctx,
1744                 .rq   = NULL,
1745         };
1746
1747         __sbitmap_for_each_set(&hctx->ctx_map, off,
1748                                dispatch_rq_from_ctx, &data);
1749
1750         return data.rq;
1751 }
1752
1753 bool __blk_mq_alloc_driver_tag(struct request *rq)
1754 {
1755         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1756         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1757         int tag;
1758
1759         blk_mq_tag_busy(rq->mq_hctx);
1760
1761         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1762                 bt = &rq->mq_hctx->tags->breserved_tags;
1763                 tag_offset = 0;
1764         } else {
1765                 if (!hctx_may_queue(rq->mq_hctx, bt))
1766                         return false;
1767         }
1768
1769         tag = __sbitmap_queue_get(bt);
1770         if (tag == BLK_MQ_NO_TAG)
1771                 return false;
1772
1773         rq->tag = tag + tag_offset;
1774         blk_mq_inc_active_requests(rq->mq_hctx);
1775         return true;
1776 }
1777
1778 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1779                                 int flags, void *key)
1780 {
1781         struct blk_mq_hw_ctx *hctx;
1782
1783         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1784
1785         spin_lock(&hctx->dispatch_wait_lock);
1786         if (!list_empty(&wait->entry)) {
1787                 struct sbitmap_queue *sbq;
1788
1789                 list_del_init(&wait->entry);
1790                 sbq = &hctx->tags->bitmap_tags;
1791                 atomic_dec(&sbq->ws_active);
1792         }
1793         spin_unlock(&hctx->dispatch_wait_lock);
1794
1795         blk_mq_run_hw_queue(hctx, true);
1796         return 1;
1797 }
1798
1799 /*
1800  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1801  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1802  * restart. For both cases, take care to check the condition again after
1803  * marking us as waiting.
1804  */
1805 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1806                                  struct request *rq)
1807 {
1808         struct sbitmap_queue *sbq;
1809         struct wait_queue_head *wq;
1810         wait_queue_entry_t *wait;
1811         bool ret;
1812
1813         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1814             !(blk_mq_is_shared_tags(hctx->flags))) {
1815                 blk_mq_sched_mark_restart_hctx(hctx);
1816
1817                 /*
1818                  * It's possible that a tag was freed in the window between the
1819                  * allocation failure and adding the hardware queue to the wait
1820                  * queue.
1821                  *
1822                  * Don't clear RESTART here, someone else could have set it.
1823                  * At most this will cost an extra queue run.
1824                  */
1825                 return blk_mq_get_driver_tag(rq);
1826         }
1827
1828         wait = &hctx->dispatch_wait;
1829         if (!list_empty_careful(&wait->entry))
1830                 return false;
1831
1832         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1833                 sbq = &hctx->tags->breserved_tags;
1834         else
1835                 sbq = &hctx->tags->bitmap_tags;
1836         wq = &bt_wait_ptr(sbq, hctx)->wait;
1837
1838         spin_lock_irq(&wq->lock);
1839         spin_lock(&hctx->dispatch_wait_lock);
1840         if (!list_empty(&wait->entry)) {
1841                 spin_unlock(&hctx->dispatch_wait_lock);
1842                 spin_unlock_irq(&wq->lock);
1843                 return false;
1844         }
1845
1846         atomic_inc(&sbq->ws_active);
1847         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1848         __add_wait_queue(wq, wait);
1849
1850         /*
1851          * Add one explicit barrier since blk_mq_get_driver_tag() may
1852          * not imply barrier in case of failure.
1853          *
1854          * Order adding us to wait queue and allocating driver tag.
1855          *
1856          * The pair is the one implied in sbitmap_queue_wake_up() which
1857          * orders clearing sbitmap tag bits and waitqueue_active() in
1858          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1859          *
1860          * Otherwise, re-order of adding wait queue and getting driver tag
1861          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1862          * the waitqueue_active() may not observe us in wait queue.
1863          */
1864         smp_mb();
1865
1866         /*
1867          * It's possible that a tag was freed in the window between the
1868          * allocation failure and adding the hardware queue to the wait
1869          * queue.
1870          */
1871         ret = blk_mq_get_driver_tag(rq);
1872         if (!ret) {
1873                 spin_unlock(&hctx->dispatch_wait_lock);
1874                 spin_unlock_irq(&wq->lock);
1875                 return false;
1876         }
1877
1878         /*
1879          * We got a tag, remove ourselves from the wait queue to ensure
1880          * someone else gets the wakeup.
1881          */
1882         list_del_init(&wait->entry);
1883         atomic_dec(&sbq->ws_active);
1884         spin_unlock(&hctx->dispatch_wait_lock);
1885         spin_unlock_irq(&wq->lock);
1886
1887         return true;
1888 }
1889
1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1891 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1892 /*
1893  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1894  * - EWMA is one simple way to compute running average value
1895  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1896  * - take 4 as factor for avoiding to get too small(0) result, and this
1897  *   factor doesn't matter because EWMA decreases exponentially
1898  */
1899 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1900 {
1901         unsigned int ewma;
1902
1903         ewma = hctx->dispatch_busy;
1904
1905         if (!ewma && !busy)
1906                 return;
1907
1908         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1909         if (busy)
1910                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1911         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1912
1913         hctx->dispatch_busy = ewma;
1914 }
1915
1916 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1917
1918 static void blk_mq_handle_dev_resource(struct request *rq,
1919                                        struct list_head *list)
1920 {
1921         list_add(&rq->queuelist, list);
1922         __blk_mq_requeue_request(rq);
1923 }
1924
1925 static void blk_mq_handle_zone_resource(struct request *rq,
1926                                         struct list_head *zone_list)
1927 {
1928         /*
1929          * If we end up here it is because we cannot dispatch a request to a
1930          * specific zone due to LLD level zone-write locking or other zone
1931          * related resource not being available. In this case, set the request
1932          * aside in zone_list for retrying it later.
1933          */
1934         list_add(&rq->queuelist, zone_list);
1935         __blk_mq_requeue_request(rq);
1936 }
1937
1938 enum prep_dispatch {
1939         PREP_DISPATCH_OK,
1940         PREP_DISPATCH_NO_TAG,
1941         PREP_DISPATCH_NO_BUDGET,
1942 };
1943
1944 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1945                                                   bool need_budget)
1946 {
1947         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1948         int budget_token = -1;
1949
1950         if (need_budget) {
1951                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1952                 if (budget_token < 0) {
1953                         blk_mq_put_driver_tag(rq);
1954                         return PREP_DISPATCH_NO_BUDGET;
1955                 }
1956                 blk_mq_set_rq_budget_token(rq, budget_token);
1957         }
1958
1959         if (!blk_mq_get_driver_tag(rq)) {
1960                 /*
1961                  * The initial allocation attempt failed, so we need to
1962                  * rerun the hardware queue when a tag is freed. The
1963                  * waitqueue takes care of that. If the queue is run
1964                  * before we add this entry back on the dispatch list,
1965                  * we'll re-run it below.
1966                  */
1967                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1968                         /*
1969                          * All budgets not got from this function will be put
1970                          * together during handling partial dispatch
1971                          */
1972                         if (need_budget)
1973                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1974                         return PREP_DISPATCH_NO_TAG;
1975                 }
1976         }
1977
1978         return PREP_DISPATCH_OK;
1979 }
1980
1981 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1982 static void blk_mq_release_budgets(struct request_queue *q,
1983                 struct list_head *list)
1984 {
1985         struct request *rq;
1986
1987         list_for_each_entry(rq, list, queuelist) {
1988                 int budget_token = blk_mq_get_rq_budget_token(rq);
1989
1990                 if (budget_token >= 0)
1991                         blk_mq_put_dispatch_budget(q, budget_token);
1992         }
1993 }
1994
1995 /*
1996  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1997  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1998  * details)
1999  * Attention, we should explicitly call this in unusual cases:
2000  *  1) did not queue everything initially scheduled to queue
2001  *  2) the last attempt to queue a request failed
2002  */
2003 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2004                               bool from_schedule)
2005 {
2006         if (hctx->queue->mq_ops->commit_rqs && queued) {
2007                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2008                 hctx->queue->mq_ops->commit_rqs(hctx);
2009         }
2010 }
2011
2012 /*
2013  * Returns true if we did some work AND can potentially do more.
2014  */
2015 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2016                              unsigned int nr_budgets)
2017 {
2018         enum prep_dispatch prep;
2019         struct request_queue *q = hctx->queue;
2020         struct request *rq;
2021         int queued;
2022         blk_status_t ret = BLK_STS_OK;
2023         LIST_HEAD(zone_list);
2024         bool needs_resource = false;
2025
2026         if (list_empty(list))
2027                 return false;
2028
2029         /*
2030          * Now process all the entries, sending them to the driver.
2031          */
2032         queued = 0;
2033         do {
2034                 struct blk_mq_queue_data bd;
2035
2036                 rq = list_first_entry(list, struct request, queuelist);
2037
2038                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2039                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2040                 if (prep != PREP_DISPATCH_OK)
2041                         break;
2042
2043                 list_del_init(&rq->queuelist);
2044
2045                 bd.rq = rq;
2046                 bd.last = list_empty(list);
2047
2048                 /*
2049                  * once the request is queued to lld, no need to cover the
2050                  * budget any more
2051                  */
2052                 if (nr_budgets)
2053                         nr_budgets--;
2054                 ret = q->mq_ops->queue_rq(hctx, &bd);
2055                 switch (ret) {
2056                 case BLK_STS_OK:
2057                         queued++;
2058                         break;
2059                 case BLK_STS_RESOURCE:
2060                         needs_resource = true;
2061                         fallthrough;
2062                 case BLK_STS_DEV_RESOURCE:
2063                         blk_mq_handle_dev_resource(rq, list);
2064                         goto out;
2065                 case BLK_STS_ZONE_RESOURCE:
2066                         /*
2067                          * Move the request to zone_list and keep going through
2068                          * the dispatch list to find more requests the drive can
2069                          * accept.
2070                          */
2071                         blk_mq_handle_zone_resource(rq, &zone_list);
2072                         needs_resource = true;
2073                         break;
2074                 default:
2075                         blk_mq_end_request(rq, ret);
2076                 }
2077         } while (!list_empty(list));
2078 out:
2079         if (!list_empty(&zone_list))
2080                 list_splice_tail_init(&zone_list, list);
2081
2082         /* If we didn't flush the entire list, we could have told the driver
2083          * there was more coming, but that turned out to be a lie.
2084          */
2085         if (!list_empty(list) || ret != BLK_STS_OK)
2086                 blk_mq_commit_rqs(hctx, queued, false);
2087
2088         /*
2089          * Any items that need requeuing? Stuff them into hctx->dispatch,
2090          * that is where we will continue on next queue run.
2091          */
2092         if (!list_empty(list)) {
2093                 bool needs_restart;
2094                 /* For non-shared tags, the RESTART check will suffice */
2095                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2096                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2097                         blk_mq_is_shared_tags(hctx->flags));
2098
2099                 if (nr_budgets)
2100                         blk_mq_release_budgets(q, list);
2101
2102                 spin_lock(&hctx->lock);
2103                 list_splice_tail_init(list, &hctx->dispatch);
2104                 spin_unlock(&hctx->lock);
2105
2106                 /*
2107                  * Order adding requests to hctx->dispatch and checking
2108                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2109                  * in blk_mq_sched_restart(). Avoid restart code path to
2110                  * miss the new added requests to hctx->dispatch, meantime
2111                  * SCHED_RESTART is observed here.
2112                  */
2113                 smp_mb();
2114
2115                 /*
2116                  * If SCHED_RESTART was set by the caller of this function and
2117                  * it is no longer set that means that it was cleared by another
2118                  * thread and hence that a queue rerun is needed.
2119                  *
2120                  * If 'no_tag' is set, that means that we failed getting
2121                  * a driver tag with an I/O scheduler attached. If our dispatch
2122                  * waitqueue is no longer active, ensure that we run the queue
2123                  * AFTER adding our entries back to the list.
2124                  *
2125                  * If no I/O scheduler has been configured it is possible that
2126                  * the hardware queue got stopped and restarted before requests
2127                  * were pushed back onto the dispatch list. Rerun the queue to
2128                  * avoid starvation. Notes:
2129                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2130                  *   been stopped before rerunning a queue.
2131                  * - Some but not all block drivers stop a queue before
2132                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2133                  *   and dm-rq.
2134                  *
2135                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2136                  * bit is set, run queue after a delay to avoid IO stalls
2137                  * that could otherwise occur if the queue is idle.  We'll do
2138                  * similar if we couldn't get budget or couldn't lock a zone
2139                  * and SCHED_RESTART is set.
2140                  */
2141                 needs_restart = blk_mq_sched_needs_restart(hctx);
2142                 if (prep == PREP_DISPATCH_NO_BUDGET)
2143                         needs_resource = true;
2144                 if (!needs_restart ||
2145                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2146                         blk_mq_run_hw_queue(hctx, true);
2147                 else if (needs_resource)
2148                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2149
2150                 blk_mq_update_dispatch_busy(hctx, true);
2151                 return false;
2152         }
2153
2154         blk_mq_update_dispatch_busy(hctx, false);
2155         return true;
2156 }
2157
2158 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2159 {
2160         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2161
2162         if (cpu >= nr_cpu_ids)
2163                 cpu = cpumask_first(hctx->cpumask);
2164         return cpu;
2165 }
2166
2167 /*
2168  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2169  * it for speeding up the check
2170  */
2171 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2172 {
2173         return hctx->next_cpu >= nr_cpu_ids;
2174 }
2175
2176 /*
2177  * It'd be great if the workqueue API had a way to pass
2178  * in a mask and had some smarts for more clever placement.
2179  * For now we just round-robin here, switching for every
2180  * BLK_MQ_CPU_WORK_BATCH queued items.
2181  */
2182 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2183 {
2184         bool tried = false;
2185         int next_cpu = hctx->next_cpu;
2186
2187         /* Switch to unbound if no allowable CPUs in this hctx */
2188         if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2189                 return WORK_CPU_UNBOUND;
2190
2191         if (--hctx->next_cpu_batch <= 0) {
2192 select_cpu:
2193                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2194                                 cpu_online_mask);
2195                 if (next_cpu >= nr_cpu_ids)
2196                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2197                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2198         }
2199
2200         /*
2201          * Do unbound schedule if we can't find a online CPU for this hctx,
2202          * and it should only happen in the path of handling CPU DEAD.
2203          */
2204         if (!cpu_online(next_cpu)) {
2205                 if (!tried) {
2206                         tried = true;
2207                         goto select_cpu;
2208                 }
2209
2210                 /*
2211                  * Make sure to re-select CPU next time once after CPUs
2212                  * in hctx->cpumask become online again.
2213                  */
2214                 hctx->next_cpu = next_cpu;
2215                 hctx->next_cpu_batch = 1;
2216                 return WORK_CPU_UNBOUND;
2217         }
2218
2219         hctx->next_cpu = next_cpu;
2220         return next_cpu;
2221 }
2222
2223 /**
2224  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2225  * @hctx: Pointer to the hardware queue to run.
2226  * @msecs: Milliseconds of delay to wait before running the queue.
2227  *
2228  * Run a hardware queue asynchronously with a delay of @msecs.
2229  */
2230 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2231 {
2232         if (unlikely(blk_mq_hctx_stopped(hctx)))
2233                 return;
2234         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2235                                     msecs_to_jiffies(msecs));
2236 }
2237 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2238
2239 /**
2240  * blk_mq_run_hw_queue - Start to run a hardware queue.
2241  * @hctx: Pointer to the hardware queue to run.
2242  * @async: If we want to run the queue asynchronously.
2243  *
2244  * Check if the request queue is not in a quiesced state and if there are
2245  * pending requests to be sent. If this is true, run the queue to send requests
2246  * to hardware.
2247  */
2248 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2249 {
2250         bool need_run;
2251
2252         /*
2253          * We can't run the queue inline with interrupts disabled.
2254          */
2255         WARN_ON_ONCE(!async && in_interrupt());
2256
2257         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2258
2259         /*
2260          * When queue is quiesced, we may be switching io scheduler, or
2261          * updating nr_hw_queues, or other things, and we can't run queue
2262          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2263          *
2264          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2265          * quiesced.
2266          */
2267         __blk_mq_run_dispatch_ops(hctx->queue, false,
2268                 need_run = !blk_queue_quiesced(hctx->queue) &&
2269                 blk_mq_hctx_has_pending(hctx));
2270
2271         if (!need_run)
2272                 return;
2273
2274         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2275                 blk_mq_delay_run_hw_queue(hctx, 0);
2276                 return;
2277         }
2278
2279         blk_mq_run_dispatch_ops(hctx->queue,
2280                                 blk_mq_sched_dispatch_requests(hctx));
2281 }
2282 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2283
2284 /*
2285  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2286  * scheduler.
2287  */
2288 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2289 {
2290         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2291         /*
2292          * If the IO scheduler does not respect hardware queues when
2293          * dispatching, we just don't bother with multiple HW queues and
2294          * dispatch from hctx for the current CPU since running multiple queues
2295          * just causes lock contention inside the scheduler and pointless cache
2296          * bouncing.
2297          */
2298         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2299
2300         if (!blk_mq_hctx_stopped(hctx))
2301                 return hctx;
2302         return NULL;
2303 }
2304
2305 /**
2306  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2307  * @q: Pointer to the request queue to run.
2308  * @async: If we want to run the queue asynchronously.
2309  */
2310 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2311 {
2312         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2313         unsigned long i;
2314
2315         sq_hctx = NULL;
2316         if (blk_queue_sq_sched(q))
2317                 sq_hctx = blk_mq_get_sq_hctx(q);
2318         queue_for_each_hw_ctx(q, hctx, i) {
2319                 if (blk_mq_hctx_stopped(hctx))
2320                         continue;
2321                 /*
2322                  * Dispatch from this hctx either if there's no hctx preferred
2323                  * by IO scheduler or if it has requests that bypass the
2324                  * scheduler.
2325                  */
2326                 if (!sq_hctx || sq_hctx == hctx ||
2327                     !list_empty_careful(&hctx->dispatch))
2328                         blk_mq_run_hw_queue(hctx, async);
2329         }
2330 }
2331 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2332
2333 /**
2334  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2335  * @q: Pointer to the request queue to run.
2336  * @msecs: Milliseconds of delay to wait before running the queues.
2337  */
2338 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2339 {
2340         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2341         unsigned long i;
2342
2343         sq_hctx = NULL;
2344         if (blk_queue_sq_sched(q))
2345                 sq_hctx = blk_mq_get_sq_hctx(q);
2346         queue_for_each_hw_ctx(q, hctx, i) {
2347                 if (blk_mq_hctx_stopped(hctx))
2348                         continue;
2349                 /*
2350                  * If there is already a run_work pending, leave the
2351                  * pending delay untouched. Otherwise, a hctx can stall
2352                  * if another hctx is re-delaying the other's work
2353                  * before the work executes.
2354                  */
2355                 if (delayed_work_pending(&hctx->run_work))
2356                         continue;
2357                 /*
2358                  * Dispatch from this hctx either if there's no hctx preferred
2359                  * by IO scheduler or if it has requests that bypass the
2360                  * scheduler.
2361                  */
2362                 if (!sq_hctx || sq_hctx == hctx ||
2363                     !list_empty_careful(&hctx->dispatch))
2364                         blk_mq_delay_run_hw_queue(hctx, msecs);
2365         }
2366 }
2367 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2368
2369 /*
2370  * This function is often used for pausing .queue_rq() by driver when
2371  * there isn't enough resource or some conditions aren't satisfied, and
2372  * BLK_STS_RESOURCE is usually returned.
2373  *
2374  * We do not guarantee that dispatch can be drained or blocked
2375  * after blk_mq_stop_hw_queue() returns. Please use
2376  * blk_mq_quiesce_queue() for that requirement.
2377  */
2378 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2379 {
2380         cancel_delayed_work(&hctx->run_work);
2381
2382         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2383 }
2384 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2385
2386 /*
2387  * This function is often used for pausing .queue_rq() by driver when
2388  * there isn't enough resource or some conditions aren't satisfied, and
2389  * BLK_STS_RESOURCE is usually returned.
2390  *
2391  * We do not guarantee that dispatch can be drained or blocked
2392  * after blk_mq_stop_hw_queues() returns. Please use
2393  * blk_mq_quiesce_queue() for that requirement.
2394  */
2395 void blk_mq_stop_hw_queues(struct request_queue *q)
2396 {
2397         struct blk_mq_hw_ctx *hctx;
2398         unsigned long i;
2399
2400         queue_for_each_hw_ctx(q, hctx, i)
2401                 blk_mq_stop_hw_queue(hctx);
2402 }
2403 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2404
2405 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2406 {
2407         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2408
2409         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2410 }
2411 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2412
2413 void blk_mq_start_hw_queues(struct request_queue *q)
2414 {
2415         struct blk_mq_hw_ctx *hctx;
2416         unsigned long i;
2417
2418         queue_for_each_hw_ctx(q, hctx, i)
2419                 blk_mq_start_hw_queue(hctx);
2420 }
2421 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2422
2423 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2424 {
2425         if (!blk_mq_hctx_stopped(hctx))
2426                 return;
2427
2428         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2429         blk_mq_run_hw_queue(hctx, async);
2430 }
2431 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2432
2433 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2434 {
2435         struct blk_mq_hw_ctx *hctx;
2436         unsigned long i;
2437
2438         queue_for_each_hw_ctx(q, hctx, i)
2439                 blk_mq_start_stopped_hw_queue(hctx, async ||
2440                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2441 }
2442 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2443
2444 static void blk_mq_run_work_fn(struct work_struct *work)
2445 {
2446         struct blk_mq_hw_ctx *hctx =
2447                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2448
2449         blk_mq_run_dispatch_ops(hctx->queue,
2450                                 blk_mq_sched_dispatch_requests(hctx));
2451 }
2452
2453 /**
2454  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2455  * @rq: Pointer to request to be inserted.
2456  * @flags: BLK_MQ_INSERT_*
2457  *
2458  * Should only be used carefully, when the caller knows we want to
2459  * bypass a potential IO scheduler on the target device.
2460  */
2461 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2462 {
2463         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2464
2465         spin_lock(&hctx->lock);
2466         if (flags & BLK_MQ_INSERT_AT_HEAD)
2467                 list_add(&rq->queuelist, &hctx->dispatch);
2468         else
2469                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2470         spin_unlock(&hctx->lock);
2471 }
2472
2473 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2474                 struct blk_mq_ctx *ctx, struct list_head *list,
2475                 bool run_queue_async)
2476 {
2477         struct request *rq;
2478         enum hctx_type type = hctx->type;
2479
2480         /*
2481          * Try to issue requests directly if the hw queue isn't busy to save an
2482          * extra enqueue & dequeue to the sw queue.
2483          */
2484         if (!hctx->dispatch_busy && !run_queue_async) {
2485                 blk_mq_run_dispatch_ops(hctx->queue,
2486                         blk_mq_try_issue_list_directly(hctx, list));
2487                 if (list_empty(list))
2488                         goto out;
2489         }
2490
2491         /*
2492          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2493          * offline now
2494          */
2495         list_for_each_entry(rq, list, queuelist) {
2496                 BUG_ON(rq->mq_ctx != ctx);
2497                 trace_block_rq_insert(rq);
2498                 if (rq->cmd_flags & REQ_NOWAIT)
2499                         run_queue_async = true;
2500         }
2501
2502         spin_lock(&ctx->lock);
2503         list_splice_tail_init(list, &ctx->rq_lists[type]);
2504         blk_mq_hctx_mark_pending(hctx, ctx);
2505         spin_unlock(&ctx->lock);
2506 out:
2507         blk_mq_run_hw_queue(hctx, run_queue_async);
2508 }
2509
2510 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2511 {
2512         struct request_queue *q = rq->q;
2513         struct blk_mq_ctx *ctx = rq->mq_ctx;
2514         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2515
2516         if (blk_rq_is_passthrough(rq)) {
2517                 /*
2518                  * Passthrough request have to be added to hctx->dispatch
2519                  * directly.  The device may be in a situation where it can't
2520                  * handle FS request, and always returns BLK_STS_RESOURCE for
2521                  * them, which gets them added to hctx->dispatch.
2522                  *
2523                  * If a passthrough request is required to unblock the queues,
2524                  * and it is added to the scheduler queue, there is no chance to
2525                  * dispatch it given we prioritize requests in hctx->dispatch.
2526                  */
2527                 blk_mq_request_bypass_insert(rq, flags);
2528         } else if (req_op(rq) == REQ_OP_FLUSH) {
2529                 /*
2530                  * Firstly normal IO request is inserted to scheduler queue or
2531                  * sw queue, meantime we add flush request to dispatch queue(
2532                  * hctx->dispatch) directly and there is at most one in-flight
2533                  * flush request for each hw queue, so it doesn't matter to add
2534                  * flush request to tail or front of the dispatch queue.
2535                  *
2536                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2537                  * command, and queueing it will fail when there is any
2538                  * in-flight normal IO request(NCQ command). When adding flush
2539                  * rq to the front of hctx->dispatch, it is easier to introduce
2540                  * extra time to flush rq's latency because of S_SCHED_RESTART
2541                  * compared with adding to the tail of dispatch queue, then
2542                  * chance of flush merge is increased, and less flush requests
2543                  * will be issued to controller. It is observed that ~10% time
2544                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2545                  * drive when adding flush rq to the front of hctx->dispatch.
2546                  *
2547                  * Simply queue flush rq to the front of hctx->dispatch so that
2548                  * intensive flush workloads can benefit in case of NCQ HW.
2549                  */
2550                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2551         } else if (q->elevator) {
2552                 LIST_HEAD(list);
2553
2554                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2555
2556                 list_add(&rq->queuelist, &list);
2557                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2558         } else {
2559                 trace_block_rq_insert(rq);
2560
2561                 spin_lock(&ctx->lock);
2562                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2563                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2564                 else
2565                         list_add_tail(&rq->queuelist,
2566                                       &ctx->rq_lists[hctx->type]);
2567                 blk_mq_hctx_mark_pending(hctx, ctx);
2568                 spin_unlock(&ctx->lock);
2569         }
2570 }
2571
2572 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2573                 unsigned int nr_segs)
2574 {
2575         int err;
2576
2577         if (bio->bi_opf & REQ_RAHEAD)
2578                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2579
2580         rq->__sector = bio->bi_iter.bi_sector;
2581         rq->write_hint = bio->bi_write_hint;
2582         blk_rq_bio_prep(rq, bio, nr_segs);
2583
2584         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2585         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2586         WARN_ON_ONCE(err);
2587
2588         blk_account_io_start(rq);
2589 }
2590
2591 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2592                                             struct request *rq, bool last)
2593 {
2594         struct request_queue *q = rq->q;
2595         struct blk_mq_queue_data bd = {
2596                 .rq = rq,
2597                 .last = last,
2598         };
2599         blk_status_t ret;
2600
2601         /*
2602          * For OK queue, we are done. For error, caller may kill it.
2603          * Any other error (busy), just add it to our list as we
2604          * previously would have done.
2605          */
2606         ret = q->mq_ops->queue_rq(hctx, &bd);
2607         switch (ret) {
2608         case BLK_STS_OK:
2609                 blk_mq_update_dispatch_busy(hctx, false);
2610                 break;
2611         case BLK_STS_RESOURCE:
2612         case BLK_STS_DEV_RESOURCE:
2613                 blk_mq_update_dispatch_busy(hctx, true);
2614                 __blk_mq_requeue_request(rq);
2615                 break;
2616         default:
2617                 blk_mq_update_dispatch_busy(hctx, false);
2618                 break;
2619         }
2620
2621         return ret;
2622 }
2623
2624 static bool blk_mq_get_budget_and_tag(struct request *rq)
2625 {
2626         int budget_token;
2627
2628         budget_token = blk_mq_get_dispatch_budget(rq->q);
2629         if (budget_token < 0)
2630                 return false;
2631         blk_mq_set_rq_budget_token(rq, budget_token);
2632         if (!blk_mq_get_driver_tag(rq)) {
2633                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2634                 return false;
2635         }
2636         return true;
2637 }
2638
2639 /**
2640  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2641  * @hctx: Pointer of the associated hardware queue.
2642  * @rq: Pointer to request to be sent.
2643  *
2644  * If the device has enough resources to accept a new request now, send the
2645  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2646  * we can try send it another time in the future. Requests inserted at this
2647  * queue have higher priority.
2648  */
2649 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2650                 struct request *rq)
2651 {
2652         blk_status_t ret;
2653
2654         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2655                 blk_mq_insert_request(rq, 0);
2656                 return;
2657         }
2658
2659         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2660                 blk_mq_insert_request(rq, 0);
2661                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2662                 return;
2663         }
2664
2665         ret = __blk_mq_issue_directly(hctx, rq, true);
2666         switch (ret) {
2667         case BLK_STS_OK:
2668                 break;
2669         case BLK_STS_RESOURCE:
2670         case BLK_STS_DEV_RESOURCE:
2671                 blk_mq_request_bypass_insert(rq, 0);
2672                 blk_mq_run_hw_queue(hctx, false);
2673                 break;
2674         default:
2675                 blk_mq_end_request(rq, ret);
2676                 break;
2677         }
2678 }
2679
2680 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2681 {
2682         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2683
2684         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2685                 blk_mq_insert_request(rq, 0);
2686                 return BLK_STS_OK;
2687         }
2688
2689         if (!blk_mq_get_budget_and_tag(rq))
2690                 return BLK_STS_RESOURCE;
2691         return __blk_mq_issue_directly(hctx, rq, last);
2692 }
2693
2694 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2695 {
2696         struct blk_mq_hw_ctx *hctx = NULL;
2697         struct request *rq;
2698         int queued = 0;
2699         blk_status_t ret = BLK_STS_OK;
2700
2701         while ((rq = rq_list_pop(&plug->mq_list))) {
2702                 bool last = rq_list_empty(plug->mq_list);
2703
2704                 if (hctx != rq->mq_hctx) {
2705                         if (hctx) {
2706                                 blk_mq_commit_rqs(hctx, queued, false);
2707                                 queued = 0;
2708                         }
2709                         hctx = rq->mq_hctx;
2710                 }
2711
2712                 ret = blk_mq_request_issue_directly(rq, last);
2713                 switch (ret) {
2714                 case BLK_STS_OK:
2715                         queued++;
2716                         break;
2717                 case BLK_STS_RESOURCE:
2718                 case BLK_STS_DEV_RESOURCE:
2719                         blk_mq_request_bypass_insert(rq, 0);
2720                         blk_mq_run_hw_queue(hctx, false);
2721                         goto out;
2722                 default:
2723                         blk_mq_end_request(rq, ret);
2724                         break;
2725                 }
2726         }
2727
2728 out:
2729         if (ret != BLK_STS_OK)
2730                 blk_mq_commit_rqs(hctx, queued, false);
2731 }
2732
2733 static void __blk_mq_flush_plug_list(struct request_queue *q,
2734                                      struct blk_plug *plug)
2735 {
2736         if (blk_queue_quiesced(q))
2737                 return;
2738         q->mq_ops->queue_rqs(&plug->mq_list);
2739 }
2740
2741 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2742 {
2743         struct blk_mq_hw_ctx *this_hctx = NULL;
2744         struct blk_mq_ctx *this_ctx = NULL;
2745         struct request *requeue_list = NULL;
2746         struct request **requeue_lastp = &requeue_list;
2747         unsigned int depth = 0;
2748         bool is_passthrough = false;
2749         LIST_HEAD(list);
2750
2751         do {
2752                 struct request *rq = rq_list_pop(&plug->mq_list);
2753
2754                 if (!this_hctx) {
2755                         this_hctx = rq->mq_hctx;
2756                         this_ctx = rq->mq_ctx;
2757                         is_passthrough = blk_rq_is_passthrough(rq);
2758                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2759                            is_passthrough != blk_rq_is_passthrough(rq)) {
2760                         rq_list_add_tail(&requeue_lastp, rq);
2761                         continue;
2762                 }
2763                 list_add(&rq->queuelist, &list);
2764                 depth++;
2765         } while (!rq_list_empty(plug->mq_list));
2766
2767         plug->mq_list = requeue_list;
2768         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2769
2770         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2771         /* passthrough requests should never be issued to the I/O scheduler */
2772         if (is_passthrough) {
2773                 spin_lock(&this_hctx->lock);
2774                 list_splice_tail_init(&list, &this_hctx->dispatch);
2775                 spin_unlock(&this_hctx->lock);
2776                 blk_mq_run_hw_queue(this_hctx, from_sched);
2777         } else if (this_hctx->queue->elevator) {
2778                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2779                                 &list, 0);
2780                 blk_mq_run_hw_queue(this_hctx, from_sched);
2781         } else {
2782                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2783         }
2784         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2785 }
2786
2787 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2788 {
2789         struct request *rq;
2790
2791         /*
2792          * We may have been called recursively midway through handling
2793          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2794          * To avoid mq_list changing under our feet, clear rq_count early and
2795          * bail out specifically if rq_count is 0 rather than checking
2796          * whether the mq_list is empty.
2797          */
2798         if (plug->rq_count == 0)
2799                 return;
2800         plug->rq_count = 0;
2801
2802         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2803                 struct request_queue *q;
2804
2805                 rq = rq_list_peek(&plug->mq_list);
2806                 q = rq->q;
2807
2808                 /*
2809                  * Peek first request and see if we have a ->queue_rqs() hook.
2810                  * If we do, we can dispatch the whole plug list in one go. We
2811                  * already know at this point that all requests belong to the
2812                  * same queue, caller must ensure that's the case.
2813                  */
2814                 if (q->mq_ops->queue_rqs) {
2815                         blk_mq_run_dispatch_ops(q,
2816                                 __blk_mq_flush_plug_list(q, plug));
2817                         if (rq_list_empty(plug->mq_list))
2818                                 return;
2819                 }
2820
2821                 blk_mq_run_dispatch_ops(q,
2822                                 blk_mq_plug_issue_direct(plug));
2823                 if (rq_list_empty(plug->mq_list))
2824                         return;
2825         }
2826
2827         do {
2828                 blk_mq_dispatch_plug_list(plug, from_schedule);
2829         } while (!rq_list_empty(plug->mq_list));
2830 }
2831
2832 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2833                 struct list_head *list)
2834 {
2835         int queued = 0;
2836         blk_status_t ret = BLK_STS_OK;
2837
2838         while (!list_empty(list)) {
2839                 struct request *rq = list_first_entry(list, struct request,
2840                                 queuelist);
2841
2842                 list_del_init(&rq->queuelist);
2843                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2844                 switch (ret) {
2845                 case BLK_STS_OK:
2846                         queued++;
2847                         break;
2848                 case BLK_STS_RESOURCE:
2849                 case BLK_STS_DEV_RESOURCE:
2850                         blk_mq_request_bypass_insert(rq, 0);
2851                         if (list_empty(list))
2852                                 blk_mq_run_hw_queue(hctx, false);
2853                         goto out;
2854                 default:
2855                         blk_mq_end_request(rq, ret);
2856                         break;
2857                 }
2858         }
2859
2860 out:
2861         if (ret != BLK_STS_OK)
2862                 blk_mq_commit_rqs(hctx, queued, false);
2863 }
2864
2865 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2866                                      struct bio *bio, unsigned int nr_segs)
2867 {
2868         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2869                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2870                         return true;
2871                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2872                         return true;
2873         }
2874         return false;
2875 }
2876
2877 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2878                                                struct blk_plug *plug,
2879                                                struct bio *bio,
2880                                                unsigned int nsegs)
2881 {
2882         struct blk_mq_alloc_data data = {
2883                 .q              = q,
2884                 .nr_tags        = 1,
2885                 .cmd_flags      = bio->bi_opf,
2886         };
2887         struct request *rq;
2888
2889         rq_qos_throttle(q, bio);
2890
2891         if (plug) {
2892                 data.nr_tags = plug->nr_ios;
2893                 plug->nr_ios = 1;
2894                 data.cached_rq = &plug->cached_rq;
2895         }
2896
2897         rq = __blk_mq_alloc_requests(&data);
2898         if (rq)
2899                 return rq;
2900         rq_qos_cleanup(q, bio);
2901         if (bio->bi_opf & REQ_NOWAIT)
2902                 bio_wouldblock_error(bio);
2903         return NULL;
2904 }
2905
2906 /*
2907  * Check if there is a suitable cached request and return it.
2908  */
2909 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2910                 struct request_queue *q, blk_opf_t opf)
2911 {
2912         enum hctx_type type = blk_mq_get_hctx_type(opf);
2913         struct request *rq;
2914
2915         if (!plug)
2916                 return NULL;
2917         rq = rq_list_peek(&plug->cached_rq);
2918         if (!rq || rq->q != q)
2919                 return NULL;
2920         if (type != rq->mq_hctx->type &&
2921             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2922                 return NULL;
2923         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2924                 return NULL;
2925         return rq;
2926 }
2927
2928 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2929                 struct bio *bio)
2930 {
2931         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2932
2933         /*
2934          * If any qos ->throttle() end up blocking, we will have flushed the
2935          * plug and hence killed the cached_rq list as well. Pop this entry
2936          * before we throttle.
2937          */
2938         plug->cached_rq = rq_list_next(rq);
2939         rq_qos_throttle(rq->q, bio);
2940
2941         blk_mq_rq_time_init(rq, 0);
2942         rq->cmd_flags = bio->bi_opf;
2943         INIT_LIST_HEAD(&rq->queuelist);
2944 }
2945
2946 /**
2947  * blk_mq_submit_bio - Create and send a request to block device.
2948  * @bio: Bio pointer.
2949  *
2950  * Builds up a request structure from @q and @bio and send to the device. The
2951  * request may not be queued directly to hardware if:
2952  * * This request can be merged with another one
2953  * * We want to place request at plug queue for possible future merging
2954  * * There is an IO scheduler active at this queue
2955  *
2956  * It will not queue the request if there is an error with the bio, or at the
2957  * request creation.
2958  */
2959 void blk_mq_submit_bio(struct bio *bio)
2960 {
2961         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2962         struct blk_plug *plug = blk_mq_plug(bio);
2963         const int is_sync = op_is_sync(bio->bi_opf);
2964         struct blk_mq_hw_ctx *hctx;
2965         unsigned int nr_segs = 1;
2966         struct request *rq;
2967         blk_status_t ret;
2968
2969         bio = blk_queue_bounce(bio, q);
2970
2971         /*
2972          * If the plug has a cached request for this queue, try use it.
2973          *
2974          * The cached request already holds a q_usage_counter reference and we
2975          * don't have to acquire a new one if we use it.
2976          */
2977         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2978         if (!rq) {
2979                 if (unlikely(bio_queue_enter(bio)))
2980                         return;
2981         }
2982
2983         if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2984                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2985                 if (!bio)
2986                         goto queue_exit;
2987         }
2988         if (!bio_integrity_prep(bio))
2989                 goto queue_exit;
2990
2991         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2992                 goto queue_exit;
2993
2994         if (!rq) {
2995                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2996                 if (unlikely(!rq))
2997                         goto queue_exit;
2998         } else {
2999                 blk_mq_use_cached_rq(rq, plug, bio);
3000         }
3001
3002         trace_block_getrq(bio);
3003
3004         rq_qos_track(q, rq, bio);
3005
3006         blk_mq_bio_to_request(rq, bio, nr_segs);
3007
3008         ret = blk_crypto_rq_get_keyslot(rq);
3009         if (ret != BLK_STS_OK) {
3010                 bio->bi_status = ret;
3011                 bio_endio(bio);
3012                 blk_mq_free_request(rq);
3013                 return;
3014         }
3015
3016         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3017                 return;
3018
3019         if (plug) {
3020                 blk_add_rq_to_plug(plug, rq);
3021                 return;
3022         }
3023
3024         hctx = rq->mq_hctx;
3025         if ((rq->rq_flags & RQF_USE_SCHED) ||
3026             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3027                 blk_mq_insert_request(rq, 0);
3028                 blk_mq_run_hw_queue(hctx, true);
3029         } else {
3030                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3031         }
3032         return;
3033
3034 queue_exit:
3035         /*
3036          * Don't drop the queue reference if we were trying to use a cached
3037          * request and thus didn't acquire one.
3038          */
3039         if (!rq)
3040                 blk_queue_exit(q);
3041 }
3042
3043 #ifdef CONFIG_BLK_MQ_STACKING
3044 /**
3045  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3046  * @rq: the request being queued
3047  */
3048 blk_status_t blk_insert_cloned_request(struct request *rq)
3049 {
3050         struct request_queue *q = rq->q;
3051         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3052         unsigned int max_segments = blk_rq_get_max_segments(rq);
3053         blk_status_t ret;
3054
3055         if (blk_rq_sectors(rq) > max_sectors) {
3056                 /*
3057                  * SCSI device does not have a good way to return if
3058                  * Write Same/Zero is actually supported. If a device rejects
3059                  * a non-read/write command (discard, write same,etc.) the
3060                  * low-level device driver will set the relevant queue limit to
3061                  * 0 to prevent blk-lib from issuing more of the offending
3062                  * operations. Commands queued prior to the queue limit being
3063                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3064                  * errors being propagated to upper layers.
3065                  */
3066                 if (max_sectors == 0)
3067                         return BLK_STS_NOTSUPP;
3068
3069                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3070                         __func__, blk_rq_sectors(rq), max_sectors);
3071                 return BLK_STS_IOERR;
3072         }
3073
3074         /*
3075          * The queue settings related to segment counting may differ from the
3076          * original queue.
3077          */
3078         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3079         if (rq->nr_phys_segments > max_segments) {
3080                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3081                         __func__, rq->nr_phys_segments, max_segments);
3082                 return BLK_STS_IOERR;
3083         }
3084
3085         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3086                 return BLK_STS_IOERR;
3087
3088         ret = blk_crypto_rq_get_keyslot(rq);
3089         if (ret != BLK_STS_OK)
3090                 return ret;
3091
3092         blk_account_io_start(rq);
3093
3094         /*
3095          * Since we have a scheduler attached on the top device,
3096          * bypass a potential scheduler on the bottom device for
3097          * insert.
3098          */
3099         blk_mq_run_dispatch_ops(q,
3100                         ret = blk_mq_request_issue_directly(rq, true));
3101         if (ret)
3102                 blk_account_io_done(rq, blk_time_get_ns());
3103         return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3106
3107 /**
3108  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3109  * @rq: the clone request to be cleaned up
3110  *
3111  * Description:
3112  *     Free all bios in @rq for a cloned request.
3113  */
3114 void blk_rq_unprep_clone(struct request *rq)
3115 {
3116         struct bio *bio;
3117
3118         while ((bio = rq->bio) != NULL) {
3119                 rq->bio = bio->bi_next;
3120
3121                 bio_put(bio);
3122         }
3123 }
3124 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3125
3126 /**
3127  * blk_rq_prep_clone - Helper function to setup clone request
3128  * @rq: the request to be setup
3129  * @rq_src: original request to be cloned
3130  * @bs: bio_set that bios for clone are allocated from
3131  * @gfp_mask: memory allocation mask for bio
3132  * @bio_ctr: setup function to be called for each clone bio.
3133  *           Returns %0 for success, non %0 for failure.
3134  * @data: private data to be passed to @bio_ctr
3135  *
3136  * Description:
3137  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3138  *     Also, pages which the original bios are pointing to are not copied
3139  *     and the cloned bios just point same pages.
3140  *     So cloned bios must be completed before original bios, which means
3141  *     the caller must complete @rq before @rq_src.
3142  */
3143 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3144                       struct bio_set *bs, gfp_t gfp_mask,
3145                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3146                       void *data)
3147 {
3148         struct bio *bio, *bio_src;
3149
3150         if (!bs)
3151                 bs = &fs_bio_set;
3152
3153         __rq_for_each_bio(bio_src, rq_src) {
3154                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3155                                       bs);
3156                 if (!bio)
3157                         goto free_and_out;
3158
3159                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3160                         goto free_and_out;
3161
3162                 if (rq->bio) {
3163                         rq->biotail->bi_next = bio;
3164                         rq->biotail = bio;
3165                 } else {
3166                         rq->bio = rq->biotail = bio;
3167                 }
3168                 bio = NULL;
3169         }
3170
3171         /* Copy attributes of the original request to the clone request. */
3172         rq->__sector = blk_rq_pos(rq_src);
3173         rq->__data_len = blk_rq_bytes(rq_src);
3174         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3175                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3176                 rq->special_vec = rq_src->special_vec;
3177         }
3178         rq->nr_phys_segments = rq_src->nr_phys_segments;
3179         rq->ioprio = rq_src->ioprio;
3180         rq->write_hint = rq_src->write_hint;
3181
3182         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3183                 goto free_and_out;
3184
3185         return 0;
3186
3187 free_and_out:
3188         if (bio)
3189                 bio_put(bio);
3190         blk_rq_unprep_clone(rq);
3191
3192         return -ENOMEM;
3193 }
3194 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3195 #endif /* CONFIG_BLK_MQ_STACKING */
3196
3197 /*
3198  * Steal bios from a request and add them to a bio list.
3199  * The request must not have been partially completed before.
3200  */
3201 void blk_steal_bios(struct bio_list *list, struct request *rq)
3202 {
3203         if (rq->bio) {
3204                 if (list->tail)
3205                         list->tail->bi_next = rq->bio;
3206                 else
3207                         list->head = rq->bio;
3208                 list->tail = rq->biotail;
3209
3210                 rq->bio = NULL;
3211                 rq->biotail = NULL;
3212         }
3213
3214         rq->__data_len = 0;
3215 }
3216 EXPORT_SYMBOL_GPL(blk_steal_bios);
3217
3218 static size_t order_to_size(unsigned int order)
3219 {
3220         return (size_t)PAGE_SIZE << order;
3221 }
3222
3223 /* called before freeing request pool in @tags */
3224 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3225                                     struct blk_mq_tags *tags)
3226 {
3227         struct page *page;
3228         unsigned long flags;
3229
3230         /*
3231          * There is no need to clear mapping if driver tags is not initialized
3232          * or the mapping belongs to the driver tags.
3233          */
3234         if (!drv_tags || drv_tags == tags)
3235                 return;
3236
3237         list_for_each_entry(page, &tags->page_list, lru) {
3238                 unsigned long start = (unsigned long)page_address(page);
3239                 unsigned long end = start + order_to_size(page->private);
3240                 int i;
3241
3242                 for (i = 0; i < drv_tags->nr_tags; i++) {
3243                         struct request *rq = drv_tags->rqs[i];
3244                         unsigned long rq_addr = (unsigned long)rq;
3245
3246                         if (rq_addr >= start && rq_addr < end) {
3247                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3248                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3249                         }
3250                 }
3251         }
3252
3253         /*
3254          * Wait until all pending iteration is done.
3255          *
3256          * Request reference is cleared and it is guaranteed to be observed
3257          * after the ->lock is released.
3258          */
3259         spin_lock_irqsave(&drv_tags->lock, flags);
3260         spin_unlock_irqrestore(&drv_tags->lock, flags);
3261 }
3262
3263 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3264                      unsigned int hctx_idx)
3265 {
3266         struct blk_mq_tags *drv_tags;
3267         struct page *page;
3268
3269         if (list_empty(&tags->page_list))
3270                 return;
3271
3272         if (blk_mq_is_shared_tags(set->flags))
3273                 drv_tags = set->shared_tags;
3274         else
3275                 drv_tags = set->tags[hctx_idx];
3276
3277         if (tags->static_rqs && set->ops->exit_request) {
3278                 int i;
3279
3280                 for (i = 0; i < tags->nr_tags; i++) {
3281                         struct request *rq = tags->static_rqs[i];
3282
3283                         if (!rq)
3284                                 continue;
3285                         set->ops->exit_request(set, rq, hctx_idx);
3286                         tags->static_rqs[i] = NULL;
3287                 }
3288         }
3289
3290         blk_mq_clear_rq_mapping(drv_tags, tags);
3291
3292         while (!list_empty(&tags->page_list)) {
3293                 page = list_first_entry(&tags->page_list, struct page, lru);
3294                 list_del_init(&page->lru);
3295                 /*
3296                  * Remove kmemleak object previously allocated in
3297                  * blk_mq_alloc_rqs().
3298                  */
3299                 kmemleak_free(page_address(page));
3300                 __free_pages(page, page->private);
3301         }
3302 }
3303
3304 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3305 {
3306         kfree(tags->rqs);
3307         tags->rqs = NULL;
3308         kfree(tags->static_rqs);
3309         tags->static_rqs = NULL;
3310
3311         blk_mq_free_tags(tags);
3312 }
3313
3314 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3315                 unsigned int hctx_idx)
3316 {
3317         int i;
3318
3319         for (i = 0; i < set->nr_maps; i++) {
3320                 unsigned int start = set->map[i].queue_offset;
3321                 unsigned int end = start + set->map[i].nr_queues;
3322
3323                 if (hctx_idx >= start && hctx_idx < end)
3324                         break;
3325         }
3326
3327         if (i >= set->nr_maps)
3328                 i = HCTX_TYPE_DEFAULT;
3329
3330         return i;
3331 }
3332
3333 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3334                 unsigned int hctx_idx)
3335 {
3336         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3337
3338         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3339 }
3340
3341 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3342                                                unsigned int hctx_idx,
3343                                                unsigned int nr_tags,
3344                                                unsigned int reserved_tags)
3345 {
3346         int node = blk_mq_get_hctx_node(set, hctx_idx);
3347         struct blk_mq_tags *tags;
3348
3349         if (node == NUMA_NO_NODE)
3350                 node = set->numa_node;
3351
3352         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3353                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3354         if (!tags)
3355                 return NULL;
3356
3357         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3358                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3359                                  node);
3360         if (!tags->rqs)
3361                 goto err_free_tags;
3362
3363         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3364                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3365                                         node);
3366         if (!tags->static_rqs)
3367                 goto err_free_rqs;
3368
3369         return tags;
3370
3371 err_free_rqs:
3372         kfree(tags->rqs);
3373 err_free_tags:
3374         blk_mq_free_tags(tags);
3375         return NULL;
3376 }
3377
3378 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3379                                unsigned int hctx_idx, int node)
3380 {
3381         int ret;
3382
3383         if (set->ops->init_request) {
3384                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3385                 if (ret)
3386                         return ret;
3387         }
3388
3389         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3390         return 0;
3391 }
3392
3393 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3394                             struct blk_mq_tags *tags,
3395                             unsigned int hctx_idx, unsigned int depth)
3396 {
3397         unsigned int i, j, entries_per_page, max_order = 4;
3398         int node = blk_mq_get_hctx_node(set, hctx_idx);
3399         size_t rq_size, left;
3400
3401         if (node == NUMA_NO_NODE)
3402                 node = set->numa_node;
3403
3404         INIT_LIST_HEAD(&tags->page_list);
3405
3406         /*
3407          * rq_size is the size of the request plus driver payload, rounded
3408          * to the cacheline size
3409          */
3410         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3411                                 cache_line_size());
3412         left = rq_size * depth;
3413
3414         for (i = 0; i < depth; ) {
3415                 int this_order = max_order;
3416                 struct page *page;
3417                 int to_do;
3418                 void *p;
3419
3420                 while (this_order && left < order_to_size(this_order - 1))
3421                         this_order--;
3422
3423                 do {
3424                         page = alloc_pages_node(node,
3425                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3426                                 this_order);
3427                         if (page)
3428                                 break;
3429                         if (!this_order--)
3430                                 break;
3431                         if (order_to_size(this_order) < rq_size)
3432                                 break;
3433                 } while (1);
3434
3435                 if (!page)
3436                         goto fail;
3437
3438                 page->private = this_order;
3439                 list_add_tail(&page->lru, &tags->page_list);
3440
3441                 p = page_address(page);
3442                 /*
3443                  * Allow kmemleak to scan these pages as they contain pointers
3444                  * to additional allocations like via ops->init_request().
3445                  */
3446                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3447                 entries_per_page = order_to_size(this_order) / rq_size;
3448                 to_do = min(entries_per_page, depth - i);
3449                 left -= to_do * rq_size;
3450                 for (j = 0; j < to_do; j++) {
3451                         struct request *rq = p;
3452
3453                         tags->static_rqs[i] = rq;
3454                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3455                                 tags->static_rqs[i] = NULL;
3456                                 goto fail;
3457                         }
3458
3459                         p += rq_size;
3460                         i++;
3461                 }
3462         }
3463         return 0;
3464
3465 fail:
3466         blk_mq_free_rqs(set, tags, hctx_idx);
3467         return -ENOMEM;
3468 }
3469
3470 struct rq_iter_data {
3471         struct blk_mq_hw_ctx *hctx;
3472         bool has_rq;
3473 };
3474
3475 static bool blk_mq_has_request(struct request *rq, void *data)
3476 {
3477         struct rq_iter_data *iter_data = data;
3478
3479         if (rq->mq_hctx != iter_data->hctx)
3480                 return true;
3481         iter_data->has_rq = true;
3482         return false;
3483 }
3484
3485 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3486 {
3487         struct blk_mq_tags *tags = hctx->sched_tags ?
3488                         hctx->sched_tags : hctx->tags;
3489         struct rq_iter_data data = {
3490                 .hctx   = hctx,
3491         };
3492
3493         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3494         return data.has_rq;
3495 }
3496
3497 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3498                 unsigned int this_cpu)
3499 {
3500         enum hctx_type type = hctx->type;
3501         int cpu;
3502
3503         /*
3504          * hctx->cpumask has to rule out isolated CPUs, but userspace still
3505          * might submit IOs on these isolated CPUs, so use the queue map to
3506          * check if all CPUs mapped to this hctx are offline
3507          */
3508         for_each_online_cpu(cpu) {
3509                 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3510                                 type, cpu);
3511
3512                 if (h != hctx)
3513                         continue;
3514
3515                 /* this hctx has at least one online CPU */
3516                 if (this_cpu != cpu)
3517                         return true;
3518         }
3519
3520         return false;
3521 }
3522
3523 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3524 {
3525         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3526                         struct blk_mq_hw_ctx, cpuhp_online);
3527
3528         if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3529                 return 0;
3530
3531         /*
3532          * Prevent new request from being allocated on the current hctx.
3533          *
3534          * The smp_mb__after_atomic() Pairs with the implied barrier in
3535          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3536          * seen once we return from the tag allocator.
3537          */
3538         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3539         smp_mb__after_atomic();
3540
3541         /*
3542          * Try to grab a reference to the queue and wait for any outstanding
3543          * requests.  If we could not grab a reference the queue has been
3544          * frozen and there are no requests.
3545          */
3546         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3547                 while (blk_mq_hctx_has_requests(hctx))
3548                         msleep(5);
3549                 percpu_ref_put(&hctx->queue->q_usage_counter);
3550         }
3551
3552         return 0;
3553 }
3554
3555 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3556 {
3557         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3558                         struct blk_mq_hw_ctx, cpuhp_online);
3559
3560         if (cpumask_test_cpu(cpu, hctx->cpumask))
3561                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3562         return 0;
3563 }
3564
3565 /*
3566  * 'cpu' is going away. splice any existing rq_list entries from this
3567  * software queue to the hw queue dispatch list, and ensure that it
3568  * gets run.
3569  */
3570 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3571 {
3572         struct blk_mq_hw_ctx *hctx;
3573         struct blk_mq_ctx *ctx;
3574         LIST_HEAD(tmp);
3575         enum hctx_type type;
3576
3577         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3578         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3579                 return 0;
3580
3581         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3582         type = hctx->type;
3583
3584         spin_lock(&ctx->lock);
3585         if (!list_empty(&ctx->rq_lists[type])) {
3586                 list_splice_init(&ctx->rq_lists[type], &tmp);
3587                 blk_mq_hctx_clear_pending(hctx, ctx);
3588         }
3589         spin_unlock(&ctx->lock);
3590
3591         if (list_empty(&tmp))
3592                 return 0;
3593
3594         spin_lock(&hctx->lock);
3595         list_splice_tail_init(&tmp, &hctx->dispatch);
3596         spin_unlock(&hctx->lock);
3597
3598         blk_mq_run_hw_queue(hctx, true);
3599         return 0;
3600 }
3601
3602 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3603 {
3604         if (!(hctx->flags & BLK_MQ_F_STACKING))
3605                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3606                                                     &hctx->cpuhp_online);
3607         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3608                                             &hctx->cpuhp_dead);
3609 }
3610
3611 /*
3612  * Before freeing hw queue, clearing the flush request reference in
3613  * tags->rqs[] for avoiding potential UAF.
3614  */
3615 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3616                 unsigned int queue_depth, struct request *flush_rq)
3617 {
3618         int i;
3619         unsigned long flags;
3620
3621         /* The hw queue may not be mapped yet */
3622         if (!tags)
3623                 return;
3624
3625         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3626
3627         for (i = 0; i < queue_depth; i++)
3628                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3629
3630         /*
3631          * Wait until all pending iteration is done.
3632          *
3633          * Request reference is cleared and it is guaranteed to be observed
3634          * after the ->lock is released.
3635          */
3636         spin_lock_irqsave(&tags->lock, flags);
3637         spin_unlock_irqrestore(&tags->lock, flags);
3638 }
3639
3640 /* hctx->ctxs will be freed in queue's release handler */
3641 static void blk_mq_exit_hctx(struct request_queue *q,
3642                 struct blk_mq_tag_set *set,
3643                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3644 {
3645         struct request *flush_rq = hctx->fq->flush_rq;
3646
3647         if (blk_mq_hw_queue_mapped(hctx))
3648                 blk_mq_tag_idle(hctx);
3649
3650         if (blk_queue_init_done(q))
3651                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3652                                 set->queue_depth, flush_rq);
3653         if (set->ops->exit_request)
3654                 set->ops->exit_request(set, flush_rq, hctx_idx);
3655
3656         if (set->ops->exit_hctx)
3657                 set->ops->exit_hctx(hctx, hctx_idx);
3658
3659         blk_mq_remove_cpuhp(hctx);
3660
3661         xa_erase(&q->hctx_table, hctx_idx);
3662
3663         spin_lock(&q->unused_hctx_lock);
3664         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3665         spin_unlock(&q->unused_hctx_lock);
3666 }
3667
3668 static void blk_mq_exit_hw_queues(struct request_queue *q,
3669                 struct blk_mq_tag_set *set, int nr_queue)
3670 {
3671         struct blk_mq_hw_ctx *hctx;
3672         unsigned long i;
3673
3674         queue_for_each_hw_ctx(q, hctx, i) {
3675                 if (i == nr_queue)
3676                         break;
3677                 blk_mq_exit_hctx(q, set, hctx, i);
3678         }
3679 }
3680
3681 static int blk_mq_init_hctx(struct request_queue *q,
3682                 struct blk_mq_tag_set *set,
3683                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3684 {
3685         hctx->queue_num = hctx_idx;
3686
3687         if (!(hctx->flags & BLK_MQ_F_STACKING))
3688                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3689                                 &hctx->cpuhp_online);
3690         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3691
3692         hctx->tags = set->tags[hctx_idx];
3693
3694         if (set->ops->init_hctx &&
3695             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3696                 goto unregister_cpu_notifier;
3697
3698         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3699                                 hctx->numa_node))
3700                 goto exit_hctx;
3701
3702         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3703                 goto exit_flush_rq;
3704
3705         return 0;
3706
3707  exit_flush_rq:
3708         if (set->ops->exit_request)
3709                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3710  exit_hctx:
3711         if (set->ops->exit_hctx)
3712                 set->ops->exit_hctx(hctx, hctx_idx);
3713  unregister_cpu_notifier:
3714         blk_mq_remove_cpuhp(hctx);
3715         return -1;
3716 }
3717
3718 static struct blk_mq_hw_ctx *
3719 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3720                 int node)
3721 {
3722         struct blk_mq_hw_ctx *hctx;
3723         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3724
3725         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3726         if (!hctx)
3727                 goto fail_alloc_hctx;
3728
3729         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3730                 goto free_hctx;
3731
3732         atomic_set(&hctx->nr_active, 0);
3733         if (node == NUMA_NO_NODE)
3734                 node = set->numa_node;
3735         hctx->numa_node = node;
3736
3737         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3738         spin_lock_init(&hctx->lock);
3739         INIT_LIST_HEAD(&hctx->dispatch);
3740         hctx->queue = q;
3741         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3742
3743         INIT_LIST_HEAD(&hctx->hctx_list);
3744
3745         /*
3746          * Allocate space for all possible cpus to avoid allocation at
3747          * runtime
3748          */
3749         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3750                         gfp, node);
3751         if (!hctx->ctxs)
3752                 goto free_cpumask;
3753
3754         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3755                                 gfp, node, false, false))
3756                 goto free_ctxs;
3757         hctx->nr_ctx = 0;
3758
3759         spin_lock_init(&hctx->dispatch_wait_lock);
3760         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3761         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3762
3763         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3764         if (!hctx->fq)
3765                 goto free_bitmap;
3766
3767         blk_mq_hctx_kobj_init(hctx);
3768
3769         return hctx;
3770
3771  free_bitmap:
3772         sbitmap_free(&hctx->ctx_map);
3773  free_ctxs:
3774         kfree(hctx->ctxs);
3775  free_cpumask:
3776         free_cpumask_var(hctx->cpumask);
3777  free_hctx:
3778         kfree(hctx);
3779  fail_alloc_hctx:
3780         return NULL;
3781 }
3782
3783 static void blk_mq_init_cpu_queues(struct request_queue *q,
3784                                    unsigned int nr_hw_queues)
3785 {
3786         struct blk_mq_tag_set *set = q->tag_set;
3787         unsigned int i, j;
3788
3789         for_each_possible_cpu(i) {
3790                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3791                 struct blk_mq_hw_ctx *hctx;
3792                 int k;
3793
3794                 __ctx->cpu = i;
3795                 spin_lock_init(&__ctx->lock);
3796                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3797                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3798
3799                 __ctx->queue = q;
3800
3801                 /*
3802                  * Set local node, IFF we have more than one hw queue. If
3803                  * not, we remain on the home node of the device
3804                  */
3805                 for (j = 0; j < set->nr_maps; j++) {
3806                         hctx = blk_mq_map_queue_type(q, j, i);
3807                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3808                                 hctx->numa_node = cpu_to_node(i);
3809                 }
3810         }
3811 }
3812
3813 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3814                                              unsigned int hctx_idx,
3815                                              unsigned int depth)
3816 {
3817         struct blk_mq_tags *tags;
3818         int ret;
3819
3820         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3821         if (!tags)
3822                 return NULL;
3823
3824         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3825         if (ret) {
3826                 blk_mq_free_rq_map(tags);
3827                 return NULL;
3828         }
3829
3830         return tags;
3831 }
3832
3833 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3834                                        int hctx_idx)
3835 {
3836         if (blk_mq_is_shared_tags(set->flags)) {
3837                 set->tags[hctx_idx] = set->shared_tags;
3838
3839                 return true;
3840         }
3841
3842         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3843                                                        set->queue_depth);
3844
3845         return set->tags[hctx_idx];
3846 }
3847
3848 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3849                              struct blk_mq_tags *tags,
3850                              unsigned int hctx_idx)
3851 {
3852         if (tags) {
3853                 blk_mq_free_rqs(set, tags, hctx_idx);
3854                 blk_mq_free_rq_map(tags);
3855         }
3856 }
3857
3858 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3859                                       unsigned int hctx_idx)
3860 {
3861         if (!blk_mq_is_shared_tags(set->flags))
3862                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3863
3864         set->tags[hctx_idx] = NULL;
3865 }
3866
3867 static void blk_mq_map_swqueue(struct request_queue *q)
3868 {
3869         unsigned int j, hctx_idx;
3870         unsigned long i;
3871         struct blk_mq_hw_ctx *hctx;
3872         struct blk_mq_ctx *ctx;
3873         struct blk_mq_tag_set *set = q->tag_set;
3874
3875         queue_for_each_hw_ctx(q, hctx, i) {
3876                 cpumask_clear(hctx->cpumask);
3877                 hctx->nr_ctx = 0;
3878                 hctx->dispatch_from = NULL;
3879         }
3880
3881         /*
3882          * Map software to hardware queues.
3883          *
3884          * If the cpu isn't present, the cpu is mapped to first hctx.
3885          */
3886         for_each_possible_cpu(i) {
3887
3888                 ctx = per_cpu_ptr(q->queue_ctx, i);
3889                 for (j = 0; j < set->nr_maps; j++) {
3890                         if (!set->map[j].nr_queues) {
3891                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3892                                                 HCTX_TYPE_DEFAULT, i);
3893                                 continue;
3894                         }
3895                         hctx_idx = set->map[j].mq_map[i];
3896                         /* unmapped hw queue can be remapped after CPU topo changed */
3897                         if (!set->tags[hctx_idx] &&
3898                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3899                                 /*
3900                                  * If tags initialization fail for some hctx,
3901                                  * that hctx won't be brought online.  In this
3902                                  * case, remap the current ctx to hctx[0] which
3903                                  * is guaranteed to always have tags allocated
3904                                  */
3905                                 set->map[j].mq_map[i] = 0;
3906                         }
3907
3908                         hctx = blk_mq_map_queue_type(q, j, i);
3909                         ctx->hctxs[j] = hctx;
3910                         /*
3911                          * If the CPU is already set in the mask, then we've
3912                          * mapped this one already. This can happen if
3913                          * devices share queues across queue maps.
3914                          */
3915                         if (cpumask_test_cpu(i, hctx->cpumask))
3916                                 continue;
3917
3918                         cpumask_set_cpu(i, hctx->cpumask);
3919                         hctx->type = j;
3920                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3921                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3922
3923                         /*
3924                          * If the nr_ctx type overflows, we have exceeded the
3925                          * amount of sw queues we can support.
3926                          */
3927                         BUG_ON(!hctx->nr_ctx);
3928                 }
3929
3930                 for (; j < HCTX_MAX_TYPES; j++)
3931                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3932                                         HCTX_TYPE_DEFAULT, i);
3933         }
3934
3935         queue_for_each_hw_ctx(q, hctx, i) {
3936                 int cpu;
3937
3938                 /*
3939                  * If no software queues are mapped to this hardware queue,
3940                  * disable it and free the request entries.
3941                  */
3942                 if (!hctx->nr_ctx) {
3943                         /* Never unmap queue 0.  We need it as a
3944                          * fallback in case of a new remap fails
3945                          * allocation
3946                          */
3947                         if (i)
3948                                 __blk_mq_free_map_and_rqs(set, i);
3949
3950                         hctx->tags = NULL;
3951                         continue;
3952                 }
3953
3954                 hctx->tags = set->tags[i];
3955                 WARN_ON(!hctx->tags);
3956
3957                 /*
3958                  * Set the map size to the number of mapped software queues.
3959                  * This is more accurate and more efficient than looping
3960                  * over all possibly mapped software queues.
3961                  */
3962                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3963
3964                 /*
3965                  * Rule out isolated CPUs from hctx->cpumask to avoid
3966                  * running block kworker on isolated CPUs
3967                  */
3968                 for_each_cpu(cpu, hctx->cpumask) {
3969                         if (cpu_is_isolated(cpu))
3970                                 cpumask_clear_cpu(cpu, hctx->cpumask);
3971                 }
3972
3973                 /*
3974                  * Initialize batch roundrobin counts
3975                  */
3976                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3977                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3978         }
3979 }
3980
3981 /*
3982  * Caller needs to ensure that we're either frozen/quiesced, or that
3983  * the queue isn't live yet.
3984  */
3985 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3986 {
3987         struct blk_mq_hw_ctx *hctx;
3988         unsigned long i;
3989
3990         queue_for_each_hw_ctx(q, hctx, i) {
3991                 if (shared) {
3992                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3993                 } else {
3994                         blk_mq_tag_idle(hctx);
3995                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3996                 }
3997         }
3998 }
3999
4000 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4001                                          bool shared)
4002 {
4003         struct request_queue *q;
4004
4005         lockdep_assert_held(&set->tag_list_lock);
4006
4007         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4008                 blk_mq_freeze_queue(q);
4009                 queue_set_hctx_shared(q, shared);
4010                 blk_mq_unfreeze_queue(q);
4011         }
4012 }
4013
4014 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4015 {
4016         struct blk_mq_tag_set *set = q->tag_set;
4017
4018         mutex_lock(&set->tag_list_lock);
4019         list_del(&q->tag_set_list);
4020         if (list_is_singular(&set->tag_list)) {
4021                 /* just transitioned to unshared */
4022                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4023                 /* update existing queue */
4024                 blk_mq_update_tag_set_shared(set, false);
4025         }
4026         mutex_unlock(&set->tag_list_lock);
4027         INIT_LIST_HEAD(&q->tag_set_list);
4028 }
4029
4030 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4031                                      struct request_queue *q)
4032 {
4033         mutex_lock(&set->tag_list_lock);
4034
4035         /*
4036          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4037          */
4038         if (!list_empty(&set->tag_list) &&
4039             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4040                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4041                 /* update existing queue */
4042                 blk_mq_update_tag_set_shared(set, true);
4043         }
4044         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4045                 queue_set_hctx_shared(q, true);
4046         list_add_tail(&q->tag_set_list, &set->tag_list);
4047
4048         mutex_unlock(&set->tag_list_lock);
4049 }
4050
4051 /* All allocations will be freed in release handler of q->mq_kobj */
4052 static int blk_mq_alloc_ctxs(struct request_queue *q)
4053 {
4054         struct blk_mq_ctxs *ctxs;
4055         int cpu;
4056
4057         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4058         if (!ctxs)
4059                 return -ENOMEM;
4060
4061         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4062         if (!ctxs->queue_ctx)
4063                 goto fail;
4064
4065         for_each_possible_cpu(cpu) {
4066                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4067                 ctx->ctxs = ctxs;
4068         }
4069
4070         q->mq_kobj = &ctxs->kobj;
4071         q->queue_ctx = ctxs->queue_ctx;
4072
4073         return 0;
4074  fail:
4075         kfree(ctxs);
4076         return -ENOMEM;
4077 }
4078
4079 /*
4080  * It is the actual release handler for mq, but we do it from
4081  * request queue's release handler for avoiding use-after-free
4082  * and headache because q->mq_kobj shouldn't have been introduced,
4083  * but we can't group ctx/kctx kobj without it.
4084  */
4085 void blk_mq_release(struct request_queue *q)
4086 {
4087         struct blk_mq_hw_ctx *hctx, *next;
4088         unsigned long i;
4089
4090         queue_for_each_hw_ctx(q, hctx, i)
4091                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4092
4093         /* all hctx are in .unused_hctx_list now */
4094         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4095                 list_del_init(&hctx->hctx_list);
4096                 kobject_put(&hctx->kobj);
4097         }
4098
4099         xa_destroy(&q->hctx_table);
4100
4101         /*
4102          * release .mq_kobj and sw queue's kobject now because
4103          * both share lifetime with request queue.
4104          */
4105         blk_mq_sysfs_deinit(q);
4106 }
4107
4108 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4109                 struct queue_limits *lim, void *queuedata)
4110 {
4111         struct queue_limits default_lim = { };
4112         struct request_queue *q;
4113         int ret;
4114
4115         q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4116         if (IS_ERR(q))
4117                 return q;
4118         q->queuedata = queuedata;
4119         ret = blk_mq_init_allocated_queue(set, q);
4120         if (ret) {
4121                 blk_put_queue(q);
4122                 return ERR_PTR(ret);
4123         }
4124         return q;
4125 }
4126 EXPORT_SYMBOL(blk_mq_alloc_queue);
4127
4128 /**
4129  * blk_mq_destroy_queue - shutdown a request queue
4130  * @q: request queue to shutdown
4131  *
4132  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4133  * requests will be failed with -ENODEV. The caller is responsible for dropping
4134  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4135  *
4136  * Context: can sleep
4137  */
4138 void blk_mq_destroy_queue(struct request_queue *q)
4139 {
4140         WARN_ON_ONCE(!queue_is_mq(q));
4141         WARN_ON_ONCE(blk_queue_registered(q));
4142
4143         might_sleep();
4144
4145         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4146         blk_queue_start_drain(q);
4147         blk_mq_freeze_queue_wait(q);
4148
4149         blk_sync_queue(q);
4150         blk_mq_cancel_work_sync(q);
4151         blk_mq_exit_queue(q);
4152 }
4153 EXPORT_SYMBOL(blk_mq_destroy_queue);
4154
4155 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4156                 struct queue_limits *lim, void *queuedata,
4157                 struct lock_class_key *lkclass)
4158 {
4159         struct request_queue *q;
4160         struct gendisk *disk;
4161
4162         q = blk_mq_alloc_queue(set, lim, queuedata);
4163         if (IS_ERR(q))
4164                 return ERR_CAST(q);
4165
4166         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4167         if (!disk) {
4168                 blk_mq_destroy_queue(q);
4169                 blk_put_queue(q);
4170                 return ERR_PTR(-ENOMEM);
4171         }
4172         set_bit(GD_OWNS_QUEUE, &disk->state);
4173         return disk;
4174 }
4175 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4176
4177 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4178                 struct lock_class_key *lkclass)
4179 {
4180         struct gendisk *disk;
4181
4182         if (!blk_get_queue(q))
4183                 return NULL;
4184         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4185         if (!disk)
4186                 blk_put_queue(q);
4187         return disk;
4188 }
4189 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4190
4191 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4192                 struct blk_mq_tag_set *set, struct request_queue *q,
4193                 int hctx_idx, int node)
4194 {
4195         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4196
4197         /* reuse dead hctx first */
4198         spin_lock(&q->unused_hctx_lock);
4199         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4200                 if (tmp->numa_node == node) {
4201                         hctx = tmp;
4202                         break;
4203                 }
4204         }
4205         if (hctx)
4206                 list_del_init(&hctx->hctx_list);
4207         spin_unlock(&q->unused_hctx_lock);
4208
4209         if (!hctx)
4210                 hctx = blk_mq_alloc_hctx(q, set, node);
4211         if (!hctx)
4212                 goto fail;
4213
4214         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4215                 goto free_hctx;
4216
4217         return hctx;
4218
4219  free_hctx:
4220         kobject_put(&hctx->kobj);
4221  fail:
4222         return NULL;
4223 }
4224
4225 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4226                                                 struct request_queue *q)
4227 {
4228         struct blk_mq_hw_ctx *hctx;
4229         unsigned long i, j;
4230
4231         /* protect against switching io scheduler  */
4232         mutex_lock(&q->sysfs_lock);
4233         for (i = 0; i < set->nr_hw_queues; i++) {
4234                 int old_node;
4235                 int node = blk_mq_get_hctx_node(set, i);
4236                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4237
4238                 if (old_hctx) {
4239                         old_node = old_hctx->numa_node;
4240                         blk_mq_exit_hctx(q, set, old_hctx, i);
4241                 }
4242
4243                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4244                         if (!old_hctx)
4245                                 break;
4246                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4247                                         node, old_node);
4248                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4249                         WARN_ON_ONCE(!hctx);
4250                 }
4251         }
4252         /*
4253          * Increasing nr_hw_queues fails. Free the newly allocated
4254          * hctxs and keep the previous q->nr_hw_queues.
4255          */
4256         if (i != set->nr_hw_queues) {
4257                 j = q->nr_hw_queues;
4258         } else {
4259                 j = i;
4260                 q->nr_hw_queues = set->nr_hw_queues;
4261         }
4262
4263         xa_for_each_start(&q->hctx_table, j, hctx, j)
4264                 blk_mq_exit_hctx(q, set, hctx, j);
4265         mutex_unlock(&q->sysfs_lock);
4266 }
4267
4268 static void blk_mq_update_poll_flag(struct request_queue *q)
4269 {
4270         struct blk_mq_tag_set *set = q->tag_set;
4271
4272         if (set->nr_maps > HCTX_TYPE_POLL &&
4273             set->map[HCTX_TYPE_POLL].nr_queues)
4274                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4275         else
4276                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4277 }
4278
4279 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4280                 struct request_queue *q)
4281 {
4282         /* mark the queue as mq asap */
4283         q->mq_ops = set->ops;
4284
4285         if (blk_mq_alloc_ctxs(q))
4286                 goto err_exit;
4287
4288         /* init q->mq_kobj and sw queues' kobjects */
4289         blk_mq_sysfs_init(q);
4290
4291         INIT_LIST_HEAD(&q->unused_hctx_list);
4292         spin_lock_init(&q->unused_hctx_lock);
4293
4294         xa_init(&q->hctx_table);
4295
4296         blk_mq_realloc_hw_ctxs(set, q);
4297         if (!q->nr_hw_queues)
4298                 goto err_hctxs;
4299
4300         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4301         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4302
4303         q->tag_set = set;
4304
4305         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4306         blk_mq_update_poll_flag(q);
4307
4308         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4309         INIT_LIST_HEAD(&q->flush_list);
4310         INIT_LIST_HEAD(&q->requeue_list);
4311         spin_lock_init(&q->requeue_lock);
4312
4313         q->nr_requests = set->queue_depth;
4314
4315         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4316         blk_mq_add_queue_tag_set(set, q);
4317         blk_mq_map_swqueue(q);
4318         return 0;
4319
4320 err_hctxs:
4321         blk_mq_release(q);
4322 err_exit:
4323         q->mq_ops = NULL;
4324         return -ENOMEM;
4325 }
4326 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4327
4328 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4329 void blk_mq_exit_queue(struct request_queue *q)
4330 {
4331         struct blk_mq_tag_set *set = q->tag_set;
4332
4333         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4334         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4335         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4336         blk_mq_del_queue_tag_set(q);
4337 }
4338
4339 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4340 {
4341         int i;
4342
4343         if (blk_mq_is_shared_tags(set->flags)) {
4344                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4345                                                 BLK_MQ_NO_HCTX_IDX,
4346                                                 set->queue_depth);
4347                 if (!set->shared_tags)
4348                         return -ENOMEM;
4349         }
4350
4351         for (i = 0; i < set->nr_hw_queues; i++) {
4352                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4353                         goto out_unwind;
4354                 cond_resched();
4355         }
4356
4357         return 0;
4358
4359 out_unwind:
4360         while (--i >= 0)
4361                 __blk_mq_free_map_and_rqs(set, i);
4362
4363         if (blk_mq_is_shared_tags(set->flags)) {
4364                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4365                                         BLK_MQ_NO_HCTX_IDX);
4366         }
4367
4368         return -ENOMEM;
4369 }
4370
4371 /*
4372  * Allocate the request maps associated with this tag_set. Note that this
4373  * may reduce the depth asked for, if memory is tight. set->queue_depth
4374  * will be updated to reflect the allocated depth.
4375  */
4376 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4377 {
4378         unsigned int depth;
4379         int err;
4380
4381         depth = set->queue_depth;
4382         do {
4383                 err = __blk_mq_alloc_rq_maps(set);
4384                 if (!err)
4385                         break;
4386
4387                 set->queue_depth >>= 1;
4388                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4389                         err = -ENOMEM;
4390                         break;
4391                 }
4392         } while (set->queue_depth);
4393
4394         if (!set->queue_depth || err) {
4395                 pr_err("blk-mq: failed to allocate request map\n");
4396                 return -ENOMEM;
4397         }
4398
4399         if (depth != set->queue_depth)
4400                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4401                                                 depth, set->queue_depth);
4402
4403         return 0;
4404 }
4405
4406 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4407 {
4408         /*
4409          * blk_mq_map_queues() and multiple .map_queues() implementations
4410          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4411          * number of hardware queues.
4412          */
4413         if (set->nr_maps == 1)
4414                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4415
4416         if (set->ops->map_queues) {
4417                 int i;
4418
4419                 /*
4420                  * transport .map_queues is usually done in the following
4421                  * way:
4422                  *
4423                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4424                  *      mask = get_cpu_mask(queue)
4425                  *      for_each_cpu(cpu, mask)
4426                  *              set->map[x].mq_map[cpu] = queue;
4427                  * }
4428                  *
4429                  * When we need to remap, the table has to be cleared for
4430                  * killing stale mapping since one CPU may not be mapped
4431                  * to any hw queue.
4432                  */
4433                 for (i = 0; i < set->nr_maps; i++)
4434                         blk_mq_clear_mq_map(&set->map[i]);
4435
4436                 set->ops->map_queues(set);
4437         } else {
4438                 BUG_ON(set->nr_maps > 1);
4439                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4440         }
4441 }
4442
4443 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4444                                        int new_nr_hw_queues)
4445 {
4446         struct blk_mq_tags **new_tags;
4447         int i;
4448
4449         if (set->nr_hw_queues >= new_nr_hw_queues)
4450                 goto done;
4451
4452         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4453                                 GFP_KERNEL, set->numa_node);
4454         if (!new_tags)
4455                 return -ENOMEM;
4456
4457         if (set->tags)
4458                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4459                        sizeof(*set->tags));
4460         kfree(set->tags);
4461         set->tags = new_tags;
4462
4463         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4464                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4465                         while (--i >= set->nr_hw_queues)
4466                                 __blk_mq_free_map_and_rqs(set, i);
4467                         return -ENOMEM;
4468                 }
4469                 cond_resched();
4470         }
4471
4472 done:
4473         set->nr_hw_queues = new_nr_hw_queues;
4474         return 0;
4475 }
4476
4477 /*
4478  * Alloc a tag set to be associated with one or more request queues.
4479  * May fail with EINVAL for various error conditions. May adjust the
4480  * requested depth down, if it's too large. In that case, the set
4481  * value will be stored in set->queue_depth.
4482  */
4483 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4484 {
4485         int i, ret;
4486
4487         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4488
4489         if (!set->nr_hw_queues)
4490                 return -EINVAL;
4491         if (!set->queue_depth)
4492                 return -EINVAL;
4493         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4494                 return -EINVAL;
4495
4496         if (!set->ops->queue_rq)
4497                 return -EINVAL;
4498
4499         if (!set->ops->get_budget ^ !set->ops->put_budget)
4500                 return -EINVAL;
4501
4502         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4503                 pr_info("blk-mq: reduced tag depth to %u\n",
4504                         BLK_MQ_MAX_DEPTH);
4505                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4506         }
4507
4508         if (!set->nr_maps)
4509                 set->nr_maps = 1;
4510         else if (set->nr_maps > HCTX_MAX_TYPES)
4511                 return -EINVAL;
4512
4513         /*
4514          * If a crashdump is active, then we are potentially in a very
4515          * memory constrained environment. Limit us to  64 tags to prevent
4516          * using too much memory.
4517          */
4518         if (is_kdump_kernel())
4519                 set->queue_depth = min(64U, set->queue_depth);
4520
4521         /*
4522          * There is no use for more h/w queues than cpus if we just have
4523          * a single map
4524          */
4525         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4526                 set->nr_hw_queues = nr_cpu_ids;
4527
4528         if (set->flags & BLK_MQ_F_BLOCKING) {
4529                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4530                 if (!set->srcu)
4531                         return -ENOMEM;
4532                 ret = init_srcu_struct(set->srcu);
4533                 if (ret)
4534                         goto out_free_srcu;
4535         }
4536
4537         ret = -ENOMEM;
4538         set->tags = kcalloc_node(set->nr_hw_queues,
4539                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4540                                  set->numa_node);
4541         if (!set->tags)
4542                 goto out_cleanup_srcu;
4543
4544         for (i = 0; i < set->nr_maps; i++) {
4545                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4546                                                   sizeof(set->map[i].mq_map[0]),
4547                                                   GFP_KERNEL, set->numa_node);
4548                 if (!set->map[i].mq_map)
4549                         goto out_free_mq_map;
4550                 set->map[i].nr_queues = set->nr_hw_queues;
4551         }
4552
4553         blk_mq_update_queue_map(set);
4554
4555         ret = blk_mq_alloc_set_map_and_rqs(set);
4556         if (ret)
4557                 goto out_free_mq_map;
4558
4559         mutex_init(&set->tag_list_lock);
4560         INIT_LIST_HEAD(&set->tag_list);
4561
4562         return 0;
4563
4564 out_free_mq_map:
4565         for (i = 0; i < set->nr_maps; i++) {
4566                 kfree(set->map[i].mq_map);
4567                 set->map[i].mq_map = NULL;
4568         }
4569         kfree(set->tags);
4570         set->tags = NULL;
4571 out_cleanup_srcu:
4572         if (set->flags & BLK_MQ_F_BLOCKING)
4573                 cleanup_srcu_struct(set->srcu);
4574 out_free_srcu:
4575         if (set->flags & BLK_MQ_F_BLOCKING)
4576                 kfree(set->srcu);
4577         return ret;
4578 }
4579 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4580
4581 /* allocate and initialize a tagset for a simple single-queue device */
4582 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4583                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4584                 unsigned int set_flags)
4585 {
4586         memset(set, 0, sizeof(*set));
4587         set->ops = ops;
4588         set->nr_hw_queues = 1;
4589         set->nr_maps = 1;
4590         set->queue_depth = queue_depth;
4591         set->numa_node = NUMA_NO_NODE;
4592         set->flags = set_flags;
4593         return blk_mq_alloc_tag_set(set);
4594 }
4595 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4596
4597 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4598 {
4599         int i, j;
4600
4601         for (i = 0; i < set->nr_hw_queues; i++)
4602                 __blk_mq_free_map_and_rqs(set, i);
4603
4604         if (blk_mq_is_shared_tags(set->flags)) {
4605                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4606                                         BLK_MQ_NO_HCTX_IDX);
4607         }
4608
4609         for (j = 0; j < set->nr_maps; j++) {
4610                 kfree(set->map[j].mq_map);
4611                 set->map[j].mq_map = NULL;
4612         }
4613
4614         kfree(set->tags);
4615         set->tags = NULL;
4616         if (set->flags & BLK_MQ_F_BLOCKING) {
4617                 cleanup_srcu_struct(set->srcu);
4618                 kfree(set->srcu);
4619         }
4620 }
4621 EXPORT_SYMBOL(blk_mq_free_tag_set);
4622
4623 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4624 {
4625         struct blk_mq_tag_set *set = q->tag_set;
4626         struct blk_mq_hw_ctx *hctx;
4627         int ret;
4628         unsigned long i;
4629
4630         if (!set)
4631                 return -EINVAL;
4632
4633         if (q->nr_requests == nr)
4634                 return 0;
4635
4636         blk_mq_freeze_queue(q);
4637         blk_mq_quiesce_queue(q);
4638
4639         ret = 0;
4640         queue_for_each_hw_ctx(q, hctx, i) {
4641                 if (!hctx->tags)
4642                         continue;
4643                 /*
4644                  * If we're using an MQ scheduler, just update the scheduler
4645                  * queue depth. This is similar to what the old code would do.
4646                  */
4647                 if (hctx->sched_tags) {
4648                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4649                                                       nr, true);
4650                 } else {
4651                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4652                                                       false);
4653                 }
4654                 if (ret)
4655                         break;
4656                 if (q->elevator && q->elevator->type->ops.depth_updated)
4657                         q->elevator->type->ops.depth_updated(hctx);
4658         }
4659         if (!ret) {
4660                 q->nr_requests = nr;
4661                 if (blk_mq_is_shared_tags(set->flags)) {
4662                         if (q->elevator)
4663                                 blk_mq_tag_update_sched_shared_tags(q);
4664                         else
4665                                 blk_mq_tag_resize_shared_tags(set, nr);
4666                 }
4667         }
4668
4669         blk_mq_unquiesce_queue(q);
4670         blk_mq_unfreeze_queue(q);
4671
4672         return ret;
4673 }
4674
4675 /*
4676  * request_queue and elevator_type pair.
4677  * It is just used by __blk_mq_update_nr_hw_queues to cache
4678  * the elevator_type associated with a request_queue.
4679  */
4680 struct blk_mq_qe_pair {
4681         struct list_head node;
4682         struct request_queue *q;
4683         struct elevator_type *type;
4684 };
4685
4686 /*
4687  * Cache the elevator_type in qe pair list and switch the
4688  * io scheduler to 'none'
4689  */
4690 static bool blk_mq_elv_switch_none(struct list_head *head,
4691                 struct request_queue *q)
4692 {
4693         struct blk_mq_qe_pair *qe;
4694
4695         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4696         if (!qe)
4697                 return false;
4698
4699         /* q->elevator needs protection from ->sysfs_lock */
4700         mutex_lock(&q->sysfs_lock);
4701
4702         /* the check has to be done with holding sysfs_lock */
4703         if (!q->elevator) {
4704                 kfree(qe);
4705                 goto unlock;
4706         }
4707
4708         INIT_LIST_HEAD(&qe->node);
4709         qe->q = q;
4710         qe->type = q->elevator->type;
4711         /* keep a reference to the elevator module as we'll switch back */
4712         __elevator_get(qe->type);
4713         list_add(&qe->node, head);
4714         elevator_disable(q);
4715 unlock:
4716         mutex_unlock(&q->sysfs_lock);
4717
4718         return true;
4719 }
4720
4721 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4722                                                 struct request_queue *q)
4723 {
4724         struct blk_mq_qe_pair *qe;
4725
4726         list_for_each_entry(qe, head, node)
4727                 if (qe->q == q)
4728                         return qe;
4729
4730         return NULL;
4731 }
4732
4733 static void blk_mq_elv_switch_back(struct list_head *head,
4734                                   struct request_queue *q)
4735 {
4736         struct blk_mq_qe_pair *qe;
4737         struct elevator_type *t;
4738
4739         qe = blk_lookup_qe_pair(head, q);
4740         if (!qe)
4741                 return;
4742         t = qe->type;
4743         list_del(&qe->node);
4744         kfree(qe);
4745
4746         mutex_lock(&q->sysfs_lock);
4747         elevator_switch(q, t);
4748         /* drop the reference acquired in blk_mq_elv_switch_none */
4749         elevator_put(t);
4750         mutex_unlock(&q->sysfs_lock);
4751 }
4752
4753 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4754                                                         int nr_hw_queues)
4755 {
4756         struct request_queue *q;
4757         LIST_HEAD(head);
4758         int prev_nr_hw_queues = set->nr_hw_queues;
4759         int i;
4760
4761         lockdep_assert_held(&set->tag_list_lock);
4762
4763         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4764                 nr_hw_queues = nr_cpu_ids;
4765         if (nr_hw_queues < 1)
4766                 return;
4767         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4768                 return;
4769
4770         list_for_each_entry(q, &set->tag_list, tag_set_list)
4771                 blk_mq_freeze_queue(q);
4772         /*
4773          * Switch IO scheduler to 'none', cleaning up the data associated
4774          * with the previous scheduler. We will switch back once we are done
4775          * updating the new sw to hw queue mappings.
4776          */
4777         list_for_each_entry(q, &set->tag_list, tag_set_list)
4778                 if (!blk_mq_elv_switch_none(&head, q))
4779                         goto switch_back;
4780
4781         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4782                 blk_mq_debugfs_unregister_hctxs(q);
4783                 blk_mq_sysfs_unregister_hctxs(q);
4784         }
4785
4786         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4787                 goto reregister;
4788
4789 fallback:
4790         blk_mq_update_queue_map(set);
4791         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4792                 blk_mq_realloc_hw_ctxs(set, q);
4793                 blk_mq_update_poll_flag(q);
4794                 if (q->nr_hw_queues != set->nr_hw_queues) {
4795                         int i = prev_nr_hw_queues;
4796
4797                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4798                                         nr_hw_queues, prev_nr_hw_queues);
4799                         for (; i < set->nr_hw_queues; i++)
4800                                 __blk_mq_free_map_and_rqs(set, i);
4801
4802                         set->nr_hw_queues = prev_nr_hw_queues;
4803                         goto fallback;
4804                 }
4805                 blk_mq_map_swqueue(q);
4806         }
4807
4808 reregister:
4809         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4810                 blk_mq_sysfs_register_hctxs(q);
4811                 blk_mq_debugfs_register_hctxs(q);
4812         }
4813
4814 switch_back:
4815         list_for_each_entry(q, &set->tag_list, tag_set_list)
4816                 blk_mq_elv_switch_back(&head, q);
4817
4818         list_for_each_entry(q, &set->tag_list, tag_set_list)
4819                 blk_mq_unfreeze_queue(q);
4820
4821         /* Free the excess tags when nr_hw_queues shrink. */
4822         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4823                 __blk_mq_free_map_and_rqs(set, i);
4824 }
4825
4826 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4827 {
4828         mutex_lock(&set->tag_list_lock);
4829         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4830         mutex_unlock(&set->tag_list_lock);
4831 }
4832 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4833
4834 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4835                          struct io_comp_batch *iob, unsigned int flags)
4836 {
4837         long state = get_current_state();
4838         int ret;
4839
4840         do {
4841                 ret = q->mq_ops->poll(hctx, iob);
4842                 if (ret > 0) {
4843                         __set_current_state(TASK_RUNNING);
4844                         return ret;
4845                 }
4846
4847                 if (signal_pending_state(state, current))
4848                         __set_current_state(TASK_RUNNING);
4849                 if (task_is_running(current))
4850                         return 1;
4851
4852                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4853                         break;
4854                 cpu_relax();
4855         } while (!need_resched());
4856
4857         __set_current_state(TASK_RUNNING);
4858         return 0;
4859 }
4860
4861 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4862                 struct io_comp_batch *iob, unsigned int flags)
4863 {
4864         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4865
4866         return blk_hctx_poll(q, hctx, iob, flags);
4867 }
4868
4869 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4870                 unsigned int poll_flags)
4871 {
4872         struct request_queue *q = rq->q;
4873         int ret;
4874
4875         if (!blk_rq_is_poll(rq))
4876                 return 0;
4877         if (!percpu_ref_tryget(&q->q_usage_counter))
4878                 return 0;
4879
4880         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4881         blk_queue_exit(q);
4882
4883         return ret;
4884 }
4885 EXPORT_SYMBOL_GPL(blk_rq_poll);
4886
4887 unsigned int blk_mq_rq_cpu(struct request *rq)
4888 {
4889         return rq->mq_ctx->cpu;
4890 }
4891 EXPORT_SYMBOL(blk_mq_rq_cpu);
4892
4893 void blk_mq_cancel_work_sync(struct request_queue *q)
4894 {
4895         struct blk_mq_hw_ctx *hctx;
4896         unsigned long i;
4897
4898         cancel_delayed_work_sync(&q->requeue_work);
4899
4900         queue_for_each_hw_ctx(q, hctx, i)
4901                 cancel_delayed_work_sync(&hctx->run_work);
4902 }
4903
4904 static int __init blk_mq_init(void)
4905 {
4906         int i;
4907
4908         for_each_possible_cpu(i)
4909                 init_llist_head(&per_cpu(blk_cpu_done, i));
4910         for_each_possible_cpu(i)
4911                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4912                          __blk_mq_complete_request_remote, NULL);
4913         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4914
4915         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4916                                   "block/softirq:dead", NULL,
4917                                   blk_softirq_cpu_dead);
4918         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4919                                 blk_mq_hctx_notify_dead);
4920         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4921                                 blk_mq_hctx_notify_online,
4922                                 blk_mq_hctx_notify_offline);
4923         return 0;
4924 }
4925 subsys_initcall(blk_mq_init);