block: Revert v5.0 blk_mq_request_issue_directly() changes
[linux-block.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx, dispatch list or elevator
63  * have pending work in this hardware queue.
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67         return !list_empty_careful(&hctx->dispatch) ||
68                 sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76                                      struct blk_mq_ctx *ctx)
77 {
78         const int bit = ctx->index_hw[hctx->type];
79
80         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81                 sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         const int bit = ctx->index_hw[hctx->type];
88
89         sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91
92 struct mq_inflight {
93         struct hd_struct *part;
94         unsigned int *inflight;
95 };
96
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98                                   struct request *rq, void *priv,
99                                   bool reserved)
100 {
101         struct mq_inflight *mi = priv;
102
103         /*
104          * index[0] counts the specific partition that was asked for.
105          */
106         if (rq->part == mi->part)
107                 mi->inflight[0]++;
108
109         return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114         unsigned inflight[2];
115         struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117         inflight[0] = inflight[1] = 0;
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120         return inflight[0];
121 }
122
123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124                                      struct request *rq, void *priv,
125                                      bool reserved)
126 {
127         struct mq_inflight *mi = priv;
128
129         if (rq->part == mi->part)
130                 mi->inflight[rq_data_dir(rq)]++;
131
132         return true;
133 }
134
135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
136                          unsigned int inflight[2])
137 {
138         struct mq_inflight mi = { .part = part, .inflight = inflight, };
139
140         inflight[0] = inflight[1] = 0;
141         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
142 }
143
144 void blk_freeze_queue_start(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
149         if (freeze_depth == 1) {
150                 percpu_ref_kill(&q->q_usage_counter);
151                 if (queue_is_mq(q))
152                         blk_mq_run_hw_queues(q, false);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
156
157 void blk_mq_freeze_queue_wait(struct request_queue *q)
158 {
159         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
162
163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
164                                      unsigned long timeout)
165 {
166         return wait_event_timeout(q->mq_freeze_wq,
167                                         percpu_ref_is_zero(&q->q_usage_counter),
168                                         timeout);
169 }
170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
171
172 /*
173  * Guarantee no request is in use, so we can change any data structure of
174  * the queue afterward.
175  */
176 void blk_freeze_queue(struct request_queue *q)
177 {
178         /*
179          * In the !blk_mq case we are only calling this to kill the
180          * q_usage_counter, otherwise this increases the freeze depth
181          * and waits for it to return to zero.  For this reason there is
182          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
183          * exported to drivers as the only user for unfreeze is blk_mq.
184          */
185         blk_freeze_queue_start(q);
186         blk_mq_freeze_queue_wait(q);
187 }
188
189 void blk_mq_freeze_queue(struct request_queue *q)
190 {
191         /*
192          * ...just an alias to keep freeze and unfreeze actions balanced
193          * in the blk_mq_* namespace
194          */
195         blk_freeze_queue(q);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
198
199 void blk_mq_unfreeze_queue(struct request_queue *q)
200 {
201         int freeze_depth;
202
203         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
204         WARN_ON_ONCE(freeze_depth < 0);
205         if (!freeze_depth) {
206                 percpu_ref_resurrect(&q->q_usage_counter);
207                 wake_up_all(&q->mq_freeze_wq);
208         }
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
211
212 /*
213  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214  * mpt3sas driver such that this function can be removed.
215  */
216 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
217 {
218         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 }
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
221
222 /**
223  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
224  * @q: request queue.
225  *
226  * Note: this function does not prevent that the struct request end_io()
227  * callback function is invoked. Once this function is returned, we make
228  * sure no dispatch can happen until the queue is unquiesced via
229  * blk_mq_unquiesce_queue().
230  */
231 void blk_mq_quiesce_queue(struct request_queue *q)
232 {
233         struct blk_mq_hw_ctx *hctx;
234         unsigned int i;
235         bool rcu = false;
236
237         blk_mq_quiesce_queue_nowait(q);
238
239         queue_for_each_hw_ctx(q, hctx, i) {
240                 if (hctx->flags & BLK_MQ_F_BLOCKING)
241                         synchronize_srcu(hctx->srcu);
242                 else
243                         rcu = true;
244         }
245         if (rcu)
246                 synchronize_rcu();
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
260
261         /* dispatch requests which are inserted during quiescing */
262         blk_mq_run_hw_queues(q, true);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
265
266 void blk_mq_wake_waiters(struct request_queue *q)
267 {
268         struct blk_mq_hw_ctx *hctx;
269         unsigned int i;
270
271         queue_for_each_hw_ctx(q, hctx, i)
272                 if (blk_mq_hw_queue_mapped(hctx))
273                         blk_mq_tag_wakeup_all(hctx->tags, true);
274 }
275
276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
277 {
278         return blk_mq_has_free_tags(hctx->tags);
279 }
280 EXPORT_SYMBOL(blk_mq_can_queue);
281
282 /*
283  * Only need start/end time stamping if we have stats enabled, or using
284  * an IO scheduler.
285  */
286 static inline bool blk_mq_need_time_stamp(struct request *rq)
287 {
288         return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
289 }
290
291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
292                 unsigned int tag, unsigned int op)
293 {
294         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
295         struct request *rq = tags->static_rqs[tag];
296         req_flags_t rq_flags = 0;
297
298         if (data->flags & BLK_MQ_REQ_INTERNAL) {
299                 rq->tag = -1;
300                 rq->internal_tag = tag;
301         } else {
302                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
303                         rq_flags = RQF_MQ_INFLIGHT;
304                         atomic_inc(&data->hctx->nr_active);
305                 }
306                 rq->tag = tag;
307                 rq->internal_tag = -1;
308                 data->hctx->tags->rqs[rq->tag] = rq;
309         }
310
311         /* csd/requeue_work/fifo_time is initialized before use */
312         rq->q = data->q;
313         rq->mq_ctx = data->ctx;
314         rq->mq_hctx = data->hctx;
315         rq->rq_flags = rq_flags;
316         rq->cmd_flags = op;
317         if (data->flags & BLK_MQ_REQ_PREEMPT)
318                 rq->rq_flags |= RQF_PREEMPT;
319         if (blk_queue_io_stat(data->q))
320                 rq->rq_flags |= RQF_IO_STAT;
321         INIT_LIST_HEAD(&rq->queuelist);
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->rq_disk = NULL;
325         rq->part = NULL;
326         if (blk_mq_need_time_stamp(rq))
327                 rq->start_time_ns = ktime_get_ns();
328         else
329                 rq->start_time_ns = 0;
330         rq->io_start_time_ns = 0;
331         rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333         rq->nr_integrity_segments = 0;
334 #endif
335         /* tag was already set */
336         rq->extra_len = 0;
337         WRITE_ONCE(rq->deadline, 0);
338
339         rq->timeout = 0;
340
341         rq->end_io = NULL;
342         rq->end_io_data = NULL;
343
344         data->ctx->rq_dispatched[op_is_sync(op)]++;
345         refcount_set(&rq->ref, 1);
346         return rq;
347 }
348
349 static struct request *blk_mq_get_request(struct request_queue *q,
350                                           struct bio *bio,
351                                           struct blk_mq_alloc_data *data)
352 {
353         struct elevator_queue *e = q->elevator;
354         struct request *rq;
355         unsigned int tag;
356         bool put_ctx_on_error = false;
357
358         blk_queue_enter_live(q);
359         data->q = q;
360         if (likely(!data->ctx)) {
361                 data->ctx = blk_mq_get_ctx(q);
362                 put_ctx_on_error = true;
363         }
364         if (likely(!data->hctx))
365                 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
366                                                 data->ctx);
367         if (data->cmd_flags & REQ_NOWAIT)
368                 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370         if (e) {
371                 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373                 /*
374                  * Flush requests are special and go directly to the
375                  * dispatch list. Don't include reserved tags in the
376                  * limiting, as it isn't useful.
377                  */
378                 if (!op_is_flush(data->cmd_flags) &&
379                     e->type->ops.limit_depth &&
380                     !(data->flags & BLK_MQ_REQ_RESERVED))
381                         e->type->ops.limit_depth(data->cmd_flags, data);
382         } else {
383                 blk_mq_tag_busy(data->hctx);
384         }
385
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_TAG_FAIL) {
388                 if (put_ctx_on_error) {
389                         blk_mq_put_ctx(data->ctx);
390                         data->ctx = NULL;
391                 }
392                 blk_queue_exit(q);
393                 return NULL;
394         }
395
396         rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397         if (!op_is_flush(data->cmd_flags)) {
398                 rq->elv.icq = NULL;
399                 if (e && e->type->ops.prepare_request) {
400                         if (e->type->icq_cache)
401                                 blk_mq_sched_assign_ioc(rq);
402
403                         e->type->ops.prepare_request(rq, bio);
404                         rq->rq_flags |= RQF_ELVPRIV;
405                 }
406         }
407         data->hctx->queued++;
408         return rq;
409 }
410
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412                 blk_mq_req_flags_t flags)
413 {
414         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415         struct request *rq;
416         int ret;
417
418         ret = blk_queue_enter(q, flags);
419         if (ret)
420                 return ERR_PTR(ret);
421
422         rq = blk_mq_get_request(q, NULL, &alloc_data);
423         blk_queue_exit(q);
424
425         if (!rq)
426                 return ERR_PTR(-EWOULDBLOCK);
427
428         blk_mq_put_ctx(alloc_data.ctx);
429
430         rq->__data_len = 0;
431         rq->__sector = (sector_t) -1;
432         rq->bio = rq->biotail = NULL;
433         return rq;
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440         struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
441         struct request *rq;
442         unsigned int cpu;
443         int ret;
444
445         /*
446          * If the tag allocator sleeps we could get an allocation for a
447          * different hardware context.  No need to complicate the low level
448          * allocator for this for the rare use case of a command tied to
449          * a specific queue.
450          */
451         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
452                 return ERR_PTR(-EINVAL);
453
454         if (hctx_idx >= q->nr_hw_queues)
455                 return ERR_PTR(-EIO);
456
457         ret = blk_queue_enter(q, flags);
458         if (ret)
459                 return ERR_PTR(ret);
460
461         /*
462          * Check if the hardware context is actually mapped to anything.
463          * If not tell the caller that it should skip this queue.
464          */
465         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
466         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
467                 blk_queue_exit(q);
468                 return ERR_PTR(-EXDEV);
469         }
470         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
471         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
472
473         rq = blk_mq_get_request(q, NULL, &alloc_data);
474         blk_queue_exit(q);
475
476         if (!rq)
477                 return ERR_PTR(-EWOULDBLOCK);
478
479         return rq;
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
482
483 static void __blk_mq_free_request(struct request *rq)
484 {
485         struct request_queue *q = rq->q;
486         struct blk_mq_ctx *ctx = rq->mq_ctx;
487         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
488         const int sched_tag = rq->internal_tag;
489
490         blk_pm_mark_last_busy(rq);
491         rq->mq_hctx = NULL;
492         if (rq->tag != -1)
493                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494         if (sched_tag != -1)
495                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496         blk_mq_sched_restart(hctx);
497         blk_queue_exit(q);
498 }
499
500 void blk_mq_free_request(struct request *rq)
501 {
502         struct request_queue *q = rq->q;
503         struct elevator_queue *e = q->elevator;
504         struct blk_mq_ctx *ctx = rq->mq_ctx;
505         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
506
507         if (rq->rq_flags & RQF_ELVPRIV) {
508                 if (e && e->type->ops.finish_request)
509                         e->type->ops.finish_request(rq);
510                 if (rq->elv.icq) {
511                         put_io_context(rq->elv.icq->ioc);
512                         rq->elv.icq = NULL;
513                 }
514         }
515
516         ctx->rq_completed[rq_is_sync(rq)]++;
517         if (rq->rq_flags & RQF_MQ_INFLIGHT)
518                 atomic_dec(&hctx->nr_active);
519
520         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
521                 laptop_io_completion(q->backing_dev_info);
522
523         rq_qos_done(q, rq);
524
525         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
526         if (refcount_dec_and_test(&rq->ref))
527                 __blk_mq_free_request(rq);
528 }
529 EXPORT_SYMBOL_GPL(blk_mq_free_request);
530
531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
532 {
533         u64 now = 0;
534
535         if (blk_mq_need_time_stamp(rq))
536                 now = ktime_get_ns();
537
538         if (rq->rq_flags & RQF_STATS) {
539                 blk_mq_poll_stats_start(rq->q);
540                 blk_stat_add(rq, now);
541         }
542
543         if (rq->internal_tag != -1)
544                 blk_mq_sched_completed_request(rq, now);
545
546         blk_account_io_done(rq, now);
547
548         if (rq->end_io) {
549                 rq_qos_done(rq->q, rq);
550                 rq->end_io(rq, error);
551         } else {
552                 blk_mq_free_request(rq);
553         }
554 }
555 EXPORT_SYMBOL(__blk_mq_end_request);
556
557 void blk_mq_end_request(struct request *rq, blk_status_t error)
558 {
559         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
560                 BUG();
561         __blk_mq_end_request(rq, error);
562 }
563 EXPORT_SYMBOL(blk_mq_end_request);
564
565 static void __blk_mq_complete_request_remote(void *data)
566 {
567         struct request *rq = data;
568         struct request_queue *q = rq->q;
569
570         q->mq_ops->complete(rq);
571 }
572
573 static void __blk_mq_complete_request(struct request *rq)
574 {
575         struct blk_mq_ctx *ctx = rq->mq_ctx;
576         struct request_queue *q = rq->q;
577         bool shared = false;
578         int cpu;
579
580         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
581         /*
582          * Most of single queue controllers, there is only one irq vector
583          * for handling IO completion, and the only irq's affinity is set
584          * as all possible CPUs. On most of ARCHs, this affinity means the
585          * irq is handled on one specific CPU.
586          *
587          * So complete IO reqeust in softirq context in case of single queue
588          * for not degrading IO performance by irqsoff latency.
589          */
590         if (q->nr_hw_queues == 1) {
591                 __blk_complete_request(rq);
592                 return;
593         }
594
595         /*
596          * For a polled request, always complete locallly, it's pointless
597          * to redirect the completion.
598          */
599         if ((rq->cmd_flags & REQ_HIPRI) ||
600             !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
601                 q->mq_ops->complete(rq);
602                 return;
603         }
604
605         cpu = get_cpu();
606         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
607                 shared = cpus_share_cache(cpu, ctx->cpu);
608
609         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
610                 rq->csd.func = __blk_mq_complete_request_remote;
611                 rq->csd.info = rq;
612                 rq->csd.flags = 0;
613                 smp_call_function_single_async(ctx->cpu, &rq->csd);
614         } else {
615                 q->mq_ops->complete(rq);
616         }
617         put_cpu();
618 }
619
620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
621         __releases(hctx->srcu)
622 {
623         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
624                 rcu_read_unlock();
625         else
626                 srcu_read_unlock(hctx->srcu, srcu_idx);
627 }
628
629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
630         __acquires(hctx->srcu)
631 {
632         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
633                 /* shut up gcc false positive */
634                 *srcu_idx = 0;
635                 rcu_read_lock();
636         } else
637                 *srcu_idx = srcu_read_lock(hctx->srcu);
638 }
639
640 /**
641  * blk_mq_complete_request - end I/O on a request
642  * @rq:         the request being processed
643  *
644  * Description:
645  *      Ends all I/O on a request. It does not handle partial completions.
646  *      The actual completion happens out-of-order, through a IPI handler.
647  **/
648 bool blk_mq_complete_request(struct request *rq)
649 {
650         if (unlikely(blk_should_fake_timeout(rq->q)))
651                 return false;
652         __blk_mq_complete_request(rq);
653         return true;
654 }
655 EXPORT_SYMBOL(blk_mq_complete_request);
656
657 int blk_mq_request_started(struct request *rq)
658 {
659         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
660 }
661 EXPORT_SYMBOL_GPL(blk_mq_request_started);
662
663 void blk_mq_start_request(struct request *rq)
664 {
665         struct request_queue *q = rq->q;
666
667         blk_mq_sched_started_request(rq);
668
669         trace_block_rq_issue(q, rq);
670
671         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
672                 rq->io_start_time_ns = ktime_get_ns();
673 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
674                 rq->throtl_size = blk_rq_sectors(rq);
675 #endif
676                 rq->rq_flags |= RQF_STATS;
677                 rq_qos_issue(q, rq);
678         }
679
680         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
681
682         blk_add_timer(rq);
683         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
684
685         if (q->dma_drain_size && blk_rq_bytes(rq)) {
686                 /*
687                  * Make sure space for the drain appears.  We know we can do
688                  * this because max_hw_segments has been adjusted to be one
689                  * fewer than the device can handle.
690                  */
691                 rq->nr_phys_segments++;
692         }
693 }
694 EXPORT_SYMBOL(blk_mq_start_request);
695
696 static void __blk_mq_requeue_request(struct request *rq)
697 {
698         struct request_queue *q = rq->q;
699
700         blk_mq_put_driver_tag(rq);
701
702         trace_block_rq_requeue(q, rq);
703         rq_qos_requeue(q, rq);
704
705         if (blk_mq_request_started(rq)) {
706                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
707                 rq->rq_flags &= ~RQF_TIMED_OUT;
708                 if (q->dma_drain_size && blk_rq_bytes(rq))
709                         rq->nr_phys_segments--;
710         }
711 }
712
713 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
714 {
715         __blk_mq_requeue_request(rq);
716
717         /* this request will be re-inserted to io scheduler queue */
718         blk_mq_sched_requeue_request(rq);
719
720         BUG_ON(!list_empty(&rq->queuelist));
721         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
722 }
723 EXPORT_SYMBOL(blk_mq_requeue_request);
724
725 static void blk_mq_requeue_work(struct work_struct *work)
726 {
727         struct request_queue *q =
728                 container_of(work, struct request_queue, requeue_work.work);
729         LIST_HEAD(rq_list);
730         struct request *rq, *next;
731
732         spin_lock_irq(&q->requeue_lock);
733         list_splice_init(&q->requeue_list, &rq_list);
734         spin_unlock_irq(&q->requeue_lock);
735
736         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
737                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
738                         continue;
739
740                 rq->rq_flags &= ~RQF_SOFTBARRIER;
741                 list_del_init(&rq->queuelist);
742                 /*
743                  * If RQF_DONTPREP, rq has contained some driver specific
744                  * data, so insert it to hctx dispatch list to avoid any
745                  * merge.
746                  */
747                 if (rq->rq_flags & RQF_DONTPREP)
748                         blk_mq_request_bypass_insert(rq, false);
749                 else
750                         blk_mq_sched_insert_request(rq, true, false, false);
751         }
752
753         while (!list_empty(&rq_list)) {
754                 rq = list_entry(rq_list.next, struct request, queuelist);
755                 list_del_init(&rq->queuelist);
756                 blk_mq_sched_insert_request(rq, false, false, false);
757         }
758
759         blk_mq_run_hw_queues(q, false);
760 }
761
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763                                 bool kick_requeue_list)
764 {
765         struct request_queue *q = rq->q;
766         unsigned long flags;
767
768         /*
769          * We abuse this flag that is otherwise used by the I/O scheduler to
770          * request head insertion from the workqueue.
771          */
772         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773
774         spin_lock_irqsave(&q->requeue_lock, flags);
775         if (at_head) {
776                 rq->rq_flags |= RQF_SOFTBARRIER;
777                 list_add(&rq->queuelist, &q->requeue_list);
778         } else {
779                 list_add_tail(&rq->queuelist, &q->requeue_list);
780         }
781         spin_unlock_irqrestore(&q->requeue_lock, flags);
782
783         if (kick_requeue_list)
784                 blk_mq_kick_requeue_list(q);
785 }
786
787 void blk_mq_kick_requeue_list(struct request_queue *q)
788 {
789         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
790 }
791 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
792
793 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
794                                     unsigned long msecs)
795 {
796         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
797                                     msecs_to_jiffies(msecs));
798 }
799 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
800
801 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
802 {
803         if (tag < tags->nr_tags) {
804                 prefetch(tags->rqs[tag]);
805                 return tags->rqs[tag];
806         }
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(blk_mq_tag_to_rq);
811
812 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
813                                void *priv, bool reserved)
814 {
815         /*
816          * If we find a request that is inflight and the queue matches,
817          * we know the queue is busy. Return false to stop the iteration.
818          */
819         if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
820                 bool *busy = priv;
821
822                 *busy = true;
823                 return false;
824         }
825
826         return true;
827 }
828
829 bool blk_mq_queue_inflight(struct request_queue *q)
830 {
831         bool busy = false;
832
833         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
834         return busy;
835 }
836 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
837
838 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
839 {
840         req->rq_flags |= RQF_TIMED_OUT;
841         if (req->q->mq_ops->timeout) {
842                 enum blk_eh_timer_return ret;
843
844                 ret = req->q->mq_ops->timeout(req, reserved);
845                 if (ret == BLK_EH_DONE)
846                         return;
847                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
848         }
849
850         blk_add_timer(req);
851 }
852
853 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
854 {
855         unsigned long deadline;
856
857         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
858                 return false;
859         if (rq->rq_flags & RQF_TIMED_OUT)
860                 return false;
861
862         deadline = READ_ONCE(rq->deadline);
863         if (time_after_eq(jiffies, deadline))
864                 return true;
865
866         if (*next == 0)
867                 *next = deadline;
868         else if (time_after(*next, deadline))
869                 *next = deadline;
870         return false;
871 }
872
873 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
874                 struct request *rq, void *priv, bool reserved)
875 {
876         unsigned long *next = priv;
877
878         /*
879          * Just do a quick check if it is expired before locking the request in
880          * so we're not unnecessarilly synchronizing across CPUs.
881          */
882         if (!blk_mq_req_expired(rq, next))
883                 return true;
884
885         /*
886          * We have reason to believe the request may be expired. Take a
887          * reference on the request to lock this request lifetime into its
888          * currently allocated context to prevent it from being reallocated in
889          * the event the completion by-passes this timeout handler.
890          *
891          * If the reference was already released, then the driver beat the
892          * timeout handler to posting a natural completion.
893          */
894         if (!refcount_inc_not_zero(&rq->ref))
895                 return true;
896
897         /*
898          * The request is now locked and cannot be reallocated underneath the
899          * timeout handler's processing. Re-verify this exact request is truly
900          * expired; if it is not expired, then the request was completed and
901          * reallocated as a new request.
902          */
903         if (blk_mq_req_expired(rq, next))
904                 blk_mq_rq_timed_out(rq, reserved);
905         if (refcount_dec_and_test(&rq->ref))
906                 __blk_mq_free_request(rq);
907
908         return true;
909 }
910
911 static void blk_mq_timeout_work(struct work_struct *work)
912 {
913         struct request_queue *q =
914                 container_of(work, struct request_queue, timeout_work);
915         unsigned long next = 0;
916         struct blk_mq_hw_ctx *hctx;
917         int i;
918
919         /* A deadlock might occur if a request is stuck requiring a
920          * timeout at the same time a queue freeze is waiting
921          * completion, since the timeout code would not be able to
922          * acquire the queue reference here.
923          *
924          * That's why we don't use blk_queue_enter here; instead, we use
925          * percpu_ref_tryget directly, because we need to be able to
926          * obtain a reference even in the short window between the queue
927          * starting to freeze, by dropping the first reference in
928          * blk_freeze_queue_start, and the moment the last request is
929          * consumed, marked by the instant q_usage_counter reaches
930          * zero.
931          */
932         if (!percpu_ref_tryget(&q->q_usage_counter))
933                 return;
934
935         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
936
937         if (next != 0) {
938                 mod_timer(&q->timeout, next);
939         } else {
940                 /*
941                  * Request timeouts are handled as a forward rolling timer. If
942                  * we end up here it means that no requests are pending and
943                  * also that no request has been pending for a while. Mark
944                  * each hctx as idle.
945                  */
946                 queue_for_each_hw_ctx(q, hctx, i) {
947                         /* the hctx may be unmapped, so check it here */
948                         if (blk_mq_hw_queue_mapped(hctx))
949                                 blk_mq_tag_idle(hctx);
950                 }
951         }
952         blk_queue_exit(q);
953 }
954
955 struct flush_busy_ctx_data {
956         struct blk_mq_hw_ctx *hctx;
957         struct list_head *list;
958 };
959
960 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
961 {
962         struct flush_busy_ctx_data *flush_data = data;
963         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
964         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
965         enum hctx_type type = hctx->type;
966
967         spin_lock(&ctx->lock);
968         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
969         sbitmap_clear_bit(sb, bitnr);
970         spin_unlock(&ctx->lock);
971         return true;
972 }
973
974 /*
975  * Process software queues that have been marked busy, splicing them
976  * to the for-dispatch
977  */
978 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
979 {
980         struct flush_busy_ctx_data data = {
981                 .hctx = hctx,
982                 .list = list,
983         };
984
985         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
986 }
987 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
988
989 struct dispatch_rq_data {
990         struct blk_mq_hw_ctx *hctx;
991         struct request *rq;
992 };
993
994 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
995                 void *data)
996 {
997         struct dispatch_rq_data *dispatch_data = data;
998         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
999         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1000         enum hctx_type type = hctx->type;
1001
1002         spin_lock(&ctx->lock);
1003         if (!list_empty(&ctx->rq_lists[type])) {
1004                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1005                 list_del_init(&dispatch_data->rq->queuelist);
1006                 if (list_empty(&ctx->rq_lists[type]))
1007                         sbitmap_clear_bit(sb, bitnr);
1008         }
1009         spin_unlock(&ctx->lock);
1010
1011         return !dispatch_data->rq;
1012 }
1013
1014 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1015                                         struct blk_mq_ctx *start)
1016 {
1017         unsigned off = start ? start->index_hw[hctx->type] : 0;
1018         struct dispatch_rq_data data = {
1019                 .hctx = hctx,
1020                 .rq   = NULL,
1021         };
1022
1023         __sbitmap_for_each_set(&hctx->ctx_map, off,
1024                                dispatch_rq_from_ctx, &data);
1025
1026         return data.rq;
1027 }
1028
1029 static inline unsigned int queued_to_index(unsigned int queued)
1030 {
1031         if (!queued)
1032                 return 0;
1033
1034         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1035 }
1036
1037 bool blk_mq_get_driver_tag(struct request *rq)
1038 {
1039         struct blk_mq_alloc_data data = {
1040                 .q = rq->q,
1041                 .hctx = rq->mq_hctx,
1042                 .flags = BLK_MQ_REQ_NOWAIT,
1043                 .cmd_flags = rq->cmd_flags,
1044         };
1045         bool shared;
1046
1047         if (rq->tag != -1)
1048                 goto done;
1049
1050         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1051                 data.flags |= BLK_MQ_REQ_RESERVED;
1052
1053         shared = blk_mq_tag_busy(data.hctx);
1054         rq->tag = blk_mq_get_tag(&data);
1055         if (rq->tag >= 0) {
1056                 if (shared) {
1057                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1058                         atomic_inc(&data.hctx->nr_active);
1059                 }
1060                 data.hctx->tags->rqs[rq->tag] = rq;
1061         }
1062
1063 done:
1064         return rq->tag != -1;
1065 }
1066
1067 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1068                                 int flags, void *key)
1069 {
1070         struct blk_mq_hw_ctx *hctx;
1071
1072         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1073
1074         spin_lock(&hctx->dispatch_wait_lock);
1075         if (!list_empty(&wait->entry)) {
1076                 struct sbitmap_queue *sbq;
1077
1078                 list_del_init(&wait->entry);
1079                 sbq = &hctx->tags->bitmap_tags;
1080                 atomic_dec(&sbq->ws_active);
1081         }
1082         spin_unlock(&hctx->dispatch_wait_lock);
1083
1084         blk_mq_run_hw_queue(hctx, true);
1085         return 1;
1086 }
1087
1088 /*
1089  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1090  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1091  * restart. For both cases, take care to check the condition again after
1092  * marking us as waiting.
1093  */
1094 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1095                                  struct request *rq)
1096 {
1097         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1098         struct wait_queue_head *wq;
1099         wait_queue_entry_t *wait;
1100         bool ret;
1101
1102         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1103                 blk_mq_sched_mark_restart_hctx(hctx);
1104
1105                 /*
1106                  * It's possible that a tag was freed in the window between the
1107                  * allocation failure and adding the hardware queue to the wait
1108                  * queue.
1109                  *
1110                  * Don't clear RESTART here, someone else could have set it.
1111                  * At most this will cost an extra queue run.
1112                  */
1113                 return blk_mq_get_driver_tag(rq);
1114         }
1115
1116         wait = &hctx->dispatch_wait;
1117         if (!list_empty_careful(&wait->entry))
1118                 return false;
1119
1120         wq = &bt_wait_ptr(sbq, hctx)->wait;
1121
1122         spin_lock_irq(&wq->lock);
1123         spin_lock(&hctx->dispatch_wait_lock);
1124         if (!list_empty(&wait->entry)) {
1125                 spin_unlock(&hctx->dispatch_wait_lock);
1126                 spin_unlock_irq(&wq->lock);
1127                 return false;
1128         }
1129
1130         atomic_inc(&sbq->ws_active);
1131         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1132         __add_wait_queue(wq, wait);
1133
1134         /*
1135          * It's possible that a tag was freed in the window between the
1136          * allocation failure and adding the hardware queue to the wait
1137          * queue.
1138          */
1139         ret = blk_mq_get_driver_tag(rq);
1140         if (!ret) {
1141                 spin_unlock(&hctx->dispatch_wait_lock);
1142                 spin_unlock_irq(&wq->lock);
1143                 return false;
1144         }
1145
1146         /*
1147          * We got a tag, remove ourselves from the wait queue to ensure
1148          * someone else gets the wakeup.
1149          */
1150         list_del_init(&wait->entry);
1151         atomic_dec(&sbq->ws_active);
1152         spin_unlock(&hctx->dispatch_wait_lock);
1153         spin_unlock_irq(&wq->lock);
1154
1155         return true;
1156 }
1157
1158 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1159 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1160 /*
1161  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1162  * - EWMA is one simple way to compute running average value
1163  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1164  * - take 4 as factor for avoiding to get too small(0) result, and this
1165  *   factor doesn't matter because EWMA decreases exponentially
1166  */
1167 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1168 {
1169         unsigned int ewma;
1170
1171         if (hctx->queue->elevator)
1172                 return;
1173
1174         ewma = hctx->dispatch_busy;
1175
1176         if (!ewma && !busy)
1177                 return;
1178
1179         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1180         if (busy)
1181                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1182         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1183
1184         hctx->dispatch_busy = ewma;
1185 }
1186
1187 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1188
1189 /*
1190  * Returns true if we did some work AND can potentially do more.
1191  */
1192 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1193                              bool got_budget)
1194 {
1195         struct blk_mq_hw_ctx *hctx;
1196         struct request *rq, *nxt;
1197         bool no_tag = false;
1198         int errors, queued;
1199         blk_status_t ret = BLK_STS_OK;
1200
1201         if (list_empty(list))
1202                 return false;
1203
1204         WARN_ON(!list_is_singular(list) && got_budget);
1205
1206         /*
1207          * Now process all the entries, sending them to the driver.
1208          */
1209         errors = queued = 0;
1210         do {
1211                 struct blk_mq_queue_data bd;
1212
1213                 rq = list_first_entry(list, struct request, queuelist);
1214
1215                 hctx = rq->mq_hctx;
1216                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1217                         break;
1218
1219                 if (!blk_mq_get_driver_tag(rq)) {
1220                         /*
1221                          * The initial allocation attempt failed, so we need to
1222                          * rerun the hardware queue when a tag is freed. The
1223                          * waitqueue takes care of that. If the queue is run
1224                          * before we add this entry back on the dispatch list,
1225                          * we'll re-run it below.
1226                          */
1227                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1228                                 blk_mq_put_dispatch_budget(hctx);
1229                                 /*
1230                                  * For non-shared tags, the RESTART check
1231                                  * will suffice.
1232                                  */
1233                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1234                                         no_tag = true;
1235                                 break;
1236                         }
1237                 }
1238
1239                 list_del_init(&rq->queuelist);
1240
1241                 bd.rq = rq;
1242
1243                 /*
1244                  * Flag last if we have no more requests, or if we have more
1245                  * but can't assign a driver tag to it.
1246                  */
1247                 if (list_empty(list))
1248                         bd.last = true;
1249                 else {
1250                         nxt = list_first_entry(list, struct request, queuelist);
1251                         bd.last = !blk_mq_get_driver_tag(nxt);
1252                 }
1253
1254                 ret = q->mq_ops->queue_rq(hctx, &bd);
1255                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1256                         /*
1257                          * If an I/O scheduler has been configured and we got a
1258                          * driver tag for the next request already, free it
1259                          * again.
1260                          */
1261                         if (!list_empty(list)) {
1262                                 nxt = list_first_entry(list, struct request, queuelist);
1263                                 blk_mq_put_driver_tag(nxt);
1264                         }
1265                         list_add(&rq->queuelist, list);
1266                         __blk_mq_requeue_request(rq);
1267                         break;
1268                 }
1269
1270                 if (unlikely(ret != BLK_STS_OK)) {
1271                         errors++;
1272                         blk_mq_end_request(rq, BLK_STS_IOERR);
1273                         continue;
1274                 }
1275
1276                 queued++;
1277         } while (!list_empty(list));
1278
1279         hctx->dispatched[queued_to_index(queued)]++;
1280
1281         /*
1282          * Any items that need requeuing? Stuff them into hctx->dispatch,
1283          * that is where we will continue on next queue run.
1284          */
1285         if (!list_empty(list)) {
1286                 bool needs_restart;
1287
1288                 /*
1289                  * If we didn't flush the entire list, we could have told
1290                  * the driver there was more coming, but that turned out to
1291                  * be a lie.
1292                  */
1293                 if (q->mq_ops->commit_rqs)
1294                         q->mq_ops->commit_rqs(hctx);
1295
1296                 spin_lock(&hctx->lock);
1297                 list_splice_init(list, &hctx->dispatch);
1298                 spin_unlock(&hctx->lock);
1299
1300                 /*
1301                  * If SCHED_RESTART was set by the caller of this function and
1302                  * it is no longer set that means that it was cleared by another
1303                  * thread and hence that a queue rerun is needed.
1304                  *
1305                  * If 'no_tag' is set, that means that we failed getting
1306                  * a driver tag with an I/O scheduler attached. If our dispatch
1307                  * waitqueue is no longer active, ensure that we run the queue
1308                  * AFTER adding our entries back to the list.
1309                  *
1310                  * If no I/O scheduler has been configured it is possible that
1311                  * the hardware queue got stopped and restarted before requests
1312                  * were pushed back onto the dispatch list. Rerun the queue to
1313                  * avoid starvation. Notes:
1314                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1315                  *   been stopped before rerunning a queue.
1316                  * - Some but not all block drivers stop a queue before
1317                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1318                  *   and dm-rq.
1319                  *
1320                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1321                  * bit is set, run queue after a delay to avoid IO stalls
1322                  * that could otherwise occur if the queue is idle.
1323                  */
1324                 needs_restart = blk_mq_sched_needs_restart(hctx);
1325                 if (!needs_restart ||
1326                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1327                         blk_mq_run_hw_queue(hctx, true);
1328                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1329                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1330
1331                 blk_mq_update_dispatch_busy(hctx, true);
1332                 return false;
1333         } else
1334                 blk_mq_update_dispatch_busy(hctx, false);
1335
1336         /*
1337          * If the host/device is unable to accept more work, inform the
1338          * caller of that.
1339          */
1340         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1341                 return false;
1342
1343         return (queued + errors) != 0;
1344 }
1345
1346 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1347 {
1348         int srcu_idx;
1349
1350         /*
1351          * We should be running this queue from one of the CPUs that
1352          * are mapped to it.
1353          *
1354          * There are at least two related races now between setting
1355          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1356          * __blk_mq_run_hw_queue():
1357          *
1358          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1359          *   but later it becomes online, then this warning is harmless
1360          *   at all
1361          *
1362          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1363          *   but later it becomes offline, then the warning can't be
1364          *   triggered, and we depend on blk-mq timeout handler to
1365          *   handle dispatched requests to this hctx
1366          */
1367         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1368                 cpu_online(hctx->next_cpu)) {
1369                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1370                         raw_smp_processor_id(),
1371                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1372                 dump_stack();
1373         }
1374
1375         /*
1376          * We can't run the queue inline with ints disabled. Ensure that
1377          * we catch bad users of this early.
1378          */
1379         WARN_ON_ONCE(in_interrupt());
1380
1381         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1382
1383         hctx_lock(hctx, &srcu_idx);
1384         blk_mq_sched_dispatch_requests(hctx);
1385         hctx_unlock(hctx, srcu_idx);
1386 }
1387
1388 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1389 {
1390         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1391
1392         if (cpu >= nr_cpu_ids)
1393                 cpu = cpumask_first(hctx->cpumask);
1394         return cpu;
1395 }
1396
1397 /*
1398  * It'd be great if the workqueue API had a way to pass
1399  * in a mask and had some smarts for more clever placement.
1400  * For now we just round-robin here, switching for every
1401  * BLK_MQ_CPU_WORK_BATCH queued items.
1402  */
1403 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1404 {
1405         bool tried = false;
1406         int next_cpu = hctx->next_cpu;
1407
1408         if (hctx->queue->nr_hw_queues == 1)
1409                 return WORK_CPU_UNBOUND;
1410
1411         if (--hctx->next_cpu_batch <= 0) {
1412 select_cpu:
1413                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1414                                 cpu_online_mask);
1415                 if (next_cpu >= nr_cpu_ids)
1416                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1417                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1418         }
1419
1420         /*
1421          * Do unbound schedule if we can't find a online CPU for this hctx,
1422          * and it should only happen in the path of handling CPU DEAD.
1423          */
1424         if (!cpu_online(next_cpu)) {
1425                 if (!tried) {
1426                         tried = true;
1427                         goto select_cpu;
1428                 }
1429
1430                 /*
1431                  * Make sure to re-select CPU next time once after CPUs
1432                  * in hctx->cpumask become online again.
1433                  */
1434                 hctx->next_cpu = next_cpu;
1435                 hctx->next_cpu_batch = 1;
1436                 return WORK_CPU_UNBOUND;
1437         }
1438
1439         hctx->next_cpu = next_cpu;
1440         return next_cpu;
1441 }
1442
1443 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1444                                         unsigned long msecs)
1445 {
1446         if (unlikely(blk_mq_hctx_stopped(hctx)))
1447                 return;
1448
1449         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1450                 int cpu = get_cpu();
1451                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1452                         __blk_mq_run_hw_queue(hctx);
1453                         put_cpu();
1454                         return;
1455                 }
1456
1457                 put_cpu();
1458         }
1459
1460         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1461                                     msecs_to_jiffies(msecs));
1462 }
1463
1464 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1465 {
1466         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1467 }
1468 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1469
1470 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1471 {
1472         int srcu_idx;
1473         bool need_run;
1474
1475         /*
1476          * When queue is quiesced, we may be switching io scheduler, or
1477          * updating nr_hw_queues, or other things, and we can't run queue
1478          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1479          *
1480          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1481          * quiesced.
1482          */
1483         hctx_lock(hctx, &srcu_idx);
1484         need_run = !blk_queue_quiesced(hctx->queue) &&
1485                 blk_mq_hctx_has_pending(hctx);
1486         hctx_unlock(hctx, srcu_idx);
1487
1488         if (need_run) {
1489                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1490                 return true;
1491         }
1492
1493         return false;
1494 }
1495 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1496
1497 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1498 {
1499         struct blk_mq_hw_ctx *hctx;
1500         int i;
1501
1502         queue_for_each_hw_ctx(q, hctx, i) {
1503                 if (blk_mq_hctx_stopped(hctx))
1504                         continue;
1505
1506                 blk_mq_run_hw_queue(hctx, async);
1507         }
1508 }
1509 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1510
1511 /**
1512  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1513  * @q: request queue.
1514  *
1515  * The caller is responsible for serializing this function against
1516  * blk_mq_{start,stop}_hw_queue().
1517  */
1518 bool blk_mq_queue_stopped(struct request_queue *q)
1519 {
1520         struct blk_mq_hw_ctx *hctx;
1521         int i;
1522
1523         queue_for_each_hw_ctx(q, hctx, i)
1524                 if (blk_mq_hctx_stopped(hctx))
1525                         return true;
1526
1527         return false;
1528 }
1529 EXPORT_SYMBOL(blk_mq_queue_stopped);
1530
1531 /*
1532  * This function is often used for pausing .queue_rq() by driver when
1533  * there isn't enough resource or some conditions aren't satisfied, and
1534  * BLK_STS_RESOURCE is usually returned.
1535  *
1536  * We do not guarantee that dispatch can be drained or blocked
1537  * after blk_mq_stop_hw_queue() returns. Please use
1538  * blk_mq_quiesce_queue() for that requirement.
1539  */
1540 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1541 {
1542         cancel_delayed_work(&hctx->run_work);
1543
1544         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1545 }
1546 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1547
1548 /*
1549  * This function is often used for pausing .queue_rq() by driver when
1550  * there isn't enough resource or some conditions aren't satisfied, and
1551  * BLK_STS_RESOURCE is usually returned.
1552  *
1553  * We do not guarantee that dispatch can be drained or blocked
1554  * after blk_mq_stop_hw_queues() returns. Please use
1555  * blk_mq_quiesce_queue() for that requirement.
1556  */
1557 void blk_mq_stop_hw_queues(struct request_queue *q)
1558 {
1559         struct blk_mq_hw_ctx *hctx;
1560         int i;
1561
1562         queue_for_each_hw_ctx(q, hctx, i)
1563                 blk_mq_stop_hw_queue(hctx);
1564 }
1565 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1566
1567 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1568 {
1569         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1570
1571         blk_mq_run_hw_queue(hctx, false);
1572 }
1573 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1574
1575 void blk_mq_start_hw_queues(struct request_queue *q)
1576 {
1577         struct blk_mq_hw_ctx *hctx;
1578         int i;
1579
1580         queue_for_each_hw_ctx(q, hctx, i)
1581                 blk_mq_start_hw_queue(hctx);
1582 }
1583 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1584
1585 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1586 {
1587         if (!blk_mq_hctx_stopped(hctx))
1588                 return;
1589
1590         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1591         blk_mq_run_hw_queue(hctx, async);
1592 }
1593 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1594
1595 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1596 {
1597         struct blk_mq_hw_ctx *hctx;
1598         int i;
1599
1600         queue_for_each_hw_ctx(q, hctx, i)
1601                 blk_mq_start_stopped_hw_queue(hctx, async);
1602 }
1603 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1604
1605 static void blk_mq_run_work_fn(struct work_struct *work)
1606 {
1607         struct blk_mq_hw_ctx *hctx;
1608
1609         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1610
1611         /*
1612          * If we are stopped, don't run the queue.
1613          */
1614         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1615                 return;
1616
1617         __blk_mq_run_hw_queue(hctx);
1618 }
1619
1620 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1621                                             struct request *rq,
1622                                             bool at_head)
1623 {
1624         struct blk_mq_ctx *ctx = rq->mq_ctx;
1625         enum hctx_type type = hctx->type;
1626
1627         lockdep_assert_held(&ctx->lock);
1628
1629         trace_block_rq_insert(hctx->queue, rq);
1630
1631         if (at_head)
1632                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1633         else
1634                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1635 }
1636
1637 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1638                              bool at_head)
1639 {
1640         struct blk_mq_ctx *ctx = rq->mq_ctx;
1641
1642         lockdep_assert_held(&ctx->lock);
1643
1644         __blk_mq_insert_req_list(hctx, rq, at_head);
1645         blk_mq_hctx_mark_pending(hctx, ctx);
1646 }
1647
1648 /*
1649  * Should only be used carefully, when the caller knows we want to
1650  * bypass a potential IO scheduler on the target device.
1651  */
1652 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1653 {
1654         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1655
1656         spin_lock(&hctx->lock);
1657         list_add_tail(&rq->queuelist, &hctx->dispatch);
1658         spin_unlock(&hctx->lock);
1659
1660         if (run_queue)
1661                 blk_mq_run_hw_queue(hctx, false);
1662 }
1663
1664 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1665                             struct list_head *list)
1666
1667 {
1668         struct request *rq;
1669         enum hctx_type type = hctx->type;
1670
1671         /*
1672          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1673          * offline now
1674          */
1675         list_for_each_entry(rq, list, queuelist) {
1676                 BUG_ON(rq->mq_ctx != ctx);
1677                 trace_block_rq_insert(hctx->queue, rq);
1678         }
1679
1680         spin_lock(&ctx->lock);
1681         list_splice_tail_init(list, &ctx->rq_lists[type]);
1682         blk_mq_hctx_mark_pending(hctx, ctx);
1683         spin_unlock(&ctx->lock);
1684 }
1685
1686 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1687 {
1688         struct request *rqa = container_of(a, struct request, queuelist);
1689         struct request *rqb = container_of(b, struct request, queuelist);
1690
1691         if (rqa->mq_ctx < rqb->mq_ctx)
1692                 return -1;
1693         else if (rqa->mq_ctx > rqb->mq_ctx)
1694                 return 1;
1695         else if (rqa->mq_hctx < rqb->mq_hctx)
1696                 return -1;
1697         else if (rqa->mq_hctx > rqb->mq_hctx)
1698                 return 1;
1699
1700         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1701 }
1702
1703 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1704 {
1705         struct blk_mq_hw_ctx *this_hctx;
1706         struct blk_mq_ctx *this_ctx;
1707         struct request_queue *this_q;
1708         struct request *rq;
1709         LIST_HEAD(list);
1710         LIST_HEAD(rq_list);
1711         unsigned int depth;
1712
1713         list_splice_init(&plug->mq_list, &list);
1714
1715         if (plug->rq_count > 2 && plug->multiple_queues)
1716                 list_sort(NULL, &list, plug_rq_cmp);
1717
1718         plug->rq_count = 0;
1719
1720         this_q = NULL;
1721         this_hctx = NULL;
1722         this_ctx = NULL;
1723         depth = 0;
1724
1725         while (!list_empty(&list)) {
1726                 rq = list_entry_rq(list.next);
1727                 list_del_init(&rq->queuelist);
1728                 BUG_ON(!rq->q);
1729                 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1730                         if (this_hctx) {
1731                                 trace_block_unplug(this_q, depth, !from_schedule);
1732                                 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1733                                                                 &rq_list,
1734                                                                 from_schedule);
1735                         }
1736
1737                         this_q = rq->q;
1738                         this_ctx = rq->mq_ctx;
1739                         this_hctx = rq->mq_hctx;
1740                         depth = 0;
1741                 }
1742
1743                 depth++;
1744                 list_add_tail(&rq->queuelist, &rq_list);
1745         }
1746
1747         /*
1748          * If 'this_hctx' is set, we know we have entries to complete
1749          * on 'rq_list'. Do those.
1750          */
1751         if (this_hctx) {
1752                 trace_block_unplug(this_q, depth, !from_schedule);
1753                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1754                                                 from_schedule);
1755         }
1756 }
1757
1758 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1759 {
1760         blk_init_request_from_bio(rq, bio);
1761
1762         blk_account_io_start(rq, true);
1763 }
1764
1765 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1766                                             struct request *rq,
1767                                             blk_qc_t *cookie, bool last)
1768 {
1769         struct request_queue *q = rq->q;
1770         struct blk_mq_queue_data bd = {
1771                 .rq = rq,
1772                 .last = last,
1773         };
1774         blk_qc_t new_cookie;
1775         blk_status_t ret;
1776
1777         new_cookie = request_to_qc_t(hctx, rq);
1778
1779         /*
1780          * For OK queue, we are done. For error, caller may kill it.
1781          * Any other error (busy), just add it to our list as we
1782          * previously would have done.
1783          */
1784         ret = q->mq_ops->queue_rq(hctx, &bd);
1785         switch (ret) {
1786         case BLK_STS_OK:
1787                 blk_mq_update_dispatch_busy(hctx, false);
1788                 *cookie = new_cookie;
1789                 break;
1790         case BLK_STS_RESOURCE:
1791         case BLK_STS_DEV_RESOURCE:
1792                 blk_mq_update_dispatch_busy(hctx, true);
1793                 __blk_mq_requeue_request(rq);
1794                 break;
1795         default:
1796                 blk_mq_update_dispatch_busy(hctx, false);
1797                 *cookie = BLK_QC_T_NONE;
1798                 break;
1799         }
1800
1801         return ret;
1802 }
1803
1804 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1805                                                 struct request *rq,
1806                                                 blk_qc_t *cookie,
1807                                                 bool bypass_insert, bool last)
1808 {
1809         struct request_queue *q = rq->q;
1810         bool run_queue = true;
1811
1812         /*
1813          * RCU or SRCU read lock is needed before checking quiesced flag.
1814          *
1815          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1816          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1817          * and avoid driver to try to dispatch again.
1818          */
1819         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1820                 run_queue = false;
1821                 bypass_insert = false;
1822                 goto insert;
1823         }
1824
1825         if (q->elevator && !bypass_insert)
1826                 goto insert;
1827
1828         if (!blk_mq_get_dispatch_budget(hctx))
1829                 goto insert;
1830
1831         if (!blk_mq_get_driver_tag(rq)) {
1832                 blk_mq_put_dispatch_budget(hctx);
1833                 goto insert;
1834         }
1835
1836         return __blk_mq_issue_directly(hctx, rq, cookie, last);
1837 insert:
1838         if (bypass_insert)
1839                 return BLK_STS_RESOURCE;
1840
1841         blk_mq_request_bypass_insert(rq, run_queue);
1842         return BLK_STS_OK;
1843 }
1844
1845 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1846                 struct request *rq, blk_qc_t *cookie)
1847 {
1848         blk_status_t ret;
1849         int srcu_idx;
1850
1851         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1852
1853         hctx_lock(hctx, &srcu_idx);
1854
1855         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1856         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1857                 blk_mq_request_bypass_insert(rq, true);
1858         else if (ret != BLK_STS_OK)
1859                 blk_mq_end_request(rq, ret);
1860
1861         hctx_unlock(hctx, srcu_idx);
1862 }
1863
1864 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1865 {
1866         blk_status_t ret;
1867         int srcu_idx;
1868         blk_qc_t unused_cookie;
1869         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1870
1871         hctx_lock(hctx, &srcu_idx);
1872         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1873         hctx_unlock(hctx, srcu_idx);
1874
1875         return ret;
1876 }
1877
1878 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1879                 struct list_head *list)
1880 {
1881         while (!list_empty(list)) {
1882                 blk_status_t ret;
1883                 struct request *rq = list_first_entry(list, struct request,
1884                                 queuelist);
1885
1886                 list_del_init(&rq->queuelist);
1887                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1888                 if (ret != BLK_STS_OK) {
1889                         if (ret == BLK_STS_RESOURCE ||
1890                                         ret == BLK_STS_DEV_RESOURCE) {
1891                                 blk_mq_request_bypass_insert(rq,
1892                                                         list_empty(list));
1893                                 break;
1894                         }
1895                         blk_mq_end_request(rq, ret);
1896                 }
1897         }
1898
1899         /*
1900          * If we didn't flush the entire list, we could have told
1901          * the driver there was more coming, but that turned out to
1902          * be a lie.
1903          */
1904         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1905                 hctx->queue->mq_ops->commit_rqs(hctx);
1906 }
1907
1908 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1909 {
1910         list_add_tail(&rq->queuelist, &plug->mq_list);
1911         plug->rq_count++;
1912         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1913                 struct request *tmp;
1914
1915                 tmp = list_first_entry(&plug->mq_list, struct request,
1916                                                 queuelist);
1917                 if (tmp->q != rq->q)
1918                         plug->multiple_queues = true;
1919         }
1920 }
1921
1922 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1923 {
1924         const int is_sync = op_is_sync(bio->bi_opf);
1925         const int is_flush_fua = op_is_flush(bio->bi_opf);
1926         struct blk_mq_alloc_data data = { .flags = 0};
1927         struct request *rq;
1928         struct blk_plug *plug;
1929         struct request *same_queue_rq = NULL;
1930         blk_qc_t cookie;
1931
1932         blk_queue_bounce(q, &bio);
1933
1934         blk_queue_split(q, &bio);
1935
1936         if (!bio_integrity_prep(bio))
1937                 return BLK_QC_T_NONE;
1938
1939         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1940             blk_attempt_plug_merge(q, bio, &same_queue_rq))
1941                 return BLK_QC_T_NONE;
1942
1943         if (blk_mq_sched_bio_merge(q, bio))
1944                 return BLK_QC_T_NONE;
1945
1946         rq_qos_throttle(q, bio);
1947
1948         data.cmd_flags = bio->bi_opf;
1949         rq = blk_mq_get_request(q, bio, &data);
1950         if (unlikely(!rq)) {
1951                 rq_qos_cleanup(q, bio);
1952                 if (bio->bi_opf & REQ_NOWAIT)
1953                         bio_wouldblock_error(bio);
1954                 return BLK_QC_T_NONE;
1955         }
1956
1957         trace_block_getrq(q, bio, bio->bi_opf);
1958
1959         rq_qos_track(q, rq, bio);
1960
1961         cookie = request_to_qc_t(data.hctx, rq);
1962
1963         plug = current->plug;
1964         if (unlikely(is_flush_fua)) {
1965                 blk_mq_put_ctx(data.ctx);
1966                 blk_mq_bio_to_request(rq, bio);
1967
1968                 /* bypass scheduler for flush rq */
1969                 blk_insert_flush(rq);
1970                 blk_mq_run_hw_queue(data.hctx, true);
1971         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1972                 /*
1973                  * Use plugging if we have a ->commit_rqs() hook as well, as
1974                  * we know the driver uses bd->last in a smart fashion.
1975                  */
1976                 unsigned int request_count = plug->rq_count;
1977                 struct request *last = NULL;
1978
1979                 blk_mq_put_ctx(data.ctx);
1980                 blk_mq_bio_to_request(rq, bio);
1981
1982                 if (!request_count)
1983                         trace_block_plug(q);
1984                 else
1985                         last = list_entry_rq(plug->mq_list.prev);
1986
1987                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1988                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1989                         blk_flush_plug_list(plug, false);
1990                         trace_block_plug(q);
1991                 }
1992
1993                 blk_add_rq_to_plug(plug, rq);
1994         } else if (plug && !blk_queue_nomerges(q)) {
1995                 blk_mq_bio_to_request(rq, bio);
1996
1997                 /*
1998                  * We do limited plugging. If the bio can be merged, do that.
1999                  * Otherwise the existing request in the plug list will be
2000                  * issued. So the plug list will have one request at most
2001                  * The plug list might get flushed before this. If that happens,
2002                  * the plug list is empty, and same_queue_rq is invalid.
2003                  */
2004                 if (list_empty(&plug->mq_list))
2005                         same_queue_rq = NULL;
2006                 if (same_queue_rq) {
2007                         list_del_init(&same_queue_rq->queuelist);
2008                         plug->rq_count--;
2009                 }
2010                 blk_add_rq_to_plug(plug, rq);
2011                 trace_block_plug(q);
2012
2013                 blk_mq_put_ctx(data.ctx);
2014
2015                 if (same_queue_rq) {
2016                         data.hctx = same_queue_rq->mq_hctx;
2017                         trace_block_unplug(q, 1, true);
2018                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2019                                         &cookie);
2020                 }
2021         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2022                         !data.hctx->dispatch_busy)) {
2023                 blk_mq_put_ctx(data.ctx);
2024                 blk_mq_bio_to_request(rq, bio);
2025                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2026         } else {
2027                 blk_mq_put_ctx(data.ctx);
2028                 blk_mq_bio_to_request(rq, bio);
2029                 blk_mq_sched_insert_request(rq, false, true, true);
2030         }
2031
2032         return cookie;
2033 }
2034
2035 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2036                      unsigned int hctx_idx)
2037 {
2038         struct page *page;
2039
2040         if (tags->rqs && set->ops->exit_request) {
2041                 int i;
2042
2043                 for (i = 0; i < tags->nr_tags; i++) {
2044                         struct request *rq = tags->static_rqs[i];
2045
2046                         if (!rq)
2047                                 continue;
2048                         set->ops->exit_request(set, rq, hctx_idx);
2049                         tags->static_rqs[i] = NULL;
2050                 }
2051         }
2052
2053         while (!list_empty(&tags->page_list)) {
2054                 page = list_first_entry(&tags->page_list, struct page, lru);
2055                 list_del_init(&page->lru);
2056                 /*
2057                  * Remove kmemleak object previously allocated in
2058                  * blk_mq_init_rq_map().
2059                  */
2060                 kmemleak_free(page_address(page));
2061                 __free_pages(page, page->private);
2062         }
2063 }
2064
2065 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2066 {
2067         kfree(tags->rqs);
2068         tags->rqs = NULL;
2069         kfree(tags->static_rqs);
2070         tags->static_rqs = NULL;
2071
2072         blk_mq_free_tags(tags);
2073 }
2074
2075 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2076                                         unsigned int hctx_idx,
2077                                         unsigned int nr_tags,
2078                                         unsigned int reserved_tags)
2079 {
2080         struct blk_mq_tags *tags;
2081         int node;
2082
2083         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2084         if (node == NUMA_NO_NODE)
2085                 node = set->numa_node;
2086
2087         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2088                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2089         if (!tags)
2090                 return NULL;
2091
2092         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2093                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2094                                  node);
2095         if (!tags->rqs) {
2096                 blk_mq_free_tags(tags);
2097                 return NULL;
2098         }
2099
2100         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2101                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2102                                         node);
2103         if (!tags->static_rqs) {
2104                 kfree(tags->rqs);
2105                 blk_mq_free_tags(tags);
2106                 return NULL;
2107         }
2108
2109         return tags;
2110 }
2111
2112 static size_t order_to_size(unsigned int order)
2113 {
2114         return (size_t)PAGE_SIZE << order;
2115 }
2116
2117 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2118                                unsigned int hctx_idx, int node)
2119 {
2120         int ret;
2121
2122         if (set->ops->init_request) {
2123                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2124                 if (ret)
2125                         return ret;
2126         }
2127
2128         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2129         return 0;
2130 }
2131
2132 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2133                      unsigned int hctx_idx, unsigned int depth)
2134 {
2135         unsigned int i, j, entries_per_page, max_order = 4;
2136         size_t rq_size, left;
2137         int node;
2138
2139         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2140         if (node == NUMA_NO_NODE)
2141                 node = set->numa_node;
2142
2143         INIT_LIST_HEAD(&tags->page_list);
2144
2145         /*
2146          * rq_size is the size of the request plus driver payload, rounded
2147          * to the cacheline size
2148          */
2149         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2150                                 cache_line_size());
2151         left = rq_size * depth;
2152
2153         for (i = 0; i < depth; ) {
2154                 int this_order = max_order;
2155                 struct page *page;
2156                 int to_do;
2157                 void *p;
2158
2159                 while (this_order && left < order_to_size(this_order - 1))
2160                         this_order--;
2161
2162                 do {
2163                         page = alloc_pages_node(node,
2164                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2165                                 this_order);
2166                         if (page)
2167                                 break;
2168                         if (!this_order--)
2169                                 break;
2170                         if (order_to_size(this_order) < rq_size)
2171                                 break;
2172                 } while (1);
2173
2174                 if (!page)
2175                         goto fail;
2176
2177                 page->private = this_order;
2178                 list_add_tail(&page->lru, &tags->page_list);
2179
2180                 p = page_address(page);
2181                 /*
2182                  * Allow kmemleak to scan these pages as they contain pointers
2183                  * to additional allocations like via ops->init_request().
2184                  */
2185                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2186                 entries_per_page = order_to_size(this_order) / rq_size;
2187                 to_do = min(entries_per_page, depth - i);
2188                 left -= to_do * rq_size;
2189                 for (j = 0; j < to_do; j++) {
2190                         struct request *rq = p;
2191
2192                         tags->static_rqs[i] = rq;
2193                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2194                                 tags->static_rqs[i] = NULL;
2195                                 goto fail;
2196                         }
2197
2198                         p += rq_size;
2199                         i++;
2200                 }
2201         }
2202         return 0;
2203
2204 fail:
2205         blk_mq_free_rqs(set, tags, hctx_idx);
2206         return -ENOMEM;
2207 }
2208
2209 /*
2210  * 'cpu' is going away. splice any existing rq_list entries from this
2211  * software queue to the hw queue dispatch list, and ensure that it
2212  * gets run.
2213  */
2214 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2215 {
2216         struct blk_mq_hw_ctx *hctx;
2217         struct blk_mq_ctx *ctx;
2218         LIST_HEAD(tmp);
2219         enum hctx_type type;
2220
2221         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2222         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2223         type = hctx->type;
2224
2225         spin_lock(&ctx->lock);
2226         if (!list_empty(&ctx->rq_lists[type])) {
2227                 list_splice_init(&ctx->rq_lists[type], &tmp);
2228                 blk_mq_hctx_clear_pending(hctx, ctx);
2229         }
2230         spin_unlock(&ctx->lock);
2231
2232         if (list_empty(&tmp))
2233                 return 0;
2234
2235         spin_lock(&hctx->lock);
2236         list_splice_tail_init(&tmp, &hctx->dispatch);
2237         spin_unlock(&hctx->lock);
2238
2239         blk_mq_run_hw_queue(hctx, true);
2240         return 0;
2241 }
2242
2243 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2244 {
2245         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2246                                             &hctx->cpuhp_dead);
2247 }
2248
2249 /* hctx->ctxs will be freed in queue's release handler */
2250 static void blk_mq_exit_hctx(struct request_queue *q,
2251                 struct blk_mq_tag_set *set,
2252                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2253 {
2254         if (blk_mq_hw_queue_mapped(hctx))
2255                 blk_mq_tag_idle(hctx);
2256
2257         if (set->ops->exit_request)
2258                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2259
2260         if (set->ops->exit_hctx)
2261                 set->ops->exit_hctx(hctx, hctx_idx);
2262
2263         if (hctx->flags & BLK_MQ_F_BLOCKING)
2264                 cleanup_srcu_struct(hctx->srcu);
2265
2266         blk_mq_remove_cpuhp(hctx);
2267         blk_free_flush_queue(hctx->fq);
2268         sbitmap_free(&hctx->ctx_map);
2269 }
2270
2271 static void blk_mq_exit_hw_queues(struct request_queue *q,
2272                 struct blk_mq_tag_set *set, int nr_queue)
2273 {
2274         struct blk_mq_hw_ctx *hctx;
2275         unsigned int i;
2276
2277         queue_for_each_hw_ctx(q, hctx, i) {
2278                 if (i == nr_queue)
2279                         break;
2280                 blk_mq_debugfs_unregister_hctx(hctx);
2281                 blk_mq_exit_hctx(q, set, hctx, i);
2282         }
2283 }
2284
2285 static int blk_mq_init_hctx(struct request_queue *q,
2286                 struct blk_mq_tag_set *set,
2287                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2288 {
2289         int node;
2290
2291         node = hctx->numa_node;
2292         if (node == NUMA_NO_NODE)
2293                 node = hctx->numa_node = set->numa_node;
2294
2295         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2296         spin_lock_init(&hctx->lock);
2297         INIT_LIST_HEAD(&hctx->dispatch);
2298         hctx->queue = q;
2299         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2300
2301         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2302
2303         hctx->tags = set->tags[hctx_idx];
2304
2305         /*
2306          * Allocate space for all possible cpus to avoid allocation at
2307          * runtime
2308          */
2309         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2310                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2311         if (!hctx->ctxs)
2312                 goto unregister_cpu_notifier;
2313
2314         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2315                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2316                 goto free_ctxs;
2317
2318         hctx->nr_ctx = 0;
2319
2320         spin_lock_init(&hctx->dispatch_wait_lock);
2321         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2322         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2323
2324         if (set->ops->init_hctx &&
2325             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2326                 goto free_bitmap;
2327
2328         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2329                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2330         if (!hctx->fq)
2331                 goto exit_hctx;
2332
2333         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2334                 goto free_fq;
2335
2336         if (hctx->flags & BLK_MQ_F_BLOCKING)
2337                 init_srcu_struct(hctx->srcu);
2338
2339         return 0;
2340
2341  free_fq:
2342         blk_free_flush_queue(hctx->fq);
2343  exit_hctx:
2344         if (set->ops->exit_hctx)
2345                 set->ops->exit_hctx(hctx, hctx_idx);
2346  free_bitmap:
2347         sbitmap_free(&hctx->ctx_map);
2348  free_ctxs:
2349         kfree(hctx->ctxs);
2350  unregister_cpu_notifier:
2351         blk_mq_remove_cpuhp(hctx);
2352         return -1;
2353 }
2354
2355 static void blk_mq_init_cpu_queues(struct request_queue *q,
2356                                    unsigned int nr_hw_queues)
2357 {
2358         struct blk_mq_tag_set *set = q->tag_set;
2359         unsigned int i, j;
2360
2361         for_each_possible_cpu(i) {
2362                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2363                 struct blk_mq_hw_ctx *hctx;
2364                 int k;
2365
2366                 __ctx->cpu = i;
2367                 spin_lock_init(&__ctx->lock);
2368                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2369                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2370
2371                 __ctx->queue = q;
2372
2373                 /*
2374                  * Set local node, IFF we have more than one hw queue. If
2375                  * not, we remain on the home node of the device
2376                  */
2377                 for (j = 0; j < set->nr_maps; j++) {
2378                         hctx = blk_mq_map_queue_type(q, j, i);
2379                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2380                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2381                 }
2382         }
2383 }
2384
2385 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2386 {
2387         int ret = 0;
2388
2389         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2390                                         set->queue_depth, set->reserved_tags);
2391         if (!set->tags[hctx_idx])
2392                 return false;
2393
2394         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2395                                 set->queue_depth);
2396         if (!ret)
2397                 return true;
2398
2399         blk_mq_free_rq_map(set->tags[hctx_idx]);
2400         set->tags[hctx_idx] = NULL;
2401         return false;
2402 }
2403
2404 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2405                                          unsigned int hctx_idx)
2406 {
2407         if (set->tags && set->tags[hctx_idx]) {
2408                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2409                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2410                 set->tags[hctx_idx] = NULL;
2411         }
2412 }
2413
2414 static void blk_mq_map_swqueue(struct request_queue *q)
2415 {
2416         unsigned int i, j, hctx_idx;
2417         struct blk_mq_hw_ctx *hctx;
2418         struct blk_mq_ctx *ctx;
2419         struct blk_mq_tag_set *set = q->tag_set;
2420
2421         /*
2422          * Avoid others reading imcomplete hctx->cpumask through sysfs
2423          */
2424         mutex_lock(&q->sysfs_lock);
2425
2426         queue_for_each_hw_ctx(q, hctx, i) {
2427                 cpumask_clear(hctx->cpumask);
2428                 hctx->nr_ctx = 0;
2429                 hctx->dispatch_from = NULL;
2430         }
2431
2432         /*
2433          * Map software to hardware queues.
2434          *
2435          * If the cpu isn't present, the cpu is mapped to first hctx.
2436          */
2437         for_each_possible_cpu(i) {
2438                 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2439                 /* unmapped hw queue can be remapped after CPU topo changed */
2440                 if (!set->tags[hctx_idx] &&
2441                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2442                         /*
2443                          * If tags initialization fail for some hctx,
2444                          * that hctx won't be brought online.  In this
2445                          * case, remap the current ctx to hctx[0] which
2446                          * is guaranteed to always have tags allocated
2447                          */
2448                         set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2449                 }
2450
2451                 ctx = per_cpu_ptr(q->queue_ctx, i);
2452                 for (j = 0; j < set->nr_maps; j++) {
2453                         if (!set->map[j].nr_queues) {
2454                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2455                                                 HCTX_TYPE_DEFAULT, i);
2456                                 continue;
2457                         }
2458
2459                         hctx = blk_mq_map_queue_type(q, j, i);
2460                         ctx->hctxs[j] = hctx;
2461                         /*
2462                          * If the CPU is already set in the mask, then we've
2463                          * mapped this one already. This can happen if
2464                          * devices share queues across queue maps.
2465                          */
2466                         if (cpumask_test_cpu(i, hctx->cpumask))
2467                                 continue;
2468
2469                         cpumask_set_cpu(i, hctx->cpumask);
2470                         hctx->type = j;
2471                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2472                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2473
2474                         /*
2475                          * If the nr_ctx type overflows, we have exceeded the
2476                          * amount of sw queues we can support.
2477                          */
2478                         BUG_ON(!hctx->nr_ctx);
2479                 }
2480
2481                 for (; j < HCTX_MAX_TYPES; j++)
2482                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2483                                         HCTX_TYPE_DEFAULT, i);
2484         }
2485
2486         mutex_unlock(&q->sysfs_lock);
2487
2488         queue_for_each_hw_ctx(q, hctx, i) {
2489                 /*
2490                  * If no software queues are mapped to this hardware queue,
2491                  * disable it and free the request entries.
2492                  */
2493                 if (!hctx->nr_ctx) {
2494                         /* Never unmap queue 0.  We need it as a
2495                          * fallback in case of a new remap fails
2496                          * allocation
2497                          */
2498                         if (i && set->tags[i])
2499                                 blk_mq_free_map_and_requests(set, i);
2500
2501                         hctx->tags = NULL;
2502                         continue;
2503                 }
2504
2505                 hctx->tags = set->tags[i];
2506                 WARN_ON(!hctx->tags);
2507
2508                 /*
2509                  * Set the map size to the number of mapped software queues.
2510                  * This is more accurate and more efficient than looping
2511                  * over all possibly mapped software queues.
2512                  */
2513                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2514
2515                 /*
2516                  * Initialize batch roundrobin counts
2517                  */
2518                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2519                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2520         }
2521 }
2522
2523 /*
2524  * Caller needs to ensure that we're either frozen/quiesced, or that
2525  * the queue isn't live yet.
2526  */
2527 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2528 {
2529         struct blk_mq_hw_ctx *hctx;
2530         int i;
2531
2532         queue_for_each_hw_ctx(q, hctx, i) {
2533                 if (shared)
2534                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2535                 else
2536                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2537         }
2538 }
2539
2540 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2541                                         bool shared)
2542 {
2543         struct request_queue *q;
2544
2545         lockdep_assert_held(&set->tag_list_lock);
2546
2547         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2548                 blk_mq_freeze_queue(q);
2549                 queue_set_hctx_shared(q, shared);
2550                 blk_mq_unfreeze_queue(q);
2551         }
2552 }
2553
2554 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2555 {
2556         struct blk_mq_tag_set *set = q->tag_set;
2557
2558         mutex_lock(&set->tag_list_lock);
2559         list_del_rcu(&q->tag_set_list);
2560         if (list_is_singular(&set->tag_list)) {
2561                 /* just transitioned to unshared */
2562                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2563                 /* update existing queue */
2564                 blk_mq_update_tag_set_depth(set, false);
2565         }
2566         mutex_unlock(&set->tag_list_lock);
2567         INIT_LIST_HEAD(&q->tag_set_list);
2568 }
2569
2570 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2571                                      struct request_queue *q)
2572 {
2573         mutex_lock(&set->tag_list_lock);
2574
2575         /*
2576          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2577          */
2578         if (!list_empty(&set->tag_list) &&
2579             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2580                 set->flags |= BLK_MQ_F_TAG_SHARED;
2581                 /* update existing queue */
2582                 blk_mq_update_tag_set_depth(set, true);
2583         }
2584         if (set->flags & BLK_MQ_F_TAG_SHARED)
2585                 queue_set_hctx_shared(q, true);
2586         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2587
2588         mutex_unlock(&set->tag_list_lock);
2589 }
2590
2591 /* All allocations will be freed in release handler of q->mq_kobj */
2592 static int blk_mq_alloc_ctxs(struct request_queue *q)
2593 {
2594         struct blk_mq_ctxs *ctxs;
2595         int cpu;
2596
2597         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2598         if (!ctxs)
2599                 return -ENOMEM;
2600
2601         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2602         if (!ctxs->queue_ctx)
2603                 goto fail;
2604
2605         for_each_possible_cpu(cpu) {
2606                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2607                 ctx->ctxs = ctxs;
2608         }
2609
2610         q->mq_kobj = &ctxs->kobj;
2611         q->queue_ctx = ctxs->queue_ctx;
2612
2613         return 0;
2614  fail:
2615         kfree(ctxs);
2616         return -ENOMEM;
2617 }
2618
2619 /*
2620  * It is the actual release handler for mq, but we do it from
2621  * request queue's release handler for avoiding use-after-free
2622  * and headache because q->mq_kobj shouldn't have been introduced,
2623  * but we can't group ctx/kctx kobj without it.
2624  */
2625 void blk_mq_release(struct request_queue *q)
2626 {
2627         struct blk_mq_hw_ctx *hctx;
2628         unsigned int i;
2629
2630         /* hctx kobj stays in hctx */
2631         queue_for_each_hw_ctx(q, hctx, i) {
2632                 if (!hctx)
2633                         continue;
2634                 kobject_put(&hctx->kobj);
2635         }
2636
2637         kfree(q->queue_hw_ctx);
2638
2639         /*
2640          * release .mq_kobj and sw queue's kobject now because
2641          * both share lifetime with request queue.
2642          */
2643         blk_mq_sysfs_deinit(q);
2644 }
2645
2646 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2647 {
2648         struct request_queue *uninit_q, *q;
2649
2650         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2651         if (!uninit_q)
2652                 return ERR_PTR(-ENOMEM);
2653
2654         q = blk_mq_init_allocated_queue(set, uninit_q);
2655         if (IS_ERR(q))
2656                 blk_cleanup_queue(uninit_q);
2657
2658         return q;
2659 }
2660 EXPORT_SYMBOL(blk_mq_init_queue);
2661
2662 /*
2663  * Helper for setting up a queue with mq ops, given queue depth, and
2664  * the passed in mq ops flags.
2665  */
2666 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2667                                            const struct blk_mq_ops *ops,
2668                                            unsigned int queue_depth,
2669                                            unsigned int set_flags)
2670 {
2671         struct request_queue *q;
2672         int ret;
2673
2674         memset(set, 0, sizeof(*set));
2675         set->ops = ops;
2676         set->nr_hw_queues = 1;
2677         set->nr_maps = 1;
2678         set->queue_depth = queue_depth;
2679         set->numa_node = NUMA_NO_NODE;
2680         set->flags = set_flags;
2681
2682         ret = blk_mq_alloc_tag_set(set);
2683         if (ret)
2684                 return ERR_PTR(ret);
2685
2686         q = blk_mq_init_queue(set);
2687         if (IS_ERR(q)) {
2688                 blk_mq_free_tag_set(set);
2689                 return q;
2690         }
2691
2692         return q;
2693 }
2694 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2695
2696 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2697 {
2698         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2699
2700         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2701                            __alignof__(struct blk_mq_hw_ctx)) !=
2702                      sizeof(struct blk_mq_hw_ctx));
2703
2704         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2705                 hw_ctx_size += sizeof(struct srcu_struct);
2706
2707         return hw_ctx_size;
2708 }
2709
2710 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2711                 struct blk_mq_tag_set *set, struct request_queue *q,
2712                 int hctx_idx, int node)
2713 {
2714         struct blk_mq_hw_ctx *hctx;
2715
2716         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2717                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2718                         node);
2719         if (!hctx)
2720                 return NULL;
2721
2722         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2723                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2724                                 node)) {
2725                 kfree(hctx);
2726                 return NULL;
2727         }
2728
2729         atomic_set(&hctx->nr_active, 0);
2730         hctx->numa_node = node;
2731         hctx->queue_num = hctx_idx;
2732
2733         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2734                 free_cpumask_var(hctx->cpumask);
2735                 kfree(hctx);
2736                 return NULL;
2737         }
2738         blk_mq_hctx_kobj_init(hctx);
2739
2740         return hctx;
2741 }
2742
2743 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2744                                                 struct request_queue *q)
2745 {
2746         int i, j, end;
2747         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2748
2749         /* protect against switching io scheduler  */
2750         mutex_lock(&q->sysfs_lock);
2751         for (i = 0; i < set->nr_hw_queues; i++) {
2752                 int node;
2753                 struct blk_mq_hw_ctx *hctx;
2754
2755                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2756                 /*
2757                  * If the hw queue has been mapped to another numa node,
2758                  * we need to realloc the hctx. If allocation fails, fallback
2759                  * to use the previous one.
2760                  */
2761                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2762                         continue;
2763
2764                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2765                 if (hctx) {
2766                         if (hctxs[i]) {
2767                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2768                                 kobject_put(&hctxs[i]->kobj);
2769                         }
2770                         hctxs[i] = hctx;
2771                 } else {
2772                         if (hctxs[i])
2773                                 pr_warn("Allocate new hctx on node %d fails,\
2774                                                 fallback to previous one on node %d\n",
2775                                                 node, hctxs[i]->numa_node);
2776                         else
2777                                 break;
2778                 }
2779         }
2780         /*
2781          * Increasing nr_hw_queues fails. Free the newly allocated
2782          * hctxs and keep the previous q->nr_hw_queues.
2783          */
2784         if (i != set->nr_hw_queues) {
2785                 j = q->nr_hw_queues;
2786                 end = i;
2787         } else {
2788                 j = i;
2789                 end = q->nr_hw_queues;
2790                 q->nr_hw_queues = set->nr_hw_queues;
2791         }
2792
2793         for (; j < end; j++) {
2794                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2795
2796                 if (hctx) {
2797                         if (hctx->tags)
2798                                 blk_mq_free_map_and_requests(set, j);
2799                         blk_mq_exit_hctx(q, set, hctx, j);
2800                         kobject_put(&hctx->kobj);
2801                         hctxs[j] = NULL;
2802
2803                 }
2804         }
2805         mutex_unlock(&q->sysfs_lock);
2806 }
2807
2808 /*
2809  * Maximum number of hardware queues we support. For single sets, we'll never
2810  * have more than the CPUs (software queues). For multiple sets, the tag_set
2811  * user may have set ->nr_hw_queues larger.
2812  */
2813 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2814 {
2815         if (set->nr_maps == 1)
2816                 return nr_cpu_ids;
2817
2818         return max(set->nr_hw_queues, nr_cpu_ids);
2819 }
2820
2821 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2822                                                   struct request_queue *q)
2823 {
2824         /* mark the queue as mq asap */
2825         q->mq_ops = set->ops;
2826
2827         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2828                                              blk_mq_poll_stats_bkt,
2829                                              BLK_MQ_POLL_STATS_BKTS, q);
2830         if (!q->poll_cb)
2831                 goto err_exit;
2832
2833         if (blk_mq_alloc_ctxs(q))
2834                 goto err_exit;
2835
2836         /* init q->mq_kobj and sw queues' kobjects */
2837         blk_mq_sysfs_init(q);
2838
2839         q->nr_queues = nr_hw_queues(set);
2840         q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2841                                                 GFP_KERNEL, set->numa_node);
2842         if (!q->queue_hw_ctx)
2843                 goto err_sys_init;
2844
2845         blk_mq_realloc_hw_ctxs(set, q);
2846         if (!q->nr_hw_queues)
2847                 goto err_hctxs;
2848
2849         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2850         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2851
2852         q->tag_set = set;
2853
2854         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2855         if (set->nr_maps > HCTX_TYPE_POLL &&
2856             set->map[HCTX_TYPE_POLL].nr_queues)
2857                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2858
2859         q->sg_reserved_size = INT_MAX;
2860
2861         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2862         INIT_LIST_HEAD(&q->requeue_list);
2863         spin_lock_init(&q->requeue_lock);
2864
2865         blk_queue_make_request(q, blk_mq_make_request);
2866
2867         /*
2868          * Do this after blk_queue_make_request() overrides it...
2869          */
2870         q->nr_requests = set->queue_depth;
2871
2872         /*
2873          * Default to classic polling
2874          */
2875         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2876
2877         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2878         blk_mq_add_queue_tag_set(set, q);
2879         blk_mq_map_swqueue(q);
2880
2881         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2882                 int ret;
2883
2884                 ret = elevator_init_mq(q);
2885                 if (ret)
2886                         return ERR_PTR(ret);
2887         }
2888
2889         return q;
2890
2891 err_hctxs:
2892         kfree(q->queue_hw_ctx);
2893 err_sys_init:
2894         blk_mq_sysfs_deinit(q);
2895 err_exit:
2896         q->mq_ops = NULL;
2897         return ERR_PTR(-ENOMEM);
2898 }
2899 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2900
2901 void blk_mq_free_queue(struct request_queue *q)
2902 {
2903         struct blk_mq_tag_set   *set = q->tag_set;
2904
2905         blk_mq_del_queue_tag_set(q);
2906         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2907 }
2908
2909 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2910 {
2911         int i;
2912
2913         for (i = 0; i < set->nr_hw_queues; i++)
2914                 if (!__blk_mq_alloc_rq_map(set, i))
2915                         goto out_unwind;
2916
2917         return 0;
2918
2919 out_unwind:
2920         while (--i >= 0)
2921                 blk_mq_free_rq_map(set->tags[i]);
2922
2923         return -ENOMEM;
2924 }
2925
2926 /*
2927  * Allocate the request maps associated with this tag_set. Note that this
2928  * may reduce the depth asked for, if memory is tight. set->queue_depth
2929  * will be updated to reflect the allocated depth.
2930  */
2931 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2932 {
2933         unsigned int depth;
2934         int err;
2935
2936         depth = set->queue_depth;
2937         do {
2938                 err = __blk_mq_alloc_rq_maps(set);
2939                 if (!err)
2940                         break;
2941
2942                 set->queue_depth >>= 1;
2943                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2944                         err = -ENOMEM;
2945                         break;
2946                 }
2947         } while (set->queue_depth);
2948
2949         if (!set->queue_depth || err) {
2950                 pr_err("blk-mq: failed to allocate request map\n");
2951                 return -ENOMEM;
2952         }
2953
2954         if (depth != set->queue_depth)
2955                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2956                                                 depth, set->queue_depth);
2957
2958         return 0;
2959 }
2960
2961 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2962 {
2963         if (set->ops->map_queues && !is_kdump_kernel()) {
2964                 int i;
2965
2966                 /*
2967                  * transport .map_queues is usually done in the following
2968                  * way:
2969                  *
2970                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2971                  *      mask = get_cpu_mask(queue)
2972                  *      for_each_cpu(cpu, mask)
2973                  *              set->map[x].mq_map[cpu] = queue;
2974                  * }
2975                  *
2976                  * When we need to remap, the table has to be cleared for
2977                  * killing stale mapping since one CPU may not be mapped
2978                  * to any hw queue.
2979                  */
2980                 for (i = 0; i < set->nr_maps; i++)
2981                         blk_mq_clear_mq_map(&set->map[i]);
2982
2983                 return set->ops->map_queues(set);
2984         } else {
2985                 BUG_ON(set->nr_maps > 1);
2986                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2987         }
2988 }
2989
2990 /*
2991  * Alloc a tag set to be associated with one or more request queues.
2992  * May fail with EINVAL for various error conditions. May adjust the
2993  * requested depth down, if it's too large. In that case, the set
2994  * value will be stored in set->queue_depth.
2995  */
2996 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2997 {
2998         int i, ret;
2999
3000         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3001
3002         if (!set->nr_hw_queues)
3003                 return -EINVAL;
3004         if (!set->queue_depth)
3005                 return -EINVAL;
3006         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3007                 return -EINVAL;
3008
3009         if (!set->ops->queue_rq)
3010                 return -EINVAL;
3011
3012         if (!set->ops->get_budget ^ !set->ops->put_budget)
3013                 return -EINVAL;
3014
3015         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3016                 pr_info("blk-mq: reduced tag depth to %u\n",
3017                         BLK_MQ_MAX_DEPTH);
3018                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3019         }
3020
3021         if (!set->nr_maps)
3022                 set->nr_maps = 1;
3023         else if (set->nr_maps > HCTX_MAX_TYPES)
3024                 return -EINVAL;
3025
3026         /*
3027          * If a crashdump is active, then we are potentially in a very
3028          * memory constrained environment. Limit us to 1 queue and
3029          * 64 tags to prevent using too much memory.
3030          */
3031         if (is_kdump_kernel()) {
3032                 set->nr_hw_queues = 1;
3033                 set->nr_maps = 1;
3034                 set->queue_depth = min(64U, set->queue_depth);
3035         }
3036         /*
3037          * There is no use for more h/w queues than cpus if we just have
3038          * a single map
3039          */
3040         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3041                 set->nr_hw_queues = nr_cpu_ids;
3042
3043         set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3044                                  GFP_KERNEL, set->numa_node);
3045         if (!set->tags)
3046                 return -ENOMEM;
3047
3048         ret = -ENOMEM;
3049         for (i = 0; i < set->nr_maps; i++) {
3050                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3051                                                   sizeof(set->map[i].mq_map[0]),
3052                                                   GFP_KERNEL, set->numa_node);
3053                 if (!set->map[i].mq_map)
3054                         goto out_free_mq_map;
3055                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3056         }
3057
3058         ret = blk_mq_update_queue_map(set);
3059         if (ret)
3060                 goto out_free_mq_map;
3061
3062         ret = blk_mq_alloc_rq_maps(set);
3063         if (ret)
3064                 goto out_free_mq_map;
3065
3066         mutex_init(&set->tag_list_lock);
3067         INIT_LIST_HEAD(&set->tag_list);
3068
3069         return 0;
3070
3071 out_free_mq_map:
3072         for (i = 0; i < set->nr_maps; i++) {
3073                 kfree(set->map[i].mq_map);
3074                 set->map[i].mq_map = NULL;
3075         }
3076         kfree(set->tags);
3077         set->tags = NULL;
3078         return ret;
3079 }
3080 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3081
3082 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3083 {
3084         int i, j;
3085
3086         for (i = 0; i < nr_hw_queues(set); i++)
3087                 blk_mq_free_map_and_requests(set, i);
3088
3089         for (j = 0; j < set->nr_maps; j++) {
3090                 kfree(set->map[j].mq_map);
3091                 set->map[j].mq_map = NULL;
3092         }
3093
3094         kfree(set->tags);
3095         set->tags = NULL;
3096 }
3097 EXPORT_SYMBOL(blk_mq_free_tag_set);
3098
3099 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3100 {
3101         struct blk_mq_tag_set *set = q->tag_set;
3102         struct blk_mq_hw_ctx *hctx;
3103         int i, ret;
3104
3105         if (!set)
3106                 return -EINVAL;
3107
3108         if (q->nr_requests == nr)
3109                 return 0;
3110
3111         blk_mq_freeze_queue(q);
3112         blk_mq_quiesce_queue(q);
3113
3114         ret = 0;
3115         queue_for_each_hw_ctx(q, hctx, i) {
3116                 if (!hctx->tags)
3117                         continue;
3118                 /*
3119                  * If we're using an MQ scheduler, just update the scheduler
3120                  * queue depth. This is similar to what the old code would do.
3121                  */
3122                 if (!hctx->sched_tags) {
3123                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3124                                                         false);
3125                 } else {
3126                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3127                                                         nr, true);
3128                 }
3129                 if (ret)
3130                         break;
3131         }
3132
3133         if (!ret)
3134                 q->nr_requests = nr;
3135
3136         blk_mq_unquiesce_queue(q);
3137         blk_mq_unfreeze_queue(q);
3138
3139         return ret;
3140 }
3141
3142 /*
3143  * request_queue and elevator_type pair.
3144  * It is just used by __blk_mq_update_nr_hw_queues to cache
3145  * the elevator_type associated with a request_queue.
3146  */
3147 struct blk_mq_qe_pair {
3148         struct list_head node;
3149         struct request_queue *q;
3150         struct elevator_type *type;
3151 };
3152
3153 /*
3154  * Cache the elevator_type in qe pair list and switch the
3155  * io scheduler to 'none'
3156  */
3157 static bool blk_mq_elv_switch_none(struct list_head *head,
3158                 struct request_queue *q)
3159 {
3160         struct blk_mq_qe_pair *qe;
3161
3162         if (!q->elevator)
3163                 return true;
3164
3165         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3166         if (!qe)
3167                 return false;
3168
3169         INIT_LIST_HEAD(&qe->node);
3170         qe->q = q;
3171         qe->type = q->elevator->type;
3172         list_add(&qe->node, head);
3173
3174         mutex_lock(&q->sysfs_lock);
3175         /*
3176          * After elevator_switch_mq, the previous elevator_queue will be
3177          * released by elevator_release. The reference of the io scheduler
3178          * module get by elevator_get will also be put. So we need to get
3179          * a reference of the io scheduler module here to prevent it to be
3180          * removed.
3181          */
3182         __module_get(qe->type->elevator_owner);
3183         elevator_switch_mq(q, NULL);
3184         mutex_unlock(&q->sysfs_lock);
3185
3186         return true;
3187 }
3188
3189 static void blk_mq_elv_switch_back(struct list_head *head,
3190                 struct request_queue *q)
3191 {
3192         struct blk_mq_qe_pair *qe;
3193         struct elevator_type *t = NULL;
3194
3195         list_for_each_entry(qe, head, node)
3196                 if (qe->q == q) {
3197                         t = qe->type;
3198                         break;
3199                 }
3200
3201         if (!t)
3202                 return;
3203
3204         list_del(&qe->node);
3205         kfree(qe);
3206
3207         mutex_lock(&q->sysfs_lock);
3208         elevator_switch_mq(q, t);
3209         mutex_unlock(&q->sysfs_lock);
3210 }
3211
3212 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3213                                                         int nr_hw_queues)
3214 {
3215         struct request_queue *q;
3216         LIST_HEAD(head);
3217         int prev_nr_hw_queues;
3218
3219         lockdep_assert_held(&set->tag_list_lock);
3220
3221         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3222                 nr_hw_queues = nr_cpu_ids;
3223         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3224                 return;
3225
3226         list_for_each_entry(q, &set->tag_list, tag_set_list)
3227                 blk_mq_freeze_queue(q);
3228         /*
3229          * Sync with blk_mq_queue_tag_busy_iter.
3230          */
3231         synchronize_rcu();
3232         /*
3233          * Switch IO scheduler to 'none', cleaning up the data associated
3234          * with the previous scheduler. We will switch back once we are done
3235          * updating the new sw to hw queue mappings.
3236          */
3237         list_for_each_entry(q, &set->tag_list, tag_set_list)
3238                 if (!blk_mq_elv_switch_none(&head, q))
3239                         goto switch_back;
3240
3241         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3242                 blk_mq_debugfs_unregister_hctxs(q);
3243                 blk_mq_sysfs_unregister(q);
3244         }
3245
3246         prev_nr_hw_queues = set->nr_hw_queues;
3247         set->nr_hw_queues = nr_hw_queues;
3248         blk_mq_update_queue_map(set);
3249 fallback:
3250         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3251                 blk_mq_realloc_hw_ctxs(set, q);
3252                 if (q->nr_hw_queues != set->nr_hw_queues) {
3253                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3254                                         nr_hw_queues, prev_nr_hw_queues);
3255                         set->nr_hw_queues = prev_nr_hw_queues;
3256                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3257                         goto fallback;
3258                 }
3259                 blk_mq_map_swqueue(q);
3260         }
3261
3262         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3263                 blk_mq_sysfs_register(q);
3264                 blk_mq_debugfs_register_hctxs(q);
3265         }
3266
3267 switch_back:
3268         list_for_each_entry(q, &set->tag_list, tag_set_list)
3269                 blk_mq_elv_switch_back(&head, q);
3270
3271         list_for_each_entry(q, &set->tag_list, tag_set_list)
3272                 blk_mq_unfreeze_queue(q);
3273 }
3274
3275 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3276 {
3277         mutex_lock(&set->tag_list_lock);
3278         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3279         mutex_unlock(&set->tag_list_lock);
3280 }
3281 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3282
3283 /* Enable polling stats and return whether they were already enabled. */
3284 static bool blk_poll_stats_enable(struct request_queue *q)
3285 {
3286         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3287             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3288                 return true;
3289         blk_stat_add_callback(q, q->poll_cb);
3290         return false;
3291 }
3292
3293 static void blk_mq_poll_stats_start(struct request_queue *q)
3294 {
3295         /*
3296          * We don't arm the callback if polling stats are not enabled or the
3297          * callback is already active.
3298          */
3299         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3300             blk_stat_is_active(q->poll_cb))
3301                 return;
3302
3303         blk_stat_activate_msecs(q->poll_cb, 100);
3304 }
3305
3306 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3307 {
3308         struct request_queue *q = cb->data;
3309         int bucket;
3310
3311         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3312                 if (cb->stat[bucket].nr_samples)
3313                         q->poll_stat[bucket] = cb->stat[bucket];
3314         }
3315 }
3316
3317 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3318                                        struct blk_mq_hw_ctx *hctx,
3319                                        struct request *rq)
3320 {
3321         unsigned long ret = 0;
3322         int bucket;
3323
3324         /*
3325          * If stats collection isn't on, don't sleep but turn it on for
3326          * future users
3327          */
3328         if (!blk_poll_stats_enable(q))
3329                 return 0;
3330
3331         /*
3332          * As an optimistic guess, use half of the mean service time
3333          * for this type of request. We can (and should) make this smarter.
3334          * For instance, if the completion latencies are tight, we can
3335          * get closer than just half the mean. This is especially
3336          * important on devices where the completion latencies are longer
3337          * than ~10 usec. We do use the stats for the relevant IO size
3338          * if available which does lead to better estimates.
3339          */
3340         bucket = blk_mq_poll_stats_bkt(rq);
3341         if (bucket < 0)
3342                 return ret;
3343
3344         if (q->poll_stat[bucket].nr_samples)
3345                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3346
3347         return ret;
3348 }
3349
3350 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3351                                      struct blk_mq_hw_ctx *hctx,
3352                                      struct request *rq)
3353 {
3354         struct hrtimer_sleeper hs;
3355         enum hrtimer_mode mode;
3356         unsigned int nsecs;
3357         ktime_t kt;
3358
3359         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3360                 return false;
3361
3362         /*
3363          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3364          *
3365          *  0:  use half of prev avg
3366          * >0:  use this specific value
3367          */
3368         if (q->poll_nsec > 0)
3369                 nsecs = q->poll_nsec;
3370         else
3371                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3372
3373         if (!nsecs)
3374                 return false;
3375
3376         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3377
3378         /*
3379          * This will be replaced with the stats tracking code, using
3380          * 'avg_completion_time / 2' as the pre-sleep target.
3381          */
3382         kt = nsecs;
3383
3384         mode = HRTIMER_MODE_REL;
3385         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3386         hrtimer_set_expires(&hs.timer, kt);
3387
3388         hrtimer_init_sleeper(&hs, current);
3389         do {
3390                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3391                         break;
3392                 set_current_state(TASK_UNINTERRUPTIBLE);
3393                 hrtimer_start_expires(&hs.timer, mode);
3394                 if (hs.task)
3395                         io_schedule();
3396                 hrtimer_cancel(&hs.timer);
3397                 mode = HRTIMER_MODE_ABS;
3398         } while (hs.task && !signal_pending(current));
3399
3400         __set_current_state(TASK_RUNNING);
3401         destroy_hrtimer_on_stack(&hs.timer);
3402         return true;
3403 }
3404
3405 static bool blk_mq_poll_hybrid(struct request_queue *q,
3406                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3407 {
3408         struct request *rq;
3409
3410         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3411                 return false;
3412
3413         if (!blk_qc_t_is_internal(cookie))
3414                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3415         else {
3416                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3417                 /*
3418                  * With scheduling, if the request has completed, we'll
3419                  * get a NULL return here, as we clear the sched tag when
3420                  * that happens. The request still remains valid, like always,
3421                  * so we should be safe with just the NULL check.
3422                  */
3423                 if (!rq)
3424                         return false;
3425         }
3426
3427         return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3428 }
3429
3430 /**
3431  * blk_poll - poll for IO completions
3432  * @q:  the queue
3433  * @cookie: cookie passed back at IO submission time
3434  * @spin: whether to spin for completions
3435  *
3436  * Description:
3437  *    Poll for completions on the passed in queue. Returns number of
3438  *    completed entries found. If @spin is true, then blk_poll will continue
3439  *    looping until at least one completion is found, unless the task is
3440  *    otherwise marked running (or we need to reschedule).
3441  */
3442 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3443 {
3444         struct blk_mq_hw_ctx *hctx;
3445         long state;
3446
3447         if (!blk_qc_t_valid(cookie) ||
3448             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3449                 return 0;
3450
3451         if (current->plug)
3452                 blk_flush_plug_list(current->plug, false);
3453
3454         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3455
3456         /*
3457          * If we sleep, have the caller restart the poll loop to reset
3458          * the state. Like for the other success return cases, the
3459          * caller is responsible for checking if the IO completed. If
3460          * the IO isn't complete, we'll get called again and will go
3461          * straight to the busy poll loop.
3462          */
3463         if (blk_mq_poll_hybrid(q, hctx, cookie))
3464                 return 1;
3465
3466         hctx->poll_considered++;
3467
3468         state = current->state;
3469         do {
3470                 int ret;
3471
3472                 hctx->poll_invoked++;
3473
3474                 ret = q->mq_ops->poll(hctx);
3475                 if (ret > 0) {
3476                         hctx->poll_success++;
3477                         __set_current_state(TASK_RUNNING);
3478                         return ret;
3479                 }
3480
3481                 if (signal_pending_state(state, current))
3482                         __set_current_state(TASK_RUNNING);
3483
3484                 if (current->state == TASK_RUNNING)
3485                         return 1;
3486                 if (ret < 0 || !spin)
3487                         break;
3488                 cpu_relax();
3489         } while (!need_resched());
3490
3491         __set_current_state(TASK_RUNNING);
3492         return 0;
3493 }
3494 EXPORT_SYMBOL_GPL(blk_poll);
3495
3496 unsigned int blk_mq_rq_cpu(struct request *rq)
3497 {
3498         return rq->mq_ctx->cpu;
3499 }
3500 EXPORT_SYMBOL(blk_mq_rq_cpu);
3501
3502 static int __init blk_mq_init(void)
3503 {
3504         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3505                                 blk_mq_hctx_notify_dead);
3506         return 0;
3507 }
3508 subsys_initcall(blk_mq_init);