a875b1cdff9b5bc1f44541b5630d00eaccfc1a58
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266         if (set->flags & BLK_MQ_F_BLOCKING)
267                 synchronize_srcu(set->srcu);
268         else
269                 synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284         blk_mq_quiesce_queue_nowait(q);
285         /* nothing to wait for non-mq queues */
286         if (queue_is_mq(q))
287                 blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300         unsigned long flags;
301         bool run_queue = false;
302
303         spin_lock_irqsave(&q->queue_lock, flags);
304         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305                 ;
306         } else if (!--q->quiesce_depth) {
307                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308                 run_queue = true;
309         }
310         spin_unlock_irqrestore(&q->queue_lock, flags);
311
312         /* dispatch requests which are inserted during quiescing */
313         if (run_queue)
314                 blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320         struct request_queue *q;
321
322         mutex_lock(&set->tag_list_lock);
323         list_for_each_entry(q, &set->tag_list, tag_set_list) {
324                 if (!blk_queue_skip_tagset_quiesce(q))
325                         blk_mq_quiesce_queue_nowait(q);
326         }
327         blk_mq_wait_quiesce_done(set);
328         mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334         struct request_queue *q;
335
336         mutex_lock(&set->tag_list_lock);
337         list_for_each_entry(q, &set->tag_list, tag_set_list) {
338                 if (!blk_queue_skip_tagset_quiesce(q))
339                         blk_mq_unquiesce_queue(q);
340         }
341         mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347         struct blk_mq_hw_ctx *hctx;
348         unsigned long i;
349
350         queue_for_each_hw_ctx(q, hctx, i)
351                 if (blk_mq_hw_queue_mapped(hctx))
352                         blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357         memset(rq, 0, sizeof(*rq));
358
359         INIT_LIST_HEAD(&rq->queuelist);
360         rq->q = q;
361         rq->__sector = (sector_t) -1;
362         INIT_HLIST_NODE(&rq->hash);
363         RB_CLEAR_NODE(&rq->rb_node);
364         rq->tag = BLK_MQ_NO_TAG;
365         rq->internal_tag = BLK_MQ_NO_TAG;
366         rq->start_time_ns = ktime_get_ns();
367         rq->part = NULL;
368         blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375         struct blk_mq_ctx *ctx = data->ctx;
376         struct blk_mq_hw_ctx *hctx = data->hctx;
377         struct request_queue *q = data->q;
378         struct request *rq = tags->static_rqs[tag];
379
380         rq->q = q;
381         rq->mq_ctx = ctx;
382         rq->mq_hctx = hctx;
383         rq->cmd_flags = data->cmd_flags;
384
385         if (data->flags & BLK_MQ_REQ_PM)
386                 data->rq_flags |= RQF_PM;
387         if (blk_queue_io_stat(q))
388                 data->rq_flags |= RQF_IO_STAT;
389         rq->rq_flags = data->rq_flags;
390
391         if (!(data->rq_flags & RQF_ELV)) {
392                 rq->tag = tag;
393                 rq->internal_tag = BLK_MQ_NO_TAG;
394         } else {
395                 rq->tag = BLK_MQ_NO_TAG;
396                 rq->internal_tag = tag;
397         }
398         rq->timeout = 0;
399
400         if (blk_mq_need_time_stamp(rq))
401                 rq->start_time_ns = ktime_get_ns();
402         else
403                 rq->start_time_ns = 0;
404         rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406         rq->alloc_time_ns = alloc_time_ns;
407 #endif
408         rq->io_start_time_ns = 0;
409         rq->stats_sectors = 0;
410         rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412         rq->nr_integrity_segments = 0;
413 #endif
414         rq->end_io = NULL;
415         rq->end_io_data = NULL;
416
417         blk_crypto_rq_set_defaults(rq);
418         INIT_LIST_HEAD(&rq->queuelist);
419         /* tag was already set */
420         WRITE_ONCE(rq->deadline, 0);
421         req_ref_set(rq, 1);
422
423         if (rq->rq_flags & RQF_ELV) {
424                 struct elevator_queue *e = data->q->elevator;
425
426                 INIT_HLIST_NODE(&rq->hash);
427                 RB_CLEAR_NODE(&rq->rb_node);
428
429                 if (!op_is_flush(data->cmd_flags) &&
430                     e->type->ops.prepare_request) {
431                         e->type->ops.prepare_request(rq);
432                         rq->rq_flags |= RQF_ELVPRIV;
433                 }
434         }
435
436         return rq;
437 }
438
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441                 u64 alloc_time_ns)
442 {
443         unsigned int tag, tag_offset;
444         struct blk_mq_tags *tags;
445         struct request *rq;
446         unsigned long tag_mask;
447         int i, nr = 0;
448
449         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450         if (unlikely(!tag_mask))
451                 return NULL;
452
453         tags = blk_mq_tags_from_data(data);
454         for (i = 0; tag_mask; i++) {
455                 if (!(tag_mask & (1UL << i)))
456                         continue;
457                 tag = tag_offset + i;
458                 prefetch(tags->static_rqs[tag]);
459                 tag_mask &= ~(1UL << i);
460                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461                 rq_list_add(data->cached_rq, rq);
462                 nr++;
463         }
464         /* caller already holds a reference, add for remainder */
465         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466         data->nr_tags -= nr;
467
468         return rq_list_pop(data->cached_rq);
469 }
470
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473         struct request_queue *q = data->q;
474         u64 alloc_time_ns = 0;
475         struct request *rq;
476         unsigned int tag;
477
478         /* alloc_time includes depth and tag waits */
479         if (blk_queue_rq_alloc_time(q))
480                 alloc_time_ns = ktime_get_ns();
481
482         if (data->cmd_flags & REQ_NOWAIT)
483                 data->flags |= BLK_MQ_REQ_NOWAIT;
484
485         if (q->elevator) {
486                 struct elevator_queue *e = q->elevator;
487
488                 data->rq_flags |= RQF_ELV;
489
490                 /*
491                  * Flush/passthrough requests are special and go directly to the
492                  * dispatch list. Don't include reserved tags in the
493                  * limiting, as it isn't useful.
494                  */
495                 if (!op_is_flush(data->cmd_flags) &&
496                     !blk_op_is_passthrough(data->cmd_flags) &&
497                     e->type->ops.limit_depth &&
498                     !(data->flags & BLK_MQ_REQ_RESERVED))
499                         e->type->ops.limit_depth(data->cmd_flags, data);
500         }
501
502 retry:
503         data->ctx = blk_mq_get_ctx(q);
504         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505         if (!(data->rq_flags & RQF_ELV))
506                 blk_mq_tag_busy(data->hctx);
507
508         if (data->flags & BLK_MQ_REQ_RESERVED)
509                 data->rq_flags |= RQF_RESV;
510
511         /*
512          * Try batched alloc if we want more than 1 tag.
513          */
514         if (data->nr_tags > 1) {
515                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516                 if (rq)
517                         return rq;
518                 data->nr_tags = 1;
519         }
520
521         /*
522          * Waiting allocations only fail because of an inactive hctx.  In that
523          * case just retry the hctx assignment and tag allocation as CPU hotplug
524          * should have migrated us to an online CPU by now.
525          */
526         tag = blk_mq_get_tag(data);
527         if (tag == BLK_MQ_NO_TAG) {
528                 if (data->flags & BLK_MQ_REQ_NOWAIT)
529                         return NULL;
530                 /*
531                  * Give up the CPU and sleep for a random short time to
532                  * ensure that thread using a realtime scheduling class
533                  * are migrated off the CPU, and thus off the hctx that
534                  * is going away.
535                  */
536                 msleep(3);
537                 goto retry;
538         }
539
540         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541                                         alloc_time_ns);
542 }
543
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545                                             struct blk_plug *plug,
546                                             blk_opf_t opf,
547                                             blk_mq_req_flags_t flags)
548 {
549         struct blk_mq_alloc_data data = {
550                 .q              = q,
551                 .flags          = flags,
552                 .cmd_flags      = opf,
553                 .nr_tags        = plug->nr_ios,
554                 .cached_rq      = &plug->cached_rq,
555         };
556         struct request *rq;
557
558         if (blk_queue_enter(q, flags))
559                 return NULL;
560
561         plug->nr_ios = 1;
562
563         rq = __blk_mq_alloc_requests(&data);
564         if (unlikely(!rq))
565                 blk_queue_exit(q);
566         return rq;
567 }
568
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570                                                    blk_opf_t opf,
571                                                    blk_mq_req_flags_t flags)
572 {
573         struct blk_plug *plug = current->plug;
574         struct request *rq;
575
576         if (!plug)
577                 return NULL;
578
579         if (rq_list_empty(plug->cached_rq)) {
580                 if (plug->nr_ios == 1)
581                         return NULL;
582                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583                 if (!rq)
584                         return NULL;
585         } else {
586                 rq = rq_list_peek(&plug->cached_rq);
587                 if (!rq || rq->q != q)
588                         return NULL;
589
590                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591                         return NULL;
592                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593                         return NULL;
594
595                 plug->cached_rq = rq_list_next(rq);
596         }
597
598         rq->cmd_flags = opf;
599         INIT_LIST_HEAD(&rq->queuelist);
600         return rq;
601 }
602
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604                 blk_mq_req_flags_t flags)
605 {
606         struct request *rq;
607
608         rq = blk_mq_alloc_cached_request(q, opf, flags);
609         if (!rq) {
610                 struct blk_mq_alloc_data data = {
611                         .q              = q,
612                         .flags          = flags,
613                         .cmd_flags      = opf,
614                         .nr_tags        = 1,
615                 };
616                 int ret;
617
618                 ret = blk_queue_enter(q, flags);
619                 if (ret)
620                         return ERR_PTR(ret);
621
622                 rq = __blk_mq_alloc_requests(&data);
623                 if (!rq)
624                         goto out_queue_exit;
625         }
626         rq->__data_len = 0;
627         rq->__sector = (sector_t) -1;
628         rq->bio = rq->biotail = NULL;
629         return rq;
630 out_queue_exit:
631         blk_queue_exit(q);
632         return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639         struct blk_mq_alloc_data data = {
640                 .q              = q,
641                 .flags          = flags,
642                 .cmd_flags      = opf,
643                 .nr_tags        = 1,
644         };
645         u64 alloc_time_ns = 0;
646         struct request *rq;
647         unsigned int cpu;
648         unsigned int tag;
649         int ret;
650
651         /* alloc_time includes depth and tag waits */
652         if (blk_queue_rq_alloc_time(q))
653                 alloc_time_ns = ktime_get_ns();
654
655         /*
656          * If the tag allocator sleeps we could get an allocation for a
657          * different hardware context.  No need to complicate the low level
658          * allocator for this for the rare use case of a command tied to
659          * a specific queue.
660          */
661         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663                 return ERR_PTR(-EINVAL);
664
665         if (hctx_idx >= q->nr_hw_queues)
666                 return ERR_PTR(-EIO);
667
668         ret = blk_queue_enter(q, flags);
669         if (ret)
670                 return ERR_PTR(ret);
671
672         /*
673          * Check if the hardware context is actually mapped to anything.
674          * If not tell the caller that it should skip this queue.
675          */
676         ret = -EXDEV;
677         data.hctx = xa_load(&q->hctx_table, hctx_idx);
678         if (!blk_mq_hw_queue_mapped(data.hctx))
679                 goto out_queue_exit;
680         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681         if (cpu >= nr_cpu_ids)
682                 goto out_queue_exit;
683         data.ctx = __blk_mq_get_ctx(q, cpu);
684
685         if (!q->elevator)
686                 blk_mq_tag_busy(data.hctx);
687         else
688                 data.rq_flags |= RQF_ELV;
689
690         if (flags & BLK_MQ_REQ_RESERVED)
691                 data.rq_flags |= RQF_RESV;
692
693         ret = -EWOULDBLOCK;
694         tag = blk_mq_get_tag(&data);
695         if (tag == BLK_MQ_NO_TAG)
696                 goto out_queue_exit;
697         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698                                         alloc_time_ns);
699         rq->__data_len = 0;
700         rq->__sector = (sector_t) -1;
701         rq->bio = rq->biotail = NULL;
702         return rq;
703
704 out_queue_exit:
705         blk_queue_exit(q);
706         return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709
710 static void __blk_mq_free_request(struct request *rq)
711 {
712         struct request_queue *q = rq->q;
713         struct blk_mq_ctx *ctx = rq->mq_ctx;
714         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715         const int sched_tag = rq->internal_tag;
716
717         blk_crypto_free_request(rq);
718         blk_pm_mark_last_busy(rq);
719         rq->mq_hctx = NULL;
720         if (rq->tag != BLK_MQ_NO_TAG)
721                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722         if (sched_tag != BLK_MQ_NO_TAG)
723                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724         blk_mq_sched_restart(hctx);
725         blk_queue_exit(q);
726 }
727
728 void blk_mq_free_request(struct request *rq)
729 {
730         struct request_queue *q = rq->q;
731         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732
733         if ((rq->rq_flags & RQF_ELVPRIV) &&
734             q->elevator->type->ops.finish_request)
735                 q->elevator->type->ops.finish_request(rq);
736
737         if (rq->rq_flags & RQF_MQ_INFLIGHT)
738                 __blk_mq_dec_active_requests(hctx);
739
740         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741                 laptop_io_completion(q->disk->bdi);
742
743         rq_qos_done(q, rq);
744
745         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746         if (req_ref_put_and_test(rq))
747                 __blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753         struct request *rq;
754
755         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756                 blk_mq_free_request(rq);
757 }
758
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762                 rq->q->disk ? rq->q->disk->disk_name : "?",
763                 (__force unsigned long long) rq->cmd_flags);
764
765         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766                (unsigned long long)blk_rq_pos(rq),
767                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769                rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774                           unsigned int nbytes, blk_status_t error)
775 {
776         if (unlikely(error)) {
777                 bio->bi_status = error;
778         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779                 /*
780                  * Partial zone append completions cannot be supported as the
781                  * BIO fragments may end up not being written sequentially.
782                  */
783                 if (bio->bi_iter.bi_size != nbytes)
784                         bio->bi_status = BLK_STS_IOERR;
785                 else
786                         bio->bi_iter.bi_sector = rq->__sector;
787         }
788
789         bio_advance(bio, nbytes);
790
791         if (unlikely(rq->rq_flags & RQF_QUIET))
792                 bio_set_flag(bio, BIO_QUIET);
793         /* don't actually finish bio if it's part of flush sequence */
794         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795                 bio_endio(bio);
796 }
797
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800         if (req->part && blk_do_io_stat(req)) {
801                 const int sgrp = op_stat_group(req_op(req));
802
803                 part_stat_lock();
804                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805                 part_stat_unlock();
806         }
807 }
808
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811         printk_ratelimited(KERN_ERR
812                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813                 "phys_seg %u prio class %u\n",
814                 blk_status_to_str(status),
815                 req->q->disk ? req->q->disk->disk_name : "?",
816                 blk_rq_pos(req), (__force u32)req_op(req),
817                 blk_op_str(req_op(req)),
818                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819                 req->nr_phys_segments,
820                 IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830         int total_bytes = blk_rq_bytes(req);
831         struct bio *bio = req->bio;
832
833         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834
835         if (!bio)
836                 return;
837
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840                 req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842
843         /*
844          * Upper layers may call blk_crypto_evict_key() anytime after the last
845          * bio_endio().  Therefore, the keyslot must be released before that.
846          */
847         blk_crypto_rq_put_keyslot(req);
848
849         blk_account_io_completion(req, total_bytes);
850
851         do {
852                 struct bio *next = bio->bi_next;
853
854                 /* Completion has already been traced */
855                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
856
857                 if (req_op(req) == REQ_OP_ZONE_APPEND)
858                         bio->bi_iter.bi_sector = req->__sector;
859
860                 if (!is_flush)
861                         bio_endio(bio);
862                 bio = next;
863         } while (bio);
864
865         /*
866          * Reset counters so that the request stacking driver
867          * can find how many bytes remain in the request
868          * later.
869          */
870         if (!req->end_io) {
871                 req->bio = NULL;
872                 req->__data_len = 0;
873         }
874 }
875
876 /**
877  * blk_update_request - Complete multiple bytes without completing the request
878  * @req:      the request being processed
879  * @error:    block status code
880  * @nr_bytes: number of bytes to complete for @req
881  *
882  * Description:
883  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
884  *     the request structure even if @req doesn't have leftover.
885  *     If @req has leftover, sets it up for the next range of segments.
886  *
887  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
888  *     %false return from this function.
889  *
890  * Note:
891  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
892  *      except in the consistency check at the end of this function.
893  *
894  * Return:
895  *     %false - this request doesn't have any more data
896  *     %true  - this request has more data
897  **/
898 bool blk_update_request(struct request *req, blk_status_t error,
899                 unsigned int nr_bytes)
900 {
901         int total_bytes;
902
903         trace_block_rq_complete(req, error, nr_bytes);
904
905         if (!req->bio)
906                 return false;
907
908 #ifdef CONFIG_BLK_DEV_INTEGRITY
909         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
910             error == BLK_STS_OK)
911                 req->q->integrity.profile->complete_fn(req, nr_bytes);
912 #endif
913
914         /*
915          * Upper layers may call blk_crypto_evict_key() anytime after the last
916          * bio_endio().  Therefore, the keyslot must be released before that.
917          */
918         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
919                 __blk_crypto_rq_put_keyslot(req);
920
921         if (unlikely(error && !blk_rq_is_passthrough(req) &&
922                      !(req->rq_flags & RQF_QUIET)) &&
923                      !test_bit(GD_DEAD, &req->q->disk->state)) {
924                 blk_print_req_error(req, error);
925                 trace_block_rq_error(req, error, nr_bytes);
926         }
927
928         blk_account_io_completion(req, nr_bytes);
929
930         total_bytes = 0;
931         while (req->bio) {
932                 struct bio *bio = req->bio;
933                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
934
935                 if (bio_bytes == bio->bi_iter.bi_size)
936                         req->bio = bio->bi_next;
937
938                 /* Completion has already been traced */
939                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
940                 req_bio_endio(req, bio, bio_bytes, error);
941
942                 total_bytes += bio_bytes;
943                 nr_bytes -= bio_bytes;
944
945                 if (!nr_bytes)
946                         break;
947         }
948
949         /*
950          * completely done
951          */
952         if (!req->bio) {
953                 /*
954                  * Reset counters so that the request stacking driver
955                  * can find how many bytes remain in the request
956                  * later.
957                  */
958                 req->__data_len = 0;
959                 return false;
960         }
961
962         req->__data_len -= total_bytes;
963
964         /* update sector only for requests with clear definition of sector */
965         if (!blk_rq_is_passthrough(req))
966                 req->__sector += total_bytes >> 9;
967
968         /* mixed attributes always follow the first bio */
969         if (req->rq_flags & RQF_MIXED_MERGE) {
970                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
971                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
972         }
973
974         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
975                 /*
976                  * If total number of sectors is less than the first segment
977                  * size, something has gone terribly wrong.
978                  */
979                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
980                         blk_dump_rq_flags(req, "request botched");
981                         req->__data_len = blk_rq_cur_bytes(req);
982                 }
983
984                 /* recalculate the number of segments */
985                 req->nr_phys_segments = blk_recalc_rq_segments(req);
986         }
987
988         return true;
989 }
990 EXPORT_SYMBOL_GPL(blk_update_request);
991
992 static void __blk_account_io_done(struct request *req, u64 now)
993 {
994         const int sgrp = op_stat_group(req_op(req));
995
996         part_stat_lock();
997         update_io_ticks(req->part, jiffies, true);
998         part_stat_inc(req->part, ios[sgrp]);
999         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1000         part_stat_unlock();
1001 }
1002
1003 static inline void blk_account_io_done(struct request *req, u64 now)
1004 {
1005         /*
1006          * Account IO completion.  flush_rq isn't accounted as a
1007          * normal IO on queueing nor completion.  Accounting the
1008          * containing request is enough.
1009          */
1010         if (blk_do_io_stat(req) && req->part &&
1011             !(req->rq_flags & RQF_FLUSH_SEQ))
1012                 __blk_account_io_done(req, now);
1013 }
1014
1015 static void __blk_account_io_start(struct request *rq)
1016 {
1017         /*
1018          * All non-passthrough requests are created from a bio with one
1019          * exception: when a flush command that is part of a flush sequence
1020          * generated by the state machine in blk-flush.c is cloned onto the
1021          * lower device by dm-multipath we can get here without a bio.
1022          */
1023         if (rq->bio)
1024                 rq->part = rq->bio->bi_bdev;
1025         else
1026                 rq->part = rq->q->disk->part0;
1027
1028         part_stat_lock();
1029         update_io_ticks(rq->part, jiffies, false);
1030         part_stat_unlock();
1031 }
1032
1033 static inline void blk_account_io_start(struct request *req)
1034 {
1035         if (blk_do_io_stat(req))
1036                 __blk_account_io_start(req);
1037 }
1038
1039 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1040 {
1041         if (rq->rq_flags & RQF_STATS) {
1042                 blk_mq_poll_stats_start(rq->q);
1043                 blk_stat_add(rq, now);
1044         }
1045
1046         blk_mq_sched_completed_request(rq, now);
1047         blk_account_io_done(rq, now);
1048 }
1049
1050 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1051 {
1052         if (blk_mq_need_time_stamp(rq))
1053                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1054
1055         if (rq->end_io) {
1056                 rq_qos_done(rq->q, rq);
1057                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1058                         blk_mq_free_request(rq);
1059         } else {
1060                 blk_mq_free_request(rq);
1061         }
1062 }
1063 EXPORT_SYMBOL(__blk_mq_end_request);
1064
1065 void blk_mq_end_request(struct request *rq, blk_status_t error)
1066 {
1067         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1068                 BUG();
1069         __blk_mq_end_request(rq, error);
1070 }
1071 EXPORT_SYMBOL(blk_mq_end_request);
1072
1073 #define TAG_COMP_BATCH          32
1074
1075 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1076                                           int *tag_array, int nr_tags)
1077 {
1078         struct request_queue *q = hctx->queue;
1079
1080         /*
1081          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1082          * update hctx->nr_active in batch
1083          */
1084         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1085                 __blk_mq_sub_active_requests(hctx, nr_tags);
1086
1087         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1088         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1089 }
1090
1091 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1092 {
1093         int tags[TAG_COMP_BATCH], nr_tags = 0;
1094         struct blk_mq_hw_ctx *cur_hctx = NULL;
1095         struct request *rq;
1096         u64 now = 0;
1097
1098         if (iob->need_ts)
1099                 now = ktime_get_ns();
1100
1101         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1102                 prefetch(rq->bio);
1103                 prefetch(rq->rq_next);
1104
1105                 blk_complete_request(rq);
1106                 if (iob->need_ts)
1107                         __blk_mq_end_request_acct(rq, now);
1108
1109                 rq_qos_done(rq->q, rq);
1110
1111                 /*
1112                  * If end_io handler returns NONE, then it still has
1113                  * ownership of the request.
1114                  */
1115                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1116                         continue;
1117
1118                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1119                 if (!req_ref_put_and_test(rq))
1120                         continue;
1121
1122                 blk_crypto_free_request(rq);
1123                 blk_pm_mark_last_busy(rq);
1124
1125                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1126                         if (cur_hctx)
1127                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1128                         nr_tags = 0;
1129                         cur_hctx = rq->mq_hctx;
1130                 }
1131                 tags[nr_tags++] = rq->tag;
1132         }
1133
1134         if (nr_tags)
1135                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1136 }
1137 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1138
1139 static void blk_complete_reqs(struct llist_head *list)
1140 {
1141         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1142         struct request *rq, *next;
1143
1144         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1145                 rq->q->mq_ops->complete(rq);
1146 }
1147
1148 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1149 {
1150         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1151 }
1152
1153 static int blk_softirq_cpu_dead(unsigned int cpu)
1154 {
1155         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1156         return 0;
1157 }
1158
1159 static void __blk_mq_complete_request_remote(void *data)
1160 {
1161         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1162 }
1163
1164 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1165 {
1166         int cpu = raw_smp_processor_id();
1167
1168         if (!IS_ENABLED(CONFIG_SMP) ||
1169             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1170                 return false;
1171         /*
1172          * With force threaded interrupts enabled, raising softirq from an SMP
1173          * function call will always result in waking the ksoftirqd thread.
1174          * This is probably worse than completing the request on a different
1175          * cache domain.
1176          */
1177         if (force_irqthreads())
1178                 return false;
1179
1180         /* same CPU or cache domain?  Complete locally */
1181         if (cpu == rq->mq_ctx->cpu ||
1182             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1183              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1184                 return false;
1185
1186         /* don't try to IPI to an offline CPU */
1187         return cpu_online(rq->mq_ctx->cpu);
1188 }
1189
1190 static void blk_mq_complete_send_ipi(struct request *rq)
1191 {
1192         struct llist_head *list;
1193         unsigned int cpu;
1194
1195         cpu = rq->mq_ctx->cpu;
1196         list = &per_cpu(blk_cpu_done, cpu);
1197         if (llist_add(&rq->ipi_list, list)) {
1198                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1199                 smp_call_function_single_async(cpu, &rq->csd);
1200         }
1201 }
1202
1203 static void blk_mq_raise_softirq(struct request *rq)
1204 {
1205         struct llist_head *list;
1206
1207         preempt_disable();
1208         list = this_cpu_ptr(&blk_cpu_done);
1209         if (llist_add(&rq->ipi_list, list))
1210                 raise_softirq(BLOCK_SOFTIRQ);
1211         preempt_enable();
1212 }
1213
1214 bool blk_mq_complete_request_remote(struct request *rq)
1215 {
1216         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1217
1218         /*
1219          * For request which hctx has only one ctx mapping,
1220          * or a polled request, always complete locally,
1221          * it's pointless to redirect the completion.
1222          */
1223         if (rq->mq_hctx->nr_ctx == 1 ||
1224                 rq->cmd_flags & REQ_POLLED)
1225                 return false;
1226
1227         if (blk_mq_complete_need_ipi(rq)) {
1228                 blk_mq_complete_send_ipi(rq);
1229                 return true;
1230         }
1231
1232         if (rq->q->nr_hw_queues == 1) {
1233                 blk_mq_raise_softirq(rq);
1234                 return true;
1235         }
1236         return false;
1237 }
1238 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1239
1240 /**
1241  * blk_mq_complete_request - end I/O on a request
1242  * @rq:         the request being processed
1243  *
1244  * Description:
1245  *      Complete a request by scheduling the ->complete_rq operation.
1246  **/
1247 void blk_mq_complete_request(struct request *rq)
1248 {
1249         if (!blk_mq_complete_request_remote(rq))
1250                 rq->q->mq_ops->complete(rq);
1251 }
1252 EXPORT_SYMBOL(blk_mq_complete_request);
1253
1254 /**
1255  * blk_mq_start_request - Start processing a request
1256  * @rq: Pointer to request to be started
1257  *
1258  * Function used by device drivers to notify the block layer that a request
1259  * is going to be processed now, so blk layer can do proper initializations
1260  * such as starting the timeout timer.
1261  */
1262 void blk_mq_start_request(struct request *rq)
1263 {
1264         struct request_queue *q = rq->q;
1265
1266         trace_block_rq_issue(rq);
1267
1268         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1269                 rq->io_start_time_ns = ktime_get_ns();
1270                 rq->stats_sectors = blk_rq_sectors(rq);
1271                 rq->rq_flags |= RQF_STATS;
1272                 rq_qos_issue(q, rq);
1273         }
1274
1275         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1276
1277         blk_add_timer(rq);
1278         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1279
1280 #ifdef CONFIG_BLK_DEV_INTEGRITY
1281         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1282                 q->integrity.profile->prepare_fn(rq);
1283 #endif
1284         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1285                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1286 }
1287 EXPORT_SYMBOL(blk_mq_start_request);
1288
1289 /*
1290  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1291  * queues. This is important for md arrays to benefit from merging
1292  * requests.
1293  */
1294 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1295 {
1296         if (plug->multiple_queues)
1297                 return BLK_MAX_REQUEST_COUNT * 2;
1298         return BLK_MAX_REQUEST_COUNT;
1299 }
1300
1301 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1302 {
1303         struct request *last = rq_list_peek(&plug->mq_list);
1304
1305         if (!plug->rq_count) {
1306                 trace_block_plug(rq->q);
1307         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1308                    (!blk_queue_nomerges(rq->q) &&
1309                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1310                 blk_mq_flush_plug_list(plug, false);
1311                 last = NULL;
1312                 trace_block_plug(rq->q);
1313         }
1314
1315         if (!plug->multiple_queues && last && last->q != rq->q)
1316                 plug->multiple_queues = true;
1317         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1318                 plug->has_elevator = true;
1319         rq->rq_next = NULL;
1320         rq_list_add(&plug->mq_list, rq);
1321         plug->rq_count++;
1322 }
1323
1324 /**
1325  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1326  * @rq:         request to insert
1327  * @at_head:    insert request at head or tail of queue
1328  *
1329  * Description:
1330  *    Insert a fully prepared request at the back of the I/O scheduler queue
1331  *    for execution.  Don't wait for completion.
1332  *
1333  * Note:
1334  *    This function will invoke @done directly if the queue is dead.
1335  */
1336 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1337 {
1338         WARN_ON(irqs_disabled());
1339         WARN_ON(!blk_rq_is_passthrough(rq));
1340
1341         blk_account_io_start(rq);
1342
1343         /*
1344          * As plugging can be enabled for passthrough requests on a zoned
1345          * device, directly accessing the plug instead of using blk_mq_plug()
1346          * should not have any consequences.
1347          */
1348         if (current->plug)
1349                 blk_add_rq_to_plug(current->plug, rq);
1350         else
1351                 blk_mq_sched_insert_request(rq, at_head, true, false);
1352 }
1353 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1354
1355 struct blk_rq_wait {
1356         struct completion done;
1357         blk_status_t ret;
1358 };
1359
1360 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1361 {
1362         struct blk_rq_wait *wait = rq->end_io_data;
1363
1364         wait->ret = ret;
1365         complete(&wait->done);
1366         return RQ_END_IO_NONE;
1367 }
1368
1369 bool blk_rq_is_poll(struct request *rq)
1370 {
1371         if (!rq->mq_hctx)
1372                 return false;
1373         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1374                 return false;
1375         if (WARN_ON_ONCE(!rq->bio))
1376                 return false;
1377         return true;
1378 }
1379 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1380
1381 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1382 {
1383         do {
1384                 bio_poll(rq->bio, NULL, 0);
1385                 cond_resched();
1386         } while (!completion_done(wait));
1387 }
1388
1389 /**
1390  * blk_execute_rq - insert a request into queue for execution
1391  * @rq:         request to insert
1392  * @at_head:    insert request at head or tail of queue
1393  *
1394  * Description:
1395  *    Insert a fully prepared request at the back of the I/O scheduler queue
1396  *    for execution and wait for completion.
1397  * Return: The blk_status_t result provided to blk_mq_end_request().
1398  */
1399 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1400 {
1401         struct blk_rq_wait wait = {
1402                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1403         };
1404
1405         WARN_ON(irqs_disabled());
1406         WARN_ON(!blk_rq_is_passthrough(rq));
1407
1408         rq->end_io_data = &wait;
1409         rq->end_io = blk_end_sync_rq;
1410
1411         blk_account_io_start(rq);
1412         blk_mq_sched_insert_request(rq, at_head, true, false);
1413
1414         if (blk_rq_is_poll(rq)) {
1415                 blk_rq_poll_completion(rq, &wait.done);
1416         } else {
1417                 /*
1418                  * Prevent hang_check timer from firing at us during very long
1419                  * I/O
1420                  */
1421                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1422
1423                 if (hang_check)
1424                         while (!wait_for_completion_io_timeout(&wait.done,
1425                                         hang_check * (HZ/2)))
1426                                 ;
1427                 else
1428                         wait_for_completion_io(&wait.done);
1429         }
1430
1431         return wait.ret;
1432 }
1433 EXPORT_SYMBOL(blk_execute_rq);
1434
1435 static void __blk_mq_requeue_request(struct request *rq)
1436 {
1437         struct request_queue *q = rq->q;
1438
1439         blk_mq_put_driver_tag(rq);
1440
1441         trace_block_rq_requeue(rq);
1442         rq_qos_requeue(q, rq);
1443
1444         if (blk_mq_request_started(rq)) {
1445                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1446                 rq->rq_flags &= ~RQF_TIMED_OUT;
1447         }
1448 }
1449
1450 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1451 {
1452         __blk_mq_requeue_request(rq);
1453
1454         /* this request will be re-inserted to io scheduler queue */
1455         blk_mq_sched_requeue_request(rq);
1456
1457         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463         struct request_queue *q =
1464                 container_of(work, struct request_queue, requeue_work.work);
1465         LIST_HEAD(rq_list);
1466         struct request *rq, *next;
1467
1468         spin_lock_irq(&q->requeue_lock);
1469         list_splice_init(&q->requeue_list, &rq_list);
1470         spin_unlock_irq(&q->requeue_lock);
1471
1472         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1473                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1474                         continue;
1475
1476                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1477                 list_del_init(&rq->queuelist);
1478                 /*
1479                  * If RQF_DONTPREP, rq has contained some driver specific
1480                  * data, so insert it to hctx dispatch list to avoid any
1481                  * merge.
1482                  */
1483                 if (rq->rq_flags & RQF_DONTPREP)
1484                         blk_mq_request_bypass_insert(rq, false, false);
1485                 else
1486                         blk_mq_sched_insert_request(rq, true, false, false);
1487         }
1488
1489         while (!list_empty(&rq_list)) {
1490                 rq = list_entry(rq_list.next, struct request, queuelist);
1491                 list_del_init(&rq->queuelist);
1492                 blk_mq_sched_insert_request(rq, false, false, false);
1493         }
1494
1495         blk_mq_run_hw_queues(q, false);
1496 }
1497
1498 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1499                                 bool kick_requeue_list)
1500 {
1501         struct request_queue *q = rq->q;
1502         unsigned long flags;
1503
1504         /*
1505          * We abuse this flag that is otherwise used by the I/O scheduler to
1506          * request head insertion from the workqueue.
1507          */
1508         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1509
1510         spin_lock_irqsave(&q->requeue_lock, flags);
1511         if (at_head) {
1512                 rq->rq_flags |= RQF_SOFTBARRIER;
1513                 list_add(&rq->queuelist, &q->requeue_list);
1514         } else {
1515                 list_add_tail(&rq->queuelist, &q->requeue_list);
1516         }
1517         spin_unlock_irqrestore(&q->requeue_lock, flags);
1518
1519         if (kick_requeue_list)
1520                 blk_mq_kick_requeue_list(q);
1521 }
1522
1523 void blk_mq_kick_requeue_list(struct request_queue *q)
1524 {
1525         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1526 }
1527 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1528
1529 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1530                                     unsigned long msecs)
1531 {
1532         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1533                                     msecs_to_jiffies(msecs));
1534 }
1535 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1536
1537 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1538 {
1539         /*
1540          * If we find a request that isn't idle we know the queue is busy
1541          * as it's checked in the iter.
1542          * Return false to stop the iteration.
1543          */
1544         if (blk_mq_request_started(rq)) {
1545                 bool *busy = priv;
1546
1547                 *busy = true;
1548                 return false;
1549         }
1550
1551         return true;
1552 }
1553
1554 bool blk_mq_queue_inflight(struct request_queue *q)
1555 {
1556         bool busy = false;
1557
1558         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1559         return busy;
1560 }
1561 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1562
1563 static void blk_mq_rq_timed_out(struct request *req)
1564 {
1565         req->rq_flags |= RQF_TIMED_OUT;
1566         if (req->q->mq_ops->timeout) {
1567                 enum blk_eh_timer_return ret;
1568
1569                 ret = req->q->mq_ops->timeout(req);
1570                 if (ret == BLK_EH_DONE)
1571                         return;
1572                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1573         }
1574
1575         blk_add_timer(req);
1576 }
1577
1578 struct blk_expired_data {
1579         bool has_timedout_rq;
1580         unsigned long next;
1581         unsigned long timeout_start;
1582 };
1583
1584 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1585 {
1586         unsigned long deadline;
1587
1588         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1589                 return false;
1590         if (rq->rq_flags & RQF_TIMED_OUT)
1591                 return false;
1592
1593         deadline = READ_ONCE(rq->deadline);
1594         if (time_after_eq(expired->timeout_start, deadline))
1595                 return true;
1596
1597         if (expired->next == 0)
1598                 expired->next = deadline;
1599         else if (time_after(expired->next, deadline))
1600                 expired->next = deadline;
1601         return false;
1602 }
1603
1604 void blk_mq_put_rq_ref(struct request *rq)
1605 {
1606         if (is_flush_rq(rq)) {
1607                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1608                         blk_mq_free_request(rq);
1609         } else if (req_ref_put_and_test(rq)) {
1610                 __blk_mq_free_request(rq);
1611         }
1612 }
1613
1614 static bool blk_mq_check_expired(struct request *rq, void *priv)
1615 {
1616         struct blk_expired_data *expired = priv;
1617
1618         /*
1619          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1620          * be reallocated underneath the timeout handler's processing, then
1621          * the expire check is reliable. If the request is not expired, then
1622          * it was completed and reallocated as a new request after returning
1623          * from blk_mq_check_expired().
1624          */
1625         if (blk_mq_req_expired(rq, expired)) {
1626                 expired->has_timedout_rq = true;
1627                 return false;
1628         }
1629         return true;
1630 }
1631
1632 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1633 {
1634         struct blk_expired_data *expired = priv;
1635
1636         if (blk_mq_req_expired(rq, expired))
1637                 blk_mq_rq_timed_out(rq);
1638         return true;
1639 }
1640
1641 static void blk_mq_timeout_work(struct work_struct *work)
1642 {
1643         struct request_queue *q =
1644                 container_of(work, struct request_queue, timeout_work);
1645         struct blk_expired_data expired = {
1646                 .timeout_start = jiffies,
1647         };
1648         struct blk_mq_hw_ctx *hctx;
1649         unsigned long i;
1650
1651         /* A deadlock might occur if a request is stuck requiring a
1652          * timeout at the same time a queue freeze is waiting
1653          * completion, since the timeout code would not be able to
1654          * acquire the queue reference here.
1655          *
1656          * That's why we don't use blk_queue_enter here; instead, we use
1657          * percpu_ref_tryget directly, because we need to be able to
1658          * obtain a reference even in the short window between the queue
1659          * starting to freeze, by dropping the first reference in
1660          * blk_freeze_queue_start, and the moment the last request is
1661          * consumed, marked by the instant q_usage_counter reaches
1662          * zero.
1663          */
1664         if (!percpu_ref_tryget(&q->q_usage_counter))
1665                 return;
1666
1667         /* check if there is any timed-out request */
1668         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1669         if (expired.has_timedout_rq) {
1670                 /*
1671                  * Before walking tags, we must ensure any submit started
1672                  * before the current time has finished. Since the submit
1673                  * uses srcu or rcu, wait for a synchronization point to
1674                  * ensure all running submits have finished
1675                  */
1676                 blk_mq_wait_quiesce_done(q->tag_set);
1677
1678                 expired.next = 0;
1679                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1680         }
1681
1682         if (expired.next != 0) {
1683                 mod_timer(&q->timeout, expired.next);
1684         } else {
1685                 /*
1686                  * Request timeouts are handled as a forward rolling timer. If
1687                  * we end up here it means that no requests are pending and
1688                  * also that no request has been pending for a while. Mark
1689                  * each hctx as idle.
1690                  */
1691                 queue_for_each_hw_ctx(q, hctx, i) {
1692                         /* the hctx may be unmapped, so check it here */
1693                         if (blk_mq_hw_queue_mapped(hctx))
1694                                 blk_mq_tag_idle(hctx);
1695                 }
1696         }
1697         blk_queue_exit(q);
1698 }
1699
1700 struct flush_busy_ctx_data {
1701         struct blk_mq_hw_ctx *hctx;
1702         struct list_head *list;
1703 };
1704
1705 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1706 {
1707         struct flush_busy_ctx_data *flush_data = data;
1708         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1709         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1710         enum hctx_type type = hctx->type;
1711
1712         spin_lock(&ctx->lock);
1713         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1714         sbitmap_clear_bit(sb, bitnr);
1715         spin_unlock(&ctx->lock);
1716         return true;
1717 }
1718
1719 /*
1720  * Process software queues that have been marked busy, splicing them
1721  * to the for-dispatch
1722  */
1723 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1724 {
1725         struct flush_busy_ctx_data data = {
1726                 .hctx = hctx,
1727                 .list = list,
1728         };
1729
1730         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1731 }
1732 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1733
1734 struct dispatch_rq_data {
1735         struct blk_mq_hw_ctx *hctx;
1736         struct request *rq;
1737 };
1738
1739 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1740                 void *data)
1741 {
1742         struct dispatch_rq_data *dispatch_data = data;
1743         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1744         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1745         enum hctx_type type = hctx->type;
1746
1747         spin_lock(&ctx->lock);
1748         if (!list_empty(&ctx->rq_lists[type])) {
1749                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1750                 list_del_init(&dispatch_data->rq->queuelist);
1751                 if (list_empty(&ctx->rq_lists[type]))
1752                         sbitmap_clear_bit(sb, bitnr);
1753         }
1754         spin_unlock(&ctx->lock);
1755
1756         return !dispatch_data->rq;
1757 }
1758
1759 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1760                                         struct blk_mq_ctx *start)
1761 {
1762         unsigned off = start ? start->index_hw[hctx->type] : 0;
1763         struct dispatch_rq_data data = {
1764                 .hctx = hctx,
1765                 .rq   = NULL,
1766         };
1767
1768         __sbitmap_for_each_set(&hctx->ctx_map, off,
1769                                dispatch_rq_from_ctx, &data);
1770
1771         return data.rq;
1772 }
1773
1774 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1775 {
1776         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1777         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1778         int tag;
1779
1780         blk_mq_tag_busy(rq->mq_hctx);
1781
1782         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1783                 bt = &rq->mq_hctx->tags->breserved_tags;
1784                 tag_offset = 0;
1785         } else {
1786                 if (!hctx_may_queue(rq->mq_hctx, bt))
1787                         return false;
1788         }
1789
1790         tag = __sbitmap_queue_get(bt);
1791         if (tag == BLK_MQ_NO_TAG)
1792                 return false;
1793
1794         rq->tag = tag + tag_offset;
1795         return true;
1796 }
1797
1798 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1799 {
1800         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1801                 return false;
1802
1803         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1804                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1805                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1806                 __blk_mq_inc_active_requests(hctx);
1807         }
1808         hctx->tags->rqs[rq->tag] = rq;
1809         return true;
1810 }
1811
1812 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1813                                 int flags, void *key)
1814 {
1815         struct blk_mq_hw_ctx *hctx;
1816
1817         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1818
1819         spin_lock(&hctx->dispatch_wait_lock);
1820         if (!list_empty(&wait->entry)) {
1821                 struct sbitmap_queue *sbq;
1822
1823                 list_del_init(&wait->entry);
1824                 sbq = &hctx->tags->bitmap_tags;
1825                 atomic_dec(&sbq->ws_active);
1826         }
1827         spin_unlock(&hctx->dispatch_wait_lock);
1828
1829         blk_mq_run_hw_queue(hctx, true);
1830         return 1;
1831 }
1832
1833 /*
1834  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1835  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1836  * restart. For both cases, take care to check the condition again after
1837  * marking us as waiting.
1838  */
1839 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1840                                  struct request *rq)
1841 {
1842         struct sbitmap_queue *sbq;
1843         struct wait_queue_head *wq;
1844         wait_queue_entry_t *wait;
1845         bool ret;
1846
1847         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1848             !(blk_mq_is_shared_tags(hctx->flags))) {
1849                 blk_mq_sched_mark_restart_hctx(hctx);
1850
1851                 /*
1852                  * It's possible that a tag was freed in the window between the
1853                  * allocation failure and adding the hardware queue to the wait
1854                  * queue.
1855                  *
1856                  * Don't clear RESTART here, someone else could have set it.
1857                  * At most this will cost an extra queue run.
1858                  */
1859                 return blk_mq_get_driver_tag(rq);
1860         }
1861
1862         wait = &hctx->dispatch_wait;
1863         if (!list_empty_careful(&wait->entry))
1864                 return false;
1865
1866         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1867                 sbq = &hctx->tags->breserved_tags;
1868         else
1869                 sbq = &hctx->tags->bitmap_tags;
1870         wq = &bt_wait_ptr(sbq, hctx)->wait;
1871
1872         spin_lock_irq(&wq->lock);
1873         spin_lock(&hctx->dispatch_wait_lock);
1874         if (!list_empty(&wait->entry)) {
1875                 spin_unlock(&hctx->dispatch_wait_lock);
1876                 spin_unlock_irq(&wq->lock);
1877                 return false;
1878         }
1879
1880         atomic_inc(&sbq->ws_active);
1881         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1882         __add_wait_queue(wq, wait);
1883
1884         /*
1885          * It's possible that a tag was freed in the window between the
1886          * allocation failure and adding the hardware queue to the wait
1887          * queue.
1888          */
1889         ret = blk_mq_get_driver_tag(rq);
1890         if (!ret) {
1891                 spin_unlock(&hctx->dispatch_wait_lock);
1892                 spin_unlock_irq(&wq->lock);
1893                 return false;
1894         }
1895
1896         /*
1897          * We got a tag, remove ourselves from the wait queue to ensure
1898          * someone else gets the wakeup.
1899          */
1900         list_del_init(&wait->entry);
1901         atomic_dec(&sbq->ws_active);
1902         spin_unlock(&hctx->dispatch_wait_lock);
1903         spin_unlock_irq(&wq->lock);
1904
1905         return true;
1906 }
1907
1908 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1909 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1910 /*
1911  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1912  * - EWMA is one simple way to compute running average value
1913  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1914  * - take 4 as factor for avoiding to get too small(0) result, and this
1915  *   factor doesn't matter because EWMA decreases exponentially
1916  */
1917 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1918 {
1919         unsigned int ewma;
1920
1921         ewma = hctx->dispatch_busy;
1922
1923         if (!ewma && !busy)
1924                 return;
1925
1926         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1927         if (busy)
1928                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1929         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1930
1931         hctx->dispatch_busy = ewma;
1932 }
1933
1934 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1935
1936 static void blk_mq_handle_dev_resource(struct request *rq,
1937                                        struct list_head *list)
1938 {
1939         list_add(&rq->queuelist, list);
1940         __blk_mq_requeue_request(rq);
1941 }
1942
1943 static void blk_mq_handle_zone_resource(struct request *rq,
1944                                         struct list_head *zone_list)
1945 {
1946         /*
1947          * If we end up here it is because we cannot dispatch a request to a
1948          * specific zone due to LLD level zone-write locking or other zone
1949          * related resource not being available. In this case, set the request
1950          * aside in zone_list for retrying it later.
1951          */
1952         list_add(&rq->queuelist, zone_list);
1953         __blk_mq_requeue_request(rq);
1954 }
1955
1956 enum prep_dispatch {
1957         PREP_DISPATCH_OK,
1958         PREP_DISPATCH_NO_TAG,
1959         PREP_DISPATCH_NO_BUDGET,
1960 };
1961
1962 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1963                                                   bool need_budget)
1964 {
1965         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1966         int budget_token = -1;
1967
1968         if (need_budget) {
1969                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1970                 if (budget_token < 0) {
1971                         blk_mq_put_driver_tag(rq);
1972                         return PREP_DISPATCH_NO_BUDGET;
1973                 }
1974                 blk_mq_set_rq_budget_token(rq, budget_token);
1975         }
1976
1977         if (!blk_mq_get_driver_tag(rq)) {
1978                 /*
1979                  * The initial allocation attempt failed, so we need to
1980                  * rerun the hardware queue when a tag is freed. The
1981                  * waitqueue takes care of that. If the queue is run
1982                  * before we add this entry back on the dispatch list,
1983                  * we'll re-run it below.
1984                  */
1985                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1986                         /*
1987                          * All budgets not got from this function will be put
1988                          * together during handling partial dispatch
1989                          */
1990                         if (need_budget)
1991                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1992                         return PREP_DISPATCH_NO_TAG;
1993                 }
1994         }
1995
1996         return PREP_DISPATCH_OK;
1997 }
1998
1999 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2000 static void blk_mq_release_budgets(struct request_queue *q,
2001                 struct list_head *list)
2002 {
2003         struct request *rq;
2004
2005         list_for_each_entry(rq, list, queuelist) {
2006                 int budget_token = blk_mq_get_rq_budget_token(rq);
2007
2008                 if (budget_token >= 0)
2009                         blk_mq_put_dispatch_budget(q, budget_token);
2010         }
2011 }
2012
2013 /*
2014  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2015  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2016  * details)
2017  * Attention, we should explicitly call this in unusual cases:
2018  *  1) did not queue everything initially scheduled to queue
2019  *  2) the last attempt to queue a request failed
2020  */
2021 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2022                               bool from_schedule)
2023 {
2024         if (hctx->queue->mq_ops->commit_rqs && queued) {
2025                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2026                 hctx->queue->mq_ops->commit_rqs(hctx);
2027         }
2028 }
2029
2030 /*
2031  * Returns true if we did some work AND can potentially do more.
2032  */
2033 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2034                              unsigned int nr_budgets)
2035 {
2036         enum prep_dispatch prep;
2037         struct request_queue *q = hctx->queue;
2038         struct request *rq;
2039         int queued;
2040         blk_status_t ret = BLK_STS_OK;
2041         LIST_HEAD(zone_list);
2042         bool needs_resource = false;
2043
2044         if (list_empty(list))
2045                 return false;
2046
2047         /*
2048          * Now process all the entries, sending them to the driver.
2049          */
2050         queued = 0;
2051         do {
2052                 struct blk_mq_queue_data bd;
2053
2054                 rq = list_first_entry(list, struct request, queuelist);
2055
2056                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2057                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2058                 if (prep != PREP_DISPATCH_OK)
2059                         break;
2060
2061                 list_del_init(&rq->queuelist);
2062
2063                 bd.rq = rq;
2064                 bd.last = list_empty(list);
2065
2066                 /*
2067                  * once the request is queued to lld, no need to cover the
2068                  * budget any more
2069                  */
2070                 if (nr_budgets)
2071                         nr_budgets--;
2072                 ret = q->mq_ops->queue_rq(hctx, &bd);
2073                 switch (ret) {
2074                 case BLK_STS_OK:
2075                         queued++;
2076                         break;
2077                 case BLK_STS_RESOURCE:
2078                         needs_resource = true;
2079                         fallthrough;
2080                 case BLK_STS_DEV_RESOURCE:
2081                         blk_mq_handle_dev_resource(rq, list);
2082                         goto out;
2083                 case BLK_STS_ZONE_RESOURCE:
2084                         /*
2085                          * Move the request to zone_list and keep going through
2086                          * the dispatch list to find more requests the drive can
2087                          * accept.
2088                          */
2089                         blk_mq_handle_zone_resource(rq, &zone_list);
2090                         needs_resource = true;
2091                         break;
2092                 default:
2093                         blk_mq_end_request(rq, ret);
2094                 }
2095         } while (!list_empty(list));
2096 out:
2097         if (!list_empty(&zone_list))
2098                 list_splice_tail_init(&zone_list, list);
2099
2100         /* If we didn't flush the entire list, we could have told the driver
2101          * there was more coming, but that turned out to be a lie.
2102          */
2103         if (!list_empty(list) || ret != BLK_STS_OK)
2104                 blk_mq_commit_rqs(hctx, queued, false);
2105
2106         /*
2107          * Any items that need requeuing? Stuff them into hctx->dispatch,
2108          * that is where we will continue on next queue run.
2109          */
2110         if (!list_empty(list)) {
2111                 bool needs_restart;
2112                 /* For non-shared tags, the RESTART check will suffice */
2113                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2114                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2115                         blk_mq_is_shared_tags(hctx->flags));
2116
2117                 if (nr_budgets)
2118                         blk_mq_release_budgets(q, list);
2119
2120                 spin_lock(&hctx->lock);
2121                 list_splice_tail_init(list, &hctx->dispatch);
2122                 spin_unlock(&hctx->lock);
2123
2124                 /*
2125                  * Order adding requests to hctx->dispatch and checking
2126                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2127                  * in blk_mq_sched_restart(). Avoid restart code path to
2128                  * miss the new added requests to hctx->dispatch, meantime
2129                  * SCHED_RESTART is observed here.
2130                  */
2131                 smp_mb();
2132
2133                 /*
2134                  * If SCHED_RESTART was set by the caller of this function and
2135                  * it is no longer set that means that it was cleared by another
2136                  * thread and hence that a queue rerun is needed.
2137                  *
2138                  * If 'no_tag' is set, that means that we failed getting
2139                  * a driver tag with an I/O scheduler attached. If our dispatch
2140                  * waitqueue is no longer active, ensure that we run the queue
2141                  * AFTER adding our entries back to the list.
2142                  *
2143                  * If no I/O scheduler has been configured it is possible that
2144                  * the hardware queue got stopped and restarted before requests
2145                  * were pushed back onto the dispatch list. Rerun the queue to
2146                  * avoid starvation. Notes:
2147                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2148                  *   been stopped before rerunning a queue.
2149                  * - Some but not all block drivers stop a queue before
2150                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2151                  *   and dm-rq.
2152                  *
2153                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2154                  * bit is set, run queue after a delay to avoid IO stalls
2155                  * that could otherwise occur if the queue is idle.  We'll do
2156                  * similar if we couldn't get budget or couldn't lock a zone
2157                  * and SCHED_RESTART is set.
2158                  */
2159                 needs_restart = blk_mq_sched_needs_restart(hctx);
2160                 if (prep == PREP_DISPATCH_NO_BUDGET)
2161                         needs_resource = true;
2162                 if (!needs_restart ||
2163                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2164                         blk_mq_run_hw_queue(hctx, true);
2165                 else if (needs_resource)
2166                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2167
2168                 blk_mq_update_dispatch_busy(hctx, true);
2169                 return false;
2170         }
2171
2172         blk_mq_update_dispatch_busy(hctx, false);
2173         return true;
2174 }
2175
2176 /**
2177  * __blk_mq_run_hw_queue - Run a hardware queue.
2178  * @hctx: Pointer to the hardware queue to run.
2179  *
2180  * Send pending requests to the hardware.
2181  */
2182 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2183 {
2184         /*
2185          * We can't run the queue inline with ints disabled. Ensure that
2186          * we catch bad users of this early.
2187          */
2188         WARN_ON_ONCE(in_interrupt());
2189
2190         blk_mq_run_dispatch_ops(hctx->queue,
2191                         blk_mq_sched_dispatch_requests(hctx));
2192 }
2193
2194 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2195 {
2196         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2197
2198         if (cpu >= nr_cpu_ids)
2199                 cpu = cpumask_first(hctx->cpumask);
2200         return cpu;
2201 }
2202
2203 /*
2204  * It'd be great if the workqueue API had a way to pass
2205  * in a mask and had some smarts for more clever placement.
2206  * For now we just round-robin here, switching for every
2207  * BLK_MQ_CPU_WORK_BATCH queued items.
2208  */
2209 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2210 {
2211         bool tried = false;
2212         int next_cpu = hctx->next_cpu;
2213
2214         if (hctx->queue->nr_hw_queues == 1)
2215                 return WORK_CPU_UNBOUND;
2216
2217         if (--hctx->next_cpu_batch <= 0) {
2218 select_cpu:
2219                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2220                                 cpu_online_mask);
2221                 if (next_cpu >= nr_cpu_ids)
2222                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2223                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2224         }
2225
2226         /*
2227          * Do unbound schedule if we can't find a online CPU for this hctx,
2228          * and it should only happen in the path of handling CPU DEAD.
2229          */
2230         if (!cpu_online(next_cpu)) {
2231                 if (!tried) {
2232                         tried = true;
2233                         goto select_cpu;
2234                 }
2235
2236                 /*
2237                  * Make sure to re-select CPU next time once after CPUs
2238                  * in hctx->cpumask become online again.
2239                  */
2240                 hctx->next_cpu = next_cpu;
2241                 hctx->next_cpu_batch = 1;
2242                 return WORK_CPU_UNBOUND;
2243         }
2244
2245         hctx->next_cpu = next_cpu;
2246         return next_cpu;
2247 }
2248
2249 /**
2250  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2251  * @hctx: Pointer to the hardware queue to run.
2252  * @async: If we want to run the queue asynchronously.
2253  * @msecs: Milliseconds of delay to wait before running the queue.
2254  *
2255  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2256  * with a delay of @msecs.
2257  */
2258 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2259                                         unsigned long msecs)
2260 {
2261         if (unlikely(blk_mq_hctx_stopped(hctx)))
2262                 return;
2263
2264         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2265                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2266                         __blk_mq_run_hw_queue(hctx);
2267                         return;
2268                 }
2269         }
2270
2271         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2272                                     msecs_to_jiffies(msecs));
2273 }
2274
2275 /**
2276  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @msecs: Milliseconds of delay to wait before running the queue.
2279  *
2280  * Run a hardware queue asynchronously with a delay of @msecs.
2281  */
2282 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2283 {
2284         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2285 }
2286 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2287
2288 /**
2289  * blk_mq_run_hw_queue - Start to run a hardware queue.
2290  * @hctx: Pointer to the hardware queue to run.
2291  * @async: If we want to run the queue asynchronously.
2292  *
2293  * Check if the request queue is not in a quiesced state and if there are
2294  * pending requests to be sent. If this is true, run the queue to send requests
2295  * to hardware.
2296  */
2297 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2298 {
2299         bool need_run;
2300
2301         /*
2302          * When queue is quiesced, we may be switching io scheduler, or
2303          * updating nr_hw_queues, or other things, and we can't run queue
2304          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2305          *
2306          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2307          * quiesced.
2308          */
2309         __blk_mq_run_dispatch_ops(hctx->queue, false,
2310                 need_run = !blk_queue_quiesced(hctx->queue) &&
2311                 blk_mq_hctx_has_pending(hctx));
2312
2313         if (need_run)
2314                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2315 }
2316 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2317
2318 /*
2319  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2320  * scheduler.
2321  */
2322 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2323 {
2324         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2325         /*
2326          * If the IO scheduler does not respect hardware queues when
2327          * dispatching, we just don't bother with multiple HW queues and
2328          * dispatch from hctx for the current CPU since running multiple queues
2329          * just causes lock contention inside the scheduler and pointless cache
2330          * bouncing.
2331          */
2332         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2333
2334         if (!blk_mq_hctx_stopped(hctx))
2335                 return hctx;
2336         return NULL;
2337 }
2338
2339 /**
2340  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2341  * @q: Pointer to the request queue to run.
2342  * @async: If we want to run the queue asynchronously.
2343  */
2344 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2345 {
2346         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2347         unsigned long i;
2348
2349         sq_hctx = NULL;
2350         if (blk_queue_sq_sched(q))
2351                 sq_hctx = blk_mq_get_sq_hctx(q);
2352         queue_for_each_hw_ctx(q, hctx, i) {
2353                 if (blk_mq_hctx_stopped(hctx))
2354                         continue;
2355                 /*
2356                  * Dispatch from this hctx either if there's no hctx preferred
2357                  * by IO scheduler or if it has requests that bypass the
2358                  * scheduler.
2359                  */
2360                 if (!sq_hctx || sq_hctx == hctx ||
2361                     !list_empty_careful(&hctx->dispatch))
2362                         blk_mq_run_hw_queue(hctx, async);
2363         }
2364 }
2365 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2366
2367 /**
2368  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2369  * @q: Pointer to the request queue to run.
2370  * @msecs: Milliseconds of delay to wait before running the queues.
2371  */
2372 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2373 {
2374         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2375         unsigned long i;
2376
2377         sq_hctx = NULL;
2378         if (blk_queue_sq_sched(q))
2379                 sq_hctx = blk_mq_get_sq_hctx(q);
2380         queue_for_each_hw_ctx(q, hctx, i) {
2381                 if (blk_mq_hctx_stopped(hctx))
2382                         continue;
2383                 /*
2384                  * If there is already a run_work pending, leave the
2385                  * pending delay untouched. Otherwise, a hctx can stall
2386                  * if another hctx is re-delaying the other's work
2387                  * before the work executes.
2388                  */
2389                 if (delayed_work_pending(&hctx->run_work))
2390                         continue;
2391                 /*
2392                  * Dispatch from this hctx either if there's no hctx preferred
2393                  * by IO scheduler or if it has requests that bypass the
2394                  * scheduler.
2395                  */
2396                 if (!sq_hctx || sq_hctx == hctx ||
2397                     !list_empty_careful(&hctx->dispatch))
2398                         blk_mq_delay_run_hw_queue(hctx, msecs);
2399         }
2400 }
2401 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2402
2403 /*
2404  * This function is often used for pausing .queue_rq() by driver when
2405  * there isn't enough resource or some conditions aren't satisfied, and
2406  * BLK_STS_RESOURCE is usually returned.
2407  *
2408  * We do not guarantee that dispatch can be drained or blocked
2409  * after blk_mq_stop_hw_queue() returns. Please use
2410  * blk_mq_quiesce_queue() for that requirement.
2411  */
2412 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2413 {
2414         cancel_delayed_work(&hctx->run_work);
2415
2416         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2417 }
2418 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2419
2420 /*
2421  * This function is often used for pausing .queue_rq() by driver when
2422  * there isn't enough resource or some conditions aren't satisfied, and
2423  * BLK_STS_RESOURCE is usually returned.
2424  *
2425  * We do not guarantee that dispatch can be drained or blocked
2426  * after blk_mq_stop_hw_queues() returns. Please use
2427  * blk_mq_quiesce_queue() for that requirement.
2428  */
2429 void blk_mq_stop_hw_queues(struct request_queue *q)
2430 {
2431         struct blk_mq_hw_ctx *hctx;
2432         unsigned long i;
2433
2434         queue_for_each_hw_ctx(q, hctx, i)
2435                 blk_mq_stop_hw_queue(hctx);
2436 }
2437 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2438
2439 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2440 {
2441         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2442
2443         blk_mq_run_hw_queue(hctx, false);
2444 }
2445 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2446
2447 void blk_mq_start_hw_queues(struct request_queue *q)
2448 {
2449         struct blk_mq_hw_ctx *hctx;
2450         unsigned long i;
2451
2452         queue_for_each_hw_ctx(q, hctx, i)
2453                 blk_mq_start_hw_queue(hctx);
2454 }
2455 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2456
2457 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2458 {
2459         if (!blk_mq_hctx_stopped(hctx))
2460                 return;
2461
2462         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2463         blk_mq_run_hw_queue(hctx, async);
2464 }
2465 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2466
2467 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2468 {
2469         struct blk_mq_hw_ctx *hctx;
2470         unsigned long i;
2471
2472         queue_for_each_hw_ctx(q, hctx, i)
2473                 blk_mq_start_stopped_hw_queue(hctx, async);
2474 }
2475 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2476
2477 static void blk_mq_run_work_fn(struct work_struct *work)
2478 {
2479         struct blk_mq_hw_ctx *hctx;
2480
2481         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2482
2483         /*
2484          * If we are stopped, don't run the queue.
2485          */
2486         if (blk_mq_hctx_stopped(hctx))
2487                 return;
2488
2489         __blk_mq_run_hw_queue(hctx);
2490 }
2491
2492 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2493                                             struct request *rq,
2494                                             bool at_head)
2495 {
2496         struct blk_mq_ctx *ctx = rq->mq_ctx;
2497         enum hctx_type type = hctx->type;
2498
2499         lockdep_assert_held(&ctx->lock);
2500
2501         trace_block_rq_insert(rq);
2502
2503         if (at_head)
2504                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2505         else
2506                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2507 }
2508
2509 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2510                              bool at_head)
2511 {
2512         struct blk_mq_ctx *ctx = rq->mq_ctx;
2513
2514         lockdep_assert_held(&ctx->lock);
2515
2516         __blk_mq_insert_req_list(hctx, rq, at_head);
2517         blk_mq_hctx_mark_pending(hctx, ctx);
2518 }
2519
2520 /**
2521  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2522  * @rq: Pointer to request to be inserted.
2523  * @at_head: true if the request should be inserted at the head of the list.
2524  * @run_queue: If we should run the hardware queue after inserting the request.
2525  *
2526  * Should only be used carefully, when the caller knows we want to
2527  * bypass a potential IO scheduler on the target device.
2528  */
2529 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2530                                   bool run_queue)
2531 {
2532         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2533
2534         spin_lock(&hctx->lock);
2535         if (at_head)
2536                 list_add(&rq->queuelist, &hctx->dispatch);
2537         else
2538                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2539         spin_unlock(&hctx->lock);
2540
2541         if (run_queue)
2542                 blk_mq_run_hw_queue(hctx, false);
2543 }
2544
2545 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2546                             struct list_head *list)
2547
2548 {
2549         struct request *rq;
2550         enum hctx_type type = hctx->type;
2551
2552         /*
2553          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2554          * offline now
2555          */
2556         list_for_each_entry(rq, list, queuelist) {
2557                 BUG_ON(rq->mq_ctx != ctx);
2558                 trace_block_rq_insert(rq);
2559         }
2560
2561         spin_lock(&ctx->lock);
2562         list_splice_tail_init(list, &ctx->rq_lists[type]);
2563         blk_mq_hctx_mark_pending(hctx, ctx);
2564         spin_unlock(&ctx->lock);
2565 }
2566
2567 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2568                 unsigned int nr_segs)
2569 {
2570         int err;
2571
2572         if (bio->bi_opf & REQ_RAHEAD)
2573                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2574
2575         rq->__sector = bio->bi_iter.bi_sector;
2576         blk_rq_bio_prep(rq, bio, nr_segs);
2577
2578         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2579         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2580         WARN_ON_ONCE(err);
2581
2582         blk_account_io_start(rq);
2583 }
2584
2585 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2586                                             struct request *rq, bool last)
2587 {
2588         struct request_queue *q = rq->q;
2589         struct blk_mq_queue_data bd = {
2590                 .rq = rq,
2591                 .last = last,
2592         };
2593         blk_status_t ret;
2594
2595         /*
2596          * For OK queue, we are done. For error, caller may kill it.
2597          * Any other error (busy), just add it to our list as we
2598          * previously would have done.
2599          */
2600         ret = q->mq_ops->queue_rq(hctx, &bd);
2601         switch (ret) {
2602         case BLK_STS_OK:
2603                 blk_mq_update_dispatch_busy(hctx, false);
2604                 break;
2605         case BLK_STS_RESOURCE:
2606         case BLK_STS_DEV_RESOURCE:
2607                 blk_mq_update_dispatch_busy(hctx, true);
2608                 __blk_mq_requeue_request(rq);
2609                 break;
2610         default:
2611                 blk_mq_update_dispatch_busy(hctx, false);
2612                 break;
2613         }
2614
2615         return ret;
2616 }
2617
2618 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2619                                                 struct request *rq,
2620                                                 bool bypass_insert, bool last)
2621 {
2622         struct request_queue *q = rq->q;
2623         bool run_queue = true;
2624         int budget_token;
2625
2626         /*
2627          * RCU or SRCU read lock is needed before checking quiesced flag.
2628          *
2629          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2630          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2631          * and avoid driver to try to dispatch again.
2632          */
2633         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2634                 run_queue = false;
2635                 bypass_insert = false;
2636                 goto insert;
2637         }
2638
2639         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2640                 goto insert;
2641
2642         budget_token = blk_mq_get_dispatch_budget(q);
2643         if (budget_token < 0)
2644                 goto insert;
2645
2646         blk_mq_set_rq_budget_token(rq, budget_token);
2647
2648         if (!blk_mq_get_driver_tag(rq)) {
2649                 blk_mq_put_dispatch_budget(q, budget_token);
2650                 goto insert;
2651         }
2652
2653         return __blk_mq_issue_directly(hctx, rq, last);
2654 insert:
2655         if (bypass_insert)
2656                 return BLK_STS_RESOURCE;
2657
2658         blk_mq_sched_insert_request(rq, false, run_queue, false);
2659
2660         return BLK_STS_OK;
2661 }
2662
2663 /**
2664  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2665  * @hctx: Pointer of the associated hardware queue.
2666  * @rq: Pointer to request to be sent.
2667  *
2668  * If the device has enough resources to accept a new request now, send the
2669  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2670  * we can try send it another time in the future. Requests inserted at this
2671  * queue have higher priority.
2672  */
2673 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2674                 struct request *rq)
2675 {
2676         blk_status_t ret =
2677                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2678
2679         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2680                 blk_mq_request_bypass_insert(rq, false, true);
2681         else if (ret != BLK_STS_OK)
2682                 blk_mq_end_request(rq, ret);
2683 }
2684
2685 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2686 {
2687         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2688 }
2689
2690 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2691 {
2692         struct blk_mq_hw_ctx *hctx = NULL;
2693         struct request *rq;
2694         int queued = 0;
2695         blk_status_t ret = BLK_STS_OK;
2696
2697         while ((rq = rq_list_pop(&plug->mq_list))) {
2698                 bool last = rq_list_empty(plug->mq_list);
2699
2700                 if (hctx != rq->mq_hctx) {
2701                         if (hctx) {
2702                                 blk_mq_commit_rqs(hctx, queued, false);
2703                                 queued = 0;
2704                         }
2705                         hctx = rq->mq_hctx;
2706                 }
2707
2708                 ret = blk_mq_request_issue_directly(rq, last);
2709                 switch (ret) {
2710                 case BLK_STS_OK:
2711                         queued++;
2712                         break;
2713                 case BLK_STS_RESOURCE:
2714                 case BLK_STS_DEV_RESOURCE:
2715                         blk_mq_request_bypass_insert(rq, false, true);
2716                         goto out;
2717                 default:
2718                         blk_mq_end_request(rq, ret);
2719                         break;
2720                 }
2721         }
2722
2723 out:
2724         if (ret != BLK_STS_OK)
2725                 blk_mq_commit_rqs(hctx, queued, false);
2726 }
2727
2728 static void __blk_mq_flush_plug_list(struct request_queue *q,
2729                                      struct blk_plug *plug)
2730 {
2731         if (blk_queue_quiesced(q))
2732                 return;
2733         q->mq_ops->queue_rqs(&plug->mq_list);
2734 }
2735
2736 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2737 {
2738         struct blk_mq_hw_ctx *this_hctx = NULL;
2739         struct blk_mq_ctx *this_ctx = NULL;
2740         struct request *requeue_list = NULL;
2741         unsigned int depth = 0;
2742         LIST_HEAD(list);
2743
2744         do {
2745                 struct request *rq = rq_list_pop(&plug->mq_list);
2746
2747                 if (!this_hctx) {
2748                         this_hctx = rq->mq_hctx;
2749                         this_ctx = rq->mq_ctx;
2750                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2751                         rq_list_add(&requeue_list, rq);
2752                         continue;
2753                 }
2754                 list_add_tail(&rq->queuelist, &list);
2755                 depth++;
2756         } while (!rq_list_empty(plug->mq_list));
2757
2758         plug->mq_list = requeue_list;
2759         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2760         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2761 }
2762
2763 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2764 {
2765         struct request *rq;
2766
2767         if (rq_list_empty(plug->mq_list))
2768                 return;
2769         plug->rq_count = 0;
2770
2771         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2772                 struct request_queue *q;
2773
2774                 rq = rq_list_peek(&plug->mq_list);
2775                 q = rq->q;
2776
2777                 /*
2778                  * Peek first request and see if we have a ->queue_rqs() hook.
2779                  * If we do, we can dispatch the whole plug list in one go. We
2780                  * already know at this point that all requests belong to the
2781                  * same queue, caller must ensure that's the case.
2782                  *
2783                  * Since we pass off the full list to the driver at this point,
2784                  * we do not increment the active request count for the queue.
2785                  * Bypass shared tags for now because of that.
2786                  */
2787                 if (q->mq_ops->queue_rqs &&
2788                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2789                         blk_mq_run_dispatch_ops(q,
2790                                 __blk_mq_flush_plug_list(q, plug));
2791                         if (rq_list_empty(plug->mq_list))
2792                                 return;
2793                 }
2794
2795                 blk_mq_run_dispatch_ops(q,
2796                                 blk_mq_plug_issue_direct(plug));
2797                 if (rq_list_empty(plug->mq_list))
2798                         return;
2799         }
2800
2801         do {
2802                 blk_mq_dispatch_plug_list(plug, from_schedule);
2803         } while (!rq_list_empty(plug->mq_list));
2804 }
2805
2806 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2807                 struct list_head *list)
2808 {
2809         int queued = 0;
2810         blk_status_t ret = BLK_STS_OK;
2811
2812         while (!list_empty(list)) {
2813                 struct request *rq = list_first_entry(list, struct request,
2814                                 queuelist);
2815
2816                 list_del_init(&rq->queuelist);
2817                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2818                 switch (ret) {
2819                 case BLK_STS_OK:
2820                         queued++;
2821                         break;
2822                 case BLK_STS_RESOURCE:
2823                 case BLK_STS_DEV_RESOURCE:
2824                         blk_mq_request_bypass_insert(rq, false,
2825                                                      list_empty(list));
2826                         goto out;
2827                 default:
2828                         blk_mq_end_request(rq, ret);
2829                         break;
2830                 }
2831         }
2832
2833 out:
2834         if (ret != BLK_STS_OK)
2835                 blk_mq_commit_rqs(hctx, queued, false);
2836 }
2837
2838 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2839                                      struct bio *bio, unsigned int nr_segs)
2840 {
2841         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2842                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2843                         return true;
2844                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2845                         return true;
2846         }
2847         return false;
2848 }
2849
2850 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2851                                                struct blk_plug *plug,
2852                                                struct bio *bio,
2853                                                unsigned int nsegs)
2854 {
2855         struct blk_mq_alloc_data data = {
2856                 .q              = q,
2857                 .nr_tags        = 1,
2858                 .cmd_flags      = bio->bi_opf,
2859         };
2860         struct request *rq;
2861
2862         if (unlikely(bio_queue_enter(bio)))
2863                 return NULL;
2864
2865         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2866                 goto queue_exit;
2867
2868         rq_qos_throttle(q, bio);
2869
2870         if (plug) {
2871                 data.nr_tags = plug->nr_ios;
2872                 plug->nr_ios = 1;
2873                 data.cached_rq = &plug->cached_rq;
2874         }
2875
2876         rq = __blk_mq_alloc_requests(&data);
2877         if (rq)
2878                 return rq;
2879         rq_qos_cleanup(q, bio);
2880         if (bio->bi_opf & REQ_NOWAIT)
2881                 bio_wouldblock_error(bio);
2882 queue_exit:
2883         blk_queue_exit(q);
2884         return NULL;
2885 }
2886
2887 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2888                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2889 {
2890         struct request *rq;
2891         enum hctx_type type, hctx_type;
2892
2893         if (!plug)
2894                 return NULL;
2895
2896         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2897                 *bio = NULL;
2898                 return NULL;
2899         }
2900
2901         rq = rq_list_peek(&plug->cached_rq);
2902         if (!rq || rq->q != q)
2903                 return NULL;
2904
2905         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2906         hctx_type = rq->mq_hctx->type;
2907         if (type != hctx_type &&
2908             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2909                 return NULL;
2910         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2911                 return NULL;
2912
2913         /*
2914          * If any qos ->throttle() end up blocking, we will have flushed the
2915          * plug and hence killed the cached_rq list as well. Pop this entry
2916          * before we throttle.
2917          */
2918         plug->cached_rq = rq_list_next(rq);
2919         rq_qos_throttle(q, *bio);
2920
2921         rq->cmd_flags = (*bio)->bi_opf;
2922         INIT_LIST_HEAD(&rq->queuelist);
2923         return rq;
2924 }
2925
2926 static void bio_set_ioprio(struct bio *bio)
2927 {
2928         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2929         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2930                 bio->bi_ioprio = get_current_ioprio();
2931         blkcg_set_ioprio(bio);
2932 }
2933
2934 /**
2935  * blk_mq_submit_bio - Create and send a request to block device.
2936  * @bio: Bio pointer.
2937  *
2938  * Builds up a request structure from @q and @bio and send to the device. The
2939  * request may not be queued directly to hardware if:
2940  * * This request can be merged with another one
2941  * * We want to place request at plug queue for possible future merging
2942  * * There is an IO scheduler active at this queue
2943  *
2944  * It will not queue the request if there is an error with the bio, or at the
2945  * request creation.
2946  */
2947 void blk_mq_submit_bio(struct bio *bio)
2948 {
2949         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2950         struct blk_plug *plug = blk_mq_plug(bio);
2951         const int is_sync = op_is_sync(bio->bi_opf);
2952         struct request *rq;
2953         unsigned int nr_segs = 1;
2954         blk_status_t ret;
2955
2956         bio = blk_queue_bounce(bio, q);
2957         if (bio_may_exceed_limits(bio, &q->limits)) {
2958                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2959                 if (!bio)
2960                         return;
2961         }
2962
2963         if (!bio_integrity_prep(bio))
2964                 return;
2965
2966         bio_set_ioprio(bio);
2967
2968         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2969         if (!rq) {
2970                 if (!bio)
2971                         return;
2972                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2973                 if (unlikely(!rq))
2974                         return;
2975         }
2976
2977         trace_block_getrq(bio);
2978
2979         rq_qos_track(q, rq, bio);
2980
2981         blk_mq_bio_to_request(rq, bio, nr_segs);
2982
2983         ret = blk_crypto_rq_get_keyslot(rq);
2984         if (ret != BLK_STS_OK) {
2985                 bio->bi_status = ret;
2986                 bio_endio(bio);
2987                 blk_mq_free_request(rq);
2988                 return;
2989         }
2990
2991         if (op_is_flush(bio->bi_opf)) {
2992                 blk_insert_flush(rq);
2993                 return;
2994         }
2995
2996         if (plug)
2997                 blk_add_rq_to_plug(plug, rq);
2998         else if ((rq->rq_flags & RQF_ELV) ||
2999                  (rq->mq_hctx->dispatch_busy &&
3000                   (q->nr_hw_queues == 1 || !is_sync)))
3001                 blk_mq_sched_insert_request(rq, false, true, true);
3002         else
3003                 blk_mq_run_dispatch_ops(rq->q,
3004                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
3005 }
3006
3007 #ifdef CONFIG_BLK_MQ_STACKING
3008 /**
3009  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3010  * @rq: the request being queued
3011  */
3012 blk_status_t blk_insert_cloned_request(struct request *rq)
3013 {
3014         struct request_queue *q = rq->q;
3015         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3016         unsigned int max_segments = blk_rq_get_max_segments(rq);
3017         blk_status_t ret;
3018
3019         if (blk_rq_sectors(rq) > max_sectors) {
3020                 /*
3021                  * SCSI device does not have a good way to return if
3022                  * Write Same/Zero is actually supported. If a device rejects
3023                  * a non-read/write command (discard, write same,etc.) the
3024                  * low-level device driver will set the relevant queue limit to
3025                  * 0 to prevent blk-lib from issuing more of the offending
3026                  * operations. Commands queued prior to the queue limit being
3027                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3028                  * errors being propagated to upper layers.
3029                  */
3030                 if (max_sectors == 0)
3031                         return BLK_STS_NOTSUPP;
3032
3033                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3034                         __func__, blk_rq_sectors(rq), max_sectors);
3035                 return BLK_STS_IOERR;
3036         }
3037
3038         /*
3039          * The queue settings related to segment counting may differ from the
3040          * original queue.
3041          */
3042         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3043         if (rq->nr_phys_segments > max_segments) {
3044                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3045                         __func__, rq->nr_phys_segments, max_segments);
3046                 return BLK_STS_IOERR;
3047         }
3048
3049         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3050                 return BLK_STS_IOERR;
3051
3052         ret = blk_crypto_rq_get_keyslot(rq);
3053         if (ret != BLK_STS_OK)
3054                 return ret;
3055
3056         blk_account_io_start(rq);
3057
3058         /*
3059          * Since we have a scheduler attached on the top device,
3060          * bypass a potential scheduler on the bottom device for
3061          * insert.
3062          */
3063         blk_mq_run_dispatch_ops(q,
3064                         ret = blk_mq_request_issue_directly(rq, true));
3065         if (ret)
3066                 blk_account_io_done(rq, ktime_get_ns());
3067         return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3070
3071 /**
3072  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3073  * @rq: the clone request to be cleaned up
3074  *
3075  * Description:
3076  *     Free all bios in @rq for a cloned request.
3077  */
3078 void blk_rq_unprep_clone(struct request *rq)
3079 {
3080         struct bio *bio;
3081
3082         while ((bio = rq->bio) != NULL) {
3083                 rq->bio = bio->bi_next;
3084
3085                 bio_put(bio);
3086         }
3087 }
3088 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3089
3090 /**
3091  * blk_rq_prep_clone - Helper function to setup clone request
3092  * @rq: the request to be setup
3093  * @rq_src: original request to be cloned
3094  * @bs: bio_set that bios for clone are allocated from
3095  * @gfp_mask: memory allocation mask for bio
3096  * @bio_ctr: setup function to be called for each clone bio.
3097  *           Returns %0 for success, non %0 for failure.
3098  * @data: private data to be passed to @bio_ctr
3099  *
3100  * Description:
3101  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3102  *     Also, pages which the original bios are pointing to are not copied
3103  *     and the cloned bios just point same pages.
3104  *     So cloned bios must be completed before original bios, which means
3105  *     the caller must complete @rq before @rq_src.
3106  */
3107 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3108                       struct bio_set *bs, gfp_t gfp_mask,
3109                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3110                       void *data)
3111 {
3112         struct bio *bio, *bio_src;
3113
3114         if (!bs)
3115                 bs = &fs_bio_set;
3116
3117         __rq_for_each_bio(bio_src, rq_src) {
3118                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3119                                       bs);
3120                 if (!bio)
3121                         goto free_and_out;
3122
3123                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3124                         goto free_and_out;
3125
3126                 if (rq->bio) {
3127                         rq->biotail->bi_next = bio;
3128                         rq->biotail = bio;
3129                 } else {
3130                         rq->bio = rq->biotail = bio;
3131                 }
3132                 bio = NULL;
3133         }
3134
3135         /* Copy attributes of the original request to the clone request. */
3136         rq->__sector = blk_rq_pos(rq_src);
3137         rq->__data_len = blk_rq_bytes(rq_src);
3138         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3139                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3140                 rq->special_vec = rq_src->special_vec;
3141         }
3142         rq->nr_phys_segments = rq_src->nr_phys_segments;
3143         rq->ioprio = rq_src->ioprio;
3144
3145         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3146                 goto free_and_out;
3147
3148         return 0;
3149
3150 free_and_out:
3151         if (bio)
3152                 bio_put(bio);
3153         blk_rq_unprep_clone(rq);
3154
3155         return -ENOMEM;
3156 }
3157 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3158 #endif /* CONFIG_BLK_MQ_STACKING */
3159
3160 /*
3161  * Steal bios from a request and add them to a bio list.
3162  * The request must not have been partially completed before.
3163  */
3164 void blk_steal_bios(struct bio_list *list, struct request *rq)
3165 {
3166         if (rq->bio) {
3167                 if (list->tail)
3168                         list->tail->bi_next = rq->bio;
3169                 else
3170                         list->head = rq->bio;
3171                 list->tail = rq->biotail;
3172
3173                 rq->bio = NULL;
3174                 rq->biotail = NULL;
3175         }
3176
3177         rq->__data_len = 0;
3178 }
3179 EXPORT_SYMBOL_GPL(blk_steal_bios);
3180
3181 static size_t order_to_size(unsigned int order)
3182 {
3183         return (size_t)PAGE_SIZE << order;
3184 }
3185
3186 /* called before freeing request pool in @tags */
3187 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3188                                     struct blk_mq_tags *tags)
3189 {
3190         struct page *page;
3191         unsigned long flags;
3192
3193         /*
3194          * There is no need to clear mapping if driver tags is not initialized
3195          * or the mapping belongs to the driver tags.
3196          */
3197         if (!drv_tags || drv_tags == tags)
3198                 return;
3199
3200         list_for_each_entry(page, &tags->page_list, lru) {
3201                 unsigned long start = (unsigned long)page_address(page);
3202                 unsigned long end = start + order_to_size(page->private);
3203                 int i;
3204
3205                 for (i = 0; i < drv_tags->nr_tags; i++) {
3206                         struct request *rq = drv_tags->rqs[i];
3207                         unsigned long rq_addr = (unsigned long)rq;
3208
3209                         if (rq_addr >= start && rq_addr < end) {
3210                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3211                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3212                         }
3213                 }
3214         }
3215
3216         /*
3217          * Wait until all pending iteration is done.
3218          *
3219          * Request reference is cleared and it is guaranteed to be observed
3220          * after the ->lock is released.
3221          */
3222         spin_lock_irqsave(&drv_tags->lock, flags);
3223         spin_unlock_irqrestore(&drv_tags->lock, flags);
3224 }
3225
3226 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3227                      unsigned int hctx_idx)
3228 {
3229         struct blk_mq_tags *drv_tags;
3230         struct page *page;
3231
3232         if (list_empty(&tags->page_list))
3233                 return;
3234
3235         if (blk_mq_is_shared_tags(set->flags))
3236                 drv_tags = set->shared_tags;
3237         else
3238                 drv_tags = set->tags[hctx_idx];
3239
3240         if (tags->static_rqs && set->ops->exit_request) {
3241                 int i;
3242
3243                 for (i = 0; i < tags->nr_tags; i++) {
3244                         struct request *rq = tags->static_rqs[i];
3245
3246                         if (!rq)
3247                                 continue;
3248                         set->ops->exit_request(set, rq, hctx_idx);
3249                         tags->static_rqs[i] = NULL;
3250                 }
3251         }
3252
3253         blk_mq_clear_rq_mapping(drv_tags, tags);
3254
3255         while (!list_empty(&tags->page_list)) {
3256                 page = list_first_entry(&tags->page_list, struct page, lru);
3257                 list_del_init(&page->lru);
3258                 /*
3259                  * Remove kmemleak object previously allocated in
3260                  * blk_mq_alloc_rqs().
3261                  */
3262                 kmemleak_free(page_address(page));
3263                 __free_pages(page, page->private);
3264         }
3265 }
3266
3267 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3268 {
3269         kfree(tags->rqs);
3270         tags->rqs = NULL;
3271         kfree(tags->static_rqs);
3272         tags->static_rqs = NULL;
3273
3274         blk_mq_free_tags(tags);
3275 }
3276
3277 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3278                 unsigned int hctx_idx)
3279 {
3280         int i;
3281
3282         for (i = 0; i < set->nr_maps; i++) {
3283                 unsigned int start = set->map[i].queue_offset;
3284                 unsigned int end = start + set->map[i].nr_queues;
3285
3286                 if (hctx_idx >= start && hctx_idx < end)
3287                         break;
3288         }
3289
3290         if (i >= set->nr_maps)
3291                 i = HCTX_TYPE_DEFAULT;
3292
3293         return i;
3294 }
3295
3296 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3297                 unsigned int hctx_idx)
3298 {
3299         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3300
3301         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3302 }
3303
3304 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3305                                                unsigned int hctx_idx,
3306                                                unsigned int nr_tags,
3307                                                unsigned int reserved_tags)
3308 {
3309         int node = blk_mq_get_hctx_node(set, hctx_idx);
3310         struct blk_mq_tags *tags;
3311
3312         if (node == NUMA_NO_NODE)
3313                 node = set->numa_node;
3314
3315         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3316                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3317         if (!tags)
3318                 return NULL;
3319
3320         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3321                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3322                                  node);
3323         if (!tags->rqs)
3324                 goto err_free_tags;
3325
3326         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3327                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3328                                         node);
3329         if (!tags->static_rqs)
3330                 goto err_free_rqs;
3331
3332         return tags;
3333
3334 err_free_rqs:
3335         kfree(tags->rqs);
3336 err_free_tags:
3337         blk_mq_free_tags(tags);
3338         return NULL;
3339 }
3340
3341 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3342                                unsigned int hctx_idx, int node)
3343 {
3344         int ret;
3345
3346         if (set->ops->init_request) {
3347                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3348                 if (ret)
3349                         return ret;
3350         }
3351
3352         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3353         return 0;
3354 }
3355
3356 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3357                             struct blk_mq_tags *tags,
3358                             unsigned int hctx_idx, unsigned int depth)
3359 {
3360         unsigned int i, j, entries_per_page, max_order = 4;
3361         int node = blk_mq_get_hctx_node(set, hctx_idx);
3362         size_t rq_size, left;
3363
3364         if (node == NUMA_NO_NODE)
3365                 node = set->numa_node;
3366
3367         INIT_LIST_HEAD(&tags->page_list);
3368
3369         /*
3370          * rq_size is the size of the request plus driver payload, rounded
3371          * to the cacheline size
3372          */
3373         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3374                                 cache_line_size());
3375         left = rq_size * depth;
3376
3377         for (i = 0; i < depth; ) {
3378                 int this_order = max_order;
3379                 struct page *page;
3380                 int to_do;
3381                 void *p;
3382
3383                 while (this_order && left < order_to_size(this_order - 1))
3384                         this_order--;
3385
3386                 do {
3387                         page = alloc_pages_node(node,
3388                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3389                                 this_order);
3390                         if (page)
3391                                 break;
3392                         if (!this_order--)
3393                                 break;
3394                         if (order_to_size(this_order) < rq_size)
3395                                 break;
3396                 } while (1);
3397
3398                 if (!page)
3399                         goto fail;
3400
3401                 page->private = this_order;
3402                 list_add_tail(&page->lru, &tags->page_list);
3403
3404                 p = page_address(page);
3405                 /*
3406                  * Allow kmemleak to scan these pages as they contain pointers
3407                  * to additional allocations like via ops->init_request().
3408                  */
3409                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3410                 entries_per_page = order_to_size(this_order) / rq_size;
3411                 to_do = min(entries_per_page, depth - i);
3412                 left -= to_do * rq_size;
3413                 for (j = 0; j < to_do; j++) {
3414                         struct request *rq = p;
3415
3416                         tags->static_rqs[i] = rq;
3417                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3418                                 tags->static_rqs[i] = NULL;
3419                                 goto fail;
3420                         }
3421
3422                         p += rq_size;
3423                         i++;
3424                 }
3425         }
3426         return 0;
3427
3428 fail:
3429         blk_mq_free_rqs(set, tags, hctx_idx);
3430         return -ENOMEM;
3431 }
3432
3433 struct rq_iter_data {
3434         struct blk_mq_hw_ctx *hctx;
3435         bool has_rq;
3436 };
3437
3438 static bool blk_mq_has_request(struct request *rq, void *data)
3439 {
3440         struct rq_iter_data *iter_data = data;
3441
3442         if (rq->mq_hctx != iter_data->hctx)
3443                 return true;
3444         iter_data->has_rq = true;
3445         return false;
3446 }
3447
3448 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3449 {
3450         struct blk_mq_tags *tags = hctx->sched_tags ?
3451                         hctx->sched_tags : hctx->tags;
3452         struct rq_iter_data data = {
3453                 .hctx   = hctx,
3454         };
3455
3456         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3457         return data.has_rq;
3458 }
3459
3460 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3461                 struct blk_mq_hw_ctx *hctx)
3462 {
3463         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3464                 return false;
3465         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3466                 return false;
3467         return true;
3468 }
3469
3470 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3471 {
3472         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3473                         struct blk_mq_hw_ctx, cpuhp_online);
3474
3475         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3476             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3477                 return 0;
3478
3479         /*
3480          * Prevent new request from being allocated on the current hctx.
3481          *
3482          * The smp_mb__after_atomic() Pairs with the implied barrier in
3483          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3484          * seen once we return from the tag allocator.
3485          */
3486         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3487         smp_mb__after_atomic();
3488
3489         /*
3490          * Try to grab a reference to the queue and wait for any outstanding
3491          * requests.  If we could not grab a reference the queue has been
3492          * frozen and there are no requests.
3493          */
3494         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3495                 while (blk_mq_hctx_has_requests(hctx))
3496                         msleep(5);
3497                 percpu_ref_put(&hctx->queue->q_usage_counter);
3498         }
3499
3500         return 0;
3501 }
3502
3503 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3504 {
3505         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3506                         struct blk_mq_hw_ctx, cpuhp_online);
3507
3508         if (cpumask_test_cpu(cpu, hctx->cpumask))
3509                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3510         return 0;
3511 }
3512
3513 /*
3514  * 'cpu' is going away. splice any existing rq_list entries from this
3515  * software queue to the hw queue dispatch list, and ensure that it
3516  * gets run.
3517  */
3518 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3519 {
3520         struct blk_mq_hw_ctx *hctx;
3521         struct blk_mq_ctx *ctx;
3522         LIST_HEAD(tmp);
3523         enum hctx_type type;
3524
3525         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3526         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3527                 return 0;
3528
3529         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3530         type = hctx->type;
3531
3532         spin_lock(&ctx->lock);
3533         if (!list_empty(&ctx->rq_lists[type])) {
3534                 list_splice_init(&ctx->rq_lists[type], &tmp);
3535                 blk_mq_hctx_clear_pending(hctx, ctx);
3536         }
3537         spin_unlock(&ctx->lock);
3538
3539         if (list_empty(&tmp))
3540                 return 0;
3541
3542         spin_lock(&hctx->lock);
3543         list_splice_tail_init(&tmp, &hctx->dispatch);
3544         spin_unlock(&hctx->lock);
3545
3546         blk_mq_run_hw_queue(hctx, true);
3547         return 0;
3548 }
3549
3550 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3551 {
3552         if (!(hctx->flags & BLK_MQ_F_STACKING))
3553                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3554                                                     &hctx->cpuhp_online);
3555         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3556                                             &hctx->cpuhp_dead);
3557 }
3558
3559 /*
3560  * Before freeing hw queue, clearing the flush request reference in
3561  * tags->rqs[] for avoiding potential UAF.
3562  */
3563 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3564                 unsigned int queue_depth, struct request *flush_rq)
3565 {
3566         int i;
3567         unsigned long flags;
3568
3569         /* The hw queue may not be mapped yet */
3570         if (!tags)
3571                 return;
3572
3573         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3574
3575         for (i = 0; i < queue_depth; i++)
3576                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3577
3578         /*
3579          * Wait until all pending iteration is done.
3580          *
3581          * Request reference is cleared and it is guaranteed to be observed
3582          * after the ->lock is released.
3583          */
3584         spin_lock_irqsave(&tags->lock, flags);
3585         spin_unlock_irqrestore(&tags->lock, flags);
3586 }
3587
3588 /* hctx->ctxs will be freed in queue's release handler */
3589 static void blk_mq_exit_hctx(struct request_queue *q,
3590                 struct blk_mq_tag_set *set,
3591                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3592 {
3593         struct request *flush_rq = hctx->fq->flush_rq;
3594
3595         if (blk_mq_hw_queue_mapped(hctx))
3596                 blk_mq_tag_idle(hctx);
3597
3598         if (blk_queue_init_done(q))
3599                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3600                                 set->queue_depth, flush_rq);
3601         if (set->ops->exit_request)
3602                 set->ops->exit_request(set, flush_rq, hctx_idx);
3603
3604         if (set->ops->exit_hctx)
3605                 set->ops->exit_hctx(hctx, hctx_idx);
3606
3607         blk_mq_remove_cpuhp(hctx);
3608
3609         xa_erase(&q->hctx_table, hctx_idx);
3610
3611         spin_lock(&q->unused_hctx_lock);
3612         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3613         spin_unlock(&q->unused_hctx_lock);
3614 }
3615
3616 static void blk_mq_exit_hw_queues(struct request_queue *q,
3617                 struct blk_mq_tag_set *set, int nr_queue)
3618 {
3619         struct blk_mq_hw_ctx *hctx;
3620         unsigned long i;
3621
3622         queue_for_each_hw_ctx(q, hctx, i) {
3623                 if (i == nr_queue)
3624                         break;
3625                 blk_mq_exit_hctx(q, set, hctx, i);
3626         }
3627 }
3628
3629 static int blk_mq_init_hctx(struct request_queue *q,
3630                 struct blk_mq_tag_set *set,
3631                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3632 {
3633         hctx->queue_num = hctx_idx;
3634
3635         if (!(hctx->flags & BLK_MQ_F_STACKING))
3636                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3637                                 &hctx->cpuhp_online);
3638         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3639
3640         hctx->tags = set->tags[hctx_idx];
3641
3642         if (set->ops->init_hctx &&
3643             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3644                 goto unregister_cpu_notifier;
3645
3646         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3647                                 hctx->numa_node))
3648                 goto exit_hctx;
3649
3650         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3651                 goto exit_flush_rq;
3652
3653         return 0;
3654
3655  exit_flush_rq:
3656         if (set->ops->exit_request)
3657                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3658  exit_hctx:
3659         if (set->ops->exit_hctx)
3660                 set->ops->exit_hctx(hctx, hctx_idx);
3661  unregister_cpu_notifier:
3662         blk_mq_remove_cpuhp(hctx);
3663         return -1;
3664 }
3665
3666 static struct blk_mq_hw_ctx *
3667 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3668                 int node)
3669 {
3670         struct blk_mq_hw_ctx *hctx;
3671         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3672
3673         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3674         if (!hctx)
3675                 goto fail_alloc_hctx;
3676
3677         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3678                 goto free_hctx;
3679
3680         atomic_set(&hctx->nr_active, 0);
3681         if (node == NUMA_NO_NODE)
3682                 node = set->numa_node;
3683         hctx->numa_node = node;
3684
3685         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3686         spin_lock_init(&hctx->lock);
3687         INIT_LIST_HEAD(&hctx->dispatch);
3688         hctx->queue = q;
3689         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3690
3691         INIT_LIST_HEAD(&hctx->hctx_list);
3692
3693         /*
3694          * Allocate space for all possible cpus to avoid allocation at
3695          * runtime
3696          */
3697         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3698                         gfp, node);
3699         if (!hctx->ctxs)
3700                 goto free_cpumask;
3701
3702         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3703                                 gfp, node, false, false))
3704                 goto free_ctxs;
3705         hctx->nr_ctx = 0;
3706
3707         spin_lock_init(&hctx->dispatch_wait_lock);
3708         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3709         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3710
3711         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3712         if (!hctx->fq)
3713                 goto free_bitmap;
3714
3715         blk_mq_hctx_kobj_init(hctx);
3716
3717         return hctx;
3718
3719  free_bitmap:
3720         sbitmap_free(&hctx->ctx_map);
3721  free_ctxs:
3722         kfree(hctx->ctxs);
3723  free_cpumask:
3724         free_cpumask_var(hctx->cpumask);
3725  free_hctx:
3726         kfree(hctx);
3727  fail_alloc_hctx:
3728         return NULL;
3729 }
3730
3731 static void blk_mq_init_cpu_queues(struct request_queue *q,
3732                                    unsigned int nr_hw_queues)
3733 {
3734         struct blk_mq_tag_set *set = q->tag_set;
3735         unsigned int i, j;
3736
3737         for_each_possible_cpu(i) {
3738                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3739                 struct blk_mq_hw_ctx *hctx;
3740                 int k;
3741
3742                 __ctx->cpu = i;
3743                 spin_lock_init(&__ctx->lock);
3744                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3745                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3746
3747                 __ctx->queue = q;
3748
3749                 /*
3750                  * Set local node, IFF we have more than one hw queue. If
3751                  * not, we remain on the home node of the device
3752                  */
3753                 for (j = 0; j < set->nr_maps; j++) {
3754                         hctx = blk_mq_map_queue_type(q, j, i);
3755                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3756                                 hctx->numa_node = cpu_to_node(i);
3757                 }
3758         }
3759 }
3760
3761 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3762                                              unsigned int hctx_idx,
3763                                              unsigned int depth)
3764 {
3765         struct blk_mq_tags *tags;
3766         int ret;
3767
3768         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3769         if (!tags)
3770                 return NULL;
3771
3772         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3773         if (ret) {
3774                 blk_mq_free_rq_map(tags);
3775                 return NULL;
3776         }
3777
3778         return tags;
3779 }
3780
3781 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3782                                        int hctx_idx)
3783 {
3784         if (blk_mq_is_shared_tags(set->flags)) {
3785                 set->tags[hctx_idx] = set->shared_tags;
3786
3787                 return true;
3788         }
3789
3790         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3791                                                        set->queue_depth);
3792
3793         return set->tags[hctx_idx];
3794 }
3795
3796 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3797                              struct blk_mq_tags *tags,
3798                              unsigned int hctx_idx)
3799 {
3800         if (tags) {
3801                 blk_mq_free_rqs(set, tags, hctx_idx);
3802                 blk_mq_free_rq_map(tags);
3803         }
3804 }
3805
3806 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3807                                       unsigned int hctx_idx)
3808 {
3809         if (!blk_mq_is_shared_tags(set->flags))
3810                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3811
3812         set->tags[hctx_idx] = NULL;
3813 }
3814
3815 static void blk_mq_map_swqueue(struct request_queue *q)
3816 {
3817         unsigned int j, hctx_idx;
3818         unsigned long i;
3819         struct blk_mq_hw_ctx *hctx;
3820         struct blk_mq_ctx *ctx;
3821         struct blk_mq_tag_set *set = q->tag_set;
3822
3823         queue_for_each_hw_ctx(q, hctx, i) {
3824                 cpumask_clear(hctx->cpumask);
3825                 hctx->nr_ctx = 0;
3826                 hctx->dispatch_from = NULL;
3827         }
3828
3829         /*
3830          * Map software to hardware queues.
3831          *
3832          * If the cpu isn't present, the cpu is mapped to first hctx.
3833          */
3834         for_each_possible_cpu(i) {
3835
3836                 ctx = per_cpu_ptr(q->queue_ctx, i);
3837                 for (j = 0; j < set->nr_maps; j++) {
3838                         if (!set->map[j].nr_queues) {
3839                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3840                                                 HCTX_TYPE_DEFAULT, i);
3841                                 continue;
3842                         }
3843                         hctx_idx = set->map[j].mq_map[i];
3844                         /* unmapped hw queue can be remapped after CPU topo changed */
3845                         if (!set->tags[hctx_idx] &&
3846                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3847                                 /*
3848                                  * If tags initialization fail for some hctx,
3849                                  * that hctx won't be brought online.  In this
3850                                  * case, remap the current ctx to hctx[0] which
3851                                  * is guaranteed to always have tags allocated
3852                                  */
3853                                 set->map[j].mq_map[i] = 0;
3854                         }
3855
3856                         hctx = blk_mq_map_queue_type(q, j, i);
3857                         ctx->hctxs[j] = hctx;
3858                         /*
3859                          * If the CPU is already set in the mask, then we've
3860                          * mapped this one already. This can happen if
3861                          * devices share queues across queue maps.
3862                          */
3863                         if (cpumask_test_cpu(i, hctx->cpumask))
3864                                 continue;
3865
3866                         cpumask_set_cpu(i, hctx->cpumask);
3867                         hctx->type = j;
3868                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3869                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3870
3871                         /*
3872                          * If the nr_ctx type overflows, we have exceeded the
3873                          * amount of sw queues we can support.
3874                          */
3875                         BUG_ON(!hctx->nr_ctx);
3876                 }
3877
3878                 for (; j < HCTX_MAX_TYPES; j++)
3879                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3880                                         HCTX_TYPE_DEFAULT, i);
3881         }
3882
3883         queue_for_each_hw_ctx(q, hctx, i) {
3884                 /*
3885                  * If no software queues are mapped to this hardware queue,
3886                  * disable it and free the request entries.
3887                  */
3888                 if (!hctx->nr_ctx) {
3889                         /* Never unmap queue 0.  We need it as a
3890                          * fallback in case of a new remap fails
3891                          * allocation
3892                          */
3893                         if (i)
3894                                 __blk_mq_free_map_and_rqs(set, i);
3895
3896                         hctx->tags = NULL;
3897                         continue;
3898                 }
3899
3900                 hctx->tags = set->tags[i];
3901                 WARN_ON(!hctx->tags);
3902
3903                 /*
3904                  * Set the map size to the number of mapped software queues.
3905                  * This is more accurate and more efficient than looping
3906                  * over all possibly mapped software queues.
3907                  */
3908                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3909
3910                 /*
3911                  * Initialize batch roundrobin counts
3912                  */
3913                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3914                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3915         }
3916 }
3917
3918 /*
3919  * Caller needs to ensure that we're either frozen/quiesced, or that
3920  * the queue isn't live yet.
3921  */
3922 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3923 {
3924         struct blk_mq_hw_ctx *hctx;
3925         unsigned long i;
3926
3927         queue_for_each_hw_ctx(q, hctx, i) {
3928                 if (shared) {
3929                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3930                 } else {
3931                         blk_mq_tag_idle(hctx);
3932                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3933                 }
3934         }
3935 }
3936
3937 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3938                                          bool shared)
3939 {
3940         struct request_queue *q;
3941
3942         lockdep_assert_held(&set->tag_list_lock);
3943
3944         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3945                 blk_mq_freeze_queue(q);
3946                 queue_set_hctx_shared(q, shared);
3947                 blk_mq_unfreeze_queue(q);
3948         }
3949 }
3950
3951 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3952 {
3953         struct blk_mq_tag_set *set = q->tag_set;
3954
3955         mutex_lock(&set->tag_list_lock);
3956         list_del(&q->tag_set_list);
3957         if (list_is_singular(&set->tag_list)) {
3958                 /* just transitioned to unshared */
3959                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3960                 /* update existing queue */
3961                 blk_mq_update_tag_set_shared(set, false);
3962         }
3963         mutex_unlock(&set->tag_list_lock);
3964         INIT_LIST_HEAD(&q->tag_set_list);
3965 }
3966
3967 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3968                                      struct request_queue *q)
3969 {
3970         mutex_lock(&set->tag_list_lock);
3971
3972         /*
3973          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3974          */
3975         if (!list_empty(&set->tag_list) &&
3976             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3977                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3978                 /* update existing queue */
3979                 blk_mq_update_tag_set_shared(set, true);
3980         }
3981         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3982                 queue_set_hctx_shared(q, true);
3983         list_add_tail(&q->tag_set_list, &set->tag_list);
3984
3985         mutex_unlock(&set->tag_list_lock);
3986 }
3987
3988 /* All allocations will be freed in release handler of q->mq_kobj */
3989 static int blk_mq_alloc_ctxs(struct request_queue *q)
3990 {
3991         struct blk_mq_ctxs *ctxs;
3992         int cpu;
3993
3994         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3995         if (!ctxs)
3996                 return -ENOMEM;
3997
3998         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3999         if (!ctxs->queue_ctx)
4000                 goto fail;
4001
4002         for_each_possible_cpu(cpu) {
4003                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4004                 ctx->ctxs = ctxs;
4005         }
4006
4007         q->mq_kobj = &ctxs->kobj;
4008         q->queue_ctx = ctxs->queue_ctx;
4009
4010         return 0;
4011  fail:
4012         kfree(ctxs);
4013         return -ENOMEM;
4014 }
4015
4016 /*
4017  * It is the actual release handler for mq, but we do it from
4018  * request queue's release handler for avoiding use-after-free
4019  * and headache because q->mq_kobj shouldn't have been introduced,
4020  * but we can't group ctx/kctx kobj without it.
4021  */
4022 void blk_mq_release(struct request_queue *q)
4023 {
4024         struct blk_mq_hw_ctx *hctx, *next;
4025         unsigned long i;
4026
4027         queue_for_each_hw_ctx(q, hctx, i)
4028                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4029
4030         /* all hctx are in .unused_hctx_list now */
4031         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4032                 list_del_init(&hctx->hctx_list);
4033                 kobject_put(&hctx->kobj);
4034         }
4035
4036         xa_destroy(&q->hctx_table);
4037
4038         /*
4039          * release .mq_kobj and sw queue's kobject now because
4040          * both share lifetime with request queue.
4041          */
4042         blk_mq_sysfs_deinit(q);
4043 }
4044
4045 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4046                 void *queuedata)
4047 {
4048         struct request_queue *q;
4049         int ret;
4050
4051         q = blk_alloc_queue(set->numa_node);
4052         if (!q)
4053                 return ERR_PTR(-ENOMEM);
4054         q->queuedata = queuedata;
4055         ret = blk_mq_init_allocated_queue(set, q);
4056         if (ret) {
4057                 blk_put_queue(q);
4058                 return ERR_PTR(ret);
4059         }
4060         return q;
4061 }
4062
4063 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4064 {
4065         return blk_mq_init_queue_data(set, NULL);
4066 }
4067 EXPORT_SYMBOL(blk_mq_init_queue);
4068
4069 /**
4070  * blk_mq_destroy_queue - shutdown a request queue
4071  * @q: request queue to shutdown
4072  *
4073  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4074  * requests will be failed with -ENODEV. The caller is responsible for dropping
4075  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4076  *
4077  * Context: can sleep
4078  */
4079 void blk_mq_destroy_queue(struct request_queue *q)
4080 {
4081         WARN_ON_ONCE(!queue_is_mq(q));
4082         WARN_ON_ONCE(blk_queue_registered(q));
4083
4084         might_sleep();
4085
4086         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4087         blk_queue_start_drain(q);
4088         blk_mq_freeze_queue_wait(q);
4089
4090         blk_sync_queue(q);
4091         blk_mq_cancel_work_sync(q);
4092         blk_mq_exit_queue(q);
4093 }
4094 EXPORT_SYMBOL(blk_mq_destroy_queue);
4095
4096 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4097                 struct lock_class_key *lkclass)
4098 {
4099         struct request_queue *q;
4100         struct gendisk *disk;
4101
4102         q = blk_mq_init_queue_data(set, queuedata);
4103         if (IS_ERR(q))
4104                 return ERR_CAST(q);
4105
4106         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4107         if (!disk) {
4108                 blk_mq_destroy_queue(q);
4109                 blk_put_queue(q);
4110                 return ERR_PTR(-ENOMEM);
4111         }
4112         set_bit(GD_OWNS_QUEUE, &disk->state);
4113         return disk;
4114 }
4115 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4116
4117 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4118                 struct lock_class_key *lkclass)
4119 {
4120         struct gendisk *disk;
4121
4122         if (!blk_get_queue(q))
4123                 return NULL;
4124         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4125         if (!disk)
4126                 blk_put_queue(q);
4127         return disk;
4128 }
4129 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4130
4131 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4132                 struct blk_mq_tag_set *set, struct request_queue *q,
4133                 int hctx_idx, int node)
4134 {
4135         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4136
4137         /* reuse dead hctx first */
4138         spin_lock(&q->unused_hctx_lock);
4139         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4140                 if (tmp->numa_node == node) {
4141                         hctx = tmp;
4142                         break;
4143                 }
4144         }
4145         if (hctx)
4146                 list_del_init(&hctx->hctx_list);
4147         spin_unlock(&q->unused_hctx_lock);
4148
4149         if (!hctx)
4150                 hctx = blk_mq_alloc_hctx(q, set, node);
4151         if (!hctx)
4152                 goto fail;
4153
4154         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4155                 goto free_hctx;
4156
4157         return hctx;
4158
4159  free_hctx:
4160         kobject_put(&hctx->kobj);
4161  fail:
4162         return NULL;
4163 }
4164
4165 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4166                                                 struct request_queue *q)
4167 {
4168         struct blk_mq_hw_ctx *hctx;
4169         unsigned long i, j;
4170
4171         /* protect against switching io scheduler  */
4172         mutex_lock(&q->sysfs_lock);
4173         for (i = 0; i < set->nr_hw_queues; i++) {
4174                 int old_node;
4175                 int node = blk_mq_get_hctx_node(set, i);
4176                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4177
4178                 if (old_hctx) {
4179                         old_node = old_hctx->numa_node;
4180                         blk_mq_exit_hctx(q, set, old_hctx, i);
4181                 }
4182
4183                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4184                         if (!old_hctx)
4185                                 break;
4186                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4187                                         node, old_node);
4188                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4189                         WARN_ON_ONCE(!hctx);
4190                 }
4191         }
4192         /*
4193          * Increasing nr_hw_queues fails. Free the newly allocated
4194          * hctxs and keep the previous q->nr_hw_queues.
4195          */
4196         if (i != set->nr_hw_queues) {
4197                 j = q->nr_hw_queues;
4198         } else {
4199                 j = i;
4200                 q->nr_hw_queues = set->nr_hw_queues;
4201         }
4202
4203         xa_for_each_start(&q->hctx_table, j, hctx, j)
4204                 blk_mq_exit_hctx(q, set, hctx, j);
4205         mutex_unlock(&q->sysfs_lock);
4206 }
4207
4208 static void blk_mq_update_poll_flag(struct request_queue *q)
4209 {
4210         struct blk_mq_tag_set *set = q->tag_set;
4211
4212         if (set->nr_maps > HCTX_TYPE_POLL &&
4213             set->map[HCTX_TYPE_POLL].nr_queues)
4214                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4215         else
4216                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4217 }
4218
4219 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4220                 struct request_queue *q)
4221 {
4222         /* mark the queue as mq asap */
4223         q->mq_ops = set->ops;
4224
4225         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4226                                              blk_mq_poll_stats_bkt,
4227                                              BLK_MQ_POLL_STATS_BKTS, q);
4228         if (!q->poll_cb)
4229                 goto err_exit;
4230
4231         if (blk_mq_alloc_ctxs(q))
4232                 goto err_poll;
4233
4234         /* init q->mq_kobj and sw queues' kobjects */
4235         blk_mq_sysfs_init(q);
4236
4237         INIT_LIST_HEAD(&q->unused_hctx_list);
4238         spin_lock_init(&q->unused_hctx_lock);
4239
4240         xa_init(&q->hctx_table);
4241
4242         blk_mq_realloc_hw_ctxs(set, q);
4243         if (!q->nr_hw_queues)
4244                 goto err_hctxs;
4245
4246         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4247         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4248
4249         q->tag_set = set;
4250
4251         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4252         blk_mq_update_poll_flag(q);
4253
4254         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4255         INIT_LIST_HEAD(&q->requeue_list);
4256         spin_lock_init(&q->requeue_lock);
4257
4258         q->nr_requests = set->queue_depth;
4259
4260         /*
4261          * Default to classic polling
4262          */
4263         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4264
4265         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4266         blk_mq_add_queue_tag_set(set, q);
4267         blk_mq_map_swqueue(q);
4268         return 0;
4269
4270 err_hctxs:
4271         blk_mq_release(q);
4272 err_poll:
4273         blk_stat_free_callback(q->poll_cb);
4274         q->poll_cb = NULL;
4275 err_exit:
4276         q->mq_ops = NULL;
4277         return -ENOMEM;
4278 }
4279 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4280
4281 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4282 void blk_mq_exit_queue(struct request_queue *q)
4283 {
4284         struct blk_mq_tag_set *set = q->tag_set;
4285
4286         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4287         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4288         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4289         blk_mq_del_queue_tag_set(q);
4290 }
4291
4292 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4293 {
4294         int i;
4295
4296         if (blk_mq_is_shared_tags(set->flags)) {
4297                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4298                                                 BLK_MQ_NO_HCTX_IDX,
4299                                                 set->queue_depth);
4300                 if (!set->shared_tags)
4301                         return -ENOMEM;
4302         }
4303
4304         for (i = 0; i < set->nr_hw_queues; i++) {
4305                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4306                         goto out_unwind;
4307                 cond_resched();
4308         }
4309
4310         return 0;
4311
4312 out_unwind:
4313         while (--i >= 0)
4314                 __blk_mq_free_map_and_rqs(set, i);
4315
4316         if (blk_mq_is_shared_tags(set->flags)) {
4317                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4318                                         BLK_MQ_NO_HCTX_IDX);
4319         }
4320
4321         return -ENOMEM;
4322 }
4323
4324 /*
4325  * Allocate the request maps associated with this tag_set. Note that this
4326  * may reduce the depth asked for, if memory is tight. set->queue_depth
4327  * will be updated to reflect the allocated depth.
4328  */
4329 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4330 {
4331         unsigned int depth;
4332         int err;
4333
4334         depth = set->queue_depth;
4335         do {
4336                 err = __blk_mq_alloc_rq_maps(set);
4337                 if (!err)
4338                         break;
4339
4340                 set->queue_depth >>= 1;
4341                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4342                         err = -ENOMEM;
4343                         break;
4344                 }
4345         } while (set->queue_depth);
4346
4347         if (!set->queue_depth || err) {
4348                 pr_err("blk-mq: failed to allocate request map\n");
4349                 return -ENOMEM;
4350         }
4351
4352         if (depth != set->queue_depth)
4353                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4354                                                 depth, set->queue_depth);
4355
4356         return 0;
4357 }
4358
4359 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4360 {
4361         /*
4362          * blk_mq_map_queues() and multiple .map_queues() implementations
4363          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4364          * number of hardware queues.
4365          */
4366         if (set->nr_maps == 1)
4367                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4368
4369         if (set->ops->map_queues && !is_kdump_kernel()) {
4370                 int i;
4371
4372                 /*
4373                  * transport .map_queues is usually done in the following
4374                  * way:
4375                  *
4376                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4377                  *      mask = get_cpu_mask(queue)
4378                  *      for_each_cpu(cpu, mask)
4379                  *              set->map[x].mq_map[cpu] = queue;
4380                  * }
4381                  *
4382                  * When we need to remap, the table has to be cleared for
4383                  * killing stale mapping since one CPU may not be mapped
4384                  * to any hw queue.
4385                  */
4386                 for (i = 0; i < set->nr_maps; i++)
4387                         blk_mq_clear_mq_map(&set->map[i]);
4388
4389                 set->ops->map_queues(set);
4390         } else {
4391                 BUG_ON(set->nr_maps > 1);
4392                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4393         }
4394 }
4395
4396 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4397                                        int new_nr_hw_queues)
4398 {
4399         struct blk_mq_tags **new_tags;
4400
4401         if (set->nr_hw_queues >= new_nr_hw_queues)
4402                 goto done;
4403
4404         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4405                                 GFP_KERNEL, set->numa_node);
4406         if (!new_tags)
4407                 return -ENOMEM;
4408
4409         if (set->tags)
4410                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4411                        sizeof(*set->tags));
4412         kfree(set->tags);
4413         set->tags = new_tags;
4414 done:
4415         set->nr_hw_queues = new_nr_hw_queues;
4416         return 0;
4417 }
4418
4419 /*
4420  * Alloc a tag set to be associated with one or more request queues.
4421  * May fail with EINVAL for various error conditions. May adjust the
4422  * requested depth down, if it's too large. In that case, the set
4423  * value will be stored in set->queue_depth.
4424  */
4425 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4426 {
4427         int i, ret;
4428
4429         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4430
4431         if (!set->nr_hw_queues)
4432                 return -EINVAL;
4433         if (!set->queue_depth)
4434                 return -EINVAL;
4435         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4436                 return -EINVAL;
4437
4438         if (!set->ops->queue_rq)
4439                 return -EINVAL;
4440
4441         if (!set->ops->get_budget ^ !set->ops->put_budget)
4442                 return -EINVAL;
4443
4444         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4445                 pr_info("blk-mq: reduced tag depth to %u\n",
4446                         BLK_MQ_MAX_DEPTH);
4447                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4448         }
4449
4450         if (!set->nr_maps)
4451                 set->nr_maps = 1;
4452         else if (set->nr_maps > HCTX_MAX_TYPES)
4453                 return -EINVAL;
4454
4455         /*
4456          * If a crashdump is active, then we are potentially in a very
4457          * memory constrained environment. Limit us to 1 queue and
4458          * 64 tags to prevent using too much memory.
4459          */
4460         if (is_kdump_kernel()) {
4461                 set->nr_hw_queues = 1;
4462                 set->nr_maps = 1;
4463                 set->queue_depth = min(64U, set->queue_depth);
4464         }
4465         /*
4466          * There is no use for more h/w queues than cpus if we just have
4467          * a single map
4468          */
4469         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4470                 set->nr_hw_queues = nr_cpu_ids;
4471
4472         if (set->flags & BLK_MQ_F_BLOCKING) {
4473                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4474                 if (!set->srcu)
4475                         return -ENOMEM;
4476                 ret = init_srcu_struct(set->srcu);
4477                 if (ret)
4478                         goto out_free_srcu;
4479         }
4480
4481         ret = -ENOMEM;
4482         set->tags = kcalloc_node(set->nr_hw_queues,
4483                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4484                                  set->numa_node);
4485         if (!set->tags)
4486                 goto out_cleanup_srcu;
4487
4488         for (i = 0; i < set->nr_maps; i++) {
4489                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4490                                                   sizeof(set->map[i].mq_map[0]),
4491                                                   GFP_KERNEL, set->numa_node);
4492                 if (!set->map[i].mq_map)
4493                         goto out_free_mq_map;
4494                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4495         }
4496
4497         blk_mq_update_queue_map(set);
4498
4499         ret = blk_mq_alloc_set_map_and_rqs(set);
4500         if (ret)
4501                 goto out_free_mq_map;
4502
4503         mutex_init(&set->tag_list_lock);
4504         INIT_LIST_HEAD(&set->tag_list);
4505
4506         return 0;
4507
4508 out_free_mq_map:
4509         for (i = 0; i < set->nr_maps; i++) {
4510                 kfree(set->map[i].mq_map);
4511                 set->map[i].mq_map = NULL;
4512         }
4513         kfree(set->tags);
4514         set->tags = NULL;
4515 out_cleanup_srcu:
4516         if (set->flags & BLK_MQ_F_BLOCKING)
4517                 cleanup_srcu_struct(set->srcu);
4518 out_free_srcu:
4519         if (set->flags & BLK_MQ_F_BLOCKING)
4520                 kfree(set->srcu);
4521         return ret;
4522 }
4523 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4524
4525 /* allocate and initialize a tagset for a simple single-queue device */
4526 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4527                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4528                 unsigned int set_flags)
4529 {
4530         memset(set, 0, sizeof(*set));
4531         set->ops = ops;
4532         set->nr_hw_queues = 1;
4533         set->nr_maps = 1;
4534         set->queue_depth = queue_depth;
4535         set->numa_node = NUMA_NO_NODE;
4536         set->flags = set_flags;
4537         return blk_mq_alloc_tag_set(set);
4538 }
4539 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4540
4541 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4542 {
4543         int i, j;
4544
4545         for (i = 0; i < set->nr_hw_queues; i++)
4546                 __blk_mq_free_map_and_rqs(set, i);
4547
4548         if (blk_mq_is_shared_tags(set->flags)) {
4549                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4550                                         BLK_MQ_NO_HCTX_IDX);
4551         }
4552
4553         for (j = 0; j < set->nr_maps; j++) {
4554                 kfree(set->map[j].mq_map);
4555                 set->map[j].mq_map = NULL;
4556         }
4557
4558         kfree(set->tags);
4559         set->tags = NULL;
4560         if (set->flags & BLK_MQ_F_BLOCKING) {
4561                 cleanup_srcu_struct(set->srcu);
4562                 kfree(set->srcu);
4563         }
4564 }
4565 EXPORT_SYMBOL(blk_mq_free_tag_set);
4566
4567 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4568 {
4569         struct blk_mq_tag_set *set = q->tag_set;
4570         struct blk_mq_hw_ctx *hctx;
4571         int ret;
4572         unsigned long i;
4573
4574         if (!set)
4575                 return -EINVAL;
4576
4577         if (q->nr_requests == nr)
4578                 return 0;
4579
4580         blk_mq_freeze_queue(q);
4581         blk_mq_quiesce_queue(q);
4582
4583         ret = 0;
4584         queue_for_each_hw_ctx(q, hctx, i) {
4585                 if (!hctx->tags)
4586                         continue;
4587                 /*
4588                  * If we're using an MQ scheduler, just update the scheduler
4589                  * queue depth. This is similar to what the old code would do.
4590                  */
4591                 if (hctx->sched_tags) {
4592                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4593                                                       nr, true);
4594                 } else {
4595                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4596                                                       false);
4597                 }
4598                 if (ret)
4599                         break;
4600                 if (q->elevator && q->elevator->type->ops.depth_updated)
4601                         q->elevator->type->ops.depth_updated(hctx);
4602         }
4603         if (!ret) {
4604                 q->nr_requests = nr;
4605                 if (blk_mq_is_shared_tags(set->flags)) {
4606                         if (q->elevator)
4607                                 blk_mq_tag_update_sched_shared_tags(q);
4608                         else
4609                                 blk_mq_tag_resize_shared_tags(set, nr);
4610                 }
4611         }
4612
4613         blk_mq_unquiesce_queue(q);
4614         blk_mq_unfreeze_queue(q);
4615
4616         return ret;
4617 }
4618
4619 /*
4620  * request_queue and elevator_type pair.
4621  * It is just used by __blk_mq_update_nr_hw_queues to cache
4622  * the elevator_type associated with a request_queue.
4623  */
4624 struct blk_mq_qe_pair {
4625         struct list_head node;
4626         struct request_queue *q;
4627         struct elevator_type *type;
4628 };
4629
4630 /*
4631  * Cache the elevator_type in qe pair list and switch the
4632  * io scheduler to 'none'
4633  */
4634 static bool blk_mq_elv_switch_none(struct list_head *head,
4635                 struct request_queue *q)
4636 {
4637         struct blk_mq_qe_pair *qe;
4638
4639         if (!q->elevator)
4640                 return true;
4641
4642         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4643         if (!qe)
4644                 return false;
4645
4646         /* q->elevator needs protection from ->sysfs_lock */
4647         mutex_lock(&q->sysfs_lock);
4648
4649         INIT_LIST_HEAD(&qe->node);
4650         qe->q = q;
4651         qe->type = q->elevator->type;
4652         /* keep a reference to the elevator module as we'll switch back */
4653         __elevator_get(qe->type);
4654         list_add(&qe->node, head);
4655         elevator_disable(q);
4656         mutex_unlock(&q->sysfs_lock);
4657
4658         return true;
4659 }
4660
4661 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4662                                                 struct request_queue *q)
4663 {
4664         struct blk_mq_qe_pair *qe;
4665
4666         list_for_each_entry(qe, head, node)
4667                 if (qe->q == q)
4668                         return qe;
4669
4670         return NULL;
4671 }
4672
4673 static void blk_mq_elv_switch_back(struct list_head *head,
4674                                   struct request_queue *q)
4675 {
4676         struct blk_mq_qe_pair *qe;
4677         struct elevator_type *t;
4678
4679         qe = blk_lookup_qe_pair(head, q);
4680         if (!qe)
4681                 return;
4682         t = qe->type;
4683         list_del(&qe->node);
4684         kfree(qe);
4685
4686         mutex_lock(&q->sysfs_lock);
4687         elevator_switch(q, t);
4688         /* drop the reference acquired in blk_mq_elv_switch_none */
4689         elevator_put(t);
4690         mutex_unlock(&q->sysfs_lock);
4691 }
4692
4693 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4694                                                         int nr_hw_queues)
4695 {
4696         struct request_queue *q;
4697         LIST_HEAD(head);
4698         int prev_nr_hw_queues;
4699
4700         lockdep_assert_held(&set->tag_list_lock);
4701
4702         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4703                 nr_hw_queues = nr_cpu_ids;
4704         if (nr_hw_queues < 1)
4705                 return;
4706         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4707                 return;
4708
4709         list_for_each_entry(q, &set->tag_list, tag_set_list)
4710                 blk_mq_freeze_queue(q);
4711         /*
4712          * Switch IO scheduler to 'none', cleaning up the data associated
4713          * with the previous scheduler. We will switch back once we are done
4714          * updating the new sw to hw queue mappings.
4715          */
4716         list_for_each_entry(q, &set->tag_list, tag_set_list)
4717                 if (!blk_mq_elv_switch_none(&head, q))
4718                         goto switch_back;
4719
4720         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4721                 blk_mq_debugfs_unregister_hctxs(q);
4722                 blk_mq_sysfs_unregister_hctxs(q);
4723         }
4724
4725         prev_nr_hw_queues = set->nr_hw_queues;
4726         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4727                 goto reregister;
4728
4729 fallback:
4730         blk_mq_update_queue_map(set);
4731         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4732                 blk_mq_realloc_hw_ctxs(set, q);
4733                 blk_mq_update_poll_flag(q);
4734                 if (q->nr_hw_queues != set->nr_hw_queues) {
4735                         int i = prev_nr_hw_queues;
4736
4737                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4738                                         nr_hw_queues, prev_nr_hw_queues);
4739                         for (; i < set->nr_hw_queues; i++)
4740                                 __blk_mq_free_map_and_rqs(set, i);
4741
4742                         set->nr_hw_queues = prev_nr_hw_queues;
4743                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4744                         goto fallback;
4745                 }
4746                 blk_mq_map_swqueue(q);
4747         }
4748
4749 reregister:
4750         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4751                 blk_mq_sysfs_register_hctxs(q);
4752                 blk_mq_debugfs_register_hctxs(q);
4753         }
4754
4755 switch_back:
4756         list_for_each_entry(q, &set->tag_list, tag_set_list)
4757                 blk_mq_elv_switch_back(&head, q);
4758
4759         list_for_each_entry(q, &set->tag_list, tag_set_list)
4760                 blk_mq_unfreeze_queue(q);
4761 }
4762
4763 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4764 {
4765         mutex_lock(&set->tag_list_lock);
4766         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4767         mutex_unlock(&set->tag_list_lock);
4768 }
4769 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4770
4771 /* Enable polling stats and return whether they were already enabled. */
4772 static bool blk_poll_stats_enable(struct request_queue *q)
4773 {
4774         if (q->poll_stat)
4775                 return true;
4776
4777         return blk_stats_alloc_enable(q);
4778 }
4779
4780 static void blk_mq_poll_stats_start(struct request_queue *q)
4781 {
4782         /*
4783          * We don't arm the callback if polling stats are not enabled or the
4784          * callback is already active.
4785          */
4786         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4787                 return;
4788
4789         blk_stat_activate_msecs(q->poll_cb, 100);
4790 }
4791
4792 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4793 {
4794         struct request_queue *q = cb->data;
4795         int bucket;
4796
4797         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4798                 if (cb->stat[bucket].nr_samples)
4799                         q->poll_stat[bucket] = cb->stat[bucket];
4800         }
4801 }
4802
4803 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4804                                        struct request *rq)
4805 {
4806         unsigned long ret = 0;
4807         int bucket;
4808
4809         /*
4810          * If stats collection isn't on, don't sleep but turn it on for
4811          * future users
4812          */
4813         if (!blk_poll_stats_enable(q))
4814                 return 0;
4815
4816         /*
4817          * As an optimistic guess, use half of the mean service time
4818          * for this type of request. We can (and should) make this smarter.
4819          * For instance, if the completion latencies are tight, we can
4820          * get closer than just half the mean. This is especially
4821          * important on devices where the completion latencies are longer
4822          * than ~10 usec. We do use the stats for the relevant IO size
4823          * if available which does lead to better estimates.
4824          */
4825         bucket = blk_mq_poll_stats_bkt(rq);
4826         if (bucket < 0)
4827                 return ret;
4828
4829         if (q->poll_stat[bucket].nr_samples)
4830                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4831
4832         return ret;
4833 }
4834
4835 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4836 {
4837         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4838         struct request *rq = blk_qc_to_rq(hctx, qc);
4839         struct hrtimer_sleeper hs;
4840         enum hrtimer_mode mode;
4841         unsigned int nsecs;
4842         ktime_t kt;
4843
4844         /*
4845          * If a request has completed on queue that uses an I/O scheduler, we
4846          * won't get back a request from blk_qc_to_rq.
4847          */
4848         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4849                 return false;
4850
4851         /*
4852          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4853          *
4854          *  0:  use half of prev avg
4855          * >0:  use this specific value
4856          */
4857         if (q->poll_nsec > 0)
4858                 nsecs = q->poll_nsec;
4859         else
4860                 nsecs = blk_mq_poll_nsecs(q, rq);
4861
4862         if (!nsecs)
4863                 return false;
4864
4865         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4866
4867         /*
4868          * This will be replaced with the stats tracking code, using
4869          * 'avg_completion_time / 2' as the pre-sleep target.
4870          */
4871         kt = nsecs;
4872
4873         mode = HRTIMER_MODE_REL;
4874         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4875         hrtimer_set_expires(&hs.timer, kt);
4876
4877         do {
4878                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4879                         break;
4880                 set_current_state(TASK_UNINTERRUPTIBLE);
4881                 hrtimer_sleeper_start_expires(&hs, mode);
4882                 if (hs.task)
4883                         io_schedule();
4884                 hrtimer_cancel(&hs.timer);
4885                 mode = HRTIMER_MODE_ABS;
4886         } while (hs.task && !signal_pending(current));
4887
4888         __set_current_state(TASK_RUNNING);
4889         destroy_hrtimer_on_stack(&hs.timer);
4890
4891         /*
4892          * If we sleep, have the caller restart the poll loop to reset the
4893          * state.  Like for the other success return cases, the caller is
4894          * responsible for checking if the IO completed.  If the IO isn't
4895          * complete, we'll get called again and will go straight to the busy
4896          * poll loop.
4897          */
4898         return true;
4899 }
4900
4901 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4902                                struct io_comp_batch *iob, unsigned int flags)
4903 {
4904         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4905         long state = get_current_state();
4906         int ret;
4907
4908         do {
4909                 ret = q->mq_ops->poll(hctx, iob);
4910                 if (ret > 0) {
4911                         __set_current_state(TASK_RUNNING);
4912                         return ret;
4913                 }
4914
4915                 if (signal_pending_state(state, current))
4916                         __set_current_state(TASK_RUNNING);
4917                 if (task_is_running(current))
4918                         return 1;
4919
4920                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4921                         break;
4922                 cpu_relax();
4923         } while (!need_resched());
4924
4925         __set_current_state(TASK_RUNNING);
4926         return 0;
4927 }
4928
4929 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4930                 unsigned int flags)
4931 {
4932         if (!(flags & BLK_POLL_NOSLEEP) &&
4933             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4934                 if (blk_mq_poll_hybrid(q, cookie))
4935                         return 1;
4936         }
4937         return blk_mq_poll_classic(q, cookie, iob, flags);
4938 }
4939
4940 unsigned int blk_mq_rq_cpu(struct request *rq)
4941 {
4942         return rq->mq_ctx->cpu;
4943 }
4944 EXPORT_SYMBOL(blk_mq_rq_cpu);
4945
4946 void blk_mq_cancel_work_sync(struct request_queue *q)
4947 {
4948         struct blk_mq_hw_ctx *hctx;
4949         unsigned long i;
4950
4951         cancel_delayed_work_sync(&q->requeue_work);
4952
4953         queue_for_each_hw_ctx(q, hctx, i)
4954                 cancel_delayed_work_sync(&hctx->run_work);
4955 }
4956
4957 static int __init blk_mq_init(void)
4958 {
4959         int i;
4960
4961         for_each_possible_cpu(i)
4962                 init_llist_head(&per_cpu(blk_cpu_done, i));
4963         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4964
4965         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4966                                   "block/softirq:dead", NULL,
4967                                   blk_softirq_cpu_dead);
4968         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4969                                 blk_mq_hctx_notify_dead);
4970         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4971                                 blk_mq_hctx_notify_online,
4972                                 blk_mq_hctx_notify_offline);
4973         return 0;
4974 }
4975 subsys_initcall(blk_mq_init);