blk-mq: improve the blk_mq_init_allocated_queue interface
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush/passthrough requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     !blk_op_is_passthrough(data->cmd_flags) &&
370                     e->type->ops.limit_depth &&
371                     !(data->flags & BLK_MQ_REQ_RESERVED))
372                         e->type->ops.limit_depth(data->cmd_flags, data);
373         }
374
375 retry:
376         data->ctx = blk_mq_get_ctx(q);
377         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378         if (!e)
379                 blk_mq_tag_busy(data->hctx);
380
381         /*
382          * Waiting allocations only fail because of an inactive hctx.  In that
383          * case just retry the hctx assignment and tag allocation as CPU hotplug
384          * should have migrated us to an online CPU by now.
385          */
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_NO_TAG) {
388                 if (data->flags & BLK_MQ_REQ_NOWAIT)
389                         return NULL;
390
391                 /*
392                  * Give up the CPU and sleep for a random short time to ensure
393                  * that thread using a realtime scheduling class are migrated
394                  * off the CPU, and thus off the hctx that is going away.
395                  */
396                 msleep(3);
397                 goto retry;
398         }
399         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403                 blk_mq_req_flags_t flags)
404 {
405         struct blk_mq_alloc_data data = {
406                 .q              = q,
407                 .flags          = flags,
408                 .cmd_flags      = op,
409         };
410         struct request *rq;
411         int ret;
412
413         ret = blk_queue_enter(q, flags);
414         if (ret)
415                 return ERR_PTR(ret);
416
417         rq = __blk_mq_alloc_request(&data);
418         if (!rq)
419                 goto out_queue_exit;
420         rq->__data_len = 0;
421         rq->__sector = (sector_t) -1;
422         rq->bio = rq->biotail = NULL;
423         return rq;
424 out_queue_exit:
425         blk_queue_exit(q);
426         return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433         struct blk_mq_alloc_data data = {
434                 .q              = q,
435                 .flags          = flags,
436                 .cmd_flags      = op,
437         };
438         u64 alloc_time_ns = 0;
439         unsigned int cpu;
440         unsigned int tag;
441         int ret;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         /*
448          * If the tag allocator sleeps we could get an allocation for a
449          * different hardware context.  No need to complicate the low level
450          * allocator for this for the rare use case of a command tied to
451          * a specific queue.
452          */
453         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454                 return ERR_PTR(-EINVAL);
455
456         if (hctx_idx >= q->nr_hw_queues)
457                 return ERR_PTR(-EIO);
458
459         ret = blk_queue_enter(q, flags);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         /*
464          * Check if the hardware context is actually mapped to anything.
465          * If not tell the caller that it should skip this queue.
466          */
467         ret = -EXDEV;
468         data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(data.hctx))
470                 goto out_queue_exit;
471         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472         data.ctx = __blk_mq_get_ctx(q, cpu);
473
474         if (!q->elevator)
475                 blk_mq_tag_busy(data.hctx);
476
477         ret = -EWOULDBLOCK;
478         tag = blk_mq_get_tag(&data);
479         if (tag == BLK_MQ_NO_TAG)
480                 goto out_queue_exit;
481         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484         blk_queue_exit(q);
485         return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491         struct request_queue *q = rq->q;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494         const int sched_tag = rq->internal_tag;
495
496         blk_crypto_free_request(rq);
497         blk_pm_mark_last_busy(rq);
498         rq->mq_hctx = NULL;
499         if (rq->tag != BLK_MQ_NO_TAG)
500                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501         if (sched_tag != BLK_MQ_NO_TAG)
502                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503         blk_mq_sched_restart(hctx);
504         blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509         struct request_queue *q = rq->q;
510         struct elevator_queue *e = q->elevator;
511         struct blk_mq_ctx *ctx = rq->mq_ctx;
512         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514         if (rq->rq_flags & RQF_ELVPRIV) {
515                 if (e && e->type->ops.finish_request)
516                         e->type->ops.finish_request(rq);
517                 if (rq->elv.icq) {
518                         put_io_context(rq->elv.icq->ioc);
519                         rq->elv.icq = NULL;
520                 }
521         }
522
523         ctx->rq_completed[rq_is_sync(rq)]++;
524         if (rq->rq_flags & RQF_MQ_INFLIGHT)
525                 __blk_mq_dec_active_requests(hctx);
526
527         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528                 laptop_io_completion(q->backing_dev_info);
529
530         rq_qos_done(q, rq);
531
532         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533         if (refcount_dec_and_test(&rq->ref))
534                 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         u64 now = 0;
541
542         if (blk_mq_need_time_stamp(rq))
543                 now = ktime_get_ns();
544
545         if (rq->rq_flags & RQF_STATS) {
546                 blk_mq_poll_stats_start(rq->q);
547                 blk_stat_add(rq, now);
548         }
549
550         blk_mq_sched_completed_request(rq, now);
551
552         blk_account_io_done(rq, now);
553
554         if (rq->end_io) {
555                 rq_qos_done(rq->q, rq);
556                 rq->end_io(rq, error);
557         } else {
558                 blk_mq_free_request(rq);
559         }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566                 BUG();
567         __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574         struct request *rq, *next;
575
576         llist_for_each_entry_safe(rq, next, entry, ipi_list)
577                 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588         return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598         int cpu = raw_smp_processor_id();
599
600         if (!IS_ENABLED(CONFIG_SMP) ||
601             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602                 return false;
603         /*
604          * With force threaded interrupts enabled, raising softirq from an SMP
605          * function call will always result in waking the ksoftirqd thread.
606          * This is probably worse than completing the request on a different
607          * cache domain.
608          */
609         if (force_irqthreads)
610                 return false;
611
612         /* same CPU or cache domain?  Complete locally */
613         if (cpu == rq->mq_ctx->cpu ||
614             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616                 return false;
617
618         /* don't try to IPI to an offline CPU */
619         return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624         struct llist_head *list;
625         unsigned int cpu;
626
627         cpu = rq->mq_ctx->cpu;
628         list = &per_cpu(blk_cpu_done, cpu);
629         if (llist_add(&rq->ipi_list, list)) {
630                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631                 smp_call_function_single_async(cpu, &rq->csd);
632         }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637         struct llist_head *list;
638
639         preempt_disable();
640         list = this_cpu_ptr(&blk_cpu_done);
641         if (llist_add(&rq->ipi_list, list))
642                 raise_softirq(BLOCK_SOFTIRQ);
643         preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650         /*
651          * For a polled request, always complete locallly, it's pointless
652          * to redirect the completion.
653          */
654         if (rq->cmd_flags & REQ_HIPRI)
655                 return false;
656
657         if (blk_mq_complete_need_ipi(rq)) {
658                 blk_mq_complete_send_ipi(rq);
659                 return true;
660         }
661
662         if (rq->q->nr_hw_queues == 1) {
663                 blk_mq_raise_softirq(rq);
664                 return true;
665         }
666         return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:         the request being processed
673  *
674  * Description:
675  *      Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679         if (!blk_mq_complete_request_remote(rq))
680                 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685         __releases(hctx->srcu)
686 {
687         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688                 rcu_read_unlock();
689         else
690                 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694         __acquires(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697                 /* shut up gcc false positive */
698                 *srcu_idx = 0;
699                 rcu_read_lock();
700         } else
701                 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714         struct request_queue *q = rq->q;
715
716         trace_block_rq_issue(rq);
717
718         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719                 rq->io_start_time_ns = ktime_get_ns();
720                 rq->stats_sectors = blk_rq_sectors(rq);
721                 rq->rq_flags |= RQF_STATS;
722                 rq_qos_issue(q, rq);
723         }
724
725         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727         blk_add_timer(rq);
728         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732                 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739         struct request_queue *q = rq->q;
740
741         blk_mq_put_driver_tag(rq);
742
743         trace_block_rq_requeue(rq);
744         rq_qos_requeue(q, rq);
745
746         if (blk_mq_request_started(rq)) {
747                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748                 rq->rq_flags &= ~RQF_TIMED_OUT;
749         }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754         __blk_mq_requeue_request(rq);
755
756         /* this request will be re-inserted to io scheduler queue */
757         blk_mq_sched_requeue_request(rq);
758
759         BUG_ON(!list_empty(&rq->queuelist));
760         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766         struct request_queue *q =
767                 container_of(work, struct request_queue, requeue_work.work);
768         LIST_HEAD(rq_list);
769         struct request *rq, *next;
770
771         spin_lock_irq(&q->requeue_lock);
772         list_splice_init(&q->requeue_list, &rq_list);
773         spin_unlock_irq(&q->requeue_lock);
774
775         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777                         continue;
778
779                 rq->rq_flags &= ~RQF_SOFTBARRIER;
780                 list_del_init(&rq->queuelist);
781                 /*
782                  * If RQF_DONTPREP, rq has contained some driver specific
783                  * data, so insert it to hctx dispatch list to avoid any
784                  * merge.
785                  */
786                 if (rq->rq_flags & RQF_DONTPREP)
787                         blk_mq_request_bypass_insert(rq, false, false);
788                 else
789                         blk_mq_sched_insert_request(rq, true, false, false);
790         }
791
792         while (!list_empty(&rq_list)) {
793                 rq = list_entry(rq_list.next, struct request, queuelist);
794                 list_del_init(&rq->queuelist);
795                 blk_mq_sched_insert_request(rq, false, false, false);
796         }
797
798         blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802                                 bool kick_requeue_list)
803 {
804         struct request_queue *q = rq->q;
805         unsigned long flags;
806
807         /*
808          * We abuse this flag that is otherwise used by the I/O scheduler to
809          * request head insertion from the workqueue.
810          */
811         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813         spin_lock_irqsave(&q->requeue_lock, flags);
814         if (at_head) {
815                 rq->rq_flags |= RQF_SOFTBARRIER;
816                 list_add(&rq->queuelist, &q->requeue_list);
817         } else {
818                 list_add_tail(&rq->queuelist, &q->requeue_list);
819         }
820         spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822         if (kick_requeue_list)
823                 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833                                     unsigned long msecs)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836                                     msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842         if (tag < tags->nr_tags) {
843                 prefetch(tags->rqs[tag]);
844                 return tags->rqs[tag];
845         }
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852                                void *priv, bool reserved)
853 {
854         /*
855          * If we find a request that isn't idle and the queue matches,
856          * we know the queue is busy. Return false to stop the iteration.
857          */
858         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859                 bool *busy = priv;
860
861                 *busy = true;
862                 return false;
863         }
864
865         return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870         bool busy = false;
871
872         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873         return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879         req->rq_flags |= RQF_TIMED_OUT;
880         if (req->q->mq_ops->timeout) {
881                 enum blk_eh_timer_return ret;
882
883                 ret = req->q->mq_ops->timeout(req, reserved);
884                 if (ret == BLK_EH_DONE)
885                         return;
886                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887         }
888
889         blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894         unsigned long deadline;
895
896         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897                 return false;
898         if (rq->rq_flags & RQF_TIMED_OUT)
899                 return false;
900
901         deadline = READ_ONCE(rq->deadline);
902         if (time_after_eq(jiffies, deadline))
903                 return true;
904
905         if (*next == 0)
906                 *next = deadline;
907         else if (time_after(*next, deadline))
908                 *next = deadline;
909         return false;
910 }
911
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914         if (is_flush_rq(rq, rq->mq_hctx))
915                 rq->end_io(rq, 0);
916         else if (refcount_dec_and_test(&rq->ref))
917                 __blk_mq_free_request(rq);
918 }
919
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921                 struct request *rq, void *priv, bool reserved)
922 {
923         unsigned long *next = priv;
924
925         /*
926          * Just do a quick check if it is expired before locking the request in
927          * so we're not unnecessarilly synchronizing across CPUs.
928          */
929         if (!blk_mq_req_expired(rq, next))
930                 return true;
931
932         /*
933          * We have reason to believe the request may be expired. Take a
934          * reference on the request to lock this request lifetime into its
935          * currently allocated context to prevent it from being reallocated in
936          * the event the completion by-passes this timeout handler.
937          *
938          * If the reference was already released, then the driver beat the
939          * timeout handler to posting a natural completion.
940          */
941         if (!refcount_inc_not_zero(&rq->ref))
942                 return true;
943
944         /*
945          * The request is now locked and cannot be reallocated underneath the
946          * timeout handler's processing. Re-verify this exact request is truly
947          * expired; if it is not expired, then the request was completed and
948          * reallocated as a new request.
949          */
950         if (blk_mq_req_expired(rq, next))
951                 blk_mq_rq_timed_out(rq, reserved);
952
953         blk_mq_put_rq_ref(rq);
954         return true;
955 }
956
957 static void blk_mq_timeout_work(struct work_struct *work)
958 {
959         struct request_queue *q =
960                 container_of(work, struct request_queue, timeout_work);
961         unsigned long next = 0;
962         struct blk_mq_hw_ctx *hctx;
963         int i;
964
965         /* A deadlock might occur if a request is stuck requiring a
966          * timeout at the same time a queue freeze is waiting
967          * completion, since the timeout code would not be able to
968          * acquire the queue reference here.
969          *
970          * That's why we don't use blk_queue_enter here; instead, we use
971          * percpu_ref_tryget directly, because we need to be able to
972          * obtain a reference even in the short window between the queue
973          * starting to freeze, by dropping the first reference in
974          * blk_freeze_queue_start, and the moment the last request is
975          * consumed, marked by the instant q_usage_counter reaches
976          * zero.
977          */
978         if (!percpu_ref_tryget(&q->q_usage_counter))
979                 return;
980
981         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
982
983         if (next != 0) {
984                 mod_timer(&q->timeout, next);
985         } else {
986                 /*
987                  * Request timeouts are handled as a forward rolling timer. If
988                  * we end up here it means that no requests are pending and
989                  * also that no request has been pending for a while. Mark
990                  * each hctx as idle.
991                  */
992                 queue_for_each_hw_ctx(q, hctx, i) {
993                         /* the hctx may be unmapped, so check it here */
994                         if (blk_mq_hw_queue_mapped(hctx))
995                                 blk_mq_tag_idle(hctx);
996                 }
997         }
998         blk_queue_exit(q);
999 }
1000
1001 struct flush_busy_ctx_data {
1002         struct blk_mq_hw_ctx *hctx;
1003         struct list_head *list;
1004 };
1005
1006 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1007 {
1008         struct flush_busy_ctx_data *flush_data = data;
1009         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1010         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1011         enum hctx_type type = hctx->type;
1012
1013         spin_lock(&ctx->lock);
1014         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1015         sbitmap_clear_bit(sb, bitnr);
1016         spin_unlock(&ctx->lock);
1017         return true;
1018 }
1019
1020 /*
1021  * Process software queues that have been marked busy, splicing them
1022  * to the for-dispatch
1023  */
1024 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1025 {
1026         struct flush_busy_ctx_data data = {
1027                 .hctx = hctx,
1028                 .list = list,
1029         };
1030
1031         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1032 }
1033 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1034
1035 struct dispatch_rq_data {
1036         struct blk_mq_hw_ctx *hctx;
1037         struct request *rq;
1038 };
1039
1040 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1041                 void *data)
1042 {
1043         struct dispatch_rq_data *dispatch_data = data;
1044         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1045         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1046         enum hctx_type type = hctx->type;
1047
1048         spin_lock(&ctx->lock);
1049         if (!list_empty(&ctx->rq_lists[type])) {
1050                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1051                 list_del_init(&dispatch_data->rq->queuelist);
1052                 if (list_empty(&ctx->rq_lists[type]))
1053                         sbitmap_clear_bit(sb, bitnr);
1054         }
1055         spin_unlock(&ctx->lock);
1056
1057         return !dispatch_data->rq;
1058 }
1059
1060 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1061                                         struct blk_mq_ctx *start)
1062 {
1063         unsigned off = start ? start->index_hw[hctx->type] : 0;
1064         struct dispatch_rq_data data = {
1065                 .hctx = hctx,
1066                 .rq   = NULL,
1067         };
1068
1069         __sbitmap_for_each_set(&hctx->ctx_map, off,
1070                                dispatch_rq_from_ctx, &data);
1071
1072         return data.rq;
1073 }
1074
1075 static inline unsigned int queued_to_index(unsigned int queued)
1076 {
1077         if (!queued)
1078                 return 0;
1079
1080         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1081 }
1082
1083 static bool __blk_mq_get_driver_tag(struct request *rq)
1084 {
1085         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1086         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1087         int tag;
1088
1089         blk_mq_tag_busy(rq->mq_hctx);
1090
1091         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1092                 bt = rq->mq_hctx->tags->breserved_tags;
1093                 tag_offset = 0;
1094         } else {
1095                 if (!hctx_may_queue(rq->mq_hctx, bt))
1096                         return false;
1097         }
1098
1099         tag = __sbitmap_queue_get(bt);
1100         if (tag == BLK_MQ_NO_TAG)
1101                 return false;
1102
1103         rq->tag = tag + tag_offset;
1104         return true;
1105 }
1106
1107 bool blk_mq_get_driver_tag(struct request *rq)
1108 {
1109         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1110
1111         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1112                 return false;
1113
1114         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1115                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1116                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1117                 __blk_mq_inc_active_requests(hctx);
1118         }
1119         hctx->tags->rqs[rq->tag] = rq;
1120         return true;
1121 }
1122
1123 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1124                                 int flags, void *key)
1125 {
1126         struct blk_mq_hw_ctx *hctx;
1127
1128         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1129
1130         spin_lock(&hctx->dispatch_wait_lock);
1131         if (!list_empty(&wait->entry)) {
1132                 struct sbitmap_queue *sbq;
1133
1134                 list_del_init(&wait->entry);
1135                 sbq = hctx->tags->bitmap_tags;
1136                 atomic_dec(&sbq->ws_active);
1137         }
1138         spin_unlock(&hctx->dispatch_wait_lock);
1139
1140         blk_mq_run_hw_queue(hctx, true);
1141         return 1;
1142 }
1143
1144 /*
1145  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1146  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1147  * restart. For both cases, take care to check the condition again after
1148  * marking us as waiting.
1149  */
1150 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1151                                  struct request *rq)
1152 {
1153         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1154         struct wait_queue_head *wq;
1155         wait_queue_entry_t *wait;
1156         bool ret;
1157
1158         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1159                 blk_mq_sched_mark_restart_hctx(hctx);
1160
1161                 /*
1162                  * It's possible that a tag was freed in the window between the
1163                  * allocation failure and adding the hardware queue to the wait
1164                  * queue.
1165                  *
1166                  * Don't clear RESTART here, someone else could have set it.
1167                  * At most this will cost an extra queue run.
1168                  */
1169                 return blk_mq_get_driver_tag(rq);
1170         }
1171
1172         wait = &hctx->dispatch_wait;
1173         if (!list_empty_careful(&wait->entry))
1174                 return false;
1175
1176         wq = &bt_wait_ptr(sbq, hctx)->wait;
1177
1178         spin_lock_irq(&wq->lock);
1179         spin_lock(&hctx->dispatch_wait_lock);
1180         if (!list_empty(&wait->entry)) {
1181                 spin_unlock(&hctx->dispatch_wait_lock);
1182                 spin_unlock_irq(&wq->lock);
1183                 return false;
1184         }
1185
1186         atomic_inc(&sbq->ws_active);
1187         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1188         __add_wait_queue(wq, wait);
1189
1190         /*
1191          * It's possible that a tag was freed in the window between the
1192          * allocation failure and adding the hardware queue to the wait
1193          * queue.
1194          */
1195         ret = blk_mq_get_driver_tag(rq);
1196         if (!ret) {
1197                 spin_unlock(&hctx->dispatch_wait_lock);
1198                 spin_unlock_irq(&wq->lock);
1199                 return false;
1200         }
1201
1202         /*
1203          * We got a tag, remove ourselves from the wait queue to ensure
1204          * someone else gets the wakeup.
1205          */
1206         list_del_init(&wait->entry);
1207         atomic_dec(&sbq->ws_active);
1208         spin_unlock(&hctx->dispatch_wait_lock);
1209         spin_unlock_irq(&wq->lock);
1210
1211         return true;
1212 }
1213
1214 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1215 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1216 /*
1217  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1218  * - EWMA is one simple way to compute running average value
1219  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1220  * - take 4 as factor for avoiding to get too small(0) result, and this
1221  *   factor doesn't matter because EWMA decreases exponentially
1222  */
1223 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1224 {
1225         unsigned int ewma;
1226
1227         if (hctx->queue->elevator)
1228                 return;
1229
1230         ewma = hctx->dispatch_busy;
1231
1232         if (!ewma && !busy)
1233                 return;
1234
1235         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1236         if (busy)
1237                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1238         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1239
1240         hctx->dispatch_busy = ewma;
1241 }
1242
1243 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1244
1245 static void blk_mq_handle_dev_resource(struct request *rq,
1246                                        struct list_head *list)
1247 {
1248         struct request *next =
1249                 list_first_entry_or_null(list, struct request, queuelist);
1250
1251         /*
1252          * If an I/O scheduler has been configured and we got a driver tag for
1253          * the next request already, free it.
1254          */
1255         if (next)
1256                 blk_mq_put_driver_tag(next);
1257
1258         list_add(&rq->queuelist, list);
1259         __blk_mq_requeue_request(rq);
1260 }
1261
1262 static void blk_mq_handle_zone_resource(struct request *rq,
1263                                         struct list_head *zone_list)
1264 {
1265         /*
1266          * If we end up here it is because we cannot dispatch a request to a
1267          * specific zone due to LLD level zone-write locking or other zone
1268          * related resource not being available. In this case, set the request
1269          * aside in zone_list for retrying it later.
1270          */
1271         list_add(&rq->queuelist, zone_list);
1272         __blk_mq_requeue_request(rq);
1273 }
1274
1275 enum prep_dispatch {
1276         PREP_DISPATCH_OK,
1277         PREP_DISPATCH_NO_TAG,
1278         PREP_DISPATCH_NO_BUDGET,
1279 };
1280
1281 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1282                                                   bool need_budget)
1283 {
1284         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1285         int budget_token = -1;
1286
1287         if (need_budget) {
1288                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1289                 if (budget_token < 0) {
1290                         blk_mq_put_driver_tag(rq);
1291                         return PREP_DISPATCH_NO_BUDGET;
1292                 }
1293                 blk_mq_set_rq_budget_token(rq, budget_token);
1294         }
1295
1296         if (!blk_mq_get_driver_tag(rq)) {
1297                 /*
1298                  * The initial allocation attempt failed, so we need to
1299                  * rerun the hardware queue when a tag is freed. The
1300                  * waitqueue takes care of that. If the queue is run
1301                  * before we add this entry back on the dispatch list,
1302                  * we'll re-run it below.
1303                  */
1304                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1305                         /*
1306                          * All budgets not got from this function will be put
1307                          * together during handling partial dispatch
1308                          */
1309                         if (need_budget)
1310                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1311                         return PREP_DISPATCH_NO_TAG;
1312                 }
1313         }
1314
1315         return PREP_DISPATCH_OK;
1316 }
1317
1318 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1319 static void blk_mq_release_budgets(struct request_queue *q,
1320                 struct list_head *list)
1321 {
1322         struct request *rq;
1323
1324         list_for_each_entry(rq, list, queuelist) {
1325                 int budget_token = blk_mq_get_rq_budget_token(rq);
1326
1327                 if (budget_token >= 0)
1328                         blk_mq_put_dispatch_budget(q, budget_token);
1329         }
1330 }
1331
1332 /*
1333  * Returns true if we did some work AND can potentially do more.
1334  */
1335 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1336                              unsigned int nr_budgets)
1337 {
1338         enum prep_dispatch prep;
1339         struct request_queue *q = hctx->queue;
1340         struct request *rq, *nxt;
1341         int errors, queued;
1342         blk_status_t ret = BLK_STS_OK;
1343         LIST_HEAD(zone_list);
1344
1345         if (list_empty(list))
1346                 return false;
1347
1348         /*
1349          * Now process all the entries, sending them to the driver.
1350          */
1351         errors = queued = 0;
1352         do {
1353                 struct blk_mq_queue_data bd;
1354
1355                 rq = list_first_entry(list, struct request, queuelist);
1356
1357                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1358                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1359                 if (prep != PREP_DISPATCH_OK)
1360                         break;
1361
1362                 list_del_init(&rq->queuelist);
1363
1364                 bd.rq = rq;
1365
1366                 /*
1367                  * Flag last if we have no more requests, or if we have more
1368                  * but can't assign a driver tag to it.
1369                  */
1370                 if (list_empty(list))
1371                         bd.last = true;
1372                 else {
1373                         nxt = list_first_entry(list, struct request, queuelist);
1374                         bd.last = !blk_mq_get_driver_tag(nxt);
1375                 }
1376
1377                 /*
1378                  * once the request is queued to lld, no need to cover the
1379                  * budget any more
1380                  */
1381                 if (nr_budgets)
1382                         nr_budgets--;
1383                 ret = q->mq_ops->queue_rq(hctx, &bd);
1384                 switch (ret) {
1385                 case BLK_STS_OK:
1386                         queued++;
1387                         break;
1388                 case BLK_STS_RESOURCE:
1389                 case BLK_STS_DEV_RESOURCE:
1390                         blk_mq_handle_dev_resource(rq, list);
1391                         goto out;
1392                 case BLK_STS_ZONE_RESOURCE:
1393                         /*
1394                          * Move the request to zone_list and keep going through
1395                          * the dispatch list to find more requests the drive can
1396                          * accept.
1397                          */
1398                         blk_mq_handle_zone_resource(rq, &zone_list);
1399                         break;
1400                 default:
1401                         errors++;
1402                         blk_mq_end_request(rq, ret);
1403                 }
1404         } while (!list_empty(list));
1405 out:
1406         if (!list_empty(&zone_list))
1407                 list_splice_tail_init(&zone_list, list);
1408
1409         hctx->dispatched[queued_to_index(queued)]++;
1410
1411         /* If we didn't flush the entire list, we could have told the driver
1412          * there was more coming, but that turned out to be a lie.
1413          */
1414         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1415                 q->mq_ops->commit_rqs(hctx);
1416         /*
1417          * Any items that need requeuing? Stuff them into hctx->dispatch,
1418          * that is where we will continue on next queue run.
1419          */
1420         if (!list_empty(list)) {
1421                 bool needs_restart;
1422                 /* For non-shared tags, the RESTART check will suffice */
1423                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1424                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1425                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1426
1427                 if (nr_budgets)
1428                         blk_mq_release_budgets(q, list);
1429
1430                 spin_lock(&hctx->lock);
1431                 list_splice_tail_init(list, &hctx->dispatch);
1432                 spin_unlock(&hctx->lock);
1433
1434                 /*
1435                  * Order adding requests to hctx->dispatch and checking
1436                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1437                  * in blk_mq_sched_restart(). Avoid restart code path to
1438                  * miss the new added requests to hctx->dispatch, meantime
1439                  * SCHED_RESTART is observed here.
1440                  */
1441                 smp_mb();
1442
1443                 /*
1444                  * If SCHED_RESTART was set by the caller of this function and
1445                  * it is no longer set that means that it was cleared by another
1446                  * thread and hence that a queue rerun is needed.
1447                  *
1448                  * If 'no_tag' is set, that means that we failed getting
1449                  * a driver tag with an I/O scheduler attached. If our dispatch
1450                  * waitqueue is no longer active, ensure that we run the queue
1451                  * AFTER adding our entries back to the list.
1452                  *
1453                  * If no I/O scheduler has been configured it is possible that
1454                  * the hardware queue got stopped and restarted before requests
1455                  * were pushed back onto the dispatch list. Rerun the queue to
1456                  * avoid starvation. Notes:
1457                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1458                  *   been stopped before rerunning a queue.
1459                  * - Some but not all block drivers stop a queue before
1460                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1461                  *   and dm-rq.
1462                  *
1463                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1464                  * bit is set, run queue after a delay to avoid IO stalls
1465                  * that could otherwise occur if the queue is idle.  We'll do
1466                  * similar if we couldn't get budget and SCHED_RESTART is set.
1467                  */
1468                 needs_restart = blk_mq_sched_needs_restart(hctx);
1469                 if (!needs_restart ||
1470                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1471                         blk_mq_run_hw_queue(hctx, true);
1472                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1473                                            no_budget_avail))
1474                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1475
1476                 blk_mq_update_dispatch_busy(hctx, true);
1477                 return false;
1478         } else
1479                 blk_mq_update_dispatch_busy(hctx, false);
1480
1481         return (queued + errors) != 0;
1482 }
1483
1484 /**
1485  * __blk_mq_run_hw_queue - Run a hardware queue.
1486  * @hctx: Pointer to the hardware queue to run.
1487  *
1488  * Send pending requests to the hardware.
1489  */
1490 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1491 {
1492         int srcu_idx;
1493
1494         /*
1495          * We can't run the queue inline with ints disabled. Ensure that
1496          * we catch bad users of this early.
1497          */
1498         WARN_ON_ONCE(in_interrupt());
1499
1500         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1501
1502         hctx_lock(hctx, &srcu_idx);
1503         blk_mq_sched_dispatch_requests(hctx);
1504         hctx_unlock(hctx, srcu_idx);
1505 }
1506
1507 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1508 {
1509         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1510
1511         if (cpu >= nr_cpu_ids)
1512                 cpu = cpumask_first(hctx->cpumask);
1513         return cpu;
1514 }
1515
1516 /*
1517  * It'd be great if the workqueue API had a way to pass
1518  * in a mask and had some smarts for more clever placement.
1519  * For now we just round-robin here, switching for every
1520  * BLK_MQ_CPU_WORK_BATCH queued items.
1521  */
1522 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1523 {
1524         bool tried = false;
1525         int next_cpu = hctx->next_cpu;
1526
1527         if (hctx->queue->nr_hw_queues == 1)
1528                 return WORK_CPU_UNBOUND;
1529
1530         if (--hctx->next_cpu_batch <= 0) {
1531 select_cpu:
1532                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1533                                 cpu_online_mask);
1534                 if (next_cpu >= nr_cpu_ids)
1535                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1536                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1537         }
1538
1539         /*
1540          * Do unbound schedule if we can't find a online CPU for this hctx,
1541          * and it should only happen in the path of handling CPU DEAD.
1542          */
1543         if (!cpu_online(next_cpu)) {
1544                 if (!tried) {
1545                         tried = true;
1546                         goto select_cpu;
1547                 }
1548
1549                 /*
1550                  * Make sure to re-select CPU next time once after CPUs
1551                  * in hctx->cpumask become online again.
1552                  */
1553                 hctx->next_cpu = next_cpu;
1554                 hctx->next_cpu_batch = 1;
1555                 return WORK_CPU_UNBOUND;
1556         }
1557
1558         hctx->next_cpu = next_cpu;
1559         return next_cpu;
1560 }
1561
1562 /**
1563  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1564  * @hctx: Pointer to the hardware queue to run.
1565  * @async: If we want to run the queue asynchronously.
1566  * @msecs: Milliseconds of delay to wait before running the queue.
1567  *
1568  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1569  * with a delay of @msecs.
1570  */
1571 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1572                                         unsigned long msecs)
1573 {
1574         if (unlikely(blk_mq_hctx_stopped(hctx)))
1575                 return;
1576
1577         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1578                 int cpu = get_cpu();
1579                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1580                         __blk_mq_run_hw_queue(hctx);
1581                         put_cpu();
1582                         return;
1583                 }
1584
1585                 put_cpu();
1586         }
1587
1588         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1589                                     msecs_to_jiffies(msecs));
1590 }
1591
1592 /**
1593  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1594  * @hctx: Pointer to the hardware queue to run.
1595  * @msecs: Milliseconds of delay to wait before running the queue.
1596  *
1597  * Run a hardware queue asynchronously with a delay of @msecs.
1598  */
1599 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1600 {
1601         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1602 }
1603 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1604
1605 /**
1606  * blk_mq_run_hw_queue - Start to run a hardware queue.
1607  * @hctx: Pointer to the hardware queue to run.
1608  * @async: If we want to run the queue asynchronously.
1609  *
1610  * Check if the request queue is not in a quiesced state and if there are
1611  * pending requests to be sent. If this is true, run the queue to send requests
1612  * to hardware.
1613  */
1614 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1615 {
1616         int srcu_idx;
1617         bool need_run;
1618
1619         /*
1620          * When queue is quiesced, we may be switching io scheduler, or
1621          * updating nr_hw_queues, or other things, and we can't run queue
1622          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1623          *
1624          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1625          * quiesced.
1626          */
1627         hctx_lock(hctx, &srcu_idx);
1628         need_run = !blk_queue_quiesced(hctx->queue) &&
1629                 blk_mq_hctx_has_pending(hctx);
1630         hctx_unlock(hctx, srcu_idx);
1631
1632         if (need_run)
1633                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1634 }
1635 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1636
1637 /*
1638  * Is the request queue handled by an IO scheduler that does not respect
1639  * hardware queues when dispatching?
1640  */
1641 static bool blk_mq_has_sqsched(struct request_queue *q)
1642 {
1643         struct elevator_queue *e = q->elevator;
1644
1645         if (e && e->type->ops.dispatch_request &&
1646             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1647                 return true;
1648         return false;
1649 }
1650
1651 /*
1652  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1653  * scheduler.
1654  */
1655 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1656 {
1657         struct blk_mq_hw_ctx *hctx;
1658
1659         /*
1660          * If the IO scheduler does not respect hardware queues when
1661          * dispatching, we just don't bother with multiple HW queues and
1662          * dispatch from hctx for the current CPU since running multiple queues
1663          * just causes lock contention inside the scheduler and pointless cache
1664          * bouncing.
1665          */
1666         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1667                                      raw_smp_processor_id());
1668         if (!blk_mq_hctx_stopped(hctx))
1669                 return hctx;
1670         return NULL;
1671 }
1672
1673 /**
1674  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1675  * @q: Pointer to the request queue to run.
1676  * @async: If we want to run the queue asynchronously.
1677  */
1678 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1679 {
1680         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1681         int i;
1682
1683         sq_hctx = NULL;
1684         if (blk_mq_has_sqsched(q))
1685                 sq_hctx = blk_mq_get_sq_hctx(q);
1686         queue_for_each_hw_ctx(q, hctx, i) {
1687                 if (blk_mq_hctx_stopped(hctx))
1688                         continue;
1689                 /*
1690                  * Dispatch from this hctx either if there's no hctx preferred
1691                  * by IO scheduler or if it has requests that bypass the
1692                  * scheduler.
1693                  */
1694                 if (!sq_hctx || sq_hctx == hctx ||
1695                     !list_empty_careful(&hctx->dispatch))
1696                         blk_mq_run_hw_queue(hctx, async);
1697         }
1698 }
1699 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1700
1701 /**
1702  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1703  * @q: Pointer to the request queue to run.
1704  * @msecs: Milliseconds of delay to wait before running the queues.
1705  */
1706 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1707 {
1708         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1709         int i;
1710
1711         sq_hctx = NULL;
1712         if (blk_mq_has_sqsched(q))
1713                 sq_hctx = blk_mq_get_sq_hctx(q);
1714         queue_for_each_hw_ctx(q, hctx, i) {
1715                 if (blk_mq_hctx_stopped(hctx))
1716                         continue;
1717                 /*
1718                  * Dispatch from this hctx either if there's no hctx preferred
1719                  * by IO scheduler or if it has requests that bypass the
1720                  * scheduler.
1721                  */
1722                 if (!sq_hctx || sq_hctx == hctx ||
1723                     !list_empty_careful(&hctx->dispatch))
1724                         blk_mq_delay_run_hw_queue(hctx, msecs);
1725         }
1726 }
1727 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1728
1729 /**
1730  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1731  * @q: request queue.
1732  *
1733  * The caller is responsible for serializing this function against
1734  * blk_mq_{start,stop}_hw_queue().
1735  */
1736 bool blk_mq_queue_stopped(struct request_queue *q)
1737 {
1738         struct blk_mq_hw_ctx *hctx;
1739         int i;
1740
1741         queue_for_each_hw_ctx(q, hctx, i)
1742                 if (blk_mq_hctx_stopped(hctx))
1743                         return true;
1744
1745         return false;
1746 }
1747 EXPORT_SYMBOL(blk_mq_queue_stopped);
1748
1749 /*
1750  * This function is often used for pausing .queue_rq() by driver when
1751  * there isn't enough resource or some conditions aren't satisfied, and
1752  * BLK_STS_RESOURCE is usually returned.
1753  *
1754  * We do not guarantee that dispatch can be drained or blocked
1755  * after blk_mq_stop_hw_queue() returns. Please use
1756  * blk_mq_quiesce_queue() for that requirement.
1757  */
1758 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1759 {
1760         cancel_delayed_work(&hctx->run_work);
1761
1762         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1763 }
1764 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1765
1766 /*
1767  * This function is often used for pausing .queue_rq() by driver when
1768  * there isn't enough resource or some conditions aren't satisfied, and
1769  * BLK_STS_RESOURCE is usually returned.
1770  *
1771  * We do not guarantee that dispatch can be drained or blocked
1772  * after blk_mq_stop_hw_queues() returns. Please use
1773  * blk_mq_quiesce_queue() for that requirement.
1774  */
1775 void blk_mq_stop_hw_queues(struct request_queue *q)
1776 {
1777         struct blk_mq_hw_ctx *hctx;
1778         int i;
1779
1780         queue_for_each_hw_ctx(q, hctx, i)
1781                 blk_mq_stop_hw_queue(hctx);
1782 }
1783 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1784
1785 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1786 {
1787         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1788
1789         blk_mq_run_hw_queue(hctx, false);
1790 }
1791 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1792
1793 void blk_mq_start_hw_queues(struct request_queue *q)
1794 {
1795         struct blk_mq_hw_ctx *hctx;
1796         int i;
1797
1798         queue_for_each_hw_ctx(q, hctx, i)
1799                 blk_mq_start_hw_queue(hctx);
1800 }
1801 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1802
1803 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1804 {
1805         if (!blk_mq_hctx_stopped(hctx))
1806                 return;
1807
1808         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1809         blk_mq_run_hw_queue(hctx, async);
1810 }
1811 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1812
1813 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1814 {
1815         struct blk_mq_hw_ctx *hctx;
1816         int i;
1817
1818         queue_for_each_hw_ctx(q, hctx, i)
1819                 blk_mq_start_stopped_hw_queue(hctx, async);
1820 }
1821 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1822
1823 static void blk_mq_run_work_fn(struct work_struct *work)
1824 {
1825         struct blk_mq_hw_ctx *hctx;
1826
1827         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1828
1829         /*
1830          * If we are stopped, don't run the queue.
1831          */
1832         if (blk_mq_hctx_stopped(hctx))
1833                 return;
1834
1835         __blk_mq_run_hw_queue(hctx);
1836 }
1837
1838 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1839                                             struct request *rq,
1840                                             bool at_head)
1841 {
1842         struct blk_mq_ctx *ctx = rq->mq_ctx;
1843         enum hctx_type type = hctx->type;
1844
1845         lockdep_assert_held(&ctx->lock);
1846
1847         trace_block_rq_insert(rq);
1848
1849         if (at_head)
1850                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1851         else
1852                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1853 }
1854
1855 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1856                              bool at_head)
1857 {
1858         struct blk_mq_ctx *ctx = rq->mq_ctx;
1859
1860         lockdep_assert_held(&ctx->lock);
1861
1862         __blk_mq_insert_req_list(hctx, rq, at_head);
1863         blk_mq_hctx_mark_pending(hctx, ctx);
1864 }
1865
1866 /**
1867  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1868  * @rq: Pointer to request to be inserted.
1869  * @at_head: true if the request should be inserted at the head of the list.
1870  * @run_queue: If we should run the hardware queue after inserting the request.
1871  *
1872  * Should only be used carefully, when the caller knows we want to
1873  * bypass a potential IO scheduler on the target device.
1874  */
1875 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1876                                   bool run_queue)
1877 {
1878         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1879
1880         spin_lock(&hctx->lock);
1881         if (at_head)
1882                 list_add(&rq->queuelist, &hctx->dispatch);
1883         else
1884                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1885         spin_unlock(&hctx->lock);
1886
1887         if (run_queue)
1888                 blk_mq_run_hw_queue(hctx, false);
1889 }
1890
1891 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1892                             struct list_head *list)
1893
1894 {
1895         struct request *rq;
1896         enum hctx_type type = hctx->type;
1897
1898         /*
1899          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1900          * offline now
1901          */
1902         list_for_each_entry(rq, list, queuelist) {
1903                 BUG_ON(rq->mq_ctx != ctx);
1904                 trace_block_rq_insert(rq);
1905         }
1906
1907         spin_lock(&ctx->lock);
1908         list_splice_tail_init(list, &ctx->rq_lists[type]);
1909         blk_mq_hctx_mark_pending(hctx, ctx);
1910         spin_unlock(&ctx->lock);
1911 }
1912
1913 static int plug_rq_cmp(void *priv, const struct list_head *a,
1914                        const struct list_head *b)
1915 {
1916         struct request *rqa = container_of(a, struct request, queuelist);
1917         struct request *rqb = container_of(b, struct request, queuelist);
1918
1919         if (rqa->mq_ctx != rqb->mq_ctx)
1920                 return rqa->mq_ctx > rqb->mq_ctx;
1921         if (rqa->mq_hctx != rqb->mq_hctx)
1922                 return rqa->mq_hctx > rqb->mq_hctx;
1923
1924         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1925 }
1926
1927 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1928 {
1929         LIST_HEAD(list);
1930
1931         if (list_empty(&plug->mq_list))
1932                 return;
1933         list_splice_init(&plug->mq_list, &list);
1934
1935         if (plug->rq_count > 2 && plug->multiple_queues)
1936                 list_sort(NULL, &list, plug_rq_cmp);
1937
1938         plug->rq_count = 0;
1939
1940         do {
1941                 struct list_head rq_list;
1942                 struct request *rq, *head_rq = list_entry_rq(list.next);
1943                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1944                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1945                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1946                 unsigned int depth = 1;
1947
1948                 list_for_each_continue(pos, &list) {
1949                         rq = list_entry_rq(pos);
1950                         BUG_ON(!rq->q);
1951                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1952                                 break;
1953                         depth++;
1954                 }
1955
1956                 list_cut_before(&rq_list, &list, pos);
1957                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1958                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1959                                                 from_schedule);
1960         } while(!list_empty(&list));
1961 }
1962
1963 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1964                 unsigned int nr_segs)
1965 {
1966         int err;
1967
1968         if (bio->bi_opf & REQ_RAHEAD)
1969                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1970
1971         rq->__sector = bio->bi_iter.bi_sector;
1972         rq->write_hint = bio->bi_write_hint;
1973         blk_rq_bio_prep(rq, bio, nr_segs);
1974
1975         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1976         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1977         WARN_ON_ONCE(err);
1978
1979         blk_account_io_start(rq);
1980 }
1981
1982 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1983                                             struct request *rq,
1984                                             blk_qc_t *cookie, bool last)
1985 {
1986         struct request_queue *q = rq->q;
1987         struct blk_mq_queue_data bd = {
1988                 .rq = rq,
1989                 .last = last,
1990         };
1991         blk_qc_t new_cookie;
1992         blk_status_t ret;
1993
1994         new_cookie = request_to_qc_t(hctx, rq);
1995
1996         /*
1997          * For OK queue, we are done. For error, caller may kill it.
1998          * Any other error (busy), just add it to our list as we
1999          * previously would have done.
2000          */
2001         ret = q->mq_ops->queue_rq(hctx, &bd);
2002         switch (ret) {
2003         case BLK_STS_OK:
2004                 blk_mq_update_dispatch_busy(hctx, false);
2005                 *cookie = new_cookie;
2006                 break;
2007         case BLK_STS_RESOURCE:
2008         case BLK_STS_DEV_RESOURCE:
2009                 blk_mq_update_dispatch_busy(hctx, true);
2010                 __blk_mq_requeue_request(rq);
2011                 break;
2012         default:
2013                 blk_mq_update_dispatch_busy(hctx, false);
2014                 *cookie = BLK_QC_T_NONE;
2015                 break;
2016         }
2017
2018         return ret;
2019 }
2020
2021 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2022                                                 struct request *rq,
2023                                                 blk_qc_t *cookie,
2024                                                 bool bypass_insert, bool last)
2025 {
2026         struct request_queue *q = rq->q;
2027         bool run_queue = true;
2028         int budget_token;
2029
2030         /*
2031          * RCU or SRCU read lock is needed before checking quiesced flag.
2032          *
2033          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2034          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2035          * and avoid driver to try to dispatch again.
2036          */
2037         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2038                 run_queue = false;
2039                 bypass_insert = false;
2040                 goto insert;
2041         }
2042
2043         if (q->elevator && !bypass_insert)
2044                 goto insert;
2045
2046         budget_token = blk_mq_get_dispatch_budget(q);
2047         if (budget_token < 0)
2048                 goto insert;
2049
2050         blk_mq_set_rq_budget_token(rq, budget_token);
2051
2052         if (!blk_mq_get_driver_tag(rq)) {
2053                 blk_mq_put_dispatch_budget(q, budget_token);
2054                 goto insert;
2055         }
2056
2057         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2058 insert:
2059         if (bypass_insert)
2060                 return BLK_STS_RESOURCE;
2061
2062         blk_mq_sched_insert_request(rq, false, run_queue, false);
2063
2064         return BLK_STS_OK;
2065 }
2066
2067 /**
2068  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2069  * @hctx: Pointer of the associated hardware queue.
2070  * @rq: Pointer to request to be sent.
2071  * @cookie: Request queue cookie.
2072  *
2073  * If the device has enough resources to accept a new request now, send the
2074  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2075  * we can try send it another time in the future. Requests inserted at this
2076  * queue have higher priority.
2077  */
2078 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2079                 struct request *rq, blk_qc_t *cookie)
2080 {
2081         blk_status_t ret;
2082         int srcu_idx;
2083
2084         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2085
2086         hctx_lock(hctx, &srcu_idx);
2087
2088         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2089         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2090                 blk_mq_request_bypass_insert(rq, false, true);
2091         else if (ret != BLK_STS_OK)
2092                 blk_mq_end_request(rq, ret);
2093
2094         hctx_unlock(hctx, srcu_idx);
2095 }
2096
2097 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2098 {
2099         blk_status_t ret;
2100         int srcu_idx;
2101         blk_qc_t unused_cookie;
2102         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2103
2104         hctx_lock(hctx, &srcu_idx);
2105         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2106         hctx_unlock(hctx, srcu_idx);
2107
2108         return ret;
2109 }
2110
2111 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2112                 struct list_head *list)
2113 {
2114         int queued = 0;
2115         int errors = 0;
2116
2117         while (!list_empty(list)) {
2118                 blk_status_t ret;
2119                 struct request *rq = list_first_entry(list, struct request,
2120                                 queuelist);
2121
2122                 list_del_init(&rq->queuelist);
2123                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2124                 if (ret != BLK_STS_OK) {
2125                         if (ret == BLK_STS_RESOURCE ||
2126                                         ret == BLK_STS_DEV_RESOURCE) {
2127                                 blk_mq_request_bypass_insert(rq, false,
2128                                                         list_empty(list));
2129                                 break;
2130                         }
2131                         blk_mq_end_request(rq, ret);
2132                         errors++;
2133                 } else
2134                         queued++;
2135         }
2136
2137         /*
2138          * If we didn't flush the entire list, we could have told
2139          * the driver there was more coming, but that turned out to
2140          * be a lie.
2141          */
2142         if ((!list_empty(list) || errors) &&
2143              hctx->queue->mq_ops->commit_rqs && queued)
2144                 hctx->queue->mq_ops->commit_rqs(hctx);
2145 }
2146
2147 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2148 {
2149         list_add_tail(&rq->queuelist, &plug->mq_list);
2150         plug->rq_count++;
2151         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2152                 struct request *tmp;
2153
2154                 tmp = list_first_entry(&plug->mq_list, struct request,
2155                                                 queuelist);
2156                 if (tmp->q != rq->q)
2157                         plug->multiple_queues = true;
2158         }
2159 }
2160
2161 /**
2162  * blk_mq_submit_bio - Create and send a request to block device.
2163  * @bio: Bio pointer.
2164  *
2165  * Builds up a request structure from @q and @bio and send to the device. The
2166  * request may not be queued directly to hardware if:
2167  * * This request can be merged with another one
2168  * * We want to place request at plug queue for possible future merging
2169  * * There is an IO scheduler active at this queue
2170  *
2171  * It will not queue the request if there is an error with the bio, or at the
2172  * request creation.
2173  *
2174  * Returns: Request queue cookie.
2175  */
2176 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2177 {
2178         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2179         const int is_sync = op_is_sync(bio->bi_opf);
2180         const int is_flush_fua = op_is_flush(bio->bi_opf);
2181         struct blk_mq_alloc_data data = {
2182                 .q              = q,
2183         };
2184         struct request *rq;
2185         struct blk_plug *plug;
2186         struct request *same_queue_rq = NULL;
2187         unsigned int nr_segs;
2188         blk_qc_t cookie;
2189         blk_status_t ret;
2190         bool hipri;
2191
2192         blk_queue_bounce(q, &bio);
2193         __blk_queue_split(&bio, &nr_segs);
2194
2195         if (!bio_integrity_prep(bio))
2196                 goto queue_exit;
2197
2198         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2199             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2200                 goto queue_exit;
2201
2202         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2203                 goto queue_exit;
2204
2205         rq_qos_throttle(q, bio);
2206
2207         hipri = bio->bi_opf & REQ_HIPRI;
2208
2209         data.cmd_flags = bio->bi_opf;
2210         rq = __blk_mq_alloc_request(&data);
2211         if (unlikely(!rq)) {
2212                 rq_qos_cleanup(q, bio);
2213                 if (bio->bi_opf & REQ_NOWAIT)
2214                         bio_wouldblock_error(bio);
2215                 goto queue_exit;
2216         }
2217
2218         trace_block_getrq(bio);
2219
2220         rq_qos_track(q, rq, bio);
2221
2222         cookie = request_to_qc_t(data.hctx, rq);
2223
2224         blk_mq_bio_to_request(rq, bio, nr_segs);
2225
2226         ret = blk_crypto_init_request(rq);
2227         if (ret != BLK_STS_OK) {
2228                 bio->bi_status = ret;
2229                 bio_endio(bio);
2230                 blk_mq_free_request(rq);
2231                 return BLK_QC_T_NONE;
2232         }
2233
2234         plug = blk_mq_plug(q, bio);
2235         if (unlikely(is_flush_fua)) {
2236                 /* Bypass scheduler for flush requests */
2237                 blk_insert_flush(rq);
2238                 blk_mq_run_hw_queue(data.hctx, true);
2239         } else if (plug && (q->nr_hw_queues == 1 ||
2240                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2241                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2242                 /*
2243                  * Use plugging if we have a ->commit_rqs() hook as well, as
2244                  * we know the driver uses bd->last in a smart fashion.
2245                  *
2246                  * Use normal plugging if this disk is slow HDD, as sequential
2247                  * IO may benefit a lot from plug merging.
2248                  */
2249                 unsigned int request_count = plug->rq_count;
2250                 struct request *last = NULL;
2251
2252                 if (!request_count)
2253                         trace_block_plug(q);
2254                 else
2255                         last = list_entry_rq(plug->mq_list.prev);
2256
2257                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2258                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2259                         blk_flush_plug_list(plug, false);
2260                         trace_block_plug(q);
2261                 }
2262
2263                 blk_add_rq_to_plug(plug, rq);
2264         } else if (q->elevator) {
2265                 /* Insert the request at the IO scheduler queue */
2266                 blk_mq_sched_insert_request(rq, false, true, true);
2267         } else if (plug && !blk_queue_nomerges(q)) {
2268                 /*
2269                  * We do limited plugging. If the bio can be merged, do that.
2270                  * Otherwise the existing request in the plug list will be
2271                  * issued. So the plug list will have one request at most
2272                  * The plug list might get flushed before this. If that happens,
2273                  * the plug list is empty, and same_queue_rq is invalid.
2274                  */
2275                 if (list_empty(&plug->mq_list))
2276                         same_queue_rq = NULL;
2277                 if (same_queue_rq) {
2278                         list_del_init(&same_queue_rq->queuelist);
2279                         plug->rq_count--;
2280                 }
2281                 blk_add_rq_to_plug(plug, rq);
2282                 trace_block_plug(q);
2283
2284                 if (same_queue_rq) {
2285                         data.hctx = same_queue_rq->mq_hctx;
2286                         trace_block_unplug(q, 1, true);
2287                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2288                                         &cookie);
2289                 }
2290         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2291                         !data.hctx->dispatch_busy) {
2292                 /*
2293                  * There is no scheduler and we can try to send directly
2294                  * to the hardware.
2295                  */
2296                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2297         } else {
2298                 /* Default case. */
2299                 blk_mq_sched_insert_request(rq, false, true, true);
2300         }
2301
2302         if (!hipri)
2303                 return BLK_QC_T_NONE;
2304         return cookie;
2305 queue_exit:
2306         blk_queue_exit(q);
2307         return BLK_QC_T_NONE;
2308 }
2309
2310 static size_t order_to_size(unsigned int order)
2311 {
2312         return (size_t)PAGE_SIZE << order;
2313 }
2314
2315 /* called before freeing request pool in @tags */
2316 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2317                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2318 {
2319         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2320         struct page *page;
2321         unsigned long flags;
2322
2323         list_for_each_entry(page, &tags->page_list, lru) {
2324                 unsigned long start = (unsigned long)page_address(page);
2325                 unsigned long end = start + order_to_size(page->private);
2326                 int i;
2327
2328                 for (i = 0; i < set->queue_depth; i++) {
2329                         struct request *rq = drv_tags->rqs[i];
2330                         unsigned long rq_addr = (unsigned long)rq;
2331
2332                         if (rq_addr >= start && rq_addr < end) {
2333                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2334                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2335                         }
2336                 }
2337         }
2338
2339         /*
2340          * Wait until all pending iteration is done.
2341          *
2342          * Request reference is cleared and it is guaranteed to be observed
2343          * after the ->lock is released.
2344          */
2345         spin_lock_irqsave(&drv_tags->lock, flags);
2346         spin_unlock_irqrestore(&drv_tags->lock, flags);
2347 }
2348
2349 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2350                      unsigned int hctx_idx)
2351 {
2352         struct page *page;
2353
2354         if (tags->rqs && set->ops->exit_request) {
2355                 int i;
2356
2357                 for (i = 0; i < tags->nr_tags; i++) {
2358                         struct request *rq = tags->static_rqs[i];
2359
2360                         if (!rq)
2361                                 continue;
2362                         set->ops->exit_request(set, rq, hctx_idx);
2363                         tags->static_rqs[i] = NULL;
2364                 }
2365         }
2366
2367         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2368
2369         while (!list_empty(&tags->page_list)) {
2370                 page = list_first_entry(&tags->page_list, struct page, lru);
2371                 list_del_init(&page->lru);
2372                 /*
2373                  * Remove kmemleak object previously allocated in
2374                  * blk_mq_alloc_rqs().
2375                  */
2376                 kmemleak_free(page_address(page));
2377                 __free_pages(page, page->private);
2378         }
2379 }
2380
2381 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2382 {
2383         kfree(tags->rqs);
2384         tags->rqs = NULL;
2385         kfree(tags->static_rqs);
2386         tags->static_rqs = NULL;
2387
2388         blk_mq_free_tags(tags, flags);
2389 }
2390
2391 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2392                                         unsigned int hctx_idx,
2393                                         unsigned int nr_tags,
2394                                         unsigned int reserved_tags,
2395                                         unsigned int flags)
2396 {
2397         struct blk_mq_tags *tags;
2398         int node;
2399
2400         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2401         if (node == NUMA_NO_NODE)
2402                 node = set->numa_node;
2403
2404         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2405         if (!tags)
2406                 return NULL;
2407
2408         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2409                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2410                                  node);
2411         if (!tags->rqs) {
2412                 blk_mq_free_tags(tags, flags);
2413                 return NULL;
2414         }
2415
2416         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2417                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2418                                         node);
2419         if (!tags->static_rqs) {
2420                 kfree(tags->rqs);
2421                 blk_mq_free_tags(tags, flags);
2422                 return NULL;
2423         }
2424
2425         return tags;
2426 }
2427
2428 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2429                                unsigned int hctx_idx, int node)
2430 {
2431         int ret;
2432
2433         if (set->ops->init_request) {
2434                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2435                 if (ret)
2436                         return ret;
2437         }
2438
2439         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2440         return 0;
2441 }
2442
2443 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2444                      unsigned int hctx_idx, unsigned int depth)
2445 {
2446         unsigned int i, j, entries_per_page, max_order = 4;
2447         size_t rq_size, left;
2448         int node;
2449
2450         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2451         if (node == NUMA_NO_NODE)
2452                 node = set->numa_node;
2453
2454         INIT_LIST_HEAD(&tags->page_list);
2455
2456         /*
2457          * rq_size is the size of the request plus driver payload, rounded
2458          * to the cacheline size
2459          */
2460         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2461                                 cache_line_size());
2462         left = rq_size * depth;
2463
2464         for (i = 0; i < depth; ) {
2465                 int this_order = max_order;
2466                 struct page *page;
2467                 int to_do;
2468                 void *p;
2469
2470                 while (this_order && left < order_to_size(this_order - 1))
2471                         this_order--;
2472
2473                 do {
2474                         page = alloc_pages_node(node,
2475                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2476                                 this_order);
2477                         if (page)
2478                                 break;
2479                         if (!this_order--)
2480                                 break;
2481                         if (order_to_size(this_order) < rq_size)
2482                                 break;
2483                 } while (1);
2484
2485                 if (!page)
2486                         goto fail;
2487
2488                 page->private = this_order;
2489                 list_add_tail(&page->lru, &tags->page_list);
2490
2491                 p = page_address(page);
2492                 /*
2493                  * Allow kmemleak to scan these pages as they contain pointers
2494                  * to additional allocations like via ops->init_request().
2495                  */
2496                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2497                 entries_per_page = order_to_size(this_order) / rq_size;
2498                 to_do = min(entries_per_page, depth - i);
2499                 left -= to_do * rq_size;
2500                 for (j = 0; j < to_do; j++) {
2501                         struct request *rq = p;
2502
2503                         tags->static_rqs[i] = rq;
2504                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2505                                 tags->static_rqs[i] = NULL;
2506                                 goto fail;
2507                         }
2508
2509                         p += rq_size;
2510                         i++;
2511                 }
2512         }
2513         return 0;
2514
2515 fail:
2516         blk_mq_free_rqs(set, tags, hctx_idx);
2517         return -ENOMEM;
2518 }
2519
2520 struct rq_iter_data {
2521         struct blk_mq_hw_ctx *hctx;
2522         bool has_rq;
2523 };
2524
2525 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2526 {
2527         struct rq_iter_data *iter_data = data;
2528
2529         if (rq->mq_hctx != iter_data->hctx)
2530                 return true;
2531         iter_data->has_rq = true;
2532         return false;
2533 }
2534
2535 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2536 {
2537         struct blk_mq_tags *tags = hctx->sched_tags ?
2538                         hctx->sched_tags : hctx->tags;
2539         struct rq_iter_data data = {
2540                 .hctx   = hctx,
2541         };
2542
2543         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2544         return data.has_rq;
2545 }
2546
2547 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2548                 struct blk_mq_hw_ctx *hctx)
2549 {
2550         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2551                 return false;
2552         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2553                 return false;
2554         return true;
2555 }
2556
2557 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2558 {
2559         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2560                         struct blk_mq_hw_ctx, cpuhp_online);
2561
2562         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2563             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2564                 return 0;
2565
2566         /*
2567          * Prevent new request from being allocated on the current hctx.
2568          *
2569          * The smp_mb__after_atomic() Pairs with the implied barrier in
2570          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2571          * seen once we return from the tag allocator.
2572          */
2573         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574         smp_mb__after_atomic();
2575
2576         /*
2577          * Try to grab a reference to the queue and wait for any outstanding
2578          * requests.  If we could not grab a reference the queue has been
2579          * frozen and there are no requests.
2580          */
2581         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2582                 while (blk_mq_hctx_has_requests(hctx))
2583                         msleep(5);
2584                 percpu_ref_put(&hctx->queue->q_usage_counter);
2585         }
2586
2587         return 0;
2588 }
2589
2590 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2591 {
2592         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2593                         struct blk_mq_hw_ctx, cpuhp_online);
2594
2595         if (cpumask_test_cpu(cpu, hctx->cpumask))
2596                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2597         return 0;
2598 }
2599
2600 /*
2601  * 'cpu' is going away. splice any existing rq_list entries from this
2602  * software queue to the hw queue dispatch list, and ensure that it
2603  * gets run.
2604  */
2605 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2606 {
2607         struct blk_mq_hw_ctx *hctx;
2608         struct blk_mq_ctx *ctx;
2609         LIST_HEAD(tmp);
2610         enum hctx_type type;
2611
2612         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2613         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2614                 return 0;
2615
2616         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2617         type = hctx->type;
2618
2619         spin_lock(&ctx->lock);
2620         if (!list_empty(&ctx->rq_lists[type])) {
2621                 list_splice_init(&ctx->rq_lists[type], &tmp);
2622                 blk_mq_hctx_clear_pending(hctx, ctx);
2623         }
2624         spin_unlock(&ctx->lock);
2625
2626         if (list_empty(&tmp))
2627                 return 0;
2628
2629         spin_lock(&hctx->lock);
2630         list_splice_tail_init(&tmp, &hctx->dispatch);
2631         spin_unlock(&hctx->lock);
2632
2633         blk_mq_run_hw_queue(hctx, true);
2634         return 0;
2635 }
2636
2637 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2638 {
2639         if (!(hctx->flags & BLK_MQ_F_STACKING))
2640                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2641                                                     &hctx->cpuhp_online);
2642         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2643                                             &hctx->cpuhp_dead);
2644 }
2645
2646 /*
2647  * Before freeing hw queue, clearing the flush request reference in
2648  * tags->rqs[] for avoiding potential UAF.
2649  */
2650 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2651                 unsigned int queue_depth, struct request *flush_rq)
2652 {
2653         int i;
2654         unsigned long flags;
2655
2656         /* The hw queue may not be mapped yet */
2657         if (!tags)
2658                 return;
2659
2660         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2661
2662         for (i = 0; i < queue_depth; i++)
2663                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2664
2665         /*
2666          * Wait until all pending iteration is done.
2667          *
2668          * Request reference is cleared and it is guaranteed to be observed
2669          * after the ->lock is released.
2670          */
2671         spin_lock_irqsave(&tags->lock, flags);
2672         spin_unlock_irqrestore(&tags->lock, flags);
2673 }
2674
2675 /* hctx->ctxs will be freed in queue's release handler */
2676 static void blk_mq_exit_hctx(struct request_queue *q,
2677                 struct blk_mq_tag_set *set,
2678                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2679 {
2680         struct request *flush_rq = hctx->fq->flush_rq;
2681
2682         if (blk_mq_hw_queue_mapped(hctx))
2683                 blk_mq_tag_idle(hctx);
2684
2685         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2686                         set->queue_depth, flush_rq);
2687         if (set->ops->exit_request)
2688                 set->ops->exit_request(set, flush_rq, hctx_idx);
2689
2690         if (set->ops->exit_hctx)
2691                 set->ops->exit_hctx(hctx, hctx_idx);
2692
2693         blk_mq_remove_cpuhp(hctx);
2694
2695         spin_lock(&q->unused_hctx_lock);
2696         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2697         spin_unlock(&q->unused_hctx_lock);
2698 }
2699
2700 static void blk_mq_exit_hw_queues(struct request_queue *q,
2701                 struct blk_mq_tag_set *set, int nr_queue)
2702 {
2703         struct blk_mq_hw_ctx *hctx;
2704         unsigned int i;
2705
2706         queue_for_each_hw_ctx(q, hctx, i) {
2707                 if (i == nr_queue)
2708                         break;
2709                 blk_mq_debugfs_unregister_hctx(hctx);
2710                 blk_mq_exit_hctx(q, set, hctx, i);
2711         }
2712 }
2713
2714 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2715 {
2716         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2717
2718         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2719                            __alignof__(struct blk_mq_hw_ctx)) !=
2720                      sizeof(struct blk_mq_hw_ctx));
2721
2722         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2723                 hw_ctx_size += sizeof(struct srcu_struct);
2724
2725         return hw_ctx_size;
2726 }
2727
2728 static int blk_mq_init_hctx(struct request_queue *q,
2729                 struct blk_mq_tag_set *set,
2730                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2731 {
2732         hctx->queue_num = hctx_idx;
2733
2734         if (!(hctx->flags & BLK_MQ_F_STACKING))
2735                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2736                                 &hctx->cpuhp_online);
2737         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2738
2739         hctx->tags = set->tags[hctx_idx];
2740
2741         if (set->ops->init_hctx &&
2742             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2743                 goto unregister_cpu_notifier;
2744
2745         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2746                                 hctx->numa_node))
2747                 goto exit_hctx;
2748         return 0;
2749
2750  exit_hctx:
2751         if (set->ops->exit_hctx)
2752                 set->ops->exit_hctx(hctx, hctx_idx);
2753  unregister_cpu_notifier:
2754         blk_mq_remove_cpuhp(hctx);
2755         return -1;
2756 }
2757
2758 static struct blk_mq_hw_ctx *
2759 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2760                 int node)
2761 {
2762         struct blk_mq_hw_ctx *hctx;
2763         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2764
2765         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2766         if (!hctx)
2767                 goto fail_alloc_hctx;
2768
2769         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2770                 goto free_hctx;
2771
2772         atomic_set(&hctx->nr_active, 0);
2773         if (node == NUMA_NO_NODE)
2774                 node = set->numa_node;
2775         hctx->numa_node = node;
2776
2777         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2778         spin_lock_init(&hctx->lock);
2779         INIT_LIST_HEAD(&hctx->dispatch);
2780         hctx->queue = q;
2781         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2782
2783         INIT_LIST_HEAD(&hctx->hctx_list);
2784
2785         /*
2786          * Allocate space for all possible cpus to avoid allocation at
2787          * runtime
2788          */
2789         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2790                         gfp, node);
2791         if (!hctx->ctxs)
2792                 goto free_cpumask;
2793
2794         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2795                                 gfp, node, false, false))
2796                 goto free_ctxs;
2797         hctx->nr_ctx = 0;
2798
2799         spin_lock_init(&hctx->dispatch_wait_lock);
2800         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2801         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2802
2803         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2804         if (!hctx->fq)
2805                 goto free_bitmap;
2806
2807         if (hctx->flags & BLK_MQ_F_BLOCKING)
2808                 init_srcu_struct(hctx->srcu);
2809         blk_mq_hctx_kobj_init(hctx);
2810
2811         return hctx;
2812
2813  free_bitmap:
2814         sbitmap_free(&hctx->ctx_map);
2815  free_ctxs:
2816         kfree(hctx->ctxs);
2817  free_cpumask:
2818         free_cpumask_var(hctx->cpumask);
2819  free_hctx:
2820         kfree(hctx);
2821  fail_alloc_hctx:
2822         return NULL;
2823 }
2824
2825 static void blk_mq_init_cpu_queues(struct request_queue *q,
2826                                    unsigned int nr_hw_queues)
2827 {
2828         struct blk_mq_tag_set *set = q->tag_set;
2829         unsigned int i, j;
2830
2831         for_each_possible_cpu(i) {
2832                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2833                 struct blk_mq_hw_ctx *hctx;
2834                 int k;
2835
2836                 __ctx->cpu = i;
2837                 spin_lock_init(&__ctx->lock);
2838                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2839                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2840
2841                 __ctx->queue = q;
2842
2843                 /*
2844                  * Set local node, IFF we have more than one hw queue. If
2845                  * not, we remain on the home node of the device
2846                  */
2847                 for (j = 0; j < set->nr_maps; j++) {
2848                         hctx = blk_mq_map_queue_type(q, j, i);
2849                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2850                                 hctx->numa_node = cpu_to_node(i);
2851                 }
2852         }
2853 }
2854
2855 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2856                                         int hctx_idx)
2857 {
2858         unsigned int flags = set->flags;
2859         int ret = 0;
2860
2861         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2862                                         set->queue_depth, set->reserved_tags, flags);
2863         if (!set->tags[hctx_idx])
2864                 return false;
2865
2866         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2867                                 set->queue_depth);
2868         if (!ret)
2869                 return true;
2870
2871         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2872         set->tags[hctx_idx] = NULL;
2873         return false;
2874 }
2875
2876 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2877                                          unsigned int hctx_idx)
2878 {
2879         unsigned int flags = set->flags;
2880
2881         if (set->tags && set->tags[hctx_idx]) {
2882                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2883                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2884                 set->tags[hctx_idx] = NULL;
2885         }
2886 }
2887
2888 static void blk_mq_map_swqueue(struct request_queue *q)
2889 {
2890         unsigned int i, j, hctx_idx;
2891         struct blk_mq_hw_ctx *hctx;
2892         struct blk_mq_ctx *ctx;
2893         struct blk_mq_tag_set *set = q->tag_set;
2894
2895         queue_for_each_hw_ctx(q, hctx, i) {
2896                 cpumask_clear(hctx->cpumask);
2897                 hctx->nr_ctx = 0;
2898                 hctx->dispatch_from = NULL;
2899         }
2900
2901         /*
2902          * Map software to hardware queues.
2903          *
2904          * If the cpu isn't present, the cpu is mapped to first hctx.
2905          */
2906         for_each_possible_cpu(i) {
2907
2908                 ctx = per_cpu_ptr(q->queue_ctx, i);
2909                 for (j = 0; j < set->nr_maps; j++) {
2910                         if (!set->map[j].nr_queues) {
2911                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2912                                                 HCTX_TYPE_DEFAULT, i);
2913                                 continue;
2914                         }
2915                         hctx_idx = set->map[j].mq_map[i];
2916                         /* unmapped hw queue can be remapped after CPU topo changed */
2917                         if (!set->tags[hctx_idx] &&
2918                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2919                                 /*
2920                                  * If tags initialization fail for some hctx,
2921                                  * that hctx won't be brought online.  In this
2922                                  * case, remap the current ctx to hctx[0] which
2923                                  * is guaranteed to always have tags allocated
2924                                  */
2925                                 set->map[j].mq_map[i] = 0;
2926                         }
2927
2928                         hctx = blk_mq_map_queue_type(q, j, i);
2929                         ctx->hctxs[j] = hctx;
2930                         /*
2931                          * If the CPU is already set in the mask, then we've
2932                          * mapped this one already. This can happen if
2933                          * devices share queues across queue maps.
2934                          */
2935                         if (cpumask_test_cpu(i, hctx->cpumask))
2936                                 continue;
2937
2938                         cpumask_set_cpu(i, hctx->cpumask);
2939                         hctx->type = j;
2940                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2941                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2942
2943                         /*
2944                          * If the nr_ctx type overflows, we have exceeded the
2945                          * amount of sw queues we can support.
2946                          */
2947                         BUG_ON(!hctx->nr_ctx);
2948                 }
2949
2950                 for (; j < HCTX_MAX_TYPES; j++)
2951                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2952                                         HCTX_TYPE_DEFAULT, i);
2953         }
2954
2955         queue_for_each_hw_ctx(q, hctx, i) {
2956                 /*
2957                  * If no software queues are mapped to this hardware queue,
2958                  * disable it and free the request entries.
2959                  */
2960                 if (!hctx->nr_ctx) {
2961                         /* Never unmap queue 0.  We need it as a
2962                          * fallback in case of a new remap fails
2963                          * allocation
2964                          */
2965                         if (i && set->tags[i])
2966                                 blk_mq_free_map_and_requests(set, i);
2967
2968                         hctx->tags = NULL;
2969                         continue;
2970                 }
2971
2972                 hctx->tags = set->tags[i];
2973                 WARN_ON(!hctx->tags);
2974
2975                 /*
2976                  * Set the map size to the number of mapped software queues.
2977                  * This is more accurate and more efficient than looping
2978                  * over all possibly mapped software queues.
2979                  */
2980                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2981
2982                 /*
2983                  * Initialize batch roundrobin counts
2984                  */
2985                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2986                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2987         }
2988 }
2989
2990 /*
2991  * Caller needs to ensure that we're either frozen/quiesced, or that
2992  * the queue isn't live yet.
2993  */
2994 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2995 {
2996         struct blk_mq_hw_ctx *hctx;
2997         int i;
2998
2999         queue_for_each_hw_ctx(q, hctx, i) {
3000                 if (shared)
3001                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3002                 else
3003                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3004         }
3005 }
3006
3007 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3008                                          bool shared)
3009 {
3010         struct request_queue *q;
3011
3012         lockdep_assert_held(&set->tag_list_lock);
3013
3014         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3015                 blk_mq_freeze_queue(q);
3016                 queue_set_hctx_shared(q, shared);
3017                 blk_mq_unfreeze_queue(q);
3018         }
3019 }
3020
3021 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3022 {
3023         struct blk_mq_tag_set *set = q->tag_set;
3024
3025         mutex_lock(&set->tag_list_lock);
3026         list_del(&q->tag_set_list);
3027         if (list_is_singular(&set->tag_list)) {
3028                 /* just transitioned to unshared */
3029                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3030                 /* update existing queue */
3031                 blk_mq_update_tag_set_shared(set, false);
3032         }
3033         mutex_unlock(&set->tag_list_lock);
3034         INIT_LIST_HEAD(&q->tag_set_list);
3035 }
3036
3037 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3038                                      struct request_queue *q)
3039 {
3040         mutex_lock(&set->tag_list_lock);
3041
3042         /*
3043          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3044          */
3045         if (!list_empty(&set->tag_list) &&
3046             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3047                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3048                 /* update existing queue */
3049                 blk_mq_update_tag_set_shared(set, true);
3050         }
3051         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3052                 queue_set_hctx_shared(q, true);
3053         list_add_tail(&q->tag_set_list, &set->tag_list);
3054
3055         mutex_unlock(&set->tag_list_lock);
3056 }
3057
3058 /* All allocations will be freed in release handler of q->mq_kobj */
3059 static int blk_mq_alloc_ctxs(struct request_queue *q)
3060 {
3061         struct blk_mq_ctxs *ctxs;
3062         int cpu;
3063
3064         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3065         if (!ctxs)
3066                 return -ENOMEM;
3067
3068         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3069         if (!ctxs->queue_ctx)
3070                 goto fail;
3071
3072         for_each_possible_cpu(cpu) {
3073                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3074                 ctx->ctxs = ctxs;
3075         }
3076
3077         q->mq_kobj = &ctxs->kobj;
3078         q->queue_ctx = ctxs->queue_ctx;
3079
3080         return 0;
3081  fail:
3082         kfree(ctxs);
3083         return -ENOMEM;
3084 }
3085
3086 /*
3087  * It is the actual release handler for mq, but we do it from
3088  * request queue's release handler for avoiding use-after-free
3089  * and headache because q->mq_kobj shouldn't have been introduced,
3090  * but we can't group ctx/kctx kobj without it.
3091  */
3092 void blk_mq_release(struct request_queue *q)
3093 {
3094         struct blk_mq_hw_ctx *hctx, *next;
3095         int i;
3096
3097         queue_for_each_hw_ctx(q, hctx, i)
3098                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3099
3100         /* all hctx are in .unused_hctx_list now */
3101         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3102                 list_del_init(&hctx->hctx_list);
3103                 kobject_put(&hctx->kobj);
3104         }
3105
3106         kfree(q->queue_hw_ctx);
3107
3108         /*
3109          * release .mq_kobj and sw queue's kobject now because
3110          * both share lifetime with request queue.
3111          */
3112         blk_mq_sysfs_deinit(q);
3113 }
3114
3115 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3116                 void *queuedata)
3117 {
3118         struct request_queue *q;
3119         int ret;
3120
3121         q = blk_alloc_queue(set->numa_node);
3122         if (!q)
3123                 return ERR_PTR(-ENOMEM);
3124         q->queuedata = queuedata;
3125         ret = blk_mq_init_allocated_queue(set, q);
3126         if (ret) {
3127                 blk_cleanup_queue(q);
3128                 return ERR_PTR(ret);
3129         }
3130         return q;
3131 }
3132 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3133
3134 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3135 {
3136         return blk_mq_init_queue_data(set, NULL);
3137 }
3138 EXPORT_SYMBOL(blk_mq_init_queue);
3139
3140 /*
3141  * Helper for setting up a queue with mq ops, given queue depth, and
3142  * the passed in mq ops flags.
3143  */
3144 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3145                                            const struct blk_mq_ops *ops,
3146                                            unsigned int queue_depth,
3147                                            unsigned int set_flags)
3148 {
3149         struct request_queue *q;
3150         int ret;
3151
3152         ret = blk_mq_alloc_sq_tag_set(set, ops, queue_depth, set_flags);
3153         if (ret)
3154                 return ERR_PTR(ret);
3155         q = blk_mq_init_queue(set);
3156         if (IS_ERR(q))
3157                 blk_mq_free_tag_set(set);
3158         return q;
3159 }
3160 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3161
3162 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3163                 struct blk_mq_tag_set *set, struct request_queue *q,
3164                 int hctx_idx, int node)
3165 {
3166         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3167
3168         /* reuse dead hctx first */
3169         spin_lock(&q->unused_hctx_lock);
3170         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3171                 if (tmp->numa_node == node) {
3172                         hctx = tmp;
3173                         break;
3174                 }
3175         }
3176         if (hctx)
3177                 list_del_init(&hctx->hctx_list);
3178         spin_unlock(&q->unused_hctx_lock);
3179
3180         if (!hctx)
3181                 hctx = blk_mq_alloc_hctx(q, set, node);
3182         if (!hctx)
3183                 goto fail;
3184
3185         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3186                 goto free_hctx;
3187
3188         return hctx;
3189
3190  free_hctx:
3191         kobject_put(&hctx->kobj);
3192  fail:
3193         return NULL;
3194 }
3195
3196 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3197                                                 struct request_queue *q)
3198 {
3199         int i, j, end;
3200         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3201
3202         if (q->nr_hw_queues < set->nr_hw_queues) {
3203                 struct blk_mq_hw_ctx **new_hctxs;
3204
3205                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3206                                        sizeof(*new_hctxs), GFP_KERNEL,
3207                                        set->numa_node);
3208                 if (!new_hctxs)
3209                         return;
3210                 if (hctxs)
3211                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3212                                sizeof(*hctxs));
3213                 q->queue_hw_ctx = new_hctxs;
3214                 kfree(hctxs);
3215                 hctxs = new_hctxs;
3216         }
3217
3218         /* protect against switching io scheduler  */
3219         mutex_lock(&q->sysfs_lock);
3220         for (i = 0; i < set->nr_hw_queues; i++) {
3221                 int node;
3222                 struct blk_mq_hw_ctx *hctx;
3223
3224                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3225                 /*
3226                  * If the hw queue has been mapped to another numa node,
3227                  * we need to realloc the hctx. If allocation fails, fallback
3228                  * to use the previous one.
3229                  */
3230                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3231                         continue;
3232
3233                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3234                 if (hctx) {
3235                         if (hctxs[i])
3236                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3237                         hctxs[i] = hctx;
3238                 } else {
3239                         if (hctxs[i])
3240                                 pr_warn("Allocate new hctx on node %d fails,\
3241                                                 fallback to previous one on node %d\n",
3242                                                 node, hctxs[i]->numa_node);
3243                         else
3244                                 break;
3245                 }
3246         }
3247         /*
3248          * Increasing nr_hw_queues fails. Free the newly allocated
3249          * hctxs and keep the previous q->nr_hw_queues.
3250          */
3251         if (i != set->nr_hw_queues) {
3252                 j = q->nr_hw_queues;
3253                 end = i;
3254         } else {
3255                 j = i;
3256                 end = q->nr_hw_queues;
3257                 q->nr_hw_queues = set->nr_hw_queues;
3258         }
3259
3260         for (; j < end; j++) {
3261                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3262
3263                 if (hctx) {
3264                         if (hctx->tags)
3265                                 blk_mq_free_map_and_requests(set, j);
3266                         blk_mq_exit_hctx(q, set, hctx, j);
3267                         hctxs[j] = NULL;
3268                 }
3269         }
3270         mutex_unlock(&q->sysfs_lock);
3271 }
3272
3273 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3274                 struct request_queue *q)
3275 {
3276         /* mark the queue as mq asap */
3277         q->mq_ops = set->ops;
3278
3279         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3280                                              blk_mq_poll_stats_bkt,
3281                                              BLK_MQ_POLL_STATS_BKTS, q);
3282         if (!q->poll_cb)
3283                 goto err_exit;
3284
3285         if (blk_mq_alloc_ctxs(q))
3286                 goto err_poll;
3287
3288         /* init q->mq_kobj and sw queues' kobjects */
3289         blk_mq_sysfs_init(q);
3290
3291         INIT_LIST_HEAD(&q->unused_hctx_list);
3292         spin_lock_init(&q->unused_hctx_lock);
3293
3294         blk_mq_realloc_hw_ctxs(set, q);
3295         if (!q->nr_hw_queues)
3296                 goto err_hctxs;
3297
3298         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3299         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3300
3301         q->tag_set = set;
3302
3303         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3304         if (set->nr_maps > HCTX_TYPE_POLL &&
3305             set->map[HCTX_TYPE_POLL].nr_queues)
3306                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3307
3308         q->sg_reserved_size = INT_MAX;
3309
3310         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3311         INIT_LIST_HEAD(&q->requeue_list);
3312         spin_lock_init(&q->requeue_lock);
3313
3314         q->nr_requests = set->queue_depth;
3315
3316         /*
3317          * Default to classic polling
3318          */
3319         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3320
3321         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3322         blk_mq_add_queue_tag_set(set, q);
3323         blk_mq_map_swqueue(q);
3324         return 0;
3325
3326 err_hctxs:
3327         kfree(q->queue_hw_ctx);
3328         q->nr_hw_queues = 0;
3329         blk_mq_sysfs_deinit(q);
3330 err_poll:
3331         blk_stat_free_callback(q->poll_cb);
3332         q->poll_cb = NULL;
3333 err_exit:
3334         q->mq_ops = NULL;
3335         return -ENOMEM;
3336 }
3337 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3338
3339 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3340 void blk_mq_exit_queue(struct request_queue *q)
3341 {
3342         struct blk_mq_tag_set *set = q->tag_set;
3343
3344         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3345         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3346         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3347         blk_mq_del_queue_tag_set(q);
3348 }
3349
3350 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3351 {
3352         int i;
3353
3354         for (i = 0; i < set->nr_hw_queues; i++) {
3355                 if (!__blk_mq_alloc_map_and_request(set, i))
3356                         goto out_unwind;
3357                 cond_resched();
3358         }
3359
3360         return 0;
3361
3362 out_unwind:
3363         while (--i >= 0)
3364                 blk_mq_free_map_and_requests(set, i);
3365
3366         return -ENOMEM;
3367 }
3368
3369 /*
3370  * Allocate the request maps associated with this tag_set. Note that this
3371  * may reduce the depth asked for, if memory is tight. set->queue_depth
3372  * will be updated to reflect the allocated depth.
3373  */
3374 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3375 {
3376         unsigned int depth;
3377         int err;
3378
3379         depth = set->queue_depth;
3380         do {
3381                 err = __blk_mq_alloc_rq_maps(set);
3382                 if (!err)
3383                         break;
3384
3385                 set->queue_depth >>= 1;
3386                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3387                         err = -ENOMEM;
3388                         break;
3389                 }
3390         } while (set->queue_depth);
3391
3392         if (!set->queue_depth || err) {
3393                 pr_err("blk-mq: failed to allocate request map\n");
3394                 return -ENOMEM;
3395         }
3396
3397         if (depth != set->queue_depth)
3398                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3399                                                 depth, set->queue_depth);
3400
3401         return 0;
3402 }
3403
3404 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3405 {
3406         /*
3407          * blk_mq_map_queues() and multiple .map_queues() implementations
3408          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3409          * number of hardware queues.
3410          */
3411         if (set->nr_maps == 1)
3412                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3413
3414         if (set->ops->map_queues && !is_kdump_kernel()) {
3415                 int i;
3416
3417                 /*
3418                  * transport .map_queues is usually done in the following
3419                  * way:
3420                  *
3421                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3422                  *      mask = get_cpu_mask(queue)
3423                  *      for_each_cpu(cpu, mask)
3424                  *              set->map[x].mq_map[cpu] = queue;
3425                  * }
3426                  *
3427                  * When we need to remap, the table has to be cleared for
3428                  * killing stale mapping since one CPU may not be mapped
3429                  * to any hw queue.
3430                  */
3431                 for (i = 0; i < set->nr_maps; i++)
3432                         blk_mq_clear_mq_map(&set->map[i]);
3433
3434                 return set->ops->map_queues(set);
3435         } else {
3436                 BUG_ON(set->nr_maps > 1);
3437                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3438         }
3439 }
3440
3441 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3442                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3443 {
3444         struct blk_mq_tags **new_tags;
3445
3446         if (cur_nr_hw_queues >= new_nr_hw_queues)
3447                 return 0;
3448
3449         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3450                                 GFP_KERNEL, set->numa_node);
3451         if (!new_tags)
3452                 return -ENOMEM;
3453
3454         if (set->tags)
3455                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3456                        sizeof(*set->tags));
3457         kfree(set->tags);
3458         set->tags = new_tags;
3459         set->nr_hw_queues = new_nr_hw_queues;
3460
3461         return 0;
3462 }
3463
3464 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3465                                 int new_nr_hw_queues)
3466 {
3467         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3468 }
3469
3470 /*
3471  * Alloc a tag set to be associated with one or more request queues.
3472  * May fail with EINVAL for various error conditions. May adjust the
3473  * requested depth down, if it's too large. In that case, the set
3474  * value will be stored in set->queue_depth.
3475  */
3476 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3477 {
3478         int i, ret;
3479
3480         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3481
3482         if (!set->nr_hw_queues)
3483                 return -EINVAL;
3484         if (!set->queue_depth)
3485                 return -EINVAL;
3486         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3487                 return -EINVAL;
3488
3489         if (!set->ops->queue_rq)
3490                 return -EINVAL;
3491
3492         if (!set->ops->get_budget ^ !set->ops->put_budget)
3493                 return -EINVAL;
3494
3495         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3496                 pr_info("blk-mq: reduced tag depth to %u\n",
3497                         BLK_MQ_MAX_DEPTH);
3498                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3499         }
3500
3501         if (!set->nr_maps)
3502                 set->nr_maps = 1;
3503         else if (set->nr_maps > HCTX_MAX_TYPES)
3504                 return -EINVAL;
3505
3506         /*
3507          * If a crashdump is active, then we are potentially in a very
3508          * memory constrained environment. Limit us to 1 queue and
3509          * 64 tags to prevent using too much memory.
3510          */
3511         if (is_kdump_kernel()) {
3512                 set->nr_hw_queues = 1;
3513                 set->nr_maps = 1;
3514                 set->queue_depth = min(64U, set->queue_depth);
3515         }
3516         /*
3517          * There is no use for more h/w queues than cpus if we just have
3518          * a single map
3519          */
3520         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3521                 set->nr_hw_queues = nr_cpu_ids;
3522
3523         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3524                 return -ENOMEM;
3525
3526         ret = -ENOMEM;
3527         for (i = 0; i < set->nr_maps; i++) {
3528                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3529                                                   sizeof(set->map[i].mq_map[0]),
3530                                                   GFP_KERNEL, set->numa_node);
3531                 if (!set->map[i].mq_map)
3532                         goto out_free_mq_map;
3533                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3534         }
3535
3536         ret = blk_mq_update_queue_map(set);
3537         if (ret)
3538                 goto out_free_mq_map;
3539
3540         ret = blk_mq_alloc_map_and_requests(set);
3541         if (ret)
3542                 goto out_free_mq_map;
3543
3544         if (blk_mq_is_sbitmap_shared(set->flags)) {
3545                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3546
3547                 if (blk_mq_init_shared_sbitmap(set)) {
3548                         ret = -ENOMEM;
3549                         goto out_free_mq_rq_maps;
3550                 }
3551         }
3552
3553         mutex_init(&set->tag_list_lock);
3554         INIT_LIST_HEAD(&set->tag_list);
3555
3556         return 0;
3557
3558 out_free_mq_rq_maps:
3559         for (i = 0; i < set->nr_hw_queues; i++)
3560                 blk_mq_free_map_and_requests(set, i);
3561 out_free_mq_map:
3562         for (i = 0; i < set->nr_maps; i++) {
3563                 kfree(set->map[i].mq_map);
3564                 set->map[i].mq_map = NULL;
3565         }
3566         kfree(set->tags);
3567         set->tags = NULL;
3568         return ret;
3569 }
3570 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3571
3572 /* allocate and initialize a tagset for a simple single-queue device */
3573 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3574                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3575                 unsigned int set_flags)
3576 {
3577         memset(set, 0, sizeof(*set));
3578         set->ops = ops;
3579         set->nr_hw_queues = 1;
3580         set->nr_maps = 1;
3581         set->queue_depth = queue_depth;
3582         set->numa_node = NUMA_NO_NODE;
3583         set->flags = set_flags;
3584         return blk_mq_alloc_tag_set(set);
3585 }
3586 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3587
3588 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3589 {
3590         int i, j;
3591
3592         for (i = 0; i < set->nr_hw_queues; i++)
3593                 blk_mq_free_map_and_requests(set, i);
3594
3595         if (blk_mq_is_sbitmap_shared(set->flags))
3596                 blk_mq_exit_shared_sbitmap(set);
3597
3598         for (j = 0; j < set->nr_maps; j++) {
3599                 kfree(set->map[j].mq_map);
3600                 set->map[j].mq_map = NULL;
3601         }
3602
3603         kfree(set->tags);
3604         set->tags = NULL;
3605 }
3606 EXPORT_SYMBOL(blk_mq_free_tag_set);
3607
3608 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3609 {
3610         struct blk_mq_tag_set *set = q->tag_set;
3611         struct blk_mq_hw_ctx *hctx;
3612         int i, ret;
3613
3614         if (!set)
3615                 return -EINVAL;
3616
3617         if (q->nr_requests == nr)
3618                 return 0;
3619
3620         blk_mq_freeze_queue(q);
3621         blk_mq_quiesce_queue(q);
3622
3623         ret = 0;
3624         queue_for_each_hw_ctx(q, hctx, i) {
3625                 if (!hctx->tags)
3626                         continue;
3627                 /*
3628                  * If we're using an MQ scheduler, just update the scheduler
3629                  * queue depth. This is similar to what the old code would do.
3630                  */
3631                 if (!hctx->sched_tags) {
3632                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3633                                                         false);
3634                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3635                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3636                 } else {
3637                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3638                                                         nr, true);
3639                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3640                                 hctx->sched_tags->bitmap_tags =
3641                                         &q->sched_bitmap_tags;
3642                                 hctx->sched_tags->breserved_tags =
3643                                         &q->sched_breserved_tags;
3644                         }
3645                 }
3646                 if (ret)
3647                         break;
3648                 if (q->elevator && q->elevator->type->ops.depth_updated)
3649                         q->elevator->type->ops.depth_updated(hctx);
3650         }
3651         if (!ret) {
3652                 q->nr_requests = nr;
3653                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3654                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3655                                              nr - set->reserved_tags);
3656         }
3657
3658         blk_mq_unquiesce_queue(q);
3659         blk_mq_unfreeze_queue(q);
3660
3661         return ret;
3662 }
3663
3664 /*
3665  * request_queue and elevator_type pair.
3666  * It is just used by __blk_mq_update_nr_hw_queues to cache
3667  * the elevator_type associated with a request_queue.
3668  */
3669 struct blk_mq_qe_pair {
3670         struct list_head node;
3671         struct request_queue *q;
3672         struct elevator_type *type;
3673 };
3674
3675 /*
3676  * Cache the elevator_type in qe pair list and switch the
3677  * io scheduler to 'none'
3678  */
3679 static bool blk_mq_elv_switch_none(struct list_head *head,
3680                 struct request_queue *q)
3681 {
3682         struct blk_mq_qe_pair *qe;
3683
3684         if (!q->elevator)
3685                 return true;
3686
3687         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3688         if (!qe)
3689                 return false;
3690
3691         INIT_LIST_HEAD(&qe->node);
3692         qe->q = q;
3693         qe->type = q->elevator->type;
3694         list_add(&qe->node, head);
3695
3696         mutex_lock(&q->sysfs_lock);
3697         /*
3698          * After elevator_switch_mq, the previous elevator_queue will be
3699          * released by elevator_release. The reference of the io scheduler
3700          * module get by elevator_get will also be put. So we need to get
3701          * a reference of the io scheduler module here to prevent it to be
3702          * removed.
3703          */
3704         __module_get(qe->type->elevator_owner);
3705         elevator_switch_mq(q, NULL);
3706         mutex_unlock(&q->sysfs_lock);
3707
3708         return true;
3709 }
3710
3711 static void blk_mq_elv_switch_back(struct list_head *head,
3712                 struct request_queue *q)
3713 {
3714         struct blk_mq_qe_pair *qe;
3715         struct elevator_type *t = NULL;
3716
3717         list_for_each_entry(qe, head, node)
3718                 if (qe->q == q) {
3719                         t = qe->type;
3720                         break;
3721                 }
3722
3723         if (!t)
3724                 return;
3725
3726         list_del(&qe->node);
3727         kfree(qe);
3728
3729         mutex_lock(&q->sysfs_lock);
3730         elevator_switch_mq(q, t);
3731         mutex_unlock(&q->sysfs_lock);
3732 }
3733
3734 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3735                                                         int nr_hw_queues)
3736 {
3737         struct request_queue *q;
3738         LIST_HEAD(head);
3739         int prev_nr_hw_queues;
3740
3741         lockdep_assert_held(&set->tag_list_lock);
3742
3743         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3744                 nr_hw_queues = nr_cpu_ids;
3745         if (nr_hw_queues < 1)
3746                 return;
3747         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3748                 return;
3749
3750         list_for_each_entry(q, &set->tag_list, tag_set_list)
3751                 blk_mq_freeze_queue(q);
3752         /*
3753          * Switch IO scheduler to 'none', cleaning up the data associated
3754          * with the previous scheduler. We will switch back once we are done
3755          * updating the new sw to hw queue mappings.
3756          */
3757         list_for_each_entry(q, &set->tag_list, tag_set_list)
3758                 if (!blk_mq_elv_switch_none(&head, q))
3759                         goto switch_back;
3760
3761         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3762                 blk_mq_debugfs_unregister_hctxs(q);
3763                 blk_mq_sysfs_unregister(q);
3764         }
3765
3766         prev_nr_hw_queues = set->nr_hw_queues;
3767         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3768             0)
3769                 goto reregister;
3770
3771         set->nr_hw_queues = nr_hw_queues;
3772 fallback:
3773         blk_mq_update_queue_map(set);
3774         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3775                 blk_mq_realloc_hw_ctxs(set, q);
3776                 if (q->nr_hw_queues != set->nr_hw_queues) {
3777                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3778                                         nr_hw_queues, prev_nr_hw_queues);
3779                         set->nr_hw_queues = prev_nr_hw_queues;
3780                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3781                         goto fallback;
3782                 }
3783                 blk_mq_map_swqueue(q);
3784         }
3785
3786 reregister:
3787         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3788                 blk_mq_sysfs_register(q);
3789                 blk_mq_debugfs_register_hctxs(q);
3790         }
3791
3792 switch_back:
3793         list_for_each_entry(q, &set->tag_list, tag_set_list)
3794                 blk_mq_elv_switch_back(&head, q);
3795
3796         list_for_each_entry(q, &set->tag_list, tag_set_list)
3797                 blk_mq_unfreeze_queue(q);
3798 }
3799
3800 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3801 {
3802         mutex_lock(&set->tag_list_lock);
3803         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3804         mutex_unlock(&set->tag_list_lock);
3805 }
3806 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3807
3808 /* Enable polling stats and return whether they were already enabled. */
3809 static bool blk_poll_stats_enable(struct request_queue *q)
3810 {
3811         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3812             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3813                 return true;
3814         blk_stat_add_callback(q, q->poll_cb);
3815         return false;
3816 }
3817
3818 static void blk_mq_poll_stats_start(struct request_queue *q)
3819 {
3820         /*
3821          * We don't arm the callback if polling stats are not enabled or the
3822          * callback is already active.
3823          */
3824         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3825             blk_stat_is_active(q->poll_cb))
3826                 return;
3827
3828         blk_stat_activate_msecs(q->poll_cb, 100);
3829 }
3830
3831 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3832 {
3833         struct request_queue *q = cb->data;
3834         int bucket;
3835
3836         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3837                 if (cb->stat[bucket].nr_samples)
3838                         q->poll_stat[bucket] = cb->stat[bucket];
3839         }
3840 }
3841
3842 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3843                                        struct request *rq)
3844 {
3845         unsigned long ret = 0;
3846         int bucket;
3847
3848         /*
3849          * If stats collection isn't on, don't sleep but turn it on for
3850          * future users
3851          */
3852         if (!blk_poll_stats_enable(q))
3853                 return 0;
3854
3855         /*
3856          * As an optimistic guess, use half of the mean service time
3857          * for this type of request. We can (and should) make this smarter.
3858          * For instance, if the completion latencies are tight, we can
3859          * get closer than just half the mean. This is especially
3860          * important on devices where the completion latencies are longer
3861          * than ~10 usec. We do use the stats for the relevant IO size
3862          * if available which does lead to better estimates.
3863          */
3864         bucket = blk_mq_poll_stats_bkt(rq);
3865         if (bucket < 0)
3866                 return ret;
3867
3868         if (q->poll_stat[bucket].nr_samples)
3869                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3870
3871         return ret;
3872 }
3873
3874 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3875                                      struct request *rq)
3876 {
3877         struct hrtimer_sleeper hs;
3878         enum hrtimer_mode mode;
3879         unsigned int nsecs;
3880         ktime_t kt;
3881
3882         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3883                 return false;
3884
3885         /*
3886          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3887          *
3888          *  0:  use half of prev avg
3889          * >0:  use this specific value
3890          */
3891         if (q->poll_nsec > 0)
3892                 nsecs = q->poll_nsec;
3893         else
3894                 nsecs = blk_mq_poll_nsecs(q, rq);
3895
3896         if (!nsecs)
3897                 return false;
3898
3899         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3900
3901         /*
3902          * This will be replaced with the stats tracking code, using
3903          * 'avg_completion_time / 2' as the pre-sleep target.
3904          */
3905         kt = nsecs;
3906
3907         mode = HRTIMER_MODE_REL;
3908         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3909         hrtimer_set_expires(&hs.timer, kt);
3910
3911         do {
3912                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3913                         break;
3914                 set_current_state(TASK_UNINTERRUPTIBLE);
3915                 hrtimer_sleeper_start_expires(&hs, mode);
3916                 if (hs.task)
3917                         io_schedule();
3918                 hrtimer_cancel(&hs.timer);
3919                 mode = HRTIMER_MODE_ABS;
3920         } while (hs.task && !signal_pending(current));
3921
3922         __set_current_state(TASK_RUNNING);
3923         destroy_hrtimer_on_stack(&hs.timer);
3924         return true;
3925 }
3926
3927 static bool blk_mq_poll_hybrid(struct request_queue *q,
3928                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3929 {
3930         struct request *rq;
3931
3932         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3933                 return false;
3934
3935         if (!blk_qc_t_is_internal(cookie))
3936                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3937         else {
3938                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3939                 /*
3940                  * With scheduling, if the request has completed, we'll
3941                  * get a NULL return here, as we clear the sched tag when
3942                  * that happens. The request still remains valid, like always,
3943                  * so we should be safe with just the NULL check.
3944                  */
3945                 if (!rq)
3946                         return false;
3947         }
3948
3949         return blk_mq_poll_hybrid_sleep(q, rq);
3950 }
3951
3952 /**
3953  * blk_poll - poll for IO completions
3954  * @q:  the queue
3955  * @cookie: cookie passed back at IO submission time
3956  * @spin: whether to spin for completions
3957  *
3958  * Description:
3959  *    Poll for completions on the passed in queue. Returns number of
3960  *    completed entries found. If @spin is true, then blk_poll will continue
3961  *    looping until at least one completion is found, unless the task is
3962  *    otherwise marked running (or we need to reschedule).
3963  */
3964 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3965 {
3966         struct blk_mq_hw_ctx *hctx;
3967         long state;
3968
3969         if (!blk_qc_t_valid(cookie) ||
3970             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3971                 return 0;
3972
3973         if (current->plug)
3974                 blk_flush_plug_list(current->plug, false);
3975
3976         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3977
3978         /*
3979          * If we sleep, have the caller restart the poll loop to reset
3980          * the state. Like for the other success return cases, the
3981          * caller is responsible for checking if the IO completed. If
3982          * the IO isn't complete, we'll get called again and will go
3983          * straight to the busy poll loop. If specified not to spin,
3984          * we also should not sleep.
3985          */
3986         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3987                 return 1;
3988
3989         hctx->poll_considered++;
3990
3991         state = current->state;
3992         do {
3993                 int ret;
3994
3995                 hctx->poll_invoked++;
3996
3997                 ret = q->mq_ops->poll(hctx);
3998                 if (ret > 0) {
3999                         hctx->poll_success++;
4000                         __set_current_state(TASK_RUNNING);
4001                         return ret;
4002                 }
4003
4004                 if (signal_pending_state(state, current))
4005                         __set_current_state(TASK_RUNNING);
4006
4007                 if (current->state == TASK_RUNNING)
4008                         return 1;
4009                 if (ret < 0 || !spin)
4010                         break;
4011                 cpu_relax();
4012         } while (!need_resched());
4013
4014         __set_current_state(TASK_RUNNING);
4015         return 0;
4016 }
4017 EXPORT_SYMBOL_GPL(blk_poll);
4018
4019 unsigned int blk_mq_rq_cpu(struct request *rq)
4020 {
4021         return rq->mq_ctx->cpu;
4022 }
4023 EXPORT_SYMBOL(blk_mq_rq_cpu);
4024
4025 static int __init blk_mq_init(void)
4026 {
4027         int i;
4028
4029         for_each_possible_cpu(i)
4030                 init_llist_head(&per_cpu(blk_cpu_done, i));
4031         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4032
4033         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4034                                   "block/softirq:dead", NULL,
4035                                   blk_softirq_cpu_dead);
4036         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4037                                 blk_mq_hctx_notify_dead);
4038         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4039                                 blk_mq_hctx_notify_online,
4040                                 blk_mq_hctx_notify_offline);
4041         return 0;
4042 }
4043 subsys_initcall(blk_mq_init);