83492d9423480c9ebd26eed64eb7c234dc55bf30
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
514                 blk_mq_req_flags_t flags)
515 {
516         struct blk_mq_alloc_data data = {
517                 .q              = q,
518                 .flags          = flags,
519                 .cmd_flags      = opf,
520                 .nr_tags        = 1,
521         };
522         struct request *rq;
523         int ret;
524
525         ret = blk_queue_enter(q, flags);
526         if (ret)
527                 return ERR_PTR(ret);
528
529         rq = __blk_mq_alloc_requests(&data);
530         if (!rq)
531                 goto out_queue_exit;
532         rq->__data_len = 0;
533         rq->__sector = (sector_t) -1;
534         rq->bio = rq->biotail = NULL;
535         return rq;
536 out_queue_exit:
537         blk_queue_exit(q);
538         return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545         struct blk_mq_alloc_data data = {
546                 .q              = q,
547                 .flags          = flags,
548                 .cmd_flags      = opf,
549                 .nr_tags        = 1,
550         };
551         u64 alloc_time_ns = 0;
552         unsigned int cpu;
553         unsigned int tag;
554         int ret;
555
556         /* alloc_time includes depth and tag waits */
557         if (blk_queue_rq_alloc_time(q))
558                 alloc_time_ns = ktime_get_ns();
559
560         /*
561          * If the tag allocator sleeps we could get an allocation for a
562          * different hardware context.  No need to complicate the low level
563          * allocator for this for the rare use case of a command tied to
564          * a specific queue.
565          */
566         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567                 return ERR_PTR(-EINVAL);
568
569         if (hctx_idx >= q->nr_hw_queues)
570                 return ERR_PTR(-EIO);
571
572         ret = blk_queue_enter(q, flags);
573         if (ret)
574                 return ERR_PTR(ret);
575
576         /*
577          * Check if the hardware context is actually mapped to anything.
578          * If not tell the caller that it should skip this queue.
579          */
580         ret = -EXDEV;
581         data.hctx = xa_load(&q->hctx_table, hctx_idx);
582         if (!blk_mq_hw_queue_mapped(data.hctx))
583                 goto out_queue_exit;
584         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585         if (cpu >= nr_cpu_ids)
586                 goto out_queue_exit;
587         data.ctx = __blk_mq_get_ctx(q, cpu);
588
589         if (!q->elevator)
590                 blk_mq_tag_busy(data.hctx);
591         else
592                 data.rq_flags |= RQF_ELV;
593
594         if (flags & BLK_MQ_REQ_RESERVED)
595                 data.rq_flags |= RQF_RESV;
596
597         ret = -EWOULDBLOCK;
598         tag = blk_mq_get_tag(&data);
599         if (tag == BLK_MQ_NO_TAG)
600                 goto out_queue_exit;
601         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602                                         alloc_time_ns);
603
604 out_queue_exit:
605         blk_queue_exit(q);
606         return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609
610 static void __blk_mq_free_request(struct request *rq)
611 {
612         struct request_queue *q = rq->q;
613         struct blk_mq_ctx *ctx = rq->mq_ctx;
614         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615         const int sched_tag = rq->internal_tag;
616
617         blk_crypto_free_request(rq);
618         blk_pm_mark_last_busy(rq);
619         rq->mq_hctx = NULL;
620         if (rq->tag != BLK_MQ_NO_TAG)
621                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622         if (sched_tag != BLK_MQ_NO_TAG)
623                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624         blk_mq_sched_restart(hctx);
625         blk_queue_exit(q);
626 }
627
628 void blk_mq_free_request(struct request *rq)
629 {
630         struct request_queue *q = rq->q;
631         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632
633         if ((rq->rq_flags & RQF_ELVPRIV) &&
634             q->elevator->type->ops.finish_request)
635                 q->elevator->type->ops.finish_request(rq);
636
637         if (rq->rq_flags & RQF_MQ_INFLIGHT)
638                 __blk_mq_dec_active_requests(hctx);
639
640         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641                 laptop_io_completion(q->disk->bdi);
642
643         rq_qos_done(q, rq);
644
645         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646         if (req_ref_put_and_test(rq))
647                 __blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653         struct request *rq;
654
655         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656                 blk_mq_free_request(rq);
657 }
658
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662                 rq->q->disk ? rq->q->disk->disk_name : "?",
663                 (__force unsigned long long) rq->cmd_flags);
664
665         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666                (unsigned long long)blk_rq_pos(rq),
667                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669                rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674                           unsigned int nbytes, blk_status_t error)
675 {
676         if (unlikely(error)) {
677                 bio->bi_status = error;
678         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679                 /*
680                  * Partial zone append completions cannot be supported as the
681                  * BIO fragments may end up not being written sequentially.
682                  */
683                 if (bio->bi_iter.bi_size != nbytes)
684                         bio->bi_status = BLK_STS_IOERR;
685                 else
686                         bio->bi_iter.bi_sector = rq->__sector;
687         }
688
689         bio_advance(bio, nbytes);
690
691         if (unlikely(rq->rq_flags & RQF_QUIET))
692                 bio_set_flag(bio, BIO_QUIET);
693         /* don't actually finish bio if it's part of flush sequence */
694         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695                 bio_endio(bio);
696 }
697
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700         if (req->part && blk_do_io_stat(req)) {
701                 const int sgrp = op_stat_group(req_op(req));
702
703                 part_stat_lock();
704                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705                 part_stat_unlock();
706         }
707 }
708
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711         printk_ratelimited(KERN_ERR
712                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713                 "phys_seg %u prio class %u\n",
714                 blk_status_to_str(status),
715                 req->q->disk ? req->q->disk->disk_name : "?",
716                 blk_rq_pos(req), (__force u32)req_op(req),
717                 blk_op_str(req_op(req)),
718                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
719                 req->nr_phys_segments,
720                 IOPRIO_PRIO_CLASS(req->ioprio));
721 }
722
723 /*
724  * Fully end IO on a request. Does not support partial completions, or
725  * errors.
726  */
727 static void blk_complete_request(struct request *req)
728 {
729         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
730         int total_bytes = blk_rq_bytes(req);
731         struct bio *bio = req->bio;
732
733         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
734
735         if (!bio)
736                 return;
737
738 #ifdef CONFIG_BLK_DEV_INTEGRITY
739         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
740                 req->q->integrity.profile->complete_fn(req, total_bytes);
741 #endif
742
743         blk_account_io_completion(req, total_bytes);
744
745         do {
746                 struct bio *next = bio->bi_next;
747
748                 /* Completion has already been traced */
749                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
750
751                 if (req_op(req) == REQ_OP_ZONE_APPEND)
752                         bio->bi_iter.bi_sector = req->__sector;
753
754                 if (!is_flush)
755                         bio_endio(bio);
756                 bio = next;
757         } while (bio);
758
759         /*
760          * Reset counters so that the request stacking driver
761          * can find how many bytes remain in the request
762          * later.
763          */
764         req->bio = NULL;
765         req->__data_len = 0;
766 }
767
768 /**
769  * blk_update_request - Complete multiple bytes without completing the request
770  * @req:      the request being processed
771  * @error:    block status code
772  * @nr_bytes: number of bytes to complete for @req
773  *
774  * Description:
775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
776  *     the request structure even if @req doesn't have leftover.
777  *     If @req has leftover, sets it up for the next range of segments.
778  *
779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
780  *     %false return from this function.
781  *
782  * Note:
783  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
784  *      except in the consistency check at the end of this function.
785  *
786  * Return:
787  *     %false - this request doesn't have any more data
788  *     %true  - this request has more data
789  **/
790 bool blk_update_request(struct request *req, blk_status_t error,
791                 unsigned int nr_bytes)
792 {
793         int total_bytes;
794
795         trace_block_rq_complete(req, error, nr_bytes);
796
797         if (!req->bio)
798                 return false;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
802             error == BLK_STS_OK)
803                 req->q->integrity.profile->complete_fn(req, nr_bytes);
804 #endif
805
806         if (unlikely(error && !blk_rq_is_passthrough(req) &&
807                      !(req->rq_flags & RQF_QUIET)) &&
808                      !test_bit(GD_DEAD, &req->q->disk->state)) {
809                 blk_print_req_error(req, error);
810                 trace_block_rq_error(req, error, nr_bytes);
811         }
812
813         blk_account_io_completion(req, nr_bytes);
814
815         total_bytes = 0;
816         while (req->bio) {
817                 struct bio *bio = req->bio;
818                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
819
820                 if (bio_bytes == bio->bi_iter.bi_size)
821                         req->bio = bio->bi_next;
822
823                 /* Completion has already been traced */
824                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825                 req_bio_endio(req, bio, bio_bytes, error);
826
827                 total_bytes += bio_bytes;
828                 nr_bytes -= bio_bytes;
829
830                 if (!nr_bytes)
831                         break;
832         }
833
834         /*
835          * completely done
836          */
837         if (!req->bio) {
838                 /*
839                  * Reset counters so that the request stacking driver
840                  * can find how many bytes remain in the request
841                  * later.
842                  */
843                 req->__data_len = 0;
844                 return false;
845         }
846
847         req->__data_len -= total_bytes;
848
849         /* update sector only for requests with clear definition of sector */
850         if (!blk_rq_is_passthrough(req))
851                 req->__sector += total_bytes >> 9;
852
853         /* mixed attributes always follow the first bio */
854         if (req->rq_flags & RQF_MIXED_MERGE) {
855                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
856                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
857         }
858
859         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
860                 /*
861                  * If total number of sectors is less than the first segment
862                  * size, something has gone terribly wrong.
863                  */
864                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
865                         blk_dump_rq_flags(req, "request botched");
866                         req->__data_len = blk_rq_cur_bytes(req);
867                 }
868
869                 /* recalculate the number of segments */
870                 req->nr_phys_segments = blk_recalc_rq_segments(req);
871         }
872
873         return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_update_request);
876
877 static void __blk_account_io_done(struct request *req, u64 now)
878 {
879         const int sgrp = op_stat_group(req_op(req));
880
881         part_stat_lock();
882         update_io_ticks(req->part, jiffies, true);
883         part_stat_inc(req->part, ios[sgrp]);
884         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
885         part_stat_unlock();
886 }
887
888 static inline void blk_account_io_done(struct request *req, u64 now)
889 {
890         /*
891          * Account IO completion.  flush_rq isn't accounted as a
892          * normal IO on queueing nor completion.  Accounting the
893          * containing request is enough.
894          */
895         if (blk_do_io_stat(req) && req->part &&
896             !(req->rq_flags & RQF_FLUSH_SEQ))
897                 __blk_account_io_done(req, now);
898 }
899
900 static void __blk_account_io_start(struct request *rq)
901 {
902         /*
903          * All non-passthrough requests are created from a bio with one
904          * exception: when a flush command that is part of a flush sequence
905          * generated by the state machine in blk-flush.c is cloned onto the
906          * lower device by dm-multipath we can get here without a bio.
907          */
908         if (rq->bio)
909                 rq->part = rq->bio->bi_bdev;
910         else
911                 rq->part = rq->q->disk->part0;
912
913         part_stat_lock();
914         update_io_ticks(rq->part, jiffies, false);
915         part_stat_unlock();
916 }
917
918 static inline void blk_account_io_start(struct request *req)
919 {
920         if (blk_do_io_stat(req))
921                 __blk_account_io_start(req);
922 }
923
924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
925 {
926         if (rq->rq_flags & RQF_STATS) {
927                 blk_mq_poll_stats_start(rq->q);
928                 blk_stat_add(rq, now);
929         }
930
931         blk_mq_sched_completed_request(rq, now);
932         blk_account_io_done(rq, now);
933 }
934
935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
936 {
937         if (blk_mq_need_time_stamp(rq))
938                 __blk_mq_end_request_acct(rq, ktime_get_ns());
939
940         if (rq->end_io) {
941                 rq_qos_done(rq->q, rq);
942                 rq->end_io(rq, error);
943         } else {
944                 blk_mq_free_request(rq);
945         }
946 }
947 EXPORT_SYMBOL(__blk_mq_end_request);
948
949 void blk_mq_end_request(struct request *rq, blk_status_t error)
950 {
951         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
952                 BUG();
953         __blk_mq_end_request(rq, error);
954 }
955 EXPORT_SYMBOL(blk_mq_end_request);
956
957 #define TAG_COMP_BATCH          32
958
959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
960                                           int *tag_array, int nr_tags)
961 {
962         struct request_queue *q = hctx->queue;
963
964         /*
965          * All requests should have been marked as RQF_MQ_INFLIGHT, so
966          * update hctx->nr_active in batch
967          */
968         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
969                 __blk_mq_sub_active_requests(hctx, nr_tags);
970
971         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
972         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
973 }
974
975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
976 {
977         int tags[TAG_COMP_BATCH], nr_tags = 0;
978         struct blk_mq_hw_ctx *cur_hctx = NULL;
979         struct request *rq;
980         u64 now = 0;
981
982         if (iob->need_ts)
983                 now = ktime_get_ns();
984
985         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
986                 prefetch(rq->bio);
987                 prefetch(rq->rq_next);
988
989                 blk_complete_request(rq);
990                 if (iob->need_ts)
991                         __blk_mq_end_request_acct(rq, now);
992
993                 rq_qos_done(rq->q, rq);
994
995                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
996                 if (!req_ref_put_and_test(rq))
997                         continue;
998
999                 blk_crypto_free_request(rq);
1000                 blk_pm_mark_last_busy(rq);
1001
1002                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003                         if (cur_hctx)
1004                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005                         nr_tags = 0;
1006                         cur_hctx = rq->mq_hctx;
1007                 }
1008                 tags[nr_tags++] = rq->tag;
1009         }
1010
1011         if (nr_tags)
1012                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019         struct request *rq, *next;
1020
1021         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022                 rq->q->mq_ops->complete(rq);
1023 }
1024
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033         return 0;
1034 }
1035
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043         int cpu = raw_smp_processor_id();
1044
1045         if (!IS_ENABLED(CONFIG_SMP) ||
1046             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047                 return false;
1048         /*
1049          * With force threaded interrupts enabled, raising softirq from an SMP
1050          * function call will always result in waking the ksoftirqd thread.
1051          * This is probably worse than completing the request on a different
1052          * cache domain.
1053          */
1054         if (force_irqthreads())
1055                 return false;
1056
1057         /* same CPU or cache domain?  Complete locally */
1058         if (cpu == rq->mq_ctx->cpu ||
1059             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061                 return false;
1062
1063         /* don't try to IPI to an offline CPU */
1064         return cpu_online(rq->mq_ctx->cpu);
1065 }
1066
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069         struct llist_head *list;
1070         unsigned int cpu;
1071
1072         cpu = rq->mq_ctx->cpu;
1073         list = &per_cpu(blk_cpu_done, cpu);
1074         if (llist_add(&rq->ipi_list, list)) {
1075                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076                 smp_call_function_single_async(cpu, &rq->csd);
1077         }
1078 }
1079
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082         struct llist_head *list;
1083
1084         preempt_disable();
1085         list = this_cpu_ptr(&blk_cpu_done);
1086         if (llist_add(&rq->ipi_list, list))
1087                 raise_softirq(BLOCK_SOFTIRQ);
1088         preempt_enable();
1089 }
1090
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094
1095         /*
1096          * For request which hctx has only one ctx mapping,
1097          * or a polled request, always complete locally,
1098          * it's pointless to redirect the completion.
1099          */
1100         if (rq->mq_hctx->nr_ctx == 1 ||
1101                 rq->cmd_flags & REQ_POLLED)
1102                 return false;
1103
1104         if (blk_mq_complete_need_ipi(rq)) {
1105                 blk_mq_complete_send_ipi(rq);
1106                 return true;
1107         }
1108
1109         if (rq->q->nr_hw_queues == 1) {
1110                 blk_mq_raise_softirq(rq);
1111                 return true;
1112         }
1113         return false;
1114 }
1115 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1116
1117 /**
1118  * blk_mq_complete_request - end I/O on a request
1119  * @rq:         the request being processed
1120  *
1121  * Description:
1122  *      Complete a request by scheduling the ->complete_rq operation.
1123  **/
1124 void blk_mq_complete_request(struct request *rq)
1125 {
1126         if (!blk_mq_complete_request_remote(rq))
1127                 rq->q->mq_ops->complete(rq);
1128 }
1129 EXPORT_SYMBOL(blk_mq_complete_request);
1130
1131 /**
1132  * blk_mq_start_request - Start processing a request
1133  * @rq: Pointer to request to be started
1134  *
1135  * Function used by device drivers to notify the block layer that a request
1136  * is going to be processed now, so blk layer can do proper initializations
1137  * such as starting the timeout timer.
1138  */
1139 void blk_mq_start_request(struct request *rq)
1140 {
1141         struct request_queue *q = rq->q;
1142
1143         trace_block_rq_issue(rq);
1144
1145         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1146                 rq->io_start_time_ns = ktime_get_ns();
1147                 rq->stats_sectors = blk_rq_sectors(rq);
1148                 rq->rq_flags |= RQF_STATS;
1149                 rq_qos_issue(q, rq);
1150         }
1151
1152         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1153
1154         blk_add_timer(rq);
1155         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1156
1157 #ifdef CONFIG_BLK_DEV_INTEGRITY
1158         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1159                 q->integrity.profile->prepare_fn(rq);
1160 #endif
1161         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1162                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1163 }
1164 EXPORT_SYMBOL(blk_mq_start_request);
1165
1166 /*
1167  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1168  * queues. This is important for md arrays to benefit from merging
1169  * requests.
1170  */
1171 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1172 {
1173         if (plug->multiple_queues)
1174                 return BLK_MAX_REQUEST_COUNT * 2;
1175         return BLK_MAX_REQUEST_COUNT;
1176 }
1177
1178 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1179 {
1180         struct request *last = rq_list_peek(&plug->mq_list);
1181
1182         if (!plug->rq_count) {
1183                 trace_block_plug(rq->q);
1184         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1185                    (!blk_queue_nomerges(rq->q) &&
1186                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1187                 blk_mq_flush_plug_list(plug, false);
1188                 trace_block_plug(rq->q);
1189         }
1190
1191         if (!plug->multiple_queues && last && last->q != rq->q)
1192                 plug->multiple_queues = true;
1193         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1194                 plug->has_elevator = true;
1195         rq->rq_next = NULL;
1196         rq_list_add(&plug->mq_list, rq);
1197         plug->rq_count++;
1198 }
1199
1200 /**
1201  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1202  * @rq:         request to insert
1203  * @at_head:    insert request at head or tail of queue
1204  *
1205  * Description:
1206  *    Insert a fully prepared request at the back of the I/O scheduler queue
1207  *    for execution.  Don't wait for completion.
1208  *
1209  * Note:
1210  *    This function will invoke @done directly if the queue is dead.
1211  */
1212 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1213 {
1214         WARN_ON(irqs_disabled());
1215         WARN_ON(!blk_rq_is_passthrough(rq));
1216
1217         blk_account_io_start(rq);
1218
1219         /*
1220          * As plugging can be enabled for passthrough requests on a zoned
1221          * device, directly accessing the plug instead of using blk_mq_plug()
1222          * should not have any consequences.
1223          */
1224         if (current->plug)
1225                 blk_add_rq_to_plug(current->plug, rq);
1226         else
1227                 blk_mq_sched_insert_request(rq, at_head, true, false);
1228 }
1229 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1230
1231 struct blk_rq_wait {
1232         struct completion done;
1233         blk_status_t ret;
1234 };
1235
1236 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1237 {
1238         struct blk_rq_wait *wait = rq->end_io_data;
1239
1240         wait->ret = ret;
1241         complete(&wait->done);
1242 }
1243
1244 bool blk_rq_is_poll(struct request *rq)
1245 {
1246         if (!rq->mq_hctx)
1247                 return false;
1248         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1249                 return false;
1250         if (WARN_ON_ONCE(!rq->bio))
1251                 return false;
1252         return true;
1253 }
1254 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1255
1256 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1257 {
1258         do {
1259                 bio_poll(rq->bio, NULL, 0);
1260                 cond_resched();
1261         } while (!completion_done(wait));
1262 }
1263
1264 /**
1265  * blk_execute_rq - insert a request into queue for execution
1266  * @rq:         request to insert
1267  * @at_head:    insert request at head or tail of queue
1268  *
1269  * Description:
1270  *    Insert a fully prepared request at the back of the I/O scheduler queue
1271  *    for execution and wait for completion.
1272  * Return: The blk_status_t result provided to blk_mq_end_request().
1273  */
1274 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1275 {
1276         struct blk_rq_wait wait = {
1277                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1278         };
1279
1280         WARN_ON(irqs_disabled());
1281         WARN_ON(!blk_rq_is_passthrough(rq));
1282
1283         rq->end_io_data = &wait;
1284         rq->end_io = blk_end_sync_rq;
1285
1286         blk_account_io_start(rq);
1287         blk_mq_sched_insert_request(rq, at_head, true, false);
1288
1289         if (blk_rq_is_poll(rq)) {
1290                 blk_rq_poll_completion(rq, &wait.done);
1291         } else {
1292                 /*
1293                  * Prevent hang_check timer from firing at us during very long
1294                  * I/O
1295                  */
1296                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1297
1298                 if (hang_check)
1299                         while (!wait_for_completion_io_timeout(&wait.done,
1300                                         hang_check * (HZ/2)))
1301                                 ;
1302                 else
1303                         wait_for_completion_io(&wait.done);
1304         }
1305
1306         return wait.ret;
1307 }
1308 EXPORT_SYMBOL(blk_execute_rq);
1309
1310 static void __blk_mq_requeue_request(struct request *rq)
1311 {
1312         struct request_queue *q = rq->q;
1313
1314         blk_mq_put_driver_tag(rq);
1315
1316         trace_block_rq_requeue(rq);
1317         rq_qos_requeue(q, rq);
1318
1319         if (blk_mq_request_started(rq)) {
1320                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1321                 rq->rq_flags &= ~RQF_TIMED_OUT;
1322         }
1323 }
1324
1325 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1326 {
1327         __blk_mq_requeue_request(rq);
1328
1329         /* this request will be re-inserted to io scheduler queue */
1330         blk_mq_sched_requeue_request(rq);
1331
1332         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1333 }
1334 EXPORT_SYMBOL(blk_mq_requeue_request);
1335
1336 static void blk_mq_requeue_work(struct work_struct *work)
1337 {
1338         struct request_queue *q =
1339                 container_of(work, struct request_queue, requeue_work.work);
1340         LIST_HEAD(rq_list);
1341         struct request *rq, *next;
1342
1343         spin_lock_irq(&q->requeue_lock);
1344         list_splice_init(&q->requeue_list, &rq_list);
1345         spin_unlock_irq(&q->requeue_lock);
1346
1347         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1348                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1349                         continue;
1350
1351                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1352                 list_del_init(&rq->queuelist);
1353                 /*
1354                  * If RQF_DONTPREP, rq has contained some driver specific
1355                  * data, so insert it to hctx dispatch list to avoid any
1356                  * merge.
1357                  */
1358                 if (rq->rq_flags & RQF_DONTPREP)
1359                         blk_mq_request_bypass_insert(rq, false, false);
1360                 else
1361                         blk_mq_sched_insert_request(rq, true, false, false);
1362         }
1363
1364         while (!list_empty(&rq_list)) {
1365                 rq = list_entry(rq_list.next, struct request, queuelist);
1366                 list_del_init(&rq->queuelist);
1367                 blk_mq_sched_insert_request(rq, false, false, false);
1368         }
1369
1370         blk_mq_run_hw_queues(q, false);
1371 }
1372
1373 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1374                                 bool kick_requeue_list)
1375 {
1376         struct request_queue *q = rq->q;
1377         unsigned long flags;
1378
1379         /*
1380          * We abuse this flag that is otherwise used by the I/O scheduler to
1381          * request head insertion from the workqueue.
1382          */
1383         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1384
1385         spin_lock_irqsave(&q->requeue_lock, flags);
1386         if (at_head) {
1387                 rq->rq_flags |= RQF_SOFTBARRIER;
1388                 list_add(&rq->queuelist, &q->requeue_list);
1389         } else {
1390                 list_add_tail(&rq->queuelist, &q->requeue_list);
1391         }
1392         spin_unlock_irqrestore(&q->requeue_lock, flags);
1393
1394         if (kick_requeue_list)
1395                 blk_mq_kick_requeue_list(q);
1396 }
1397
1398 void blk_mq_kick_requeue_list(struct request_queue *q)
1399 {
1400         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1401 }
1402 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1403
1404 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1405                                     unsigned long msecs)
1406 {
1407         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1408                                     msecs_to_jiffies(msecs));
1409 }
1410 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1411
1412 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1413 {
1414         /*
1415          * If we find a request that isn't idle we know the queue is busy
1416          * as it's checked in the iter.
1417          * Return false to stop the iteration.
1418          */
1419         if (blk_mq_request_started(rq)) {
1420                 bool *busy = priv;
1421
1422                 *busy = true;
1423                 return false;
1424         }
1425
1426         return true;
1427 }
1428
1429 bool blk_mq_queue_inflight(struct request_queue *q)
1430 {
1431         bool busy = false;
1432
1433         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1434         return busy;
1435 }
1436 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1437
1438 static void blk_mq_rq_timed_out(struct request *req)
1439 {
1440         req->rq_flags |= RQF_TIMED_OUT;
1441         if (req->q->mq_ops->timeout) {
1442                 enum blk_eh_timer_return ret;
1443
1444                 ret = req->q->mq_ops->timeout(req);
1445                 if (ret == BLK_EH_DONE)
1446                         return;
1447                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1448         }
1449
1450         blk_add_timer(req);
1451 }
1452
1453 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1454 {
1455         unsigned long deadline;
1456
1457         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1458                 return false;
1459         if (rq->rq_flags & RQF_TIMED_OUT)
1460                 return false;
1461
1462         deadline = READ_ONCE(rq->deadline);
1463         if (time_after_eq(jiffies, deadline))
1464                 return true;
1465
1466         if (*next == 0)
1467                 *next = deadline;
1468         else if (time_after(*next, deadline))
1469                 *next = deadline;
1470         return false;
1471 }
1472
1473 void blk_mq_put_rq_ref(struct request *rq)
1474 {
1475         if (is_flush_rq(rq))
1476                 rq->end_io(rq, 0);
1477         else if (req_ref_put_and_test(rq))
1478                 __blk_mq_free_request(rq);
1479 }
1480
1481 static bool blk_mq_check_expired(struct request *rq, void *priv)
1482 {
1483         unsigned long *next = priv;
1484
1485         /*
1486          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1487          * be reallocated underneath the timeout handler's processing, then
1488          * the expire check is reliable. If the request is not expired, then
1489          * it was completed and reallocated as a new request after returning
1490          * from blk_mq_check_expired().
1491          */
1492         if (blk_mq_req_expired(rq, next))
1493                 blk_mq_rq_timed_out(rq);
1494         return true;
1495 }
1496
1497 static void blk_mq_timeout_work(struct work_struct *work)
1498 {
1499         struct request_queue *q =
1500                 container_of(work, struct request_queue, timeout_work);
1501         unsigned long next = 0;
1502         struct blk_mq_hw_ctx *hctx;
1503         unsigned long i;
1504
1505         /* A deadlock might occur if a request is stuck requiring a
1506          * timeout at the same time a queue freeze is waiting
1507          * completion, since the timeout code would not be able to
1508          * acquire the queue reference here.
1509          *
1510          * That's why we don't use blk_queue_enter here; instead, we use
1511          * percpu_ref_tryget directly, because we need to be able to
1512          * obtain a reference even in the short window between the queue
1513          * starting to freeze, by dropping the first reference in
1514          * blk_freeze_queue_start, and the moment the last request is
1515          * consumed, marked by the instant q_usage_counter reaches
1516          * zero.
1517          */
1518         if (!percpu_ref_tryget(&q->q_usage_counter))
1519                 return;
1520
1521         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1522
1523         if (next != 0) {
1524                 mod_timer(&q->timeout, next);
1525         } else {
1526                 /*
1527                  * Request timeouts are handled as a forward rolling timer. If
1528                  * we end up here it means that no requests are pending and
1529                  * also that no request has been pending for a while. Mark
1530                  * each hctx as idle.
1531                  */
1532                 queue_for_each_hw_ctx(q, hctx, i) {
1533                         /* the hctx may be unmapped, so check it here */
1534                         if (blk_mq_hw_queue_mapped(hctx))
1535                                 blk_mq_tag_idle(hctx);
1536                 }
1537         }
1538         blk_queue_exit(q);
1539 }
1540
1541 struct flush_busy_ctx_data {
1542         struct blk_mq_hw_ctx *hctx;
1543         struct list_head *list;
1544 };
1545
1546 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1547 {
1548         struct flush_busy_ctx_data *flush_data = data;
1549         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1550         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1551         enum hctx_type type = hctx->type;
1552
1553         spin_lock(&ctx->lock);
1554         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1555         sbitmap_clear_bit(sb, bitnr);
1556         spin_unlock(&ctx->lock);
1557         return true;
1558 }
1559
1560 /*
1561  * Process software queues that have been marked busy, splicing them
1562  * to the for-dispatch
1563  */
1564 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1565 {
1566         struct flush_busy_ctx_data data = {
1567                 .hctx = hctx,
1568                 .list = list,
1569         };
1570
1571         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1572 }
1573 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1574
1575 struct dispatch_rq_data {
1576         struct blk_mq_hw_ctx *hctx;
1577         struct request *rq;
1578 };
1579
1580 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1581                 void *data)
1582 {
1583         struct dispatch_rq_data *dispatch_data = data;
1584         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1585         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1586         enum hctx_type type = hctx->type;
1587
1588         spin_lock(&ctx->lock);
1589         if (!list_empty(&ctx->rq_lists[type])) {
1590                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1591                 list_del_init(&dispatch_data->rq->queuelist);
1592                 if (list_empty(&ctx->rq_lists[type]))
1593                         sbitmap_clear_bit(sb, bitnr);
1594         }
1595         spin_unlock(&ctx->lock);
1596
1597         return !dispatch_data->rq;
1598 }
1599
1600 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1601                                         struct blk_mq_ctx *start)
1602 {
1603         unsigned off = start ? start->index_hw[hctx->type] : 0;
1604         struct dispatch_rq_data data = {
1605                 .hctx = hctx,
1606                 .rq   = NULL,
1607         };
1608
1609         __sbitmap_for_each_set(&hctx->ctx_map, off,
1610                                dispatch_rq_from_ctx, &data);
1611
1612         return data.rq;
1613 }
1614
1615 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1616 {
1617         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1618         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1619         int tag;
1620
1621         blk_mq_tag_busy(rq->mq_hctx);
1622
1623         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1624                 bt = &rq->mq_hctx->tags->breserved_tags;
1625                 tag_offset = 0;
1626         } else {
1627                 if (!hctx_may_queue(rq->mq_hctx, bt))
1628                         return false;
1629         }
1630
1631         tag = __sbitmap_queue_get(bt);
1632         if (tag == BLK_MQ_NO_TAG)
1633                 return false;
1634
1635         rq->tag = tag + tag_offset;
1636         return true;
1637 }
1638
1639 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1640 {
1641         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1642                 return false;
1643
1644         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1645                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1646                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1647                 __blk_mq_inc_active_requests(hctx);
1648         }
1649         hctx->tags->rqs[rq->tag] = rq;
1650         return true;
1651 }
1652
1653 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1654                                 int flags, void *key)
1655 {
1656         struct blk_mq_hw_ctx *hctx;
1657
1658         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1659
1660         spin_lock(&hctx->dispatch_wait_lock);
1661         if (!list_empty(&wait->entry)) {
1662                 struct sbitmap_queue *sbq;
1663
1664                 list_del_init(&wait->entry);
1665                 sbq = &hctx->tags->bitmap_tags;
1666                 atomic_dec(&sbq->ws_active);
1667         }
1668         spin_unlock(&hctx->dispatch_wait_lock);
1669
1670         blk_mq_run_hw_queue(hctx, true);
1671         return 1;
1672 }
1673
1674 /*
1675  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1676  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1677  * restart. For both cases, take care to check the condition again after
1678  * marking us as waiting.
1679  */
1680 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1681                                  struct request *rq)
1682 {
1683         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1684         struct wait_queue_head *wq;
1685         wait_queue_entry_t *wait;
1686         bool ret;
1687
1688         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1689                 blk_mq_sched_mark_restart_hctx(hctx);
1690
1691                 /*
1692                  * It's possible that a tag was freed in the window between the
1693                  * allocation failure and adding the hardware queue to the wait
1694                  * queue.
1695                  *
1696                  * Don't clear RESTART here, someone else could have set it.
1697                  * At most this will cost an extra queue run.
1698                  */
1699                 return blk_mq_get_driver_tag(rq);
1700         }
1701
1702         wait = &hctx->dispatch_wait;
1703         if (!list_empty_careful(&wait->entry))
1704                 return false;
1705
1706         wq = &bt_wait_ptr(sbq, hctx)->wait;
1707
1708         spin_lock_irq(&wq->lock);
1709         spin_lock(&hctx->dispatch_wait_lock);
1710         if (!list_empty(&wait->entry)) {
1711                 spin_unlock(&hctx->dispatch_wait_lock);
1712                 spin_unlock_irq(&wq->lock);
1713                 return false;
1714         }
1715
1716         atomic_inc(&sbq->ws_active);
1717         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1718         __add_wait_queue(wq, wait);
1719
1720         /*
1721          * It's possible that a tag was freed in the window between the
1722          * allocation failure and adding the hardware queue to the wait
1723          * queue.
1724          */
1725         ret = blk_mq_get_driver_tag(rq);
1726         if (!ret) {
1727                 spin_unlock(&hctx->dispatch_wait_lock);
1728                 spin_unlock_irq(&wq->lock);
1729                 return false;
1730         }
1731
1732         /*
1733          * We got a tag, remove ourselves from the wait queue to ensure
1734          * someone else gets the wakeup.
1735          */
1736         list_del_init(&wait->entry);
1737         atomic_dec(&sbq->ws_active);
1738         spin_unlock(&hctx->dispatch_wait_lock);
1739         spin_unlock_irq(&wq->lock);
1740
1741         return true;
1742 }
1743
1744 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1745 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1746 /*
1747  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1748  * - EWMA is one simple way to compute running average value
1749  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1750  * - take 4 as factor for avoiding to get too small(0) result, and this
1751  *   factor doesn't matter because EWMA decreases exponentially
1752  */
1753 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1754 {
1755         unsigned int ewma;
1756
1757         ewma = hctx->dispatch_busy;
1758
1759         if (!ewma && !busy)
1760                 return;
1761
1762         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1763         if (busy)
1764                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1765         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1766
1767         hctx->dispatch_busy = ewma;
1768 }
1769
1770 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1771
1772 static void blk_mq_handle_dev_resource(struct request *rq,
1773                                        struct list_head *list)
1774 {
1775         struct request *next =
1776                 list_first_entry_or_null(list, struct request, queuelist);
1777
1778         /*
1779          * If an I/O scheduler has been configured and we got a driver tag for
1780          * the next request already, free it.
1781          */
1782         if (next)
1783                 blk_mq_put_driver_tag(next);
1784
1785         list_add(&rq->queuelist, list);
1786         __blk_mq_requeue_request(rq);
1787 }
1788
1789 static void blk_mq_handle_zone_resource(struct request *rq,
1790                                         struct list_head *zone_list)
1791 {
1792         /*
1793          * If we end up here it is because we cannot dispatch a request to a
1794          * specific zone due to LLD level zone-write locking or other zone
1795          * related resource not being available. In this case, set the request
1796          * aside in zone_list for retrying it later.
1797          */
1798         list_add(&rq->queuelist, zone_list);
1799         __blk_mq_requeue_request(rq);
1800 }
1801
1802 enum prep_dispatch {
1803         PREP_DISPATCH_OK,
1804         PREP_DISPATCH_NO_TAG,
1805         PREP_DISPATCH_NO_BUDGET,
1806 };
1807
1808 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1809                                                   bool need_budget)
1810 {
1811         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1812         int budget_token = -1;
1813
1814         if (need_budget) {
1815                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1816                 if (budget_token < 0) {
1817                         blk_mq_put_driver_tag(rq);
1818                         return PREP_DISPATCH_NO_BUDGET;
1819                 }
1820                 blk_mq_set_rq_budget_token(rq, budget_token);
1821         }
1822
1823         if (!blk_mq_get_driver_tag(rq)) {
1824                 /*
1825                  * The initial allocation attempt failed, so we need to
1826                  * rerun the hardware queue when a tag is freed. The
1827                  * waitqueue takes care of that. If the queue is run
1828                  * before we add this entry back on the dispatch list,
1829                  * we'll re-run it below.
1830                  */
1831                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1832                         /*
1833                          * All budgets not got from this function will be put
1834                          * together during handling partial dispatch
1835                          */
1836                         if (need_budget)
1837                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1838                         return PREP_DISPATCH_NO_TAG;
1839                 }
1840         }
1841
1842         return PREP_DISPATCH_OK;
1843 }
1844
1845 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1846 static void blk_mq_release_budgets(struct request_queue *q,
1847                 struct list_head *list)
1848 {
1849         struct request *rq;
1850
1851         list_for_each_entry(rq, list, queuelist) {
1852                 int budget_token = blk_mq_get_rq_budget_token(rq);
1853
1854                 if (budget_token >= 0)
1855                         blk_mq_put_dispatch_budget(q, budget_token);
1856         }
1857 }
1858
1859 /*
1860  * Returns true if we did some work AND can potentially do more.
1861  */
1862 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1863                              unsigned int nr_budgets)
1864 {
1865         enum prep_dispatch prep;
1866         struct request_queue *q = hctx->queue;
1867         struct request *rq, *nxt;
1868         int errors, queued;
1869         blk_status_t ret = BLK_STS_OK;
1870         LIST_HEAD(zone_list);
1871         bool needs_resource = false;
1872
1873         if (list_empty(list))
1874                 return false;
1875
1876         /*
1877          * Now process all the entries, sending them to the driver.
1878          */
1879         errors = queued = 0;
1880         do {
1881                 struct blk_mq_queue_data bd;
1882
1883                 rq = list_first_entry(list, struct request, queuelist);
1884
1885                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1886                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1887                 if (prep != PREP_DISPATCH_OK)
1888                         break;
1889
1890                 list_del_init(&rq->queuelist);
1891
1892                 bd.rq = rq;
1893
1894                 /*
1895                  * Flag last if we have no more requests, or if we have more
1896                  * but can't assign a driver tag to it.
1897                  */
1898                 if (list_empty(list))
1899                         bd.last = true;
1900                 else {
1901                         nxt = list_first_entry(list, struct request, queuelist);
1902                         bd.last = !blk_mq_get_driver_tag(nxt);
1903                 }
1904
1905                 /*
1906                  * once the request is queued to lld, no need to cover the
1907                  * budget any more
1908                  */
1909                 if (nr_budgets)
1910                         nr_budgets--;
1911                 ret = q->mq_ops->queue_rq(hctx, &bd);
1912                 switch (ret) {
1913                 case BLK_STS_OK:
1914                         queued++;
1915                         break;
1916                 case BLK_STS_RESOURCE:
1917                         needs_resource = true;
1918                         fallthrough;
1919                 case BLK_STS_DEV_RESOURCE:
1920                         blk_mq_handle_dev_resource(rq, list);
1921                         goto out;
1922                 case BLK_STS_ZONE_RESOURCE:
1923                         /*
1924                          * Move the request to zone_list and keep going through
1925                          * the dispatch list to find more requests the drive can
1926                          * accept.
1927                          */
1928                         blk_mq_handle_zone_resource(rq, &zone_list);
1929                         needs_resource = true;
1930                         break;
1931                 default:
1932                         errors++;
1933                         blk_mq_end_request(rq, ret);
1934                 }
1935         } while (!list_empty(list));
1936 out:
1937         if (!list_empty(&zone_list))
1938                 list_splice_tail_init(&zone_list, list);
1939
1940         /* If we didn't flush the entire list, we could have told the driver
1941          * there was more coming, but that turned out to be a lie.
1942          */
1943         if ((!list_empty(list) || errors || needs_resource ||
1944              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1945                 q->mq_ops->commit_rqs(hctx);
1946         /*
1947          * Any items that need requeuing? Stuff them into hctx->dispatch,
1948          * that is where we will continue on next queue run.
1949          */
1950         if (!list_empty(list)) {
1951                 bool needs_restart;
1952                 /* For non-shared tags, the RESTART check will suffice */
1953                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1954                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1955
1956                 if (nr_budgets)
1957                         blk_mq_release_budgets(q, list);
1958
1959                 spin_lock(&hctx->lock);
1960                 list_splice_tail_init(list, &hctx->dispatch);
1961                 spin_unlock(&hctx->lock);
1962
1963                 /*
1964                  * Order adding requests to hctx->dispatch and checking
1965                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1966                  * in blk_mq_sched_restart(). Avoid restart code path to
1967                  * miss the new added requests to hctx->dispatch, meantime
1968                  * SCHED_RESTART is observed here.
1969                  */
1970                 smp_mb();
1971
1972                 /*
1973                  * If SCHED_RESTART was set by the caller of this function and
1974                  * it is no longer set that means that it was cleared by another
1975                  * thread and hence that a queue rerun is needed.
1976                  *
1977                  * If 'no_tag' is set, that means that we failed getting
1978                  * a driver tag with an I/O scheduler attached. If our dispatch
1979                  * waitqueue is no longer active, ensure that we run the queue
1980                  * AFTER adding our entries back to the list.
1981                  *
1982                  * If no I/O scheduler has been configured it is possible that
1983                  * the hardware queue got stopped and restarted before requests
1984                  * were pushed back onto the dispatch list. Rerun the queue to
1985                  * avoid starvation. Notes:
1986                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1987                  *   been stopped before rerunning a queue.
1988                  * - Some but not all block drivers stop a queue before
1989                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1990                  *   and dm-rq.
1991                  *
1992                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1993                  * bit is set, run queue after a delay to avoid IO stalls
1994                  * that could otherwise occur if the queue is idle.  We'll do
1995                  * similar if we couldn't get budget or couldn't lock a zone
1996                  * and SCHED_RESTART is set.
1997                  */
1998                 needs_restart = blk_mq_sched_needs_restart(hctx);
1999                 if (prep == PREP_DISPATCH_NO_BUDGET)
2000                         needs_resource = true;
2001                 if (!needs_restart ||
2002                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2003                         blk_mq_run_hw_queue(hctx, true);
2004                 else if (needs_resource)
2005                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2006
2007                 blk_mq_update_dispatch_busy(hctx, true);
2008                 return false;
2009         } else
2010                 blk_mq_update_dispatch_busy(hctx, false);
2011
2012         return (queued + errors) != 0;
2013 }
2014
2015 /**
2016  * __blk_mq_run_hw_queue - Run a hardware queue.
2017  * @hctx: Pointer to the hardware queue to run.
2018  *
2019  * Send pending requests to the hardware.
2020  */
2021 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2022 {
2023         /*
2024          * We can't run the queue inline with ints disabled. Ensure that
2025          * we catch bad users of this early.
2026          */
2027         WARN_ON_ONCE(in_interrupt());
2028
2029         blk_mq_run_dispatch_ops(hctx->queue,
2030                         blk_mq_sched_dispatch_requests(hctx));
2031 }
2032
2033 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2034 {
2035         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2036
2037         if (cpu >= nr_cpu_ids)
2038                 cpu = cpumask_first(hctx->cpumask);
2039         return cpu;
2040 }
2041
2042 /*
2043  * It'd be great if the workqueue API had a way to pass
2044  * in a mask and had some smarts for more clever placement.
2045  * For now we just round-robin here, switching for every
2046  * BLK_MQ_CPU_WORK_BATCH queued items.
2047  */
2048 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2049 {
2050         bool tried = false;
2051         int next_cpu = hctx->next_cpu;
2052
2053         if (hctx->queue->nr_hw_queues == 1)
2054                 return WORK_CPU_UNBOUND;
2055
2056         if (--hctx->next_cpu_batch <= 0) {
2057 select_cpu:
2058                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2059                                 cpu_online_mask);
2060                 if (next_cpu >= nr_cpu_ids)
2061                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2062                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2063         }
2064
2065         /*
2066          * Do unbound schedule if we can't find a online CPU for this hctx,
2067          * and it should only happen in the path of handling CPU DEAD.
2068          */
2069         if (!cpu_online(next_cpu)) {
2070                 if (!tried) {
2071                         tried = true;
2072                         goto select_cpu;
2073                 }
2074
2075                 /*
2076                  * Make sure to re-select CPU next time once after CPUs
2077                  * in hctx->cpumask become online again.
2078                  */
2079                 hctx->next_cpu = next_cpu;
2080                 hctx->next_cpu_batch = 1;
2081                 return WORK_CPU_UNBOUND;
2082         }
2083
2084         hctx->next_cpu = next_cpu;
2085         return next_cpu;
2086 }
2087
2088 /**
2089  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2090  * @hctx: Pointer to the hardware queue to run.
2091  * @async: If we want to run the queue asynchronously.
2092  * @msecs: Milliseconds of delay to wait before running the queue.
2093  *
2094  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2095  * with a delay of @msecs.
2096  */
2097 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2098                                         unsigned long msecs)
2099 {
2100         if (unlikely(blk_mq_hctx_stopped(hctx)))
2101                 return;
2102
2103         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2104                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2105                         __blk_mq_run_hw_queue(hctx);
2106                         return;
2107                 }
2108         }
2109
2110         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2111                                     msecs_to_jiffies(msecs));
2112 }
2113
2114 /**
2115  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2116  * @hctx: Pointer to the hardware queue to run.
2117  * @msecs: Milliseconds of delay to wait before running the queue.
2118  *
2119  * Run a hardware queue asynchronously with a delay of @msecs.
2120  */
2121 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2122 {
2123         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2124 }
2125 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2126
2127 /**
2128  * blk_mq_run_hw_queue - Start to run a hardware queue.
2129  * @hctx: Pointer to the hardware queue to run.
2130  * @async: If we want to run the queue asynchronously.
2131  *
2132  * Check if the request queue is not in a quiesced state and if there are
2133  * pending requests to be sent. If this is true, run the queue to send requests
2134  * to hardware.
2135  */
2136 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2137 {
2138         bool need_run;
2139
2140         /*
2141          * When queue is quiesced, we may be switching io scheduler, or
2142          * updating nr_hw_queues, or other things, and we can't run queue
2143          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2144          *
2145          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2146          * quiesced.
2147          */
2148         __blk_mq_run_dispatch_ops(hctx->queue, false,
2149                 need_run = !blk_queue_quiesced(hctx->queue) &&
2150                 blk_mq_hctx_has_pending(hctx));
2151
2152         if (need_run)
2153                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2154 }
2155 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2156
2157 /*
2158  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2159  * scheduler.
2160  */
2161 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2162 {
2163         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2164         /*
2165          * If the IO scheduler does not respect hardware queues when
2166          * dispatching, we just don't bother with multiple HW queues and
2167          * dispatch from hctx for the current CPU since running multiple queues
2168          * just causes lock contention inside the scheduler and pointless cache
2169          * bouncing.
2170          */
2171         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2172
2173         if (!blk_mq_hctx_stopped(hctx))
2174                 return hctx;
2175         return NULL;
2176 }
2177
2178 /**
2179  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2180  * @q: Pointer to the request queue to run.
2181  * @async: If we want to run the queue asynchronously.
2182  */
2183 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2184 {
2185         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2186         unsigned long i;
2187
2188         sq_hctx = NULL;
2189         if (blk_queue_sq_sched(q))
2190                 sq_hctx = blk_mq_get_sq_hctx(q);
2191         queue_for_each_hw_ctx(q, hctx, i) {
2192                 if (blk_mq_hctx_stopped(hctx))
2193                         continue;
2194                 /*
2195                  * Dispatch from this hctx either if there's no hctx preferred
2196                  * by IO scheduler or if it has requests that bypass the
2197                  * scheduler.
2198                  */
2199                 if (!sq_hctx || sq_hctx == hctx ||
2200                     !list_empty_careful(&hctx->dispatch))
2201                         blk_mq_run_hw_queue(hctx, async);
2202         }
2203 }
2204 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2205
2206 /**
2207  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2208  * @q: Pointer to the request queue to run.
2209  * @msecs: Milliseconds of delay to wait before running the queues.
2210  */
2211 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2212 {
2213         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2214         unsigned long i;
2215
2216         sq_hctx = NULL;
2217         if (blk_queue_sq_sched(q))
2218                 sq_hctx = blk_mq_get_sq_hctx(q);
2219         queue_for_each_hw_ctx(q, hctx, i) {
2220                 if (blk_mq_hctx_stopped(hctx))
2221                         continue;
2222                 /*
2223                  * If there is already a run_work pending, leave the
2224                  * pending delay untouched. Otherwise, a hctx can stall
2225                  * if another hctx is re-delaying the other's work
2226                  * before the work executes.
2227                  */
2228                 if (delayed_work_pending(&hctx->run_work))
2229                         continue;
2230                 /*
2231                  * Dispatch from this hctx either if there's no hctx preferred
2232                  * by IO scheduler or if it has requests that bypass the
2233                  * scheduler.
2234                  */
2235                 if (!sq_hctx || sq_hctx == hctx ||
2236                     !list_empty_careful(&hctx->dispatch))
2237                         blk_mq_delay_run_hw_queue(hctx, msecs);
2238         }
2239 }
2240 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2241
2242 /*
2243  * This function is often used for pausing .queue_rq() by driver when
2244  * there isn't enough resource or some conditions aren't satisfied, and
2245  * BLK_STS_RESOURCE is usually returned.
2246  *
2247  * We do not guarantee that dispatch can be drained or blocked
2248  * after blk_mq_stop_hw_queue() returns. Please use
2249  * blk_mq_quiesce_queue() for that requirement.
2250  */
2251 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2252 {
2253         cancel_delayed_work(&hctx->run_work);
2254
2255         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2256 }
2257 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2258
2259 /*
2260  * This function is often used for pausing .queue_rq() by driver when
2261  * there isn't enough resource or some conditions aren't satisfied, and
2262  * BLK_STS_RESOURCE is usually returned.
2263  *
2264  * We do not guarantee that dispatch can be drained or blocked
2265  * after blk_mq_stop_hw_queues() returns. Please use
2266  * blk_mq_quiesce_queue() for that requirement.
2267  */
2268 void blk_mq_stop_hw_queues(struct request_queue *q)
2269 {
2270         struct blk_mq_hw_ctx *hctx;
2271         unsigned long i;
2272
2273         queue_for_each_hw_ctx(q, hctx, i)
2274                 blk_mq_stop_hw_queue(hctx);
2275 }
2276 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2277
2278 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2279 {
2280         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2281
2282         blk_mq_run_hw_queue(hctx, false);
2283 }
2284 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2285
2286 void blk_mq_start_hw_queues(struct request_queue *q)
2287 {
2288         struct blk_mq_hw_ctx *hctx;
2289         unsigned long i;
2290
2291         queue_for_each_hw_ctx(q, hctx, i)
2292                 blk_mq_start_hw_queue(hctx);
2293 }
2294 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2295
2296 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2297 {
2298         if (!blk_mq_hctx_stopped(hctx))
2299                 return;
2300
2301         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2302         blk_mq_run_hw_queue(hctx, async);
2303 }
2304 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2305
2306 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2307 {
2308         struct blk_mq_hw_ctx *hctx;
2309         unsigned long i;
2310
2311         queue_for_each_hw_ctx(q, hctx, i)
2312                 blk_mq_start_stopped_hw_queue(hctx, async);
2313 }
2314 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2315
2316 static void blk_mq_run_work_fn(struct work_struct *work)
2317 {
2318         struct blk_mq_hw_ctx *hctx;
2319
2320         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2321
2322         /*
2323          * If we are stopped, don't run the queue.
2324          */
2325         if (blk_mq_hctx_stopped(hctx))
2326                 return;
2327
2328         __blk_mq_run_hw_queue(hctx);
2329 }
2330
2331 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2332                                             struct request *rq,
2333                                             bool at_head)
2334 {
2335         struct blk_mq_ctx *ctx = rq->mq_ctx;
2336         enum hctx_type type = hctx->type;
2337
2338         lockdep_assert_held(&ctx->lock);
2339
2340         trace_block_rq_insert(rq);
2341
2342         if (at_head)
2343                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2344         else
2345                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2346 }
2347
2348 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2349                              bool at_head)
2350 {
2351         struct blk_mq_ctx *ctx = rq->mq_ctx;
2352
2353         lockdep_assert_held(&ctx->lock);
2354
2355         __blk_mq_insert_req_list(hctx, rq, at_head);
2356         blk_mq_hctx_mark_pending(hctx, ctx);
2357 }
2358
2359 /**
2360  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2361  * @rq: Pointer to request to be inserted.
2362  * @at_head: true if the request should be inserted at the head of the list.
2363  * @run_queue: If we should run the hardware queue after inserting the request.
2364  *
2365  * Should only be used carefully, when the caller knows we want to
2366  * bypass a potential IO scheduler on the target device.
2367  */
2368 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2369                                   bool run_queue)
2370 {
2371         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2372
2373         spin_lock(&hctx->lock);
2374         if (at_head)
2375                 list_add(&rq->queuelist, &hctx->dispatch);
2376         else
2377                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2378         spin_unlock(&hctx->lock);
2379
2380         if (run_queue)
2381                 blk_mq_run_hw_queue(hctx, false);
2382 }
2383
2384 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2385                             struct list_head *list)
2386
2387 {
2388         struct request *rq;
2389         enum hctx_type type = hctx->type;
2390
2391         /*
2392          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2393          * offline now
2394          */
2395         list_for_each_entry(rq, list, queuelist) {
2396                 BUG_ON(rq->mq_ctx != ctx);
2397                 trace_block_rq_insert(rq);
2398         }
2399
2400         spin_lock(&ctx->lock);
2401         list_splice_tail_init(list, &ctx->rq_lists[type]);
2402         blk_mq_hctx_mark_pending(hctx, ctx);
2403         spin_unlock(&ctx->lock);
2404 }
2405
2406 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2407                               bool from_schedule)
2408 {
2409         if (hctx->queue->mq_ops->commit_rqs) {
2410                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2411                 hctx->queue->mq_ops->commit_rqs(hctx);
2412         }
2413         *queued = 0;
2414 }
2415
2416 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2417                 unsigned int nr_segs)
2418 {
2419         int err;
2420
2421         if (bio->bi_opf & REQ_RAHEAD)
2422                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2423
2424         rq->__sector = bio->bi_iter.bi_sector;
2425         blk_rq_bio_prep(rq, bio, nr_segs);
2426
2427         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2428         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2429         WARN_ON_ONCE(err);
2430
2431         blk_account_io_start(rq);
2432 }
2433
2434 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2435                                             struct request *rq, bool last)
2436 {
2437         struct request_queue *q = rq->q;
2438         struct blk_mq_queue_data bd = {
2439                 .rq = rq,
2440                 .last = last,
2441         };
2442         blk_status_t ret;
2443
2444         /*
2445          * For OK queue, we are done. For error, caller may kill it.
2446          * Any other error (busy), just add it to our list as we
2447          * previously would have done.
2448          */
2449         ret = q->mq_ops->queue_rq(hctx, &bd);
2450         switch (ret) {
2451         case BLK_STS_OK:
2452                 blk_mq_update_dispatch_busy(hctx, false);
2453                 break;
2454         case BLK_STS_RESOURCE:
2455         case BLK_STS_DEV_RESOURCE:
2456                 blk_mq_update_dispatch_busy(hctx, true);
2457                 __blk_mq_requeue_request(rq);
2458                 break;
2459         default:
2460                 blk_mq_update_dispatch_busy(hctx, false);
2461                 break;
2462         }
2463
2464         return ret;
2465 }
2466
2467 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2468                                                 struct request *rq,
2469                                                 bool bypass_insert, bool last)
2470 {
2471         struct request_queue *q = rq->q;
2472         bool run_queue = true;
2473         int budget_token;
2474
2475         /*
2476          * RCU or SRCU read lock is needed before checking quiesced flag.
2477          *
2478          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2479          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2480          * and avoid driver to try to dispatch again.
2481          */
2482         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2483                 run_queue = false;
2484                 bypass_insert = false;
2485                 goto insert;
2486         }
2487
2488         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2489                 goto insert;
2490
2491         budget_token = blk_mq_get_dispatch_budget(q);
2492         if (budget_token < 0)
2493                 goto insert;
2494
2495         blk_mq_set_rq_budget_token(rq, budget_token);
2496
2497         if (!blk_mq_get_driver_tag(rq)) {
2498                 blk_mq_put_dispatch_budget(q, budget_token);
2499                 goto insert;
2500         }
2501
2502         return __blk_mq_issue_directly(hctx, rq, last);
2503 insert:
2504         if (bypass_insert)
2505                 return BLK_STS_RESOURCE;
2506
2507         blk_mq_sched_insert_request(rq, false, run_queue, false);
2508
2509         return BLK_STS_OK;
2510 }
2511
2512 /**
2513  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2514  * @hctx: Pointer of the associated hardware queue.
2515  * @rq: Pointer to request to be sent.
2516  *
2517  * If the device has enough resources to accept a new request now, send the
2518  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2519  * we can try send it another time in the future. Requests inserted at this
2520  * queue have higher priority.
2521  */
2522 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2523                 struct request *rq)
2524 {
2525         blk_status_t ret =
2526                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2527
2528         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2529                 blk_mq_request_bypass_insert(rq, false, true);
2530         else if (ret != BLK_STS_OK)
2531                 blk_mq_end_request(rq, ret);
2532 }
2533
2534 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2535 {
2536         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2537 }
2538
2539 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2540 {
2541         struct blk_mq_hw_ctx *hctx = NULL;
2542         struct request *rq;
2543         int queued = 0;
2544         int errors = 0;
2545
2546         while ((rq = rq_list_pop(&plug->mq_list))) {
2547                 bool last = rq_list_empty(plug->mq_list);
2548                 blk_status_t ret;
2549
2550                 if (hctx != rq->mq_hctx) {
2551                         if (hctx)
2552                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2553                         hctx = rq->mq_hctx;
2554                 }
2555
2556                 ret = blk_mq_request_issue_directly(rq, last);
2557                 switch (ret) {
2558                 case BLK_STS_OK:
2559                         queued++;
2560                         break;
2561                 case BLK_STS_RESOURCE:
2562                 case BLK_STS_DEV_RESOURCE:
2563                         blk_mq_request_bypass_insert(rq, false, true);
2564                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2565                         return;
2566                 default:
2567                         blk_mq_end_request(rq, ret);
2568                         errors++;
2569                         break;
2570                 }
2571         }
2572
2573         /*
2574          * If we didn't flush the entire list, we could have told the driver
2575          * there was more coming, but that turned out to be a lie.
2576          */
2577         if (errors)
2578                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2579 }
2580
2581 static void __blk_mq_flush_plug_list(struct request_queue *q,
2582                                      struct blk_plug *plug)
2583 {
2584         if (blk_queue_quiesced(q))
2585                 return;
2586         q->mq_ops->queue_rqs(&plug->mq_list);
2587 }
2588
2589 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2590 {
2591         struct blk_mq_hw_ctx *this_hctx = NULL;
2592         struct blk_mq_ctx *this_ctx = NULL;
2593         struct request *requeue_list = NULL;
2594         unsigned int depth = 0;
2595         LIST_HEAD(list);
2596
2597         do {
2598                 struct request *rq = rq_list_pop(&plug->mq_list);
2599
2600                 if (!this_hctx) {
2601                         this_hctx = rq->mq_hctx;
2602                         this_ctx = rq->mq_ctx;
2603                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2604                         rq_list_add(&requeue_list, rq);
2605                         continue;
2606                 }
2607                 list_add_tail(&rq->queuelist, &list);
2608                 depth++;
2609         } while (!rq_list_empty(plug->mq_list));
2610
2611         plug->mq_list = requeue_list;
2612         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2613         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2614 }
2615
2616 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2617 {
2618         struct request *rq;
2619
2620         if (rq_list_empty(plug->mq_list))
2621                 return;
2622         plug->rq_count = 0;
2623
2624         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2625                 struct request_queue *q;
2626
2627                 rq = rq_list_peek(&plug->mq_list);
2628                 q = rq->q;
2629
2630                 /*
2631                  * Peek first request and see if we have a ->queue_rqs() hook.
2632                  * If we do, we can dispatch the whole plug list in one go. We
2633                  * already know at this point that all requests belong to the
2634                  * same queue, caller must ensure that's the case.
2635                  *
2636                  * Since we pass off the full list to the driver at this point,
2637                  * we do not increment the active request count for the queue.
2638                  * Bypass shared tags for now because of that.
2639                  */
2640                 if (q->mq_ops->queue_rqs &&
2641                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2642                         blk_mq_run_dispatch_ops(q,
2643                                 __blk_mq_flush_plug_list(q, plug));
2644                         if (rq_list_empty(plug->mq_list))
2645                                 return;
2646                 }
2647
2648                 blk_mq_run_dispatch_ops(q,
2649                                 blk_mq_plug_issue_direct(plug, false));
2650                 if (rq_list_empty(plug->mq_list))
2651                         return;
2652         }
2653
2654         do {
2655                 blk_mq_dispatch_plug_list(plug, from_schedule);
2656         } while (!rq_list_empty(plug->mq_list));
2657 }
2658
2659 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2660                 struct list_head *list)
2661 {
2662         int queued = 0;
2663         int errors = 0;
2664
2665         while (!list_empty(list)) {
2666                 blk_status_t ret;
2667                 struct request *rq = list_first_entry(list, struct request,
2668                                 queuelist);
2669
2670                 list_del_init(&rq->queuelist);
2671                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2672                 if (ret != BLK_STS_OK) {
2673                         errors++;
2674                         if (ret == BLK_STS_RESOURCE ||
2675                                         ret == BLK_STS_DEV_RESOURCE) {
2676                                 blk_mq_request_bypass_insert(rq, false,
2677                                                         list_empty(list));
2678                                 break;
2679                         }
2680                         blk_mq_end_request(rq, ret);
2681                 } else
2682                         queued++;
2683         }
2684
2685         /*
2686          * If we didn't flush the entire list, we could have told
2687          * the driver there was more coming, but that turned out to
2688          * be a lie.
2689          */
2690         if ((!list_empty(list) || errors) &&
2691              hctx->queue->mq_ops->commit_rqs && queued)
2692                 hctx->queue->mq_ops->commit_rqs(hctx);
2693 }
2694
2695 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2696                                      struct bio *bio, unsigned int nr_segs)
2697 {
2698         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2699                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2700                         return true;
2701                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2702                         return true;
2703         }
2704         return false;
2705 }
2706
2707 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2708                                                struct blk_plug *plug,
2709                                                struct bio *bio,
2710                                                unsigned int nsegs)
2711 {
2712         struct blk_mq_alloc_data data = {
2713                 .q              = q,
2714                 .nr_tags        = 1,
2715                 .cmd_flags      = bio->bi_opf,
2716         };
2717         struct request *rq;
2718
2719         if (unlikely(bio_queue_enter(bio)))
2720                 return NULL;
2721
2722         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2723                 goto queue_exit;
2724
2725         rq_qos_throttle(q, bio);
2726
2727         if (plug) {
2728                 data.nr_tags = plug->nr_ios;
2729                 plug->nr_ios = 1;
2730                 data.cached_rq = &plug->cached_rq;
2731         }
2732
2733         rq = __blk_mq_alloc_requests(&data);
2734         if (rq)
2735                 return rq;
2736         rq_qos_cleanup(q, bio);
2737         if (bio->bi_opf & REQ_NOWAIT)
2738                 bio_wouldblock_error(bio);
2739 queue_exit:
2740         blk_queue_exit(q);
2741         return NULL;
2742 }
2743
2744 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2745                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2746 {
2747         struct request *rq;
2748
2749         if (!plug)
2750                 return NULL;
2751         rq = rq_list_peek(&plug->cached_rq);
2752         if (!rq || rq->q != q)
2753                 return NULL;
2754
2755         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2756                 *bio = NULL;
2757                 return NULL;
2758         }
2759
2760         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2761                 return NULL;
2762         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2763                 return NULL;
2764
2765         /*
2766          * If any qos ->throttle() end up blocking, we will have flushed the
2767          * plug and hence killed the cached_rq list as well. Pop this entry
2768          * before we throttle.
2769          */
2770         plug->cached_rq = rq_list_next(rq);
2771         rq_qos_throttle(q, *bio);
2772
2773         rq->cmd_flags = (*bio)->bi_opf;
2774         INIT_LIST_HEAD(&rq->queuelist);
2775         return rq;
2776 }
2777
2778 static void bio_set_ioprio(struct bio *bio)
2779 {
2780         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2781         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2782                 bio->bi_ioprio = get_current_ioprio();
2783         blkcg_set_ioprio(bio);
2784 }
2785
2786 /**
2787  * blk_mq_submit_bio - Create and send a request to block device.
2788  * @bio: Bio pointer.
2789  *
2790  * Builds up a request structure from @q and @bio and send to the device. The
2791  * request may not be queued directly to hardware if:
2792  * * This request can be merged with another one
2793  * * We want to place request at plug queue for possible future merging
2794  * * There is an IO scheduler active at this queue
2795  *
2796  * It will not queue the request if there is an error with the bio, or at the
2797  * request creation.
2798  */
2799 void blk_mq_submit_bio(struct bio *bio)
2800 {
2801         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2802         struct blk_plug *plug = blk_mq_plug(bio);
2803         const int is_sync = op_is_sync(bio->bi_opf);
2804         struct request *rq;
2805         unsigned int nr_segs = 1;
2806         blk_status_t ret;
2807
2808         bio = blk_queue_bounce(bio, q);
2809         if (bio_may_exceed_limits(bio, &q->limits))
2810                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2811
2812         if (!bio_integrity_prep(bio))
2813                 return;
2814
2815         bio_set_ioprio(bio);
2816
2817         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2818         if (!rq) {
2819                 if (!bio)
2820                         return;
2821                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2822                 if (unlikely(!rq))
2823                         return;
2824         }
2825
2826         trace_block_getrq(bio);
2827
2828         rq_qos_track(q, rq, bio);
2829
2830         blk_mq_bio_to_request(rq, bio, nr_segs);
2831
2832         ret = blk_crypto_init_request(rq);
2833         if (ret != BLK_STS_OK) {
2834                 bio->bi_status = ret;
2835                 bio_endio(bio);
2836                 blk_mq_free_request(rq);
2837                 return;
2838         }
2839
2840         if (op_is_flush(bio->bi_opf)) {
2841                 blk_insert_flush(rq);
2842                 return;
2843         }
2844
2845         if (plug)
2846                 blk_add_rq_to_plug(plug, rq);
2847         else if ((rq->rq_flags & RQF_ELV) ||
2848                  (rq->mq_hctx->dispatch_busy &&
2849                   (q->nr_hw_queues == 1 || !is_sync)))
2850                 blk_mq_sched_insert_request(rq, false, true, true);
2851         else
2852                 blk_mq_run_dispatch_ops(rq->q,
2853                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2854 }
2855
2856 #ifdef CONFIG_BLK_MQ_STACKING
2857 /**
2858  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2859  * @rq: the request being queued
2860  */
2861 blk_status_t blk_insert_cloned_request(struct request *rq)
2862 {
2863         struct request_queue *q = rq->q;
2864         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2865         blk_status_t ret;
2866
2867         if (blk_rq_sectors(rq) > max_sectors) {
2868                 /*
2869                  * SCSI device does not have a good way to return if
2870                  * Write Same/Zero is actually supported. If a device rejects
2871                  * a non-read/write command (discard, write same,etc.) the
2872                  * low-level device driver will set the relevant queue limit to
2873                  * 0 to prevent blk-lib from issuing more of the offending
2874                  * operations. Commands queued prior to the queue limit being
2875                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2876                  * errors being propagated to upper layers.
2877                  */
2878                 if (max_sectors == 0)
2879                         return BLK_STS_NOTSUPP;
2880
2881                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2882                         __func__, blk_rq_sectors(rq), max_sectors);
2883                 return BLK_STS_IOERR;
2884         }
2885
2886         /*
2887          * The queue settings related to segment counting may differ from the
2888          * original queue.
2889          */
2890         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2891         if (rq->nr_phys_segments > queue_max_segments(q)) {
2892                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2893                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2894                 return BLK_STS_IOERR;
2895         }
2896
2897         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2898                 return BLK_STS_IOERR;
2899
2900         if (blk_crypto_insert_cloned_request(rq))
2901                 return BLK_STS_IOERR;
2902
2903         blk_account_io_start(rq);
2904
2905         /*
2906          * Since we have a scheduler attached on the top device,
2907          * bypass a potential scheduler on the bottom device for
2908          * insert.
2909          */
2910         blk_mq_run_dispatch_ops(q,
2911                         ret = blk_mq_request_issue_directly(rq, true));
2912         if (ret)
2913                 blk_account_io_done(rq, ktime_get_ns());
2914         return ret;
2915 }
2916 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2917
2918 /**
2919  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2920  * @rq: the clone request to be cleaned up
2921  *
2922  * Description:
2923  *     Free all bios in @rq for a cloned request.
2924  */
2925 void blk_rq_unprep_clone(struct request *rq)
2926 {
2927         struct bio *bio;
2928
2929         while ((bio = rq->bio) != NULL) {
2930                 rq->bio = bio->bi_next;
2931
2932                 bio_put(bio);
2933         }
2934 }
2935 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2936
2937 /**
2938  * blk_rq_prep_clone - Helper function to setup clone request
2939  * @rq: the request to be setup
2940  * @rq_src: original request to be cloned
2941  * @bs: bio_set that bios for clone are allocated from
2942  * @gfp_mask: memory allocation mask for bio
2943  * @bio_ctr: setup function to be called for each clone bio.
2944  *           Returns %0 for success, non %0 for failure.
2945  * @data: private data to be passed to @bio_ctr
2946  *
2947  * Description:
2948  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2949  *     Also, pages which the original bios are pointing to are not copied
2950  *     and the cloned bios just point same pages.
2951  *     So cloned bios must be completed before original bios, which means
2952  *     the caller must complete @rq before @rq_src.
2953  */
2954 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2955                       struct bio_set *bs, gfp_t gfp_mask,
2956                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2957                       void *data)
2958 {
2959         struct bio *bio, *bio_src;
2960
2961         if (!bs)
2962                 bs = &fs_bio_set;
2963
2964         __rq_for_each_bio(bio_src, rq_src) {
2965                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2966                                       bs);
2967                 if (!bio)
2968                         goto free_and_out;
2969
2970                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2971                         goto free_and_out;
2972
2973                 if (rq->bio) {
2974                         rq->biotail->bi_next = bio;
2975                         rq->biotail = bio;
2976                 } else {
2977                         rq->bio = rq->biotail = bio;
2978                 }
2979                 bio = NULL;
2980         }
2981
2982         /* Copy attributes of the original request to the clone request. */
2983         rq->__sector = blk_rq_pos(rq_src);
2984         rq->__data_len = blk_rq_bytes(rq_src);
2985         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2986                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2987                 rq->special_vec = rq_src->special_vec;
2988         }
2989         rq->nr_phys_segments = rq_src->nr_phys_segments;
2990         rq->ioprio = rq_src->ioprio;
2991
2992         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2993                 goto free_and_out;
2994
2995         return 0;
2996
2997 free_and_out:
2998         if (bio)
2999                 bio_put(bio);
3000         blk_rq_unprep_clone(rq);
3001
3002         return -ENOMEM;
3003 }
3004 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3005 #endif /* CONFIG_BLK_MQ_STACKING */
3006
3007 /*
3008  * Steal bios from a request and add them to a bio list.
3009  * The request must not have been partially completed before.
3010  */
3011 void blk_steal_bios(struct bio_list *list, struct request *rq)
3012 {
3013         if (rq->bio) {
3014                 if (list->tail)
3015                         list->tail->bi_next = rq->bio;
3016                 else
3017                         list->head = rq->bio;
3018                 list->tail = rq->biotail;
3019
3020                 rq->bio = NULL;
3021                 rq->biotail = NULL;
3022         }
3023
3024         rq->__data_len = 0;
3025 }
3026 EXPORT_SYMBOL_GPL(blk_steal_bios);
3027
3028 static size_t order_to_size(unsigned int order)
3029 {
3030         return (size_t)PAGE_SIZE << order;
3031 }
3032
3033 /* called before freeing request pool in @tags */
3034 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3035                                     struct blk_mq_tags *tags)
3036 {
3037         struct page *page;
3038         unsigned long flags;
3039
3040         /* There is no need to clear a driver tags own mapping */
3041         if (drv_tags == tags)
3042                 return;
3043
3044         list_for_each_entry(page, &tags->page_list, lru) {
3045                 unsigned long start = (unsigned long)page_address(page);
3046                 unsigned long end = start + order_to_size(page->private);
3047                 int i;
3048
3049                 for (i = 0; i < drv_tags->nr_tags; i++) {
3050                         struct request *rq = drv_tags->rqs[i];
3051                         unsigned long rq_addr = (unsigned long)rq;
3052
3053                         if (rq_addr >= start && rq_addr < end) {
3054                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3055                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3056                         }
3057                 }
3058         }
3059
3060         /*
3061          * Wait until all pending iteration is done.
3062          *
3063          * Request reference is cleared and it is guaranteed to be observed
3064          * after the ->lock is released.
3065          */
3066         spin_lock_irqsave(&drv_tags->lock, flags);
3067         spin_unlock_irqrestore(&drv_tags->lock, flags);
3068 }
3069
3070 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3071                      unsigned int hctx_idx)
3072 {
3073         struct blk_mq_tags *drv_tags;
3074         struct page *page;
3075
3076         if (list_empty(&tags->page_list))
3077                 return;
3078
3079         if (blk_mq_is_shared_tags(set->flags))
3080                 drv_tags = set->shared_tags;
3081         else
3082                 drv_tags = set->tags[hctx_idx];
3083
3084         if (tags->static_rqs && set->ops->exit_request) {
3085                 int i;
3086
3087                 for (i = 0; i < tags->nr_tags; i++) {
3088                         struct request *rq = tags->static_rqs[i];
3089
3090                         if (!rq)
3091                                 continue;
3092                         set->ops->exit_request(set, rq, hctx_idx);
3093                         tags->static_rqs[i] = NULL;
3094                 }
3095         }
3096
3097         blk_mq_clear_rq_mapping(drv_tags, tags);
3098
3099         while (!list_empty(&tags->page_list)) {
3100                 page = list_first_entry(&tags->page_list, struct page, lru);
3101                 list_del_init(&page->lru);
3102                 /*
3103                  * Remove kmemleak object previously allocated in
3104                  * blk_mq_alloc_rqs().
3105                  */
3106                 kmemleak_free(page_address(page));
3107                 __free_pages(page, page->private);
3108         }
3109 }
3110
3111 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3112 {
3113         kfree(tags->rqs);
3114         tags->rqs = NULL;
3115         kfree(tags->static_rqs);
3116         tags->static_rqs = NULL;
3117
3118         blk_mq_free_tags(tags);
3119 }
3120
3121 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3122                 unsigned int hctx_idx)
3123 {
3124         int i;
3125
3126         for (i = 0; i < set->nr_maps; i++) {
3127                 unsigned int start = set->map[i].queue_offset;
3128                 unsigned int end = start + set->map[i].nr_queues;
3129
3130                 if (hctx_idx >= start && hctx_idx < end)
3131                         break;
3132         }
3133
3134         if (i >= set->nr_maps)
3135                 i = HCTX_TYPE_DEFAULT;
3136
3137         return i;
3138 }
3139
3140 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3141                 unsigned int hctx_idx)
3142 {
3143         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3144
3145         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3146 }
3147
3148 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3149                                                unsigned int hctx_idx,
3150                                                unsigned int nr_tags,
3151                                                unsigned int reserved_tags)
3152 {
3153         int node = blk_mq_get_hctx_node(set, hctx_idx);
3154         struct blk_mq_tags *tags;
3155
3156         if (node == NUMA_NO_NODE)
3157                 node = set->numa_node;
3158
3159         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3160                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3161         if (!tags)
3162                 return NULL;
3163
3164         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3165                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3166                                  node);
3167         if (!tags->rqs) {
3168                 blk_mq_free_tags(tags);
3169                 return NULL;
3170         }
3171
3172         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3173                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3174                                         node);
3175         if (!tags->static_rqs) {
3176                 kfree(tags->rqs);
3177                 blk_mq_free_tags(tags);
3178                 return NULL;
3179         }
3180
3181         return tags;
3182 }
3183
3184 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3185                                unsigned int hctx_idx, int node)
3186 {
3187         int ret;
3188
3189         if (set->ops->init_request) {
3190                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3191                 if (ret)
3192                         return ret;
3193         }
3194
3195         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3196         return 0;
3197 }
3198
3199 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3200                             struct blk_mq_tags *tags,
3201                             unsigned int hctx_idx, unsigned int depth)
3202 {
3203         unsigned int i, j, entries_per_page, max_order = 4;
3204         int node = blk_mq_get_hctx_node(set, hctx_idx);
3205         size_t rq_size, left;
3206
3207         if (node == NUMA_NO_NODE)
3208                 node = set->numa_node;
3209
3210         INIT_LIST_HEAD(&tags->page_list);
3211
3212         /*
3213          * rq_size is the size of the request plus driver payload, rounded
3214          * to the cacheline size
3215          */
3216         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3217                                 cache_line_size());
3218         left = rq_size * depth;
3219
3220         for (i = 0; i < depth; ) {
3221                 int this_order = max_order;
3222                 struct page *page;
3223                 int to_do;
3224                 void *p;
3225
3226                 while (this_order && left < order_to_size(this_order - 1))
3227                         this_order--;
3228
3229                 do {
3230                         page = alloc_pages_node(node,
3231                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3232                                 this_order);
3233                         if (page)
3234                                 break;
3235                         if (!this_order--)
3236                                 break;
3237                         if (order_to_size(this_order) < rq_size)
3238                                 break;
3239                 } while (1);
3240
3241                 if (!page)
3242                         goto fail;
3243
3244                 page->private = this_order;
3245                 list_add_tail(&page->lru, &tags->page_list);
3246
3247                 p = page_address(page);
3248                 /*
3249                  * Allow kmemleak to scan these pages as they contain pointers
3250                  * to additional allocations like via ops->init_request().
3251                  */
3252                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3253                 entries_per_page = order_to_size(this_order) / rq_size;
3254                 to_do = min(entries_per_page, depth - i);
3255                 left -= to_do * rq_size;
3256                 for (j = 0; j < to_do; j++) {
3257                         struct request *rq = p;
3258
3259                         tags->static_rqs[i] = rq;
3260                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3261                                 tags->static_rqs[i] = NULL;
3262                                 goto fail;
3263                         }
3264
3265                         p += rq_size;
3266                         i++;
3267                 }
3268         }
3269         return 0;
3270
3271 fail:
3272         blk_mq_free_rqs(set, tags, hctx_idx);
3273         return -ENOMEM;
3274 }
3275
3276 struct rq_iter_data {
3277         struct blk_mq_hw_ctx *hctx;
3278         bool has_rq;
3279 };
3280
3281 static bool blk_mq_has_request(struct request *rq, void *data)
3282 {
3283         struct rq_iter_data *iter_data = data;
3284
3285         if (rq->mq_hctx != iter_data->hctx)
3286                 return true;
3287         iter_data->has_rq = true;
3288         return false;
3289 }
3290
3291 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3292 {
3293         struct blk_mq_tags *tags = hctx->sched_tags ?
3294                         hctx->sched_tags : hctx->tags;
3295         struct rq_iter_data data = {
3296                 .hctx   = hctx,
3297         };
3298
3299         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3300         return data.has_rq;
3301 }
3302
3303 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3304                 struct blk_mq_hw_ctx *hctx)
3305 {
3306         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3307                 return false;
3308         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3309                 return false;
3310         return true;
3311 }
3312
3313 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3314 {
3315         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3316                         struct blk_mq_hw_ctx, cpuhp_online);
3317
3318         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3319             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3320                 return 0;
3321
3322         /*
3323          * Prevent new request from being allocated on the current hctx.
3324          *
3325          * The smp_mb__after_atomic() Pairs with the implied barrier in
3326          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3327          * seen once we return from the tag allocator.
3328          */
3329         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3330         smp_mb__after_atomic();
3331
3332         /*
3333          * Try to grab a reference to the queue and wait for any outstanding
3334          * requests.  If we could not grab a reference the queue has been
3335          * frozen and there are no requests.
3336          */
3337         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3338                 while (blk_mq_hctx_has_requests(hctx))
3339                         msleep(5);
3340                 percpu_ref_put(&hctx->queue->q_usage_counter);
3341         }
3342
3343         return 0;
3344 }
3345
3346 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3347 {
3348         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3349                         struct blk_mq_hw_ctx, cpuhp_online);
3350
3351         if (cpumask_test_cpu(cpu, hctx->cpumask))
3352                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3353         return 0;
3354 }
3355
3356 /*
3357  * 'cpu' is going away. splice any existing rq_list entries from this
3358  * software queue to the hw queue dispatch list, and ensure that it
3359  * gets run.
3360  */
3361 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3362 {
3363         struct blk_mq_hw_ctx *hctx;
3364         struct blk_mq_ctx *ctx;
3365         LIST_HEAD(tmp);
3366         enum hctx_type type;
3367
3368         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3369         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3370                 return 0;
3371
3372         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3373         type = hctx->type;
3374
3375         spin_lock(&ctx->lock);
3376         if (!list_empty(&ctx->rq_lists[type])) {
3377                 list_splice_init(&ctx->rq_lists[type], &tmp);
3378                 blk_mq_hctx_clear_pending(hctx, ctx);
3379         }
3380         spin_unlock(&ctx->lock);
3381
3382         if (list_empty(&tmp))
3383                 return 0;
3384
3385         spin_lock(&hctx->lock);
3386         list_splice_tail_init(&tmp, &hctx->dispatch);
3387         spin_unlock(&hctx->lock);
3388
3389         blk_mq_run_hw_queue(hctx, true);
3390         return 0;
3391 }
3392
3393 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3394 {
3395         if (!(hctx->flags & BLK_MQ_F_STACKING))
3396                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3397                                                     &hctx->cpuhp_online);
3398         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3399                                             &hctx->cpuhp_dead);
3400 }
3401
3402 /*
3403  * Before freeing hw queue, clearing the flush request reference in
3404  * tags->rqs[] for avoiding potential UAF.
3405  */
3406 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3407                 unsigned int queue_depth, struct request *flush_rq)
3408 {
3409         int i;
3410         unsigned long flags;
3411
3412         /* The hw queue may not be mapped yet */
3413         if (!tags)
3414                 return;
3415
3416         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3417
3418         for (i = 0; i < queue_depth; i++)
3419                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3420
3421         /*
3422          * Wait until all pending iteration is done.
3423          *
3424          * Request reference is cleared and it is guaranteed to be observed
3425          * after the ->lock is released.
3426          */
3427         spin_lock_irqsave(&tags->lock, flags);
3428         spin_unlock_irqrestore(&tags->lock, flags);
3429 }
3430
3431 /* hctx->ctxs will be freed in queue's release handler */
3432 static void blk_mq_exit_hctx(struct request_queue *q,
3433                 struct blk_mq_tag_set *set,
3434                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3435 {
3436         struct request *flush_rq = hctx->fq->flush_rq;
3437
3438         if (blk_mq_hw_queue_mapped(hctx))
3439                 blk_mq_tag_idle(hctx);
3440
3441         if (blk_queue_init_done(q))
3442                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3443                                 set->queue_depth, flush_rq);
3444         if (set->ops->exit_request)
3445                 set->ops->exit_request(set, flush_rq, hctx_idx);
3446
3447         if (set->ops->exit_hctx)
3448                 set->ops->exit_hctx(hctx, hctx_idx);
3449
3450         blk_mq_remove_cpuhp(hctx);
3451
3452         xa_erase(&q->hctx_table, hctx_idx);
3453
3454         spin_lock(&q->unused_hctx_lock);
3455         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3456         spin_unlock(&q->unused_hctx_lock);
3457 }
3458
3459 static void blk_mq_exit_hw_queues(struct request_queue *q,
3460                 struct blk_mq_tag_set *set, int nr_queue)
3461 {
3462         struct blk_mq_hw_ctx *hctx;
3463         unsigned long i;
3464
3465         queue_for_each_hw_ctx(q, hctx, i) {
3466                 if (i == nr_queue)
3467                         break;
3468                 blk_mq_exit_hctx(q, set, hctx, i);
3469         }
3470 }
3471
3472 static int blk_mq_init_hctx(struct request_queue *q,
3473                 struct blk_mq_tag_set *set,
3474                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3475 {
3476         hctx->queue_num = hctx_idx;
3477
3478         if (!(hctx->flags & BLK_MQ_F_STACKING))
3479                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3480                                 &hctx->cpuhp_online);
3481         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3482
3483         hctx->tags = set->tags[hctx_idx];
3484
3485         if (set->ops->init_hctx &&
3486             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3487                 goto unregister_cpu_notifier;
3488
3489         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3490                                 hctx->numa_node))
3491                 goto exit_hctx;
3492
3493         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3494                 goto exit_flush_rq;
3495
3496         return 0;
3497
3498  exit_flush_rq:
3499         if (set->ops->exit_request)
3500                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3501  exit_hctx:
3502         if (set->ops->exit_hctx)
3503                 set->ops->exit_hctx(hctx, hctx_idx);
3504  unregister_cpu_notifier:
3505         blk_mq_remove_cpuhp(hctx);
3506         return -1;
3507 }
3508
3509 static struct blk_mq_hw_ctx *
3510 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3511                 int node)
3512 {
3513         struct blk_mq_hw_ctx *hctx;
3514         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3515
3516         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3517         if (!hctx)
3518                 goto fail_alloc_hctx;
3519
3520         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3521                 goto free_hctx;
3522
3523         atomic_set(&hctx->nr_active, 0);
3524         if (node == NUMA_NO_NODE)
3525                 node = set->numa_node;
3526         hctx->numa_node = node;
3527
3528         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3529         spin_lock_init(&hctx->lock);
3530         INIT_LIST_HEAD(&hctx->dispatch);
3531         hctx->queue = q;
3532         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3533
3534         INIT_LIST_HEAD(&hctx->hctx_list);
3535
3536         /*
3537          * Allocate space for all possible cpus to avoid allocation at
3538          * runtime
3539          */
3540         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3541                         gfp, node);
3542         if (!hctx->ctxs)
3543                 goto free_cpumask;
3544
3545         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3546                                 gfp, node, false, false))
3547                 goto free_ctxs;
3548         hctx->nr_ctx = 0;
3549
3550         spin_lock_init(&hctx->dispatch_wait_lock);
3551         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3552         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3553
3554         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3555         if (!hctx->fq)
3556                 goto free_bitmap;
3557
3558         blk_mq_hctx_kobj_init(hctx);
3559
3560         return hctx;
3561
3562  free_bitmap:
3563         sbitmap_free(&hctx->ctx_map);
3564  free_ctxs:
3565         kfree(hctx->ctxs);
3566  free_cpumask:
3567         free_cpumask_var(hctx->cpumask);
3568  free_hctx:
3569         kfree(hctx);
3570  fail_alloc_hctx:
3571         return NULL;
3572 }
3573
3574 static void blk_mq_init_cpu_queues(struct request_queue *q,
3575                                    unsigned int nr_hw_queues)
3576 {
3577         struct blk_mq_tag_set *set = q->tag_set;
3578         unsigned int i, j;
3579
3580         for_each_possible_cpu(i) {
3581                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3582                 struct blk_mq_hw_ctx *hctx;
3583                 int k;
3584
3585                 __ctx->cpu = i;
3586                 spin_lock_init(&__ctx->lock);
3587                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3588                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3589
3590                 __ctx->queue = q;
3591
3592                 /*
3593                  * Set local node, IFF we have more than one hw queue. If
3594                  * not, we remain on the home node of the device
3595                  */
3596                 for (j = 0; j < set->nr_maps; j++) {
3597                         hctx = blk_mq_map_queue_type(q, j, i);
3598                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3599                                 hctx->numa_node = cpu_to_node(i);
3600                 }
3601         }
3602 }
3603
3604 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3605                                              unsigned int hctx_idx,
3606                                              unsigned int depth)
3607 {
3608         struct blk_mq_tags *tags;
3609         int ret;
3610
3611         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3612         if (!tags)
3613                 return NULL;
3614
3615         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3616         if (ret) {
3617                 blk_mq_free_rq_map(tags);
3618                 return NULL;
3619         }
3620
3621         return tags;
3622 }
3623
3624 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3625                                        int hctx_idx)
3626 {
3627         if (blk_mq_is_shared_tags(set->flags)) {
3628                 set->tags[hctx_idx] = set->shared_tags;
3629
3630                 return true;
3631         }
3632
3633         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3634                                                        set->queue_depth);
3635
3636         return set->tags[hctx_idx];
3637 }
3638
3639 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3640                              struct blk_mq_tags *tags,
3641                              unsigned int hctx_idx)
3642 {
3643         if (tags) {
3644                 blk_mq_free_rqs(set, tags, hctx_idx);
3645                 blk_mq_free_rq_map(tags);
3646         }
3647 }
3648
3649 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3650                                       unsigned int hctx_idx)
3651 {
3652         if (!blk_mq_is_shared_tags(set->flags))
3653                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3654
3655         set->tags[hctx_idx] = NULL;
3656 }
3657
3658 static void blk_mq_map_swqueue(struct request_queue *q)
3659 {
3660         unsigned int j, hctx_idx;
3661         unsigned long i;
3662         struct blk_mq_hw_ctx *hctx;
3663         struct blk_mq_ctx *ctx;
3664         struct blk_mq_tag_set *set = q->tag_set;
3665
3666         queue_for_each_hw_ctx(q, hctx, i) {
3667                 cpumask_clear(hctx->cpumask);
3668                 hctx->nr_ctx = 0;
3669                 hctx->dispatch_from = NULL;
3670         }
3671
3672         /*
3673          * Map software to hardware queues.
3674          *
3675          * If the cpu isn't present, the cpu is mapped to first hctx.
3676          */
3677         for_each_possible_cpu(i) {
3678
3679                 ctx = per_cpu_ptr(q->queue_ctx, i);
3680                 for (j = 0; j < set->nr_maps; j++) {
3681                         if (!set->map[j].nr_queues) {
3682                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3683                                                 HCTX_TYPE_DEFAULT, i);
3684                                 continue;
3685                         }
3686                         hctx_idx = set->map[j].mq_map[i];
3687                         /* unmapped hw queue can be remapped after CPU topo changed */
3688                         if (!set->tags[hctx_idx] &&
3689                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3690                                 /*
3691                                  * If tags initialization fail for some hctx,
3692                                  * that hctx won't be brought online.  In this
3693                                  * case, remap the current ctx to hctx[0] which
3694                                  * is guaranteed to always have tags allocated
3695                                  */
3696                                 set->map[j].mq_map[i] = 0;
3697                         }
3698
3699                         hctx = blk_mq_map_queue_type(q, j, i);
3700                         ctx->hctxs[j] = hctx;
3701                         /*
3702                          * If the CPU is already set in the mask, then we've
3703                          * mapped this one already. This can happen if
3704                          * devices share queues across queue maps.
3705                          */
3706                         if (cpumask_test_cpu(i, hctx->cpumask))
3707                                 continue;
3708
3709                         cpumask_set_cpu(i, hctx->cpumask);
3710                         hctx->type = j;
3711                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3712                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3713
3714                         /*
3715                          * If the nr_ctx type overflows, we have exceeded the
3716                          * amount of sw queues we can support.
3717                          */
3718                         BUG_ON(!hctx->nr_ctx);
3719                 }
3720
3721                 for (; j < HCTX_MAX_TYPES; j++)
3722                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3723                                         HCTX_TYPE_DEFAULT, i);
3724         }
3725
3726         queue_for_each_hw_ctx(q, hctx, i) {
3727                 /*
3728                  * If no software queues are mapped to this hardware queue,
3729                  * disable it and free the request entries.
3730                  */
3731                 if (!hctx->nr_ctx) {
3732                         /* Never unmap queue 0.  We need it as a
3733                          * fallback in case of a new remap fails
3734                          * allocation
3735                          */
3736                         if (i)
3737                                 __blk_mq_free_map_and_rqs(set, i);
3738
3739                         hctx->tags = NULL;
3740                         continue;
3741                 }
3742
3743                 hctx->tags = set->tags[i];
3744                 WARN_ON(!hctx->tags);
3745
3746                 /*
3747                  * Set the map size to the number of mapped software queues.
3748                  * This is more accurate and more efficient than looping
3749                  * over all possibly mapped software queues.
3750                  */
3751                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3752
3753                 /*
3754                  * Initialize batch roundrobin counts
3755                  */
3756                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3757                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3758         }
3759 }
3760
3761 /*
3762  * Caller needs to ensure that we're either frozen/quiesced, or that
3763  * the queue isn't live yet.
3764  */
3765 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3766 {
3767         struct blk_mq_hw_ctx *hctx;
3768         unsigned long i;
3769
3770         queue_for_each_hw_ctx(q, hctx, i) {
3771                 if (shared) {
3772                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3773                 } else {
3774                         blk_mq_tag_idle(hctx);
3775                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3776                 }
3777         }
3778 }
3779
3780 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3781                                          bool shared)
3782 {
3783         struct request_queue *q;
3784
3785         lockdep_assert_held(&set->tag_list_lock);
3786
3787         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3788                 blk_mq_freeze_queue(q);
3789                 queue_set_hctx_shared(q, shared);
3790                 blk_mq_unfreeze_queue(q);
3791         }
3792 }
3793
3794 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3795 {
3796         struct blk_mq_tag_set *set = q->tag_set;
3797
3798         mutex_lock(&set->tag_list_lock);
3799         list_del(&q->tag_set_list);
3800         if (list_is_singular(&set->tag_list)) {
3801                 /* just transitioned to unshared */
3802                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3803                 /* update existing queue */
3804                 blk_mq_update_tag_set_shared(set, false);
3805         }
3806         mutex_unlock(&set->tag_list_lock);
3807         INIT_LIST_HEAD(&q->tag_set_list);
3808 }
3809
3810 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3811                                      struct request_queue *q)
3812 {
3813         mutex_lock(&set->tag_list_lock);
3814
3815         /*
3816          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3817          */
3818         if (!list_empty(&set->tag_list) &&
3819             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3820                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3821                 /* update existing queue */
3822                 blk_mq_update_tag_set_shared(set, true);
3823         }
3824         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3825                 queue_set_hctx_shared(q, true);
3826         list_add_tail(&q->tag_set_list, &set->tag_list);
3827
3828         mutex_unlock(&set->tag_list_lock);
3829 }
3830
3831 /* All allocations will be freed in release handler of q->mq_kobj */
3832 static int blk_mq_alloc_ctxs(struct request_queue *q)
3833 {
3834         struct blk_mq_ctxs *ctxs;
3835         int cpu;
3836
3837         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3838         if (!ctxs)
3839                 return -ENOMEM;
3840
3841         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3842         if (!ctxs->queue_ctx)
3843                 goto fail;
3844
3845         for_each_possible_cpu(cpu) {
3846                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3847                 ctx->ctxs = ctxs;
3848         }
3849
3850         q->mq_kobj = &ctxs->kobj;
3851         q->queue_ctx = ctxs->queue_ctx;
3852
3853         return 0;
3854  fail:
3855         kfree(ctxs);
3856         return -ENOMEM;
3857 }
3858
3859 /*
3860  * It is the actual release handler for mq, but we do it from
3861  * request queue's release handler for avoiding use-after-free
3862  * and headache because q->mq_kobj shouldn't have been introduced,
3863  * but we can't group ctx/kctx kobj without it.
3864  */
3865 void blk_mq_release(struct request_queue *q)
3866 {
3867         struct blk_mq_hw_ctx *hctx, *next;
3868         unsigned long i;
3869
3870         queue_for_each_hw_ctx(q, hctx, i)
3871                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3872
3873         /* all hctx are in .unused_hctx_list now */
3874         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3875                 list_del_init(&hctx->hctx_list);
3876                 kobject_put(&hctx->kobj);
3877         }
3878
3879         xa_destroy(&q->hctx_table);
3880
3881         /*
3882          * release .mq_kobj and sw queue's kobject now because
3883          * both share lifetime with request queue.
3884          */
3885         blk_mq_sysfs_deinit(q);
3886 }
3887
3888 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3889                 void *queuedata)
3890 {
3891         struct request_queue *q;
3892         int ret;
3893
3894         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3895         if (!q)
3896                 return ERR_PTR(-ENOMEM);
3897         q->queuedata = queuedata;
3898         ret = blk_mq_init_allocated_queue(set, q);
3899         if (ret) {
3900                 blk_put_queue(q);
3901                 return ERR_PTR(ret);
3902         }
3903         return q;
3904 }
3905
3906 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3907 {
3908         return blk_mq_init_queue_data(set, NULL);
3909 }
3910 EXPORT_SYMBOL(blk_mq_init_queue);
3911
3912 /**
3913  * blk_mq_destroy_queue - shutdown a request queue
3914  * @q: request queue to shutdown
3915  *
3916  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3917  * the initial reference.  All future requests will failed with -ENODEV.
3918  *
3919  * Context: can sleep
3920  */
3921 void blk_mq_destroy_queue(struct request_queue *q)
3922 {
3923         WARN_ON_ONCE(!queue_is_mq(q));
3924         WARN_ON_ONCE(blk_queue_registered(q));
3925
3926         might_sleep();
3927
3928         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3929         blk_queue_start_drain(q);
3930         blk_freeze_queue(q);
3931
3932         blk_sync_queue(q);
3933         blk_mq_cancel_work_sync(q);
3934         blk_mq_exit_queue(q);
3935
3936         /* @q is and will stay empty, shutdown and put */
3937         blk_put_queue(q);
3938 }
3939 EXPORT_SYMBOL(blk_mq_destroy_queue);
3940
3941 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3942                 struct lock_class_key *lkclass)
3943 {
3944         struct request_queue *q;
3945         struct gendisk *disk;
3946
3947         q = blk_mq_init_queue_data(set, queuedata);
3948         if (IS_ERR(q))
3949                 return ERR_CAST(q);
3950
3951         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3952         if (!disk) {
3953                 blk_mq_destroy_queue(q);
3954                 return ERR_PTR(-ENOMEM);
3955         }
3956         set_bit(GD_OWNS_QUEUE, &disk->state);
3957         return disk;
3958 }
3959 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3960
3961 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3962                 struct lock_class_key *lkclass)
3963 {
3964         if (!blk_get_queue(q))
3965                 return NULL;
3966         return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3967 }
3968 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3969
3970 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3971                 struct blk_mq_tag_set *set, struct request_queue *q,
3972                 int hctx_idx, int node)
3973 {
3974         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3975
3976         /* reuse dead hctx first */
3977         spin_lock(&q->unused_hctx_lock);
3978         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3979                 if (tmp->numa_node == node) {
3980                         hctx = tmp;
3981                         break;
3982                 }
3983         }
3984         if (hctx)
3985                 list_del_init(&hctx->hctx_list);
3986         spin_unlock(&q->unused_hctx_lock);
3987
3988         if (!hctx)
3989                 hctx = blk_mq_alloc_hctx(q, set, node);
3990         if (!hctx)
3991                 goto fail;
3992
3993         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3994                 goto free_hctx;
3995
3996         return hctx;
3997
3998  free_hctx:
3999         kobject_put(&hctx->kobj);
4000  fail:
4001         return NULL;
4002 }
4003
4004 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4005                                                 struct request_queue *q)
4006 {
4007         struct blk_mq_hw_ctx *hctx;
4008         unsigned long i, j;
4009
4010         /* protect against switching io scheduler  */
4011         mutex_lock(&q->sysfs_lock);
4012         for (i = 0; i < set->nr_hw_queues; i++) {
4013                 int old_node;
4014                 int node = blk_mq_get_hctx_node(set, i);
4015                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4016
4017                 if (old_hctx) {
4018                         old_node = old_hctx->numa_node;
4019                         blk_mq_exit_hctx(q, set, old_hctx, i);
4020                 }
4021
4022                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4023                         if (!old_hctx)
4024                                 break;
4025                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4026                                         node, old_node);
4027                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4028                         WARN_ON_ONCE(!hctx);
4029                 }
4030         }
4031         /*
4032          * Increasing nr_hw_queues fails. Free the newly allocated
4033          * hctxs and keep the previous q->nr_hw_queues.
4034          */
4035         if (i != set->nr_hw_queues) {
4036                 j = q->nr_hw_queues;
4037         } else {
4038                 j = i;
4039                 q->nr_hw_queues = set->nr_hw_queues;
4040         }
4041
4042         xa_for_each_start(&q->hctx_table, j, hctx, j)
4043                 blk_mq_exit_hctx(q, set, hctx, j);
4044         mutex_unlock(&q->sysfs_lock);
4045 }
4046
4047 static void blk_mq_update_poll_flag(struct request_queue *q)
4048 {
4049         struct blk_mq_tag_set *set = q->tag_set;
4050
4051         if (set->nr_maps > HCTX_TYPE_POLL &&
4052             set->map[HCTX_TYPE_POLL].nr_queues)
4053                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4054         else
4055                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4056 }
4057
4058 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4059                 struct request_queue *q)
4060 {
4061         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4062                         !!(set->flags & BLK_MQ_F_BLOCKING));
4063
4064         /* mark the queue as mq asap */
4065         q->mq_ops = set->ops;
4066
4067         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4068                                              blk_mq_poll_stats_bkt,
4069                                              BLK_MQ_POLL_STATS_BKTS, q);
4070         if (!q->poll_cb)
4071                 goto err_exit;
4072
4073         if (blk_mq_alloc_ctxs(q))
4074                 goto err_poll;
4075
4076         /* init q->mq_kobj and sw queues' kobjects */
4077         blk_mq_sysfs_init(q);
4078
4079         INIT_LIST_HEAD(&q->unused_hctx_list);
4080         spin_lock_init(&q->unused_hctx_lock);
4081
4082         xa_init(&q->hctx_table);
4083
4084         blk_mq_realloc_hw_ctxs(set, q);
4085         if (!q->nr_hw_queues)
4086                 goto err_hctxs;
4087
4088         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4089         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4090
4091         q->tag_set = set;
4092
4093         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4094         blk_mq_update_poll_flag(q);
4095
4096         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4097         INIT_LIST_HEAD(&q->requeue_list);
4098         spin_lock_init(&q->requeue_lock);
4099
4100         q->nr_requests = set->queue_depth;
4101
4102         /*
4103          * Default to classic polling
4104          */
4105         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4106
4107         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4108         blk_mq_add_queue_tag_set(set, q);
4109         blk_mq_map_swqueue(q);
4110         return 0;
4111
4112 err_hctxs:
4113         xa_destroy(&q->hctx_table);
4114         q->nr_hw_queues = 0;
4115         blk_mq_sysfs_deinit(q);
4116 err_poll:
4117         blk_stat_free_callback(q->poll_cb);
4118         q->poll_cb = NULL;
4119 err_exit:
4120         q->mq_ops = NULL;
4121         return -ENOMEM;
4122 }
4123 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4124
4125 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4126 void blk_mq_exit_queue(struct request_queue *q)
4127 {
4128         struct blk_mq_tag_set *set = q->tag_set;
4129
4130         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4131         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4132         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4133         blk_mq_del_queue_tag_set(q);
4134 }
4135
4136 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4137 {
4138         int i;
4139
4140         if (blk_mq_is_shared_tags(set->flags)) {
4141                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4142                                                 BLK_MQ_NO_HCTX_IDX,
4143                                                 set->queue_depth);
4144                 if (!set->shared_tags)
4145                         return -ENOMEM;
4146         }
4147
4148         for (i = 0; i < set->nr_hw_queues; i++) {
4149                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4150                         goto out_unwind;
4151                 cond_resched();
4152         }
4153
4154         return 0;
4155
4156 out_unwind:
4157         while (--i >= 0)
4158                 __blk_mq_free_map_and_rqs(set, i);
4159
4160         if (blk_mq_is_shared_tags(set->flags)) {
4161                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4162                                         BLK_MQ_NO_HCTX_IDX);
4163         }
4164
4165         return -ENOMEM;
4166 }
4167
4168 /*
4169  * Allocate the request maps associated with this tag_set. Note that this
4170  * may reduce the depth asked for, if memory is tight. set->queue_depth
4171  * will be updated to reflect the allocated depth.
4172  */
4173 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4174 {
4175         unsigned int depth;
4176         int err;
4177
4178         depth = set->queue_depth;
4179         do {
4180                 err = __blk_mq_alloc_rq_maps(set);
4181                 if (!err)
4182                         break;
4183
4184                 set->queue_depth >>= 1;
4185                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4186                         err = -ENOMEM;
4187                         break;
4188                 }
4189         } while (set->queue_depth);
4190
4191         if (!set->queue_depth || err) {
4192                 pr_err("blk-mq: failed to allocate request map\n");
4193                 return -ENOMEM;
4194         }
4195
4196         if (depth != set->queue_depth)
4197                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4198                                                 depth, set->queue_depth);
4199
4200         return 0;
4201 }
4202
4203 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4204 {
4205         /*
4206          * blk_mq_map_queues() and multiple .map_queues() implementations
4207          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4208          * number of hardware queues.
4209          */
4210         if (set->nr_maps == 1)
4211                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4212
4213         if (set->ops->map_queues && !is_kdump_kernel()) {
4214                 int i;
4215
4216                 /*
4217                  * transport .map_queues is usually done in the following
4218                  * way:
4219                  *
4220                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4221                  *      mask = get_cpu_mask(queue)
4222                  *      for_each_cpu(cpu, mask)
4223                  *              set->map[x].mq_map[cpu] = queue;
4224                  * }
4225                  *
4226                  * When we need to remap, the table has to be cleared for
4227                  * killing stale mapping since one CPU may not be mapped
4228                  * to any hw queue.
4229                  */
4230                 for (i = 0; i < set->nr_maps; i++)
4231                         blk_mq_clear_mq_map(&set->map[i]);
4232
4233                 set->ops->map_queues(set);
4234         } else {
4235                 BUG_ON(set->nr_maps > 1);
4236                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4237         }
4238 }
4239
4240 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4241                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4242 {
4243         struct blk_mq_tags **new_tags;
4244
4245         if (cur_nr_hw_queues >= new_nr_hw_queues)
4246                 return 0;
4247
4248         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4249                                 GFP_KERNEL, set->numa_node);
4250         if (!new_tags)
4251                 return -ENOMEM;
4252
4253         if (set->tags)
4254                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4255                        sizeof(*set->tags));
4256         kfree(set->tags);
4257         set->tags = new_tags;
4258         set->nr_hw_queues = new_nr_hw_queues;
4259
4260         return 0;
4261 }
4262
4263 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4264                                 int new_nr_hw_queues)
4265 {
4266         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4267 }
4268
4269 /*
4270  * Alloc a tag set to be associated with one or more request queues.
4271  * May fail with EINVAL for various error conditions. May adjust the
4272  * requested depth down, if it's too large. In that case, the set
4273  * value will be stored in set->queue_depth.
4274  */
4275 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4276 {
4277         int i, ret;
4278
4279         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4280
4281         if (!set->nr_hw_queues)
4282                 return -EINVAL;
4283         if (!set->queue_depth)
4284                 return -EINVAL;
4285         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4286                 return -EINVAL;
4287
4288         if (!set->ops->queue_rq)
4289                 return -EINVAL;
4290
4291         if (!set->ops->get_budget ^ !set->ops->put_budget)
4292                 return -EINVAL;
4293
4294         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4295                 pr_info("blk-mq: reduced tag depth to %u\n",
4296                         BLK_MQ_MAX_DEPTH);
4297                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4298         }
4299
4300         if (!set->nr_maps)
4301                 set->nr_maps = 1;
4302         else if (set->nr_maps > HCTX_MAX_TYPES)
4303                 return -EINVAL;
4304
4305         /*
4306          * If a crashdump is active, then we are potentially in a very
4307          * memory constrained environment. Limit us to 1 queue and
4308          * 64 tags to prevent using too much memory.
4309          */
4310         if (is_kdump_kernel()) {
4311                 set->nr_hw_queues = 1;
4312                 set->nr_maps = 1;
4313                 set->queue_depth = min(64U, set->queue_depth);
4314         }
4315         /*
4316          * There is no use for more h/w queues than cpus if we just have
4317          * a single map
4318          */
4319         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4320                 set->nr_hw_queues = nr_cpu_ids;
4321
4322         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4323                 return -ENOMEM;
4324
4325         ret = -ENOMEM;
4326         for (i = 0; i < set->nr_maps; i++) {
4327                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4328                                                   sizeof(set->map[i].mq_map[0]),
4329                                                   GFP_KERNEL, set->numa_node);
4330                 if (!set->map[i].mq_map)
4331                         goto out_free_mq_map;
4332                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4333         }
4334
4335         blk_mq_update_queue_map(set);
4336
4337         ret = blk_mq_alloc_set_map_and_rqs(set);
4338         if (ret)
4339                 goto out_free_mq_map;
4340
4341         mutex_init(&set->tag_list_lock);
4342         INIT_LIST_HEAD(&set->tag_list);
4343
4344         return 0;
4345
4346 out_free_mq_map:
4347         for (i = 0; i < set->nr_maps; i++) {
4348                 kfree(set->map[i].mq_map);
4349                 set->map[i].mq_map = NULL;
4350         }
4351         kfree(set->tags);
4352         set->tags = NULL;
4353         return ret;
4354 }
4355 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4356
4357 /* allocate and initialize a tagset for a simple single-queue device */
4358 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4359                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4360                 unsigned int set_flags)
4361 {
4362         memset(set, 0, sizeof(*set));
4363         set->ops = ops;
4364         set->nr_hw_queues = 1;
4365         set->nr_maps = 1;
4366         set->queue_depth = queue_depth;
4367         set->numa_node = NUMA_NO_NODE;
4368         set->flags = set_flags;
4369         return blk_mq_alloc_tag_set(set);
4370 }
4371 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4372
4373 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4374 {
4375         int i, j;
4376
4377         for (i = 0; i < set->nr_hw_queues; i++)
4378                 __blk_mq_free_map_and_rqs(set, i);
4379
4380         if (blk_mq_is_shared_tags(set->flags)) {
4381                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4382                                         BLK_MQ_NO_HCTX_IDX);
4383         }
4384
4385         for (j = 0; j < set->nr_maps; j++) {
4386                 kfree(set->map[j].mq_map);
4387                 set->map[j].mq_map = NULL;
4388         }
4389
4390         kfree(set->tags);
4391         set->tags = NULL;
4392 }
4393 EXPORT_SYMBOL(blk_mq_free_tag_set);
4394
4395 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4396 {
4397         struct blk_mq_tag_set *set = q->tag_set;
4398         struct blk_mq_hw_ctx *hctx;
4399         int ret;
4400         unsigned long i;
4401
4402         if (!set)
4403                 return -EINVAL;
4404
4405         if (q->nr_requests == nr)
4406                 return 0;
4407
4408         blk_mq_freeze_queue(q);
4409         blk_mq_quiesce_queue(q);
4410
4411         ret = 0;
4412         queue_for_each_hw_ctx(q, hctx, i) {
4413                 if (!hctx->tags)
4414                         continue;
4415                 /*
4416                  * If we're using an MQ scheduler, just update the scheduler
4417                  * queue depth. This is similar to what the old code would do.
4418                  */
4419                 if (hctx->sched_tags) {
4420                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4421                                                       nr, true);
4422                 } else {
4423                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4424                                                       false);
4425                 }
4426                 if (ret)
4427                         break;
4428                 if (q->elevator && q->elevator->type->ops.depth_updated)
4429                         q->elevator->type->ops.depth_updated(hctx);
4430         }
4431         if (!ret) {
4432                 q->nr_requests = nr;
4433                 if (blk_mq_is_shared_tags(set->flags)) {
4434                         if (q->elevator)
4435                                 blk_mq_tag_update_sched_shared_tags(q);
4436                         else
4437                                 blk_mq_tag_resize_shared_tags(set, nr);
4438                 }
4439         }
4440
4441         blk_mq_unquiesce_queue(q);
4442         blk_mq_unfreeze_queue(q);
4443
4444         return ret;
4445 }
4446
4447 /*
4448  * request_queue and elevator_type pair.
4449  * It is just used by __blk_mq_update_nr_hw_queues to cache
4450  * the elevator_type associated with a request_queue.
4451  */
4452 struct blk_mq_qe_pair {
4453         struct list_head node;
4454         struct request_queue *q;
4455         struct elevator_type *type;
4456 };
4457
4458 /*
4459  * Cache the elevator_type in qe pair list and switch the
4460  * io scheduler to 'none'
4461  */
4462 static bool blk_mq_elv_switch_none(struct list_head *head,
4463                 struct request_queue *q)
4464 {
4465         struct blk_mq_qe_pair *qe;
4466
4467         if (!q->elevator)
4468                 return true;
4469
4470         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4471         if (!qe)
4472                 return false;
4473
4474         /* q->elevator needs protection from ->sysfs_lock */
4475         mutex_lock(&q->sysfs_lock);
4476
4477         INIT_LIST_HEAD(&qe->node);
4478         qe->q = q;
4479         qe->type = q->elevator->type;
4480         list_add(&qe->node, head);
4481
4482         /*
4483          * After elevator_switch, the previous elevator_queue will be
4484          * released by elevator_release. The reference of the io scheduler
4485          * module get by elevator_get will also be put. So we need to get
4486          * a reference of the io scheduler module here to prevent it to be
4487          * removed.
4488          */
4489         __module_get(qe->type->elevator_owner);
4490         elevator_switch(q, NULL);
4491         mutex_unlock(&q->sysfs_lock);
4492
4493         return true;
4494 }
4495
4496 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4497                                                 struct request_queue *q)
4498 {
4499         struct blk_mq_qe_pair *qe;
4500
4501         list_for_each_entry(qe, head, node)
4502                 if (qe->q == q)
4503                         return qe;
4504
4505         return NULL;
4506 }
4507
4508 static void blk_mq_elv_switch_back(struct list_head *head,
4509                                   struct request_queue *q)
4510 {
4511         struct blk_mq_qe_pair *qe;
4512         struct elevator_type *t;
4513
4514         qe = blk_lookup_qe_pair(head, q);
4515         if (!qe)
4516                 return;
4517         t = qe->type;
4518         list_del(&qe->node);
4519         kfree(qe);
4520
4521         mutex_lock(&q->sysfs_lock);
4522         elevator_switch(q, t);
4523         mutex_unlock(&q->sysfs_lock);
4524 }
4525
4526 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4527                                                         int nr_hw_queues)
4528 {
4529         struct request_queue *q;
4530         LIST_HEAD(head);
4531         int prev_nr_hw_queues;
4532
4533         lockdep_assert_held(&set->tag_list_lock);
4534
4535         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4536                 nr_hw_queues = nr_cpu_ids;
4537         if (nr_hw_queues < 1)
4538                 return;
4539         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4540                 return;
4541
4542         list_for_each_entry(q, &set->tag_list, tag_set_list)
4543                 blk_mq_freeze_queue(q);
4544         /*
4545          * Switch IO scheduler to 'none', cleaning up the data associated
4546          * with the previous scheduler. We will switch back once we are done
4547          * updating the new sw to hw queue mappings.
4548          */
4549         list_for_each_entry(q, &set->tag_list, tag_set_list)
4550                 if (!blk_mq_elv_switch_none(&head, q))
4551                         goto switch_back;
4552
4553         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4554                 blk_mq_debugfs_unregister_hctxs(q);
4555                 blk_mq_sysfs_unregister_hctxs(q);
4556         }
4557
4558         prev_nr_hw_queues = set->nr_hw_queues;
4559         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4560             0)
4561                 goto reregister;
4562
4563         set->nr_hw_queues = nr_hw_queues;
4564 fallback:
4565         blk_mq_update_queue_map(set);
4566         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4567                 blk_mq_realloc_hw_ctxs(set, q);
4568                 blk_mq_update_poll_flag(q);
4569                 if (q->nr_hw_queues != set->nr_hw_queues) {
4570                         int i = prev_nr_hw_queues;
4571
4572                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4573                                         nr_hw_queues, prev_nr_hw_queues);
4574                         for (; i < set->nr_hw_queues; i++)
4575                                 __blk_mq_free_map_and_rqs(set, i);
4576
4577                         set->nr_hw_queues = prev_nr_hw_queues;
4578                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4579                         goto fallback;
4580                 }
4581                 blk_mq_map_swqueue(q);
4582         }
4583
4584 reregister:
4585         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4586                 blk_mq_sysfs_register_hctxs(q);
4587                 blk_mq_debugfs_register_hctxs(q);
4588         }
4589
4590 switch_back:
4591         list_for_each_entry(q, &set->tag_list, tag_set_list)
4592                 blk_mq_elv_switch_back(&head, q);
4593
4594         list_for_each_entry(q, &set->tag_list, tag_set_list)
4595                 blk_mq_unfreeze_queue(q);
4596 }
4597
4598 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4599 {
4600         mutex_lock(&set->tag_list_lock);
4601         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4602         mutex_unlock(&set->tag_list_lock);
4603 }
4604 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4605
4606 /* Enable polling stats and return whether they were already enabled. */
4607 static bool blk_poll_stats_enable(struct request_queue *q)
4608 {
4609         if (q->poll_stat)
4610                 return true;
4611
4612         return blk_stats_alloc_enable(q);
4613 }
4614
4615 static void blk_mq_poll_stats_start(struct request_queue *q)
4616 {
4617         /*
4618          * We don't arm the callback if polling stats are not enabled or the
4619          * callback is already active.
4620          */
4621         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4622                 return;
4623
4624         blk_stat_activate_msecs(q->poll_cb, 100);
4625 }
4626
4627 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4628 {
4629         struct request_queue *q = cb->data;
4630         int bucket;
4631
4632         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4633                 if (cb->stat[bucket].nr_samples)
4634                         q->poll_stat[bucket] = cb->stat[bucket];
4635         }
4636 }
4637
4638 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4639                                        struct request *rq)
4640 {
4641         unsigned long ret = 0;
4642         int bucket;
4643
4644         /*
4645          * If stats collection isn't on, don't sleep but turn it on for
4646          * future users
4647          */
4648         if (!blk_poll_stats_enable(q))
4649                 return 0;
4650
4651         /*
4652          * As an optimistic guess, use half of the mean service time
4653          * for this type of request. We can (and should) make this smarter.
4654          * For instance, if the completion latencies are tight, we can
4655          * get closer than just half the mean. This is especially
4656          * important on devices where the completion latencies are longer
4657          * than ~10 usec. We do use the stats for the relevant IO size
4658          * if available which does lead to better estimates.
4659          */
4660         bucket = blk_mq_poll_stats_bkt(rq);
4661         if (bucket < 0)
4662                 return ret;
4663
4664         if (q->poll_stat[bucket].nr_samples)
4665                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4666
4667         return ret;
4668 }
4669
4670 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4671 {
4672         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4673         struct request *rq = blk_qc_to_rq(hctx, qc);
4674         struct hrtimer_sleeper hs;
4675         enum hrtimer_mode mode;
4676         unsigned int nsecs;
4677         ktime_t kt;
4678
4679         /*
4680          * If a request has completed on queue that uses an I/O scheduler, we
4681          * won't get back a request from blk_qc_to_rq.
4682          */
4683         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4684                 return false;
4685
4686         /*
4687          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4688          *
4689          *  0:  use half of prev avg
4690          * >0:  use this specific value
4691          */
4692         if (q->poll_nsec > 0)
4693                 nsecs = q->poll_nsec;
4694         else
4695                 nsecs = blk_mq_poll_nsecs(q, rq);
4696
4697         if (!nsecs)
4698                 return false;
4699
4700         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4701
4702         /*
4703          * This will be replaced with the stats tracking code, using
4704          * 'avg_completion_time / 2' as the pre-sleep target.
4705          */
4706         kt = nsecs;
4707
4708         mode = HRTIMER_MODE_REL;
4709         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4710         hrtimer_set_expires(&hs.timer, kt);
4711
4712         do {
4713                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4714                         break;
4715                 set_current_state(TASK_UNINTERRUPTIBLE);
4716                 hrtimer_sleeper_start_expires(&hs, mode);
4717                 if (hs.task)
4718                         io_schedule();
4719                 hrtimer_cancel(&hs.timer);
4720                 mode = HRTIMER_MODE_ABS;
4721         } while (hs.task && !signal_pending(current));
4722
4723         __set_current_state(TASK_RUNNING);
4724         destroy_hrtimer_on_stack(&hs.timer);
4725
4726         /*
4727          * If we sleep, have the caller restart the poll loop to reset the
4728          * state.  Like for the other success return cases, the caller is
4729          * responsible for checking if the IO completed.  If the IO isn't
4730          * complete, we'll get called again and will go straight to the busy
4731          * poll loop.
4732          */
4733         return true;
4734 }
4735
4736 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4737                                struct io_comp_batch *iob, unsigned int flags)
4738 {
4739         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4740         long state = get_current_state();
4741         int ret;
4742
4743         do {
4744                 ret = q->mq_ops->poll(hctx, iob);
4745                 if (ret > 0) {
4746                         __set_current_state(TASK_RUNNING);
4747                         return ret;
4748                 }
4749
4750                 if (signal_pending_state(state, current))
4751                         __set_current_state(TASK_RUNNING);
4752                 if (task_is_running(current))
4753                         return 1;
4754
4755                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4756                         break;
4757                 cpu_relax();
4758         } while (!need_resched());
4759
4760         __set_current_state(TASK_RUNNING);
4761         return 0;
4762 }
4763
4764 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4765                 unsigned int flags)
4766 {
4767         if (!(flags & BLK_POLL_NOSLEEP) &&
4768             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4769                 if (blk_mq_poll_hybrid(q, cookie))
4770                         return 1;
4771         }
4772         return blk_mq_poll_classic(q, cookie, iob, flags);
4773 }
4774
4775 unsigned int blk_mq_rq_cpu(struct request *rq)
4776 {
4777         return rq->mq_ctx->cpu;
4778 }
4779 EXPORT_SYMBOL(blk_mq_rq_cpu);
4780
4781 void blk_mq_cancel_work_sync(struct request_queue *q)
4782 {
4783         if (queue_is_mq(q)) {
4784                 struct blk_mq_hw_ctx *hctx;
4785                 unsigned long i;
4786
4787                 cancel_delayed_work_sync(&q->requeue_work);
4788
4789                 queue_for_each_hw_ctx(q, hctx, i)
4790                         cancel_delayed_work_sync(&hctx->run_work);
4791         }
4792 }
4793
4794 static int __init blk_mq_init(void)
4795 {
4796         int i;
4797
4798         for_each_possible_cpu(i)
4799                 init_llist_head(&per_cpu(blk_cpu_done, i));
4800         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4801
4802         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4803                                   "block/softirq:dead", NULL,
4804                                   blk_softirq_cpu_dead);
4805         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4806                                 blk_mq_hctx_notify_dead);
4807         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4808                                 blk_mq_hctx_notify_online,
4809                                 blk_mq_hctx_notify_offline);
4810         return 0;
4811 }
4812 subsys_initcall(blk_mq_init);