blk-mq-sched: add flush insertion into blk_mq_sched_insert_request()
[linux-2.6-block.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41  * Check if any of the ctx's have pending work in this hardware queue
42  */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45         return sbitmap_any_bit_set(&hctx->ctx_map) ||
46                         !list_empty_careful(&hctx->dispatch) ||
47                         blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51  * Mark this ctx as having pending work in this hardware queue
52  */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54                                      struct blk_mq_ctx *ctx)
55 {
56         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61                                       struct blk_mq_ctx *ctx)
62 {
63         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68         int freeze_depth;
69
70         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71         if (freeze_depth == 1) {
72                 percpu_ref_kill(&q->q_usage_counter);
73                 blk_mq_run_hw_queues(q, false);
74         }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84  * Guarantee no request is in use, so we can change any data structure of
85  * the queue afterward.
86  */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89         /*
90          * In the !blk_mq case we are only calling this to kill the
91          * q_usage_counter, otherwise this increases the freeze depth
92          * and waits for it to return to zero.  For this reason there is
93          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94          * exported to drivers as the only user for unfreeze is blk_mq.
95          */
96         blk_mq_freeze_queue_start(q);
97         blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102         /*
103          * ...just an alias to keep freeze and unfreeze actions balanced
104          * in the blk_mq_* namespace
105          */
106         blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112         int freeze_depth;
113
114         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115         WARN_ON_ONCE(freeze_depth < 0);
116         if (!freeze_depth) {
117                 percpu_ref_reinit(&q->q_usage_counter);
118                 wake_up_all(&q->mq_freeze_wq);
119         }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125  * @q: request queue.
126  *
127  * Note: this function does not prevent that the struct request end_io()
128  * callback function is invoked. Additionally, it is not prevented that
129  * new queue_rq() calls occur unless the queue has been stopped first.
130  */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133         struct blk_mq_hw_ctx *hctx;
134         unsigned int i;
135         bool rcu = false;
136
137         blk_mq_stop_hw_queues(q);
138
139         queue_for_each_hw_ctx(q, hctx, i) {
140                 if (hctx->flags & BLK_MQ_F_BLOCKING)
141                         synchronize_srcu(&hctx->queue_rq_srcu);
142                 else
143                         rcu = true;
144         }
145         if (rcu)
146                 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152         struct blk_mq_hw_ctx *hctx;
153         unsigned int i;
154
155         queue_for_each_hw_ctx(q, hctx, i)
156                 if (blk_mq_hw_queue_mapped(hctx))
157                         blk_mq_tag_wakeup_all(hctx->tags, true);
158
159         /*
160          * If we are called because the queue has now been marked as
161          * dying, we need to ensure that processes currently waiting on
162          * the queue are notified as well.
163          */
164         wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169         return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174                         struct request *rq, unsigned int op)
175 {
176         INIT_LIST_HEAD(&rq->queuelist);
177         /* csd/requeue_work/fifo_time is initialized before use */
178         rq->q = q;
179         rq->mq_ctx = ctx;
180         rq->cmd_flags = op;
181         if (blk_queue_io_stat(q))
182                 rq->rq_flags |= RQF_IO_STAT;
183         /* do not touch atomic flags, it needs atomic ops against the timer */
184         rq->cpu = -1;
185         INIT_HLIST_NODE(&rq->hash);
186         RB_CLEAR_NODE(&rq->rb_node);
187         rq->rq_disk = NULL;
188         rq->part = NULL;
189         rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191         rq->rl = NULL;
192         set_start_time_ns(rq);
193         rq->io_start_time_ns = 0;
194 #endif
195         rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197         rq->nr_integrity_segments = 0;
198 #endif
199         rq->special = NULL;
200         /* tag was already set */
201         rq->errors = 0;
202
203         rq->cmd = rq->__cmd;
204
205         rq->extra_len = 0;
206         rq->sense_len = 0;
207         rq->resid_len = 0;
208         rq->sense = NULL;
209
210         INIT_LIST_HEAD(&rq->timeout_list);
211         rq->timeout = 0;
212
213         rq->end_io = NULL;
214         rq->end_io_data = NULL;
215         rq->next_rq = NULL;
216
217         ctx->rq_dispatched[op_is_sync(op)]++;
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220
221 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222                                        unsigned int op)
223 {
224         struct request *rq;
225         unsigned int tag;
226
227         tag = blk_mq_get_tag(data);
228         if (tag != BLK_MQ_TAG_FAIL) {
229                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231                 rq = tags->static_rqs[tag];
232
233                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234                         rq->tag = -1;
235                         rq->internal_tag = tag;
236                 } else {
237                         if (blk_mq_tag_busy(data->hctx)) {
238                                 rq->rq_flags = RQF_MQ_INFLIGHT;
239                                 atomic_inc(&data->hctx->nr_active);
240                         }
241                         rq->tag = tag;
242                         rq->internal_tag = -1;
243                 }
244
245                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
246                 return rq;
247         }
248
249         return NULL;
250 }
251 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
252
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
254                 unsigned int flags)
255 {
256         struct blk_mq_alloc_data alloc_data = { .flags = flags };
257         struct request *rq;
258         int ret;
259
260         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
261         if (ret)
262                 return ERR_PTR(ret);
263
264         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
265
266         blk_mq_put_ctx(alloc_data.ctx);
267         blk_queue_exit(q);
268
269         if (!rq)
270                 return ERR_PTR(-EWOULDBLOCK);
271
272         rq->__data_len = 0;
273         rq->__sector = (sector_t) -1;
274         rq->bio = rq->biotail = NULL;
275         return rq;
276 }
277 EXPORT_SYMBOL(blk_mq_alloc_request);
278
279 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
280                 unsigned int flags, unsigned int hctx_idx)
281 {
282         struct blk_mq_hw_ctx *hctx;
283         struct blk_mq_ctx *ctx;
284         struct request *rq;
285         struct blk_mq_alloc_data alloc_data;
286         int ret;
287
288         /*
289          * If the tag allocator sleeps we could get an allocation for a
290          * different hardware context.  No need to complicate the low level
291          * allocator for this for the rare use case of a command tied to
292          * a specific queue.
293          */
294         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
295                 return ERR_PTR(-EINVAL);
296
297         if (hctx_idx >= q->nr_hw_queues)
298                 return ERR_PTR(-EIO);
299
300         ret = blk_queue_enter(q, true);
301         if (ret)
302                 return ERR_PTR(ret);
303
304         /*
305          * Check if the hardware context is actually mapped to anything.
306          * If not tell the caller that it should skip this queue.
307          */
308         hctx = q->queue_hw_ctx[hctx_idx];
309         if (!blk_mq_hw_queue_mapped(hctx)) {
310                 ret = -EXDEV;
311                 goto out_queue_exit;
312         }
313         ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
314
315         blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
316         rq = __blk_mq_alloc_request(&alloc_data, rw);
317         if (!rq) {
318                 ret = -EWOULDBLOCK;
319                 goto out_queue_exit;
320         }
321
322         return rq;
323
324 out_queue_exit:
325         blk_queue_exit(q);
326         return ERR_PTR(ret);
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
329
330 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
331                              struct request *rq)
332 {
333         const int sched_tag = rq->internal_tag;
334         struct request_queue *q = rq->q;
335
336         if (rq->rq_flags & RQF_MQ_INFLIGHT)
337                 atomic_dec(&hctx->nr_active);
338
339         wbt_done(q->rq_wb, &rq->issue_stat);
340         rq->rq_flags = 0;
341
342         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
343         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
344         if (rq->tag != -1)
345                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
346         if (sched_tag != -1)
347                 blk_mq_sched_completed_request(hctx, rq);
348         blk_mq_sched_restart_queues(hctx);
349         blk_queue_exit(q);
350 }
351
352 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
353                                      struct request *rq)
354 {
355         struct blk_mq_ctx *ctx = rq->mq_ctx;
356
357         ctx->rq_completed[rq_is_sync(rq)]++;
358         __blk_mq_finish_request(hctx, ctx, rq);
359 }
360
361 void blk_mq_finish_request(struct request *rq)
362 {
363         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
364 }
365
366 void blk_mq_free_request(struct request *rq)
367 {
368         blk_mq_sched_put_request(rq);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_free_request);
371
372 inline void __blk_mq_end_request(struct request *rq, int error)
373 {
374         blk_account_io_done(rq);
375
376         if (rq->end_io) {
377                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
378                 rq->end_io(rq, error);
379         } else {
380                 if (unlikely(blk_bidi_rq(rq)))
381                         blk_mq_free_request(rq->next_rq);
382                 blk_mq_free_request(rq);
383         }
384 }
385 EXPORT_SYMBOL(__blk_mq_end_request);
386
387 void blk_mq_end_request(struct request *rq, int error)
388 {
389         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390                 BUG();
391         __blk_mq_end_request(rq, error);
392 }
393 EXPORT_SYMBOL(blk_mq_end_request);
394
395 static void __blk_mq_complete_request_remote(void *data)
396 {
397         struct request *rq = data;
398
399         rq->q->softirq_done_fn(rq);
400 }
401
402 static void blk_mq_ipi_complete_request(struct request *rq)
403 {
404         struct blk_mq_ctx *ctx = rq->mq_ctx;
405         bool shared = false;
406         int cpu;
407
408         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
409                 rq->q->softirq_done_fn(rq);
410                 return;
411         }
412
413         cpu = get_cpu();
414         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415                 shared = cpus_share_cache(cpu, ctx->cpu);
416
417         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
418                 rq->csd.func = __blk_mq_complete_request_remote;
419                 rq->csd.info = rq;
420                 rq->csd.flags = 0;
421                 smp_call_function_single_async(ctx->cpu, &rq->csd);
422         } else {
423                 rq->q->softirq_done_fn(rq);
424         }
425         put_cpu();
426 }
427
428 static void blk_mq_stat_add(struct request *rq)
429 {
430         if (rq->rq_flags & RQF_STATS) {
431                 /*
432                  * We could rq->mq_ctx here, but there's less of a risk
433                  * of races if we have the completion event add the stats
434                  * to the local software queue.
435                  */
436                 struct blk_mq_ctx *ctx;
437
438                 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439                 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440         }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445         struct request_queue *q = rq->q;
446
447         blk_mq_stat_add(rq);
448
449         if (!q->softirq_done_fn)
450                 blk_mq_end_request(rq, rq->errors);
451         else
452                 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456  * blk_mq_complete_request - end I/O on a request
457  * @rq:         the request being processed
458  *
459  * Description:
460  *      Ends all I/O on a request. It does not handle partial completions.
461  *      The actual completion happens out-of-order, through a IPI handler.
462  **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465         struct request_queue *q = rq->q;
466
467         if (unlikely(blk_should_fake_timeout(q)))
468                 return;
469         if (!blk_mark_rq_complete(rq)) {
470                 rq->errors = error;
471                 __blk_mq_complete_request(rq);
472         }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485
486         blk_mq_sched_started_request(rq);
487
488         trace_block_rq_issue(q, rq);
489
490         rq->resid_len = blk_rq_bytes(rq);
491         if (unlikely(blk_bidi_rq(rq)))
492                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
493
494         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495                 blk_stat_set_issue_time(&rq->issue_stat);
496                 rq->rq_flags |= RQF_STATS;
497                 wbt_issue(q->rq_wb, &rq->issue_stat);
498         }
499
500         blk_add_timer(rq);
501
502         /*
503          * Ensure that ->deadline is visible before set the started
504          * flag and clear the completed flag.
505          */
506         smp_mb__before_atomic();
507
508         /*
509          * Mark us as started and clear complete. Complete might have been
510          * set if requeue raced with timeout, which then marked it as
511          * complete. So be sure to clear complete again when we start
512          * the request, otherwise we'll ignore the completion event.
513          */
514         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519         if (q->dma_drain_size && blk_rq_bytes(rq)) {
520                 /*
521                  * Make sure space for the drain appears.  We know we can do
522                  * this because max_hw_segments has been adjusted to be one
523                  * fewer than the device can handle.
524                  */
525                 rq->nr_phys_segments++;
526         }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532         struct request_queue *q = rq->q;
533
534         trace_block_rq_requeue(q, rq);
535         wbt_requeue(q->rq_wb, &rq->issue_stat);
536         blk_mq_sched_requeue_request(rq);
537
538         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539                 if (q->dma_drain_size && blk_rq_bytes(rq))
540                         rq->nr_phys_segments--;
541         }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546         __blk_mq_requeue_request(rq);
547
548         BUG_ON(blk_queued_rq(rq));
549         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555         struct request_queue *q =
556                 container_of(work, struct request_queue, requeue_work.work);
557         LIST_HEAD(rq_list);
558         struct request *rq, *next;
559         unsigned long flags;
560
561         spin_lock_irqsave(&q->requeue_lock, flags);
562         list_splice_init(&q->requeue_list, &rq_list);
563         spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567                         continue;
568
569                 rq->rq_flags &= ~RQF_SOFTBARRIER;
570                 list_del_init(&rq->queuelist);
571                 blk_mq_sched_insert_request(rq, true, false, false, true);
572         }
573
574         while (!list_empty(&rq_list)) {
575                 rq = list_entry(rq_list.next, struct request, queuelist);
576                 list_del_init(&rq->queuelist);
577                 blk_mq_sched_insert_request(rq, false, false, false, true);
578         }
579
580         blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584                                 bool kick_requeue_list)
585 {
586         struct request_queue *q = rq->q;
587         unsigned long flags;
588
589         /*
590          * We abuse this flag that is otherwise used by the I/O scheduler to
591          * request head insertation from the workqueue.
592          */
593         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595         spin_lock_irqsave(&q->requeue_lock, flags);
596         if (at_head) {
597                 rq->rq_flags |= RQF_SOFTBARRIER;
598                 list_add(&rq->queuelist, &q->requeue_list);
599         } else {
600                 list_add_tail(&rq->queuelist, &q->requeue_list);
601         }
602         spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604         if (kick_requeue_list)
605                 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611         kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616                                     unsigned long msecs)
617 {
618         kblockd_schedule_delayed_work(&q->requeue_work,
619                                       msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625         unsigned long flags;
626         LIST_HEAD(rq_list);
627
628         spin_lock_irqsave(&q->requeue_lock, flags);
629         list_splice_init(&q->requeue_list, &rq_list);
630         spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632         while (!list_empty(&rq_list)) {
633                 struct request *rq;
634
635                 rq = list_first_entry(&rq_list, struct request, queuelist);
636                 list_del_init(&rq->queuelist);
637                 rq->errors = -EIO;
638                 blk_mq_end_request(rq, rq->errors);
639         }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645         if (tag < tags->nr_tags) {
646                 prefetch(tags->rqs[tag]);
647                 return tags->rqs[tag];
648         }
649
650         return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655         unsigned long next;
656         unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661         const struct blk_mq_ops *ops = req->q->mq_ops;
662         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664         /*
665          * We know that complete is set at this point. If STARTED isn't set
666          * anymore, then the request isn't active and the "timeout" should
667          * just be ignored. This can happen due to the bitflag ordering.
668          * Timeout first checks if STARTED is set, and if it is, assumes
669          * the request is active. But if we race with completion, then
670          * we both flags will get cleared. So check here again, and ignore
671          * a timeout event with a request that isn't active.
672          */
673         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674                 return;
675
676         if (ops->timeout)
677                 ret = ops->timeout(req, reserved);
678
679         switch (ret) {
680         case BLK_EH_HANDLED:
681                 __blk_mq_complete_request(req);
682                 break;
683         case BLK_EH_RESET_TIMER:
684                 blk_add_timer(req);
685                 blk_clear_rq_complete(req);
686                 break;
687         case BLK_EH_NOT_HANDLED:
688                 break;
689         default:
690                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691                 break;
692         }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696                 struct request *rq, void *priv, bool reserved)
697 {
698         struct blk_mq_timeout_data *data = priv;
699
700         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701                 /*
702                  * If a request wasn't started before the queue was
703                  * marked dying, kill it here or it'll go unnoticed.
704                  */
705                 if (unlikely(blk_queue_dying(rq->q))) {
706                         rq->errors = -EIO;
707                         blk_mq_end_request(rq, rq->errors);
708                 }
709                 return;
710         }
711
712         if (time_after_eq(jiffies, rq->deadline)) {
713                 if (!blk_mark_rq_complete(rq))
714                         blk_mq_rq_timed_out(rq, reserved);
715         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716                 data->next = rq->deadline;
717                 data->next_set = 1;
718         }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723         struct request_queue *q =
724                 container_of(work, struct request_queue, timeout_work);
725         struct blk_mq_timeout_data data = {
726                 .next           = 0,
727                 .next_set       = 0,
728         };
729         int i;
730
731         /* A deadlock might occur if a request is stuck requiring a
732          * timeout at the same time a queue freeze is waiting
733          * completion, since the timeout code would not be able to
734          * acquire the queue reference here.
735          *
736          * That's why we don't use blk_queue_enter here; instead, we use
737          * percpu_ref_tryget directly, because we need to be able to
738          * obtain a reference even in the short window between the queue
739          * starting to freeze, by dropping the first reference in
740          * blk_mq_freeze_queue_start, and the moment the last request is
741          * consumed, marked by the instant q_usage_counter reaches
742          * zero.
743          */
744         if (!percpu_ref_tryget(&q->q_usage_counter))
745                 return;
746
747         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749         if (data.next_set) {
750                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751                 mod_timer(&q->timeout, data.next);
752         } else {
753                 struct blk_mq_hw_ctx *hctx;
754
755                 queue_for_each_hw_ctx(q, hctx, i) {
756                         /* the hctx may be unmapped, so check it here */
757                         if (blk_mq_hw_queue_mapped(hctx))
758                                 blk_mq_tag_idle(hctx);
759                 }
760         }
761         blk_queue_exit(q);
762 }
763
764 /*
765  * Reverse check our software queue for entries that we could potentially
766  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767  * too much time checking for merges.
768  */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770                                  struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772         struct request *rq;
773         int checked = 8;
774
775         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776                 int el_ret;
777
778                 if (!checked--)
779                         break;
780
781                 if (!blk_rq_merge_ok(rq, bio))
782                         continue;
783
784                 el_ret = blk_try_merge(rq, bio);
785                 if (el_ret == ELEVATOR_NO_MERGE)
786                         continue;
787
788                 if (!blk_mq_sched_allow_merge(q, rq, bio))
789                         break;
790
791                 if (el_ret == ELEVATOR_BACK_MERGE) {
792                         if (bio_attempt_back_merge(q, rq, bio)) {
793                                 ctx->rq_merged++;
794                                 return true;
795                         }
796                         break;
797                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798                         if (bio_attempt_front_merge(q, rq, bio)) {
799                                 ctx->rq_merged++;
800                                 return true;
801                         }
802                         break;
803                 }
804         }
805
806         return false;
807 }
808
809 struct flush_busy_ctx_data {
810         struct blk_mq_hw_ctx *hctx;
811         struct list_head *list;
812 };
813
814 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815 {
816         struct flush_busy_ctx_data *flush_data = data;
817         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820         sbitmap_clear_bit(sb, bitnr);
821         spin_lock(&ctx->lock);
822         list_splice_tail_init(&ctx->rq_list, flush_data->list);
823         spin_unlock(&ctx->lock);
824         return true;
825 }
826
827 /*
828  * Process software queues that have been marked busy, splicing them
829  * to the for-dispatch
830  */
831 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
832 {
833         struct flush_busy_ctx_data data = {
834                 .hctx = hctx,
835                 .list = list,
836         };
837
838         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
841
842 static inline unsigned int queued_to_index(unsigned int queued)
843 {
844         if (!queued)
845                 return 0;
846
847         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
848 }
849
850 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
851                            bool wait)
852 {
853         struct blk_mq_alloc_data data = {
854                 .q = rq->q,
855                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
856                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
857         };
858
859         if (blk_mq_hctx_stopped(data.hctx))
860                 return false;
861
862         if (rq->tag != -1) {
863 done:
864                 if (hctx)
865                         *hctx = data.hctx;
866                 return true;
867         }
868
869         rq->tag = blk_mq_get_tag(&data);
870         if (rq->tag >= 0) {
871                 if (blk_mq_tag_busy(data.hctx)) {
872                         rq->rq_flags |= RQF_MQ_INFLIGHT;
873                         atomic_inc(&data.hctx->nr_active);
874                 }
875                 data.hctx->tags->rqs[rq->tag] = rq;
876                 goto done;
877         }
878
879         return false;
880 }
881
882 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
883                                   struct request *rq)
884 {
885         if (rq->tag == -1 || rq->internal_tag == -1)
886                 return;
887
888         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
889         rq->tag = -1;
890
891         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
892                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
893                 atomic_dec(&hctx->nr_active);
894         }
895 }
896
897 /*
898  * If we fail getting a driver tag because all the driver tags are already
899  * assigned and on the dispatch list, BUT the first entry does not have a
900  * tag, then we could deadlock. For that case, move entries with assigned
901  * driver tags to the front, leaving the set of tagged requests in the
902  * same order, and the untagged set in the same order.
903  */
904 static bool reorder_tags_to_front(struct list_head *list)
905 {
906         struct request *rq, *tmp, *first = NULL;
907
908         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
909                 if (rq == first)
910                         break;
911                 if (rq->tag != -1) {
912                         list_move(&rq->queuelist, list);
913                         if (!first)
914                                 first = rq;
915                 }
916         }
917
918         return first != NULL;
919 }
920
921 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
922 {
923         struct request_queue *q = hctx->queue;
924         struct request *rq;
925         LIST_HEAD(driver_list);
926         struct list_head *dptr;
927         int queued, ret = BLK_MQ_RQ_QUEUE_OK;
928
929         /*
930          * Start off with dptr being NULL, so we start the first request
931          * immediately, even if we have more pending.
932          */
933         dptr = NULL;
934
935         /*
936          * Now process all the entries, sending them to the driver.
937          */
938         queued = 0;
939         while (!list_empty(list)) {
940                 struct blk_mq_queue_data bd;
941
942                 rq = list_first_entry(list, struct request, queuelist);
943                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
944                         if (!queued && reorder_tags_to_front(list))
945                                 continue;
946
947                         /*
948                          * We failed getting a driver tag. Mark the queue(s)
949                          * as needing a restart. Retry getting a tag again,
950                          * in case the needed IO completed right before we
951                          * marked the queue as needing a restart.
952                          */
953                         blk_mq_sched_mark_restart(hctx);
954                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
955                                 break;
956                 }
957                 list_del_init(&rq->queuelist);
958
959                 bd.rq = rq;
960                 bd.list = dptr;
961                 bd.last = list_empty(list);
962
963                 ret = q->mq_ops->queue_rq(hctx, &bd);
964                 switch (ret) {
965                 case BLK_MQ_RQ_QUEUE_OK:
966                         queued++;
967                         break;
968                 case BLK_MQ_RQ_QUEUE_BUSY:
969                         blk_mq_put_driver_tag(hctx, rq);
970                         list_add(&rq->queuelist, list);
971                         __blk_mq_requeue_request(rq);
972                         break;
973                 default:
974                         pr_err("blk-mq: bad return on queue: %d\n", ret);
975                 case BLK_MQ_RQ_QUEUE_ERROR:
976                         rq->errors = -EIO;
977                         blk_mq_end_request(rq, rq->errors);
978                         break;
979                 }
980
981                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
982                         break;
983
984                 /*
985                  * We've done the first request. If we have more than 1
986                  * left in the list, set dptr to defer issue.
987                  */
988                 if (!dptr && list->next != list->prev)
989                         dptr = &driver_list;
990         }
991
992         hctx->dispatched[queued_to_index(queued)]++;
993
994         /*
995          * Any items that need requeuing? Stuff them into hctx->dispatch,
996          * that is where we will continue on next queue run.
997          */
998         if (!list_empty(list)) {
999                 spin_lock(&hctx->lock);
1000                 list_splice_init(list, &hctx->dispatch);
1001                 spin_unlock(&hctx->lock);
1002
1003                 /*
1004                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1005                  * it's possible the queue is stopped and restarted again
1006                  * before this. Queue restart will dispatch requests. And since
1007                  * requests in rq_list aren't added into hctx->dispatch yet,
1008                  * the requests in rq_list might get lost.
1009                  *
1010                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1011                  *
1012                  * If RESTART is set, then let completion restart the queue
1013                  * instead of potentially looping here.
1014                  */
1015                 if (!blk_mq_sched_needs_restart(hctx))
1016                         blk_mq_run_hw_queue(hctx, true);
1017         }
1018
1019         return ret != BLK_MQ_RQ_QUEUE_BUSY;
1020 }
1021
1022 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1023 {
1024         int srcu_idx;
1025
1026         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1027                 cpu_online(hctx->next_cpu));
1028
1029         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1030                 rcu_read_lock();
1031                 blk_mq_sched_dispatch_requests(hctx);
1032                 rcu_read_unlock();
1033         } else {
1034                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1035                 blk_mq_sched_dispatch_requests(hctx);
1036                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1037         }
1038 }
1039
1040 /*
1041  * It'd be great if the workqueue API had a way to pass
1042  * in a mask and had some smarts for more clever placement.
1043  * For now we just round-robin here, switching for every
1044  * BLK_MQ_CPU_WORK_BATCH queued items.
1045  */
1046 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1047 {
1048         if (hctx->queue->nr_hw_queues == 1)
1049                 return WORK_CPU_UNBOUND;
1050
1051         if (--hctx->next_cpu_batch <= 0) {
1052                 int next_cpu;
1053
1054                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1055                 if (next_cpu >= nr_cpu_ids)
1056                         next_cpu = cpumask_first(hctx->cpumask);
1057
1058                 hctx->next_cpu = next_cpu;
1059                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1060         }
1061
1062         return hctx->next_cpu;
1063 }
1064
1065 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1066 {
1067         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1068                      !blk_mq_hw_queue_mapped(hctx)))
1069                 return;
1070
1071         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1072                 int cpu = get_cpu();
1073                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1074                         __blk_mq_run_hw_queue(hctx);
1075                         put_cpu();
1076                         return;
1077                 }
1078
1079                 put_cpu();
1080         }
1081
1082         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1083 }
1084
1085 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1086 {
1087         struct blk_mq_hw_ctx *hctx;
1088         int i;
1089
1090         queue_for_each_hw_ctx(q, hctx, i) {
1091                 if (!blk_mq_hctx_has_pending(hctx) ||
1092                     blk_mq_hctx_stopped(hctx))
1093                         continue;
1094
1095                 blk_mq_run_hw_queue(hctx, async);
1096         }
1097 }
1098 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1099
1100 /**
1101  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1102  * @q: request queue.
1103  *
1104  * The caller is responsible for serializing this function against
1105  * blk_mq_{start,stop}_hw_queue().
1106  */
1107 bool blk_mq_queue_stopped(struct request_queue *q)
1108 {
1109         struct blk_mq_hw_ctx *hctx;
1110         int i;
1111
1112         queue_for_each_hw_ctx(q, hctx, i)
1113                 if (blk_mq_hctx_stopped(hctx))
1114                         return true;
1115
1116         return false;
1117 }
1118 EXPORT_SYMBOL(blk_mq_queue_stopped);
1119
1120 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1121 {
1122         cancel_work(&hctx->run_work);
1123         cancel_delayed_work(&hctx->delay_work);
1124         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1125 }
1126 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1127
1128 void blk_mq_stop_hw_queues(struct request_queue *q)
1129 {
1130         struct blk_mq_hw_ctx *hctx;
1131         int i;
1132
1133         queue_for_each_hw_ctx(q, hctx, i)
1134                 blk_mq_stop_hw_queue(hctx);
1135 }
1136 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1137
1138 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1139 {
1140         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1141
1142         blk_mq_run_hw_queue(hctx, false);
1143 }
1144 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1145
1146 void blk_mq_start_hw_queues(struct request_queue *q)
1147 {
1148         struct blk_mq_hw_ctx *hctx;
1149         int i;
1150
1151         queue_for_each_hw_ctx(q, hctx, i)
1152                 blk_mq_start_hw_queue(hctx);
1153 }
1154 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1155
1156 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1157 {
1158         if (!blk_mq_hctx_stopped(hctx))
1159                 return;
1160
1161         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1162         blk_mq_run_hw_queue(hctx, async);
1163 }
1164 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1165
1166 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1167 {
1168         struct blk_mq_hw_ctx *hctx;
1169         int i;
1170
1171         queue_for_each_hw_ctx(q, hctx, i)
1172                 blk_mq_start_stopped_hw_queue(hctx, async);
1173 }
1174 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1175
1176 static void blk_mq_run_work_fn(struct work_struct *work)
1177 {
1178         struct blk_mq_hw_ctx *hctx;
1179
1180         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1181
1182         __blk_mq_run_hw_queue(hctx);
1183 }
1184
1185 static void blk_mq_delay_work_fn(struct work_struct *work)
1186 {
1187         struct blk_mq_hw_ctx *hctx;
1188
1189         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1190
1191         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1192                 __blk_mq_run_hw_queue(hctx);
1193 }
1194
1195 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1196 {
1197         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1198                 return;
1199
1200         blk_mq_stop_hw_queue(hctx);
1201         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1202                         &hctx->delay_work, msecs_to_jiffies(msecs));
1203 }
1204 EXPORT_SYMBOL(blk_mq_delay_queue);
1205
1206 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1207                                             struct request *rq,
1208                                             bool at_head)
1209 {
1210         struct blk_mq_ctx *ctx = rq->mq_ctx;
1211
1212         trace_block_rq_insert(hctx->queue, rq);
1213
1214         if (at_head)
1215                 list_add(&rq->queuelist, &ctx->rq_list);
1216         else
1217                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1218 }
1219
1220 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1221                              bool at_head)
1222 {
1223         struct blk_mq_ctx *ctx = rq->mq_ctx;
1224
1225         __blk_mq_insert_req_list(hctx, rq, at_head);
1226         blk_mq_hctx_mark_pending(hctx, ctx);
1227 }
1228
1229 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1230                             struct list_head *list)
1231
1232 {
1233         /*
1234          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1235          * offline now
1236          */
1237         spin_lock(&ctx->lock);
1238         while (!list_empty(list)) {
1239                 struct request *rq;
1240
1241                 rq = list_first_entry(list, struct request, queuelist);
1242                 BUG_ON(rq->mq_ctx != ctx);
1243                 list_del_init(&rq->queuelist);
1244                 __blk_mq_insert_req_list(hctx, rq, false);
1245         }
1246         blk_mq_hctx_mark_pending(hctx, ctx);
1247         spin_unlock(&ctx->lock);
1248 }
1249
1250 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1251 {
1252         struct request *rqa = container_of(a, struct request, queuelist);
1253         struct request *rqb = container_of(b, struct request, queuelist);
1254
1255         return !(rqa->mq_ctx < rqb->mq_ctx ||
1256                  (rqa->mq_ctx == rqb->mq_ctx &&
1257                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1258 }
1259
1260 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1261 {
1262         struct blk_mq_ctx *this_ctx;
1263         struct request_queue *this_q;
1264         struct request *rq;
1265         LIST_HEAD(list);
1266         LIST_HEAD(ctx_list);
1267         unsigned int depth;
1268
1269         list_splice_init(&plug->mq_list, &list);
1270
1271         list_sort(NULL, &list, plug_ctx_cmp);
1272
1273         this_q = NULL;
1274         this_ctx = NULL;
1275         depth = 0;
1276
1277         while (!list_empty(&list)) {
1278                 rq = list_entry_rq(list.next);
1279                 list_del_init(&rq->queuelist);
1280                 BUG_ON(!rq->q);
1281                 if (rq->mq_ctx != this_ctx) {
1282                         if (this_ctx) {
1283                                 trace_block_unplug(this_q, depth, from_schedule);
1284                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1285                                                                 &ctx_list,
1286                                                                 from_schedule);
1287                         }
1288
1289                         this_ctx = rq->mq_ctx;
1290                         this_q = rq->q;
1291                         depth = 0;
1292                 }
1293
1294                 depth++;
1295                 list_add_tail(&rq->queuelist, &ctx_list);
1296         }
1297
1298         /*
1299          * If 'this_ctx' is set, we know we have entries to complete
1300          * on 'ctx_list'. Do those.
1301          */
1302         if (this_ctx) {
1303                 trace_block_unplug(this_q, depth, from_schedule);
1304                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1305                                                 from_schedule);
1306         }
1307 }
1308
1309 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1310 {
1311         init_request_from_bio(rq, bio);
1312
1313         blk_account_io_start(rq, true);
1314 }
1315
1316 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1317 {
1318         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1319                 !blk_queue_nomerges(hctx->queue);
1320 }
1321
1322 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1323                                          struct blk_mq_ctx *ctx,
1324                                          struct request *rq, struct bio *bio)
1325 {
1326         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1327                 blk_mq_bio_to_request(rq, bio);
1328                 spin_lock(&ctx->lock);
1329 insert_rq:
1330                 __blk_mq_insert_request(hctx, rq, false);
1331                 spin_unlock(&ctx->lock);
1332                 return false;
1333         } else {
1334                 struct request_queue *q = hctx->queue;
1335
1336                 spin_lock(&ctx->lock);
1337                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1338                         blk_mq_bio_to_request(rq, bio);
1339                         goto insert_rq;
1340                 }
1341
1342                 spin_unlock(&ctx->lock);
1343                 __blk_mq_finish_request(hctx, ctx, rq);
1344                 return true;
1345         }
1346 }
1347
1348 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1349 {
1350         if (rq->tag != -1)
1351                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1352
1353         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1354 }
1355
1356 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1357 {
1358         struct request_queue *q = rq->q;
1359         struct blk_mq_queue_data bd = {
1360                 .rq = rq,
1361                 .list = NULL,
1362                 .last = 1
1363         };
1364         struct blk_mq_hw_ctx *hctx;
1365         blk_qc_t new_cookie;
1366         int ret;
1367
1368         if (q->elevator)
1369                 goto insert;
1370
1371         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1372                 goto insert;
1373
1374         new_cookie = request_to_qc_t(hctx, rq);
1375
1376         /*
1377          * For OK queue, we are done. For error, kill it. Any other
1378          * error (busy), just add it to our list as we previously
1379          * would have done
1380          */
1381         ret = q->mq_ops->queue_rq(hctx, &bd);
1382         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1383                 *cookie = new_cookie;
1384                 return;
1385         }
1386
1387         __blk_mq_requeue_request(rq);
1388
1389         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1390                 *cookie = BLK_QC_T_NONE;
1391                 rq->errors = -EIO;
1392                 blk_mq_end_request(rq, rq->errors);
1393                 return;
1394         }
1395
1396 insert:
1397         blk_mq_sched_insert_request(rq, false, true, true, false);
1398 }
1399
1400 /*
1401  * Multiple hardware queue variant. This will not use per-process plugs,
1402  * but will attempt to bypass the hctx queueing if we can go straight to
1403  * hardware for SYNC IO.
1404  */
1405 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1406 {
1407         const int is_sync = op_is_sync(bio->bi_opf);
1408         const int is_flush_fua = op_is_flush(bio->bi_opf);
1409         struct blk_mq_alloc_data data = { .flags = 0 };
1410         struct request *rq;
1411         unsigned int request_count = 0, srcu_idx;
1412         struct blk_plug *plug;
1413         struct request *same_queue_rq = NULL;
1414         blk_qc_t cookie;
1415         unsigned int wb_acct;
1416
1417         blk_queue_bounce(q, &bio);
1418
1419         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1420                 bio_io_error(bio);
1421                 return BLK_QC_T_NONE;
1422         }
1423
1424         blk_queue_split(q, &bio, q->bio_split);
1425
1426         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1427             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1428                 return BLK_QC_T_NONE;
1429
1430         if (blk_mq_sched_bio_merge(q, bio))
1431                 return BLK_QC_T_NONE;
1432
1433         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1434
1435         trace_block_getrq(q, bio, bio->bi_opf);
1436
1437         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1438         if (unlikely(!rq)) {
1439                 __wbt_done(q->rq_wb, wb_acct);
1440                 return BLK_QC_T_NONE;
1441         }
1442
1443         wbt_track(&rq->issue_stat, wb_acct);
1444
1445         cookie = request_to_qc_t(data.hctx, rq);
1446
1447         if (unlikely(is_flush_fua)) {
1448                 blk_mq_put_ctx(data.ctx);
1449                 blk_mq_bio_to_request(rq, bio);
1450                 blk_mq_get_driver_tag(rq, NULL, true);
1451                 blk_insert_flush(rq);
1452                 blk_mq_run_hw_queue(data.hctx, true);
1453                 goto done;
1454         }
1455
1456         plug = current->plug;
1457         /*
1458          * If the driver supports defer issued based on 'last', then
1459          * queue it up like normal since we can potentially save some
1460          * CPU this way.
1461          */
1462         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1463             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1464                 struct request *old_rq = NULL;
1465
1466                 blk_mq_bio_to_request(rq, bio);
1467
1468                 /*
1469                  * We do limited plugging. If the bio can be merged, do that.
1470                  * Otherwise the existing request in the plug list will be
1471                  * issued. So the plug list will have one request at most
1472                  */
1473                 if (plug) {
1474                         /*
1475                          * The plug list might get flushed before this. If that
1476                          * happens, same_queue_rq is invalid and plug list is
1477                          * empty
1478                          */
1479                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1480                                 old_rq = same_queue_rq;
1481                                 list_del_init(&old_rq->queuelist);
1482                         }
1483                         list_add_tail(&rq->queuelist, &plug->mq_list);
1484                 } else /* is_sync */
1485                         old_rq = rq;
1486                 blk_mq_put_ctx(data.ctx);
1487                 if (!old_rq)
1488                         goto done;
1489
1490                 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1491                         rcu_read_lock();
1492                         blk_mq_try_issue_directly(old_rq, &cookie);
1493                         rcu_read_unlock();
1494                 } else {
1495                         srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1496                         blk_mq_try_issue_directly(old_rq, &cookie);
1497                         srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1498                 }
1499                 goto done;
1500         }
1501
1502         if (q->elevator) {
1503                 blk_mq_put_ctx(data.ctx);
1504                 blk_mq_bio_to_request(rq, bio);
1505                 blk_mq_sched_insert_request(rq, false, true,
1506                                                 !is_sync || is_flush_fua, true);
1507                 goto done;
1508         }
1509         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1510                 /*
1511                  * For a SYNC request, send it to the hardware immediately. For
1512                  * an ASYNC request, just ensure that we run it later on. The
1513                  * latter allows for merging opportunities and more efficient
1514                  * dispatching.
1515                  */
1516                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1517         }
1518         blk_mq_put_ctx(data.ctx);
1519 done:
1520         return cookie;
1521 }
1522
1523 /*
1524  * Single hardware queue variant. This will attempt to use any per-process
1525  * plug for merging and IO deferral.
1526  */
1527 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1528 {
1529         const int is_sync = op_is_sync(bio->bi_opf);
1530         const int is_flush_fua = op_is_flush(bio->bi_opf);
1531         struct blk_plug *plug;
1532         unsigned int request_count = 0;
1533         struct blk_mq_alloc_data data = { .flags = 0 };
1534         struct request *rq;
1535         blk_qc_t cookie;
1536         unsigned int wb_acct;
1537
1538         blk_queue_bounce(q, &bio);
1539
1540         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1541                 bio_io_error(bio);
1542                 return BLK_QC_T_NONE;
1543         }
1544
1545         blk_queue_split(q, &bio, q->bio_split);
1546
1547         if (!is_flush_fua && !blk_queue_nomerges(q)) {
1548                 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1549                         return BLK_QC_T_NONE;
1550         } else
1551                 request_count = blk_plug_queued_count(q);
1552
1553         if (blk_mq_sched_bio_merge(q, bio))
1554                 return BLK_QC_T_NONE;
1555
1556         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1557
1558         trace_block_getrq(q, bio, bio->bi_opf);
1559
1560         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1561         if (unlikely(!rq)) {
1562                 __wbt_done(q->rq_wb, wb_acct);
1563                 return BLK_QC_T_NONE;
1564         }
1565
1566         wbt_track(&rq->issue_stat, wb_acct);
1567
1568         cookie = request_to_qc_t(data.hctx, rq);
1569
1570         if (unlikely(is_flush_fua)) {
1571                 blk_mq_put_ctx(data.ctx);
1572                 blk_mq_bio_to_request(rq, bio);
1573                 blk_mq_get_driver_tag(rq, NULL, true);
1574                 blk_insert_flush(rq);
1575                 blk_mq_run_hw_queue(data.hctx, true);
1576                 goto done;
1577         }
1578
1579         /*
1580          * A task plug currently exists. Since this is completely lockless,
1581          * utilize that to temporarily store requests until the task is
1582          * either done or scheduled away.
1583          */
1584         plug = current->plug;
1585         if (plug) {
1586                 struct request *last = NULL;
1587
1588                 blk_mq_bio_to_request(rq, bio);
1589
1590                 /*
1591                  * @request_count may become stale because of schedule
1592                  * out, so check the list again.
1593                  */
1594                 if (list_empty(&plug->mq_list))
1595                         request_count = 0;
1596                 if (!request_count)
1597                         trace_block_plug(q);
1598                 else
1599                         last = list_entry_rq(plug->mq_list.prev);
1600
1601                 blk_mq_put_ctx(data.ctx);
1602
1603                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1604                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1605                         blk_flush_plug_list(plug, false);
1606                         trace_block_plug(q);
1607                 }
1608
1609                 list_add_tail(&rq->queuelist, &plug->mq_list);
1610                 return cookie;
1611         }
1612
1613         if (q->elevator) {
1614                 blk_mq_put_ctx(data.ctx);
1615                 blk_mq_bio_to_request(rq, bio);
1616                 blk_mq_sched_insert_request(rq, false, true,
1617                                                 !is_sync || is_flush_fua, true);
1618                 goto done;
1619         }
1620         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1621                 /*
1622                  * For a SYNC request, send it to the hardware immediately. For
1623                  * an ASYNC request, just ensure that we run it later on. The
1624                  * latter allows for merging opportunities and more efficient
1625                  * dispatching.
1626                  */
1627                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1628         }
1629
1630         blk_mq_put_ctx(data.ctx);
1631 done:
1632         return cookie;
1633 }
1634
1635 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1636                      unsigned int hctx_idx)
1637 {
1638         struct page *page;
1639
1640         if (tags->rqs && set->ops->exit_request) {
1641                 int i;
1642
1643                 for (i = 0; i < tags->nr_tags; i++) {
1644                         struct request *rq = tags->static_rqs[i];
1645
1646                         if (!rq)
1647                                 continue;
1648                         set->ops->exit_request(set->driver_data, rq,
1649                                                 hctx_idx, i);
1650                         tags->static_rqs[i] = NULL;
1651                 }
1652         }
1653
1654         while (!list_empty(&tags->page_list)) {
1655                 page = list_first_entry(&tags->page_list, struct page, lru);
1656                 list_del_init(&page->lru);
1657                 /*
1658                  * Remove kmemleak object previously allocated in
1659                  * blk_mq_init_rq_map().
1660                  */
1661                 kmemleak_free(page_address(page));
1662                 __free_pages(page, page->private);
1663         }
1664 }
1665
1666 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1667 {
1668         kfree(tags->rqs);
1669         tags->rqs = NULL;
1670         kfree(tags->static_rqs);
1671         tags->static_rqs = NULL;
1672
1673         blk_mq_free_tags(tags);
1674 }
1675
1676 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1677                                         unsigned int hctx_idx,
1678                                         unsigned int nr_tags,
1679                                         unsigned int reserved_tags)
1680 {
1681         struct blk_mq_tags *tags;
1682
1683         tags = blk_mq_init_tags(nr_tags, reserved_tags,
1684                                 set->numa_node,
1685                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1686         if (!tags)
1687                 return NULL;
1688
1689         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1690                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1691                                  set->numa_node);
1692         if (!tags->rqs) {
1693                 blk_mq_free_tags(tags);
1694                 return NULL;
1695         }
1696
1697         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1698                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1699                                  set->numa_node);
1700         if (!tags->static_rqs) {
1701                 kfree(tags->rqs);
1702                 blk_mq_free_tags(tags);
1703                 return NULL;
1704         }
1705
1706         return tags;
1707 }
1708
1709 static size_t order_to_size(unsigned int order)
1710 {
1711         return (size_t)PAGE_SIZE << order;
1712 }
1713
1714 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1715                      unsigned int hctx_idx, unsigned int depth)
1716 {
1717         unsigned int i, j, entries_per_page, max_order = 4;
1718         size_t rq_size, left;
1719
1720         INIT_LIST_HEAD(&tags->page_list);
1721
1722         /*
1723          * rq_size is the size of the request plus driver payload, rounded
1724          * to the cacheline size
1725          */
1726         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1727                                 cache_line_size());
1728         left = rq_size * depth;
1729
1730         for (i = 0; i < depth; ) {
1731                 int this_order = max_order;
1732                 struct page *page;
1733                 int to_do;
1734                 void *p;
1735
1736                 while (this_order && left < order_to_size(this_order - 1))
1737                         this_order--;
1738
1739                 do {
1740                         page = alloc_pages_node(set->numa_node,
1741                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1742                                 this_order);
1743                         if (page)
1744                                 break;
1745                         if (!this_order--)
1746                                 break;
1747                         if (order_to_size(this_order) < rq_size)
1748                                 break;
1749                 } while (1);
1750
1751                 if (!page)
1752                         goto fail;
1753
1754                 page->private = this_order;
1755                 list_add_tail(&page->lru, &tags->page_list);
1756
1757                 p = page_address(page);
1758                 /*
1759                  * Allow kmemleak to scan these pages as they contain pointers
1760                  * to additional allocations like via ops->init_request().
1761                  */
1762                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1763                 entries_per_page = order_to_size(this_order) / rq_size;
1764                 to_do = min(entries_per_page, depth - i);
1765                 left -= to_do * rq_size;
1766                 for (j = 0; j < to_do; j++) {
1767                         struct request *rq = p;
1768
1769                         tags->static_rqs[i] = rq;
1770                         if (set->ops->init_request) {
1771                                 if (set->ops->init_request(set->driver_data,
1772                                                 rq, hctx_idx, i,
1773                                                 set->numa_node)) {
1774                                         tags->static_rqs[i] = NULL;
1775                                         goto fail;
1776                                 }
1777                         }
1778
1779                         p += rq_size;
1780                         i++;
1781                 }
1782         }
1783         return 0;
1784
1785 fail:
1786         blk_mq_free_rqs(set, tags, hctx_idx);
1787         return -ENOMEM;
1788 }
1789
1790 /*
1791  * 'cpu' is going away. splice any existing rq_list entries from this
1792  * software queue to the hw queue dispatch list, and ensure that it
1793  * gets run.
1794  */
1795 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1796 {
1797         struct blk_mq_hw_ctx *hctx;
1798         struct blk_mq_ctx *ctx;
1799         LIST_HEAD(tmp);
1800
1801         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1802         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1803
1804         spin_lock(&ctx->lock);
1805         if (!list_empty(&ctx->rq_list)) {
1806                 list_splice_init(&ctx->rq_list, &tmp);
1807                 blk_mq_hctx_clear_pending(hctx, ctx);
1808         }
1809         spin_unlock(&ctx->lock);
1810
1811         if (list_empty(&tmp))
1812                 return 0;
1813
1814         spin_lock(&hctx->lock);
1815         list_splice_tail_init(&tmp, &hctx->dispatch);
1816         spin_unlock(&hctx->lock);
1817
1818         blk_mq_run_hw_queue(hctx, true);
1819         return 0;
1820 }
1821
1822 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1823 {
1824         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1825                                             &hctx->cpuhp_dead);
1826 }
1827
1828 /* hctx->ctxs will be freed in queue's release handler */
1829 static void blk_mq_exit_hctx(struct request_queue *q,
1830                 struct blk_mq_tag_set *set,
1831                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1832 {
1833         unsigned flush_start_tag = set->queue_depth;
1834
1835         blk_mq_tag_idle(hctx);
1836
1837         if (set->ops->exit_request)
1838                 set->ops->exit_request(set->driver_data,
1839                                        hctx->fq->flush_rq, hctx_idx,
1840                                        flush_start_tag + hctx_idx);
1841
1842         if (set->ops->exit_hctx)
1843                 set->ops->exit_hctx(hctx, hctx_idx);
1844
1845         if (hctx->flags & BLK_MQ_F_BLOCKING)
1846                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1847
1848         blk_mq_remove_cpuhp(hctx);
1849         blk_free_flush_queue(hctx->fq);
1850         sbitmap_free(&hctx->ctx_map);
1851 }
1852
1853 static void blk_mq_exit_hw_queues(struct request_queue *q,
1854                 struct blk_mq_tag_set *set, int nr_queue)
1855 {
1856         struct blk_mq_hw_ctx *hctx;
1857         unsigned int i;
1858
1859         queue_for_each_hw_ctx(q, hctx, i) {
1860                 if (i == nr_queue)
1861                         break;
1862                 blk_mq_exit_hctx(q, set, hctx, i);
1863         }
1864 }
1865
1866 static void blk_mq_free_hw_queues(struct request_queue *q,
1867                 struct blk_mq_tag_set *set)
1868 {
1869         struct blk_mq_hw_ctx *hctx;
1870         unsigned int i;
1871
1872         queue_for_each_hw_ctx(q, hctx, i)
1873                 free_cpumask_var(hctx->cpumask);
1874 }
1875
1876 static int blk_mq_init_hctx(struct request_queue *q,
1877                 struct blk_mq_tag_set *set,
1878                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1879 {
1880         int node;
1881         unsigned flush_start_tag = set->queue_depth;
1882
1883         node = hctx->numa_node;
1884         if (node == NUMA_NO_NODE)
1885                 node = hctx->numa_node = set->numa_node;
1886
1887         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1888         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1889         spin_lock_init(&hctx->lock);
1890         INIT_LIST_HEAD(&hctx->dispatch);
1891         hctx->queue = q;
1892         hctx->queue_num = hctx_idx;
1893         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1894
1895         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1896
1897         hctx->tags = set->tags[hctx_idx];
1898
1899         /*
1900          * Allocate space for all possible cpus to avoid allocation at
1901          * runtime
1902          */
1903         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1904                                         GFP_KERNEL, node);
1905         if (!hctx->ctxs)
1906                 goto unregister_cpu_notifier;
1907
1908         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1909                               node))
1910                 goto free_ctxs;
1911
1912         hctx->nr_ctx = 0;
1913
1914         if (set->ops->init_hctx &&
1915             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1916                 goto free_bitmap;
1917
1918         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1919         if (!hctx->fq)
1920                 goto exit_hctx;
1921
1922         if (set->ops->init_request &&
1923             set->ops->init_request(set->driver_data,
1924                                    hctx->fq->flush_rq, hctx_idx,
1925                                    flush_start_tag + hctx_idx, node))
1926                 goto free_fq;
1927
1928         if (hctx->flags & BLK_MQ_F_BLOCKING)
1929                 init_srcu_struct(&hctx->queue_rq_srcu);
1930
1931         return 0;
1932
1933  free_fq:
1934         kfree(hctx->fq);
1935  exit_hctx:
1936         if (set->ops->exit_hctx)
1937                 set->ops->exit_hctx(hctx, hctx_idx);
1938  free_bitmap:
1939         sbitmap_free(&hctx->ctx_map);
1940  free_ctxs:
1941         kfree(hctx->ctxs);
1942  unregister_cpu_notifier:
1943         blk_mq_remove_cpuhp(hctx);
1944         return -1;
1945 }
1946
1947 static void blk_mq_init_cpu_queues(struct request_queue *q,
1948                                    unsigned int nr_hw_queues)
1949 {
1950         unsigned int i;
1951
1952         for_each_possible_cpu(i) {
1953                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1954                 struct blk_mq_hw_ctx *hctx;
1955
1956                 memset(__ctx, 0, sizeof(*__ctx));
1957                 __ctx->cpu = i;
1958                 spin_lock_init(&__ctx->lock);
1959                 INIT_LIST_HEAD(&__ctx->rq_list);
1960                 __ctx->queue = q;
1961                 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1962                 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1963
1964                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1965                 if (!cpu_online(i))
1966                         continue;
1967
1968                 hctx = blk_mq_map_queue(q, i);
1969
1970                 /*
1971                  * Set local node, IFF we have more than one hw queue. If
1972                  * not, we remain on the home node of the device
1973                  */
1974                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1975                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1976         }
1977 }
1978
1979 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1980 {
1981         int ret = 0;
1982
1983         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1984                                         set->queue_depth, set->reserved_tags);
1985         if (!set->tags[hctx_idx])
1986                 return false;
1987
1988         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1989                                 set->queue_depth);
1990         if (!ret)
1991                 return true;
1992
1993         blk_mq_free_rq_map(set->tags[hctx_idx]);
1994         set->tags[hctx_idx] = NULL;
1995         return false;
1996 }
1997
1998 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1999                                          unsigned int hctx_idx)
2000 {
2001         if (set->tags[hctx_idx]) {
2002                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2003                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2004                 set->tags[hctx_idx] = NULL;
2005         }
2006 }
2007
2008 static void blk_mq_map_swqueue(struct request_queue *q,
2009                                const struct cpumask *online_mask)
2010 {
2011         unsigned int i, hctx_idx;
2012         struct blk_mq_hw_ctx *hctx;
2013         struct blk_mq_ctx *ctx;
2014         struct blk_mq_tag_set *set = q->tag_set;
2015
2016         /*
2017          * Avoid others reading imcomplete hctx->cpumask through sysfs
2018          */
2019         mutex_lock(&q->sysfs_lock);
2020
2021         queue_for_each_hw_ctx(q, hctx, i) {
2022                 cpumask_clear(hctx->cpumask);
2023                 hctx->nr_ctx = 0;
2024         }
2025
2026         /*
2027          * Map software to hardware queues
2028          */
2029         for_each_possible_cpu(i) {
2030                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2031                 if (!cpumask_test_cpu(i, online_mask))
2032                         continue;
2033
2034                 hctx_idx = q->mq_map[i];
2035                 /* unmapped hw queue can be remapped after CPU topo changed */
2036                 if (!set->tags[hctx_idx] &&
2037                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2038                         /*
2039                          * If tags initialization fail for some hctx,
2040                          * that hctx won't be brought online.  In this
2041                          * case, remap the current ctx to hctx[0] which
2042                          * is guaranteed to always have tags allocated
2043                          */
2044                         q->mq_map[i] = 0;
2045                 }
2046
2047                 ctx = per_cpu_ptr(q->queue_ctx, i);
2048                 hctx = blk_mq_map_queue(q, i);
2049
2050                 cpumask_set_cpu(i, hctx->cpumask);
2051                 ctx->index_hw = hctx->nr_ctx;
2052                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2053         }
2054
2055         mutex_unlock(&q->sysfs_lock);
2056
2057         queue_for_each_hw_ctx(q, hctx, i) {
2058                 /*
2059                  * If no software queues are mapped to this hardware queue,
2060                  * disable it and free the request entries.
2061                  */
2062                 if (!hctx->nr_ctx) {
2063                         /* Never unmap queue 0.  We need it as a
2064                          * fallback in case of a new remap fails
2065                          * allocation
2066                          */
2067                         if (i && set->tags[i])
2068                                 blk_mq_free_map_and_requests(set, i);
2069
2070                         hctx->tags = NULL;
2071                         continue;
2072                 }
2073
2074                 hctx->tags = set->tags[i];
2075                 WARN_ON(!hctx->tags);
2076
2077                 /*
2078                  * Set the map size to the number of mapped software queues.
2079                  * This is more accurate and more efficient than looping
2080                  * over all possibly mapped software queues.
2081                  */
2082                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2083
2084                 /*
2085                  * Initialize batch roundrobin counts
2086                  */
2087                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2088                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2089         }
2090 }
2091
2092 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2093 {
2094         struct blk_mq_hw_ctx *hctx;
2095         int i;
2096
2097         queue_for_each_hw_ctx(q, hctx, i) {
2098                 if (shared)
2099                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2100                 else
2101                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2102         }
2103 }
2104
2105 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2106 {
2107         struct request_queue *q;
2108
2109         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2110                 blk_mq_freeze_queue(q);
2111                 queue_set_hctx_shared(q, shared);
2112                 blk_mq_unfreeze_queue(q);
2113         }
2114 }
2115
2116 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2117 {
2118         struct blk_mq_tag_set *set = q->tag_set;
2119
2120         mutex_lock(&set->tag_list_lock);
2121         list_del_init(&q->tag_set_list);
2122         if (list_is_singular(&set->tag_list)) {
2123                 /* just transitioned to unshared */
2124                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2125                 /* update existing queue */
2126                 blk_mq_update_tag_set_depth(set, false);
2127         }
2128         mutex_unlock(&set->tag_list_lock);
2129 }
2130
2131 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2132                                      struct request_queue *q)
2133 {
2134         q->tag_set = set;
2135
2136         mutex_lock(&set->tag_list_lock);
2137
2138         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2139         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2140                 set->flags |= BLK_MQ_F_TAG_SHARED;
2141                 /* update existing queue */
2142                 blk_mq_update_tag_set_depth(set, true);
2143         }
2144         if (set->flags & BLK_MQ_F_TAG_SHARED)
2145                 queue_set_hctx_shared(q, true);
2146         list_add_tail(&q->tag_set_list, &set->tag_list);
2147
2148         mutex_unlock(&set->tag_list_lock);
2149 }
2150
2151 /*
2152  * It is the actual release handler for mq, but we do it from
2153  * request queue's release handler for avoiding use-after-free
2154  * and headache because q->mq_kobj shouldn't have been introduced,
2155  * but we can't group ctx/kctx kobj without it.
2156  */
2157 void blk_mq_release(struct request_queue *q)
2158 {
2159         struct blk_mq_hw_ctx *hctx;
2160         unsigned int i;
2161
2162         blk_mq_sched_teardown(q);
2163
2164         /* hctx kobj stays in hctx */
2165         queue_for_each_hw_ctx(q, hctx, i) {
2166                 if (!hctx)
2167                         continue;
2168                 kfree(hctx->ctxs);
2169                 kfree(hctx);
2170         }
2171
2172         q->mq_map = NULL;
2173
2174         kfree(q->queue_hw_ctx);
2175
2176         /* ctx kobj stays in queue_ctx */
2177         free_percpu(q->queue_ctx);
2178 }
2179
2180 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2181 {
2182         struct request_queue *uninit_q, *q;
2183
2184         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2185         if (!uninit_q)
2186                 return ERR_PTR(-ENOMEM);
2187
2188         q = blk_mq_init_allocated_queue(set, uninit_q);
2189         if (IS_ERR(q))
2190                 blk_cleanup_queue(uninit_q);
2191
2192         return q;
2193 }
2194 EXPORT_SYMBOL(blk_mq_init_queue);
2195
2196 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2197                                                 struct request_queue *q)
2198 {
2199         int i, j;
2200         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2201
2202         blk_mq_sysfs_unregister(q);
2203         for (i = 0; i < set->nr_hw_queues; i++) {
2204                 int node;
2205
2206                 if (hctxs[i])
2207                         continue;
2208
2209                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2210                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2211                                         GFP_KERNEL, node);
2212                 if (!hctxs[i])
2213                         break;
2214
2215                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2216                                                 node)) {
2217                         kfree(hctxs[i]);
2218                         hctxs[i] = NULL;
2219                         break;
2220                 }
2221
2222                 atomic_set(&hctxs[i]->nr_active, 0);
2223                 hctxs[i]->numa_node = node;
2224                 hctxs[i]->queue_num = i;
2225
2226                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2227                         free_cpumask_var(hctxs[i]->cpumask);
2228                         kfree(hctxs[i]);
2229                         hctxs[i] = NULL;
2230                         break;
2231                 }
2232                 blk_mq_hctx_kobj_init(hctxs[i]);
2233         }
2234         for (j = i; j < q->nr_hw_queues; j++) {
2235                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2236
2237                 if (hctx) {
2238                         if (hctx->tags)
2239                                 blk_mq_free_map_and_requests(set, j);
2240                         blk_mq_exit_hctx(q, set, hctx, j);
2241                         free_cpumask_var(hctx->cpumask);
2242                         kobject_put(&hctx->kobj);
2243                         kfree(hctx->ctxs);
2244                         kfree(hctx);
2245                         hctxs[j] = NULL;
2246
2247                 }
2248         }
2249         q->nr_hw_queues = i;
2250         blk_mq_sysfs_register(q);
2251 }
2252
2253 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2254                                                   struct request_queue *q)
2255 {
2256         /* mark the queue as mq asap */
2257         q->mq_ops = set->ops;
2258
2259         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2260         if (!q->queue_ctx)
2261                 goto err_exit;
2262
2263         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2264                                                 GFP_KERNEL, set->numa_node);
2265         if (!q->queue_hw_ctx)
2266                 goto err_percpu;
2267
2268         q->mq_map = set->mq_map;
2269
2270         blk_mq_realloc_hw_ctxs(set, q);
2271         if (!q->nr_hw_queues)
2272                 goto err_hctxs;
2273
2274         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2275         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2276
2277         q->nr_queues = nr_cpu_ids;
2278
2279         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2280
2281         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2282                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2283
2284         q->sg_reserved_size = INT_MAX;
2285
2286         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2287         INIT_LIST_HEAD(&q->requeue_list);
2288         spin_lock_init(&q->requeue_lock);
2289
2290         if (q->nr_hw_queues > 1)
2291                 blk_queue_make_request(q, blk_mq_make_request);
2292         else
2293                 blk_queue_make_request(q, blk_sq_make_request);
2294
2295         /*
2296          * Do this after blk_queue_make_request() overrides it...
2297          */
2298         q->nr_requests = set->queue_depth;
2299
2300         /*
2301          * Default to classic polling
2302          */
2303         q->poll_nsec = -1;
2304
2305         if (set->ops->complete)
2306                 blk_queue_softirq_done(q, set->ops->complete);
2307
2308         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2309
2310         get_online_cpus();
2311         mutex_lock(&all_q_mutex);
2312
2313         list_add_tail(&q->all_q_node, &all_q_list);
2314         blk_mq_add_queue_tag_set(set, q);
2315         blk_mq_map_swqueue(q, cpu_online_mask);
2316
2317         mutex_unlock(&all_q_mutex);
2318         put_online_cpus();
2319
2320         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2321                 int ret;
2322
2323                 ret = blk_mq_sched_init(q);
2324                 if (ret)
2325                         return ERR_PTR(ret);
2326         }
2327
2328         return q;
2329
2330 err_hctxs:
2331         kfree(q->queue_hw_ctx);
2332 err_percpu:
2333         free_percpu(q->queue_ctx);
2334 err_exit:
2335         q->mq_ops = NULL;
2336         return ERR_PTR(-ENOMEM);
2337 }
2338 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2339
2340 void blk_mq_free_queue(struct request_queue *q)
2341 {
2342         struct blk_mq_tag_set   *set = q->tag_set;
2343
2344         mutex_lock(&all_q_mutex);
2345         list_del_init(&q->all_q_node);
2346         mutex_unlock(&all_q_mutex);
2347
2348         wbt_exit(q);
2349
2350         blk_mq_del_queue_tag_set(q);
2351
2352         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2353         blk_mq_free_hw_queues(q, set);
2354 }
2355
2356 /* Basically redo blk_mq_init_queue with queue frozen */
2357 static void blk_mq_queue_reinit(struct request_queue *q,
2358                                 const struct cpumask *online_mask)
2359 {
2360         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2361
2362         blk_mq_sysfs_unregister(q);
2363
2364         /*
2365          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2366          * we should change hctx numa_node according to new topology (this
2367          * involves free and re-allocate memory, worthy doing?)
2368          */
2369
2370         blk_mq_map_swqueue(q, online_mask);
2371
2372         blk_mq_sysfs_register(q);
2373 }
2374
2375 /*
2376  * New online cpumask which is going to be set in this hotplug event.
2377  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2378  * one-by-one and dynamically allocating this could result in a failure.
2379  */
2380 static struct cpumask cpuhp_online_new;
2381
2382 static void blk_mq_queue_reinit_work(void)
2383 {
2384         struct request_queue *q;
2385
2386         mutex_lock(&all_q_mutex);
2387         /*
2388          * We need to freeze and reinit all existing queues.  Freezing
2389          * involves synchronous wait for an RCU grace period and doing it
2390          * one by one may take a long time.  Start freezing all queues in
2391          * one swoop and then wait for the completions so that freezing can
2392          * take place in parallel.
2393          */
2394         list_for_each_entry(q, &all_q_list, all_q_node)
2395                 blk_mq_freeze_queue_start(q);
2396         list_for_each_entry(q, &all_q_list, all_q_node)
2397                 blk_mq_freeze_queue_wait(q);
2398
2399         list_for_each_entry(q, &all_q_list, all_q_node)
2400                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2401
2402         list_for_each_entry(q, &all_q_list, all_q_node)
2403                 blk_mq_unfreeze_queue(q);
2404
2405         mutex_unlock(&all_q_mutex);
2406 }
2407
2408 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2409 {
2410         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2411         blk_mq_queue_reinit_work();
2412         return 0;
2413 }
2414
2415 /*
2416  * Before hotadded cpu starts handling requests, new mappings must be
2417  * established.  Otherwise, these requests in hw queue might never be
2418  * dispatched.
2419  *
2420  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2421  * for CPU0, and ctx1 for CPU1).
2422  *
2423  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2424  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2425  *
2426  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2427  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2428  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2429  * ignored.
2430  */
2431 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2432 {
2433         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2434         cpumask_set_cpu(cpu, &cpuhp_online_new);
2435         blk_mq_queue_reinit_work();
2436         return 0;
2437 }
2438
2439 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2440 {
2441         int i;
2442
2443         for (i = 0; i < set->nr_hw_queues; i++)
2444                 if (!__blk_mq_alloc_rq_map(set, i))
2445                         goto out_unwind;
2446
2447         return 0;
2448
2449 out_unwind:
2450         while (--i >= 0)
2451                 blk_mq_free_rq_map(set->tags[i]);
2452
2453         return -ENOMEM;
2454 }
2455
2456 /*
2457  * Allocate the request maps associated with this tag_set. Note that this
2458  * may reduce the depth asked for, if memory is tight. set->queue_depth
2459  * will be updated to reflect the allocated depth.
2460  */
2461 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2462 {
2463         unsigned int depth;
2464         int err;
2465
2466         depth = set->queue_depth;
2467         do {
2468                 err = __blk_mq_alloc_rq_maps(set);
2469                 if (!err)
2470                         break;
2471
2472                 set->queue_depth >>= 1;
2473                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2474                         err = -ENOMEM;
2475                         break;
2476                 }
2477         } while (set->queue_depth);
2478
2479         if (!set->queue_depth || err) {
2480                 pr_err("blk-mq: failed to allocate request map\n");
2481                 return -ENOMEM;
2482         }
2483
2484         if (depth != set->queue_depth)
2485                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2486                                                 depth, set->queue_depth);
2487
2488         return 0;
2489 }
2490
2491 /*
2492  * Alloc a tag set to be associated with one or more request queues.
2493  * May fail with EINVAL for various error conditions. May adjust the
2494  * requested depth down, if if it too large. In that case, the set
2495  * value will be stored in set->queue_depth.
2496  */
2497 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2498 {
2499         int ret;
2500
2501         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2502
2503         if (!set->nr_hw_queues)
2504                 return -EINVAL;
2505         if (!set->queue_depth)
2506                 return -EINVAL;
2507         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2508                 return -EINVAL;
2509
2510         if (!set->ops->queue_rq)
2511                 return -EINVAL;
2512
2513         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2514                 pr_info("blk-mq: reduced tag depth to %u\n",
2515                         BLK_MQ_MAX_DEPTH);
2516                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2517         }
2518
2519         /*
2520          * If a crashdump is active, then we are potentially in a very
2521          * memory constrained environment. Limit us to 1 queue and
2522          * 64 tags to prevent using too much memory.
2523          */
2524         if (is_kdump_kernel()) {
2525                 set->nr_hw_queues = 1;
2526                 set->queue_depth = min(64U, set->queue_depth);
2527         }
2528         /*
2529          * There is no use for more h/w queues than cpus.
2530          */
2531         if (set->nr_hw_queues > nr_cpu_ids)
2532                 set->nr_hw_queues = nr_cpu_ids;
2533
2534         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2535                                  GFP_KERNEL, set->numa_node);
2536         if (!set->tags)
2537                 return -ENOMEM;
2538
2539         ret = -ENOMEM;
2540         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2541                         GFP_KERNEL, set->numa_node);
2542         if (!set->mq_map)
2543                 goto out_free_tags;
2544
2545         if (set->ops->map_queues)
2546                 ret = set->ops->map_queues(set);
2547         else
2548                 ret = blk_mq_map_queues(set);
2549         if (ret)
2550                 goto out_free_mq_map;
2551
2552         ret = blk_mq_alloc_rq_maps(set);
2553         if (ret)
2554                 goto out_free_mq_map;
2555
2556         mutex_init(&set->tag_list_lock);
2557         INIT_LIST_HEAD(&set->tag_list);
2558
2559         return 0;
2560
2561 out_free_mq_map:
2562         kfree(set->mq_map);
2563         set->mq_map = NULL;
2564 out_free_tags:
2565         kfree(set->tags);
2566         set->tags = NULL;
2567         return ret;
2568 }
2569 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2570
2571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2572 {
2573         int i;
2574
2575         for (i = 0; i < nr_cpu_ids; i++)
2576                 blk_mq_free_map_and_requests(set, i);
2577
2578         kfree(set->mq_map);
2579         set->mq_map = NULL;
2580
2581         kfree(set->tags);
2582         set->tags = NULL;
2583 }
2584 EXPORT_SYMBOL(blk_mq_free_tag_set);
2585
2586 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2587 {
2588         struct blk_mq_tag_set *set = q->tag_set;
2589         struct blk_mq_hw_ctx *hctx;
2590         int i, ret;
2591
2592         if (!set)
2593                 return -EINVAL;
2594
2595         blk_mq_freeze_queue(q);
2596         blk_mq_quiesce_queue(q);
2597
2598         ret = 0;
2599         queue_for_each_hw_ctx(q, hctx, i) {
2600                 if (!hctx->tags)
2601                         continue;
2602                 /*
2603                  * If we're using an MQ scheduler, just update the scheduler
2604                  * queue depth. This is similar to what the old code would do.
2605                  */
2606                 if (!hctx->sched_tags) {
2607                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2608                                                         min(nr, set->queue_depth),
2609                                                         false);
2610                 } else {
2611                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2612                                                         nr, true);
2613                 }
2614                 if (ret)
2615                         break;
2616         }
2617
2618         if (!ret)
2619                 q->nr_requests = nr;
2620
2621         blk_mq_unfreeze_queue(q);
2622         blk_mq_start_stopped_hw_queues(q, true);
2623
2624         return ret;
2625 }
2626
2627 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2628 {
2629         struct request_queue *q;
2630
2631         if (nr_hw_queues > nr_cpu_ids)
2632                 nr_hw_queues = nr_cpu_ids;
2633         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2634                 return;
2635
2636         list_for_each_entry(q, &set->tag_list, tag_set_list)
2637                 blk_mq_freeze_queue(q);
2638
2639         set->nr_hw_queues = nr_hw_queues;
2640         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2641                 blk_mq_realloc_hw_ctxs(set, q);
2642
2643                 if (q->nr_hw_queues > 1)
2644                         blk_queue_make_request(q, blk_mq_make_request);
2645                 else
2646                         blk_queue_make_request(q, blk_sq_make_request);
2647
2648                 blk_mq_queue_reinit(q, cpu_online_mask);
2649         }
2650
2651         list_for_each_entry(q, &set->tag_list, tag_set_list)
2652                 blk_mq_unfreeze_queue(q);
2653 }
2654 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2655
2656 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2657                                        struct blk_mq_hw_ctx *hctx,
2658                                        struct request *rq)
2659 {
2660         struct blk_rq_stat stat[2];
2661         unsigned long ret = 0;
2662
2663         /*
2664          * If stats collection isn't on, don't sleep but turn it on for
2665          * future users
2666          */
2667         if (!blk_stat_enable(q))
2668                 return 0;
2669
2670         /*
2671          * We don't have to do this once per IO, should optimize this
2672          * to just use the current window of stats until it changes
2673          */
2674         memset(&stat, 0, sizeof(stat));
2675         blk_hctx_stat_get(hctx, stat);
2676
2677         /*
2678          * As an optimistic guess, use half of the mean service time
2679          * for this type of request. We can (and should) make this smarter.
2680          * For instance, if the completion latencies are tight, we can
2681          * get closer than just half the mean. This is especially
2682          * important on devices where the completion latencies are longer
2683          * than ~10 usec.
2684          */
2685         if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2686                 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2687         else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2688                 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2689
2690         return ret;
2691 }
2692
2693 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2694                                      struct blk_mq_hw_ctx *hctx,
2695                                      struct request *rq)
2696 {
2697         struct hrtimer_sleeper hs;
2698         enum hrtimer_mode mode;
2699         unsigned int nsecs;
2700         ktime_t kt;
2701
2702         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2703                 return false;
2704
2705         /*
2706          * poll_nsec can be:
2707          *
2708          * -1:  don't ever hybrid sleep
2709          *  0:  use half of prev avg
2710          * >0:  use this specific value
2711          */
2712         if (q->poll_nsec == -1)
2713                 return false;
2714         else if (q->poll_nsec > 0)
2715                 nsecs = q->poll_nsec;
2716         else
2717                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2718
2719         if (!nsecs)
2720                 return false;
2721
2722         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2723
2724         /*
2725          * This will be replaced with the stats tracking code, using
2726          * 'avg_completion_time / 2' as the pre-sleep target.
2727          */
2728         kt = nsecs;
2729
2730         mode = HRTIMER_MODE_REL;
2731         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2732         hrtimer_set_expires(&hs.timer, kt);
2733
2734         hrtimer_init_sleeper(&hs, current);
2735         do {
2736                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2737                         break;
2738                 set_current_state(TASK_UNINTERRUPTIBLE);
2739                 hrtimer_start_expires(&hs.timer, mode);
2740                 if (hs.task)
2741                         io_schedule();
2742                 hrtimer_cancel(&hs.timer);
2743                 mode = HRTIMER_MODE_ABS;
2744         } while (hs.task && !signal_pending(current));
2745
2746         __set_current_state(TASK_RUNNING);
2747         destroy_hrtimer_on_stack(&hs.timer);
2748         return true;
2749 }
2750
2751 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2752 {
2753         struct request_queue *q = hctx->queue;
2754         long state;
2755
2756         /*
2757          * If we sleep, have the caller restart the poll loop to reset
2758          * the state. Like for the other success return cases, the
2759          * caller is responsible for checking if the IO completed. If
2760          * the IO isn't complete, we'll get called again and will go
2761          * straight to the busy poll loop.
2762          */
2763         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2764                 return true;
2765
2766         hctx->poll_considered++;
2767
2768         state = current->state;
2769         while (!need_resched()) {
2770                 int ret;
2771
2772                 hctx->poll_invoked++;
2773
2774                 ret = q->mq_ops->poll(hctx, rq->tag);
2775                 if (ret > 0) {
2776                         hctx->poll_success++;
2777                         set_current_state(TASK_RUNNING);
2778                         return true;
2779                 }
2780
2781                 if (signal_pending_state(state, current))
2782                         set_current_state(TASK_RUNNING);
2783
2784                 if (current->state == TASK_RUNNING)
2785                         return true;
2786                 if (ret < 0)
2787                         break;
2788                 cpu_relax();
2789         }
2790
2791         return false;
2792 }
2793
2794 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2795 {
2796         struct blk_mq_hw_ctx *hctx;
2797         struct blk_plug *plug;
2798         struct request *rq;
2799
2800         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2801             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2802                 return false;
2803
2804         plug = current->plug;
2805         if (plug)
2806                 blk_flush_plug_list(plug, false);
2807
2808         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2809         if (!blk_qc_t_is_internal(cookie))
2810                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2811         else
2812                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2813
2814         return __blk_mq_poll(hctx, rq);
2815 }
2816 EXPORT_SYMBOL_GPL(blk_mq_poll);
2817
2818 void blk_mq_disable_hotplug(void)
2819 {
2820         mutex_lock(&all_q_mutex);
2821 }
2822
2823 void blk_mq_enable_hotplug(void)
2824 {
2825         mutex_unlock(&all_q_mutex);
2826 }
2827
2828 static int __init blk_mq_init(void)
2829 {
2830         blk_mq_debugfs_init();
2831
2832         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2833                                 blk_mq_hctx_notify_dead);
2834
2835         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2836                                   blk_mq_queue_reinit_prepare,
2837                                   blk_mq_queue_reinit_dead);
2838         return 0;
2839 }
2840 subsys_initcall(blk_mq_init);