blk-mq, elevator: Count requests per hctx to improve performance
[linux-2.6-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct hd_struct *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if (rq->part == mi->part)
109                 mi->inflight[rq_data_dir(rq)]++;
110
111         return true;
112 }
113
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120         return mi.inflight[0] + mi.inflight[1];
121 }
122
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124                          unsigned int inflight[2])
125 {
126         struct mq_inflight mi = { .part = part };
127
128         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129         inflight[0] = mi.inflight[0];
130         inflight[1] = mi.inflight[1];
131 }
132
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135         mutex_lock(&q->mq_freeze_lock);
136         if (++q->mq_freeze_depth == 1) {
137                 percpu_ref_kill(&q->q_usage_counter);
138                 mutex_unlock(&q->mq_freeze_lock);
139                 if (queue_is_mq(q))
140                         blk_mq_run_hw_queues(q, false);
141         } else {
142                 mutex_unlock(&q->mq_freeze_lock);
143         }
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154                                      unsigned long timeout)
155 {
156         return wait_event_timeout(q->mq_freeze_wq,
157                                         percpu_ref_is_zero(&q->q_usage_counter),
158                                         timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168         /*
169          * In the !blk_mq case we are only calling this to kill the
170          * q_usage_counter, otherwise this increases the freeze depth
171          * and waits for it to return to zero.  For this reason there is
172          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173          * exported to drivers as the only user for unfreeze is blk_mq.
174          */
175         blk_freeze_queue_start(q);
176         blk_mq_freeze_queue_wait(q);
177 }
178
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181         /*
182          * ...just an alias to keep freeze and unfreeze actions balanced
183          * in the blk_mq_* namespace
184          */
185         blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191         mutex_lock(&q->mq_freeze_lock);
192         q->mq_freeze_depth--;
193         WARN_ON_ONCE(q->mq_freeze_depth < 0);
194         if (!q->mq_freeze_depth) {
195                 percpu_ref_resurrect(&q->q_usage_counter);
196                 wake_up_all(&q->mq_freeze_wq);
197         }
198         mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223         struct blk_mq_hw_ctx *hctx;
224         unsigned int i;
225         bool rcu = false;
226
227         blk_mq_quiesce_queue_nowait(q);
228
229         queue_for_each_hw_ctx(q, hctx, i) {
230                 if (hctx->flags & BLK_MQ_F_BLOCKING)
231                         synchronize_srcu(hctx->srcu);
232                 else
233                         rcu = true;
234         }
235         if (rcu)
236                 synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250
251         /* dispatch requests which are inserted during quiescing */
252         blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258         struct blk_mq_hw_ctx *hctx;
259         unsigned int i;
260
261         queue_for_each_hw_ctx(q, hctx, i)
262                 if (blk_mq_hw_queue_mapped(hctx))
263                         blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276                 unsigned int tag, u64 alloc_time_ns)
277 {
278         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279         struct request *rq = tags->static_rqs[tag];
280
281         if (data->q->elevator) {
282                 rq->tag = BLK_MQ_NO_TAG;
283                 rq->internal_tag = tag;
284         } else {
285                 rq->tag = tag;
286                 rq->internal_tag = BLK_MQ_NO_TAG;
287         }
288
289         /* csd/requeue_work/fifo_time is initialized before use */
290         rq->q = data->q;
291         rq->mq_ctx = data->ctx;
292         rq->mq_hctx = data->hctx;
293         rq->rq_flags = 0;
294         rq->cmd_flags = data->cmd_flags;
295         if (data->flags & BLK_MQ_REQ_PREEMPT)
296                 rq->rq_flags |= RQF_PREEMPT;
297         if (blk_queue_io_stat(data->q))
298                 rq->rq_flags |= RQF_IO_STAT;
299         INIT_LIST_HEAD(&rq->queuelist);
300         INIT_HLIST_NODE(&rq->hash);
301         RB_CLEAR_NODE(&rq->rb_node);
302         rq->rq_disk = NULL;
303         rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305         rq->alloc_time_ns = alloc_time_ns;
306 #endif
307         if (blk_mq_need_time_stamp(rq))
308                 rq->start_time_ns = ktime_get_ns();
309         else
310                 rq->start_time_ns = 0;
311         rq->io_start_time_ns = 0;
312         rq->stats_sectors = 0;
313         rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315         rq->nr_integrity_segments = 0;
316 #endif
317         blk_crypto_rq_set_defaults(rq);
318         /* tag was already set */
319         WRITE_ONCE(rq->deadline, 0);
320
321         rq->timeout = 0;
322
323         rq->end_io = NULL;
324         rq->end_io_data = NULL;
325
326         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327         refcount_set(&rq->ref, 1);
328
329         if (!op_is_flush(data->cmd_flags)) {
330                 struct elevator_queue *e = data->q->elevator;
331
332                 rq->elv.icq = NULL;
333                 if (e && e->type->ops.prepare_request) {
334                         if (e->type->icq_cache)
335                                 blk_mq_sched_assign_ioc(rq);
336
337                         e->type->ops.prepare_request(rq);
338                         rq->rq_flags |= RQF_ELVPRIV;
339                 }
340         }
341
342         data->hctx->queued++;
343         return rq;
344 }
345
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348         struct request_queue *q = data->q;
349         struct elevator_queue *e = q->elevator;
350         u64 alloc_time_ns = 0;
351         unsigned int tag;
352
353         /* alloc_time includes depth and tag waits */
354         if (blk_queue_rq_alloc_time(q))
355                 alloc_time_ns = ktime_get_ns();
356
357         if (data->cmd_flags & REQ_NOWAIT)
358                 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360         if (e) {
361                 /*
362                  * Flush requests are special and go directly to the
363                  * dispatch list. Don't include reserved tags in the
364                  * limiting, as it isn't useful.
365                  */
366                 if (!op_is_flush(data->cmd_flags) &&
367                     e->type->ops.limit_depth &&
368                     !(data->flags & BLK_MQ_REQ_RESERVED))
369                         e->type->ops.limit_depth(data->cmd_flags, data);
370         }
371
372 retry:
373         data->ctx = blk_mq_get_ctx(q);
374         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375         if (!e)
376                 blk_mq_tag_busy(data->hctx);
377
378         /*
379          * Waiting allocations only fail because of an inactive hctx.  In that
380          * case just retry the hctx assignment and tag allocation as CPU hotplug
381          * should have migrated us to an online CPU by now.
382          */
383         tag = blk_mq_get_tag(data);
384         if (tag == BLK_MQ_NO_TAG) {
385                 if (data->flags & BLK_MQ_REQ_NOWAIT)
386                         return NULL;
387
388                 /*
389                  * Give up the CPU and sleep for a random short time to ensure
390                  * that thread using a realtime scheduling class are migrated
391                  * off the CPU, and thus off the hctx that is going away.
392                  */
393                 msleep(3);
394                 goto retry;
395         }
396         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400                 blk_mq_req_flags_t flags)
401 {
402         struct blk_mq_alloc_data data = {
403                 .q              = q,
404                 .flags          = flags,
405                 .cmd_flags      = op,
406         };
407         struct request *rq;
408         int ret;
409
410         ret = blk_queue_enter(q, flags);
411         if (ret)
412                 return ERR_PTR(ret);
413
414         rq = __blk_mq_alloc_request(&data);
415         if (!rq)
416                 goto out_queue_exit;
417         rq->__data_len = 0;
418         rq->__sector = (sector_t) -1;
419         rq->bio = rq->biotail = NULL;
420         return rq;
421 out_queue_exit:
422         blk_queue_exit(q);
423         return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430         struct blk_mq_alloc_data data = {
431                 .q              = q,
432                 .flags          = flags,
433                 .cmd_flags      = op,
434         };
435         u64 alloc_time_ns = 0;
436         unsigned int cpu;
437         unsigned int tag;
438         int ret;
439
440         /* alloc_time includes depth and tag waits */
441         if (blk_queue_rq_alloc_time(q))
442                 alloc_time_ns = ktime_get_ns();
443
444         /*
445          * If the tag allocator sleeps we could get an allocation for a
446          * different hardware context.  No need to complicate the low level
447          * allocator for this for the rare use case of a command tied to
448          * a specific queue.
449          */
450         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451                 return ERR_PTR(-EINVAL);
452
453         if (hctx_idx >= q->nr_hw_queues)
454                 return ERR_PTR(-EIO);
455
456         ret = blk_queue_enter(q, flags);
457         if (ret)
458                 return ERR_PTR(ret);
459
460         /*
461          * Check if the hardware context is actually mapped to anything.
462          * If not tell the caller that it should skip this queue.
463          */
464         ret = -EXDEV;
465         data.hctx = q->queue_hw_ctx[hctx_idx];
466         if (!blk_mq_hw_queue_mapped(data.hctx))
467                 goto out_queue_exit;
468         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469         data.ctx = __blk_mq_get_ctx(q, cpu);
470
471         if (!q->elevator)
472                 blk_mq_tag_busy(data.hctx);
473
474         ret = -EWOULDBLOCK;
475         tag = blk_mq_get_tag(&data);
476         if (tag == BLK_MQ_NO_TAG)
477                 goto out_queue_exit;
478         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479
480 out_queue_exit:
481         blk_queue_exit(q);
482         return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
486 static void __blk_mq_free_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489         struct blk_mq_ctx *ctx = rq->mq_ctx;
490         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491         const int sched_tag = rq->internal_tag;
492
493         blk_crypto_free_request(rq);
494         blk_pm_mark_last_busy(rq);
495         rq->mq_hctx = NULL;
496         if (rq->tag != BLK_MQ_NO_TAG)
497                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498         if (sched_tag != BLK_MQ_NO_TAG)
499                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500         blk_mq_sched_restart(hctx);
501         blk_queue_exit(q);
502 }
503
504 void blk_mq_free_request(struct request *rq)
505 {
506         struct request_queue *q = rq->q;
507         struct elevator_queue *e = q->elevator;
508         struct blk_mq_ctx *ctx = rq->mq_ctx;
509         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510
511         if (rq->rq_flags & RQF_ELVPRIV) {
512                 if (e && e->type->ops.finish_request)
513                         e->type->ops.finish_request(rq);
514                 if (rq->elv.icq) {
515                         put_io_context(rq->elv.icq->ioc);
516                         rq->elv.icq = NULL;
517                 }
518         }
519
520         ctx->rq_completed[rq_is_sync(rq)]++;
521         if (rq->rq_flags & RQF_MQ_INFLIGHT)
522                 __blk_mq_dec_active_requests(hctx);
523
524         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525                 laptop_io_completion(q->backing_dev_info);
526
527         rq_qos_done(q, rq);
528
529         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530         if (refcount_dec_and_test(&rq->ref))
531                 __blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537         u64 now = 0;
538
539         if (blk_mq_need_time_stamp(rq))
540                 now = ktime_get_ns();
541
542         if (rq->rq_flags & RQF_STATS) {
543                 blk_mq_poll_stats_start(rq->q);
544                 blk_stat_add(rq, now);
545         }
546
547         blk_mq_sched_completed_request(rq, now);
548
549         blk_account_io_done(rq, now);
550
551         if (rq->end_io) {
552                 rq_qos_done(rq->q, rq);
553                 rq->end_io(rq, error);
554         } else {
555                 blk_mq_free_request(rq);
556         }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563                 BUG();
564         __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 /*
569  * Softirq action handler - move entries to local list and loop over them
570  * while passing them to the queue registered handler.
571  */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574         struct list_head *cpu_list, local_list;
575
576         local_irq_disable();
577         cpu_list = this_cpu_ptr(&blk_cpu_done);
578         list_replace_init(cpu_list, &local_list);
579         local_irq_enable();
580
581         while (!list_empty(&local_list)) {
582                 struct request *rq;
583
584                 rq = list_entry(local_list.next, struct request, ipi_list);
585                 list_del_init(&rq->ipi_list);
586                 rq->q->mq_ops->complete(rq);
587         }
588 }
589
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592         struct list_head *list;
593         unsigned long flags;
594
595         local_irq_save(flags);
596         list = this_cpu_ptr(&blk_cpu_done);
597         list_add_tail(&rq->ipi_list, list);
598
599         /*
600          * If the list only contains our just added request, signal a raise of
601          * the softirq.  If there are already entries there, someone already
602          * raised the irq but it hasn't run yet.
603          */
604         if (list->next == &rq->ipi_list)
605                 raise_softirq_irqoff(BLOCK_SOFTIRQ);
606         local_irq_restore(flags);
607 }
608
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611         /*
612          * If a CPU goes away, splice its entries to the current CPU
613          * and trigger a run of the softirq
614          */
615         local_irq_disable();
616         list_splice_init(&per_cpu(blk_cpu_done, cpu),
617                          this_cpu_ptr(&blk_cpu_done));
618         raise_softirq_irqoff(BLOCK_SOFTIRQ);
619         local_irq_enable();
620
621         return 0;
622 }
623
624
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627         struct request *rq = data;
628
629         /*
630          * For most of single queue controllers, there is only one irq vector
631          * for handling I/O completion, and the only irq's affinity is set
632          * to all possible CPUs.  On most of ARCHs, this affinity means the irq
633          * is handled on one specific CPU.
634          *
635          * So complete I/O requests in softirq context in case of single queue
636          * devices to avoid degrading I/O performance due to irqsoff latency.
637          */
638         if (rq->q->nr_hw_queues == 1)
639                 blk_mq_trigger_softirq(rq);
640         else
641                 rq->q->mq_ops->complete(rq);
642 }
643
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646         int cpu = raw_smp_processor_id();
647
648         if (!IS_ENABLED(CONFIG_SMP) ||
649             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650                 return false;
651
652         /* same CPU or cache domain?  Complete locally */
653         if (cpu == rq->mq_ctx->cpu ||
654             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656                 return false;
657
658         /* don't try to IPI to an offline CPU */
659         return cpu_online(rq->mq_ctx->cpu);
660 }
661
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665
666         /*
667          * For a polled request, always complete locallly, it's pointless
668          * to redirect the completion.
669          */
670         if (rq->cmd_flags & REQ_HIPRI)
671                 return false;
672
673         if (blk_mq_complete_need_ipi(rq)) {
674                 rq->csd.func = __blk_mq_complete_request_remote;
675                 rq->csd.info = rq;
676                 rq->csd.flags = 0;
677                 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678         } else {
679                 if (rq->q->nr_hw_queues > 1)
680                         return false;
681                 blk_mq_trigger_softirq(rq);
682         }
683
684         return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687
688 /**
689  * blk_mq_complete_request - end I/O on a request
690  * @rq:         the request being processed
691  *
692  * Description:
693  *      Complete a request by scheduling the ->complete_rq operation.
694  **/
695 void blk_mq_complete_request(struct request *rq)
696 {
697         if (!blk_mq_complete_request_remote(rq))
698                 rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701
702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703         __releases(hctx->srcu)
704 {
705         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706                 rcu_read_unlock();
707         else
708                 srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710
711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712         __acquires(hctx->srcu)
713 {
714         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715                 /* shut up gcc false positive */
716                 *srcu_idx = 0;
717                 rcu_read_lock();
718         } else
719                 *srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721
722 /**
723  * blk_mq_start_request - Start processing a request
724  * @rq: Pointer to request to be started
725  *
726  * Function used by device drivers to notify the block layer that a request
727  * is going to be processed now, so blk layer can do proper initializations
728  * such as starting the timeout timer.
729  */
730 void blk_mq_start_request(struct request *rq)
731 {
732         struct request_queue *q = rq->q;
733
734         trace_block_rq_issue(q, rq);
735
736         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737                 rq->io_start_time_ns = ktime_get_ns();
738                 rq->stats_sectors = blk_rq_sectors(rq);
739                 rq->rq_flags |= RQF_STATS;
740                 rq_qos_issue(q, rq);
741         }
742
743         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744
745         blk_add_timer(rq);
746         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750                 q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754
755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757         struct request_queue *q = rq->q;
758
759         blk_mq_put_driver_tag(rq);
760
761         trace_block_rq_requeue(q, rq);
762         rq_qos_requeue(q, rq);
763
764         if (blk_mq_request_started(rq)) {
765                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766                 rq->rq_flags &= ~RQF_TIMED_OUT;
767         }
768 }
769
770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772         __blk_mq_requeue_request(rq);
773
774         /* this request will be re-inserted to io scheduler queue */
775         blk_mq_sched_requeue_request(rq);
776
777         BUG_ON(!list_empty(&rq->queuelist));
778         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 }
780 EXPORT_SYMBOL(blk_mq_requeue_request);
781
782 static void blk_mq_requeue_work(struct work_struct *work)
783 {
784         struct request_queue *q =
785                 container_of(work, struct request_queue, requeue_work.work);
786         LIST_HEAD(rq_list);
787         struct request *rq, *next;
788
789         spin_lock_irq(&q->requeue_lock);
790         list_splice_init(&q->requeue_list, &rq_list);
791         spin_unlock_irq(&q->requeue_lock);
792
793         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795                         continue;
796
797                 rq->rq_flags &= ~RQF_SOFTBARRIER;
798                 list_del_init(&rq->queuelist);
799                 /*
800                  * If RQF_DONTPREP, rq has contained some driver specific
801                  * data, so insert it to hctx dispatch list to avoid any
802                  * merge.
803                  */
804                 if (rq->rq_flags & RQF_DONTPREP)
805                         blk_mq_request_bypass_insert(rq, false, false);
806                 else
807                         blk_mq_sched_insert_request(rq, true, false, false);
808         }
809
810         while (!list_empty(&rq_list)) {
811                 rq = list_entry(rq_list.next, struct request, queuelist);
812                 list_del_init(&rq->queuelist);
813                 blk_mq_sched_insert_request(rq, false, false, false);
814         }
815
816         blk_mq_run_hw_queues(q, false);
817 }
818
819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820                                 bool kick_requeue_list)
821 {
822         struct request_queue *q = rq->q;
823         unsigned long flags;
824
825         /*
826          * We abuse this flag that is otherwise used by the I/O scheduler to
827          * request head insertion from the workqueue.
828          */
829         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830
831         spin_lock_irqsave(&q->requeue_lock, flags);
832         if (at_head) {
833                 rq->rq_flags |= RQF_SOFTBARRIER;
834                 list_add(&rq->queuelist, &q->requeue_list);
835         } else {
836                 list_add_tail(&rq->queuelist, &q->requeue_list);
837         }
838         spin_unlock_irqrestore(&q->requeue_lock, flags);
839
840         if (kick_requeue_list)
841                 blk_mq_kick_requeue_list(q);
842 }
843
844 void blk_mq_kick_requeue_list(struct request_queue *q)
845 {
846         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 }
848 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849
850 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851                                     unsigned long msecs)
852 {
853         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854                                     msecs_to_jiffies(msecs));
855 }
856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857
858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859 {
860         if (tag < tags->nr_tags) {
861                 prefetch(tags->rqs[tag]);
862                 return tags->rqs[tag];
863         }
864
865         return NULL;
866 }
867 EXPORT_SYMBOL(blk_mq_tag_to_rq);
868
869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870                                void *priv, bool reserved)
871 {
872         /*
873          * If we find a request that isn't idle and the queue matches,
874          * we know the queue is busy. Return false to stop the iteration.
875          */
876         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877                 bool *busy = priv;
878
879                 *busy = true;
880                 return false;
881         }
882
883         return true;
884 }
885
886 bool blk_mq_queue_inflight(struct request_queue *q)
887 {
888         bool busy = false;
889
890         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891         return busy;
892 }
893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894
895 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896 {
897         req->rq_flags |= RQF_TIMED_OUT;
898         if (req->q->mq_ops->timeout) {
899                 enum blk_eh_timer_return ret;
900
901                 ret = req->q->mq_ops->timeout(req, reserved);
902                 if (ret == BLK_EH_DONE)
903                         return;
904                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905         }
906
907         blk_add_timer(req);
908 }
909
910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911 {
912         unsigned long deadline;
913
914         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915                 return false;
916         if (rq->rq_flags & RQF_TIMED_OUT)
917                 return false;
918
919         deadline = READ_ONCE(rq->deadline);
920         if (time_after_eq(jiffies, deadline))
921                 return true;
922
923         if (*next == 0)
924                 *next = deadline;
925         else if (time_after(*next, deadline))
926                 *next = deadline;
927         return false;
928 }
929
930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931                 struct request *rq, void *priv, bool reserved)
932 {
933         unsigned long *next = priv;
934
935         /*
936          * Just do a quick check if it is expired before locking the request in
937          * so we're not unnecessarilly synchronizing across CPUs.
938          */
939         if (!blk_mq_req_expired(rq, next))
940                 return true;
941
942         /*
943          * We have reason to believe the request may be expired. Take a
944          * reference on the request to lock this request lifetime into its
945          * currently allocated context to prevent it from being reallocated in
946          * the event the completion by-passes this timeout handler.
947          *
948          * If the reference was already released, then the driver beat the
949          * timeout handler to posting a natural completion.
950          */
951         if (!refcount_inc_not_zero(&rq->ref))
952                 return true;
953
954         /*
955          * The request is now locked and cannot be reallocated underneath the
956          * timeout handler's processing. Re-verify this exact request is truly
957          * expired; if it is not expired, then the request was completed and
958          * reallocated as a new request.
959          */
960         if (blk_mq_req_expired(rq, next))
961                 blk_mq_rq_timed_out(rq, reserved);
962
963         if (is_flush_rq(rq, hctx))
964                 rq->end_io(rq, 0);
965         else if (refcount_dec_and_test(&rq->ref))
966                 __blk_mq_free_request(rq);
967
968         return true;
969 }
970
971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973         struct request_queue *q =
974                 container_of(work, struct request_queue, timeout_work);
975         unsigned long next = 0;
976         struct blk_mq_hw_ctx *hctx;
977         int i;
978
979         /* A deadlock might occur if a request is stuck requiring a
980          * timeout at the same time a queue freeze is waiting
981          * completion, since the timeout code would not be able to
982          * acquire the queue reference here.
983          *
984          * That's why we don't use blk_queue_enter here; instead, we use
985          * percpu_ref_tryget directly, because we need to be able to
986          * obtain a reference even in the short window between the queue
987          * starting to freeze, by dropping the first reference in
988          * blk_freeze_queue_start, and the moment the last request is
989          * consumed, marked by the instant q_usage_counter reaches
990          * zero.
991          */
992         if (!percpu_ref_tryget(&q->q_usage_counter))
993                 return;
994
995         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996
997         if (next != 0) {
998                 mod_timer(&q->timeout, next);
999         } else {
1000                 /*
1001                  * Request timeouts are handled as a forward rolling timer. If
1002                  * we end up here it means that no requests are pending and
1003                  * also that no request has been pending for a while. Mark
1004                  * each hctx as idle.
1005                  */
1006                 queue_for_each_hw_ctx(q, hctx, i) {
1007                         /* the hctx may be unmapped, so check it here */
1008                         if (blk_mq_hw_queue_mapped(hctx))
1009                                 blk_mq_tag_idle(hctx);
1010                 }
1011         }
1012         blk_queue_exit(q);
1013 }
1014
1015 struct flush_busy_ctx_data {
1016         struct blk_mq_hw_ctx *hctx;
1017         struct list_head *list;
1018 };
1019
1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022         struct flush_busy_ctx_data *flush_data = data;
1023         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025         enum hctx_type type = hctx->type;
1026
1027         spin_lock(&ctx->lock);
1028         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029         sbitmap_clear_bit(sb, bitnr);
1030         spin_unlock(&ctx->lock);
1031         return true;
1032 }
1033
1034 /*
1035  * Process software queues that have been marked busy, splicing them
1036  * to the for-dispatch
1037  */
1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040         struct flush_busy_ctx_data data = {
1041                 .hctx = hctx,
1042                 .list = list,
1043         };
1044
1045         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048
1049 struct dispatch_rq_data {
1050         struct blk_mq_hw_ctx *hctx;
1051         struct request *rq;
1052 };
1053
1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055                 void *data)
1056 {
1057         struct dispatch_rq_data *dispatch_data = data;
1058         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060         enum hctx_type type = hctx->type;
1061
1062         spin_lock(&ctx->lock);
1063         if (!list_empty(&ctx->rq_lists[type])) {
1064                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065                 list_del_init(&dispatch_data->rq->queuelist);
1066                 if (list_empty(&ctx->rq_lists[type]))
1067                         sbitmap_clear_bit(sb, bitnr);
1068         }
1069         spin_unlock(&ctx->lock);
1070
1071         return !dispatch_data->rq;
1072 }
1073
1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075                                         struct blk_mq_ctx *start)
1076 {
1077         unsigned off = start ? start->index_hw[hctx->type] : 0;
1078         struct dispatch_rq_data data = {
1079                 .hctx = hctx,
1080                 .rq   = NULL,
1081         };
1082
1083         __sbitmap_for_each_set(&hctx->ctx_map, off,
1084                                dispatch_rq_from_ctx, &data);
1085
1086         return data.rq;
1087 }
1088
1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091         if (!queued)
1092                 return 0;
1093
1094         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096
1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101         int tag;
1102
1103         blk_mq_tag_busy(rq->mq_hctx);
1104
1105         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106                 bt = rq->mq_hctx->tags->breserved_tags;
1107                 tag_offset = 0;
1108         }
1109
1110         if (!hctx_may_queue(rq->mq_hctx, bt))
1111                 return false;
1112         tag = __sbitmap_queue_get(bt);
1113         if (tag == BLK_MQ_NO_TAG)
1114                 return false;
1115
1116         rq->tag = tag + tag_offset;
1117         return true;
1118 }
1119
1120 static bool blk_mq_get_driver_tag(struct request *rq)
1121 {
1122         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1123
1124         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1125                 return false;
1126
1127         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1128                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1129                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1130                 __blk_mq_inc_active_requests(hctx);
1131         }
1132         hctx->tags->rqs[rq->tag] = rq;
1133         return true;
1134 }
1135
1136 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1137                                 int flags, void *key)
1138 {
1139         struct blk_mq_hw_ctx *hctx;
1140
1141         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1142
1143         spin_lock(&hctx->dispatch_wait_lock);
1144         if (!list_empty(&wait->entry)) {
1145                 struct sbitmap_queue *sbq;
1146
1147                 list_del_init(&wait->entry);
1148                 sbq = hctx->tags->bitmap_tags;
1149                 atomic_dec(&sbq->ws_active);
1150         }
1151         spin_unlock(&hctx->dispatch_wait_lock);
1152
1153         blk_mq_run_hw_queue(hctx, true);
1154         return 1;
1155 }
1156
1157 /*
1158  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1159  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1160  * restart. For both cases, take care to check the condition again after
1161  * marking us as waiting.
1162  */
1163 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1164                                  struct request *rq)
1165 {
1166         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1167         struct wait_queue_head *wq;
1168         wait_queue_entry_t *wait;
1169         bool ret;
1170
1171         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1172                 blk_mq_sched_mark_restart_hctx(hctx);
1173
1174                 /*
1175                  * It's possible that a tag was freed in the window between the
1176                  * allocation failure and adding the hardware queue to the wait
1177                  * queue.
1178                  *
1179                  * Don't clear RESTART here, someone else could have set it.
1180                  * At most this will cost an extra queue run.
1181                  */
1182                 return blk_mq_get_driver_tag(rq);
1183         }
1184
1185         wait = &hctx->dispatch_wait;
1186         if (!list_empty_careful(&wait->entry))
1187                 return false;
1188
1189         wq = &bt_wait_ptr(sbq, hctx)->wait;
1190
1191         spin_lock_irq(&wq->lock);
1192         spin_lock(&hctx->dispatch_wait_lock);
1193         if (!list_empty(&wait->entry)) {
1194                 spin_unlock(&hctx->dispatch_wait_lock);
1195                 spin_unlock_irq(&wq->lock);
1196                 return false;
1197         }
1198
1199         atomic_inc(&sbq->ws_active);
1200         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1201         __add_wait_queue(wq, wait);
1202
1203         /*
1204          * It's possible that a tag was freed in the window between the
1205          * allocation failure and adding the hardware queue to the wait
1206          * queue.
1207          */
1208         ret = blk_mq_get_driver_tag(rq);
1209         if (!ret) {
1210                 spin_unlock(&hctx->dispatch_wait_lock);
1211                 spin_unlock_irq(&wq->lock);
1212                 return false;
1213         }
1214
1215         /*
1216          * We got a tag, remove ourselves from the wait queue to ensure
1217          * someone else gets the wakeup.
1218          */
1219         list_del_init(&wait->entry);
1220         atomic_dec(&sbq->ws_active);
1221         spin_unlock(&hctx->dispatch_wait_lock);
1222         spin_unlock_irq(&wq->lock);
1223
1224         return true;
1225 }
1226
1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1229 /*
1230  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1231  * - EWMA is one simple way to compute running average value
1232  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1233  * - take 4 as factor for avoiding to get too small(0) result, and this
1234  *   factor doesn't matter because EWMA decreases exponentially
1235  */
1236 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1237 {
1238         unsigned int ewma;
1239
1240         if (hctx->queue->elevator)
1241                 return;
1242
1243         ewma = hctx->dispatch_busy;
1244
1245         if (!ewma && !busy)
1246                 return;
1247
1248         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1249         if (busy)
1250                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1251         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1252
1253         hctx->dispatch_busy = ewma;
1254 }
1255
1256 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1257
1258 static void blk_mq_handle_dev_resource(struct request *rq,
1259                                        struct list_head *list)
1260 {
1261         struct request *next =
1262                 list_first_entry_or_null(list, struct request, queuelist);
1263
1264         /*
1265          * If an I/O scheduler has been configured and we got a driver tag for
1266          * the next request already, free it.
1267          */
1268         if (next)
1269                 blk_mq_put_driver_tag(next);
1270
1271         list_add(&rq->queuelist, list);
1272         __blk_mq_requeue_request(rq);
1273 }
1274
1275 static void blk_mq_handle_zone_resource(struct request *rq,
1276                                         struct list_head *zone_list)
1277 {
1278         /*
1279          * If we end up here it is because we cannot dispatch a request to a
1280          * specific zone due to LLD level zone-write locking or other zone
1281          * related resource not being available. In this case, set the request
1282          * aside in zone_list for retrying it later.
1283          */
1284         list_add(&rq->queuelist, zone_list);
1285         __blk_mq_requeue_request(rq);
1286 }
1287
1288 enum prep_dispatch {
1289         PREP_DISPATCH_OK,
1290         PREP_DISPATCH_NO_TAG,
1291         PREP_DISPATCH_NO_BUDGET,
1292 };
1293
1294 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1295                                                   bool need_budget)
1296 {
1297         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1298
1299         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1300                 blk_mq_put_driver_tag(rq);
1301                 return PREP_DISPATCH_NO_BUDGET;
1302         }
1303
1304         if (!blk_mq_get_driver_tag(rq)) {
1305                 /*
1306                  * The initial allocation attempt failed, so we need to
1307                  * rerun the hardware queue when a tag is freed. The
1308                  * waitqueue takes care of that. If the queue is run
1309                  * before we add this entry back on the dispatch list,
1310                  * we'll re-run it below.
1311                  */
1312                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313                         /*
1314                          * All budgets not got from this function will be put
1315                          * together during handling partial dispatch
1316                          */
1317                         if (need_budget)
1318                                 blk_mq_put_dispatch_budget(rq->q);
1319                         return PREP_DISPATCH_NO_TAG;
1320                 }
1321         }
1322
1323         return PREP_DISPATCH_OK;
1324 }
1325
1326 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1327 static void blk_mq_release_budgets(struct request_queue *q,
1328                 unsigned int nr_budgets)
1329 {
1330         int i;
1331
1332         for (i = 0; i < nr_budgets; i++)
1333                 blk_mq_put_dispatch_budget(q);
1334 }
1335
1336 /*
1337  * Returns true if we did some work AND can potentially do more.
1338  */
1339 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340                              unsigned int nr_budgets)
1341 {
1342         enum prep_dispatch prep;
1343         struct request_queue *q = hctx->queue;
1344         struct request *rq, *nxt;
1345         int errors, queued;
1346         blk_status_t ret = BLK_STS_OK;
1347         LIST_HEAD(zone_list);
1348
1349         if (list_empty(list))
1350                 return false;
1351
1352         /*
1353          * Now process all the entries, sending them to the driver.
1354          */
1355         errors = queued = 0;
1356         do {
1357                 struct blk_mq_queue_data bd;
1358
1359                 rq = list_first_entry(list, struct request, queuelist);
1360
1361                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1362                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1363                 if (prep != PREP_DISPATCH_OK)
1364                         break;
1365
1366                 list_del_init(&rq->queuelist);
1367
1368                 bd.rq = rq;
1369
1370                 /*
1371                  * Flag last if we have no more requests, or if we have more
1372                  * but can't assign a driver tag to it.
1373                  */
1374                 if (list_empty(list))
1375                         bd.last = true;
1376                 else {
1377                         nxt = list_first_entry(list, struct request, queuelist);
1378                         bd.last = !blk_mq_get_driver_tag(nxt);
1379                 }
1380
1381                 /*
1382                  * once the request is queued to lld, no need to cover the
1383                  * budget any more
1384                  */
1385                 if (nr_budgets)
1386                         nr_budgets--;
1387                 ret = q->mq_ops->queue_rq(hctx, &bd);
1388                 switch (ret) {
1389                 case BLK_STS_OK:
1390                         queued++;
1391                         break;
1392                 case BLK_STS_RESOURCE:
1393                 case BLK_STS_DEV_RESOURCE:
1394                         blk_mq_handle_dev_resource(rq, list);
1395                         goto out;
1396                 case BLK_STS_ZONE_RESOURCE:
1397                         /*
1398                          * Move the request to zone_list and keep going through
1399                          * the dispatch list to find more requests the drive can
1400                          * accept.
1401                          */
1402                         blk_mq_handle_zone_resource(rq, &zone_list);
1403                         break;
1404                 default:
1405                         errors++;
1406                         blk_mq_end_request(rq, BLK_STS_IOERR);
1407                 }
1408         } while (!list_empty(list));
1409 out:
1410         if (!list_empty(&zone_list))
1411                 list_splice_tail_init(&zone_list, list);
1412
1413         hctx->dispatched[queued_to_index(queued)]++;
1414
1415         /*
1416          * Any items that need requeuing? Stuff them into hctx->dispatch,
1417          * that is where we will continue on next queue run.
1418          */
1419         if (!list_empty(list)) {
1420                 bool needs_restart;
1421                 /* For non-shared tags, the RESTART check will suffice */
1422                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1423                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1424                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1425
1426                 blk_mq_release_budgets(q, nr_budgets);
1427
1428                 /*
1429                  * If we didn't flush the entire list, we could have told
1430                  * the driver there was more coming, but that turned out to
1431                  * be a lie.
1432                  */
1433                 if (q->mq_ops->commit_rqs && queued)
1434                         q->mq_ops->commit_rqs(hctx);
1435
1436                 spin_lock(&hctx->lock);
1437                 list_splice_tail_init(list, &hctx->dispatch);
1438                 spin_unlock(&hctx->lock);
1439
1440                 /*
1441                  * Order adding requests to hctx->dispatch and checking
1442                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1443                  * in blk_mq_sched_restart(). Avoid restart code path to
1444                  * miss the new added requests to hctx->dispatch, meantime
1445                  * SCHED_RESTART is observed here.
1446                  */
1447                 smp_mb();
1448
1449                 /*
1450                  * If SCHED_RESTART was set by the caller of this function and
1451                  * it is no longer set that means that it was cleared by another
1452                  * thread and hence that a queue rerun is needed.
1453                  *
1454                  * If 'no_tag' is set, that means that we failed getting
1455                  * a driver tag with an I/O scheduler attached. If our dispatch
1456                  * waitqueue is no longer active, ensure that we run the queue
1457                  * AFTER adding our entries back to the list.
1458                  *
1459                  * If no I/O scheduler has been configured it is possible that
1460                  * the hardware queue got stopped and restarted before requests
1461                  * were pushed back onto the dispatch list. Rerun the queue to
1462                  * avoid starvation. Notes:
1463                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1464                  *   been stopped before rerunning a queue.
1465                  * - Some but not all block drivers stop a queue before
1466                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1467                  *   and dm-rq.
1468                  *
1469                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1470                  * bit is set, run queue after a delay to avoid IO stalls
1471                  * that could otherwise occur if the queue is idle.  We'll do
1472                  * similar if we couldn't get budget and SCHED_RESTART is set.
1473                  */
1474                 needs_restart = blk_mq_sched_needs_restart(hctx);
1475                 if (!needs_restart ||
1476                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1477                         blk_mq_run_hw_queue(hctx, true);
1478                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1479                                            no_budget_avail))
1480                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1481
1482                 blk_mq_update_dispatch_busy(hctx, true);
1483                 return false;
1484         } else
1485                 blk_mq_update_dispatch_busy(hctx, false);
1486
1487         return (queued + errors) != 0;
1488 }
1489
1490 /**
1491  * __blk_mq_run_hw_queue - Run a hardware queue.
1492  * @hctx: Pointer to the hardware queue to run.
1493  *
1494  * Send pending requests to the hardware.
1495  */
1496 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1497 {
1498         int srcu_idx;
1499
1500         /*
1501          * We should be running this queue from one of the CPUs that
1502          * are mapped to it.
1503          *
1504          * There are at least two related races now between setting
1505          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1506          * __blk_mq_run_hw_queue():
1507          *
1508          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1509          *   but later it becomes online, then this warning is harmless
1510          *   at all
1511          *
1512          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1513          *   but later it becomes offline, then the warning can't be
1514          *   triggered, and we depend on blk-mq timeout handler to
1515          *   handle dispatched requests to this hctx
1516          */
1517         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1518                 cpu_online(hctx->next_cpu)) {
1519                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1520                         raw_smp_processor_id(),
1521                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1522                 dump_stack();
1523         }
1524
1525         /*
1526          * We can't run the queue inline with ints disabled. Ensure that
1527          * we catch bad users of this early.
1528          */
1529         WARN_ON_ONCE(in_interrupt());
1530
1531         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1532
1533         hctx_lock(hctx, &srcu_idx);
1534         blk_mq_sched_dispatch_requests(hctx);
1535         hctx_unlock(hctx, srcu_idx);
1536 }
1537
1538 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1539 {
1540         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1541
1542         if (cpu >= nr_cpu_ids)
1543                 cpu = cpumask_first(hctx->cpumask);
1544         return cpu;
1545 }
1546
1547 /*
1548  * It'd be great if the workqueue API had a way to pass
1549  * in a mask and had some smarts for more clever placement.
1550  * For now we just round-robin here, switching for every
1551  * BLK_MQ_CPU_WORK_BATCH queued items.
1552  */
1553 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1554 {
1555         bool tried = false;
1556         int next_cpu = hctx->next_cpu;
1557
1558         if (hctx->queue->nr_hw_queues == 1)
1559                 return WORK_CPU_UNBOUND;
1560
1561         if (--hctx->next_cpu_batch <= 0) {
1562 select_cpu:
1563                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1564                                 cpu_online_mask);
1565                 if (next_cpu >= nr_cpu_ids)
1566                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1567                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1568         }
1569
1570         /*
1571          * Do unbound schedule if we can't find a online CPU for this hctx,
1572          * and it should only happen in the path of handling CPU DEAD.
1573          */
1574         if (!cpu_online(next_cpu)) {
1575                 if (!tried) {
1576                         tried = true;
1577                         goto select_cpu;
1578                 }
1579
1580                 /*
1581                  * Make sure to re-select CPU next time once after CPUs
1582                  * in hctx->cpumask become online again.
1583                  */
1584                 hctx->next_cpu = next_cpu;
1585                 hctx->next_cpu_batch = 1;
1586                 return WORK_CPU_UNBOUND;
1587         }
1588
1589         hctx->next_cpu = next_cpu;
1590         return next_cpu;
1591 }
1592
1593 /**
1594  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1595  * @hctx: Pointer to the hardware queue to run.
1596  * @async: If we want to run the queue asynchronously.
1597  * @msecs: Microseconds of delay to wait before running the queue.
1598  *
1599  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1600  * with a delay of @msecs.
1601  */
1602 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1603                                         unsigned long msecs)
1604 {
1605         if (unlikely(blk_mq_hctx_stopped(hctx)))
1606                 return;
1607
1608         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609                 int cpu = get_cpu();
1610                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1611                         __blk_mq_run_hw_queue(hctx);
1612                         put_cpu();
1613                         return;
1614                 }
1615
1616                 put_cpu();
1617         }
1618
1619         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1620                                     msecs_to_jiffies(msecs));
1621 }
1622
1623 /**
1624  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1625  * @hctx: Pointer to the hardware queue to run.
1626  * @msecs: Microseconds of delay to wait before running the queue.
1627  *
1628  * Run a hardware queue asynchronously with a delay of @msecs.
1629  */
1630 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1631 {
1632         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1633 }
1634 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1635
1636 /**
1637  * blk_mq_run_hw_queue - Start to run a hardware queue.
1638  * @hctx: Pointer to the hardware queue to run.
1639  * @async: If we want to run the queue asynchronously.
1640  *
1641  * Check if the request queue is not in a quiesced state and if there are
1642  * pending requests to be sent. If this is true, run the queue to send requests
1643  * to hardware.
1644  */
1645 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1646 {
1647         int srcu_idx;
1648         bool need_run;
1649
1650         /*
1651          * When queue is quiesced, we may be switching io scheduler, or
1652          * updating nr_hw_queues, or other things, and we can't run queue
1653          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1654          *
1655          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1656          * quiesced.
1657          */
1658         hctx_lock(hctx, &srcu_idx);
1659         need_run = !blk_queue_quiesced(hctx->queue) &&
1660                 blk_mq_hctx_has_pending(hctx);
1661         hctx_unlock(hctx, srcu_idx);
1662
1663         if (need_run)
1664                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1665 }
1666 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1667
1668 /**
1669  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1670  * @q: Pointer to the request queue to run.
1671  * @async: If we want to run the queue asynchronously.
1672  */
1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 {
1675         struct blk_mq_hw_ctx *hctx;
1676         int i;
1677
1678         queue_for_each_hw_ctx(q, hctx, i) {
1679                 if (blk_mq_hctx_stopped(hctx))
1680                         continue;
1681
1682                 blk_mq_run_hw_queue(hctx, async);
1683         }
1684 }
1685 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686
1687 /**
1688  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1689  * @q: Pointer to the request queue to run.
1690  * @msecs: Microseconds of delay to wait before running the queues.
1691  */
1692 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1693 {
1694         struct blk_mq_hw_ctx *hctx;
1695         int i;
1696
1697         queue_for_each_hw_ctx(q, hctx, i) {
1698                 if (blk_mq_hctx_stopped(hctx))
1699                         continue;
1700
1701                 blk_mq_delay_run_hw_queue(hctx, msecs);
1702         }
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705
1706 /**
1707  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708  * @q: request queue.
1709  *
1710  * The caller is responsible for serializing this function against
1711  * blk_mq_{start,stop}_hw_queue().
1712  */
1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715         struct blk_mq_hw_ctx *hctx;
1716         int i;
1717
1718         queue_for_each_hw_ctx(q, hctx, i)
1719                 if (blk_mq_hctx_stopped(hctx))
1720                         return true;
1721
1722         return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queue() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737         cancel_delayed_work(&hctx->run_work);
1738
1739         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742
1743 /*
1744  * This function is often used for pausing .queue_rq() by driver when
1745  * there isn't enough resource or some conditions aren't satisfied, and
1746  * BLK_STS_RESOURCE is usually returned.
1747  *
1748  * We do not guarantee that dispatch can be drained or blocked
1749  * after blk_mq_stop_hw_queues() returns. Please use
1750  * blk_mq_quiesce_queue() for that requirement.
1751  */
1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754         struct blk_mq_hw_ctx *hctx;
1755         int i;
1756
1757         queue_for_each_hw_ctx(q, hctx, i)
1758                 blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761
1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765
1766         blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769
1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772         struct blk_mq_hw_ctx *hctx;
1773         int i;
1774
1775         queue_for_each_hw_ctx(q, hctx, i)
1776                 blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779
1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782         if (!blk_mq_hctx_stopped(hctx))
1783                 return;
1784
1785         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786         blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789
1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793         int i;
1794
1795         queue_for_each_hw_ctx(q, hctx, i)
1796                 blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799
1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802         struct blk_mq_hw_ctx *hctx;
1803
1804         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805
1806         /*
1807          * If we are stopped, don't run the queue.
1808          */
1809         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1810                 return;
1811
1812         __blk_mq_run_hw_queue(hctx);
1813 }
1814
1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816                                             struct request *rq,
1817                                             bool at_head)
1818 {
1819         struct blk_mq_ctx *ctx = rq->mq_ctx;
1820         enum hctx_type type = hctx->type;
1821
1822         lockdep_assert_held(&ctx->lock);
1823
1824         trace_block_rq_insert(hctx->queue, rq);
1825
1826         if (at_head)
1827                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828         else
1829                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831
1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833                              bool at_head)
1834 {
1835         struct blk_mq_ctx *ctx = rq->mq_ctx;
1836
1837         lockdep_assert_held(&ctx->lock);
1838
1839         __blk_mq_insert_req_list(hctx, rq, at_head);
1840         blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842
1843 /**
1844  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845  * @rq: Pointer to request to be inserted.
1846  * @at_head: true if the request should be inserted at the head of the list.
1847  * @run_queue: If we should run the hardware queue after inserting the request.
1848  *
1849  * Should only be used carefully, when the caller knows we want to
1850  * bypass a potential IO scheduler on the target device.
1851  */
1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853                                   bool run_queue)
1854 {
1855         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856
1857         spin_lock(&hctx->lock);
1858         if (at_head)
1859                 list_add(&rq->queuelist, &hctx->dispatch);
1860         else
1861                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1862         spin_unlock(&hctx->lock);
1863
1864         if (run_queue)
1865                 blk_mq_run_hw_queue(hctx, false);
1866 }
1867
1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869                             struct list_head *list)
1870
1871 {
1872         struct request *rq;
1873         enum hctx_type type = hctx->type;
1874
1875         /*
1876          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877          * offline now
1878          */
1879         list_for_each_entry(rq, list, queuelist) {
1880                 BUG_ON(rq->mq_ctx != ctx);
1881                 trace_block_rq_insert(hctx->queue, rq);
1882         }
1883
1884         spin_lock(&ctx->lock);
1885         list_splice_tail_init(list, &ctx->rq_lists[type]);
1886         blk_mq_hctx_mark_pending(hctx, ctx);
1887         spin_unlock(&ctx->lock);
1888 }
1889
1890 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1891 {
1892         struct request *rqa = container_of(a, struct request, queuelist);
1893         struct request *rqb = container_of(b, struct request, queuelist);
1894
1895         if (rqa->mq_ctx != rqb->mq_ctx)
1896                 return rqa->mq_ctx > rqb->mq_ctx;
1897         if (rqa->mq_hctx != rqb->mq_hctx)
1898                 return rqa->mq_hctx > rqb->mq_hctx;
1899
1900         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1901 }
1902
1903 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1904 {
1905         LIST_HEAD(list);
1906
1907         if (list_empty(&plug->mq_list))
1908                 return;
1909         list_splice_init(&plug->mq_list, &list);
1910
1911         if (plug->rq_count > 2 && plug->multiple_queues)
1912                 list_sort(NULL, &list, plug_rq_cmp);
1913
1914         plug->rq_count = 0;
1915
1916         do {
1917                 struct list_head rq_list;
1918                 struct request *rq, *head_rq = list_entry_rq(list.next);
1919                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1920                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1921                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1922                 unsigned int depth = 1;
1923
1924                 list_for_each_continue(pos, &list) {
1925                         rq = list_entry_rq(pos);
1926                         BUG_ON(!rq->q);
1927                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1928                                 break;
1929                         depth++;
1930                 }
1931
1932                 list_cut_before(&rq_list, &list, pos);
1933                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1934                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1935                                                 from_schedule);
1936         } while(!list_empty(&list));
1937 }
1938
1939 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1940                 unsigned int nr_segs)
1941 {
1942         if (bio->bi_opf & REQ_RAHEAD)
1943                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1944
1945         rq->__sector = bio->bi_iter.bi_sector;
1946         rq->write_hint = bio->bi_write_hint;
1947         blk_rq_bio_prep(rq, bio, nr_segs);
1948         blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1949
1950         blk_account_io_start(rq);
1951 }
1952
1953 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1954                                             struct request *rq,
1955                                             blk_qc_t *cookie, bool last)
1956 {
1957         struct request_queue *q = rq->q;
1958         struct blk_mq_queue_data bd = {
1959                 .rq = rq,
1960                 .last = last,
1961         };
1962         blk_qc_t new_cookie;
1963         blk_status_t ret;
1964
1965         new_cookie = request_to_qc_t(hctx, rq);
1966
1967         /*
1968          * For OK queue, we are done. For error, caller may kill it.
1969          * Any other error (busy), just add it to our list as we
1970          * previously would have done.
1971          */
1972         ret = q->mq_ops->queue_rq(hctx, &bd);
1973         switch (ret) {
1974         case BLK_STS_OK:
1975                 blk_mq_update_dispatch_busy(hctx, false);
1976                 *cookie = new_cookie;
1977                 break;
1978         case BLK_STS_RESOURCE:
1979         case BLK_STS_DEV_RESOURCE:
1980                 blk_mq_update_dispatch_busy(hctx, true);
1981                 __blk_mq_requeue_request(rq);
1982                 break;
1983         default:
1984                 blk_mq_update_dispatch_busy(hctx, false);
1985                 *cookie = BLK_QC_T_NONE;
1986                 break;
1987         }
1988
1989         return ret;
1990 }
1991
1992 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1993                                                 struct request *rq,
1994                                                 blk_qc_t *cookie,
1995                                                 bool bypass_insert, bool last)
1996 {
1997         struct request_queue *q = rq->q;
1998         bool run_queue = true;
1999
2000         /*
2001          * RCU or SRCU read lock is needed before checking quiesced flag.
2002          *
2003          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2004          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2005          * and avoid driver to try to dispatch again.
2006          */
2007         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2008                 run_queue = false;
2009                 bypass_insert = false;
2010                 goto insert;
2011         }
2012
2013         if (q->elevator && !bypass_insert)
2014                 goto insert;
2015
2016         if (!blk_mq_get_dispatch_budget(q))
2017                 goto insert;
2018
2019         if (!blk_mq_get_driver_tag(rq)) {
2020                 blk_mq_put_dispatch_budget(q);
2021                 goto insert;
2022         }
2023
2024         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2025 insert:
2026         if (bypass_insert)
2027                 return BLK_STS_RESOURCE;
2028
2029         blk_mq_sched_insert_request(rq, false, run_queue, false);
2030
2031         return BLK_STS_OK;
2032 }
2033
2034 /**
2035  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2036  * @hctx: Pointer of the associated hardware queue.
2037  * @rq: Pointer to request to be sent.
2038  * @cookie: Request queue cookie.
2039  *
2040  * If the device has enough resources to accept a new request now, send the
2041  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2042  * we can try send it another time in the future. Requests inserted at this
2043  * queue have higher priority.
2044  */
2045 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2046                 struct request *rq, blk_qc_t *cookie)
2047 {
2048         blk_status_t ret;
2049         int srcu_idx;
2050
2051         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2052
2053         hctx_lock(hctx, &srcu_idx);
2054
2055         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2056         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2057                 blk_mq_request_bypass_insert(rq, false, true);
2058         else if (ret != BLK_STS_OK)
2059                 blk_mq_end_request(rq, ret);
2060
2061         hctx_unlock(hctx, srcu_idx);
2062 }
2063
2064 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2065 {
2066         blk_status_t ret;
2067         int srcu_idx;
2068         blk_qc_t unused_cookie;
2069         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2070
2071         hctx_lock(hctx, &srcu_idx);
2072         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2073         hctx_unlock(hctx, srcu_idx);
2074
2075         return ret;
2076 }
2077
2078 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2079                 struct list_head *list)
2080 {
2081         int queued = 0;
2082
2083         while (!list_empty(list)) {
2084                 blk_status_t ret;
2085                 struct request *rq = list_first_entry(list, struct request,
2086                                 queuelist);
2087
2088                 list_del_init(&rq->queuelist);
2089                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2090                 if (ret != BLK_STS_OK) {
2091                         if (ret == BLK_STS_RESOURCE ||
2092                                         ret == BLK_STS_DEV_RESOURCE) {
2093                                 blk_mq_request_bypass_insert(rq, false,
2094                                                         list_empty(list));
2095                                 break;
2096                         }
2097                         blk_mq_end_request(rq, ret);
2098                 } else
2099                         queued++;
2100         }
2101
2102         /*
2103          * If we didn't flush the entire list, we could have told
2104          * the driver there was more coming, but that turned out to
2105          * be a lie.
2106          */
2107         if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2108                 hctx->queue->mq_ops->commit_rqs(hctx);
2109 }
2110
2111 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2112 {
2113         list_add_tail(&rq->queuelist, &plug->mq_list);
2114         plug->rq_count++;
2115         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2116                 struct request *tmp;
2117
2118                 tmp = list_first_entry(&plug->mq_list, struct request,
2119                                                 queuelist);
2120                 if (tmp->q != rq->q)
2121                         plug->multiple_queues = true;
2122         }
2123 }
2124
2125 /**
2126  * blk_mq_submit_bio - Create and send a request to block device.
2127  * @bio: Bio pointer.
2128  *
2129  * Builds up a request structure from @q and @bio and send to the device. The
2130  * request may not be queued directly to hardware if:
2131  * * This request can be merged with another one
2132  * * We want to place request at plug queue for possible future merging
2133  * * There is an IO scheduler active at this queue
2134  *
2135  * It will not queue the request if there is an error with the bio, or at the
2136  * request creation.
2137  *
2138  * Returns: Request queue cookie.
2139  */
2140 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2141 {
2142         struct request_queue *q = bio->bi_disk->queue;
2143         const int is_sync = op_is_sync(bio->bi_opf);
2144         const int is_flush_fua = op_is_flush(bio->bi_opf);
2145         struct blk_mq_alloc_data data = {
2146                 .q              = q,
2147         };
2148         struct request *rq;
2149         struct blk_plug *plug;
2150         struct request *same_queue_rq = NULL;
2151         unsigned int nr_segs;
2152         blk_qc_t cookie;
2153         blk_status_t ret;
2154
2155         blk_queue_bounce(q, &bio);
2156         __blk_queue_split(&bio, &nr_segs);
2157
2158         if (!bio_integrity_prep(bio))
2159                 goto queue_exit;
2160
2161         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2162             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2163                 goto queue_exit;
2164
2165         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2166                 goto queue_exit;
2167
2168         rq_qos_throttle(q, bio);
2169
2170         data.cmd_flags = bio->bi_opf;
2171         rq = __blk_mq_alloc_request(&data);
2172         if (unlikely(!rq)) {
2173                 rq_qos_cleanup(q, bio);
2174                 if (bio->bi_opf & REQ_NOWAIT)
2175                         bio_wouldblock_error(bio);
2176                 goto queue_exit;
2177         }
2178
2179         trace_block_getrq(q, bio, bio->bi_opf);
2180
2181         rq_qos_track(q, rq, bio);
2182
2183         cookie = request_to_qc_t(data.hctx, rq);
2184
2185         blk_mq_bio_to_request(rq, bio, nr_segs);
2186
2187         ret = blk_crypto_init_request(rq);
2188         if (ret != BLK_STS_OK) {
2189                 bio->bi_status = ret;
2190                 bio_endio(bio);
2191                 blk_mq_free_request(rq);
2192                 return BLK_QC_T_NONE;
2193         }
2194
2195         plug = blk_mq_plug(q, bio);
2196         if (unlikely(is_flush_fua)) {
2197                 /* Bypass scheduler for flush requests */
2198                 blk_insert_flush(rq);
2199                 blk_mq_run_hw_queue(data.hctx, true);
2200         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2201                                 !blk_queue_nonrot(q))) {
2202                 /*
2203                  * Use plugging if we have a ->commit_rqs() hook as well, as
2204                  * we know the driver uses bd->last in a smart fashion.
2205                  *
2206                  * Use normal plugging if this disk is slow HDD, as sequential
2207                  * IO may benefit a lot from plug merging.
2208                  */
2209                 unsigned int request_count = plug->rq_count;
2210                 struct request *last = NULL;
2211
2212                 if (!request_count)
2213                         trace_block_plug(q);
2214                 else
2215                         last = list_entry_rq(plug->mq_list.prev);
2216
2217                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2218                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2219                         blk_flush_plug_list(plug, false);
2220                         trace_block_plug(q);
2221                 }
2222
2223                 blk_add_rq_to_plug(plug, rq);
2224         } else if (q->elevator) {
2225                 /* Insert the request at the IO scheduler queue */
2226                 blk_mq_sched_insert_request(rq, false, true, true);
2227         } else if (plug && !blk_queue_nomerges(q)) {
2228                 /*
2229                  * We do limited plugging. If the bio can be merged, do that.
2230                  * Otherwise the existing request in the plug list will be
2231                  * issued. So the plug list will have one request at most
2232                  * The plug list might get flushed before this. If that happens,
2233                  * the plug list is empty, and same_queue_rq is invalid.
2234                  */
2235                 if (list_empty(&plug->mq_list))
2236                         same_queue_rq = NULL;
2237                 if (same_queue_rq) {
2238                         list_del_init(&same_queue_rq->queuelist);
2239                         plug->rq_count--;
2240                 }
2241                 blk_add_rq_to_plug(plug, rq);
2242                 trace_block_plug(q);
2243
2244                 if (same_queue_rq) {
2245                         data.hctx = same_queue_rq->mq_hctx;
2246                         trace_block_unplug(q, 1, true);
2247                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2248                                         &cookie);
2249                 }
2250         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2251                         !data.hctx->dispatch_busy) {
2252                 /*
2253                  * There is no scheduler and we can try to send directly
2254                  * to the hardware.
2255                  */
2256                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2257         } else {
2258                 /* Default case. */
2259                 blk_mq_sched_insert_request(rq, false, true, true);
2260         }
2261
2262         return cookie;
2263 queue_exit:
2264         blk_queue_exit(q);
2265         return BLK_QC_T_NONE;
2266 }
2267 EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2268
2269 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2270                      unsigned int hctx_idx)
2271 {
2272         struct page *page;
2273
2274         if (tags->rqs && set->ops->exit_request) {
2275                 int i;
2276
2277                 for (i = 0; i < tags->nr_tags; i++) {
2278                         struct request *rq = tags->static_rqs[i];
2279
2280                         if (!rq)
2281                                 continue;
2282                         set->ops->exit_request(set, rq, hctx_idx);
2283                         tags->static_rqs[i] = NULL;
2284                 }
2285         }
2286
2287         while (!list_empty(&tags->page_list)) {
2288                 page = list_first_entry(&tags->page_list, struct page, lru);
2289                 list_del_init(&page->lru);
2290                 /*
2291                  * Remove kmemleak object previously allocated in
2292                  * blk_mq_alloc_rqs().
2293                  */
2294                 kmemleak_free(page_address(page));
2295                 __free_pages(page, page->private);
2296         }
2297 }
2298
2299 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2300 {
2301         kfree(tags->rqs);
2302         tags->rqs = NULL;
2303         kfree(tags->static_rqs);
2304         tags->static_rqs = NULL;
2305
2306         blk_mq_free_tags(tags, flags);
2307 }
2308
2309 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2310                                         unsigned int hctx_idx,
2311                                         unsigned int nr_tags,
2312                                         unsigned int reserved_tags,
2313                                         unsigned int flags)
2314 {
2315         struct blk_mq_tags *tags;
2316         int node;
2317
2318         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2319         if (node == NUMA_NO_NODE)
2320                 node = set->numa_node;
2321
2322         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2323         if (!tags)
2324                 return NULL;
2325
2326         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2327                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2328                                  node);
2329         if (!tags->rqs) {
2330                 blk_mq_free_tags(tags, flags);
2331                 return NULL;
2332         }
2333
2334         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2335                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2336                                         node);
2337         if (!tags->static_rqs) {
2338                 kfree(tags->rqs);
2339                 blk_mq_free_tags(tags, flags);
2340                 return NULL;
2341         }
2342
2343         return tags;
2344 }
2345
2346 static size_t order_to_size(unsigned int order)
2347 {
2348         return (size_t)PAGE_SIZE << order;
2349 }
2350
2351 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2352                                unsigned int hctx_idx, int node)
2353 {
2354         int ret;
2355
2356         if (set->ops->init_request) {
2357                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2358                 if (ret)
2359                         return ret;
2360         }
2361
2362         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2363         return 0;
2364 }
2365
2366 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2367                      unsigned int hctx_idx, unsigned int depth)
2368 {
2369         unsigned int i, j, entries_per_page, max_order = 4;
2370         size_t rq_size, left;
2371         int node;
2372
2373         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2374         if (node == NUMA_NO_NODE)
2375                 node = set->numa_node;
2376
2377         INIT_LIST_HEAD(&tags->page_list);
2378
2379         /*
2380          * rq_size is the size of the request plus driver payload, rounded
2381          * to the cacheline size
2382          */
2383         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2384                                 cache_line_size());
2385         left = rq_size * depth;
2386
2387         for (i = 0; i < depth; ) {
2388                 int this_order = max_order;
2389                 struct page *page;
2390                 int to_do;
2391                 void *p;
2392
2393                 while (this_order && left < order_to_size(this_order - 1))
2394                         this_order--;
2395
2396                 do {
2397                         page = alloc_pages_node(node,
2398                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2399                                 this_order);
2400                         if (page)
2401                                 break;
2402                         if (!this_order--)
2403                                 break;
2404                         if (order_to_size(this_order) < rq_size)
2405                                 break;
2406                 } while (1);
2407
2408                 if (!page)
2409                         goto fail;
2410
2411                 page->private = this_order;
2412                 list_add_tail(&page->lru, &tags->page_list);
2413
2414                 p = page_address(page);
2415                 /*
2416                  * Allow kmemleak to scan these pages as they contain pointers
2417                  * to additional allocations like via ops->init_request().
2418                  */
2419                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2420                 entries_per_page = order_to_size(this_order) / rq_size;
2421                 to_do = min(entries_per_page, depth - i);
2422                 left -= to_do * rq_size;
2423                 for (j = 0; j < to_do; j++) {
2424                         struct request *rq = p;
2425
2426                         tags->static_rqs[i] = rq;
2427                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2428                                 tags->static_rqs[i] = NULL;
2429                                 goto fail;
2430                         }
2431
2432                         p += rq_size;
2433                         i++;
2434                 }
2435         }
2436         return 0;
2437
2438 fail:
2439         blk_mq_free_rqs(set, tags, hctx_idx);
2440         return -ENOMEM;
2441 }
2442
2443 struct rq_iter_data {
2444         struct blk_mq_hw_ctx *hctx;
2445         bool has_rq;
2446 };
2447
2448 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2449 {
2450         struct rq_iter_data *iter_data = data;
2451
2452         if (rq->mq_hctx != iter_data->hctx)
2453                 return true;
2454         iter_data->has_rq = true;
2455         return false;
2456 }
2457
2458 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2459 {
2460         struct blk_mq_tags *tags = hctx->sched_tags ?
2461                         hctx->sched_tags : hctx->tags;
2462         struct rq_iter_data data = {
2463                 .hctx   = hctx,
2464         };
2465
2466         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2467         return data.has_rq;
2468 }
2469
2470 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2471                 struct blk_mq_hw_ctx *hctx)
2472 {
2473         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2474                 return false;
2475         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2476                 return false;
2477         return true;
2478 }
2479
2480 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2481 {
2482         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2483                         struct blk_mq_hw_ctx, cpuhp_online);
2484
2485         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2486             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2487                 return 0;
2488
2489         /*
2490          * Prevent new request from being allocated on the current hctx.
2491          *
2492          * The smp_mb__after_atomic() Pairs with the implied barrier in
2493          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2494          * seen once we return from the tag allocator.
2495          */
2496         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2497         smp_mb__after_atomic();
2498
2499         /*
2500          * Try to grab a reference to the queue and wait for any outstanding
2501          * requests.  If we could not grab a reference the queue has been
2502          * frozen and there are no requests.
2503          */
2504         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2505                 while (blk_mq_hctx_has_requests(hctx))
2506                         msleep(5);
2507                 percpu_ref_put(&hctx->queue->q_usage_counter);
2508         }
2509
2510         return 0;
2511 }
2512
2513 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2514 {
2515         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2516                         struct blk_mq_hw_ctx, cpuhp_online);
2517
2518         if (cpumask_test_cpu(cpu, hctx->cpumask))
2519                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2520         return 0;
2521 }
2522
2523 /*
2524  * 'cpu' is going away. splice any existing rq_list entries from this
2525  * software queue to the hw queue dispatch list, and ensure that it
2526  * gets run.
2527  */
2528 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2529 {
2530         struct blk_mq_hw_ctx *hctx;
2531         struct blk_mq_ctx *ctx;
2532         LIST_HEAD(tmp);
2533         enum hctx_type type;
2534
2535         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2536         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2537                 return 0;
2538
2539         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2540         type = hctx->type;
2541
2542         spin_lock(&ctx->lock);
2543         if (!list_empty(&ctx->rq_lists[type])) {
2544                 list_splice_init(&ctx->rq_lists[type], &tmp);
2545                 blk_mq_hctx_clear_pending(hctx, ctx);
2546         }
2547         spin_unlock(&ctx->lock);
2548
2549         if (list_empty(&tmp))
2550                 return 0;
2551
2552         spin_lock(&hctx->lock);
2553         list_splice_tail_init(&tmp, &hctx->dispatch);
2554         spin_unlock(&hctx->lock);
2555
2556         blk_mq_run_hw_queue(hctx, true);
2557         return 0;
2558 }
2559
2560 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2561 {
2562         if (!(hctx->flags & BLK_MQ_F_STACKING))
2563                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2564                                                     &hctx->cpuhp_online);
2565         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2566                                             &hctx->cpuhp_dead);
2567 }
2568
2569 /* hctx->ctxs will be freed in queue's release handler */
2570 static void blk_mq_exit_hctx(struct request_queue *q,
2571                 struct blk_mq_tag_set *set,
2572                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2573 {
2574         if (blk_mq_hw_queue_mapped(hctx))
2575                 blk_mq_tag_idle(hctx);
2576
2577         if (set->ops->exit_request)
2578                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2579
2580         if (set->ops->exit_hctx)
2581                 set->ops->exit_hctx(hctx, hctx_idx);
2582
2583         blk_mq_remove_cpuhp(hctx);
2584
2585         spin_lock(&q->unused_hctx_lock);
2586         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2587         spin_unlock(&q->unused_hctx_lock);
2588 }
2589
2590 static void blk_mq_exit_hw_queues(struct request_queue *q,
2591                 struct blk_mq_tag_set *set, int nr_queue)
2592 {
2593         struct blk_mq_hw_ctx *hctx;
2594         unsigned int i;
2595
2596         queue_for_each_hw_ctx(q, hctx, i) {
2597                 if (i == nr_queue)
2598                         break;
2599                 blk_mq_debugfs_unregister_hctx(hctx);
2600                 blk_mq_exit_hctx(q, set, hctx, i);
2601         }
2602 }
2603
2604 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2605 {
2606         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2607
2608         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2609                            __alignof__(struct blk_mq_hw_ctx)) !=
2610                      sizeof(struct blk_mq_hw_ctx));
2611
2612         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2613                 hw_ctx_size += sizeof(struct srcu_struct);
2614
2615         return hw_ctx_size;
2616 }
2617
2618 static int blk_mq_init_hctx(struct request_queue *q,
2619                 struct blk_mq_tag_set *set,
2620                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2621 {
2622         hctx->queue_num = hctx_idx;
2623
2624         if (!(hctx->flags & BLK_MQ_F_STACKING))
2625                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2626                                 &hctx->cpuhp_online);
2627         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2628
2629         hctx->tags = set->tags[hctx_idx];
2630
2631         if (set->ops->init_hctx &&
2632             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2633                 goto unregister_cpu_notifier;
2634
2635         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2636                                 hctx->numa_node))
2637                 goto exit_hctx;
2638         return 0;
2639
2640  exit_hctx:
2641         if (set->ops->exit_hctx)
2642                 set->ops->exit_hctx(hctx, hctx_idx);
2643  unregister_cpu_notifier:
2644         blk_mq_remove_cpuhp(hctx);
2645         return -1;
2646 }
2647
2648 static struct blk_mq_hw_ctx *
2649 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2650                 int node)
2651 {
2652         struct blk_mq_hw_ctx *hctx;
2653         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2654
2655         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2656         if (!hctx)
2657                 goto fail_alloc_hctx;
2658
2659         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2660                 goto free_hctx;
2661
2662         atomic_set(&hctx->nr_active, 0);
2663         atomic_set(&hctx->elevator_queued, 0);
2664         if (node == NUMA_NO_NODE)
2665                 node = set->numa_node;
2666         hctx->numa_node = node;
2667
2668         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2669         spin_lock_init(&hctx->lock);
2670         INIT_LIST_HEAD(&hctx->dispatch);
2671         hctx->queue = q;
2672         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2673
2674         INIT_LIST_HEAD(&hctx->hctx_list);
2675
2676         /*
2677          * Allocate space for all possible cpus to avoid allocation at
2678          * runtime
2679          */
2680         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2681                         gfp, node);
2682         if (!hctx->ctxs)
2683                 goto free_cpumask;
2684
2685         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2686                                 gfp, node))
2687                 goto free_ctxs;
2688         hctx->nr_ctx = 0;
2689
2690         spin_lock_init(&hctx->dispatch_wait_lock);
2691         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2692         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2693
2694         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2695         if (!hctx->fq)
2696                 goto free_bitmap;
2697
2698         if (hctx->flags & BLK_MQ_F_BLOCKING)
2699                 init_srcu_struct(hctx->srcu);
2700         blk_mq_hctx_kobj_init(hctx);
2701
2702         return hctx;
2703
2704  free_bitmap:
2705         sbitmap_free(&hctx->ctx_map);
2706  free_ctxs:
2707         kfree(hctx->ctxs);
2708  free_cpumask:
2709         free_cpumask_var(hctx->cpumask);
2710  free_hctx:
2711         kfree(hctx);
2712  fail_alloc_hctx:
2713         return NULL;
2714 }
2715
2716 static void blk_mq_init_cpu_queues(struct request_queue *q,
2717                                    unsigned int nr_hw_queues)
2718 {
2719         struct blk_mq_tag_set *set = q->tag_set;
2720         unsigned int i, j;
2721
2722         for_each_possible_cpu(i) {
2723                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2724                 struct blk_mq_hw_ctx *hctx;
2725                 int k;
2726
2727                 __ctx->cpu = i;
2728                 spin_lock_init(&__ctx->lock);
2729                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2730                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2731
2732                 __ctx->queue = q;
2733
2734                 /*
2735                  * Set local node, IFF we have more than one hw queue. If
2736                  * not, we remain on the home node of the device
2737                  */
2738                 for (j = 0; j < set->nr_maps; j++) {
2739                         hctx = blk_mq_map_queue_type(q, j, i);
2740                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2741                                 hctx->numa_node = local_memory_node(cpu_to_node(i));
2742                 }
2743         }
2744 }
2745
2746 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2747                                         int hctx_idx)
2748 {
2749         unsigned int flags = set->flags;
2750         int ret = 0;
2751
2752         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2753                                         set->queue_depth, set->reserved_tags, flags);
2754         if (!set->tags[hctx_idx])
2755                 return false;
2756
2757         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2758                                 set->queue_depth);
2759         if (!ret)
2760                 return true;
2761
2762         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2763         set->tags[hctx_idx] = NULL;
2764         return false;
2765 }
2766
2767 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2768                                          unsigned int hctx_idx)
2769 {
2770         unsigned int flags = set->flags;
2771
2772         if (set->tags && set->tags[hctx_idx]) {
2773                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2774                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2775                 set->tags[hctx_idx] = NULL;
2776         }
2777 }
2778
2779 static void blk_mq_map_swqueue(struct request_queue *q)
2780 {
2781         unsigned int i, j, hctx_idx;
2782         struct blk_mq_hw_ctx *hctx;
2783         struct blk_mq_ctx *ctx;
2784         struct blk_mq_tag_set *set = q->tag_set;
2785
2786         queue_for_each_hw_ctx(q, hctx, i) {
2787                 cpumask_clear(hctx->cpumask);
2788                 hctx->nr_ctx = 0;
2789                 hctx->dispatch_from = NULL;
2790         }
2791
2792         /*
2793          * Map software to hardware queues.
2794          *
2795          * If the cpu isn't present, the cpu is mapped to first hctx.
2796          */
2797         for_each_possible_cpu(i) {
2798
2799                 ctx = per_cpu_ptr(q->queue_ctx, i);
2800                 for (j = 0; j < set->nr_maps; j++) {
2801                         if (!set->map[j].nr_queues) {
2802                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2803                                                 HCTX_TYPE_DEFAULT, i);
2804                                 continue;
2805                         }
2806                         hctx_idx = set->map[j].mq_map[i];
2807                         /* unmapped hw queue can be remapped after CPU topo changed */
2808                         if (!set->tags[hctx_idx] &&
2809                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2810                                 /*
2811                                  * If tags initialization fail for some hctx,
2812                                  * that hctx won't be brought online.  In this
2813                                  * case, remap the current ctx to hctx[0] which
2814                                  * is guaranteed to always have tags allocated
2815                                  */
2816                                 set->map[j].mq_map[i] = 0;
2817                         }
2818
2819                         hctx = blk_mq_map_queue_type(q, j, i);
2820                         ctx->hctxs[j] = hctx;
2821                         /*
2822                          * If the CPU is already set in the mask, then we've
2823                          * mapped this one already. This can happen if
2824                          * devices share queues across queue maps.
2825                          */
2826                         if (cpumask_test_cpu(i, hctx->cpumask))
2827                                 continue;
2828
2829                         cpumask_set_cpu(i, hctx->cpumask);
2830                         hctx->type = j;
2831                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2832                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2833
2834                         /*
2835                          * If the nr_ctx type overflows, we have exceeded the
2836                          * amount of sw queues we can support.
2837                          */
2838                         BUG_ON(!hctx->nr_ctx);
2839                 }
2840
2841                 for (; j < HCTX_MAX_TYPES; j++)
2842                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2843                                         HCTX_TYPE_DEFAULT, i);
2844         }
2845
2846         queue_for_each_hw_ctx(q, hctx, i) {
2847                 /*
2848                  * If no software queues are mapped to this hardware queue,
2849                  * disable it and free the request entries.
2850                  */
2851                 if (!hctx->nr_ctx) {
2852                         /* Never unmap queue 0.  We need it as a
2853                          * fallback in case of a new remap fails
2854                          * allocation
2855                          */
2856                         if (i && set->tags[i])
2857                                 blk_mq_free_map_and_requests(set, i);
2858
2859                         hctx->tags = NULL;
2860                         continue;
2861                 }
2862
2863                 hctx->tags = set->tags[i];
2864                 WARN_ON(!hctx->tags);
2865
2866                 /*
2867                  * Set the map size to the number of mapped software queues.
2868                  * This is more accurate and more efficient than looping
2869                  * over all possibly mapped software queues.
2870                  */
2871                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2872
2873                 /*
2874                  * Initialize batch roundrobin counts
2875                  */
2876                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2877                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2878         }
2879 }
2880
2881 /*
2882  * Caller needs to ensure that we're either frozen/quiesced, or that
2883  * the queue isn't live yet.
2884  */
2885 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2886 {
2887         struct blk_mq_hw_ctx *hctx;
2888         int i;
2889
2890         queue_for_each_hw_ctx(q, hctx, i) {
2891                 if (shared)
2892                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2893                 else
2894                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2895         }
2896 }
2897
2898 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2899                                          bool shared)
2900 {
2901         struct request_queue *q;
2902
2903         lockdep_assert_held(&set->tag_list_lock);
2904
2905         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2906                 blk_mq_freeze_queue(q);
2907                 queue_set_hctx_shared(q, shared);
2908                 blk_mq_unfreeze_queue(q);
2909         }
2910 }
2911
2912 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2913 {
2914         struct blk_mq_tag_set *set = q->tag_set;
2915
2916         mutex_lock(&set->tag_list_lock);
2917         list_del(&q->tag_set_list);
2918         if (list_is_singular(&set->tag_list)) {
2919                 /* just transitioned to unshared */
2920                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2921                 /* update existing queue */
2922                 blk_mq_update_tag_set_shared(set, false);
2923         }
2924         mutex_unlock(&set->tag_list_lock);
2925         INIT_LIST_HEAD(&q->tag_set_list);
2926 }
2927
2928 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2929                                      struct request_queue *q)
2930 {
2931         mutex_lock(&set->tag_list_lock);
2932
2933         /*
2934          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2935          */
2936         if (!list_empty(&set->tag_list) &&
2937             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2938                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2939                 /* update existing queue */
2940                 blk_mq_update_tag_set_shared(set, true);
2941         }
2942         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2943                 queue_set_hctx_shared(q, true);
2944         list_add_tail(&q->tag_set_list, &set->tag_list);
2945
2946         mutex_unlock(&set->tag_list_lock);
2947 }
2948
2949 /* All allocations will be freed in release handler of q->mq_kobj */
2950 static int blk_mq_alloc_ctxs(struct request_queue *q)
2951 {
2952         struct blk_mq_ctxs *ctxs;
2953         int cpu;
2954
2955         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2956         if (!ctxs)
2957                 return -ENOMEM;
2958
2959         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2960         if (!ctxs->queue_ctx)
2961                 goto fail;
2962
2963         for_each_possible_cpu(cpu) {
2964                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2965                 ctx->ctxs = ctxs;
2966         }
2967
2968         q->mq_kobj = &ctxs->kobj;
2969         q->queue_ctx = ctxs->queue_ctx;
2970
2971         return 0;
2972  fail:
2973         kfree(ctxs);
2974         return -ENOMEM;
2975 }
2976
2977 /*
2978  * It is the actual release handler for mq, but we do it from
2979  * request queue's release handler for avoiding use-after-free
2980  * and headache because q->mq_kobj shouldn't have been introduced,
2981  * but we can't group ctx/kctx kobj without it.
2982  */
2983 void blk_mq_release(struct request_queue *q)
2984 {
2985         struct blk_mq_hw_ctx *hctx, *next;
2986         int i;
2987
2988         queue_for_each_hw_ctx(q, hctx, i)
2989                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2990
2991         /* all hctx are in .unused_hctx_list now */
2992         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2993                 list_del_init(&hctx->hctx_list);
2994                 kobject_put(&hctx->kobj);
2995         }
2996
2997         kfree(q->queue_hw_ctx);
2998
2999         /*
3000          * release .mq_kobj and sw queue's kobject now because
3001          * both share lifetime with request queue.
3002          */
3003         blk_mq_sysfs_deinit(q);
3004 }
3005
3006 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3007                 void *queuedata)
3008 {
3009         struct request_queue *uninit_q, *q;
3010
3011         uninit_q = blk_alloc_queue(set->numa_node);
3012         if (!uninit_q)
3013                 return ERR_PTR(-ENOMEM);
3014         uninit_q->queuedata = queuedata;
3015
3016         /*
3017          * Initialize the queue without an elevator. device_add_disk() will do
3018          * the initialization.
3019          */
3020         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3021         if (IS_ERR(q))
3022                 blk_cleanup_queue(uninit_q);
3023
3024         return q;
3025 }
3026 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3027
3028 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3029 {
3030         return blk_mq_init_queue_data(set, NULL);
3031 }
3032 EXPORT_SYMBOL(blk_mq_init_queue);
3033
3034 /*
3035  * Helper for setting up a queue with mq ops, given queue depth, and
3036  * the passed in mq ops flags.
3037  */
3038 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3039                                            const struct blk_mq_ops *ops,
3040                                            unsigned int queue_depth,
3041                                            unsigned int set_flags)
3042 {
3043         struct request_queue *q;
3044         int ret;
3045
3046         memset(set, 0, sizeof(*set));
3047         set->ops = ops;
3048         set->nr_hw_queues = 1;
3049         set->nr_maps = 1;
3050         set->queue_depth = queue_depth;
3051         set->numa_node = NUMA_NO_NODE;
3052         set->flags = set_flags;
3053
3054         ret = blk_mq_alloc_tag_set(set);
3055         if (ret)
3056                 return ERR_PTR(ret);
3057
3058         q = blk_mq_init_queue(set);
3059         if (IS_ERR(q)) {
3060                 blk_mq_free_tag_set(set);
3061                 return q;
3062         }
3063
3064         return q;
3065 }
3066 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3067
3068 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3069                 struct blk_mq_tag_set *set, struct request_queue *q,
3070                 int hctx_idx, int node)
3071 {
3072         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3073
3074         /* reuse dead hctx first */
3075         spin_lock(&q->unused_hctx_lock);
3076         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3077                 if (tmp->numa_node == node) {
3078                         hctx = tmp;
3079                         break;
3080                 }
3081         }
3082         if (hctx)
3083                 list_del_init(&hctx->hctx_list);
3084         spin_unlock(&q->unused_hctx_lock);
3085
3086         if (!hctx)
3087                 hctx = blk_mq_alloc_hctx(q, set, node);
3088         if (!hctx)
3089                 goto fail;
3090
3091         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3092                 goto free_hctx;
3093
3094         return hctx;
3095
3096  free_hctx:
3097         kobject_put(&hctx->kobj);
3098  fail:
3099         return NULL;
3100 }
3101
3102 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3103                                                 struct request_queue *q)
3104 {
3105         int i, j, end;
3106         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3107
3108         if (q->nr_hw_queues < set->nr_hw_queues) {
3109                 struct blk_mq_hw_ctx **new_hctxs;
3110
3111                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3112                                        sizeof(*new_hctxs), GFP_KERNEL,
3113                                        set->numa_node);
3114                 if (!new_hctxs)
3115                         return;
3116                 if (hctxs)
3117                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3118                                sizeof(*hctxs));
3119                 q->queue_hw_ctx = new_hctxs;
3120                 kfree(hctxs);
3121                 hctxs = new_hctxs;
3122         }
3123
3124         /* protect against switching io scheduler  */
3125         mutex_lock(&q->sysfs_lock);
3126         for (i = 0; i < set->nr_hw_queues; i++) {
3127                 int node;
3128                 struct blk_mq_hw_ctx *hctx;
3129
3130                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3131                 /*
3132                  * If the hw queue has been mapped to another numa node,
3133                  * we need to realloc the hctx. If allocation fails, fallback
3134                  * to use the previous one.
3135                  */
3136                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3137                         continue;
3138
3139                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3140                 if (hctx) {
3141                         if (hctxs[i])
3142                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3143                         hctxs[i] = hctx;
3144                 } else {
3145                         if (hctxs[i])
3146                                 pr_warn("Allocate new hctx on node %d fails,\
3147                                                 fallback to previous one on node %d\n",
3148                                                 node, hctxs[i]->numa_node);
3149                         else
3150                                 break;
3151                 }
3152         }
3153         /*
3154          * Increasing nr_hw_queues fails. Free the newly allocated
3155          * hctxs and keep the previous q->nr_hw_queues.
3156          */
3157         if (i != set->nr_hw_queues) {
3158                 j = q->nr_hw_queues;
3159                 end = i;
3160         } else {
3161                 j = i;
3162                 end = q->nr_hw_queues;
3163                 q->nr_hw_queues = set->nr_hw_queues;
3164         }
3165
3166         for (; j < end; j++) {
3167                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3168
3169                 if (hctx) {
3170                         if (hctx->tags)
3171                                 blk_mq_free_map_and_requests(set, j);
3172                         blk_mq_exit_hctx(q, set, hctx, j);
3173                         hctxs[j] = NULL;
3174                 }
3175         }
3176         mutex_unlock(&q->sysfs_lock);
3177 }
3178
3179 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3180                                                   struct request_queue *q,
3181                                                   bool elevator_init)
3182 {
3183         /* mark the queue as mq asap */
3184         q->mq_ops = set->ops;
3185
3186         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3187                                              blk_mq_poll_stats_bkt,
3188                                              BLK_MQ_POLL_STATS_BKTS, q);
3189         if (!q->poll_cb)
3190                 goto err_exit;
3191
3192         if (blk_mq_alloc_ctxs(q))
3193                 goto err_poll;
3194
3195         /* init q->mq_kobj and sw queues' kobjects */
3196         blk_mq_sysfs_init(q);
3197
3198         INIT_LIST_HEAD(&q->unused_hctx_list);
3199         spin_lock_init(&q->unused_hctx_lock);
3200
3201         blk_mq_realloc_hw_ctxs(set, q);
3202         if (!q->nr_hw_queues)
3203                 goto err_hctxs;
3204
3205         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3206         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3207
3208         q->tag_set = set;
3209
3210         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3211         if (set->nr_maps > HCTX_TYPE_POLL &&
3212             set->map[HCTX_TYPE_POLL].nr_queues)
3213                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3214
3215         q->sg_reserved_size = INT_MAX;
3216
3217         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3218         INIT_LIST_HEAD(&q->requeue_list);
3219         spin_lock_init(&q->requeue_lock);
3220
3221         q->nr_requests = set->queue_depth;
3222
3223         /*
3224          * Default to classic polling
3225          */
3226         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3227
3228         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3229         blk_mq_add_queue_tag_set(set, q);
3230         blk_mq_map_swqueue(q);
3231
3232         if (elevator_init)
3233                 elevator_init_mq(q);
3234
3235         return q;
3236
3237 err_hctxs:
3238         kfree(q->queue_hw_ctx);
3239         q->nr_hw_queues = 0;
3240         blk_mq_sysfs_deinit(q);
3241 err_poll:
3242         blk_stat_free_callback(q->poll_cb);
3243         q->poll_cb = NULL;
3244 err_exit:
3245         q->mq_ops = NULL;
3246         return ERR_PTR(-ENOMEM);
3247 }
3248 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3249
3250 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3251 void blk_mq_exit_queue(struct request_queue *q)
3252 {
3253         struct blk_mq_tag_set   *set = q->tag_set;
3254
3255         blk_mq_del_queue_tag_set(q);
3256         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3257 }
3258
3259 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3260 {
3261         int i;
3262
3263         for (i = 0; i < set->nr_hw_queues; i++)
3264                 if (!__blk_mq_alloc_map_and_request(set, i))
3265                         goto out_unwind;
3266
3267         return 0;
3268
3269 out_unwind:
3270         while (--i >= 0)
3271                 blk_mq_free_map_and_requests(set, i);
3272
3273         return -ENOMEM;
3274 }
3275
3276 /*
3277  * Allocate the request maps associated with this tag_set. Note that this
3278  * may reduce the depth asked for, if memory is tight. set->queue_depth
3279  * will be updated to reflect the allocated depth.
3280  */
3281 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3282 {
3283         unsigned int depth;
3284         int err;
3285
3286         depth = set->queue_depth;
3287         do {
3288                 err = __blk_mq_alloc_rq_maps(set);
3289                 if (!err)
3290                         break;
3291
3292                 set->queue_depth >>= 1;
3293                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3294                         err = -ENOMEM;
3295                         break;
3296                 }
3297         } while (set->queue_depth);
3298
3299         if (!set->queue_depth || err) {
3300                 pr_err("blk-mq: failed to allocate request map\n");
3301                 return -ENOMEM;
3302         }
3303
3304         if (depth != set->queue_depth)
3305                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3306                                                 depth, set->queue_depth);
3307
3308         return 0;
3309 }
3310
3311 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3312 {
3313         /*
3314          * blk_mq_map_queues() and multiple .map_queues() implementations
3315          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3316          * number of hardware queues.
3317          */
3318         if (set->nr_maps == 1)
3319                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3320
3321         if (set->ops->map_queues && !is_kdump_kernel()) {
3322                 int i;
3323
3324                 /*
3325                  * transport .map_queues is usually done in the following
3326                  * way:
3327                  *
3328                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3329                  *      mask = get_cpu_mask(queue)
3330                  *      for_each_cpu(cpu, mask)
3331                  *              set->map[x].mq_map[cpu] = queue;
3332                  * }
3333                  *
3334                  * When we need to remap, the table has to be cleared for
3335                  * killing stale mapping since one CPU may not be mapped
3336                  * to any hw queue.
3337                  */
3338                 for (i = 0; i < set->nr_maps; i++)
3339                         blk_mq_clear_mq_map(&set->map[i]);
3340
3341                 return set->ops->map_queues(set);
3342         } else {
3343                 BUG_ON(set->nr_maps > 1);
3344                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3345         }
3346 }
3347
3348 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3349                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3350 {
3351         struct blk_mq_tags **new_tags;
3352
3353         if (cur_nr_hw_queues >= new_nr_hw_queues)
3354                 return 0;
3355
3356         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3357                                 GFP_KERNEL, set->numa_node);
3358         if (!new_tags)
3359                 return -ENOMEM;
3360
3361         if (set->tags)
3362                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3363                        sizeof(*set->tags));
3364         kfree(set->tags);
3365         set->tags = new_tags;
3366         set->nr_hw_queues = new_nr_hw_queues;
3367
3368         return 0;
3369 }
3370
3371 /*
3372  * Alloc a tag set to be associated with one or more request queues.
3373  * May fail with EINVAL for various error conditions. May adjust the
3374  * requested depth down, if it's too large. In that case, the set
3375  * value will be stored in set->queue_depth.
3376  */
3377 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3378 {
3379         int i, ret;
3380
3381         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3382
3383         if (!set->nr_hw_queues)
3384                 return -EINVAL;
3385         if (!set->queue_depth)
3386                 return -EINVAL;
3387         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3388                 return -EINVAL;
3389
3390         if (!set->ops->queue_rq)
3391                 return -EINVAL;
3392
3393         if (!set->ops->get_budget ^ !set->ops->put_budget)
3394                 return -EINVAL;
3395
3396         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3397                 pr_info("blk-mq: reduced tag depth to %u\n",
3398                         BLK_MQ_MAX_DEPTH);
3399                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3400         }
3401
3402         if (!set->nr_maps)
3403                 set->nr_maps = 1;
3404         else if (set->nr_maps > HCTX_MAX_TYPES)
3405                 return -EINVAL;
3406
3407         /*
3408          * If a crashdump is active, then we are potentially in a very
3409          * memory constrained environment. Limit us to 1 queue and
3410          * 64 tags to prevent using too much memory.
3411          */
3412         if (is_kdump_kernel()) {
3413                 set->nr_hw_queues = 1;
3414                 set->nr_maps = 1;
3415                 set->queue_depth = min(64U, set->queue_depth);
3416         }
3417         /*
3418          * There is no use for more h/w queues than cpus if we just have
3419          * a single map
3420          */
3421         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3422                 set->nr_hw_queues = nr_cpu_ids;
3423
3424         if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3425                 return -ENOMEM;
3426
3427         ret = -ENOMEM;
3428         for (i = 0; i < set->nr_maps; i++) {
3429                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3430                                                   sizeof(set->map[i].mq_map[0]),
3431                                                   GFP_KERNEL, set->numa_node);
3432                 if (!set->map[i].mq_map)
3433                         goto out_free_mq_map;
3434                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3435         }
3436
3437         ret = blk_mq_update_queue_map(set);
3438         if (ret)
3439                 goto out_free_mq_map;
3440
3441         ret = blk_mq_alloc_map_and_requests(set);
3442         if (ret)
3443                 goto out_free_mq_map;
3444
3445         if (blk_mq_is_sbitmap_shared(set->flags)) {
3446                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3447
3448                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3449                         ret = -ENOMEM;
3450                         goto out_free_mq_rq_maps;
3451                 }
3452         }
3453
3454         mutex_init(&set->tag_list_lock);
3455         INIT_LIST_HEAD(&set->tag_list);
3456
3457         return 0;
3458
3459 out_free_mq_rq_maps:
3460         for (i = 0; i < set->nr_hw_queues; i++)
3461                 blk_mq_free_map_and_requests(set, i);
3462 out_free_mq_map:
3463         for (i = 0; i < set->nr_maps; i++) {
3464                 kfree(set->map[i].mq_map);
3465                 set->map[i].mq_map = NULL;
3466         }
3467         kfree(set->tags);
3468         set->tags = NULL;
3469         return ret;
3470 }
3471 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3472
3473 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3474 {
3475         int i, j;
3476
3477         for (i = 0; i < set->nr_hw_queues; i++)
3478                 blk_mq_free_map_and_requests(set, i);
3479
3480         if (blk_mq_is_sbitmap_shared(set->flags))
3481                 blk_mq_exit_shared_sbitmap(set);
3482
3483         for (j = 0; j < set->nr_maps; j++) {
3484                 kfree(set->map[j].mq_map);
3485                 set->map[j].mq_map = NULL;
3486         }
3487
3488         kfree(set->tags);
3489         set->tags = NULL;
3490 }
3491 EXPORT_SYMBOL(blk_mq_free_tag_set);
3492
3493 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3494 {
3495         struct blk_mq_tag_set *set = q->tag_set;
3496         struct blk_mq_hw_ctx *hctx;
3497         int i, ret;
3498
3499         if (!set)
3500                 return -EINVAL;
3501
3502         if (q->nr_requests == nr)
3503                 return 0;
3504
3505         blk_mq_freeze_queue(q);
3506         blk_mq_quiesce_queue(q);
3507
3508         ret = 0;
3509         queue_for_each_hw_ctx(q, hctx, i) {
3510                 if (!hctx->tags)
3511                         continue;
3512                 /*
3513                  * If we're using an MQ scheduler, just update the scheduler
3514                  * queue depth. This is similar to what the old code would do.
3515                  */
3516                 if (!hctx->sched_tags) {
3517                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3518                                                         false);
3519                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3520                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3521                 } else {
3522                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3523                                                         nr, true);
3524                 }
3525                 if (ret)
3526                         break;
3527                 if (q->elevator && q->elevator->type->ops.depth_updated)
3528                         q->elevator->type->ops.depth_updated(hctx);
3529         }
3530
3531         if (!ret)
3532                 q->nr_requests = nr;
3533
3534         blk_mq_unquiesce_queue(q);
3535         blk_mq_unfreeze_queue(q);
3536
3537         return ret;
3538 }
3539
3540 /*
3541  * request_queue and elevator_type pair.
3542  * It is just used by __blk_mq_update_nr_hw_queues to cache
3543  * the elevator_type associated with a request_queue.
3544  */
3545 struct blk_mq_qe_pair {
3546         struct list_head node;
3547         struct request_queue *q;
3548         struct elevator_type *type;
3549 };
3550
3551 /*
3552  * Cache the elevator_type in qe pair list and switch the
3553  * io scheduler to 'none'
3554  */
3555 static bool blk_mq_elv_switch_none(struct list_head *head,
3556                 struct request_queue *q)
3557 {
3558         struct blk_mq_qe_pair *qe;
3559
3560         if (!q->elevator)
3561                 return true;
3562
3563         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3564         if (!qe)
3565                 return false;
3566
3567         INIT_LIST_HEAD(&qe->node);
3568         qe->q = q;
3569         qe->type = q->elevator->type;
3570         list_add(&qe->node, head);
3571
3572         mutex_lock(&q->sysfs_lock);
3573         /*
3574          * After elevator_switch_mq, the previous elevator_queue will be
3575          * released by elevator_release. The reference of the io scheduler
3576          * module get by elevator_get will also be put. So we need to get
3577          * a reference of the io scheduler module here to prevent it to be
3578          * removed.
3579          */
3580         __module_get(qe->type->elevator_owner);
3581         elevator_switch_mq(q, NULL);
3582         mutex_unlock(&q->sysfs_lock);
3583
3584         return true;
3585 }
3586
3587 static void blk_mq_elv_switch_back(struct list_head *head,
3588                 struct request_queue *q)
3589 {
3590         struct blk_mq_qe_pair *qe;
3591         struct elevator_type *t = NULL;
3592
3593         list_for_each_entry(qe, head, node)
3594                 if (qe->q == q) {
3595                         t = qe->type;
3596                         break;
3597                 }
3598
3599         if (!t)
3600                 return;
3601
3602         list_del(&qe->node);
3603         kfree(qe);
3604
3605         mutex_lock(&q->sysfs_lock);
3606         elevator_switch_mq(q, t);
3607         mutex_unlock(&q->sysfs_lock);
3608 }
3609
3610 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3611                                                         int nr_hw_queues)
3612 {
3613         struct request_queue *q;
3614         LIST_HEAD(head);
3615         int prev_nr_hw_queues;
3616
3617         lockdep_assert_held(&set->tag_list_lock);
3618
3619         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3620                 nr_hw_queues = nr_cpu_ids;
3621         if (nr_hw_queues < 1)
3622                 return;
3623         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3624                 return;
3625
3626         list_for_each_entry(q, &set->tag_list, tag_set_list)
3627                 blk_mq_freeze_queue(q);
3628         /*
3629          * Switch IO scheduler to 'none', cleaning up the data associated
3630          * with the previous scheduler. We will switch back once we are done
3631          * updating the new sw to hw queue mappings.
3632          */
3633         list_for_each_entry(q, &set->tag_list, tag_set_list)
3634                 if (!blk_mq_elv_switch_none(&head, q))
3635                         goto switch_back;
3636
3637         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3638                 blk_mq_debugfs_unregister_hctxs(q);
3639                 blk_mq_sysfs_unregister(q);
3640         }
3641
3642         prev_nr_hw_queues = set->nr_hw_queues;
3643         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3644             0)
3645                 goto reregister;
3646
3647         set->nr_hw_queues = nr_hw_queues;
3648 fallback:
3649         blk_mq_update_queue_map(set);
3650         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3651                 blk_mq_realloc_hw_ctxs(set, q);
3652                 if (q->nr_hw_queues != set->nr_hw_queues) {
3653                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3654                                         nr_hw_queues, prev_nr_hw_queues);
3655                         set->nr_hw_queues = prev_nr_hw_queues;
3656                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3657                         goto fallback;
3658                 }
3659                 blk_mq_map_swqueue(q);
3660         }
3661
3662 reregister:
3663         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3664                 blk_mq_sysfs_register(q);
3665                 blk_mq_debugfs_register_hctxs(q);
3666         }
3667
3668 switch_back:
3669         list_for_each_entry(q, &set->tag_list, tag_set_list)
3670                 blk_mq_elv_switch_back(&head, q);
3671
3672         list_for_each_entry(q, &set->tag_list, tag_set_list)
3673                 blk_mq_unfreeze_queue(q);
3674 }
3675
3676 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3677 {
3678         mutex_lock(&set->tag_list_lock);
3679         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3680         mutex_unlock(&set->tag_list_lock);
3681 }
3682 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3683
3684 /* Enable polling stats and return whether they were already enabled. */
3685 static bool blk_poll_stats_enable(struct request_queue *q)
3686 {
3687         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3688             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3689                 return true;
3690         blk_stat_add_callback(q, q->poll_cb);
3691         return false;
3692 }
3693
3694 static void blk_mq_poll_stats_start(struct request_queue *q)
3695 {
3696         /*
3697          * We don't arm the callback if polling stats are not enabled or the
3698          * callback is already active.
3699          */
3700         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3701             blk_stat_is_active(q->poll_cb))
3702                 return;
3703
3704         blk_stat_activate_msecs(q->poll_cb, 100);
3705 }
3706
3707 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3708 {
3709         struct request_queue *q = cb->data;
3710         int bucket;
3711
3712         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3713                 if (cb->stat[bucket].nr_samples)
3714                         q->poll_stat[bucket] = cb->stat[bucket];
3715         }
3716 }
3717
3718 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3719                                        struct request *rq)
3720 {
3721         unsigned long ret = 0;
3722         int bucket;
3723
3724         /*
3725          * If stats collection isn't on, don't sleep but turn it on for
3726          * future users
3727          */
3728         if (!blk_poll_stats_enable(q))
3729                 return 0;
3730
3731         /*
3732          * As an optimistic guess, use half of the mean service time
3733          * for this type of request. We can (and should) make this smarter.
3734          * For instance, if the completion latencies are tight, we can
3735          * get closer than just half the mean. This is especially
3736          * important on devices where the completion latencies are longer
3737          * than ~10 usec. We do use the stats for the relevant IO size
3738          * if available which does lead to better estimates.
3739          */
3740         bucket = blk_mq_poll_stats_bkt(rq);
3741         if (bucket < 0)
3742                 return ret;
3743
3744         if (q->poll_stat[bucket].nr_samples)
3745                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3746
3747         return ret;
3748 }
3749
3750 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3751                                      struct request *rq)
3752 {
3753         struct hrtimer_sleeper hs;
3754         enum hrtimer_mode mode;
3755         unsigned int nsecs;
3756         ktime_t kt;
3757
3758         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3759                 return false;
3760
3761         /*
3762          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3763          *
3764          *  0:  use half of prev avg
3765          * >0:  use this specific value
3766          */
3767         if (q->poll_nsec > 0)
3768                 nsecs = q->poll_nsec;
3769         else
3770                 nsecs = blk_mq_poll_nsecs(q, rq);
3771
3772         if (!nsecs)
3773                 return false;
3774
3775         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3776
3777         /*
3778          * This will be replaced with the stats tracking code, using
3779          * 'avg_completion_time / 2' as the pre-sleep target.
3780          */
3781         kt = nsecs;
3782
3783         mode = HRTIMER_MODE_REL;
3784         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3785         hrtimer_set_expires(&hs.timer, kt);
3786
3787         do {
3788                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3789                         break;
3790                 set_current_state(TASK_UNINTERRUPTIBLE);
3791                 hrtimer_sleeper_start_expires(&hs, mode);
3792                 if (hs.task)
3793                         io_schedule();
3794                 hrtimer_cancel(&hs.timer);
3795                 mode = HRTIMER_MODE_ABS;
3796         } while (hs.task && !signal_pending(current));
3797
3798         __set_current_state(TASK_RUNNING);
3799         destroy_hrtimer_on_stack(&hs.timer);
3800         return true;
3801 }
3802
3803 static bool blk_mq_poll_hybrid(struct request_queue *q,
3804                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3805 {
3806         struct request *rq;
3807
3808         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3809                 return false;
3810
3811         if (!blk_qc_t_is_internal(cookie))
3812                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3813         else {
3814                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3815                 /*
3816                  * With scheduling, if the request has completed, we'll
3817                  * get a NULL return here, as we clear the sched tag when
3818                  * that happens. The request still remains valid, like always,
3819                  * so we should be safe with just the NULL check.
3820                  */
3821                 if (!rq)
3822                         return false;
3823         }
3824
3825         return blk_mq_poll_hybrid_sleep(q, rq);
3826 }
3827
3828 /**
3829  * blk_poll - poll for IO completions
3830  * @q:  the queue
3831  * @cookie: cookie passed back at IO submission time
3832  * @spin: whether to spin for completions
3833  *
3834  * Description:
3835  *    Poll for completions on the passed in queue. Returns number of
3836  *    completed entries found. If @spin is true, then blk_poll will continue
3837  *    looping until at least one completion is found, unless the task is
3838  *    otherwise marked running (or we need to reschedule).
3839  */
3840 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3841 {
3842         struct blk_mq_hw_ctx *hctx;
3843         long state;
3844
3845         if (!blk_qc_t_valid(cookie) ||
3846             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3847                 return 0;
3848
3849         if (current->plug)
3850                 blk_flush_plug_list(current->plug, false);
3851
3852         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3853
3854         /*
3855          * If we sleep, have the caller restart the poll loop to reset
3856          * the state. Like for the other success return cases, the
3857          * caller is responsible for checking if the IO completed. If
3858          * the IO isn't complete, we'll get called again and will go
3859          * straight to the busy poll loop.
3860          */
3861         if (blk_mq_poll_hybrid(q, hctx, cookie))
3862                 return 1;
3863
3864         hctx->poll_considered++;
3865
3866         state = current->state;
3867         do {
3868                 int ret;
3869
3870                 hctx->poll_invoked++;
3871
3872                 ret = q->mq_ops->poll(hctx);
3873                 if (ret > 0) {
3874                         hctx->poll_success++;
3875                         __set_current_state(TASK_RUNNING);
3876                         return ret;
3877                 }
3878
3879                 if (signal_pending_state(state, current))
3880                         __set_current_state(TASK_RUNNING);
3881
3882                 if (current->state == TASK_RUNNING)
3883                         return 1;
3884                 if (ret < 0 || !spin)
3885                         break;
3886                 cpu_relax();
3887         } while (!need_resched());
3888
3889         __set_current_state(TASK_RUNNING);
3890         return 0;
3891 }
3892 EXPORT_SYMBOL_GPL(blk_poll);
3893
3894 unsigned int blk_mq_rq_cpu(struct request *rq)
3895 {
3896         return rq->mq_ctx->cpu;
3897 }
3898 EXPORT_SYMBOL(blk_mq_rq_cpu);
3899
3900 static int __init blk_mq_init(void)
3901 {
3902         int i;
3903
3904         for_each_possible_cpu(i)
3905                 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3906         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3907
3908         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3909                                   "block/softirq:dead", NULL,
3910                                   blk_softirq_cpu_dead);
3911         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3912                                 blk_mq_hctx_notify_dead);
3913         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3914                                 blk_mq_hctx_notify_online,
3915                                 blk_mq_hctx_notify_offline);
3916         return 0;
3917 }
3918 subsys_initcall(blk_mq_init);