Merge tag 'block-6.10-20240523' of git://git.kernel.dk/linux
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = blk_time_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334         if (blk_mq_need_time_stamp(rq))
335                 rq->start_time_ns = blk_time_get_ns();
336         else
337                 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340         if (blk_queue_rq_alloc_time(rq->q))
341                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342         else
343                 rq->alloc_time_ns = 0;
344 #endif
345 }
346
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348                 struct blk_mq_tags *tags, unsigned int tag)
349 {
350         struct blk_mq_ctx *ctx = data->ctx;
351         struct blk_mq_hw_ctx *hctx = data->hctx;
352         struct request_queue *q = data->q;
353         struct request *rq = tags->static_rqs[tag];
354
355         rq->q = q;
356         rq->mq_ctx = ctx;
357         rq->mq_hctx = hctx;
358         rq->cmd_flags = data->cmd_flags;
359
360         if (data->flags & BLK_MQ_REQ_PM)
361                 data->rq_flags |= RQF_PM;
362         if (blk_queue_io_stat(q))
363                 data->rq_flags |= RQF_IO_STAT;
364         rq->rq_flags = data->rq_flags;
365
366         if (data->rq_flags & RQF_SCHED_TAGS) {
367                 rq->tag = BLK_MQ_NO_TAG;
368                 rq->internal_tag = tag;
369         } else {
370                 rq->tag = tag;
371                 rq->internal_tag = BLK_MQ_NO_TAG;
372         }
373         rq->timeout = 0;
374
375         rq->part = NULL;
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407         unsigned int tag, tag_offset;
408         struct blk_mq_tags *tags;
409         struct request *rq;
410         unsigned long tag_mask;
411         int i, nr = 0;
412
413         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414         if (unlikely(!tag_mask))
415                 return NULL;
416
417         tags = blk_mq_tags_from_data(data);
418         for (i = 0; tag_mask; i++) {
419                 if (!(tag_mask & (1UL << i)))
420                         continue;
421                 tag = tag_offset + i;
422                 prefetch(tags->static_rqs[tag]);
423                 tag_mask &= ~(1UL << i);
424                 rq = blk_mq_rq_ctx_init(data, tags, tag);
425                 rq_list_add(data->cached_rq, rq);
426                 nr++;
427         }
428         if (!(data->rq_flags & RQF_SCHED_TAGS))
429                 blk_mq_add_active_requests(data->hctx, nr);
430         /* caller already holds a reference, add for remainder */
431         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432         data->nr_tags -= nr;
433
434         return rq_list_pop(data->cached_rq);
435 }
436
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439         struct request_queue *q = data->q;
440         u64 alloc_time_ns = 0;
441         struct request *rq;
442         unsigned int tag;
443
444         /* alloc_time includes depth and tag waits */
445         if (blk_queue_rq_alloc_time(q))
446                 alloc_time_ns = blk_time_get_ns();
447
448         if (data->cmd_flags & REQ_NOWAIT)
449                 data->flags |= BLK_MQ_REQ_NOWAIT;
450
451         if (q->elevator) {
452                 /*
453                  * All requests use scheduler tags when an I/O scheduler is
454                  * enabled for the queue.
455                  */
456                 data->rq_flags |= RQF_SCHED_TAGS;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list.
461                  */
462                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
463                     !blk_op_is_passthrough(data->cmd_flags)) {
464                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
465
466                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
467
468                         data->rq_flags |= RQF_USE_SCHED;
469                         if (ops->limit_depth)
470                                 ops->limit_depth(data->cmd_flags, data);
471                 }
472         }
473
474 retry:
475         data->ctx = blk_mq_get_ctx(q);
476         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
477         if (!(data->rq_flags & RQF_SCHED_TAGS))
478                 blk_mq_tag_busy(data->hctx);
479
480         if (data->flags & BLK_MQ_REQ_RESERVED)
481                 data->rq_flags |= RQF_RESV;
482
483         /*
484          * Try batched alloc if we want more than 1 tag.
485          */
486         if (data->nr_tags > 1) {
487                 rq = __blk_mq_alloc_requests_batch(data);
488                 if (rq) {
489                         blk_mq_rq_time_init(rq, alloc_time_ns);
490                         return rq;
491                 }
492                 data->nr_tags = 1;
493         }
494
495         /*
496          * Waiting allocations only fail because of an inactive hctx.  In that
497          * case just retry the hctx assignment and tag allocation as CPU hotplug
498          * should have migrated us to an online CPU by now.
499          */
500         tag = blk_mq_get_tag(data);
501         if (tag == BLK_MQ_NO_TAG) {
502                 if (data->flags & BLK_MQ_REQ_NOWAIT)
503                         return NULL;
504                 /*
505                  * Give up the CPU and sleep for a random short time to
506                  * ensure that thread using a realtime scheduling class
507                  * are migrated off the CPU, and thus off the hctx that
508                  * is going away.
509                  */
510                 msleep(3);
511                 goto retry;
512         }
513
514         if (!(data->rq_flags & RQF_SCHED_TAGS))
515                 blk_mq_inc_active_requests(data->hctx);
516         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517         blk_mq_rq_time_init(rq, alloc_time_ns);
518         return rq;
519 }
520
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522                                             struct blk_plug *plug,
523                                             blk_opf_t opf,
524                                             blk_mq_req_flags_t flags)
525 {
526         struct blk_mq_alloc_data data = {
527                 .q              = q,
528                 .flags          = flags,
529                 .cmd_flags      = opf,
530                 .nr_tags        = plug->nr_ios,
531                 .cached_rq      = &plug->cached_rq,
532         };
533         struct request *rq;
534
535         if (blk_queue_enter(q, flags))
536                 return NULL;
537
538         plug->nr_ios = 1;
539
540         rq = __blk_mq_alloc_requests(&data);
541         if (unlikely(!rq))
542                 blk_queue_exit(q);
543         return rq;
544 }
545
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547                                                    blk_opf_t opf,
548                                                    blk_mq_req_flags_t flags)
549 {
550         struct blk_plug *plug = current->plug;
551         struct request *rq;
552
553         if (!plug)
554                 return NULL;
555
556         if (rq_list_empty(plug->cached_rq)) {
557                 if (plug->nr_ios == 1)
558                         return NULL;
559                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560                 if (!rq)
561                         return NULL;
562         } else {
563                 rq = rq_list_peek(&plug->cached_rq);
564                 if (!rq || rq->q != q)
565                         return NULL;
566
567                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568                         return NULL;
569                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570                         return NULL;
571
572                 plug->cached_rq = rq_list_next(rq);
573                 blk_mq_rq_time_init(rq, 0);
574         }
575
576         rq->cmd_flags = opf;
577         INIT_LIST_HEAD(&rq->queuelist);
578         return rq;
579 }
580
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582                 blk_mq_req_flags_t flags)
583 {
584         struct request *rq;
585
586         rq = blk_mq_alloc_cached_request(q, opf, flags);
587         if (!rq) {
588                 struct blk_mq_alloc_data data = {
589                         .q              = q,
590                         .flags          = flags,
591                         .cmd_flags      = opf,
592                         .nr_tags        = 1,
593                 };
594                 int ret;
595
596                 ret = blk_queue_enter(q, flags);
597                 if (ret)
598                         return ERR_PTR(ret);
599
600                 rq = __blk_mq_alloc_requests(&data);
601                 if (!rq)
602                         goto out_queue_exit;
603         }
604         rq->__data_len = 0;
605         rq->__sector = (sector_t) -1;
606         rq->bio = rq->biotail = NULL;
607         return rq;
608 out_queue_exit:
609         blk_queue_exit(q);
610         return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617         struct blk_mq_alloc_data data = {
618                 .q              = q,
619                 .flags          = flags,
620                 .cmd_flags      = opf,
621                 .nr_tags        = 1,
622         };
623         u64 alloc_time_ns = 0;
624         struct request *rq;
625         unsigned int cpu;
626         unsigned int tag;
627         int ret;
628
629         /* alloc_time includes depth and tag waits */
630         if (blk_queue_rq_alloc_time(q))
631                 alloc_time_ns = blk_time_get_ns();
632
633         /*
634          * If the tag allocator sleeps we could get an allocation for a
635          * different hardware context.  No need to complicate the low level
636          * allocator for this for the rare use case of a command tied to
637          * a specific queue.
638          */
639         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641                 return ERR_PTR(-EINVAL);
642
643         if (hctx_idx >= q->nr_hw_queues)
644                 return ERR_PTR(-EIO);
645
646         ret = blk_queue_enter(q, flags);
647         if (ret)
648                 return ERR_PTR(ret);
649
650         /*
651          * Check if the hardware context is actually mapped to anything.
652          * If not tell the caller that it should skip this queue.
653          */
654         ret = -EXDEV;
655         data.hctx = xa_load(&q->hctx_table, hctx_idx);
656         if (!blk_mq_hw_queue_mapped(data.hctx))
657                 goto out_queue_exit;
658         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659         if (cpu >= nr_cpu_ids)
660                 goto out_queue_exit;
661         data.ctx = __blk_mq_get_ctx(q, cpu);
662
663         if (q->elevator)
664                 data.rq_flags |= RQF_SCHED_TAGS;
665         else
666                 blk_mq_tag_busy(data.hctx);
667
668         if (flags & BLK_MQ_REQ_RESERVED)
669                 data.rq_flags |= RQF_RESV;
670
671         ret = -EWOULDBLOCK;
672         tag = blk_mq_get_tag(&data);
673         if (tag == BLK_MQ_NO_TAG)
674                 goto out_queue_exit;
675         if (!(data.rq_flags & RQF_SCHED_TAGS))
676                 blk_mq_inc_active_requests(data.hctx);
677         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678         blk_mq_rq_time_init(rq, alloc_time_ns);
679         rq->__data_len = 0;
680         rq->__sector = (sector_t) -1;
681         rq->bio = rq->biotail = NULL;
682         return rq;
683
684 out_queue_exit:
685         blk_queue_exit(q);
686         return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689
690 static void blk_mq_finish_request(struct request *rq)
691 {
692         struct request_queue *q = rq->q;
693
694         blk_zone_finish_request(rq);
695
696         if (rq->rq_flags & RQF_USE_SCHED) {
697                 q->elevator->type->ops.finish_request(rq);
698                 /*
699                  * For postflush request that may need to be
700                  * completed twice, we should clear this flag
701                  * to avoid double finish_request() on the rq.
702                  */
703                 rq->rq_flags &= ~RQF_USE_SCHED;
704         }
705 }
706
707 static void __blk_mq_free_request(struct request *rq)
708 {
709         struct request_queue *q = rq->q;
710         struct blk_mq_ctx *ctx = rq->mq_ctx;
711         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
712         const int sched_tag = rq->internal_tag;
713
714         blk_crypto_free_request(rq);
715         blk_pm_mark_last_busy(rq);
716         rq->mq_hctx = NULL;
717
718         if (rq->tag != BLK_MQ_NO_TAG) {
719                 blk_mq_dec_active_requests(hctx);
720                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721         }
722         if (sched_tag != BLK_MQ_NO_TAG)
723                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724         blk_mq_sched_restart(hctx);
725         blk_queue_exit(q);
726 }
727
728 void blk_mq_free_request(struct request *rq)
729 {
730         struct request_queue *q = rq->q;
731
732         blk_mq_finish_request(rq);
733
734         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
735                 laptop_io_completion(q->disk->bdi);
736
737         rq_qos_done(q, rq);
738
739         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
740         if (req_ref_put_and_test(rq))
741                 __blk_mq_free_request(rq);
742 }
743 EXPORT_SYMBOL_GPL(blk_mq_free_request);
744
745 void blk_mq_free_plug_rqs(struct blk_plug *plug)
746 {
747         struct request *rq;
748
749         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
750                 blk_mq_free_request(rq);
751 }
752
753 void blk_dump_rq_flags(struct request *rq, char *msg)
754 {
755         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
756                 rq->q->disk ? rq->q->disk->disk_name : "?",
757                 (__force unsigned long long) rq->cmd_flags);
758
759         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
760                (unsigned long long)blk_rq_pos(rq),
761                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
762         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
763                rq->bio, rq->biotail, blk_rq_bytes(rq));
764 }
765 EXPORT_SYMBOL(blk_dump_rq_flags);
766
767 static void blk_account_io_completion(struct request *req, unsigned int bytes)
768 {
769         if (req->part && blk_do_io_stat(req)) {
770                 const int sgrp = op_stat_group(req_op(req));
771
772                 part_stat_lock();
773                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
774                 part_stat_unlock();
775         }
776 }
777
778 static void blk_print_req_error(struct request *req, blk_status_t status)
779 {
780         printk_ratelimited(KERN_ERR
781                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
782                 "phys_seg %u prio class %u\n",
783                 blk_status_to_str(status),
784                 req->q->disk ? req->q->disk->disk_name : "?",
785                 blk_rq_pos(req), (__force u32)req_op(req),
786                 blk_op_str(req_op(req)),
787                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
788                 req->nr_phys_segments,
789                 IOPRIO_PRIO_CLASS(req->ioprio));
790 }
791
792 /*
793  * Fully end IO on a request. Does not support partial completions, or
794  * errors.
795  */
796 static void blk_complete_request(struct request *req)
797 {
798         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
799         int total_bytes = blk_rq_bytes(req);
800         struct bio *bio = req->bio;
801
802         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
803
804         if (!bio)
805                 return;
806
807 #ifdef CONFIG_BLK_DEV_INTEGRITY
808         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
809                 req->q->integrity.profile->complete_fn(req, total_bytes);
810 #endif
811
812         /*
813          * Upper layers may call blk_crypto_evict_key() anytime after the last
814          * bio_endio().  Therefore, the keyslot must be released before that.
815          */
816         blk_crypto_rq_put_keyslot(req);
817
818         blk_account_io_completion(req, total_bytes);
819
820         do {
821                 struct bio *next = bio->bi_next;
822
823                 /* Completion has already been traced */
824                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825
826                 blk_zone_update_request_bio(req, bio);
827
828                 if (!is_flush)
829                         bio_endio(bio);
830                 bio = next;
831         } while (bio);
832
833         /*
834          * Reset counters so that the request stacking driver
835          * can find how many bytes remain in the request
836          * later.
837          */
838         if (!req->end_io) {
839                 req->bio = NULL;
840                 req->__data_len = 0;
841         }
842 }
843
844 /**
845  * blk_update_request - Complete multiple bytes without completing the request
846  * @req:      the request being processed
847  * @error:    block status code
848  * @nr_bytes: number of bytes to complete for @req
849  *
850  * Description:
851  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
852  *     the request structure even if @req doesn't have leftover.
853  *     If @req has leftover, sets it up for the next range of segments.
854  *
855  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
856  *     %false return from this function.
857  *
858  * Note:
859  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
860  *      except in the consistency check at the end of this function.
861  *
862  * Return:
863  *     %false - this request doesn't have any more data
864  *     %true  - this request has more data
865  **/
866 bool blk_update_request(struct request *req, blk_status_t error,
867                 unsigned int nr_bytes)
868 {
869         bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
870         bool quiet = req->rq_flags & RQF_QUIET;
871         int total_bytes;
872
873         trace_block_rq_complete(req, error, nr_bytes);
874
875         if (!req->bio)
876                 return false;
877
878 #ifdef CONFIG_BLK_DEV_INTEGRITY
879         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
880             error == BLK_STS_OK)
881                 req->q->integrity.profile->complete_fn(req, nr_bytes);
882 #endif
883
884         /*
885          * Upper layers may call blk_crypto_evict_key() anytime after the last
886          * bio_endio().  Therefore, the keyslot must be released before that.
887          */
888         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
889                 __blk_crypto_rq_put_keyslot(req);
890
891         if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
892             !test_bit(GD_DEAD, &req->q->disk->state)) {
893                 blk_print_req_error(req, error);
894                 trace_block_rq_error(req, error, nr_bytes);
895         }
896
897         blk_account_io_completion(req, nr_bytes);
898
899         total_bytes = 0;
900         while (req->bio) {
901                 struct bio *bio = req->bio;
902                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
903
904                 if (unlikely(error))
905                         bio->bi_status = error;
906
907                 if (bio_bytes == bio->bi_iter.bi_size) {
908                         req->bio = bio->bi_next;
909                 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
910                         /*
911                          * Partial zone append completions cannot be supported
912                          * as the BIO fragments may end up not being written
913                          * sequentially.
914                          */
915                         bio->bi_status = BLK_STS_IOERR;
916                 }
917
918                 /* Completion has already been traced */
919                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
920                 if (unlikely(quiet))
921                         bio_set_flag(bio, BIO_QUIET);
922
923                 bio_advance(bio, bio_bytes);
924
925                 /* Don't actually finish bio if it's part of flush sequence */
926                 if (!bio->bi_iter.bi_size) {
927                         blk_zone_update_request_bio(req, bio);
928                         if (!is_flush)
929                                 bio_endio(bio);
930                 }
931
932                 total_bytes += bio_bytes;
933                 nr_bytes -= bio_bytes;
934
935                 if (!nr_bytes)
936                         break;
937         }
938
939         /*
940          * completely done
941          */
942         if (!req->bio) {
943                 /*
944                  * Reset counters so that the request stacking driver
945                  * can find how many bytes remain in the request
946                  * later.
947                  */
948                 req->__data_len = 0;
949                 return false;
950         }
951
952         req->__data_len -= total_bytes;
953
954         /* update sector only for requests with clear definition of sector */
955         if (!blk_rq_is_passthrough(req))
956                 req->__sector += total_bytes >> 9;
957
958         /* mixed attributes always follow the first bio */
959         if (req->rq_flags & RQF_MIXED_MERGE) {
960                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
961                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
962         }
963
964         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
965                 /*
966                  * If total number of sectors is less than the first segment
967                  * size, something has gone terribly wrong.
968                  */
969                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
970                         blk_dump_rq_flags(req, "request botched");
971                         req->__data_len = blk_rq_cur_bytes(req);
972                 }
973
974                 /* recalculate the number of segments */
975                 req->nr_phys_segments = blk_recalc_rq_segments(req);
976         }
977
978         return true;
979 }
980 EXPORT_SYMBOL_GPL(blk_update_request);
981
982 static inline void blk_account_io_done(struct request *req, u64 now)
983 {
984         trace_block_io_done(req);
985
986         /*
987          * Account IO completion.  flush_rq isn't accounted as a
988          * normal IO on queueing nor completion.  Accounting the
989          * containing request is enough.
990          */
991         if (blk_do_io_stat(req) && req->part &&
992             !(req->rq_flags & RQF_FLUSH_SEQ)) {
993                 const int sgrp = op_stat_group(req_op(req));
994
995                 part_stat_lock();
996                 update_io_ticks(req->part, jiffies, true);
997                 part_stat_inc(req->part, ios[sgrp]);
998                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
999                 part_stat_local_dec(req->part,
1000                                     in_flight[op_is_write(req_op(req))]);
1001                 part_stat_unlock();
1002         }
1003 }
1004
1005 static inline void blk_account_io_start(struct request *req)
1006 {
1007         trace_block_io_start(req);
1008
1009         if (blk_do_io_stat(req)) {
1010                 /*
1011                  * All non-passthrough requests are created from a bio with one
1012                  * exception: when a flush command that is part of a flush sequence
1013                  * generated by the state machine in blk-flush.c is cloned onto the
1014                  * lower device by dm-multipath we can get here without a bio.
1015                  */
1016                 if (req->bio)
1017                         req->part = req->bio->bi_bdev;
1018                 else
1019                         req->part = req->q->disk->part0;
1020
1021                 part_stat_lock();
1022                 update_io_ticks(req->part, jiffies, false);
1023                 part_stat_local_inc(req->part,
1024                                     in_flight[op_is_write(req_op(req))]);
1025                 part_stat_unlock();
1026         }
1027 }
1028
1029 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1030 {
1031         if (rq->rq_flags & RQF_STATS)
1032                 blk_stat_add(rq, now);
1033
1034         blk_mq_sched_completed_request(rq, now);
1035         blk_account_io_done(rq, now);
1036 }
1037
1038 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1039 {
1040         if (blk_mq_need_time_stamp(rq))
1041                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1042
1043         blk_mq_finish_request(rq);
1044
1045         if (rq->end_io) {
1046                 rq_qos_done(rq->q, rq);
1047                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1048                         blk_mq_free_request(rq);
1049         } else {
1050                 blk_mq_free_request(rq);
1051         }
1052 }
1053 EXPORT_SYMBOL(__blk_mq_end_request);
1054
1055 void blk_mq_end_request(struct request *rq, blk_status_t error)
1056 {
1057         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1058                 BUG();
1059         __blk_mq_end_request(rq, error);
1060 }
1061 EXPORT_SYMBOL(blk_mq_end_request);
1062
1063 #define TAG_COMP_BATCH          32
1064
1065 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1066                                           int *tag_array, int nr_tags)
1067 {
1068         struct request_queue *q = hctx->queue;
1069
1070         blk_mq_sub_active_requests(hctx, nr_tags);
1071
1072         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1073         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1074 }
1075
1076 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1077 {
1078         int tags[TAG_COMP_BATCH], nr_tags = 0;
1079         struct blk_mq_hw_ctx *cur_hctx = NULL;
1080         struct request *rq;
1081         u64 now = 0;
1082
1083         if (iob->need_ts)
1084                 now = blk_time_get_ns();
1085
1086         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1087                 prefetch(rq->bio);
1088                 prefetch(rq->rq_next);
1089
1090                 blk_complete_request(rq);
1091                 if (iob->need_ts)
1092                         __blk_mq_end_request_acct(rq, now);
1093
1094                 blk_mq_finish_request(rq);
1095
1096                 rq_qos_done(rq->q, rq);
1097
1098                 /*
1099                  * If end_io handler returns NONE, then it still has
1100                  * ownership of the request.
1101                  */
1102                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103                         continue;
1104
1105                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106                 if (!req_ref_put_and_test(rq))
1107                         continue;
1108
1109                 blk_crypto_free_request(rq);
1110                 blk_pm_mark_last_busy(rq);
1111
1112                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113                         if (cur_hctx)
1114                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115                         nr_tags = 0;
1116                         cur_hctx = rq->mq_hctx;
1117                 }
1118                 tags[nr_tags++] = rq->tag;
1119         }
1120
1121         if (nr_tags)
1122                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129         struct request *rq, *next;
1130
1131         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132                 rq->q->mq_ops->complete(rq);
1133 }
1134
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143         return 0;
1144 }
1145
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153         int cpu = raw_smp_processor_id();
1154
1155         if (!IS_ENABLED(CONFIG_SMP) ||
1156             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157                 return false;
1158         /*
1159          * With force threaded interrupts enabled, raising softirq from an SMP
1160          * function call will always result in waking the ksoftirqd thread.
1161          * This is probably worse than completing the request on a different
1162          * cache domain.
1163          */
1164         if (force_irqthreads())
1165                 return false;
1166
1167         /* same CPU or cache domain and capacity?  Complete locally */
1168         if (cpu == rq->mq_ctx->cpu ||
1169             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1171              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1172                 return false;
1173
1174         /* don't try to IPI to an offline CPU */
1175         return cpu_online(rq->mq_ctx->cpu);
1176 }
1177
1178 static void blk_mq_complete_send_ipi(struct request *rq)
1179 {
1180         unsigned int cpu;
1181
1182         cpu = rq->mq_ctx->cpu;
1183         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1184                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1185 }
1186
1187 static void blk_mq_raise_softirq(struct request *rq)
1188 {
1189         struct llist_head *list;
1190
1191         preempt_disable();
1192         list = this_cpu_ptr(&blk_cpu_done);
1193         if (llist_add(&rq->ipi_list, list))
1194                 raise_softirq(BLOCK_SOFTIRQ);
1195         preempt_enable();
1196 }
1197
1198 bool blk_mq_complete_request_remote(struct request *rq)
1199 {
1200         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1201
1202         /*
1203          * For request which hctx has only one ctx mapping,
1204          * or a polled request, always complete locally,
1205          * it's pointless to redirect the completion.
1206          */
1207         if ((rq->mq_hctx->nr_ctx == 1 &&
1208              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1209              rq->cmd_flags & REQ_POLLED)
1210                 return false;
1211
1212         if (blk_mq_complete_need_ipi(rq)) {
1213                 blk_mq_complete_send_ipi(rq);
1214                 return true;
1215         }
1216
1217         if (rq->q->nr_hw_queues == 1) {
1218                 blk_mq_raise_softirq(rq);
1219                 return true;
1220         }
1221         return false;
1222 }
1223 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1224
1225 /**
1226  * blk_mq_complete_request - end I/O on a request
1227  * @rq:         the request being processed
1228  *
1229  * Description:
1230  *      Complete a request by scheduling the ->complete_rq operation.
1231  **/
1232 void blk_mq_complete_request(struct request *rq)
1233 {
1234         if (!blk_mq_complete_request_remote(rq))
1235                 rq->q->mq_ops->complete(rq);
1236 }
1237 EXPORT_SYMBOL(blk_mq_complete_request);
1238
1239 /**
1240  * blk_mq_start_request - Start processing a request
1241  * @rq: Pointer to request to be started
1242  *
1243  * Function used by device drivers to notify the block layer that a request
1244  * is going to be processed now, so blk layer can do proper initializations
1245  * such as starting the timeout timer.
1246  */
1247 void blk_mq_start_request(struct request *rq)
1248 {
1249         struct request_queue *q = rq->q;
1250
1251         trace_block_rq_issue(rq);
1252
1253         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1254             !blk_rq_is_passthrough(rq)) {
1255                 rq->io_start_time_ns = blk_time_get_ns();
1256                 rq->stats_sectors = blk_rq_sectors(rq);
1257                 rq->rq_flags |= RQF_STATS;
1258                 rq_qos_issue(q, rq);
1259         }
1260
1261         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263         blk_add_timer(rq);
1264         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1266
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269                 q->integrity.profile->prepare_fn(rq);
1270 #endif
1271         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283         if (plug->multiple_queues)
1284                 return BLK_MAX_REQUEST_COUNT * 2;
1285         return BLK_MAX_REQUEST_COUNT;
1286 }
1287
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290         struct request *last = rq_list_peek(&plug->mq_list);
1291
1292         if (!plug->rq_count) {
1293                 trace_block_plug(rq->q);
1294         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295                    (!blk_queue_nomerges(rq->q) &&
1296                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297                 blk_mq_flush_plug_list(plug, false);
1298                 last = NULL;
1299                 trace_block_plug(rq->q);
1300         }
1301
1302         if (!plug->multiple_queues && last && last->q != rq->q)
1303                 plug->multiple_queues = true;
1304         /*
1305          * Any request allocated from sched tags can't be issued to
1306          * ->queue_rqs() directly
1307          */
1308         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1309                 plug->has_elevator = true;
1310         rq->rq_next = NULL;
1311         rq_list_add(&plug->mq_list, rq);
1312         plug->rq_count++;
1313 }
1314
1315 /**
1316  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1317  * @rq:         request to insert
1318  * @at_head:    insert request at head or tail of queue
1319  *
1320  * Description:
1321  *    Insert a fully prepared request at the back of the I/O scheduler queue
1322  *    for execution.  Don't wait for completion.
1323  *
1324  * Note:
1325  *    This function will invoke @done directly if the queue is dead.
1326  */
1327 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1328 {
1329         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1330
1331         WARN_ON(irqs_disabled());
1332         WARN_ON(!blk_rq_is_passthrough(rq));
1333
1334         blk_account_io_start(rq);
1335
1336         if (current->plug && !at_head) {
1337                 blk_add_rq_to_plug(current->plug, rq);
1338                 return;
1339         }
1340
1341         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1342         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1343 }
1344 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1345
1346 struct blk_rq_wait {
1347         struct completion done;
1348         blk_status_t ret;
1349 };
1350
1351 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1352 {
1353         struct blk_rq_wait *wait = rq->end_io_data;
1354
1355         wait->ret = ret;
1356         complete(&wait->done);
1357         return RQ_END_IO_NONE;
1358 }
1359
1360 bool blk_rq_is_poll(struct request *rq)
1361 {
1362         if (!rq->mq_hctx)
1363                 return false;
1364         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1365                 return false;
1366         return true;
1367 }
1368 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1369
1370 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1371 {
1372         do {
1373                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1374                 cond_resched();
1375         } while (!completion_done(wait));
1376 }
1377
1378 /**
1379  * blk_execute_rq - insert a request into queue for execution
1380  * @rq:         request to insert
1381  * @at_head:    insert request at head or tail of queue
1382  *
1383  * Description:
1384  *    Insert a fully prepared request at the back of the I/O scheduler queue
1385  *    for execution and wait for completion.
1386  * Return: The blk_status_t result provided to blk_mq_end_request().
1387  */
1388 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1389 {
1390         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1391         struct blk_rq_wait wait = {
1392                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1393         };
1394
1395         WARN_ON(irqs_disabled());
1396         WARN_ON(!blk_rq_is_passthrough(rq));
1397
1398         rq->end_io_data = &wait;
1399         rq->end_io = blk_end_sync_rq;
1400
1401         blk_account_io_start(rq);
1402         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1403         blk_mq_run_hw_queue(hctx, false);
1404
1405         if (blk_rq_is_poll(rq))
1406                 blk_rq_poll_completion(rq, &wait.done);
1407         else
1408                 blk_wait_io(&wait.done);
1409
1410         return wait.ret;
1411 }
1412 EXPORT_SYMBOL(blk_execute_rq);
1413
1414 static void __blk_mq_requeue_request(struct request *rq)
1415 {
1416         struct request_queue *q = rq->q;
1417
1418         blk_mq_put_driver_tag(rq);
1419
1420         trace_block_rq_requeue(rq);
1421         rq_qos_requeue(q, rq);
1422
1423         if (blk_mq_request_started(rq)) {
1424                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1425                 rq->rq_flags &= ~RQF_TIMED_OUT;
1426         }
1427 }
1428
1429 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1430 {
1431         struct request_queue *q = rq->q;
1432         unsigned long flags;
1433
1434         __blk_mq_requeue_request(rq);
1435
1436         /* this request will be re-inserted to io scheduler queue */
1437         blk_mq_sched_requeue_request(rq);
1438
1439         spin_lock_irqsave(&q->requeue_lock, flags);
1440         list_add_tail(&rq->queuelist, &q->requeue_list);
1441         spin_unlock_irqrestore(&q->requeue_lock, flags);
1442
1443         if (kick_requeue_list)
1444                 blk_mq_kick_requeue_list(q);
1445 }
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1447
1448 static void blk_mq_requeue_work(struct work_struct *work)
1449 {
1450         struct request_queue *q =
1451                 container_of(work, struct request_queue, requeue_work.work);
1452         LIST_HEAD(rq_list);
1453         LIST_HEAD(flush_list);
1454         struct request *rq;
1455
1456         spin_lock_irq(&q->requeue_lock);
1457         list_splice_init(&q->requeue_list, &rq_list);
1458         list_splice_init(&q->flush_list, &flush_list);
1459         spin_unlock_irq(&q->requeue_lock);
1460
1461         while (!list_empty(&rq_list)) {
1462                 rq = list_entry(rq_list.next, struct request, queuelist);
1463                 /*
1464                  * If RQF_DONTPREP ist set, the request has been started by the
1465                  * driver already and might have driver-specific data allocated
1466                  * already.  Insert it into the hctx dispatch list to avoid
1467                  * block layer merges for the request.
1468                  */
1469                 if (rq->rq_flags & RQF_DONTPREP) {
1470                         list_del_init(&rq->queuelist);
1471                         blk_mq_request_bypass_insert(rq, 0);
1472                 } else {
1473                         list_del_init(&rq->queuelist);
1474                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1475                 }
1476         }
1477
1478         while (!list_empty(&flush_list)) {
1479                 rq = list_entry(flush_list.next, struct request, queuelist);
1480                 list_del_init(&rq->queuelist);
1481                 blk_mq_insert_request(rq, 0);
1482         }
1483
1484         blk_mq_run_hw_queues(q, false);
1485 }
1486
1487 void blk_mq_kick_requeue_list(struct request_queue *q)
1488 {
1489         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1490 }
1491 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1492
1493 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1494                                     unsigned long msecs)
1495 {
1496         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1497                                     msecs_to_jiffies(msecs));
1498 }
1499 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1500
1501 static bool blk_is_flush_data_rq(struct request *rq)
1502 {
1503         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1504 }
1505
1506 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1507 {
1508         /*
1509          * If we find a request that isn't idle we know the queue is busy
1510          * as it's checked in the iter.
1511          * Return false to stop the iteration.
1512          *
1513          * In case of queue quiesce, if one flush data request is completed,
1514          * don't count it as inflight given the flush sequence is suspended,
1515          * and the original flush data request is invisible to driver, just
1516          * like other pending requests because of quiesce
1517          */
1518         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1519                                 blk_is_flush_data_rq(rq) &&
1520                                 blk_mq_request_completed(rq))) {
1521                 bool *busy = priv;
1522
1523                 *busy = true;
1524                 return false;
1525         }
1526
1527         return true;
1528 }
1529
1530 bool blk_mq_queue_inflight(struct request_queue *q)
1531 {
1532         bool busy = false;
1533
1534         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1535         return busy;
1536 }
1537 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1538
1539 static void blk_mq_rq_timed_out(struct request *req)
1540 {
1541         req->rq_flags |= RQF_TIMED_OUT;
1542         if (req->q->mq_ops->timeout) {
1543                 enum blk_eh_timer_return ret;
1544
1545                 ret = req->q->mq_ops->timeout(req);
1546                 if (ret == BLK_EH_DONE)
1547                         return;
1548                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1549         }
1550
1551         blk_add_timer(req);
1552 }
1553
1554 struct blk_expired_data {
1555         bool has_timedout_rq;
1556         unsigned long next;
1557         unsigned long timeout_start;
1558 };
1559
1560 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1561 {
1562         unsigned long deadline;
1563
1564         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1565                 return false;
1566         if (rq->rq_flags & RQF_TIMED_OUT)
1567                 return false;
1568
1569         deadline = READ_ONCE(rq->deadline);
1570         if (time_after_eq(expired->timeout_start, deadline))
1571                 return true;
1572
1573         if (expired->next == 0)
1574                 expired->next = deadline;
1575         else if (time_after(expired->next, deadline))
1576                 expired->next = deadline;
1577         return false;
1578 }
1579
1580 void blk_mq_put_rq_ref(struct request *rq)
1581 {
1582         if (is_flush_rq(rq)) {
1583                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1584                         blk_mq_free_request(rq);
1585         } else if (req_ref_put_and_test(rq)) {
1586                 __blk_mq_free_request(rq);
1587         }
1588 }
1589
1590 static bool blk_mq_check_expired(struct request *rq, void *priv)
1591 {
1592         struct blk_expired_data *expired = priv;
1593
1594         /*
1595          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1596          * be reallocated underneath the timeout handler's processing, then
1597          * the expire check is reliable. If the request is not expired, then
1598          * it was completed and reallocated as a new request after returning
1599          * from blk_mq_check_expired().
1600          */
1601         if (blk_mq_req_expired(rq, expired)) {
1602                 expired->has_timedout_rq = true;
1603                 return false;
1604         }
1605         return true;
1606 }
1607
1608 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1609 {
1610         struct blk_expired_data *expired = priv;
1611
1612         if (blk_mq_req_expired(rq, expired))
1613                 blk_mq_rq_timed_out(rq);
1614         return true;
1615 }
1616
1617 static void blk_mq_timeout_work(struct work_struct *work)
1618 {
1619         struct request_queue *q =
1620                 container_of(work, struct request_queue, timeout_work);
1621         struct blk_expired_data expired = {
1622                 .timeout_start = jiffies,
1623         };
1624         struct blk_mq_hw_ctx *hctx;
1625         unsigned long i;
1626
1627         /* A deadlock might occur if a request is stuck requiring a
1628          * timeout at the same time a queue freeze is waiting
1629          * completion, since the timeout code would not be able to
1630          * acquire the queue reference here.
1631          *
1632          * That's why we don't use blk_queue_enter here; instead, we use
1633          * percpu_ref_tryget directly, because we need to be able to
1634          * obtain a reference even in the short window between the queue
1635          * starting to freeze, by dropping the first reference in
1636          * blk_freeze_queue_start, and the moment the last request is
1637          * consumed, marked by the instant q_usage_counter reaches
1638          * zero.
1639          */
1640         if (!percpu_ref_tryget(&q->q_usage_counter))
1641                 return;
1642
1643         /* check if there is any timed-out request */
1644         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1645         if (expired.has_timedout_rq) {
1646                 /*
1647                  * Before walking tags, we must ensure any submit started
1648                  * before the current time has finished. Since the submit
1649                  * uses srcu or rcu, wait for a synchronization point to
1650                  * ensure all running submits have finished
1651                  */
1652                 blk_mq_wait_quiesce_done(q->tag_set);
1653
1654                 expired.next = 0;
1655                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1656         }
1657
1658         if (expired.next != 0) {
1659                 mod_timer(&q->timeout, expired.next);
1660         } else {
1661                 /*
1662                  * Request timeouts are handled as a forward rolling timer. If
1663                  * we end up here it means that no requests are pending and
1664                  * also that no request has been pending for a while. Mark
1665                  * each hctx as idle.
1666                  */
1667                 queue_for_each_hw_ctx(q, hctx, i) {
1668                         /* the hctx may be unmapped, so check it here */
1669                         if (blk_mq_hw_queue_mapped(hctx))
1670                                 blk_mq_tag_idle(hctx);
1671                 }
1672         }
1673         blk_queue_exit(q);
1674 }
1675
1676 struct flush_busy_ctx_data {
1677         struct blk_mq_hw_ctx *hctx;
1678         struct list_head *list;
1679 };
1680
1681 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1682 {
1683         struct flush_busy_ctx_data *flush_data = data;
1684         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1685         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1686         enum hctx_type type = hctx->type;
1687
1688         spin_lock(&ctx->lock);
1689         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1690         sbitmap_clear_bit(sb, bitnr);
1691         spin_unlock(&ctx->lock);
1692         return true;
1693 }
1694
1695 /*
1696  * Process software queues that have been marked busy, splicing them
1697  * to the for-dispatch
1698  */
1699 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1700 {
1701         struct flush_busy_ctx_data data = {
1702                 .hctx = hctx,
1703                 .list = list,
1704         };
1705
1706         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1707 }
1708 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1709
1710 struct dispatch_rq_data {
1711         struct blk_mq_hw_ctx *hctx;
1712         struct request *rq;
1713 };
1714
1715 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1716                 void *data)
1717 {
1718         struct dispatch_rq_data *dispatch_data = data;
1719         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1720         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1721         enum hctx_type type = hctx->type;
1722
1723         spin_lock(&ctx->lock);
1724         if (!list_empty(&ctx->rq_lists[type])) {
1725                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1726                 list_del_init(&dispatch_data->rq->queuelist);
1727                 if (list_empty(&ctx->rq_lists[type]))
1728                         sbitmap_clear_bit(sb, bitnr);
1729         }
1730         spin_unlock(&ctx->lock);
1731
1732         return !dispatch_data->rq;
1733 }
1734
1735 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1736                                         struct blk_mq_ctx *start)
1737 {
1738         unsigned off = start ? start->index_hw[hctx->type] : 0;
1739         struct dispatch_rq_data data = {
1740                 .hctx = hctx,
1741                 .rq   = NULL,
1742         };
1743
1744         __sbitmap_for_each_set(&hctx->ctx_map, off,
1745                                dispatch_rq_from_ctx, &data);
1746
1747         return data.rq;
1748 }
1749
1750 bool __blk_mq_alloc_driver_tag(struct request *rq)
1751 {
1752         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1753         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1754         int tag;
1755
1756         blk_mq_tag_busy(rq->mq_hctx);
1757
1758         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1759                 bt = &rq->mq_hctx->tags->breserved_tags;
1760                 tag_offset = 0;
1761         } else {
1762                 if (!hctx_may_queue(rq->mq_hctx, bt))
1763                         return false;
1764         }
1765
1766         tag = __sbitmap_queue_get(bt);
1767         if (tag == BLK_MQ_NO_TAG)
1768                 return false;
1769
1770         rq->tag = tag + tag_offset;
1771         blk_mq_inc_active_requests(rq->mq_hctx);
1772         return true;
1773 }
1774
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776                                 int flags, void *key)
1777 {
1778         struct blk_mq_hw_ctx *hctx;
1779
1780         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781
1782         spin_lock(&hctx->dispatch_wait_lock);
1783         if (!list_empty(&wait->entry)) {
1784                 struct sbitmap_queue *sbq;
1785
1786                 list_del_init(&wait->entry);
1787                 sbq = &hctx->tags->bitmap_tags;
1788                 atomic_dec(&sbq->ws_active);
1789         }
1790         spin_unlock(&hctx->dispatch_wait_lock);
1791
1792         blk_mq_run_hw_queue(hctx, true);
1793         return 1;
1794 }
1795
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803                                  struct request *rq)
1804 {
1805         struct sbitmap_queue *sbq;
1806         struct wait_queue_head *wq;
1807         wait_queue_entry_t *wait;
1808         bool ret;
1809
1810         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811             !(blk_mq_is_shared_tags(hctx->flags))) {
1812                 blk_mq_sched_mark_restart_hctx(hctx);
1813
1814                 /*
1815                  * It's possible that a tag was freed in the window between the
1816                  * allocation failure and adding the hardware queue to the wait
1817                  * queue.
1818                  *
1819                  * Don't clear RESTART here, someone else could have set it.
1820                  * At most this will cost an extra queue run.
1821                  */
1822                 return blk_mq_get_driver_tag(rq);
1823         }
1824
1825         wait = &hctx->dispatch_wait;
1826         if (!list_empty_careful(&wait->entry))
1827                 return false;
1828
1829         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830                 sbq = &hctx->tags->breserved_tags;
1831         else
1832                 sbq = &hctx->tags->bitmap_tags;
1833         wq = &bt_wait_ptr(sbq, hctx)->wait;
1834
1835         spin_lock_irq(&wq->lock);
1836         spin_lock(&hctx->dispatch_wait_lock);
1837         if (!list_empty(&wait->entry)) {
1838                 spin_unlock(&hctx->dispatch_wait_lock);
1839                 spin_unlock_irq(&wq->lock);
1840                 return false;
1841         }
1842
1843         atomic_inc(&sbq->ws_active);
1844         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845         __add_wait_queue(wq, wait);
1846
1847         /*
1848          * Add one explicit barrier since blk_mq_get_driver_tag() may
1849          * not imply barrier in case of failure.
1850          *
1851          * Order adding us to wait queue and allocating driver tag.
1852          *
1853          * The pair is the one implied in sbitmap_queue_wake_up() which
1854          * orders clearing sbitmap tag bits and waitqueue_active() in
1855          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1856          *
1857          * Otherwise, re-order of adding wait queue and getting driver tag
1858          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1859          * the waitqueue_active() may not observe us in wait queue.
1860          */
1861         smp_mb();
1862
1863         /*
1864          * It's possible that a tag was freed in the window between the
1865          * allocation failure and adding the hardware queue to the wait
1866          * queue.
1867          */
1868         ret = blk_mq_get_driver_tag(rq);
1869         if (!ret) {
1870                 spin_unlock(&hctx->dispatch_wait_lock);
1871                 spin_unlock_irq(&wq->lock);
1872                 return false;
1873         }
1874
1875         /*
1876          * We got a tag, remove ourselves from the wait queue to ensure
1877          * someone else gets the wakeup.
1878          */
1879         list_del_init(&wait->entry);
1880         atomic_dec(&sbq->ws_active);
1881         spin_unlock(&hctx->dispatch_wait_lock);
1882         spin_unlock_irq(&wq->lock);
1883
1884         return true;
1885 }
1886
1887 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1888 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1889 /*
1890  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1891  * - EWMA is one simple way to compute running average value
1892  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1893  * - take 4 as factor for avoiding to get too small(0) result, and this
1894  *   factor doesn't matter because EWMA decreases exponentially
1895  */
1896 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1897 {
1898         unsigned int ewma;
1899
1900         ewma = hctx->dispatch_busy;
1901
1902         if (!ewma && !busy)
1903                 return;
1904
1905         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1906         if (busy)
1907                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1908         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1909
1910         hctx->dispatch_busy = ewma;
1911 }
1912
1913 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1914
1915 static void blk_mq_handle_dev_resource(struct request *rq,
1916                                        struct list_head *list)
1917 {
1918         list_add(&rq->queuelist, list);
1919         __blk_mq_requeue_request(rq);
1920 }
1921
1922 enum prep_dispatch {
1923         PREP_DISPATCH_OK,
1924         PREP_DISPATCH_NO_TAG,
1925         PREP_DISPATCH_NO_BUDGET,
1926 };
1927
1928 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1929                                                   bool need_budget)
1930 {
1931         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1932         int budget_token = -1;
1933
1934         if (need_budget) {
1935                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1936                 if (budget_token < 0) {
1937                         blk_mq_put_driver_tag(rq);
1938                         return PREP_DISPATCH_NO_BUDGET;
1939                 }
1940                 blk_mq_set_rq_budget_token(rq, budget_token);
1941         }
1942
1943         if (!blk_mq_get_driver_tag(rq)) {
1944                 /*
1945                  * The initial allocation attempt failed, so we need to
1946                  * rerun the hardware queue when a tag is freed. The
1947                  * waitqueue takes care of that. If the queue is run
1948                  * before we add this entry back on the dispatch list,
1949                  * we'll re-run it below.
1950                  */
1951                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1952                         /*
1953                          * All budgets not got from this function will be put
1954                          * together during handling partial dispatch
1955                          */
1956                         if (need_budget)
1957                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1958                         return PREP_DISPATCH_NO_TAG;
1959                 }
1960         }
1961
1962         return PREP_DISPATCH_OK;
1963 }
1964
1965 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1966 static void blk_mq_release_budgets(struct request_queue *q,
1967                 struct list_head *list)
1968 {
1969         struct request *rq;
1970
1971         list_for_each_entry(rq, list, queuelist) {
1972                 int budget_token = blk_mq_get_rq_budget_token(rq);
1973
1974                 if (budget_token >= 0)
1975                         blk_mq_put_dispatch_budget(q, budget_token);
1976         }
1977 }
1978
1979 /*
1980  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1981  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1982  * details)
1983  * Attention, we should explicitly call this in unusual cases:
1984  *  1) did not queue everything initially scheduled to queue
1985  *  2) the last attempt to queue a request failed
1986  */
1987 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1988                               bool from_schedule)
1989 {
1990         if (hctx->queue->mq_ops->commit_rqs && queued) {
1991                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1992                 hctx->queue->mq_ops->commit_rqs(hctx);
1993         }
1994 }
1995
1996 /*
1997  * Returns true if we did some work AND can potentially do more.
1998  */
1999 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2000                              unsigned int nr_budgets)
2001 {
2002         enum prep_dispatch prep;
2003         struct request_queue *q = hctx->queue;
2004         struct request *rq;
2005         int queued;
2006         blk_status_t ret = BLK_STS_OK;
2007         bool needs_resource = false;
2008
2009         if (list_empty(list))
2010                 return false;
2011
2012         /*
2013          * Now process all the entries, sending them to the driver.
2014          */
2015         queued = 0;
2016         do {
2017                 struct blk_mq_queue_data bd;
2018
2019                 rq = list_first_entry(list, struct request, queuelist);
2020
2021                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2022                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2023                 if (prep != PREP_DISPATCH_OK)
2024                         break;
2025
2026                 list_del_init(&rq->queuelist);
2027
2028                 bd.rq = rq;
2029                 bd.last = list_empty(list);
2030
2031                 /*
2032                  * once the request is queued to lld, no need to cover the
2033                  * budget any more
2034                  */
2035                 if (nr_budgets)
2036                         nr_budgets--;
2037                 ret = q->mq_ops->queue_rq(hctx, &bd);
2038                 switch (ret) {
2039                 case BLK_STS_OK:
2040                         queued++;
2041                         break;
2042                 case BLK_STS_RESOURCE:
2043                         needs_resource = true;
2044                         fallthrough;
2045                 case BLK_STS_DEV_RESOURCE:
2046                         blk_mq_handle_dev_resource(rq, list);
2047                         goto out;
2048                 default:
2049                         blk_mq_end_request(rq, ret);
2050                 }
2051         } while (!list_empty(list));
2052 out:
2053         /* If we didn't flush the entire list, we could have told the driver
2054          * there was more coming, but that turned out to be a lie.
2055          */
2056         if (!list_empty(list) || ret != BLK_STS_OK)
2057                 blk_mq_commit_rqs(hctx, queued, false);
2058
2059         /*
2060          * Any items that need requeuing? Stuff them into hctx->dispatch,
2061          * that is where we will continue on next queue run.
2062          */
2063         if (!list_empty(list)) {
2064                 bool needs_restart;
2065                 /* For non-shared tags, the RESTART check will suffice */
2066                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2067                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2068                         blk_mq_is_shared_tags(hctx->flags));
2069
2070                 if (nr_budgets)
2071                         blk_mq_release_budgets(q, list);
2072
2073                 spin_lock(&hctx->lock);
2074                 list_splice_tail_init(list, &hctx->dispatch);
2075                 spin_unlock(&hctx->lock);
2076
2077                 /*
2078                  * Order adding requests to hctx->dispatch and checking
2079                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2080                  * in blk_mq_sched_restart(). Avoid restart code path to
2081                  * miss the new added requests to hctx->dispatch, meantime
2082                  * SCHED_RESTART is observed here.
2083                  */
2084                 smp_mb();
2085
2086                 /*
2087                  * If SCHED_RESTART was set by the caller of this function and
2088                  * it is no longer set that means that it was cleared by another
2089                  * thread and hence that a queue rerun is needed.
2090                  *
2091                  * If 'no_tag' is set, that means that we failed getting
2092                  * a driver tag with an I/O scheduler attached. If our dispatch
2093                  * waitqueue is no longer active, ensure that we run the queue
2094                  * AFTER adding our entries back to the list.
2095                  *
2096                  * If no I/O scheduler has been configured it is possible that
2097                  * the hardware queue got stopped and restarted before requests
2098                  * were pushed back onto the dispatch list. Rerun the queue to
2099                  * avoid starvation. Notes:
2100                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2101                  *   been stopped before rerunning a queue.
2102                  * - Some but not all block drivers stop a queue before
2103                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2104                  *   and dm-rq.
2105                  *
2106                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2107                  * bit is set, run queue after a delay to avoid IO stalls
2108                  * that could otherwise occur if the queue is idle.  We'll do
2109                  * similar if we couldn't get budget or couldn't lock a zone
2110                  * and SCHED_RESTART is set.
2111                  */
2112                 needs_restart = blk_mq_sched_needs_restart(hctx);
2113                 if (prep == PREP_DISPATCH_NO_BUDGET)
2114                         needs_resource = true;
2115                 if (!needs_restart ||
2116                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2117                         blk_mq_run_hw_queue(hctx, true);
2118                 else if (needs_resource)
2119                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2120
2121                 blk_mq_update_dispatch_busy(hctx, true);
2122                 return false;
2123         }
2124
2125         blk_mq_update_dispatch_busy(hctx, false);
2126         return true;
2127 }
2128
2129 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2130 {
2131         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2132
2133         if (cpu >= nr_cpu_ids)
2134                 cpu = cpumask_first(hctx->cpumask);
2135         return cpu;
2136 }
2137
2138 /*
2139  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2140  * it for speeding up the check
2141  */
2142 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2143 {
2144         return hctx->next_cpu >= nr_cpu_ids;
2145 }
2146
2147 /*
2148  * It'd be great if the workqueue API had a way to pass
2149  * in a mask and had some smarts for more clever placement.
2150  * For now we just round-robin here, switching for every
2151  * BLK_MQ_CPU_WORK_BATCH queued items.
2152  */
2153 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155         bool tried = false;
2156         int next_cpu = hctx->next_cpu;
2157
2158         /* Switch to unbound if no allowable CPUs in this hctx */
2159         if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2160                 return WORK_CPU_UNBOUND;
2161
2162         if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165                                 cpu_online_mask);
2166                 if (next_cpu >= nr_cpu_ids)
2167                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2168                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169         }
2170
2171         /*
2172          * Do unbound schedule if we can't find a online CPU for this hctx,
2173          * and it should only happen in the path of handling CPU DEAD.
2174          */
2175         if (!cpu_online(next_cpu)) {
2176                 if (!tried) {
2177                         tried = true;
2178                         goto select_cpu;
2179                 }
2180
2181                 /*
2182                  * Make sure to re-select CPU next time once after CPUs
2183                  * in hctx->cpumask become online again.
2184                  */
2185                 hctx->next_cpu = next_cpu;
2186                 hctx->next_cpu_batch = 1;
2187                 return WORK_CPU_UNBOUND;
2188         }
2189
2190         hctx->next_cpu = next_cpu;
2191         return next_cpu;
2192 }
2193
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203         if (unlikely(blk_mq_hctx_stopped(hctx)))
2204                 return;
2205         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206                                     msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221         bool need_run;
2222
2223         /*
2224          * We can't run the queue inline with interrupts disabled.
2225          */
2226         WARN_ON_ONCE(!async && in_interrupt());
2227
2228         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2229
2230         /*
2231          * When queue is quiesced, we may be switching io scheduler, or
2232          * updating nr_hw_queues, or other things, and we can't run queue
2233          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2234          *
2235          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2236          * quiesced.
2237          */
2238         __blk_mq_run_dispatch_ops(hctx->queue, false,
2239                 need_run = !blk_queue_quiesced(hctx->queue) &&
2240                 blk_mq_hctx_has_pending(hctx));
2241
2242         if (!need_run)
2243                 return;
2244
2245         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2246                 blk_mq_delay_run_hw_queue(hctx, 0);
2247                 return;
2248         }
2249
2250         blk_mq_run_dispatch_ops(hctx->queue,
2251                                 blk_mq_sched_dispatch_requests(hctx));
2252 }
2253 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2254
2255 /*
2256  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2257  * scheduler.
2258  */
2259 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2260 {
2261         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2262         /*
2263          * If the IO scheduler does not respect hardware queues when
2264          * dispatching, we just don't bother with multiple HW queues and
2265          * dispatch from hctx for the current CPU since running multiple queues
2266          * just causes lock contention inside the scheduler and pointless cache
2267          * bouncing.
2268          */
2269         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2270
2271         if (!blk_mq_hctx_stopped(hctx))
2272                 return hctx;
2273         return NULL;
2274 }
2275
2276 /**
2277  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2278  * @q: Pointer to the request queue to run.
2279  * @async: If we want to run the queue asynchronously.
2280  */
2281 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2282 {
2283         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2284         unsigned long i;
2285
2286         sq_hctx = NULL;
2287         if (blk_queue_sq_sched(q))
2288                 sq_hctx = blk_mq_get_sq_hctx(q);
2289         queue_for_each_hw_ctx(q, hctx, i) {
2290                 if (blk_mq_hctx_stopped(hctx))
2291                         continue;
2292                 /*
2293                  * Dispatch from this hctx either if there's no hctx preferred
2294                  * by IO scheduler or if it has requests that bypass the
2295                  * scheduler.
2296                  */
2297                 if (!sq_hctx || sq_hctx == hctx ||
2298                     !list_empty_careful(&hctx->dispatch))
2299                         blk_mq_run_hw_queue(hctx, async);
2300         }
2301 }
2302 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2303
2304 /**
2305  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2306  * @q: Pointer to the request queue to run.
2307  * @msecs: Milliseconds of delay to wait before running the queues.
2308  */
2309 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2310 {
2311         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2312         unsigned long i;
2313
2314         sq_hctx = NULL;
2315         if (blk_queue_sq_sched(q))
2316                 sq_hctx = blk_mq_get_sq_hctx(q);
2317         queue_for_each_hw_ctx(q, hctx, i) {
2318                 if (blk_mq_hctx_stopped(hctx))
2319                         continue;
2320                 /*
2321                  * If there is already a run_work pending, leave the
2322                  * pending delay untouched. Otherwise, a hctx can stall
2323                  * if another hctx is re-delaying the other's work
2324                  * before the work executes.
2325                  */
2326                 if (delayed_work_pending(&hctx->run_work))
2327                         continue;
2328                 /*
2329                  * Dispatch from this hctx either if there's no hctx preferred
2330                  * by IO scheduler or if it has requests that bypass the
2331                  * scheduler.
2332                  */
2333                 if (!sq_hctx || sq_hctx == hctx ||
2334                     !list_empty_careful(&hctx->dispatch))
2335                         blk_mq_delay_run_hw_queue(hctx, msecs);
2336         }
2337 }
2338 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2339
2340 /*
2341  * This function is often used for pausing .queue_rq() by driver when
2342  * there isn't enough resource or some conditions aren't satisfied, and
2343  * BLK_STS_RESOURCE is usually returned.
2344  *
2345  * We do not guarantee that dispatch can be drained or blocked
2346  * after blk_mq_stop_hw_queue() returns. Please use
2347  * blk_mq_quiesce_queue() for that requirement.
2348  */
2349 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2350 {
2351         cancel_delayed_work(&hctx->run_work);
2352
2353         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2354 }
2355 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2356
2357 /*
2358  * This function is often used for pausing .queue_rq() by driver when
2359  * there isn't enough resource or some conditions aren't satisfied, and
2360  * BLK_STS_RESOURCE is usually returned.
2361  *
2362  * We do not guarantee that dispatch can be drained or blocked
2363  * after blk_mq_stop_hw_queues() returns. Please use
2364  * blk_mq_quiesce_queue() for that requirement.
2365  */
2366 void blk_mq_stop_hw_queues(struct request_queue *q)
2367 {
2368         struct blk_mq_hw_ctx *hctx;
2369         unsigned long i;
2370
2371         queue_for_each_hw_ctx(q, hctx, i)
2372                 blk_mq_stop_hw_queue(hctx);
2373 }
2374 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2375
2376 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2377 {
2378         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2379
2380         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2381 }
2382 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2383
2384 void blk_mq_start_hw_queues(struct request_queue *q)
2385 {
2386         struct blk_mq_hw_ctx *hctx;
2387         unsigned long i;
2388
2389         queue_for_each_hw_ctx(q, hctx, i)
2390                 blk_mq_start_hw_queue(hctx);
2391 }
2392 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2393
2394 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2395 {
2396         if (!blk_mq_hctx_stopped(hctx))
2397                 return;
2398
2399         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2400         blk_mq_run_hw_queue(hctx, async);
2401 }
2402 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2403
2404 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2405 {
2406         struct blk_mq_hw_ctx *hctx;
2407         unsigned long i;
2408
2409         queue_for_each_hw_ctx(q, hctx, i)
2410                 blk_mq_start_stopped_hw_queue(hctx, async ||
2411                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2412 }
2413 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2414
2415 static void blk_mq_run_work_fn(struct work_struct *work)
2416 {
2417         struct blk_mq_hw_ctx *hctx =
2418                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2419
2420         blk_mq_run_dispatch_ops(hctx->queue,
2421                                 blk_mq_sched_dispatch_requests(hctx));
2422 }
2423
2424 /**
2425  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2426  * @rq: Pointer to request to be inserted.
2427  * @flags: BLK_MQ_INSERT_*
2428  *
2429  * Should only be used carefully, when the caller knows we want to
2430  * bypass a potential IO scheduler on the target device.
2431  */
2432 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2433 {
2434         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2435
2436         spin_lock(&hctx->lock);
2437         if (flags & BLK_MQ_INSERT_AT_HEAD)
2438                 list_add(&rq->queuelist, &hctx->dispatch);
2439         else
2440                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2441         spin_unlock(&hctx->lock);
2442 }
2443
2444 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2445                 struct blk_mq_ctx *ctx, struct list_head *list,
2446                 bool run_queue_async)
2447 {
2448         struct request *rq;
2449         enum hctx_type type = hctx->type;
2450
2451         /*
2452          * Try to issue requests directly if the hw queue isn't busy to save an
2453          * extra enqueue & dequeue to the sw queue.
2454          */
2455         if (!hctx->dispatch_busy && !run_queue_async) {
2456                 blk_mq_run_dispatch_ops(hctx->queue,
2457                         blk_mq_try_issue_list_directly(hctx, list));
2458                 if (list_empty(list))
2459                         goto out;
2460         }
2461
2462         /*
2463          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2464          * offline now
2465          */
2466         list_for_each_entry(rq, list, queuelist) {
2467                 BUG_ON(rq->mq_ctx != ctx);
2468                 trace_block_rq_insert(rq);
2469                 if (rq->cmd_flags & REQ_NOWAIT)
2470                         run_queue_async = true;
2471         }
2472
2473         spin_lock(&ctx->lock);
2474         list_splice_tail_init(list, &ctx->rq_lists[type]);
2475         blk_mq_hctx_mark_pending(hctx, ctx);
2476         spin_unlock(&ctx->lock);
2477 out:
2478         blk_mq_run_hw_queue(hctx, run_queue_async);
2479 }
2480
2481 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2482 {
2483         struct request_queue *q = rq->q;
2484         struct blk_mq_ctx *ctx = rq->mq_ctx;
2485         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2486
2487         if (blk_rq_is_passthrough(rq)) {
2488                 /*
2489                  * Passthrough request have to be added to hctx->dispatch
2490                  * directly.  The device may be in a situation where it can't
2491                  * handle FS request, and always returns BLK_STS_RESOURCE for
2492                  * them, which gets them added to hctx->dispatch.
2493                  *
2494                  * If a passthrough request is required to unblock the queues,
2495                  * and it is added to the scheduler queue, there is no chance to
2496                  * dispatch it given we prioritize requests in hctx->dispatch.
2497                  */
2498                 blk_mq_request_bypass_insert(rq, flags);
2499         } else if (req_op(rq) == REQ_OP_FLUSH) {
2500                 /*
2501                  * Firstly normal IO request is inserted to scheduler queue or
2502                  * sw queue, meantime we add flush request to dispatch queue(
2503                  * hctx->dispatch) directly and there is at most one in-flight
2504                  * flush request for each hw queue, so it doesn't matter to add
2505                  * flush request to tail or front of the dispatch queue.
2506                  *
2507                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2508                  * command, and queueing it will fail when there is any
2509                  * in-flight normal IO request(NCQ command). When adding flush
2510                  * rq to the front of hctx->dispatch, it is easier to introduce
2511                  * extra time to flush rq's latency because of S_SCHED_RESTART
2512                  * compared with adding to the tail of dispatch queue, then
2513                  * chance of flush merge is increased, and less flush requests
2514                  * will be issued to controller. It is observed that ~10% time
2515                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2516                  * drive when adding flush rq to the front of hctx->dispatch.
2517                  *
2518                  * Simply queue flush rq to the front of hctx->dispatch so that
2519                  * intensive flush workloads can benefit in case of NCQ HW.
2520                  */
2521                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2522         } else if (q->elevator) {
2523                 LIST_HEAD(list);
2524
2525                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2526
2527                 list_add(&rq->queuelist, &list);
2528                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2529         } else {
2530                 trace_block_rq_insert(rq);
2531
2532                 spin_lock(&ctx->lock);
2533                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2534                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2535                 else
2536                         list_add_tail(&rq->queuelist,
2537                                       &ctx->rq_lists[hctx->type]);
2538                 blk_mq_hctx_mark_pending(hctx, ctx);
2539                 spin_unlock(&ctx->lock);
2540         }
2541 }
2542
2543 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2544                 unsigned int nr_segs)
2545 {
2546         int err;
2547
2548         if (bio->bi_opf & REQ_RAHEAD)
2549                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2550
2551         rq->__sector = bio->bi_iter.bi_sector;
2552         rq->write_hint = bio->bi_write_hint;
2553         blk_rq_bio_prep(rq, bio, nr_segs);
2554
2555         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2556         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2557         WARN_ON_ONCE(err);
2558
2559         blk_account_io_start(rq);
2560 }
2561
2562 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2563                                             struct request *rq, bool last)
2564 {
2565         struct request_queue *q = rq->q;
2566         struct blk_mq_queue_data bd = {
2567                 .rq = rq,
2568                 .last = last,
2569         };
2570         blk_status_t ret;
2571
2572         /*
2573          * For OK queue, we are done. For error, caller may kill it.
2574          * Any other error (busy), just add it to our list as we
2575          * previously would have done.
2576          */
2577         ret = q->mq_ops->queue_rq(hctx, &bd);
2578         switch (ret) {
2579         case BLK_STS_OK:
2580                 blk_mq_update_dispatch_busy(hctx, false);
2581                 break;
2582         case BLK_STS_RESOURCE:
2583         case BLK_STS_DEV_RESOURCE:
2584                 blk_mq_update_dispatch_busy(hctx, true);
2585                 __blk_mq_requeue_request(rq);
2586                 break;
2587         default:
2588                 blk_mq_update_dispatch_busy(hctx, false);
2589                 break;
2590         }
2591
2592         return ret;
2593 }
2594
2595 static bool blk_mq_get_budget_and_tag(struct request *rq)
2596 {
2597         int budget_token;
2598
2599         budget_token = blk_mq_get_dispatch_budget(rq->q);
2600         if (budget_token < 0)
2601                 return false;
2602         blk_mq_set_rq_budget_token(rq, budget_token);
2603         if (!blk_mq_get_driver_tag(rq)) {
2604                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2605                 return false;
2606         }
2607         return true;
2608 }
2609
2610 /**
2611  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2612  * @hctx: Pointer of the associated hardware queue.
2613  * @rq: Pointer to request to be sent.
2614  *
2615  * If the device has enough resources to accept a new request now, send the
2616  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2617  * we can try send it another time in the future. Requests inserted at this
2618  * queue have higher priority.
2619  */
2620 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2621                 struct request *rq)
2622 {
2623         blk_status_t ret;
2624
2625         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 return;
2628         }
2629
2630         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2631                 blk_mq_insert_request(rq, 0);
2632                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2633                 return;
2634         }
2635
2636         ret = __blk_mq_issue_directly(hctx, rq, true);
2637         switch (ret) {
2638         case BLK_STS_OK:
2639                 break;
2640         case BLK_STS_RESOURCE:
2641         case BLK_STS_DEV_RESOURCE:
2642                 blk_mq_request_bypass_insert(rq, 0);
2643                 blk_mq_run_hw_queue(hctx, false);
2644                 break;
2645         default:
2646                 blk_mq_end_request(rq, ret);
2647                 break;
2648         }
2649 }
2650
2651 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2652 {
2653         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2654
2655         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2656                 blk_mq_insert_request(rq, 0);
2657                 return BLK_STS_OK;
2658         }
2659
2660         if (!blk_mq_get_budget_and_tag(rq))
2661                 return BLK_STS_RESOURCE;
2662         return __blk_mq_issue_directly(hctx, rq, last);
2663 }
2664
2665 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2666 {
2667         struct blk_mq_hw_ctx *hctx = NULL;
2668         struct request *rq;
2669         int queued = 0;
2670         blk_status_t ret = BLK_STS_OK;
2671
2672         while ((rq = rq_list_pop(&plug->mq_list))) {
2673                 bool last = rq_list_empty(plug->mq_list);
2674
2675                 if (hctx != rq->mq_hctx) {
2676                         if (hctx) {
2677                                 blk_mq_commit_rqs(hctx, queued, false);
2678                                 queued = 0;
2679                         }
2680                         hctx = rq->mq_hctx;
2681                 }
2682
2683                 ret = blk_mq_request_issue_directly(rq, last);
2684                 switch (ret) {
2685                 case BLK_STS_OK:
2686                         queued++;
2687                         break;
2688                 case BLK_STS_RESOURCE:
2689                 case BLK_STS_DEV_RESOURCE:
2690                         blk_mq_request_bypass_insert(rq, 0);
2691                         blk_mq_run_hw_queue(hctx, false);
2692                         goto out;
2693                 default:
2694                         blk_mq_end_request(rq, ret);
2695                         break;
2696                 }
2697         }
2698
2699 out:
2700         if (ret != BLK_STS_OK)
2701                 blk_mq_commit_rqs(hctx, queued, false);
2702 }
2703
2704 static void __blk_mq_flush_plug_list(struct request_queue *q,
2705                                      struct blk_plug *plug)
2706 {
2707         if (blk_queue_quiesced(q))
2708                 return;
2709         q->mq_ops->queue_rqs(&plug->mq_list);
2710 }
2711
2712 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2713 {
2714         struct blk_mq_hw_ctx *this_hctx = NULL;
2715         struct blk_mq_ctx *this_ctx = NULL;
2716         struct request *requeue_list = NULL;
2717         struct request **requeue_lastp = &requeue_list;
2718         unsigned int depth = 0;
2719         bool is_passthrough = false;
2720         LIST_HEAD(list);
2721
2722         do {
2723                 struct request *rq = rq_list_pop(&plug->mq_list);
2724
2725                 if (!this_hctx) {
2726                         this_hctx = rq->mq_hctx;
2727                         this_ctx = rq->mq_ctx;
2728                         is_passthrough = blk_rq_is_passthrough(rq);
2729                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2730                            is_passthrough != blk_rq_is_passthrough(rq)) {
2731                         rq_list_add_tail(&requeue_lastp, rq);
2732                         continue;
2733                 }
2734                 list_add(&rq->queuelist, &list);
2735                 depth++;
2736         } while (!rq_list_empty(plug->mq_list));
2737
2738         plug->mq_list = requeue_list;
2739         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2740
2741         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2742         /* passthrough requests should never be issued to the I/O scheduler */
2743         if (is_passthrough) {
2744                 spin_lock(&this_hctx->lock);
2745                 list_splice_tail_init(&list, &this_hctx->dispatch);
2746                 spin_unlock(&this_hctx->lock);
2747                 blk_mq_run_hw_queue(this_hctx, from_sched);
2748         } else if (this_hctx->queue->elevator) {
2749                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2750                                 &list, 0);
2751                 blk_mq_run_hw_queue(this_hctx, from_sched);
2752         } else {
2753                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2754         }
2755         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2756 }
2757
2758 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2759 {
2760         struct request *rq;
2761
2762         /*
2763          * We may have been called recursively midway through handling
2764          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2765          * To avoid mq_list changing under our feet, clear rq_count early and
2766          * bail out specifically if rq_count is 0 rather than checking
2767          * whether the mq_list is empty.
2768          */
2769         if (plug->rq_count == 0)
2770                 return;
2771         plug->rq_count = 0;
2772
2773         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2774                 struct request_queue *q;
2775
2776                 rq = rq_list_peek(&plug->mq_list);
2777                 q = rq->q;
2778
2779                 /*
2780                  * Peek first request and see if we have a ->queue_rqs() hook.
2781                  * If we do, we can dispatch the whole plug list in one go. We
2782                  * already know at this point that all requests belong to the
2783                  * same queue, caller must ensure that's the case.
2784                  */
2785                 if (q->mq_ops->queue_rqs) {
2786                         blk_mq_run_dispatch_ops(q,
2787                                 __blk_mq_flush_plug_list(q, plug));
2788                         if (rq_list_empty(plug->mq_list))
2789                                 return;
2790                 }
2791
2792                 blk_mq_run_dispatch_ops(q,
2793                                 blk_mq_plug_issue_direct(plug));
2794                 if (rq_list_empty(plug->mq_list))
2795                         return;
2796         }
2797
2798         do {
2799                 blk_mq_dispatch_plug_list(plug, from_schedule);
2800         } while (!rq_list_empty(plug->mq_list));
2801 }
2802
2803 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2804                 struct list_head *list)
2805 {
2806         int queued = 0;
2807         blk_status_t ret = BLK_STS_OK;
2808
2809         while (!list_empty(list)) {
2810                 struct request *rq = list_first_entry(list, struct request,
2811                                 queuelist);
2812
2813                 list_del_init(&rq->queuelist);
2814                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2815                 switch (ret) {
2816                 case BLK_STS_OK:
2817                         queued++;
2818                         break;
2819                 case BLK_STS_RESOURCE:
2820                 case BLK_STS_DEV_RESOURCE:
2821                         blk_mq_request_bypass_insert(rq, 0);
2822                         if (list_empty(list))
2823                                 blk_mq_run_hw_queue(hctx, false);
2824                         goto out;
2825                 default:
2826                         blk_mq_end_request(rq, ret);
2827                         break;
2828                 }
2829         }
2830
2831 out:
2832         if (ret != BLK_STS_OK)
2833                 blk_mq_commit_rqs(hctx, queued, false);
2834 }
2835
2836 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2837                                      struct bio *bio, unsigned int nr_segs)
2838 {
2839         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2840                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2841                         return true;
2842                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2843                         return true;
2844         }
2845         return false;
2846 }
2847
2848 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2849                                                struct blk_plug *plug,
2850                                                struct bio *bio,
2851                                                unsigned int nsegs)
2852 {
2853         struct blk_mq_alloc_data data = {
2854                 .q              = q,
2855                 .nr_tags        = 1,
2856                 .cmd_flags      = bio->bi_opf,
2857         };
2858         struct request *rq;
2859
2860         rq_qos_throttle(q, bio);
2861
2862         if (plug) {
2863                 data.nr_tags = plug->nr_ios;
2864                 plug->nr_ios = 1;
2865                 data.cached_rq = &plug->cached_rq;
2866         }
2867
2868         rq = __blk_mq_alloc_requests(&data);
2869         if (rq)
2870                 return rq;
2871         rq_qos_cleanup(q, bio);
2872         if (bio->bi_opf & REQ_NOWAIT)
2873                 bio_wouldblock_error(bio);
2874         return NULL;
2875 }
2876
2877 /*
2878  * Check if there is a suitable cached request and return it.
2879  */
2880 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2881                 struct request_queue *q, blk_opf_t opf)
2882 {
2883         enum hctx_type type = blk_mq_get_hctx_type(opf);
2884         struct request *rq;
2885
2886         if (!plug)
2887                 return NULL;
2888         rq = rq_list_peek(&plug->cached_rq);
2889         if (!rq || rq->q != q)
2890                 return NULL;
2891         if (type != rq->mq_hctx->type &&
2892             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2893                 return NULL;
2894         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2895                 return NULL;
2896         return rq;
2897 }
2898
2899 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2900                 struct bio *bio)
2901 {
2902         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2903
2904         /*
2905          * If any qos ->throttle() end up blocking, we will have flushed the
2906          * plug and hence killed the cached_rq list as well. Pop this entry
2907          * before we throttle.
2908          */
2909         plug->cached_rq = rq_list_next(rq);
2910         rq_qos_throttle(rq->q, bio);
2911
2912         blk_mq_rq_time_init(rq, 0);
2913         rq->cmd_flags = bio->bi_opf;
2914         INIT_LIST_HEAD(&rq->queuelist);
2915 }
2916
2917 /**
2918  * blk_mq_submit_bio - Create and send a request to block device.
2919  * @bio: Bio pointer.
2920  *
2921  * Builds up a request structure from @q and @bio and send to the device. The
2922  * request may not be queued directly to hardware if:
2923  * * This request can be merged with another one
2924  * * We want to place request at plug queue for possible future merging
2925  * * There is an IO scheduler active at this queue
2926  *
2927  * It will not queue the request if there is an error with the bio, or at the
2928  * request creation.
2929  */
2930 void blk_mq_submit_bio(struct bio *bio)
2931 {
2932         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2933         struct blk_plug *plug = current->plug;
2934         const int is_sync = op_is_sync(bio->bi_opf);
2935         struct blk_mq_hw_ctx *hctx;
2936         unsigned int nr_segs = 1;
2937         struct request *rq;
2938         blk_status_t ret;
2939
2940         /*
2941          * If the plug has a cached request for this queue, try to use it.
2942          */
2943         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2944
2945         /*
2946          * A BIO that was released from a zone write plug has already been
2947          * through the preparation in this function, already holds a reference
2948          * on the queue usage counter, and is the only write BIO in-flight for
2949          * the target zone. Go straight to preparing a request for it.
2950          */
2951         if (bio_zone_write_plugging(bio)) {
2952                 nr_segs = bio->__bi_nr_segments;
2953                 if (rq)
2954                         blk_queue_exit(q);
2955                 goto new_request;
2956         }
2957
2958         bio = blk_queue_bounce(bio, q);
2959
2960         /*
2961          * The cached request already holds a q_usage_counter reference and we
2962          * don't have to acquire a new one if we use it.
2963          */
2964         if (!rq) {
2965                 if (unlikely(bio_queue_enter(bio)))
2966                         return;
2967         }
2968
2969         if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2970                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2971                 if (!bio)
2972                         goto queue_exit;
2973         }
2974         if (!bio_integrity_prep(bio))
2975                 goto queue_exit;
2976
2977         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2978                 goto queue_exit;
2979
2980         if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2981                 goto queue_exit;
2982
2983 new_request:
2984         if (!rq) {
2985                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2986                 if (unlikely(!rq))
2987                         goto queue_exit;
2988         } else {
2989                 blk_mq_use_cached_rq(rq, plug, bio);
2990         }
2991
2992         trace_block_getrq(bio);
2993
2994         rq_qos_track(q, rq, bio);
2995
2996         blk_mq_bio_to_request(rq, bio, nr_segs);
2997
2998         ret = blk_crypto_rq_get_keyslot(rq);
2999         if (ret != BLK_STS_OK) {
3000                 bio->bi_status = ret;
3001                 bio_endio(bio);
3002                 blk_mq_free_request(rq);
3003                 return;
3004         }
3005
3006         if (bio_zone_write_plugging(bio))
3007                 blk_zone_write_plug_init_request(rq);
3008
3009         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3010                 return;
3011
3012         if (plug) {
3013                 blk_add_rq_to_plug(plug, rq);
3014                 return;
3015         }
3016
3017         hctx = rq->mq_hctx;
3018         if ((rq->rq_flags & RQF_USE_SCHED) ||
3019             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3020                 blk_mq_insert_request(rq, 0);
3021                 blk_mq_run_hw_queue(hctx, true);
3022         } else {
3023                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3024         }
3025         return;
3026
3027 queue_exit:
3028         /*
3029          * Don't drop the queue reference if we were trying to use a cached
3030          * request and thus didn't acquire one.
3031          */
3032         if (!rq)
3033                 blk_queue_exit(q);
3034 }
3035
3036 #ifdef CONFIG_BLK_MQ_STACKING
3037 /**
3038  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3039  * @rq: the request being queued
3040  */
3041 blk_status_t blk_insert_cloned_request(struct request *rq)
3042 {
3043         struct request_queue *q = rq->q;
3044         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3045         unsigned int max_segments = blk_rq_get_max_segments(rq);
3046         blk_status_t ret;
3047
3048         if (blk_rq_sectors(rq) > max_sectors) {
3049                 /*
3050                  * SCSI device does not have a good way to return if
3051                  * Write Same/Zero is actually supported. If a device rejects
3052                  * a non-read/write command (discard, write same,etc.) the
3053                  * low-level device driver will set the relevant queue limit to
3054                  * 0 to prevent blk-lib from issuing more of the offending
3055                  * operations. Commands queued prior to the queue limit being
3056                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3057                  * errors being propagated to upper layers.
3058                  */
3059                 if (max_sectors == 0)
3060                         return BLK_STS_NOTSUPP;
3061
3062                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3063                         __func__, blk_rq_sectors(rq), max_sectors);
3064                 return BLK_STS_IOERR;
3065         }
3066
3067         /*
3068          * The queue settings related to segment counting may differ from the
3069          * original queue.
3070          */
3071         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3072         if (rq->nr_phys_segments > max_segments) {
3073                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3074                         __func__, rq->nr_phys_segments, max_segments);
3075                 return BLK_STS_IOERR;
3076         }
3077
3078         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3079                 return BLK_STS_IOERR;
3080
3081         ret = blk_crypto_rq_get_keyslot(rq);
3082         if (ret != BLK_STS_OK)
3083                 return ret;
3084
3085         blk_account_io_start(rq);
3086
3087         /*
3088          * Since we have a scheduler attached on the top device,
3089          * bypass a potential scheduler on the bottom device for
3090          * insert.
3091          */
3092         blk_mq_run_dispatch_ops(q,
3093                         ret = blk_mq_request_issue_directly(rq, true));
3094         if (ret)
3095                 blk_account_io_done(rq, blk_time_get_ns());
3096         return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3099
3100 /**
3101  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3102  * @rq: the clone request to be cleaned up
3103  *
3104  * Description:
3105  *     Free all bios in @rq for a cloned request.
3106  */
3107 void blk_rq_unprep_clone(struct request *rq)
3108 {
3109         struct bio *bio;
3110
3111         while ((bio = rq->bio) != NULL) {
3112                 rq->bio = bio->bi_next;
3113
3114                 bio_put(bio);
3115         }
3116 }
3117 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3118
3119 /**
3120  * blk_rq_prep_clone - Helper function to setup clone request
3121  * @rq: the request to be setup
3122  * @rq_src: original request to be cloned
3123  * @bs: bio_set that bios for clone are allocated from
3124  * @gfp_mask: memory allocation mask for bio
3125  * @bio_ctr: setup function to be called for each clone bio.
3126  *           Returns %0 for success, non %0 for failure.
3127  * @data: private data to be passed to @bio_ctr
3128  *
3129  * Description:
3130  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3131  *     Also, pages which the original bios are pointing to are not copied
3132  *     and the cloned bios just point same pages.
3133  *     So cloned bios must be completed before original bios, which means
3134  *     the caller must complete @rq before @rq_src.
3135  */
3136 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3137                       struct bio_set *bs, gfp_t gfp_mask,
3138                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3139                       void *data)
3140 {
3141         struct bio *bio, *bio_src;
3142
3143         if (!bs)
3144                 bs = &fs_bio_set;
3145
3146         __rq_for_each_bio(bio_src, rq_src) {
3147                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3148                                       bs);
3149                 if (!bio)
3150                         goto free_and_out;
3151
3152                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3153                         goto free_and_out;
3154
3155                 if (rq->bio) {
3156                         rq->biotail->bi_next = bio;
3157                         rq->biotail = bio;
3158                 } else {
3159                         rq->bio = rq->biotail = bio;
3160                 }
3161                 bio = NULL;
3162         }
3163
3164         /* Copy attributes of the original request to the clone request. */
3165         rq->__sector = blk_rq_pos(rq_src);
3166         rq->__data_len = blk_rq_bytes(rq_src);
3167         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3168                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3169                 rq->special_vec = rq_src->special_vec;
3170         }
3171         rq->nr_phys_segments = rq_src->nr_phys_segments;
3172         rq->ioprio = rq_src->ioprio;
3173         rq->write_hint = rq_src->write_hint;
3174
3175         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3176                 goto free_and_out;
3177
3178         return 0;
3179
3180 free_and_out:
3181         if (bio)
3182                 bio_put(bio);
3183         blk_rq_unprep_clone(rq);
3184
3185         return -ENOMEM;
3186 }
3187 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3188 #endif /* CONFIG_BLK_MQ_STACKING */
3189
3190 /*
3191  * Steal bios from a request and add them to a bio list.
3192  * The request must not have been partially completed before.
3193  */
3194 void blk_steal_bios(struct bio_list *list, struct request *rq)
3195 {
3196         if (rq->bio) {
3197                 if (list->tail)
3198                         list->tail->bi_next = rq->bio;
3199                 else
3200                         list->head = rq->bio;
3201                 list->tail = rq->biotail;
3202
3203                 rq->bio = NULL;
3204                 rq->biotail = NULL;
3205         }
3206
3207         rq->__data_len = 0;
3208 }
3209 EXPORT_SYMBOL_GPL(blk_steal_bios);
3210
3211 static size_t order_to_size(unsigned int order)
3212 {
3213         return (size_t)PAGE_SIZE << order;
3214 }
3215
3216 /* called before freeing request pool in @tags */
3217 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3218                                     struct blk_mq_tags *tags)
3219 {
3220         struct page *page;
3221         unsigned long flags;
3222
3223         /*
3224          * There is no need to clear mapping if driver tags is not initialized
3225          * or the mapping belongs to the driver tags.
3226          */
3227         if (!drv_tags || drv_tags == tags)
3228                 return;
3229
3230         list_for_each_entry(page, &tags->page_list, lru) {
3231                 unsigned long start = (unsigned long)page_address(page);
3232                 unsigned long end = start + order_to_size(page->private);
3233                 int i;
3234
3235                 for (i = 0; i < drv_tags->nr_tags; i++) {
3236                         struct request *rq = drv_tags->rqs[i];
3237                         unsigned long rq_addr = (unsigned long)rq;
3238
3239                         if (rq_addr >= start && rq_addr < end) {
3240                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3241                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3242                         }
3243                 }
3244         }
3245
3246         /*
3247          * Wait until all pending iteration is done.
3248          *
3249          * Request reference is cleared and it is guaranteed to be observed
3250          * after the ->lock is released.
3251          */
3252         spin_lock_irqsave(&drv_tags->lock, flags);
3253         spin_unlock_irqrestore(&drv_tags->lock, flags);
3254 }
3255
3256 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3257                      unsigned int hctx_idx)
3258 {
3259         struct blk_mq_tags *drv_tags;
3260         struct page *page;
3261
3262         if (list_empty(&tags->page_list))
3263                 return;
3264
3265         if (blk_mq_is_shared_tags(set->flags))
3266                 drv_tags = set->shared_tags;
3267         else
3268                 drv_tags = set->tags[hctx_idx];
3269
3270         if (tags->static_rqs && set->ops->exit_request) {
3271                 int i;
3272
3273                 for (i = 0; i < tags->nr_tags; i++) {
3274                         struct request *rq = tags->static_rqs[i];
3275
3276                         if (!rq)
3277                                 continue;
3278                         set->ops->exit_request(set, rq, hctx_idx);
3279                         tags->static_rqs[i] = NULL;
3280                 }
3281         }
3282
3283         blk_mq_clear_rq_mapping(drv_tags, tags);
3284
3285         while (!list_empty(&tags->page_list)) {
3286                 page = list_first_entry(&tags->page_list, struct page, lru);
3287                 list_del_init(&page->lru);
3288                 /*
3289                  * Remove kmemleak object previously allocated in
3290                  * blk_mq_alloc_rqs().
3291                  */
3292                 kmemleak_free(page_address(page));
3293                 __free_pages(page, page->private);
3294         }
3295 }
3296
3297 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3298 {
3299         kfree(tags->rqs);
3300         tags->rqs = NULL;
3301         kfree(tags->static_rqs);
3302         tags->static_rqs = NULL;
3303
3304         blk_mq_free_tags(tags);
3305 }
3306
3307 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3308                 unsigned int hctx_idx)
3309 {
3310         int i;
3311
3312         for (i = 0; i < set->nr_maps; i++) {
3313                 unsigned int start = set->map[i].queue_offset;
3314                 unsigned int end = start + set->map[i].nr_queues;
3315
3316                 if (hctx_idx >= start && hctx_idx < end)
3317                         break;
3318         }
3319
3320         if (i >= set->nr_maps)
3321                 i = HCTX_TYPE_DEFAULT;
3322
3323         return i;
3324 }
3325
3326 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3327                 unsigned int hctx_idx)
3328 {
3329         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3330
3331         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3332 }
3333
3334 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3335                                                unsigned int hctx_idx,
3336                                                unsigned int nr_tags,
3337                                                unsigned int reserved_tags)
3338 {
3339         int node = blk_mq_get_hctx_node(set, hctx_idx);
3340         struct blk_mq_tags *tags;
3341
3342         if (node == NUMA_NO_NODE)
3343                 node = set->numa_node;
3344
3345         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3346                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3347         if (!tags)
3348                 return NULL;
3349
3350         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3351                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3352                                  node);
3353         if (!tags->rqs)
3354                 goto err_free_tags;
3355
3356         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3357                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3358                                         node);
3359         if (!tags->static_rqs)
3360                 goto err_free_rqs;
3361
3362         return tags;
3363
3364 err_free_rqs:
3365         kfree(tags->rqs);
3366 err_free_tags:
3367         blk_mq_free_tags(tags);
3368         return NULL;
3369 }
3370
3371 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3372                                unsigned int hctx_idx, int node)
3373 {
3374         int ret;
3375
3376         if (set->ops->init_request) {
3377                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3378                 if (ret)
3379                         return ret;
3380         }
3381
3382         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3383         return 0;
3384 }
3385
3386 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3387                             struct blk_mq_tags *tags,
3388                             unsigned int hctx_idx, unsigned int depth)
3389 {
3390         unsigned int i, j, entries_per_page, max_order = 4;
3391         int node = blk_mq_get_hctx_node(set, hctx_idx);
3392         size_t rq_size, left;
3393
3394         if (node == NUMA_NO_NODE)
3395                 node = set->numa_node;
3396
3397         INIT_LIST_HEAD(&tags->page_list);
3398
3399         /*
3400          * rq_size is the size of the request plus driver payload, rounded
3401          * to the cacheline size
3402          */
3403         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3404                                 cache_line_size());
3405         left = rq_size * depth;
3406
3407         for (i = 0; i < depth; ) {
3408                 int this_order = max_order;
3409                 struct page *page;
3410                 int to_do;
3411                 void *p;
3412
3413                 while (this_order && left < order_to_size(this_order - 1))
3414                         this_order--;
3415
3416                 do {
3417                         page = alloc_pages_node(node,
3418                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3419                                 this_order);
3420                         if (page)
3421                                 break;
3422                         if (!this_order--)
3423                                 break;
3424                         if (order_to_size(this_order) < rq_size)
3425                                 break;
3426                 } while (1);
3427
3428                 if (!page)
3429                         goto fail;
3430
3431                 page->private = this_order;
3432                 list_add_tail(&page->lru, &tags->page_list);
3433
3434                 p = page_address(page);
3435                 /*
3436                  * Allow kmemleak to scan these pages as they contain pointers
3437                  * to additional allocations like via ops->init_request().
3438                  */
3439                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3440                 entries_per_page = order_to_size(this_order) / rq_size;
3441                 to_do = min(entries_per_page, depth - i);
3442                 left -= to_do * rq_size;
3443                 for (j = 0; j < to_do; j++) {
3444                         struct request *rq = p;
3445
3446                         tags->static_rqs[i] = rq;
3447                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3448                                 tags->static_rqs[i] = NULL;
3449                                 goto fail;
3450                         }
3451
3452                         p += rq_size;
3453                         i++;
3454                 }
3455         }
3456         return 0;
3457
3458 fail:
3459         blk_mq_free_rqs(set, tags, hctx_idx);
3460         return -ENOMEM;
3461 }
3462
3463 struct rq_iter_data {
3464         struct blk_mq_hw_ctx *hctx;
3465         bool has_rq;
3466 };
3467
3468 static bool blk_mq_has_request(struct request *rq, void *data)
3469 {
3470         struct rq_iter_data *iter_data = data;
3471
3472         if (rq->mq_hctx != iter_data->hctx)
3473                 return true;
3474         iter_data->has_rq = true;
3475         return false;
3476 }
3477
3478 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3479 {
3480         struct blk_mq_tags *tags = hctx->sched_tags ?
3481                         hctx->sched_tags : hctx->tags;
3482         struct rq_iter_data data = {
3483                 .hctx   = hctx,
3484         };
3485
3486         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3487         return data.has_rq;
3488 }
3489
3490 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3491                 unsigned int this_cpu)
3492 {
3493         enum hctx_type type = hctx->type;
3494         int cpu;
3495
3496         /*
3497          * hctx->cpumask has to rule out isolated CPUs, but userspace still
3498          * might submit IOs on these isolated CPUs, so use the queue map to
3499          * check if all CPUs mapped to this hctx are offline
3500          */
3501         for_each_online_cpu(cpu) {
3502                 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3503                                 type, cpu);
3504
3505                 if (h != hctx)
3506                         continue;
3507
3508                 /* this hctx has at least one online CPU */
3509                 if (this_cpu != cpu)
3510                         return true;
3511         }
3512
3513         return false;
3514 }
3515
3516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3517 {
3518         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3519                         struct blk_mq_hw_ctx, cpuhp_online);
3520
3521         if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3522                 return 0;
3523
3524         /*
3525          * Prevent new request from being allocated on the current hctx.
3526          *
3527          * The smp_mb__after_atomic() Pairs with the implied barrier in
3528          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3529          * seen once we return from the tag allocator.
3530          */
3531         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3532         smp_mb__after_atomic();
3533
3534         /*
3535          * Try to grab a reference to the queue and wait for any outstanding
3536          * requests.  If we could not grab a reference the queue has been
3537          * frozen and there are no requests.
3538          */
3539         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3540                 while (blk_mq_hctx_has_requests(hctx))
3541                         msleep(5);
3542                 percpu_ref_put(&hctx->queue->q_usage_counter);
3543         }
3544
3545         return 0;
3546 }
3547
3548 /*
3549  * Check if one CPU is mapped to the specified hctx
3550  *
3551  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3552  * to be used for scheduling kworker only. For other usage, please call this
3553  * helper for checking if one CPU belongs to the specified hctx
3554  */
3555 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3556                 const struct blk_mq_hw_ctx *hctx)
3557 {
3558         struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3559                         hctx->type, cpu);
3560
3561         return mapped_hctx == hctx;
3562 }
3563
3564 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3565 {
3566         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3567                         struct blk_mq_hw_ctx, cpuhp_online);
3568
3569         if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3570                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3571         return 0;
3572 }
3573
3574 /*
3575  * 'cpu' is going away. splice any existing rq_list entries from this
3576  * software queue to the hw queue dispatch list, and ensure that it
3577  * gets run.
3578  */
3579 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3580 {
3581         struct blk_mq_hw_ctx *hctx;
3582         struct blk_mq_ctx *ctx;
3583         LIST_HEAD(tmp);
3584         enum hctx_type type;
3585
3586         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3587         if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3588                 return 0;
3589
3590         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3591         type = hctx->type;
3592
3593         spin_lock(&ctx->lock);
3594         if (!list_empty(&ctx->rq_lists[type])) {
3595                 list_splice_init(&ctx->rq_lists[type], &tmp);
3596                 blk_mq_hctx_clear_pending(hctx, ctx);
3597         }
3598         spin_unlock(&ctx->lock);
3599
3600         if (list_empty(&tmp))
3601                 return 0;
3602
3603         spin_lock(&hctx->lock);
3604         list_splice_tail_init(&tmp, &hctx->dispatch);
3605         spin_unlock(&hctx->lock);
3606
3607         blk_mq_run_hw_queue(hctx, true);
3608         return 0;
3609 }
3610
3611 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3612 {
3613         if (!(hctx->flags & BLK_MQ_F_STACKING))
3614                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3615                                                     &hctx->cpuhp_online);
3616         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3617                                             &hctx->cpuhp_dead);
3618 }
3619
3620 /*
3621  * Before freeing hw queue, clearing the flush request reference in
3622  * tags->rqs[] for avoiding potential UAF.
3623  */
3624 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3625                 unsigned int queue_depth, struct request *flush_rq)
3626 {
3627         int i;
3628         unsigned long flags;
3629
3630         /* The hw queue may not be mapped yet */
3631         if (!tags)
3632                 return;
3633
3634         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3635
3636         for (i = 0; i < queue_depth; i++)
3637                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3638
3639         /*
3640          * Wait until all pending iteration is done.
3641          *
3642          * Request reference is cleared and it is guaranteed to be observed
3643          * after the ->lock is released.
3644          */
3645         spin_lock_irqsave(&tags->lock, flags);
3646         spin_unlock_irqrestore(&tags->lock, flags);
3647 }
3648
3649 /* hctx->ctxs will be freed in queue's release handler */
3650 static void blk_mq_exit_hctx(struct request_queue *q,
3651                 struct blk_mq_tag_set *set,
3652                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3653 {
3654         struct request *flush_rq = hctx->fq->flush_rq;
3655
3656         if (blk_mq_hw_queue_mapped(hctx))
3657                 blk_mq_tag_idle(hctx);
3658
3659         if (blk_queue_init_done(q))
3660                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3661                                 set->queue_depth, flush_rq);
3662         if (set->ops->exit_request)
3663                 set->ops->exit_request(set, flush_rq, hctx_idx);
3664
3665         if (set->ops->exit_hctx)
3666                 set->ops->exit_hctx(hctx, hctx_idx);
3667
3668         blk_mq_remove_cpuhp(hctx);
3669
3670         xa_erase(&q->hctx_table, hctx_idx);
3671
3672         spin_lock(&q->unused_hctx_lock);
3673         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3674         spin_unlock(&q->unused_hctx_lock);
3675 }
3676
3677 static void blk_mq_exit_hw_queues(struct request_queue *q,
3678                 struct blk_mq_tag_set *set, int nr_queue)
3679 {
3680         struct blk_mq_hw_ctx *hctx;
3681         unsigned long i;
3682
3683         queue_for_each_hw_ctx(q, hctx, i) {
3684                 if (i == nr_queue)
3685                         break;
3686                 blk_mq_exit_hctx(q, set, hctx, i);
3687         }
3688 }
3689
3690 static int blk_mq_init_hctx(struct request_queue *q,
3691                 struct blk_mq_tag_set *set,
3692                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3693 {
3694         hctx->queue_num = hctx_idx;
3695
3696         if (!(hctx->flags & BLK_MQ_F_STACKING))
3697                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3698                                 &hctx->cpuhp_online);
3699         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3700
3701         hctx->tags = set->tags[hctx_idx];
3702
3703         if (set->ops->init_hctx &&
3704             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3705                 goto unregister_cpu_notifier;
3706
3707         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3708                                 hctx->numa_node))
3709                 goto exit_hctx;
3710
3711         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3712                 goto exit_flush_rq;
3713
3714         return 0;
3715
3716  exit_flush_rq:
3717         if (set->ops->exit_request)
3718                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3719  exit_hctx:
3720         if (set->ops->exit_hctx)
3721                 set->ops->exit_hctx(hctx, hctx_idx);
3722  unregister_cpu_notifier:
3723         blk_mq_remove_cpuhp(hctx);
3724         return -1;
3725 }
3726
3727 static struct blk_mq_hw_ctx *
3728 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3729                 int node)
3730 {
3731         struct blk_mq_hw_ctx *hctx;
3732         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3733
3734         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3735         if (!hctx)
3736                 goto fail_alloc_hctx;
3737
3738         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3739                 goto free_hctx;
3740
3741         atomic_set(&hctx->nr_active, 0);
3742         if (node == NUMA_NO_NODE)
3743                 node = set->numa_node;
3744         hctx->numa_node = node;
3745
3746         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3747         spin_lock_init(&hctx->lock);
3748         INIT_LIST_HEAD(&hctx->dispatch);
3749         hctx->queue = q;
3750         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3751
3752         INIT_LIST_HEAD(&hctx->hctx_list);
3753
3754         /*
3755          * Allocate space for all possible cpus to avoid allocation at
3756          * runtime
3757          */
3758         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3759                         gfp, node);
3760         if (!hctx->ctxs)
3761                 goto free_cpumask;
3762
3763         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3764                                 gfp, node, false, false))
3765                 goto free_ctxs;
3766         hctx->nr_ctx = 0;
3767
3768         spin_lock_init(&hctx->dispatch_wait_lock);
3769         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3770         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3771
3772         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3773         if (!hctx->fq)
3774                 goto free_bitmap;
3775
3776         blk_mq_hctx_kobj_init(hctx);
3777
3778         return hctx;
3779
3780  free_bitmap:
3781         sbitmap_free(&hctx->ctx_map);
3782  free_ctxs:
3783         kfree(hctx->ctxs);
3784  free_cpumask:
3785         free_cpumask_var(hctx->cpumask);
3786  free_hctx:
3787         kfree(hctx);
3788  fail_alloc_hctx:
3789         return NULL;
3790 }
3791
3792 static void blk_mq_init_cpu_queues(struct request_queue *q,
3793                                    unsigned int nr_hw_queues)
3794 {
3795         struct blk_mq_tag_set *set = q->tag_set;
3796         unsigned int i, j;
3797
3798         for_each_possible_cpu(i) {
3799                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3800                 struct blk_mq_hw_ctx *hctx;
3801                 int k;
3802
3803                 __ctx->cpu = i;
3804                 spin_lock_init(&__ctx->lock);
3805                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3806                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3807
3808                 __ctx->queue = q;
3809
3810                 /*
3811                  * Set local node, IFF we have more than one hw queue. If
3812                  * not, we remain on the home node of the device
3813                  */
3814                 for (j = 0; j < set->nr_maps; j++) {
3815                         hctx = blk_mq_map_queue_type(q, j, i);
3816                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3817                                 hctx->numa_node = cpu_to_node(i);
3818                 }
3819         }
3820 }
3821
3822 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3823                                              unsigned int hctx_idx,
3824                                              unsigned int depth)
3825 {
3826         struct blk_mq_tags *tags;
3827         int ret;
3828
3829         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3830         if (!tags)
3831                 return NULL;
3832
3833         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3834         if (ret) {
3835                 blk_mq_free_rq_map(tags);
3836                 return NULL;
3837         }
3838
3839         return tags;
3840 }
3841
3842 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3843                                        int hctx_idx)
3844 {
3845         if (blk_mq_is_shared_tags(set->flags)) {
3846                 set->tags[hctx_idx] = set->shared_tags;
3847
3848                 return true;
3849         }
3850
3851         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3852                                                        set->queue_depth);
3853
3854         return set->tags[hctx_idx];
3855 }
3856
3857 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3858                              struct blk_mq_tags *tags,
3859                              unsigned int hctx_idx)
3860 {
3861         if (tags) {
3862                 blk_mq_free_rqs(set, tags, hctx_idx);
3863                 blk_mq_free_rq_map(tags);
3864         }
3865 }
3866
3867 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3868                                       unsigned int hctx_idx)
3869 {
3870         if (!blk_mq_is_shared_tags(set->flags))
3871                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3872
3873         set->tags[hctx_idx] = NULL;
3874 }
3875
3876 static void blk_mq_map_swqueue(struct request_queue *q)
3877 {
3878         unsigned int j, hctx_idx;
3879         unsigned long i;
3880         struct blk_mq_hw_ctx *hctx;
3881         struct blk_mq_ctx *ctx;
3882         struct blk_mq_tag_set *set = q->tag_set;
3883
3884         queue_for_each_hw_ctx(q, hctx, i) {
3885                 cpumask_clear(hctx->cpumask);
3886                 hctx->nr_ctx = 0;
3887                 hctx->dispatch_from = NULL;
3888         }
3889
3890         /*
3891          * Map software to hardware queues.
3892          *
3893          * If the cpu isn't present, the cpu is mapped to first hctx.
3894          */
3895         for_each_possible_cpu(i) {
3896
3897                 ctx = per_cpu_ptr(q->queue_ctx, i);
3898                 for (j = 0; j < set->nr_maps; j++) {
3899                         if (!set->map[j].nr_queues) {
3900                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3901                                                 HCTX_TYPE_DEFAULT, i);
3902                                 continue;
3903                         }
3904                         hctx_idx = set->map[j].mq_map[i];
3905                         /* unmapped hw queue can be remapped after CPU topo changed */
3906                         if (!set->tags[hctx_idx] &&
3907                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3908                                 /*
3909                                  * If tags initialization fail for some hctx,
3910                                  * that hctx won't be brought online.  In this
3911                                  * case, remap the current ctx to hctx[0] which
3912                                  * is guaranteed to always have tags allocated
3913                                  */
3914                                 set->map[j].mq_map[i] = 0;
3915                         }
3916
3917                         hctx = blk_mq_map_queue_type(q, j, i);
3918                         ctx->hctxs[j] = hctx;
3919                         /*
3920                          * If the CPU is already set in the mask, then we've
3921                          * mapped this one already. This can happen if
3922                          * devices share queues across queue maps.
3923                          */
3924                         if (cpumask_test_cpu(i, hctx->cpumask))
3925                                 continue;
3926
3927                         cpumask_set_cpu(i, hctx->cpumask);
3928                         hctx->type = j;
3929                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3930                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3931
3932                         /*
3933                          * If the nr_ctx type overflows, we have exceeded the
3934                          * amount of sw queues we can support.
3935                          */
3936                         BUG_ON(!hctx->nr_ctx);
3937                 }
3938
3939                 for (; j < HCTX_MAX_TYPES; j++)
3940                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3941                                         HCTX_TYPE_DEFAULT, i);
3942         }
3943
3944         queue_for_each_hw_ctx(q, hctx, i) {
3945                 int cpu;
3946
3947                 /*
3948                  * If no software queues are mapped to this hardware queue,
3949                  * disable it and free the request entries.
3950                  */
3951                 if (!hctx->nr_ctx) {
3952                         /* Never unmap queue 0.  We need it as a
3953                          * fallback in case of a new remap fails
3954                          * allocation
3955                          */
3956                         if (i)
3957                                 __blk_mq_free_map_and_rqs(set, i);
3958
3959                         hctx->tags = NULL;
3960                         continue;
3961                 }
3962
3963                 hctx->tags = set->tags[i];
3964                 WARN_ON(!hctx->tags);
3965
3966                 /*
3967                  * Set the map size to the number of mapped software queues.
3968                  * This is more accurate and more efficient than looping
3969                  * over all possibly mapped software queues.
3970                  */
3971                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3972
3973                 /*
3974                  * Rule out isolated CPUs from hctx->cpumask to avoid
3975                  * running block kworker on isolated CPUs
3976                  */
3977                 for_each_cpu(cpu, hctx->cpumask) {
3978                         if (cpu_is_isolated(cpu))
3979                                 cpumask_clear_cpu(cpu, hctx->cpumask);
3980                 }
3981
3982                 /*
3983                  * Initialize batch roundrobin counts
3984                  */
3985                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3986                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3987         }
3988 }
3989
3990 /*
3991  * Caller needs to ensure that we're either frozen/quiesced, or that
3992  * the queue isn't live yet.
3993  */
3994 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3995 {
3996         struct blk_mq_hw_ctx *hctx;
3997         unsigned long i;
3998
3999         queue_for_each_hw_ctx(q, hctx, i) {
4000                 if (shared) {
4001                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4002                 } else {
4003                         blk_mq_tag_idle(hctx);
4004                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4005                 }
4006         }
4007 }
4008
4009 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4010                                          bool shared)
4011 {
4012         struct request_queue *q;
4013
4014         lockdep_assert_held(&set->tag_list_lock);
4015
4016         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4017                 blk_mq_freeze_queue(q);
4018                 queue_set_hctx_shared(q, shared);
4019                 blk_mq_unfreeze_queue(q);
4020         }
4021 }
4022
4023 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4024 {
4025         struct blk_mq_tag_set *set = q->tag_set;
4026
4027         mutex_lock(&set->tag_list_lock);
4028         list_del(&q->tag_set_list);
4029         if (list_is_singular(&set->tag_list)) {
4030                 /* just transitioned to unshared */
4031                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4032                 /* update existing queue */
4033                 blk_mq_update_tag_set_shared(set, false);
4034         }
4035         mutex_unlock(&set->tag_list_lock);
4036         INIT_LIST_HEAD(&q->tag_set_list);
4037 }
4038
4039 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4040                                      struct request_queue *q)
4041 {
4042         mutex_lock(&set->tag_list_lock);
4043
4044         /*
4045          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4046          */
4047         if (!list_empty(&set->tag_list) &&
4048             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4049                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4050                 /* update existing queue */
4051                 blk_mq_update_tag_set_shared(set, true);
4052         }
4053         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4054                 queue_set_hctx_shared(q, true);
4055         list_add_tail(&q->tag_set_list, &set->tag_list);
4056
4057         mutex_unlock(&set->tag_list_lock);
4058 }
4059
4060 /* All allocations will be freed in release handler of q->mq_kobj */
4061 static int blk_mq_alloc_ctxs(struct request_queue *q)
4062 {
4063         struct blk_mq_ctxs *ctxs;
4064         int cpu;
4065
4066         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4067         if (!ctxs)
4068                 return -ENOMEM;
4069
4070         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4071         if (!ctxs->queue_ctx)
4072                 goto fail;
4073
4074         for_each_possible_cpu(cpu) {
4075                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4076                 ctx->ctxs = ctxs;
4077         }
4078
4079         q->mq_kobj = &ctxs->kobj;
4080         q->queue_ctx = ctxs->queue_ctx;
4081
4082         return 0;
4083  fail:
4084         kfree(ctxs);
4085         return -ENOMEM;
4086 }
4087
4088 /*
4089  * It is the actual release handler for mq, but we do it from
4090  * request queue's release handler for avoiding use-after-free
4091  * and headache because q->mq_kobj shouldn't have been introduced,
4092  * but we can't group ctx/kctx kobj without it.
4093  */
4094 void blk_mq_release(struct request_queue *q)
4095 {
4096         struct blk_mq_hw_ctx *hctx, *next;
4097         unsigned long i;
4098
4099         queue_for_each_hw_ctx(q, hctx, i)
4100                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4101
4102         /* all hctx are in .unused_hctx_list now */
4103         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4104                 list_del_init(&hctx->hctx_list);
4105                 kobject_put(&hctx->kobj);
4106         }
4107
4108         xa_destroy(&q->hctx_table);
4109
4110         /*
4111          * release .mq_kobj and sw queue's kobject now because
4112          * both share lifetime with request queue.
4113          */
4114         blk_mq_sysfs_deinit(q);
4115 }
4116
4117 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4118                 struct queue_limits *lim, void *queuedata)
4119 {
4120         struct queue_limits default_lim = { };
4121         struct request_queue *q;
4122         int ret;
4123
4124         q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4125         if (IS_ERR(q))
4126                 return q;
4127         q->queuedata = queuedata;
4128         ret = blk_mq_init_allocated_queue(set, q);
4129         if (ret) {
4130                 blk_put_queue(q);
4131                 return ERR_PTR(ret);
4132         }
4133         return q;
4134 }
4135 EXPORT_SYMBOL(blk_mq_alloc_queue);
4136
4137 /**
4138  * blk_mq_destroy_queue - shutdown a request queue
4139  * @q: request queue to shutdown
4140  *
4141  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4142  * requests will be failed with -ENODEV. The caller is responsible for dropping
4143  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4144  *
4145  * Context: can sleep
4146  */
4147 void blk_mq_destroy_queue(struct request_queue *q)
4148 {
4149         WARN_ON_ONCE(!queue_is_mq(q));
4150         WARN_ON_ONCE(blk_queue_registered(q));
4151
4152         might_sleep();
4153
4154         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4155         blk_queue_start_drain(q);
4156         blk_mq_freeze_queue_wait(q);
4157
4158         blk_sync_queue(q);
4159         blk_mq_cancel_work_sync(q);
4160         blk_mq_exit_queue(q);
4161 }
4162 EXPORT_SYMBOL(blk_mq_destroy_queue);
4163
4164 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4165                 struct queue_limits *lim, void *queuedata,
4166                 struct lock_class_key *lkclass)
4167 {
4168         struct request_queue *q;
4169         struct gendisk *disk;
4170
4171         q = blk_mq_alloc_queue(set, lim, queuedata);
4172         if (IS_ERR(q))
4173                 return ERR_CAST(q);
4174
4175         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4176         if (!disk) {
4177                 blk_mq_destroy_queue(q);
4178                 blk_put_queue(q);
4179                 return ERR_PTR(-ENOMEM);
4180         }
4181         set_bit(GD_OWNS_QUEUE, &disk->state);
4182         return disk;
4183 }
4184 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4185
4186 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4187                 struct lock_class_key *lkclass)
4188 {
4189         struct gendisk *disk;
4190
4191         if (!blk_get_queue(q))
4192                 return NULL;
4193         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4194         if (!disk)
4195                 blk_put_queue(q);
4196         return disk;
4197 }
4198 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4199
4200 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4201                 struct blk_mq_tag_set *set, struct request_queue *q,
4202                 int hctx_idx, int node)
4203 {
4204         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4205
4206         /* reuse dead hctx first */
4207         spin_lock(&q->unused_hctx_lock);
4208         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4209                 if (tmp->numa_node == node) {
4210                         hctx = tmp;
4211                         break;
4212                 }
4213         }
4214         if (hctx)
4215                 list_del_init(&hctx->hctx_list);
4216         spin_unlock(&q->unused_hctx_lock);
4217
4218         if (!hctx)
4219                 hctx = blk_mq_alloc_hctx(q, set, node);
4220         if (!hctx)
4221                 goto fail;
4222
4223         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4224                 goto free_hctx;
4225
4226         return hctx;
4227
4228  free_hctx:
4229         kobject_put(&hctx->kobj);
4230  fail:
4231         return NULL;
4232 }
4233
4234 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4235                                                 struct request_queue *q)
4236 {
4237         struct blk_mq_hw_ctx *hctx;
4238         unsigned long i, j;
4239
4240         /* protect against switching io scheduler  */
4241         mutex_lock(&q->sysfs_lock);
4242         for (i = 0; i < set->nr_hw_queues; i++) {
4243                 int old_node;
4244                 int node = blk_mq_get_hctx_node(set, i);
4245                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4246
4247                 if (old_hctx) {
4248                         old_node = old_hctx->numa_node;
4249                         blk_mq_exit_hctx(q, set, old_hctx, i);
4250                 }
4251
4252                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4253                         if (!old_hctx)
4254                                 break;
4255                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4256                                         node, old_node);
4257                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4258                         WARN_ON_ONCE(!hctx);
4259                 }
4260         }
4261         /*
4262          * Increasing nr_hw_queues fails. Free the newly allocated
4263          * hctxs and keep the previous q->nr_hw_queues.
4264          */
4265         if (i != set->nr_hw_queues) {
4266                 j = q->nr_hw_queues;
4267         } else {
4268                 j = i;
4269                 q->nr_hw_queues = set->nr_hw_queues;
4270         }
4271
4272         xa_for_each_start(&q->hctx_table, j, hctx, j)
4273                 blk_mq_exit_hctx(q, set, hctx, j);
4274         mutex_unlock(&q->sysfs_lock);
4275 }
4276
4277 static void blk_mq_update_poll_flag(struct request_queue *q)
4278 {
4279         struct blk_mq_tag_set *set = q->tag_set;
4280
4281         if (set->nr_maps > HCTX_TYPE_POLL &&
4282             set->map[HCTX_TYPE_POLL].nr_queues)
4283                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4284         else
4285                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4286 }
4287
4288 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4289                 struct request_queue *q)
4290 {
4291         /* mark the queue as mq asap */
4292         q->mq_ops = set->ops;
4293
4294         if (blk_mq_alloc_ctxs(q))
4295                 goto err_exit;
4296
4297         /* init q->mq_kobj and sw queues' kobjects */
4298         blk_mq_sysfs_init(q);
4299
4300         INIT_LIST_HEAD(&q->unused_hctx_list);
4301         spin_lock_init(&q->unused_hctx_lock);
4302
4303         xa_init(&q->hctx_table);
4304
4305         blk_mq_realloc_hw_ctxs(set, q);
4306         if (!q->nr_hw_queues)
4307                 goto err_hctxs;
4308
4309         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4310         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4311
4312         q->tag_set = set;
4313
4314         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4315         blk_mq_update_poll_flag(q);
4316
4317         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4318         INIT_LIST_HEAD(&q->flush_list);
4319         INIT_LIST_HEAD(&q->requeue_list);
4320         spin_lock_init(&q->requeue_lock);
4321
4322         q->nr_requests = set->queue_depth;
4323
4324         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4325         blk_mq_add_queue_tag_set(set, q);
4326         blk_mq_map_swqueue(q);
4327         return 0;
4328
4329 err_hctxs:
4330         blk_mq_release(q);
4331 err_exit:
4332         q->mq_ops = NULL;
4333         return -ENOMEM;
4334 }
4335 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4336
4337 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4338 void blk_mq_exit_queue(struct request_queue *q)
4339 {
4340         struct blk_mq_tag_set *set = q->tag_set;
4341
4342         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4343         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4344         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4345         blk_mq_del_queue_tag_set(q);
4346 }
4347
4348 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4349 {
4350         int i;
4351
4352         if (blk_mq_is_shared_tags(set->flags)) {
4353                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4354                                                 BLK_MQ_NO_HCTX_IDX,
4355                                                 set->queue_depth);
4356                 if (!set->shared_tags)
4357                         return -ENOMEM;
4358         }
4359
4360         for (i = 0; i < set->nr_hw_queues; i++) {
4361                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4362                         goto out_unwind;
4363                 cond_resched();
4364         }
4365
4366         return 0;
4367
4368 out_unwind:
4369         while (--i >= 0)
4370                 __blk_mq_free_map_and_rqs(set, i);
4371
4372         if (blk_mq_is_shared_tags(set->flags)) {
4373                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4374                                         BLK_MQ_NO_HCTX_IDX);
4375         }
4376
4377         return -ENOMEM;
4378 }
4379
4380 /*
4381  * Allocate the request maps associated with this tag_set. Note that this
4382  * may reduce the depth asked for, if memory is tight. set->queue_depth
4383  * will be updated to reflect the allocated depth.
4384  */
4385 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4386 {
4387         unsigned int depth;
4388         int err;
4389
4390         depth = set->queue_depth;
4391         do {
4392                 err = __blk_mq_alloc_rq_maps(set);
4393                 if (!err)
4394                         break;
4395
4396                 set->queue_depth >>= 1;
4397                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4398                         err = -ENOMEM;
4399                         break;
4400                 }
4401         } while (set->queue_depth);
4402
4403         if (!set->queue_depth || err) {
4404                 pr_err("blk-mq: failed to allocate request map\n");
4405                 return -ENOMEM;
4406         }
4407
4408         if (depth != set->queue_depth)
4409                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4410                                                 depth, set->queue_depth);
4411
4412         return 0;
4413 }
4414
4415 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4416 {
4417         /*
4418          * blk_mq_map_queues() and multiple .map_queues() implementations
4419          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4420          * number of hardware queues.
4421          */
4422         if (set->nr_maps == 1)
4423                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4424
4425         if (set->ops->map_queues) {
4426                 int i;
4427
4428                 /*
4429                  * transport .map_queues is usually done in the following
4430                  * way:
4431                  *
4432                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4433                  *      mask = get_cpu_mask(queue)
4434                  *      for_each_cpu(cpu, mask)
4435                  *              set->map[x].mq_map[cpu] = queue;
4436                  * }
4437                  *
4438                  * When we need to remap, the table has to be cleared for
4439                  * killing stale mapping since one CPU may not be mapped
4440                  * to any hw queue.
4441                  */
4442                 for (i = 0; i < set->nr_maps; i++)
4443                         blk_mq_clear_mq_map(&set->map[i]);
4444
4445                 set->ops->map_queues(set);
4446         } else {
4447                 BUG_ON(set->nr_maps > 1);
4448                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4449         }
4450 }
4451
4452 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4453                                        int new_nr_hw_queues)
4454 {
4455         struct blk_mq_tags **new_tags;
4456         int i;
4457
4458         if (set->nr_hw_queues >= new_nr_hw_queues)
4459                 goto done;
4460
4461         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4462                                 GFP_KERNEL, set->numa_node);
4463         if (!new_tags)
4464                 return -ENOMEM;
4465
4466         if (set->tags)
4467                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4468                        sizeof(*set->tags));
4469         kfree(set->tags);
4470         set->tags = new_tags;
4471
4472         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4473                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4474                         while (--i >= set->nr_hw_queues)
4475                                 __blk_mq_free_map_and_rqs(set, i);
4476                         return -ENOMEM;
4477                 }
4478                 cond_resched();
4479         }
4480
4481 done:
4482         set->nr_hw_queues = new_nr_hw_queues;
4483         return 0;
4484 }
4485
4486 /*
4487  * Alloc a tag set to be associated with one or more request queues.
4488  * May fail with EINVAL for various error conditions. May adjust the
4489  * requested depth down, if it's too large. In that case, the set
4490  * value will be stored in set->queue_depth.
4491  */
4492 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4493 {
4494         int i, ret;
4495
4496         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4497
4498         if (!set->nr_hw_queues)
4499                 return -EINVAL;
4500         if (!set->queue_depth)
4501                 return -EINVAL;
4502         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4503                 return -EINVAL;
4504
4505         if (!set->ops->queue_rq)
4506                 return -EINVAL;
4507
4508         if (!set->ops->get_budget ^ !set->ops->put_budget)
4509                 return -EINVAL;
4510
4511         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4512                 pr_info("blk-mq: reduced tag depth to %u\n",
4513                         BLK_MQ_MAX_DEPTH);
4514                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4515         }
4516
4517         if (!set->nr_maps)
4518                 set->nr_maps = 1;
4519         else if (set->nr_maps > HCTX_MAX_TYPES)
4520                 return -EINVAL;
4521
4522         /*
4523          * If a crashdump is active, then we are potentially in a very
4524          * memory constrained environment. Limit us to  64 tags to prevent
4525          * using too much memory.
4526          */
4527         if (is_kdump_kernel())
4528                 set->queue_depth = min(64U, set->queue_depth);
4529
4530         /*
4531          * There is no use for more h/w queues than cpus if we just have
4532          * a single map
4533          */
4534         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4535                 set->nr_hw_queues = nr_cpu_ids;
4536
4537         if (set->flags & BLK_MQ_F_BLOCKING) {
4538                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4539                 if (!set->srcu)
4540                         return -ENOMEM;
4541                 ret = init_srcu_struct(set->srcu);
4542                 if (ret)
4543                         goto out_free_srcu;
4544         }
4545
4546         ret = -ENOMEM;
4547         set->tags = kcalloc_node(set->nr_hw_queues,
4548                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4549                                  set->numa_node);
4550         if (!set->tags)
4551                 goto out_cleanup_srcu;
4552
4553         for (i = 0; i < set->nr_maps; i++) {
4554                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4555                                                   sizeof(set->map[i].mq_map[0]),
4556                                                   GFP_KERNEL, set->numa_node);
4557                 if (!set->map[i].mq_map)
4558                         goto out_free_mq_map;
4559                 set->map[i].nr_queues = set->nr_hw_queues;
4560         }
4561
4562         blk_mq_update_queue_map(set);
4563
4564         ret = blk_mq_alloc_set_map_and_rqs(set);
4565         if (ret)
4566                 goto out_free_mq_map;
4567
4568         mutex_init(&set->tag_list_lock);
4569         INIT_LIST_HEAD(&set->tag_list);
4570
4571         return 0;
4572
4573 out_free_mq_map:
4574         for (i = 0; i < set->nr_maps; i++) {
4575                 kfree(set->map[i].mq_map);
4576                 set->map[i].mq_map = NULL;
4577         }
4578         kfree(set->tags);
4579         set->tags = NULL;
4580 out_cleanup_srcu:
4581         if (set->flags & BLK_MQ_F_BLOCKING)
4582                 cleanup_srcu_struct(set->srcu);
4583 out_free_srcu:
4584         if (set->flags & BLK_MQ_F_BLOCKING)
4585                 kfree(set->srcu);
4586         return ret;
4587 }
4588 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4589
4590 /* allocate and initialize a tagset for a simple single-queue device */
4591 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4592                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4593                 unsigned int set_flags)
4594 {
4595         memset(set, 0, sizeof(*set));
4596         set->ops = ops;
4597         set->nr_hw_queues = 1;
4598         set->nr_maps = 1;
4599         set->queue_depth = queue_depth;
4600         set->numa_node = NUMA_NO_NODE;
4601         set->flags = set_flags;
4602         return blk_mq_alloc_tag_set(set);
4603 }
4604 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4605
4606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4607 {
4608         int i, j;
4609
4610         for (i = 0; i < set->nr_hw_queues; i++)
4611                 __blk_mq_free_map_and_rqs(set, i);
4612
4613         if (blk_mq_is_shared_tags(set->flags)) {
4614                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4615                                         BLK_MQ_NO_HCTX_IDX);
4616         }
4617
4618         for (j = 0; j < set->nr_maps; j++) {
4619                 kfree(set->map[j].mq_map);
4620                 set->map[j].mq_map = NULL;
4621         }
4622
4623         kfree(set->tags);
4624         set->tags = NULL;
4625         if (set->flags & BLK_MQ_F_BLOCKING) {
4626                 cleanup_srcu_struct(set->srcu);
4627                 kfree(set->srcu);
4628         }
4629 }
4630 EXPORT_SYMBOL(blk_mq_free_tag_set);
4631
4632 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4633 {
4634         struct blk_mq_tag_set *set = q->tag_set;
4635         struct blk_mq_hw_ctx *hctx;
4636         int ret;
4637         unsigned long i;
4638
4639         if (!set)
4640                 return -EINVAL;
4641
4642         if (q->nr_requests == nr)
4643                 return 0;
4644
4645         blk_mq_freeze_queue(q);
4646         blk_mq_quiesce_queue(q);
4647
4648         ret = 0;
4649         queue_for_each_hw_ctx(q, hctx, i) {
4650                 if (!hctx->tags)
4651                         continue;
4652                 /*
4653                  * If we're using an MQ scheduler, just update the scheduler
4654                  * queue depth. This is similar to what the old code would do.
4655                  */
4656                 if (hctx->sched_tags) {
4657                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4658                                                       nr, true);
4659                 } else {
4660                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4661                                                       false);
4662                 }
4663                 if (ret)
4664                         break;
4665                 if (q->elevator && q->elevator->type->ops.depth_updated)
4666                         q->elevator->type->ops.depth_updated(hctx);
4667         }
4668         if (!ret) {
4669                 q->nr_requests = nr;
4670                 if (blk_mq_is_shared_tags(set->flags)) {
4671                         if (q->elevator)
4672                                 blk_mq_tag_update_sched_shared_tags(q);
4673                         else
4674                                 blk_mq_tag_resize_shared_tags(set, nr);
4675                 }
4676         }
4677
4678         blk_mq_unquiesce_queue(q);
4679         blk_mq_unfreeze_queue(q);
4680
4681         return ret;
4682 }
4683
4684 /*
4685  * request_queue and elevator_type pair.
4686  * It is just used by __blk_mq_update_nr_hw_queues to cache
4687  * the elevator_type associated with a request_queue.
4688  */
4689 struct blk_mq_qe_pair {
4690         struct list_head node;
4691         struct request_queue *q;
4692         struct elevator_type *type;
4693 };
4694
4695 /*
4696  * Cache the elevator_type in qe pair list and switch the
4697  * io scheduler to 'none'
4698  */
4699 static bool blk_mq_elv_switch_none(struct list_head *head,
4700                 struct request_queue *q)
4701 {
4702         struct blk_mq_qe_pair *qe;
4703
4704         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4705         if (!qe)
4706                 return false;
4707
4708         /* q->elevator needs protection from ->sysfs_lock */
4709         mutex_lock(&q->sysfs_lock);
4710
4711         /* the check has to be done with holding sysfs_lock */
4712         if (!q->elevator) {
4713                 kfree(qe);
4714                 goto unlock;
4715         }
4716
4717         INIT_LIST_HEAD(&qe->node);
4718         qe->q = q;
4719         qe->type = q->elevator->type;
4720         /* keep a reference to the elevator module as we'll switch back */
4721         __elevator_get(qe->type);
4722         list_add(&qe->node, head);
4723         elevator_disable(q);
4724 unlock:
4725         mutex_unlock(&q->sysfs_lock);
4726
4727         return true;
4728 }
4729
4730 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4731                                                 struct request_queue *q)
4732 {
4733         struct blk_mq_qe_pair *qe;
4734
4735         list_for_each_entry(qe, head, node)
4736                 if (qe->q == q)
4737                         return qe;
4738
4739         return NULL;
4740 }
4741
4742 static void blk_mq_elv_switch_back(struct list_head *head,
4743                                   struct request_queue *q)
4744 {
4745         struct blk_mq_qe_pair *qe;
4746         struct elevator_type *t;
4747
4748         qe = blk_lookup_qe_pair(head, q);
4749         if (!qe)
4750                 return;
4751         t = qe->type;
4752         list_del(&qe->node);
4753         kfree(qe);
4754
4755         mutex_lock(&q->sysfs_lock);
4756         elevator_switch(q, t);
4757         /* drop the reference acquired in blk_mq_elv_switch_none */
4758         elevator_put(t);
4759         mutex_unlock(&q->sysfs_lock);
4760 }
4761
4762 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4763                                                         int nr_hw_queues)
4764 {
4765         struct request_queue *q;
4766         LIST_HEAD(head);
4767         int prev_nr_hw_queues = set->nr_hw_queues;
4768         int i;
4769
4770         lockdep_assert_held(&set->tag_list_lock);
4771
4772         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4773                 nr_hw_queues = nr_cpu_ids;
4774         if (nr_hw_queues < 1)
4775                 return;
4776         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4777                 return;
4778
4779         list_for_each_entry(q, &set->tag_list, tag_set_list)
4780                 blk_mq_freeze_queue(q);
4781         /*
4782          * Switch IO scheduler to 'none', cleaning up the data associated
4783          * with the previous scheduler. We will switch back once we are done
4784          * updating the new sw to hw queue mappings.
4785          */
4786         list_for_each_entry(q, &set->tag_list, tag_set_list)
4787                 if (!blk_mq_elv_switch_none(&head, q))
4788                         goto switch_back;
4789
4790         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4791                 blk_mq_debugfs_unregister_hctxs(q);
4792                 blk_mq_sysfs_unregister_hctxs(q);
4793         }
4794
4795         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4796                 goto reregister;
4797
4798 fallback:
4799         blk_mq_update_queue_map(set);
4800         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4801                 blk_mq_realloc_hw_ctxs(set, q);
4802                 blk_mq_update_poll_flag(q);
4803                 if (q->nr_hw_queues != set->nr_hw_queues) {
4804                         int i = prev_nr_hw_queues;
4805
4806                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4807                                         nr_hw_queues, prev_nr_hw_queues);
4808                         for (; i < set->nr_hw_queues; i++)
4809                                 __blk_mq_free_map_and_rqs(set, i);
4810
4811                         set->nr_hw_queues = prev_nr_hw_queues;
4812                         goto fallback;
4813                 }
4814                 blk_mq_map_swqueue(q);
4815         }
4816
4817 reregister:
4818         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4819                 blk_mq_sysfs_register_hctxs(q);
4820                 blk_mq_debugfs_register_hctxs(q);
4821         }
4822
4823 switch_back:
4824         list_for_each_entry(q, &set->tag_list, tag_set_list)
4825                 blk_mq_elv_switch_back(&head, q);
4826
4827         list_for_each_entry(q, &set->tag_list, tag_set_list)
4828                 blk_mq_unfreeze_queue(q);
4829
4830         /* Free the excess tags when nr_hw_queues shrink. */
4831         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4832                 __blk_mq_free_map_and_rqs(set, i);
4833 }
4834
4835 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4836 {
4837         mutex_lock(&set->tag_list_lock);
4838         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4839         mutex_unlock(&set->tag_list_lock);
4840 }
4841 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4842
4843 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4844                          struct io_comp_batch *iob, unsigned int flags)
4845 {
4846         long state = get_current_state();
4847         int ret;
4848
4849         do {
4850                 ret = q->mq_ops->poll(hctx, iob);
4851                 if (ret > 0) {
4852                         __set_current_state(TASK_RUNNING);
4853                         return ret;
4854                 }
4855
4856                 if (signal_pending_state(state, current))
4857                         __set_current_state(TASK_RUNNING);
4858                 if (task_is_running(current))
4859                         return 1;
4860
4861                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4862                         break;
4863                 cpu_relax();
4864         } while (!need_resched());
4865
4866         __set_current_state(TASK_RUNNING);
4867         return 0;
4868 }
4869
4870 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4871                 struct io_comp_batch *iob, unsigned int flags)
4872 {
4873         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4874
4875         return blk_hctx_poll(q, hctx, iob, flags);
4876 }
4877
4878 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4879                 unsigned int poll_flags)
4880 {
4881         struct request_queue *q = rq->q;
4882         int ret;
4883
4884         if (!blk_rq_is_poll(rq))
4885                 return 0;
4886         if (!percpu_ref_tryget(&q->q_usage_counter))
4887                 return 0;
4888
4889         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4890         blk_queue_exit(q);
4891
4892         return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(blk_rq_poll);
4895
4896 unsigned int blk_mq_rq_cpu(struct request *rq)
4897 {
4898         return rq->mq_ctx->cpu;
4899 }
4900 EXPORT_SYMBOL(blk_mq_rq_cpu);
4901
4902 void blk_mq_cancel_work_sync(struct request_queue *q)
4903 {
4904         struct blk_mq_hw_ctx *hctx;
4905         unsigned long i;
4906
4907         cancel_delayed_work_sync(&q->requeue_work);
4908
4909         queue_for_each_hw_ctx(q, hctx, i)
4910                 cancel_delayed_work_sync(&hctx->run_work);
4911 }
4912
4913 static int __init blk_mq_init(void)
4914 {
4915         int i;
4916
4917         for_each_possible_cpu(i)
4918                 init_llist_head(&per_cpu(blk_cpu_done, i));
4919         for_each_possible_cpu(i)
4920                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4921                          __blk_mq_complete_request_remote, NULL);
4922         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4923
4924         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4925                                   "block/softirq:dead", NULL,
4926                                   blk_softirq_cpu_dead);
4927         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4928                                 blk_mq_hctx_notify_dead);
4929         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4930                                 blk_mq_hctx_notify_online,
4931                                 blk_mq_hctx_notify_offline);
4932         return 0;
4933 }
4934 subsys_initcall(blk_mq_init);