0cdee86465edf826917a859dbb38a87063c6e263
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52 #include "fio_time.h"
53
54 static struct fio_sem *startup_sem;
55 static struct flist_head *cgroup_list;
56 static struct cgroup_mnt *cgroup_mnt;
57 static int exit_value;
58 static volatile bool fio_abort;
59 static unsigned int nr_process = 0;
60 static unsigned int nr_thread = 0;
61
62 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
63
64 int groupid = 0;
65 unsigned int thread_number = 0;
66 unsigned int nr_segments = 0;
67 unsigned int cur_segment = 0;
68 unsigned int stat_number = 0;
69 int temp_stall_ts;
70 unsigned long done_secs = 0;
71 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
72 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
73 #else
74 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
75 #endif
76
77 #define JOB_START_TIMEOUT       (5 * 1000)
78
79 static void sig_int(int sig)
80 {
81         if (nr_segments) {
82                 if (is_backend)
83                         fio_server_got_signal(sig);
84                 else {
85                         log_info("\nfio: terminating on signal %d\n", sig);
86                         log_info_flush();
87                         exit_value = 128;
88                 }
89
90                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
91         }
92 }
93
94 #ifdef WIN32
95 static void sig_break(int sig)
96 {
97         sig_int(sig);
98
99         /**
100          * Windows terminates all job processes on SIGBREAK after the handler
101          * returns, so give them time to wrap-up and give stats
102          */
103         for_each_td(td) {
104                 while (td->runstate < TD_EXITED)
105                         sleep(1);
106         } end_for_each();
107 }
108 #endif
109
110 void sig_show_status(int sig)
111 {
112         show_running_run_stats();
113 }
114
115 static void set_sig_handlers(void)
116 {
117         struct sigaction act;
118
119         memset(&act, 0, sizeof(act));
120         act.sa_handler = sig_int;
121         act.sa_flags = SA_RESTART;
122         sigaction(SIGINT, &act, NULL);
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_int;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGTERM, &act, NULL);
128
129 /* Windows uses SIGBREAK as a quit signal from other applications */
130 #ifdef WIN32
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_break;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGBREAK, &act, NULL);
135 #endif
136
137         memset(&act, 0, sizeof(act));
138         act.sa_handler = sig_show_status;
139         act.sa_flags = SA_RESTART;
140         sigaction(SIGUSR1, &act, NULL);
141
142         if (is_backend) {
143                 memset(&act, 0, sizeof(act));
144                 act.sa_handler = sig_int;
145                 act.sa_flags = SA_RESTART;
146                 sigaction(SIGPIPE, &act, NULL);
147         }
148 }
149
150 /*
151  * Check if we are above the minimum rate given.
152  */
153 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
154                              enum fio_ddir ddir)
155 {
156         unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
157         unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
158         unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
159         unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
160
161         assert(ddir_rw(ddir));
162
163         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
164                 return false;
165
166         /*
167          * allow a 2 second settle period in the beginning
168          */
169         if (mtime_since(&td->start, now) < 2000)
170                 return false;
171
172         /*
173          * if last_rate_check_blocks or last_rate_check_bytes is set,
174          * we can compute a rate per ratecycle
175          */
176         if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
177                 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
178                 if (spent < td->o.ratecycle || spent==0)
179                         return false;
180
181                 if (td->o.ratemin[ddir]) {
182                         /*
183                          * check bandwidth specified rate
184                          */
185                         unsigned long long current_rate_bytes =
186                                 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
187                         if (current_rate_bytes < option_rate_bytes_min) {
188                                 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189                                         td->o.name, option_rate_bytes_min, current_rate_bytes);
190                                 return true;
191                         }
192                 } else {
193                         /*
194                          * checks iops specified rate
195                          */
196                         unsigned long long current_rate_iops =
197                                 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
198
199                         if (current_rate_iops < option_rate_iops_min) {
200                                 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
201                                         td->o.name, option_rate_iops_min, current_rate_iops);
202                                 return true;
203                         }
204                 }
205         }
206
207         td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
208         td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
209         memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
210         return false;
211 }
212
213 static bool check_min_rate(struct thread_data *td, struct timespec *now)
214 {
215         bool ret = false;
216
217         for_each_rw_ddir(ddir) {
218                 if (td->bytes_done[ddir])
219                         ret |= __check_min_rate(td, now, ddir);
220         }
221
222         return ret;
223 }
224
225 /*
226  * When job exits, we can cancel the in-flight IO if we are using async
227  * io. Attempt to do so.
228  */
229 static void cleanup_pending_aio(struct thread_data *td)
230 {
231         int r;
232
233         /*
234          * get immediately available events, if any
235          */
236         r = io_u_queued_complete(td, 0);
237
238         /*
239          * now cancel remaining active events
240          */
241         if (td->io_ops->cancel) {
242                 struct io_u *io_u;
243                 int i;
244
245                 io_u_qiter(&td->io_u_all, io_u, i) {
246                         if (io_u->flags & IO_U_F_FLIGHT) {
247                                 r = td->io_ops->cancel(td, io_u);
248                                 if (!r)
249                                         put_io_u(td, io_u);
250                         }
251                 }
252         }
253
254         if (td->cur_depth)
255                 r = io_u_queued_complete(td, td->cur_depth);
256 }
257
258 /*
259  * Helper to handle the final sync of a file. Works just like the normal
260  * io path, just does everything sync.
261  */
262 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
263 {
264         struct io_u *io_u = __get_io_u(td);
265         enum fio_q_status ret;
266
267         if (!io_u)
268                 return true;
269
270         io_u->ddir = DDIR_SYNC;
271         io_u->file = f;
272         io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
273
274         if (td_io_prep(td, io_u)) {
275                 put_io_u(td, io_u);
276                 return true;
277         }
278
279 requeue:
280         ret = td_io_queue(td, io_u);
281         switch (ret) {
282         case FIO_Q_QUEUED:
283                 td_io_commit(td);
284                 if (io_u_queued_complete(td, 1) < 0)
285                         return true;
286                 break;
287         case FIO_Q_COMPLETED:
288                 if (io_u->error) {
289                         td_verror(td, io_u->error, "td_io_queue");
290                         return true;
291                 }
292
293                 if (io_u_sync_complete(td, io_u) < 0)
294                         return true;
295                 break;
296         case FIO_Q_BUSY:
297                 td_io_commit(td);
298                 goto requeue;
299         }
300
301         return false;
302 }
303
304 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
305 {
306         int ret, ret2;
307
308         if (fio_file_open(f))
309                 return fio_io_sync(td, f);
310
311         if (td_io_open_file(td, f))
312                 return 1;
313
314         ret = fio_io_sync(td, f);
315         ret2 = 0;
316         if (fio_file_open(f))
317                 ret2 = td_io_close_file(td, f);
318         return (ret || ret2);
319 }
320
321 static inline void __update_ts_cache(struct thread_data *td)
322 {
323         fio_gettime(&td->ts_cache, NULL);
324 }
325
326 static inline void update_ts_cache(struct thread_data *td)
327 {
328         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
329                 __update_ts_cache(td);
330 }
331
332 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
333 {
334         if (in_ramp_time(td))
335                 return false;
336         if (!td->o.timeout)
337                 return false;
338         if (utime_since(&td->epoch, t) >= td->o.timeout)
339                 return true;
340
341         return false;
342 }
343
344 /*
345  * We need to update the runtime consistently in ms, but keep a running
346  * tally of the current elapsed time in microseconds for sub millisecond
347  * updates.
348  */
349 static inline void update_runtime(struct thread_data *td,
350                                   unsigned long long *elapsed_us,
351                                   const enum fio_ddir ddir)
352 {
353         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
354                 return;
355
356         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
357         elapsed_us[ddir] += utime_since_now(&td->start);
358         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
359 }
360
361 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
362                                 int *retptr)
363 {
364         int ret = *retptr;
365
366         if (ret < 0 || td->error) {
367                 int err = td->error;
368                 enum error_type_bit eb;
369
370                 if (ret < 0)
371                         err = -ret;
372
373                 eb = td_error_type(ddir, err);
374                 if (!(td->o.continue_on_error & (1 << eb)))
375                         return true;
376
377                 if (td_non_fatal_error(td, eb, err)) {
378                         /*
379                          * Continue with the I/Os in case of
380                          * a non fatal error.
381                          */
382                         update_error_count(td, err);
383                         td_clear_error(td);
384                         *retptr = 0;
385                         return false;
386                 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
387                         /*
388                          * We expect to hit this error if
389                          * fill_device option is set.
390                          */
391                         td_clear_error(td);
392                         fio_mark_td_terminate(td);
393                         return true;
394                 } else {
395                         /*
396                          * Stop the I/O in case of a fatal
397                          * error.
398                          */
399                         update_error_count(td, err);
400                         return true;
401                 }
402         }
403
404         return false;
405 }
406
407 static void check_update_rusage(struct thread_data *td)
408 {
409         if (td->update_rusage) {
410                 td->update_rusage = 0;
411                 update_rusage_stat(td);
412                 fio_sem_up(td->rusage_sem);
413         }
414 }
415
416 static int wait_for_completions(struct thread_data *td, struct timespec *time)
417 {
418         const int full = queue_full(td);
419         int min_evts = 0;
420         int ret;
421
422         if (td->flags & TD_F_REGROW_LOGS)
423                 return io_u_quiesce(td);
424
425         /*
426          * if the queue is full, we MUST reap at least 1 event
427          */
428         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
429         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
430                 min_evts = 1;
431
432         if (time && should_check_rate(td))
433                 fio_gettime(time, NULL);
434
435         do {
436                 ret = io_u_queued_complete(td, min_evts);
437                 if (ret < 0)
438                         break;
439         } while (full && (td->cur_depth > td->o.iodepth_low));
440
441         return ret;
442 }
443
444 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
445                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
446                    struct timespec *comp_time)
447 {
448         switch (*ret) {
449         case FIO_Q_COMPLETED:
450                 if (io_u->error) {
451                         *ret = -io_u->error;
452                         clear_io_u(td, io_u);
453                 } else if (io_u->resid) {
454                         long long bytes = io_u->xfer_buflen - io_u->resid;
455                         struct fio_file *f = io_u->file;
456
457                         if (bytes_issued)
458                                 *bytes_issued += bytes;
459
460                         if (!from_verify)
461                                 trim_io_piece(io_u);
462
463                         /*
464                          * zero read, fail
465                          */
466                         if (!bytes) {
467                                 if (!from_verify)
468                                         unlog_io_piece(td, io_u);
469                                 td_verror(td, EIO, "full resid");
470                                 clear_io_u(td, io_u);
471                                 break;
472                         }
473
474                         io_u->xfer_buflen = io_u->resid;
475                         io_u->xfer_buf += bytes;
476                         io_u->offset += bytes;
477
478                         if (ddir_rw(io_u->ddir))
479                                 td->ts.short_io_u[io_u->ddir]++;
480
481                         if (io_u->offset == f->real_file_size)
482                                 goto sync_done;
483
484                         requeue_io_u(td, &io_u);
485                 } else {
486 sync_done:
487                         if (comp_time && should_check_rate(td))
488                                 fio_gettime(comp_time, NULL);
489
490                         *ret = io_u_sync_complete(td, io_u);
491                         if (*ret < 0)
492                                 break;
493                 }
494
495                 if (td->flags & TD_F_REGROW_LOGS)
496                         regrow_logs(td);
497
498                 /*
499                  * when doing I/O (not when verifying),
500                  * check for any errors that are to be ignored
501                  */
502                 if (!from_verify)
503                         break;
504
505                 return 0;
506         case FIO_Q_QUEUED:
507                 /*
508                  * if the engine doesn't have a commit hook,
509                  * the io_u is really queued. if it does have such
510                  * a hook, it has to call io_u_queued() itself.
511                  */
512                 if (td->io_ops->commit == NULL)
513                         io_u_queued(td, io_u);
514                 if (bytes_issued)
515                         *bytes_issued += io_u->xfer_buflen;
516                 break;
517         case FIO_Q_BUSY:
518                 if (!from_verify)
519                         unlog_io_piece(td, io_u);
520                 requeue_io_u(td, &io_u);
521                 td_io_commit(td);
522                 break;
523         default:
524                 assert(*ret < 0);
525                 td_verror(td, -(*ret), "td_io_queue");
526                 break;
527         }
528
529         if (break_on_this_error(td, ddir, ret))
530                 return 1;
531
532         return 0;
533 }
534
535 static inline bool io_in_polling(struct thread_data *td)
536 {
537         return !td->o.iodepth_batch_complete_min &&
538                    !td->o.iodepth_batch_complete_max;
539 }
540 /*
541  * Unlinks files from thread data fio_file structure
542  */
543 static int unlink_all_files(struct thread_data *td)
544 {
545         struct fio_file *f;
546         unsigned int i;
547         int ret = 0;
548
549         for_each_file(td, f, i) {
550                 if (f->filetype != FIO_TYPE_FILE)
551                         continue;
552                 ret = td_io_unlink_file(td, f);
553                 if (ret)
554                         break;
555         }
556
557         if (ret)
558                 td_verror(td, ret, "unlink_all_files");
559
560         return ret;
561 }
562
563 /*
564  * Check if io_u will overlap an in-flight IO in the queue
565  */
566 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
567 {
568         bool overlap;
569         struct io_u *check_io_u;
570         unsigned long long x1, x2, y1, y2;
571         int i;
572
573         x1 = io_u->offset;
574         x2 = io_u->offset + io_u->buflen;
575         overlap = false;
576         io_u_qiter(q, check_io_u, i) {
577                 if (check_io_u->flags & IO_U_F_FLIGHT) {
578                         y1 = check_io_u->offset;
579                         y2 = check_io_u->offset + check_io_u->buflen;
580
581                         if (x1 < y2 && y1 < x2) {
582                                 overlap = true;
583                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
584                                                 x1, io_u->buflen,
585                                                 y1, check_io_u->buflen);
586                                 break;
587                         }
588                 }
589         }
590
591         return overlap;
592 }
593
594 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
595 {
596         /*
597          * Check for overlap if the user asked us to, and we have
598          * at least one IO in flight besides this one.
599          */
600         if (td->o.serialize_overlap && td->cur_depth > 1 &&
601             in_flight_overlap(&td->io_u_all, io_u))
602                 return FIO_Q_BUSY;
603
604         return td_io_queue(td, io_u);
605 }
606
607 /*
608  * The main verify engine. Runs over the writes we previously submitted,
609  * reads the blocks back in, and checks the crc/md5 of the data.
610  */
611 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
612 {
613         struct fio_file *f;
614         struct io_u *io_u;
615         int ret, min_events;
616         unsigned int i;
617
618         dprint(FD_VERIFY, "starting loop\n");
619
620         /*
621          * sync io first and invalidate cache, to make sure we really
622          * read from disk.
623          */
624         for_each_file(td, f, i) {
625                 if (!fio_file_open(f))
626                         continue;
627                 if (fio_io_sync(td, f))
628                         break;
629                 if (file_invalidate_cache(td, f))
630                         break;
631         }
632
633         check_update_rusage(td);
634
635         if (td->error)
636                 return;
637
638         td_set_runstate(td, TD_VERIFYING);
639
640         io_u = NULL;
641         while (!td->terminate) {
642                 enum fio_ddir ddir;
643                 int full;
644
645                 update_ts_cache(td);
646                 check_update_rusage(td);
647
648                 if (runtime_exceeded(td, &td->ts_cache)) {
649                         __update_ts_cache(td);
650                         if (runtime_exceeded(td, &td->ts_cache)) {
651                                 fio_mark_td_terminate(td);
652                                 break;
653                         }
654                 }
655
656                 if (flow_threshold_exceeded(td))
657                         continue;
658
659                 if (!td->o.experimental_verify) {
660                         io_u = __get_io_u(td);
661                         if (!io_u)
662                                 break;
663
664                         if (get_next_verify(td, io_u)) {
665                                 put_io_u(td, io_u);
666                                 break;
667                         }
668
669                         if (td_io_prep(td, io_u)) {
670                                 put_io_u(td, io_u);
671                                 break;
672                         }
673                 } else {
674                         if (td->bytes_verified + td->o.rw_min_bs > verify_bytes)
675                                 break;
676
677                         while ((io_u = get_io_u(td)) != NULL) {
678                                 if (IS_ERR_OR_NULL(io_u)) {
679                                         io_u = NULL;
680                                         ret = FIO_Q_BUSY;
681                                         goto reap;
682                                 }
683
684                                 /*
685                                  * We are only interested in the places where
686                                  * we wrote or trimmed IOs. Turn those into
687                                  * reads for verification purposes.
688                                  */
689                                 if (io_u->ddir == DDIR_READ) {
690                                         /*
691                                          * Pretend we issued it for rwmix
692                                          * accounting
693                                          */
694                                         td->io_issues[DDIR_READ]++;
695                                         put_io_u(td, io_u);
696                                         continue;
697                                 } else if (io_u->ddir == DDIR_TRIM) {
698                                         io_u->ddir = DDIR_READ;
699                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
700                                         break;
701                                 } else if (io_u->ddir == DDIR_WRITE) {
702                                         io_u->ddir = DDIR_READ;
703                                         io_u->numberio = td->verify_read_issues;
704                                         td->verify_read_issues++;
705                                         populate_verify_io_u(td, io_u);
706                                         break;
707                                 } else {
708                                         put_io_u(td, io_u);
709                                         continue;
710                                 }
711                         }
712
713                         if (!io_u)
714                                 break;
715                 }
716
717                 if (verify_state_should_stop(td, io_u)) {
718                         put_io_u(td, io_u);
719                         break;
720                 }
721
722                 if (td->o.verify_async)
723                         io_u->end_io = verify_io_u_async;
724                 else
725                         io_u->end_io = verify_io_u;
726
727                 ddir = io_u->ddir;
728                 if (!td->o.disable_slat)
729                         fio_gettime(&io_u->start_time, NULL);
730
731                 ret = io_u_submit(td, io_u);
732
733                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
734                         break;
735
736                 /*
737                  * if we can queue more, do so. but check if there are
738                  * completed io_u's first. Note that we can get BUSY even
739                  * without IO queued, if the system is resource starved.
740                  */
741 reap:
742                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
743                 if (full || io_in_polling(td))
744                         ret = wait_for_completions(td, NULL);
745
746                 if (ret < 0)
747                         break;
748         }
749
750         check_update_rusage(td);
751
752         if (!td->error) {
753                 min_events = td->cur_depth;
754
755                 if (min_events)
756                         ret = io_u_queued_complete(td, min_events);
757         } else
758                 cleanup_pending_aio(td);
759
760         td_set_runstate(td, TD_RUNNING);
761
762         dprint(FD_VERIFY, "exiting loop\n");
763 }
764
765 static bool exceeds_number_ios(struct thread_data *td)
766 {
767         unsigned long long number_ios;
768
769         if (!td->o.number_ios)
770                 return false;
771
772         number_ios = ddir_rw_sum(td->io_blocks);
773         number_ios += td->io_u_queued + td->io_u_in_flight;
774
775         return number_ios >= (td->o.number_ios * td->loops);
776 }
777
778 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
779 {
780         unsigned long long bytes, limit;
781
782         if (td_rw(td))
783                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
784         else if (td_write(td))
785                 bytes = this_bytes[DDIR_WRITE];
786         else if (td_read(td))
787                 bytes = this_bytes[DDIR_READ];
788         else
789                 bytes = this_bytes[DDIR_TRIM];
790
791         if (td->o.io_size)
792                 limit = td->o.io_size;
793         else
794                 limit = td->o.size;
795
796         limit *= td->loops;
797         return bytes >= limit || exceeds_number_ios(td);
798 }
799
800 static bool io_issue_bytes_exceeded(struct thread_data *td)
801 {
802         return io_bytes_exceeded(td, td->io_issue_bytes);
803 }
804
805 static bool io_complete_bytes_exceeded(struct thread_data *td)
806 {
807         return io_bytes_exceeded(td, td->this_io_bytes);
808 }
809
810 /*
811  * used to calculate the next io time for rate control
812  *
813  */
814 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
815 {
816         uint64_t bps = td->rate_bps[ddir];
817
818         assert(!(td->flags & TD_F_CHILD));
819
820         if (td->o.rate_process == RATE_PROCESS_POISSON) {
821                 uint64_t val, iops;
822
823                 iops = bps / td->o.min_bs[ddir];
824                 val = (int64_t) (1000000 / iops) *
825                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
826                 if (val) {
827                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
828                                         (unsigned long long) 1000000 / val,
829                                         ddir);
830                 }
831                 td->last_usec[ddir] += val;
832                 return td->last_usec[ddir];
833         } else if (bps) {
834                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
835                 uint64_t secs = bytes / bps;
836                 uint64_t remainder = bytes % bps;
837
838                 return remainder * 1000000 / bps + secs * 1000000;
839         }
840
841         return 0;
842 }
843
844 static void init_thinktime(struct thread_data *td)
845 {
846         if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
847                 td->thinktime_blocks_counter = td->io_blocks;
848         else
849                 td->thinktime_blocks_counter = td->io_issues;
850         td->last_thinktime = td->epoch;
851         td->last_thinktime_blocks = 0;
852 }
853
854 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
855                              struct timespec *time)
856 {
857         unsigned long long b;
858         unsigned long long runtime_left;
859         uint64_t total;
860         int left;
861         struct timespec now;
862         bool stall = false;
863
864         if (td->o.thinktime_iotime) {
865                 fio_gettime(&now, NULL);
866                 if (utime_since(&td->last_thinktime, &now)
867                     >= td->o.thinktime_iotime) {
868                         stall = true;
869                 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
870                         /*
871                          * When thinktime_iotime is set and thinktime_blocks is
872                          * not set, skip the thinktime_blocks check, since
873                          * thinktime_blocks default value 1 does not work
874                          * together with thinktime_iotime.
875                          */
876                         return;
877                 }
878
879         }
880
881         b = ddir_rw_sum(td->thinktime_blocks_counter);
882         if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
883                 stall = true;
884
885         if (!stall)
886                 return;
887
888         io_u_quiesce(td);
889
890         left = td->o.thinktime_spin;
891         if (td->o.timeout) {
892                 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
893                 if (runtime_left < (unsigned long long)left)
894                         left = runtime_left;
895         }
896
897         total = 0;
898         if (left)
899                 total = usec_spin(left);
900
901         /*
902          * usec_spin() might run for slightly longer than intended in a VM
903          * where the vCPU could get descheduled or the hypervisor could steal
904          * CPU time. Ensure "left" doesn't become negative.
905          */
906         if (total < td->o.thinktime)
907                 left = td->o.thinktime - total;
908         else
909                 left = 0;
910
911         if (td->o.timeout) {
912                 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
913                 if (runtime_left < (unsigned long long)left)
914                         left = runtime_left;
915         }
916
917         if (left)
918                 total += usec_sleep(td, left);
919
920         /*
921          * If we're ignoring thinktime for the rate, add the number of bytes
922          * we would have done while sleeping, minus one block to ensure we
923          * start issuing immediately after the sleep.
924          */
925         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
926                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
927                 uint64_t bs = td->o.min_bs[ddir];
928                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
929                 uint64_t over;
930
931                 if (usperop <= total)
932                         over = bs;
933                 else
934                         over = (usperop - total) / usperop * -bs;
935
936                 td->rate_io_issue_bytes[ddir] += (missed - over);
937                 /* adjust for rate_process=poisson */
938                 td->last_usec[ddir] += total;
939         }
940
941         if (time && should_check_rate(td))
942                 fio_gettime(time, NULL);
943
944         td->last_thinktime_blocks = b;
945         if (td->o.thinktime_iotime) {
946                 fio_gettime(&now, NULL);
947                 td->last_thinktime = now;
948         }
949 }
950
951 /*
952  * Main IO worker function. It retrieves io_u's to process and queues
953  * and reaps them, checking for rate and errors along the way.
954  *
955  * Returns number of bytes written and trimmed.
956  */
957 static void do_io(struct thread_data *td, uint64_t *bytes_done)
958 {
959         unsigned int i;
960         int ret = 0;
961         uint64_t total_bytes, bytes_issued = 0;
962
963         for (i = 0; i < DDIR_RWDIR_CNT; i++)
964                 bytes_done[i] = td->bytes_done[i];
965
966         if (in_ramp_time(td))
967                 td_set_runstate(td, TD_RAMP);
968         else
969                 td_set_runstate(td, TD_RUNNING);
970
971         lat_target_init(td);
972
973         total_bytes = td->o.size;
974         /*
975         * Allow random overwrite workloads to write up to io_size
976         * before starting verification phase as 'size' doesn't apply.
977         */
978         if (td_write(td) && td_random(td) && td->o.norandommap)
979                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
980
981         /*
982          * Don't break too early if io_size > size. The exception is when
983          * verify is enabled.
984          */
985         if (td_rw(td) && !td_random(td) && td->o.verify == VERIFY_NONE)
986                 total_bytes = max(total_bytes, (uint64_t)td->o.io_size);
987
988         /*
989          * If verify_backlog is enabled, we'll run the verify in this
990          * handler as well. For that case, we may need up to twice the
991          * amount of bytes.
992          */
993         if (td->o.verify != VERIFY_NONE &&
994            (td_write(td) && td->o.verify_backlog))
995                 total_bytes += td->o.size;
996
997         /* In trimwrite mode, each byte is trimmed and then written, so
998          * allow total_bytes or number of ios to be twice as big */
999         if (td_trimwrite(td)) {
1000                 total_bytes += td->total_io_size;
1001                 td->o.number_ios *= 2;
1002         }
1003
1004         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1005                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
1006                 td->o.time_based) {
1007                 struct timespec comp_time;
1008                 struct io_u *io_u;
1009                 int full;
1010                 enum fio_ddir ddir;
1011
1012                 check_update_rusage(td);
1013
1014                 if (td->terminate || td->done)
1015                         break;
1016
1017                 update_ts_cache(td);
1018
1019                 if (runtime_exceeded(td, &td->ts_cache)) {
1020                         __update_ts_cache(td);
1021                         if (runtime_exceeded(td, &td->ts_cache)) {
1022                                 fio_mark_td_terminate(td);
1023                                 break;
1024                         }
1025                 }
1026
1027                 if (flow_threshold_exceeded(td))
1028                         continue;
1029
1030                 /*
1031                  * Break if we exceeded the bytes. The exception is time
1032                  * based runs, but we still need to break out of the loop
1033                  * for those to run verification, if enabled.
1034                  * Jobs read from iolog do not use this stop condition.
1035                  */
1036                 if (bytes_issued >= total_bytes &&
1037                     !td->o.read_iolog_file &&
1038                     (!td->o.time_based ||
1039                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
1040                         break;
1041
1042                 io_u = get_io_u(td);
1043                 if (IS_ERR_OR_NULL(io_u)) {
1044                         int err = PTR_ERR(io_u);
1045
1046                         io_u = NULL;
1047                         ddir = DDIR_INVAL;
1048                         if (err == -EBUSY) {
1049                                 ret = FIO_Q_BUSY;
1050                                 goto reap;
1051                         }
1052                         if (td->o.latency_target)
1053                                 goto reap;
1054                         break;
1055                 }
1056
1057                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) {
1058                         if (!(io_u->flags & IO_U_F_PATTERN_DONE)) {
1059                                 io_u_set(td, io_u, IO_U_F_PATTERN_DONE);
1060                                 io_u->numberio = td->io_issues[io_u->ddir];
1061                                 populate_verify_io_u(td, io_u);
1062                         }
1063                 }
1064
1065                 ddir = io_u->ddir;
1066
1067                 /*
1068                  * Add verification end_io handler if:
1069                  *      - Asked to verify (!td_rw(td))
1070                  *      - Or the io_u is from our verify list (mixed write/ver)
1071                  */
1072                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1073                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1074
1075                         /*
1076                          * For read only workloads generate the seed. This way
1077                          * we can still verify header seed at any later
1078                          * invocation.
1079                          */
1080                         if (!td_write(td) && !td->o.verify_pattern_bytes) {
1081                                 io_u->rand_seed = __rand(&td->verify_state);
1082                                 if (sizeof(int) != sizeof(long *))
1083                                         io_u->rand_seed *= __rand(&td->verify_state);
1084                         }
1085
1086                         if (verify_state_should_stop(td, io_u)) {
1087                                 put_io_u(td, io_u);
1088                                 break;
1089                         }
1090
1091                         if (td->o.verify_async)
1092                                 io_u->end_io = verify_io_u_async;
1093                         else
1094                                 io_u->end_io = verify_io_u;
1095                         td_set_runstate(td, TD_VERIFYING);
1096                 } else if (in_ramp_time(td))
1097                         td_set_runstate(td, TD_RAMP);
1098                 else
1099                         td_set_runstate(td, TD_RUNNING);
1100
1101                 /*
1102                  * Always log IO before it's issued, so we know the specific
1103                  * order of it. The logged unit will track when the IO has
1104                  * completed.
1105                  */
1106                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1107                     td->o.do_verify &&
1108                     td->o.verify != VERIFY_NONE &&
1109                     !td->o.experimental_verify)
1110                         log_io_piece(td, io_u);
1111
1112                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1113                         const unsigned long long blen = io_u->xfer_buflen;
1114                         const enum fio_ddir __ddir = acct_ddir(io_u);
1115
1116                         if (td->error)
1117                                 break;
1118
1119                         workqueue_enqueue(&td->io_wq, &io_u->work);
1120                         ret = FIO_Q_QUEUED;
1121
1122                         if (ddir_rw(__ddir)) {
1123                                 td->io_issues[__ddir]++;
1124                                 td->io_issue_bytes[__ddir] += blen;
1125                                 td->rate_io_issue_bytes[__ddir] += blen;
1126                         }
1127
1128                         if (should_check_rate(td)) {
1129                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1130                                 fio_gettime(&comp_time, NULL);
1131                         }
1132
1133                 } else {
1134                         ret = io_u_submit(td, io_u);
1135
1136                         if (should_check_rate(td))
1137                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1138
1139                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1140                                 break;
1141
1142                         /*
1143                          * See if we need to complete some commands. Note that
1144                          * we can get BUSY even without IO queued, if the
1145                          * system is resource starved.
1146                          */
1147 reap:
1148                         full = queue_full(td) ||
1149                                 (ret == FIO_Q_BUSY && td->cur_depth);
1150                         if (full || io_in_polling(td))
1151                                 ret = wait_for_completions(td, &comp_time);
1152                 }
1153                 if (ret < 0)
1154                         break;
1155
1156                 if (ddir_rw(ddir) && td->o.thinkcycles)
1157                         cycles_spin(td->o.thinkcycles);
1158
1159                 if (ddir_rw(ddir) && td->o.thinktime)
1160                         handle_thinktime(td, ddir, &comp_time);
1161
1162                 if (!ddir_rw_sum(td->bytes_done) &&
1163                     !td_ioengine_flagged(td, FIO_NOIO))
1164                         continue;
1165
1166                 if (!in_ramp_time(td) && should_check_rate(td)) {
1167                         if (check_min_rate(td, &comp_time)) {
1168                                 if (exitall_on_terminate || td->o.exitall_error)
1169                                         fio_terminate_threads(td->groupid, td->o.exit_what);
1170                                 td_verror(td, EIO, "check_min_rate");
1171                                 break;
1172                         }
1173                 }
1174                 if (!in_ramp_time(td) && td->o.latency_target)
1175                         lat_target_check(td);
1176         }
1177
1178         check_update_rusage(td);
1179
1180         if (td->trim_entries)
1181                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1182
1183         if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1184                 td->error = 0;
1185                 fio_mark_td_terminate(td);
1186         }
1187         if (!td->error) {
1188                 struct fio_file *f;
1189
1190                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1191                         workqueue_flush(&td->io_wq);
1192                         i = 0;
1193                 } else
1194                         i = td->cur_depth;
1195
1196                 if (i) {
1197                         ret = io_u_queued_complete(td, i);
1198                         if (td->o.fill_device &&
1199                             (td->error == ENOSPC || td->error == EDQUOT))
1200                                 td->error = 0;
1201                 }
1202
1203                 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1204                         td_set_runstate(td, TD_FSYNCING);
1205
1206                         for_each_file(td, f, i) {
1207                                 if (!fio_file_fsync(td, f))
1208                                         continue;
1209
1210                                 log_err("fio: end_fsync failed for file %s\n",
1211                                                                 f->file_name);
1212                         }
1213                 }
1214         } else {
1215                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1216                         workqueue_flush(&td->io_wq);
1217                 cleanup_pending_aio(td);
1218         }
1219
1220         /*
1221          * stop job if we failed doing any IO
1222          */
1223         if (!ddir_rw_sum(td->this_io_bytes))
1224                 td->done = 1;
1225
1226         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1227                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1228 }
1229
1230 static void free_file_completion_logging(struct thread_data *td)
1231 {
1232         struct fio_file *f;
1233         unsigned int i;
1234
1235         for_each_file(td, f, i) {
1236                 if (!f->last_write_comp)
1237                         break;
1238                 sfree(f->last_write_comp);
1239         }
1240 }
1241
1242 static int init_file_completion_logging(struct thread_data *td,
1243                                         unsigned int depth)
1244 {
1245         struct fio_file *f;
1246         unsigned int i;
1247
1248         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1249                 return 0;
1250
1251         /*
1252          * Async IO completion order may be different from issue order. Double
1253          * the number of write completions to cover the case the writes issued
1254          * earlier complete slowly and fall in the last write log entries.
1255          */
1256         td->last_write_comp_depth = depth;
1257         if (!td_ioengine_flagged(td, FIO_SYNCIO))
1258                 td->last_write_comp_depth += depth;
1259
1260         for_each_file(td, f, i) {
1261                 f->last_write_comp = scalloc(td->last_write_comp_depth,
1262                                              sizeof(uint64_t));
1263                 if (!f->last_write_comp)
1264                         goto cleanup;
1265         }
1266
1267         return 0;
1268
1269 cleanup:
1270         free_file_completion_logging(td);
1271         log_err("fio: failed to alloc write comp data\n");
1272         return 1;
1273 }
1274
1275 static void cleanup_io_u(struct thread_data *td)
1276 {
1277         struct io_u *io_u;
1278
1279         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1280
1281                 if (td->io_ops->io_u_free)
1282                         td->io_ops->io_u_free(td, io_u);
1283
1284                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1285         }
1286
1287         while ((io_u = io_u_rpop(&td->io_u_requeues)) != NULL) {
1288                 put_io_u(td, io_u);
1289         }
1290
1291         free_io_mem(td);
1292
1293         io_u_rexit(&td->io_u_requeues);
1294         io_u_qexit(&td->io_u_freelist, false);
1295         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1296
1297         free_file_completion_logging(td);
1298 }
1299
1300 static int init_io_u(struct thread_data *td)
1301 {
1302         struct io_u *io_u;
1303         int cl_align, i, max_units;
1304         int err;
1305
1306         max_units = td->o.iodepth;
1307
1308         err = 0;
1309         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1310         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1311         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1312
1313         if (err) {
1314                 log_err("fio: failed setting up IO queues\n");
1315                 return 1;
1316         }
1317
1318         cl_align = os_cache_line_size();
1319
1320         for (i = 0; i < max_units; i++) {
1321                 void *ptr;
1322
1323                 if (td->terminate)
1324                         return 1;
1325
1326                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1327                 if (!ptr) {
1328                         log_err("fio: unable to allocate aligned memory\n");
1329                         return 1;
1330                 }
1331
1332                 io_u = ptr;
1333                 memset(io_u, 0, sizeof(*io_u));
1334                 INIT_FLIST_HEAD(&io_u->verify_list);
1335                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1336
1337                 io_u->index = i;
1338                 io_u->flags = IO_U_F_FREE;
1339                 io_u_qpush(&td->io_u_freelist, io_u);
1340
1341                 /*
1342                  * io_u never leaves this stack, used for iteration of all
1343                  * io_u buffers.
1344                  */
1345                 io_u_qpush(&td->io_u_all, io_u);
1346
1347                 if (td->io_ops->io_u_init) {
1348                         int ret = td->io_ops->io_u_init(td, io_u);
1349
1350                         if (ret) {
1351                                 log_err("fio: failed to init engine data: %d\n", ret);
1352                                 return 1;
1353                         }
1354                 }
1355         }
1356
1357         if (init_io_u_buffers(td))
1358                 return 1;
1359
1360         if (init_file_completion_logging(td, max_units))
1361                 return 1;
1362
1363         return 0;
1364 }
1365
1366 int init_io_u_buffers(struct thread_data *td)
1367 {
1368         struct io_u *io_u;
1369         unsigned long long max_bs, min_write, trim_bs = 0;
1370         int i, max_units;
1371         int data_xfer = 1;
1372         char *p;
1373
1374         max_units = td->o.iodepth;
1375         max_bs = td_max_bs(td);
1376         min_write = td->o.min_bs[DDIR_WRITE];
1377         td->orig_buffer_size = (unsigned long long) max_bs
1378                                         * (unsigned long long) max_units;
1379
1380         if (td_trim(td) && td->o.num_range > 1) {
1381                 trim_bs = td->o.num_range * sizeof(struct trim_range);
1382                 td->orig_buffer_size = trim_bs
1383                                         * (unsigned long long) max_units;
1384         }
1385
1386         /*
1387          * For reads, writes, and multi-range trim operations we need a
1388          * data buffer
1389          */
1390         if (td_ioengine_flagged(td, FIO_NOIO) ||
1391             !(td_read(td) || td_write(td) || (td_trim(td) && td->o.num_range > 1)))
1392                 data_xfer = 0;
1393
1394         /*
1395          * if we may later need to do address alignment, then add any
1396          * possible adjustment here so that we don't cause a buffer
1397          * overflow later. this adjustment may be too much if we get
1398          * lucky and the allocator gives us an aligned address.
1399          */
1400         if (td->o.odirect || td->o.mem_align ||
1401             td_ioengine_flagged(td, FIO_RAWIO))
1402                 td->orig_buffer_size += page_mask + td->o.mem_align;
1403
1404         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1405                 unsigned long long bs;
1406
1407                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1408                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1409         }
1410
1411         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1412                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1413                 return 1;
1414         }
1415
1416         if (data_xfer && allocate_io_mem(td))
1417                 return 1;
1418
1419         if (td->o.odirect || td->o.mem_align ||
1420             td_ioengine_flagged(td, FIO_RAWIO))
1421                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1422         else
1423                 p = td->orig_buffer;
1424
1425         for (i = 0; i < max_units; i++) {
1426                 io_u = td->io_u_all.io_us[i];
1427                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1428
1429                 if (data_xfer) {
1430                         io_u->buf = p;
1431                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1432
1433                         if (td_write(td))
1434                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1435                         if (td_write(td) && td->o.verify_pattern_bytes) {
1436                                 /*
1437                                  * Fill the buffer with the pattern if we are
1438                                  * going to be doing writes.
1439                                  */
1440                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1441                         }
1442                 }
1443                 if (td_trim(td) && td->o.num_range > 1)
1444                         p += trim_bs;
1445                 else
1446                         p += max_bs;
1447         }
1448
1449         return 0;
1450 }
1451
1452 #ifdef FIO_HAVE_IOSCHED_SWITCH
1453 /*
1454  * These functions are Linux specific.
1455  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1456  */
1457 static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1458 {
1459         char tmp[256], tmp2[128], *p;
1460         FILE *f;
1461         int ret;
1462
1463         assert(file->du && file->du->sysfs_root);
1464         sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1465
1466         f = fopen(tmp, "r+");
1467         if (!f) {
1468                 if (errno == ENOENT) {
1469                         log_err("fio: os or kernel doesn't support IO scheduler"
1470                                 " switching\n");
1471                         return 0;
1472                 }
1473                 td_verror(td, errno, "fopen iosched");
1474                 return 1;
1475         }
1476
1477         /*
1478          * Set io scheduler.
1479          */
1480         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1481         if (ferror(f) || ret != 1) {
1482                 td_verror(td, errno, "fwrite");
1483                 fclose(f);
1484                 return 1;
1485         }
1486
1487         rewind(f);
1488
1489         /*
1490          * Read back and check that the selected scheduler is now the default.
1491          */
1492         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1493         if (ferror(f) || ret < 0) {
1494                 td_verror(td, errno, "fread");
1495                 fclose(f);
1496                 return 1;
1497         }
1498         tmp[ret] = '\0';
1499         /*
1500          * either a list of io schedulers or "none\n" is expected. Strip the
1501          * trailing newline.
1502          */
1503         p = tmp;
1504         strsep(&p, "\n");
1505
1506         /*
1507          * Write to "none" entry doesn't fail, so check the result here.
1508          */
1509         if (!strcmp(tmp, "none")) {
1510                 log_err("fio: io scheduler is not tunable\n");
1511                 fclose(f);
1512                 return 0;
1513         }
1514
1515         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1516         if (!strstr(tmp, tmp2)) {
1517                 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1518                 td_verror(td, EINVAL, "iosched_switch");
1519                 fclose(f);
1520                 return 1;
1521         }
1522
1523         fclose(f);
1524         return 0;
1525 }
1526
1527 static int switch_ioscheduler(struct thread_data *td)
1528 {
1529         struct fio_file *f;
1530         unsigned int i;
1531         int ret = 0;
1532
1533         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1534                 return 0;
1535
1536         assert(td->files && td->files[0]);
1537
1538         for_each_file(td, f, i) {
1539
1540                 /* Only consider regular files and block device files */
1541                 switch (f->filetype) {
1542                 case FIO_TYPE_FILE:
1543                 case FIO_TYPE_BLOCK:
1544                         /*
1545                          * Make sure that the device hosting the file could
1546                          * be determined.
1547                          */
1548                         if (!f->du)
1549                                 continue;
1550                         break;
1551                 case FIO_TYPE_CHAR:
1552                 case FIO_TYPE_PIPE:
1553                 default:
1554                         continue;
1555                 }
1556
1557                 ret = set_ioscheduler(td, f);
1558                 if (ret)
1559                         return ret;
1560         }
1561
1562         return 0;
1563 }
1564
1565 #else
1566
1567 static int switch_ioscheduler(struct thread_data *td)
1568 {
1569         return 0;
1570 }
1571
1572 #endif /* FIO_HAVE_IOSCHED_SWITCH */
1573
1574 static bool keep_running(struct thread_data *td)
1575 {
1576         unsigned long long limit;
1577
1578         if (td->done)
1579                 return false;
1580         if (td->terminate)
1581                 return false;
1582         if (td->o.time_based)
1583                 return true;
1584         if (td->o.loops) {
1585                 td->o.loops--;
1586                 return true;
1587         }
1588         if (exceeds_number_ios(td))
1589                 return false;
1590
1591         if (td->o.io_size)
1592                 limit = td->o.io_size;
1593         else
1594                 limit = td->o.size;
1595
1596         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1597                 uint64_t diff;
1598
1599                 /*
1600                  * If the difference is less than the maximum IO size, we
1601                  * are done.
1602                  */
1603                 diff = limit - ddir_rw_sum(td->io_bytes);
1604                 if (diff < td_max_bs(td))
1605                         return false;
1606
1607                 if (fio_files_done(td) && !td->o.io_size)
1608                         return false;
1609
1610                 return true;
1611         }
1612
1613         return false;
1614 }
1615
1616 static int exec_string(struct thread_options *o, const char *string,
1617                        const char *mode)
1618 {
1619         int ret;
1620         char *str;
1621
1622         if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1623                 return -1;
1624
1625         log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1626                  o->name, mode);
1627         ret = system(str);
1628         if (ret == -1)
1629                 log_err("fio: exec of cmd <%s> failed\n", str);
1630
1631         free(str);
1632         return ret;
1633 }
1634
1635 /*
1636  * Dry run to compute correct state of numberio for verification.
1637  */
1638 static uint64_t do_dry_run(struct thread_data *td)
1639 {
1640         td_set_runstate(td, TD_RUNNING);
1641
1642         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1643                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1644                 struct io_u *io_u;
1645                 int ret;
1646
1647                 if (td->terminate || td->done)
1648                         break;
1649
1650                 io_u = get_io_u(td);
1651                 if (IS_ERR_OR_NULL(io_u))
1652                         break;
1653
1654                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1655                 io_u->error = 0;
1656                 io_u->resid = 0;
1657                 if (ddir_rw(acct_ddir(io_u)))
1658                         td->io_issues[acct_ddir(io_u)]++;
1659                 if (ddir_rw(io_u->ddir)) {
1660                         io_u_mark_depth(td, 1);
1661                         td->ts.total_io_u[io_u->ddir]++;
1662                 }
1663
1664                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1665                     td->o.do_verify &&
1666                     td->o.verify != VERIFY_NONE &&
1667                     !td->o.experimental_verify)
1668                         log_io_piece(td, io_u);
1669
1670                 ret = io_u_sync_complete(td, io_u);
1671                 (void) ret;
1672         }
1673
1674         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1675 }
1676
1677 struct fork_data {
1678         struct thread_data *td;
1679         struct sk_out *sk_out;
1680 };
1681
1682 /*
1683  * Entry point for the thread based jobs. The process based jobs end up
1684  * here as well, after a little setup.
1685  */
1686 static void *thread_main(void *data)
1687 {
1688         struct fork_data *fd = data;
1689         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1690         struct thread_data *td = fd->td;
1691         struct thread_options *o = &td->o;
1692         struct sk_out *sk_out = fd->sk_out;
1693         uint64_t bytes_done[DDIR_RWDIR_CNT];
1694         int deadlock_loop_cnt;
1695         bool clear_state;
1696         int ret;
1697
1698         sk_out_assign(sk_out);
1699         free(fd);
1700
1701         if (!o->use_thread) {
1702                 setsid();
1703                 td->pid = getpid();
1704         } else
1705                 td->pid = gettid();
1706
1707         fio_local_clock_init();
1708
1709         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1710
1711         if (is_backend)
1712                 fio_server_send_start(td);
1713
1714         INIT_FLIST_HEAD(&td->io_log_list);
1715         INIT_FLIST_HEAD(&td->io_hist_list);
1716         INIT_FLIST_HEAD(&td->verify_list);
1717         INIT_FLIST_HEAD(&td->trim_list);
1718         td->io_hist_tree = RB_ROOT;
1719
1720         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1721         if (ret) {
1722                 td_verror(td, ret, "mutex_cond_init_pshared");
1723                 goto err;
1724         }
1725         ret = cond_init_pshared(&td->verify_cond);
1726         if (ret) {
1727                 td_verror(td, ret, "mutex_cond_pshared");
1728                 goto err;
1729         }
1730
1731         td_set_runstate(td, TD_INITIALIZED);
1732         dprint(FD_MUTEX, "up startup_sem\n");
1733         fio_sem_up(startup_sem);
1734         dprint(FD_MUTEX, "wait on td->sem\n");
1735         fio_sem_down(td->sem);
1736         dprint(FD_MUTEX, "done waiting on td->sem\n");
1737
1738         /*
1739          * A new gid requires privilege, so we need to do this before setting
1740          * the uid.
1741          */
1742         if (o->gid != -1U && setgid(o->gid)) {
1743                 td_verror(td, errno, "setgid");
1744                 goto err;
1745         }
1746         if (o->uid != -1U && setuid(o->uid)) {
1747                 td_verror(td, errno, "setuid");
1748                 goto err;
1749         }
1750
1751         td_zone_gen_index(td);
1752
1753         /*
1754          * Do this early, we don't want the compress threads to be limited
1755          * to the same CPUs as the IO workers. So do this before we set
1756          * any potential CPU affinity
1757          */
1758         if (iolog_compress_init(td, sk_out))
1759                 goto err;
1760
1761         /*
1762          * If we have a gettimeofday() thread, make sure we exclude that
1763          * thread from this job
1764          */
1765         if (o->gtod_cpu)
1766                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1767
1768         /*
1769          * Set affinity first, in case it has an impact on the memory
1770          * allocations.
1771          */
1772         if (fio_option_is_set(o, cpumask)) {
1773                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1774                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1775                         if (!ret) {
1776                                 log_err("fio: no CPUs set\n");
1777                                 log_err("fio: Try increasing number of available CPUs\n");
1778                                 td_verror(td, EINVAL, "cpus_split");
1779                                 goto err;
1780                         }
1781                 }
1782                 ret = fio_setaffinity(td->pid, o->cpumask);
1783                 if (ret == -1) {
1784                         td_verror(td, errno, "cpu_set_affinity");
1785                         goto err;
1786                 }
1787         }
1788
1789 #ifdef CONFIG_LIBNUMA
1790         /* numa node setup */
1791         if (fio_option_is_set(o, numa_cpunodes) ||
1792             fio_option_is_set(o, numa_memnodes)) {
1793                 struct bitmask *mask;
1794
1795                 if (numa_available() < 0) {
1796                         td_verror(td, errno, "Does not support NUMA API\n");
1797                         goto err;
1798                 }
1799
1800                 if (fio_option_is_set(o, numa_cpunodes)) {
1801                         mask = numa_parse_nodestring(o->numa_cpunodes);
1802                         ret = numa_run_on_node_mask(mask);
1803                         numa_free_nodemask(mask);
1804                         if (ret == -1) {
1805                                 td_verror(td, errno, \
1806                                         "numa_run_on_node_mask failed\n");
1807                                 goto err;
1808                         }
1809                 }
1810
1811                 if (fio_option_is_set(o, numa_memnodes)) {
1812                         mask = NULL;
1813                         if (o->numa_memnodes)
1814                                 mask = numa_parse_nodestring(o->numa_memnodes);
1815
1816                         switch (o->numa_mem_mode) {
1817                         case MPOL_INTERLEAVE:
1818                                 numa_set_interleave_mask(mask);
1819                                 break;
1820                         case MPOL_BIND:
1821                                 numa_set_membind(mask);
1822                                 break;
1823                         case MPOL_LOCAL:
1824                                 numa_set_localalloc();
1825                                 break;
1826                         case MPOL_PREFERRED:
1827                                 numa_set_preferred(o->numa_mem_prefer_node);
1828                                 break;
1829                         case MPOL_DEFAULT:
1830                         default:
1831                                 break;
1832                         }
1833
1834                         if (mask)
1835                                 numa_free_nodemask(mask);
1836
1837                 }
1838         }
1839 #endif
1840
1841         if (fio_pin_memory(td))
1842                 goto err;
1843
1844         /*
1845          * May alter parameters that init_io_u() will use, so we need to
1846          * do this first.
1847          */
1848         if (!init_iolog(td))
1849                 goto err;
1850
1851         /* ioprio_set() has to be done before td_io_init() */
1852         if (fio_option_is_set(o, ioprio) ||
1853             fio_option_is_set(o, ioprio_class) ||
1854             fio_option_is_set(o, ioprio_hint)) {
1855                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class,
1856                                  o->ioprio, o->ioprio_hint);
1857                 if (ret == -1) {
1858                         td_verror(td, errno, "ioprio_set");
1859                         goto err;
1860                 }
1861                 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio,
1862                                           o->ioprio_hint);
1863                 td->ts.ioprio = td->ioprio;
1864         }
1865
1866         if (td_io_init(td))
1867                 goto err;
1868
1869         if (td_ioengine_flagged(td, FIO_SYNCIO) && td->o.iodepth > 1 && td->o.io_submit_mode != IO_MODE_OFFLOAD) {
1870                 log_info("note: both iodepth >= 1 and synchronous I/O engine "
1871                          "are selected, queue depth will be capped at 1\n");
1872         }
1873
1874         if (init_io_u(td))
1875                 goto err;
1876
1877         if (td->io_ops->post_init && td->io_ops->post_init(td))
1878                 goto err;
1879
1880         if (o->verify_async && verify_async_init(td))
1881                 goto err;
1882
1883         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1884                 goto err;
1885
1886         errno = 0;
1887         if (nice(o->nice) == -1 && errno != 0) {
1888                 td_verror(td, errno, "nice");
1889                 goto err;
1890         }
1891
1892         if (o->ioscheduler && switch_ioscheduler(td))
1893                 goto err;
1894
1895         if (!o->create_serialize && setup_files(td))
1896                 goto err;
1897
1898         if (!init_random_map(td))
1899                 goto err;
1900
1901         if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1902                 goto err;
1903
1904         if (o->pre_read && !pre_read_files(td))
1905                 goto err;
1906
1907         fio_verify_init(td);
1908
1909         if (rate_submit_init(td, sk_out))
1910                 goto err;
1911
1912         set_epoch_time(td, o->log_alternate_epoch_clock_id, o->job_start_clock_id);
1913         fio_getrusage(&td->ru_start);
1914         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1915         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1916         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1917
1918         init_thinktime(td);
1919
1920         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1921                         o->ratemin[DDIR_TRIM]) {
1922                 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1923                                         sizeof(td->bw_sample_time));
1924                 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1925                                         sizeof(td->bw_sample_time));
1926                 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1927                                         sizeof(td->bw_sample_time));
1928         }
1929
1930         memset(bytes_done, 0, sizeof(bytes_done));
1931         clear_state = false;
1932
1933         while (keep_running(td)) {
1934                 uint64_t verify_bytes;
1935
1936                 fio_gettime(&td->start, NULL);
1937                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1938
1939                 if (clear_state) {
1940                         clear_io_state(td, 0);
1941
1942                         if (o->unlink_each_loop && unlink_all_files(td))
1943                                 break;
1944                 }
1945
1946                 prune_io_piece_log(td);
1947
1948                 if (td->o.verify_only && td_write(td))
1949                         verify_bytes = do_dry_run(td);
1950                 else {
1951                         if (!td->o.rand_repeatable)
1952                                 /* save verify rand state to replay hdr seeds later at verify */
1953                                 frand_copy(&td->verify_state_last_do_io, &td->verify_state);
1954                         do_io(td, bytes_done);
1955                         if (!td->o.rand_repeatable)
1956                                 frand_copy(&td->verify_state, &td->verify_state_last_do_io);
1957                         if (!ddir_rw_sum(bytes_done)) {
1958                                 fio_mark_td_terminate(td);
1959                                 verify_bytes = 0;
1960                         } else {
1961                                 verify_bytes = bytes_done[DDIR_WRITE] +
1962                                                 bytes_done[DDIR_TRIM];
1963                         }
1964                 }
1965
1966                 /*
1967                  * If we took too long to shut down, the main thread could
1968                  * already consider us reaped/exited. If that happens, break
1969                  * out and clean up.
1970                  */
1971                 if (td->runstate >= TD_EXITED)
1972                         break;
1973
1974                 clear_state = true;
1975
1976                 /*
1977                  * Make sure we've successfully updated the rusage stats
1978                  * before waiting on the stat mutex. Otherwise we could have
1979                  * the stat thread holding stat mutex and waiting for
1980                  * the rusage_sem, which would never get upped because
1981                  * this thread is waiting for the stat mutex.
1982                  */
1983                 deadlock_loop_cnt = 0;
1984                 do {
1985                         check_update_rusage(td);
1986                         if (!fio_sem_down_trylock(stat_sem))
1987                                 break;
1988                         usleep(1000);
1989                         if (deadlock_loop_cnt++ > 5000) {
1990                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1991                                 td->error = EDEADLK;
1992                                 goto err;
1993                         }
1994                 } while (1);
1995
1996                 if (td->io_bytes[DDIR_READ] && (td_read(td) ||
1997                         ((td->flags & TD_F_VER_BACKLOG) && td_write(td))))
1998                         update_runtime(td, elapsed_us, DDIR_READ);
1999                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
2000                         update_runtime(td, elapsed_us, DDIR_WRITE);
2001                 if (td->io_bytes[DDIR_TRIM] && (td_trim(td) ||
2002                         ((td->flags & TD_F_TRIM_BACKLOG) && td_write(td))))
2003                         update_runtime(td, elapsed_us, DDIR_TRIM);
2004                 fio_gettime(&td->start, NULL);
2005                 fio_sem_up(stat_sem);
2006
2007                 if (td->error || td->terminate)
2008                         break;
2009
2010                 if (!o->do_verify ||
2011                     o->verify == VERIFY_NONE ||
2012                     td_ioengine_flagged(td, FIO_UNIDIR))
2013                         continue;
2014
2015                 clear_io_state(td, 0);
2016
2017                 fio_gettime(&td->start, NULL);
2018
2019                 do_verify(td, verify_bytes);
2020
2021                 /*
2022                  * See comment further up for why this is done here.
2023                  */
2024                 check_update_rusage(td);
2025
2026                 fio_sem_down(stat_sem);
2027                 update_runtime(td, elapsed_us, DDIR_READ);
2028                 fio_gettime(&td->start, NULL);
2029                 fio_sem_up(stat_sem);
2030
2031                 if (td->error || td->terminate)
2032                         break;
2033         }
2034
2035         /*
2036          * Acquire this lock if we were doing overlap checking in
2037          * offload mode so that we don't clean up this job while
2038          * another thread is checking its io_u's for overlap
2039          */
2040         if (td_offload_overlap(td)) {
2041                 int res;
2042
2043                 res = pthread_mutex_lock(&overlap_check);
2044                 if (res) {
2045                         td->error = errno;
2046                         goto err;
2047                 }
2048         }
2049         td_set_runstate(td, TD_FINISHING);
2050         if (td_offload_overlap(td)) {
2051                 int res;
2052
2053                 res = pthread_mutex_unlock(&overlap_check);
2054                 if (res) {
2055                         td->error = errno;
2056                         goto err;
2057                 }
2058         }
2059
2060         update_rusage_stat(td);
2061         td->ts.total_run_time = mtime_since_now(&td->epoch);
2062         for_each_rw_ddir(ddir) {
2063                 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2064         }
2065
2066         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
2067             (td->o.verify != VERIFY_NONE && td_write(td)))
2068                 verify_save_state(td->thread_number);
2069
2070         fio_unpin_memory(td);
2071
2072         td_writeout_logs(td, true);
2073
2074         iolog_compress_exit(td);
2075         rate_submit_exit(td);
2076
2077         if (o->exec_postrun)
2078                 exec_string(o, o->exec_postrun, "postrun");
2079
2080         if (exitall_on_terminate || (o->exitall_error && td->error))
2081                 fio_terminate_threads(td->groupid, td->o.exit_what);
2082
2083 err:
2084         if (td->error)
2085                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
2086                                                         td->verror);
2087
2088         if (o->verify_async)
2089                 verify_async_exit(td);
2090
2091         close_and_free_files(td);
2092         cleanup_io_u(td);
2093         close_ioengine(td);
2094         cgroup_shutdown(td, cgroup_mnt);
2095         verify_free_state(td);
2096         td_zone_free_index(td);
2097
2098         if (fio_option_is_set(o, cpumask)) {
2099                 ret = fio_cpuset_exit(&o->cpumask);
2100                 if (ret)
2101                         td_verror(td, ret, "fio_cpuset_exit");
2102         }
2103
2104         /*
2105          * do this very late, it will log file closing as well
2106          */
2107         if (o->write_iolog_file)
2108                 write_iolog_close(td);
2109         if (td->io_log_rfile)
2110                 fclose(td->io_log_rfile);
2111
2112         td_set_runstate(td, TD_EXITED);
2113
2114         /*
2115          * Do this last after setting our runstate to exited, so we
2116          * know that the stat thread is signaled.
2117          */
2118         check_update_rusage(td);
2119
2120         sk_out_drop();
2121         return (void *) (uintptr_t) td->error;
2122 }
2123
2124 /*
2125  * Run over the job map and reap the threads that have exited, if any.
2126  */
2127 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2128                          uint64_t *m_rate)
2129 {
2130         unsigned int cputhreads, realthreads, pending;
2131         int ret;
2132
2133         /*
2134          * reap exited threads (TD_EXITED -> TD_REAPED)
2135          */
2136         realthreads = pending = cputhreads = 0;
2137         for_each_td(td) {
2138                 int flags = 0, status;
2139
2140                 if (!strcmp(td->o.ioengine, "cpuio"))
2141                         cputhreads++;
2142                 else
2143                         realthreads++;
2144
2145                 if (!td->pid) {
2146                         pending++;
2147                         continue;
2148                 }
2149                 if (td->runstate == TD_REAPED)
2150                         continue;
2151                 if (td->o.use_thread) {
2152                         if (td->runstate == TD_EXITED) {
2153                                 td_set_runstate(td, TD_REAPED);
2154                                 goto reaped;
2155                         }
2156                         continue;
2157                 }
2158
2159                 flags = WNOHANG;
2160                 if (td->runstate == TD_EXITED)
2161                         flags = 0;
2162
2163                 /*
2164                  * check if someone quit or got killed in an unusual way
2165                  */
2166                 ret = waitpid(td->pid, &status, flags);
2167                 if (ret < 0) {
2168                         if (errno == ECHILD) {
2169                                 log_err("fio: pid=%d disappeared %d\n",
2170                                                 (int) td->pid, td->runstate);
2171                                 td->sig = ECHILD;
2172                                 td_set_runstate(td, TD_REAPED);
2173                                 goto reaped;
2174                         }
2175                         perror("waitpid");
2176                 } else if (ret == td->pid) {
2177                         if (WIFSIGNALED(status)) {
2178                                 int sig = WTERMSIG(status);
2179
2180                                 if (sig != SIGTERM && sig != SIGUSR2)
2181                                         log_err("fio: pid=%d, got signal=%d\n",
2182                                                         (int) td->pid, sig);
2183                                 td->sig = sig;
2184                                 td_set_runstate(td, TD_REAPED);
2185                                 goto reaped;
2186                         }
2187                         if (WIFEXITED(status)) {
2188                                 if (WEXITSTATUS(status) && !td->error)
2189                                         td->error = WEXITSTATUS(status);
2190
2191                                 td_set_runstate(td, TD_REAPED);
2192                                 goto reaped;
2193                         }
2194                 }
2195
2196                 /*
2197                  * If the job is stuck, do a forceful timeout of it and
2198                  * move on.
2199                  */
2200                 if (td->terminate &&
2201                     td->runstate < TD_FSYNCING &&
2202                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2203                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2204                                 "%lu seconds, it appears to be stuck. Doing "
2205                                 "forceful exit of this job.\n",
2206                                 td->o.name, td->runstate,
2207                                 (unsigned long) time_since_now(&td->terminate_time));
2208                         td_set_runstate(td, TD_REAPED);
2209                         goto reaped;
2210                 }
2211
2212                 /*
2213                  * thread is not dead, continue
2214                  */
2215                 pending++;
2216                 continue;
2217 reaped:
2218                 (*nr_running)--;
2219                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2220                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2221                 if (!td->pid)
2222                         pending--;
2223
2224                 if (td->error)
2225                         exit_value++;
2226
2227                 done_secs += mtime_since_now(&td->epoch) / 1000;
2228                 profile_td_exit(td);
2229                 flow_exit_job(td);
2230         } end_for_each();
2231
2232         if (*nr_running == cputhreads && !pending && realthreads)
2233                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2234 }
2235
2236 static bool __check_trigger_file(void)
2237 {
2238         struct stat sb;
2239
2240         if (!trigger_file)
2241                 return false;
2242
2243         if (stat(trigger_file, &sb))
2244                 return false;
2245
2246         if (unlink(trigger_file) < 0)
2247                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2248                                                         strerror(errno));
2249
2250         return true;
2251 }
2252
2253 static bool trigger_timedout(void)
2254 {
2255         if (trigger_timeout)
2256                 if (time_since_genesis() >= trigger_timeout) {
2257                         trigger_timeout = 0;
2258                         return true;
2259                 }
2260
2261         return false;
2262 }
2263
2264 void exec_trigger(const char *cmd)
2265 {
2266         int ret;
2267
2268         if (!cmd || cmd[0] == '\0')
2269                 return;
2270
2271         ret = system(cmd);
2272         if (ret == -1)
2273                 log_err("fio: failed executing %s trigger\n", cmd);
2274 }
2275
2276 void check_trigger_file(void)
2277 {
2278         if (__check_trigger_file() || trigger_timedout()) {
2279                 if (nr_clients)
2280                         fio_clients_send_trigger(trigger_remote_cmd);
2281                 else {
2282                         verify_save_state(IO_LIST_ALL);
2283                         fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2284                         exec_trigger(trigger_cmd);
2285                 }
2286         }
2287 }
2288
2289 static int fio_verify_load_state(struct thread_data *td)
2290 {
2291         int ret;
2292
2293         if (!td->o.verify_state)
2294                 return 0;
2295
2296         if (is_backend) {
2297                 void *data;
2298
2299                 ret = fio_server_get_verify_state(td->o.name,
2300                                         td->thread_number - 1, &data);
2301                 if (!ret)
2302                         verify_assign_state(td, data);
2303         } else {
2304                 char prefix[PATH_MAX];
2305
2306                 if (aux_path)
2307                         sprintf(prefix, "%s%clocal", aux_path,
2308                                         FIO_OS_PATH_SEPARATOR);
2309                 else
2310                         strcpy(prefix, "local");
2311                 ret = verify_load_state(td, prefix);
2312         }
2313
2314         return ret;
2315 }
2316
2317 static void do_usleep(unsigned int usecs)
2318 {
2319         check_for_running_stats();
2320         check_trigger_file();
2321         usleep(usecs);
2322 }
2323
2324 static bool check_mount_writes(struct thread_data *td)
2325 {
2326         struct fio_file *f;
2327         unsigned int i;
2328
2329         if (!td_write(td) || td->o.allow_mounted_write)
2330                 return false;
2331
2332         /*
2333          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2334          * are mkfs'd and mounted.
2335          */
2336         for_each_file(td, f, i) {
2337 #ifdef FIO_HAVE_CHARDEV_SIZE
2338                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2339 #else
2340                 if (f->filetype != FIO_TYPE_BLOCK)
2341 #endif
2342                         continue;
2343                 if (device_is_mounted(f->file_name))
2344                         goto mounted;
2345         }
2346
2347         return false;
2348 mounted:
2349         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2350         return true;
2351 }
2352
2353 static bool waitee_running(struct thread_data *me)
2354 {
2355         const char *waitee = me->o.wait_for;
2356         const char *self = me->o.name;
2357
2358         if (!waitee)
2359                 return false;
2360
2361         for_each_td(td) {
2362                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2363                         continue;
2364
2365                 if (td->runstate < TD_EXITED) {
2366                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2367                                         self, td->o.name,
2368                                         runstate_to_name(td->runstate));
2369                         return true;
2370                 }
2371         } end_for_each();
2372
2373         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2374         return false;
2375 }
2376
2377 /*
2378  * Main function for kicking off and reaping jobs, as needed.
2379  */
2380 static void run_threads(struct sk_out *sk_out)
2381 {
2382         struct thread_data *td;
2383         unsigned int i, todo, nr_running, nr_started;
2384         uint64_t m_rate, t_rate;
2385         uint64_t spent;
2386
2387         if (fio_gtod_offload && fio_start_gtod_thread())
2388                 return;
2389
2390         fio_idle_prof_init();
2391
2392         set_sig_handlers();
2393
2394         nr_thread = nr_process = 0;
2395         for_each_td(td) {
2396                 if (check_mount_writes(td))
2397                         return;
2398                 if (td->o.use_thread)
2399                         nr_thread++;
2400                 else
2401                         nr_process++;
2402         } end_for_each();
2403
2404         if (output_format & FIO_OUTPUT_NORMAL) {
2405                 struct buf_output out;
2406
2407                 buf_output_init(&out);
2408                 __log_buf(&out, "Starting ");
2409                 if (nr_thread)
2410                         __log_buf(&out, "%d thread%s", nr_thread,
2411                                                 nr_thread > 1 ? "s" : "");
2412                 if (nr_process) {
2413                         if (nr_thread)
2414                                 __log_buf(&out, " and ");
2415                         __log_buf(&out, "%d process%s", nr_process,
2416                                                 nr_process > 1 ? "es" : "");
2417                 }
2418                 __log_buf(&out, "\n");
2419                 log_info_buf(out.buf, out.buflen);
2420                 buf_output_free(&out);
2421         }
2422
2423         todo = thread_number;
2424         nr_running = 0;
2425         nr_started = 0;
2426         m_rate = t_rate = 0;
2427
2428         for_each_td(td) {
2429                 print_status_init(td->thread_number - 1);
2430
2431                 if (!td->o.create_serialize)
2432                         continue;
2433
2434                 if (fio_verify_load_state(td))
2435                         goto reap;
2436
2437                 /*
2438                  * do file setup here so it happens sequentially,
2439                  * we don't want X number of threads getting their
2440                  * client data interspersed on disk
2441                  */
2442                 if (setup_files(td)) {
2443 reap:
2444                         exit_value++;
2445                         if (td->error)
2446                                 log_err("fio: pid=%d, err=%d/%s\n",
2447                                         (int) td->pid, td->error, td->verror);
2448                         td_set_runstate(td, TD_REAPED);
2449                         todo--;
2450                 } else {
2451                         struct fio_file *f;
2452                         unsigned int j;
2453
2454                         /*
2455                          * for sharing to work, each job must always open
2456                          * its own files. so close them, if we opened them
2457                          * for creation
2458                          */
2459                         for_each_file(td, f, j) {
2460                                 if (fio_file_open(f))
2461                                         td_io_close_file(td, f);
2462                         }
2463                 }
2464         } end_for_each();
2465
2466         /* start idle threads before io threads start to run */
2467         fio_idle_prof_start();
2468
2469         set_genesis_time();
2470
2471         while (todo) {
2472                 struct thread_data *map[REAL_MAX_JOBS];
2473                 struct timespec this_start;
2474                 int this_jobs = 0, left;
2475                 struct fork_data *fd;
2476
2477                 /*
2478                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2479                  */
2480                 for_each_td(td) {
2481                         if (td->runstate != TD_NOT_CREATED)
2482                                 continue;
2483
2484                         /*
2485                          * never got a chance to start, killed by other
2486                          * thread for some reason
2487                          */
2488                         if (td->terminate) {
2489                                 todo--;
2490                                 continue;
2491                         }
2492
2493                         if (td->o.start_delay) {
2494                                 spent = utime_since_genesis();
2495
2496                                 if (td->o.start_delay > spent)
2497                                         continue;
2498                         }
2499
2500                         if (td->o.stonewall && (nr_started || nr_running)) {
2501                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2502                                                         td->o.name);
2503                                 break;
2504                         }
2505
2506                         if (waitee_running(td)) {
2507                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2508                                                 td->o.name, td->o.wait_for);
2509                                 continue;
2510                         }
2511
2512                         init_disk_util(td);
2513
2514                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2515                         td->update_rusage = 0;
2516
2517                         /*
2518                          * Set state to created. Thread will transition
2519                          * to TD_INITIALIZED when it's done setting up.
2520                          */
2521                         td_set_runstate(td, TD_CREATED);
2522                         map[this_jobs++] = td;
2523                         nr_started++;
2524
2525                         fd = calloc(1, sizeof(*fd));
2526                         fd->td = td;
2527                         fd->sk_out = sk_out;
2528
2529                         if (td->o.use_thread) {
2530                                 int ret;
2531
2532                                 dprint(FD_PROCESS, "will pthread_create\n");
2533                                 ret = pthread_create(&td->thread, NULL,
2534                                                         thread_main, fd);
2535                                 if (ret) {
2536                                         log_err("pthread_create: %s\n",
2537                                                         strerror(ret));
2538                                         free(fd);
2539                                         nr_started--;
2540                                         break;
2541                                 }
2542                                 fd = NULL;
2543                                 ret = pthread_detach(td->thread);
2544                                 if (ret)
2545                                         log_err("pthread_detach: %s",
2546                                                         strerror(ret));
2547                         } else {
2548                                 pid_t pid;
2549                                 void *eo;
2550                                 dprint(FD_PROCESS, "will fork\n");
2551                                 eo = td->eo;
2552                                 read_barrier();
2553                                 pid = fork();
2554                                 if (!pid) {
2555                                         int ret;
2556
2557                                         ret = (int)(uintptr_t)thread_main(fd);
2558                                         _exit(ret);
2559                                 } else if (__td_index == fio_debug_jobno)
2560                                         *fio_debug_jobp = pid;
2561                                 free(eo);
2562                                 free(fd);
2563                                 fd = NULL;
2564                         }
2565                         dprint(FD_MUTEX, "wait on startup_sem\n");
2566                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2567                                 log_err("fio: job startup hung? exiting.\n");
2568                                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2569                                 fio_abort = true;
2570                                 nr_started--;
2571                                 free(fd);
2572                                 break;
2573                         }
2574                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2575                 } end_for_each();
2576
2577                 /*
2578                  * Wait for the started threads to transition to
2579                  * TD_INITIALIZED.
2580                  */
2581                 fio_gettime(&this_start, NULL);
2582                 left = this_jobs;
2583                 while (left && !fio_abort) {
2584                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2585                                 break;
2586
2587                         do_usleep(100000);
2588
2589                         for (i = 0; i < this_jobs; i++) {
2590                                 td = map[i];
2591                                 if (!td)
2592                                         continue;
2593                                 if (td->runstate == TD_INITIALIZED) {
2594                                         map[i] = NULL;
2595                                         left--;
2596                                 } else if (td->runstate >= TD_EXITED) {
2597                                         map[i] = NULL;
2598                                         left--;
2599                                         todo--;
2600                                         nr_running++; /* work-around... */
2601                                 }
2602                         }
2603                 }
2604
2605                 if (left) {
2606                         log_err("fio: %d job%s failed to start\n", left,
2607                                         left > 1 ? "s" : "");
2608                         for (i = 0; i < this_jobs; i++) {
2609                                 td = map[i];
2610                                 if (!td)
2611                                         continue;
2612                                 kill(td->pid, SIGTERM);
2613                         }
2614                         break;
2615                 }
2616
2617                 /*
2618                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2619                  */
2620                 for_each_td(td) {
2621                         if (td->runstate != TD_INITIALIZED)
2622                                 continue;
2623
2624                         if (in_ramp_time(td))
2625                                 td_set_runstate(td, TD_RAMP);
2626                         else
2627                                 td_set_runstate(td, TD_RUNNING);
2628                         nr_running++;
2629                         nr_started--;
2630                         m_rate += ddir_rw_sum(td->o.ratemin);
2631                         t_rate += ddir_rw_sum(td->o.rate);
2632                         todo--;
2633                         fio_sem_up(td->sem);
2634                 } end_for_each();
2635
2636                 reap_threads(&nr_running, &t_rate, &m_rate);
2637
2638                 if (todo)
2639                         do_usleep(100000);
2640         }
2641
2642         while (nr_running) {
2643                 reap_threads(&nr_running, &t_rate, &m_rate);
2644                 do_usleep(10000);
2645         }
2646
2647         fio_idle_prof_stop();
2648
2649         update_io_ticks();
2650 }
2651
2652 static void free_disk_util(void)
2653 {
2654         disk_util_prune_entries();
2655         helper_thread_destroy();
2656 }
2657
2658 int fio_backend(struct sk_out *sk_out)
2659 {
2660         int i;
2661         if (exec_profile) {
2662                 if (load_profile(exec_profile))
2663                         return 1;
2664                 free(exec_profile);
2665                 exec_profile = NULL;
2666         }
2667         if (!thread_number)
2668                 return 0;
2669
2670         if (write_bw_log) {
2671                 struct log_params p = {
2672                         .log_type = IO_LOG_TYPE_BW,
2673                 };
2674
2675                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2676                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2677                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2678         }
2679
2680         if (init_global_dedupe_working_set_seeds()) {
2681                 log_err("fio: failed to initialize global dedupe working set\n");
2682                 return 1;
2683         }
2684
2685         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2686         if (!sk_out)
2687                 is_local_backend = true;
2688         if (startup_sem == NULL)
2689                 return 1;
2690
2691         set_genesis_time();
2692         stat_init();
2693         if (helper_thread_create(startup_sem, sk_out))
2694                 log_err("fio: failed to create helper thread\n");
2695
2696         cgroup_list = smalloc(sizeof(*cgroup_list));
2697         if (cgroup_list)
2698                 INIT_FLIST_HEAD(cgroup_list);
2699
2700         run_threads(sk_out);
2701
2702         helper_thread_exit();
2703
2704         if (!fio_abort) {
2705                 __show_run_stats();
2706                 if (write_bw_log) {
2707                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2708                                 struct io_log *log = agg_io_log[i];
2709
2710                                 flush_log(log, false);
2711                                 free_log(log);
2712                         }
2713                 }
2714         }
2715
2716         for_each_td(td) {
2717                 struct thread_stat *ts = &td->ts;
2718
2719                 free_clat_prio_stats(ts);
2720                 steadystate_free(td);
2721                 fio_options_free(td);
2722                 fio_dump_options_free(td);
2723                 if (td->rusage_sem) {
2724                         fio_sem_remove(td->rusage_sem);
2725                         td->rusage_sem = NULL;
2726                 }
2727                 fio_sem_remove(td->sem);
2728                 td->sem = NULL;
2729         } end_for_each();
2730
2731         free_disk_util();
2732         if (cgroup_list) {
2733                 cgroup_kill(cgroup_list);
2734                 sfree(cgroup_list);
2735         }
2736
2737         fio_sem_remove(startup_sem);
2738         stat_exit();
2739         return exit_value;
2740 }