874e19379067944f4b3930f4ad31056e41583916
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52
53 static struct fio_sem *startup_sem;
54 static struct flist_head *cgroup_list;
55 static struct cgroup_mnt *cgroup_mnt;
56 static int exit_value;
57 static volatile bool fio_abort;
58 static unsigned int nr_process = 0;
59 static unsigned int nr_thread = 0;
60
61 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63 int groupid = 0;
64 unsigned int thread_number = 0;
65 unsigned int nr_segments = 0;
66 unsigned int cur_segment = 0;
67 unsigned int stat_number = 0;
68 int temp_stall_ts;
69 unsigned long done_secs = 0;
70 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72 #else
73 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74 #endif
75
76 #define JOB_START_TIMEOUT       (5 * 1000)
77
78 static void sig_int(int sig)
79 {
80         if (nr_segments) {
81                 if (is_backend)
82                         fio_server_got_signal(sig);
83                 else {
84                         log_info("\nfio: terminating on signal %d\n", sig);
85                         log_info_flush();
86                         exit_value = 128;
87                 }
88
89                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90         }
91 }
92
93 void sig_show_status(int sig)
94 {
95         show_running_run_stats();
96 }
97
98 static void set_sig_handlers(void)
99 {
100         struct sigaction act;
101
102         memset(&act, 0, sizeof(act));
103         act.sa_handler = sig_int;
104         act.sa_flags = SA_RESTART;
105         sigaction(SIGINT, &act, NULL);
106
107         memset(&act, 0, sizeof(act));
108         act.sa_handler = sig_int;
109         act.sa_flags = SA_RESTART;
110         sigaction(SIGTERM, &act, NULL);
111
112 /* Windows uses SIGBREAK as a quit signal from other applications */
113 #ifdef WIN32
114         memset(&act, 0, sizeof(act));
115         act.sa_handler = sig_int;
116         act.sa_flags = SA_RESTART;
117         sigaction(SIGBREAK, &act, NULL);
118 #endif
119
120         memset(&act, 0, sizeof(act));
121         act.sa_handler = sig_show_status;
122         act.sa_flags = SA_RESTART;
123         sigaction(SIGUSR1, &act, NULL);
124
125         if (is_backend) {
126                 memset(&act, 0, sizeof(act));
127                 act.sa_handler = sig_int;
128                 act.sa_flags = SA_RESTART;
129                 sigaction(SIGPIPE, &act, NULL);
130         }
131 }
132
133 /*
134  * Check if we are above the minimum rate given.
135  */
136 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
137                              enum fio_ddir ddir)
138 {
139         unsigned long long bytes = 0;
140         unsigned long iops = 0;
141         unsigned long spent;
142         unsigned long long rate;
143         unsigned long long ratemin = 0;
144         unsigned int rate_iops = 0;
145         unsigned int rate_iops_min = 0;
146
147         assert(ddir_rw(ddir));
148
149         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
150                 return false;
151
152         /*
153          * allow a 2 second settle period in the beginning
154          */
155         if (mtime_since(&td->start, now) < 2000)
156                 return false;
157
158         iops += td->this_io_blocks[ddir];
159         bytes += td->this_io_bytes[ddir];
160         ratemin += td->o.ratemin[ddir];
161         rate_iops += td->o.rate_iops[ddir];
162         rate_iops_min += td->o.rate_iops_min[ddir];
163
164         /*
165          * if rate blocks is set, sample is running
166          */
167         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
168                 spent = mtime_since(&td->lastrate[ddir], now);
169                 if (spent < td->o.ratecycle)
170                         return false;
171
172                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
173                         /*
174                          * check bandwidth specified rate
175                          */
176                         if (bytes < td->rate_bytes[ddir]) {
177                                 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
178                                         td->o.name, ratemin, bytes);
179                                 return true;
180                         } else {
181                                 if (spent)
182                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
183                                 else
184                                         rate = 0;
185
186                                 if (rate < ratemin ||
187                                     bytes < td->rate_bytes[ddir]) {
188                                         log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189                                                 td->o.name, ratemin, rate);
190                                         return true;
191                                 }
192                         }
193                 } else {
194                         /*
195                          * checks iops specified rate
196                          */
197                         if (iops < rate_iops) {
198                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
199                                                 td->o.name, rate_iops, iops);
200                                 return true;
201                         } else {
202                                 if (spent)
203                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
204                                 else
205                                         rate = 0;
206
207                                 if (rate < rate_iops_min ||
208                                     iops < td->rate_blocks[ddir]) {
209                                         log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
210                                                 td->o.name, rate_iops_min, rate);
211                                         return true;
212                                 }
213                         }
214                 }
215         }
216
217         td->rate_bytes[ddir] = bytes;
218         td->rate_blocks[ddir] = iops;
219         memcpy(&td->lastrate[ddir], now, sizeof(*now));
220         return false;
221 }
222
223 static bool check_min_rate(struct thread_data *td, struct timespec *now)
224 {
225         bool ret = false;
226
227         for_each_rw_ddir(ddir) {
228                 if (td->bytes_done[ddir])
229                         ret |= __check_min_rate(td, now, ddir);
230         }
231
232         return ret;
233 }
234
235 /*
236  * When job exits, we can cancel the in-flight IO if we are using async
237  * io. Attempt to do so.
238  */
239 static void cleanup_pending_aio(struct thread_data *td)
240 {
241         int r;
242
243         /*
244          * get immediately available events, if any
245          */
246         r = io_u_queued_complete(td, 0);
247
248         /*
249          * now cancel remaining active events
250          */
251         if (td->io_ops->cancel) {
252                 struct io_u *io_u;
253                 int i;
254
255                 io_u_qiter(&td->io_u_all, io_u, i) {
256                         if (io_u->flags & IO_U_F_FLIGHT) {
257                                 r = td->io_ops->cancel(td, io_u);
258                                 if (!r)
259                                         put_io_u(td, io_u);
260                         }
261                 }
262         }
263
264         if (td->cur_depth)
265                 r = io_u_queued_complete(td, td->cur_depth);
266 }
267
268 /*
269  * Helper to handle the final sync of a file. Works just like the normal
270  * io path, just does everything sync.
271  */
272 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
273 {
274         struct io_u *io_u = __get_io_u(td);
275         enum fio_q_status ret;
276
277         if (!io_u)
278                 return true;
279
280         io_u->ddir = DDIR_SYNC;
281         io_u->file = f;
282         io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
283
284         if (td_io_prep(td, io_u)) {
285                 put_io_u(td, io_u);
286                 return true;
287         }
288
289 requeue:
290         ret = td_io_queue(td, io_u);
291         switch (ret) {
292         case FIO_Q_QUEUED:
293                 td_io_commit(td);
294                 if (io_u_queued_complete(td, 1) < 0)
295                         return true;
296                 break;
297         case FIO_Q_COMPLETED:
298                 if (io_u->error) {
299                         td_verror(td, io_u->error, "td_io_queue");
300                         return true;
301                 }
302
303                 if (io_u_sync_complete(td, io_u) < 0)
304                         return true;
305                 break;
306         case FIO_Q_BUSY:
307                 td_io_commit(td);
308                 goto requeue;
309         }
310
311         return false;
312 }
313
314 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
315 {
316         int ret, ret2;
317
318         if (fio_file_open(f))
319                 return fio_io_sync(td, f);
320
321         if (td_io_open_file(td, f))
322                 return 1;
323
324         ret = fio_io_sync(td, f);
325         ret2 = 0;
326         if (fio_file_open(f))
327                 ret2 = td_io_close_file(td, f);
328         return (ret || ret2);
329 }
330
331 static inline void __update_ts_cache(struct thread_data *td)
332 {
333         fio_gettime(&td->ts_cache, NULL);
334 }
335
336 static inline void update_ts_cache(struct thread_data *td)
337 {
338         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
339                 __update_ts_cache(td);
340 }
341
342 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
343 {
344         if (in_ramp_time(td))
345                 return false;
346         if (!td->o.timeout)
347                 return false;
348         if (utime_since(&td->epoch, t) >= td->o.timeout)
349                 return true;
350
351         return false;
352 }
353
354 /*
355  * We need to update the runtime consistently in ms, but keep a running
356  * tally of the current elapsed time in microseconds for sub millisecond
357  * updates.
358  */
359 static inline void update_runtime(struct thread_data *td,
360                                   unsigned long long *elapsed_us,
361                                   const enum fio_ddir ddir)
362 {
363         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
364                 return;
365
366         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
367         elapsed_us[ddir] += utime_since_now(&td->start);
368         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
369 }
370
371 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
372                                 int *retptr)
373 {
374         int ret = *retptr;
375
376         if (ret < 0 || td->error) {
377                 int err = td->error;
378                 enum error_type_bit eb;
379
380                 if (ret < 0)
381                         err = -ret;
382
383                 eb = td_error_type(ddir, err);
384                 if (!(td->o.continue_on_error & (1 << eb)))
385                         return true;
386
387                 if (td_non_fatal_error(td, eb, err)) {
388                         /*
389                          * Continue with the I/Os in case of
390                          * a non fatal error.
391                          */
392                         update_error_count(td, err);
393                         td_clear_error(td);
394                         *retptr = 0;
395                         return false;
396                 } else if (td->o.fill_device && err == ENOSPC) {
397                         /*
398                          * We expect to hit this error if
399                          * fill_device option is set.
400                          */
401                         td_clear_error(td);
402                         fio_mark_td_terminate(td);
403                         return true;
404                 } else {
405                         /*
406                          * Stop the I/O in case of a fatal
407                          * error.
408                          */
409                         update_error_count(td, err);
410                         return true;
411                 }
412         }
413
414         return false;
415 }
416
417 static void check_update_rusage(struct thread_data *td)
418 {
419         if (td->update_rusage) {
420                 td->update_rusage = 0;
421                 update_rusage_stat(td);
422                 fio_sem_up(td->rusage_sem);
423         }
424 }
425
426 static int wait_for_completions(struct thread_data *td, struct timespec *time)
427 {
428         const int full = queue_full(td);
429         int min_evts = 0;
430         int ret;
431
432         if (td->flags & TD_F_REGROW_LOGS)
433                 return io_u_quiesce(td);
434
435         /*
436          * if the queue is full, we MUST reap at least 1 event
437          */
438         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
439         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
440                 min_evts = 1;
441
442         if (time && should_check_rate(td))
443                 fio_gettime(time, NULL);
444
445         do {
446                 ret = io_u_queued_complete(td, min_evts);
447                 if (ret < 0)
448                         break;
449         } while (full && (td->cur_depth > td->o.iodepth_low));
450
451         return ret;
452 }
453
454 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
455                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
456                    struct timespec *comp_time)
457 {
458         switch (*ret) {
459         case FIO_Q_COMPLETED:
460                 if (io_u->error) {
461                         *ret = -io_u->error;
462                         clear_io_u(td, io_u);
463                 } else if (io_u->resid) {
464                         long long bytes = io_u->xfer_buflen - io_u->resid;
465                         struct fio_file *f = io_u->file;
466
467                         if (bytes_issued)
468                                 *bytes_issued += bytes;
469
470                         if (!from_verify)
471                                 trim_io_piece(io_u);
472
473                         /*
474                          * zero read, fail
475                          */
476                         if (!bytes) {
477                                 if (!from_verify)
478                                         unlog_io_piece(td, io_u);
479                                 td_verror(td, EIO, "full resid");
480                                 put_io_u(td, io_u);
481                                 break;
482                         }
483
484                         io_u->xfer_buflen = io_u->resid;
485                         io_u->xfer_buf += bytes;
486                         io_u->offset += bytes;
487
488                         if (ddir_rw(io_u->ddir))
489                                 td->ts.short_io_u[io_u->ddir]++;
490
491                         if (io_u->offset == f->real_file_size)
492                                 goto sync_done;
493
494                         requeue_io_u(td, &io_u);
495                 } else {
496 sync_done:
497                         if (comp_time && should_check_rate(td))
498                                 fio_gettime(comp_time, NULL);
499
500                         *ret = io_u_sync_complete(td, io_u);
501                         if (*ret < 0)
502                                 break;
503                 }
504
505                 if (td->flags & TD_F_REGROW_LOGS)
506                         regrow_logs(td);
507
508                 /*
509                  * when doing I/O (not when verifying),
510                  * check for any errors that are to be ignored
511                  */
512                 if (!from_verify)
513                         break;
514
515                 return 0;
516         case FIO_Q_QUEUED:
517                 /*
518                  * if the engine doesn't have a commit hook,
519                  * the io_u is really queued. if it does have such
520                  * a hook, it has to call io_u_queued() itself.
521                  */
522                 if (td->io_ops->commit == NULL)
523                         io_u_queued(td, io_u);
524                 if (bytes_issued)
525                         *bytes_issued += io_u->xfer_buflen;
526                 break;
527         case FIO_Q_BUSY:
528                 if (!from_verify)
529                         unlog_io_piece(td, io_u);
530                 requeue_io_u(td, &io_u);
531                 td_io_commit(td);
532                 break;
533         default:
534                 assert(*ret < 0);
535                 td_verror(td, -(*ret), "td_io_queue");
536                 break;
537         }
538
539         if (break_on_this_error(td, ddir, ret))
540                 return 1;
541
542         return 0;
543 }
544
545 static inline bool io_in_polling(struct thread_data *td)
546 {
547         return !td->o.iodepth_batch_complete_min &&
548                    !td->o.iodepth_batch_complete_max;
549 }
550 /*
551  * Unlinks files from thread data fio_file structure
552  */
553 static int unlink_all_files(struct thread_data *td)
554 {
555         struct fio_file *f;
556         unsigned int i;
557         int ret = 0;
558
559         for_each_file(td, f, i) {
560                 if (f->filetype != FIO_TYPE_FILE)
561                         continue;
562                 ret = td_io_unlink_file(td, f);
563                 if (ret)
564                         break;
565         }
566
567         if (ret)
568                 td_verror(td, ret, "unlink_all_files");
569
570         return ret;
571 }
572
573 /*
574  * Check if io_u will overlap an in-flight IO in the queue
575  */
576 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
577 {
578         bool overlap;
579         struct io_u *check_io_u;
580         unsigned long long x1, x2, y1, y2;
581         int i;
582
583         x1 = io_u->offset;
584         x2 = io_u->offset + io_u->buflen;
585         overlap = false;
586         io_u_qiter(q, check_io_u, i) {
587                 if (check_io_u->flags & IO_U_F_FLIGHT) {
588                         y1 = check_io_u->offset;
589                         y2 = check_io_u->offset + check_io_u->buflen;
590
591                         if (x1 < y2 && y1 < x2) {
592                                 overlap = true;
593                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
594                                                 x1, io_u->buflen,
595                                                 y1, check_io_u->buflen);
596                                 break;
597                         }
598                 }
599         }
600
601         return overlap;
602 }
603
604 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
605 {
606         /*
607          * Check for overlap if the user asked us to, and we have
608          * at least one IO in flight besides this one.
609          */
610         if (td->o.serialize_overlap && td->cur_depth > 1 &&
611             in_flight_overlap(&td->io_u_all, io_u))
612                 return FIO_Q_BUSY;
613
614         return td_io_queue(td, io_u);
615 }
616
617 /*
618  * The main verify engine. Runs over the writes we previously submitted,
619  * reads the blocks back in, and checks the crc/md5 of the data.
620  */
621 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
622 {
623         struct fio_file *f;
624         struct io_u *io_u;
625         int ret, min_events;
626         unsigned int i;
627
628         dprint(FD_VERIFY, "starting loop\n");
629
630         /*
631          * sync io first and invalidate cache, to make sure we really
632          * read from disk.
633          */
634         for_each_file(td, f, i) {
635                 if (!fio_file_open(f))
636                         continue;
637                 if (fio_io_sync(td, f))
638                         break;
639                 if (file_invalidate_cache(td, f))
640                         break;
641         }
642
643         check_update_rusage(td);
644
645         if (td->error)
646                 return;
647
648         /*
649          * verify_state needs to be reset before verification
650          * proceeds so that expected random seeds match actual
651          * random seeds in headers. The main loop will reset
652          * all random number generators if randrepeat is set.
653          */
654         if (!td->o.rand_repeatable)
655                 td_fill_verify_state_seed(td);
656
657         td_set_runstate(td, TD_VERIFYING);
658
659         io_u = NULL;
660         while (!td->terminate) {
661                 enum fio_ddir ddir;
662                 int full;
663
664                 update_ts_cache(td);
665                 check_update_rusage(td);
666
667                 if (runtime_exceeded(td, &td->ts_cache)) {
668                         __update_ts_cache(td);
669                         if (runtime_exceeded(td, &td->ts_cache)) {
670                                 fio_mark_td_terminate(td);
671                                 break;
672                         }
673                 }
674
675                 if (flow_threshold_exceeded(td))
676                         continue;
677
678                 if (!td->o.experimental_verify) {
679                         io_u = __get_io_u(td);
680                         if (!io_u)
681                                 break;
682
683                         if (get_next_verify(td, io_u)) {
684                                 put_io_u(td, io_u);
685                                 break;
686                         }
687
688                         if (td_io_prep(td, io_u)) {
689                                 put_io_u(td, io_u);
690                                 break;
691                         }
692                 } else {
693                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
694                                 break;
695
696                         while ((io_u = get_io_u(td)) != NULL) {
697                                 if (IS_ERR_OR_NULL(io_u)) {
698                                         io_u = NULL;
699                                         ret = FIO_Q_BUSY;
700                                         goto reap;
701                                 }
702
703                                 /*
704                                  * We are only interested in the places where
705                                  * we wrote or trimmed IOs. Turn those into
706                                  * reads for verification purposes.
707                                  */
708                                 if (io_u->ddir == DDIR_READ) {
709                                         /*
710                                          * Pretend we issued it for rwmix
711                                          * accounting
712                                          */
713                                         td->io_issues[DDIR_READ]++;
714                                         put_io_u(td, io_u);
715                                         continue;
716                                 } else if (io_u->ddir == DDIR_TRIM) {
717                                         io_u->ddir = DDIR_READ;
718                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
719                                         break;
720                                 } else if (io_u->ddir == DDIR_WRITE) {
721                                         io_u->ddir = DDIR_READ;
722                                         populate_verify_io_u(td, io_u);
723                                         break;
724                                 } else {
725                                         put_io_u(td, io_u);
726                                         continue;
727                                 }
728                         }
729
730                         if (!io_u)
731                                 break;
732                 }
733
734                 if (verify_state_should_stop(td, io_u)) {
735                         put_io_u(td, io_u);
736                         break;
737                 }
738
739                 if (td->o.verify_async)
740                         io_u->end_io = verify_io_u_async;
741                 else
742                         io_u->end_io = verify_io_u;
743
744                 ddir = io_u->ddir;
745                 if (!td->o.disable_slat)
746                         fio_gettime(&io_u->start_time, NULL);
747
748                 ret = io_u_submit(td, io_u);
749
750                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
751                         break;
752
753                 /*
754                  * if we can queue more, do so. but check if there are
755                  * completed io_u's first. Note that we can get BUSY even
756                  * without IO queued, if the system is resource starved.
757                  */
758 reap:
759                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
760                 if (full || io_in_polling(td))
761                         ret = wait_for_completions(td, NULL);
762
763                 if (ret < 0)
764                         break;
765         }
766
767         check_update_rusage(td);
768
769         if (!td->error) {
770                 min_events = td->cur_depth;
771
772                 if (min_events)
773                         ret = io_u_queued_complete(td, min_events);
774         } else
775                 cleanup_pending_aio(td);
776
777         td_set_runstate(td, TD_RUNNING);
778
779         dprint(FD_VERIFY, "exiting loop\n");
780 }
781
782 static bool exceeds_number_ios(struct thread_data *td)
783 {
784         unsigned long long number_ios;
785
786         if (!td->o.number_ios)
787                 return false;
788
789         number_ios = ddir_rw_sum(td->io_blocks);
790         number_ios += td->io_u_queued + td->io_u_in_flight;
791
792         return number_ios >= (td->o.number_ios * td->loops);
793 }
794
795 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
796 {
797         unsigned long long bytes, limit;
798
799         if (td_rw(td))
800                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
801         else if (td_write(td))
802                 bytes = this_bytes[DDIR_WRITE];
803         else if (td_read(td))
804                 bytes = this_bytes[DDIR_READ];
805         else
806                 bytes = this_bytes[DDIR_TRIM];
807
808         if (td->o.io_size)
809                 limit = td->o.io_size;
810         else
811                 limit = td->o.size;
812
813         limit *= td->loops;
814         return bytes >= limit || exceeds_number_ios(td);
815 }
816
817 static bool io_issue_bytes_exceeded(struct thread_data *td)
818 {
819         return io_bytes_exceeded(td, td->io_issue_bytes);
820 }
821
822 static bool io_complete_bytes_exceeded(struct thread_data *td)
823 {
824         return io_bytes_exceeded(td, td->this_io_bytes);
825 }
826
827 /*
828  * used to calculate the next io time for rate control
829  *
830  */
831 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
832 {
833         uint64_t bps = td->rate_bps[ddir];
834
835         assert(!(td->flags & TD_F_CHILD));
836
837         if (td->o.rate_process == RATE_PROCESS_POISSON) {
838                 uint64_t val, iops;
839
840                 iops = bps / td->o.bs[ddir];
841                 val = (int64_t) (1000000 / iops) *
842                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
843                 if (val) {
844                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
845                                         (unsigned long long) 1000000 / val,
846                                         ddir);
847                 }
848                 td->last_usec[ddir] += val;
849                 return td->last_usec[ddir];
850         } else if (bps) {
851                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
852                 uint64_t secs = bytes / bps;
853                 uint64_t remainder = bytes % bps;
854
855                 return remainder * 1000000 / bps + secs * 1000000;
856         }
857
858         return 0;
859 }
860
861 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
862 {
863         unsigned long long b;
864         uint64_t total;
865         int left;
866
867         b = ddir_rw_sum(td->thinktime_blocks_counter);
868         if (b % td->o.thinktime_blocks || !b)
869                 return;
870
871         io_u_quiesce(td);
872
873         total = 0;
874         if (td->o.thinktime_spin)
875                 total = usec_spin(td->o.thinktime_spin);
876
877         left = td->o.thinktime - total;
878         if (left)
879                 total += usec_sleep(td, left);
880
881         /*
882          * If we're ignoring thinktime for the rate, add the number of bytes
883          * we would have done while sleeping, minus one block to ensure we
884          * start issuing immediately after the sleep.
885          */
886         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
887                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
888                 uint64_t bs = td->o.min_bs[ddir];
889                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
890                 uint64_t over;
891
892                 if (usperop <= total)
893                         over = bs;
894                 else
895                         over = (usperop - total) / usperop * -bs;
896
897                 td->rate_io_issue_bytes[ddir] += (missed - over);
898                 /* adjust for rate_process=poisson */
899                 td->last_usec[ddir] += total;
900         }
901 }
902
903 /*
904  * Main IO worker function. It retrieves io_u's to process and queues
905  * and reaps them, checking for rate and errors along the way.
906  *
907  * Returns number of bytes written and trimmed.
908  */
909 static void do_io(struct thread_data *td, uint64_t *bytes_done)
910 {
911         unsigned int i;
912         int ret = 0;
913         uint64_t total_bytes, bytes_issued = 0;
914
915         for (i = 0; i < DDIR_RWDIR_CNT; i++)
916                 bytes_done[i] = td->bytes_done[i];
917
918         if (in_ramp_time(td))
919                 td_set_runstate(td, TD_RAMP);
920         else
921                 td_set_runstate(td, TD_RUNNING);
922
923         lat_target_init(td);
924
925         total_bytes = td->o.size;
926         /*
927         * Allow random overwrite workloads to write up to io_size
928         * before starting verification phase as 'size' doesn't apply.
929         */
930         if (td_write(td) && td_random(td) && td->o.norandommap)
931                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
932         /*
933          * If verify_backlog is enabled, we'll run the verify in this
934          * handler as well. For that case, we may need up to twice the
935          * amount of bytes.
936          */
937         if (td->o.verify != VERIFY_NONE &&
938            (td_write(td) && td->o.verify_backlog))
939                 total_bytes += td->o.size;
940
941         /* In trimwrite mode, each byte is trimmed and then written, so
942          * allow total_bytes to be twice as big */
943         if (td_trimwrite(td))
944                 total_bytes += td->total_io_size;
945
946         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
947                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
948                 td->o.time_based) {
949                 struct timespec comp_time;
950                 struct io_u *io_u;
951                 int full;
952                 enum fio_ddir ddir;
953
954                 check_update_rusage(td);
955
956                 if (td->terminate || td->done)
957                         break;
958
959                 update_ts_cache(td);
960
961                 if (runtime_exceeded(td, &td->ts_cache)) {
962                         __update_ts_cache(td);
963                         if (runtime_exceeded(td, &td->ts_cache)) {
964                                 fio_mark_td_terminate(td);
965                                 break;
966                         }
967                 }
968
969                 if (flow_threshold_exceeded(td))
970                         continue;
971
972                 /*
973                  * Break if we exceeded the bytes. The exception is time
974                  * based runs, but we still need to break out of the loop
975                  * for those to run verification, if enabled.
976                  * Jobs read from iolog do not use this stop condition.
977                  */
978                 if (bytes_issued >= total_bytes &&
979                     !td->o.read_iolog_file &&
980                     (!td->o.time_based ||
981                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
982                         break;
983
984                 io_u = get_io_u(td);
985                 if (IS_ERR_OR_NULL(io_u)) {
986                         int err = PTR_ERR(io_u);
987
988                         io_u = NULL;
989                         ddir = DDIR_INVAL;
990                         if (err == -EBUSY) {
991                                 ret = FIO_Q_BUSY;
992                                 goto reap;
993                         }
994                         if (td->o.latency_target)
995                                 goto reap;
996                         break;
997                 }
998
999                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
1000                         populate_verify_io_u(td, io_u);
1001
1002                 ddir = io_u->ddir;
1003
1004                 /*
1005                  * Add verification end_io handler if:
1006                  *      - Asked to verify (!td_rw(td))
1007                  *      - Or the io_u is from our verify list (mixed write/ver)
1008                  */
1009                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1010                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1011
1012                         if (verify_state_should_stop(td, io_u)) {
1013                                 put_io_u(td, io_u);
1014                                 break;
1015                         }
1016
1017                         if (td->o.verify_async)
1018                                 io_u->end_io = verify_io_u_async;
1019                         else
1020                                 io_u->end_io = verify_io_u;
1021                         td_set_runstate(td, TD_VERIFYING);
1022                 } else if (in_ramp_time(td))
1023                         td_set_runstate(td, TD_RAMP);
1024                 else
1025                         td_set_runstate(td, TD_RUNNING);
1026
1027                 /*
1028                  * Always log IO before it's issued, so we know the specific
1029                  * order of it. The logged unit will track when the IO has
1030                  * completed.
1031                  */
1032                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1033                     td->o.do_verify &&
1034                     td->o.verify != VERIFY_NONE &&
1035                     !td->o.experimental_verify)
1036                         log_io_piece(td, io_u);
1037
1038                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1039                         const unsigned long long blen = io_u->xfer_buflen;
1040                         const enum fio_ddir __ddir = acct_ddir(io_u);
1041
1042                         if (td->error)
1043                                 break;
1044
1045                         workqueue_enqueue(&td->io_wq, &io_u->work);
1046                         ret = FIO_Q_QUEUED;
1047
1048                         if (ddir_rw(__ddir)) {
1049                                 td->io_issues[__ddir]++;
1050                                 td->io_issue_bytes[__ddir] += blen;
1051                                 td->rate_io_issue_bytes[__ddir] += blen;
1052                         }
1053
1054                         if (should_check_rate(td))
1055                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1056
1057                 } else {
1058                         ret = io_u_submit(td, io_u);
1059
1060                         if (should_check_rate(td))
1061                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1062
1063                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1064                                 break;
1065
1066                         /*
1067                          * See if we need to complete some commands. Note that
1068                          * we can get BUSY even without IO queued, if the
1069                          * system is resource starved.
1070                          */
1071 reap:
1072                         full = queue_full(td) ||
1073                                 (ret == FIO_Q_BUSY && td->cur_depth);
1074                         if (full || io_in_polling(td))
1075                                 ret = wait_for_completions(td, &comp_time);
1076                 }
1077                 if (ret < 0)
1078                         break;
1079
1080                 if (ddir_rw(ddir) && td->o.thinktime)
1081                         handle_thinktime(td, ddir);
1082
1083                 if (!ddir_rw_sum(td->bytes_done) &&
1084                     !td_ioengine_flagged(td, FIO_NOIO))
1085                         continue;
1086
1087                 if (!in_ramp_time(td) && should_check_rate(td)) {
1088                         if (check_min_rate(td, &comp_time)) {
1089                                 if (exitall_on_terminate || td->o.exitall_error)
1090                                         fio_terminate_threads(td->groupid, td->o.exit_what);
1091                                 td_verror(td, EIO, "check_min_rate");
1092                                 break;
1093                         }
1094                 }
1095                 if (!in_ramp_time(td) && td->o.latency_target)
1096                         lat_target_check(td);
1097         }
1098
1099         check_update_rusage(td);
1100
1101         if (td->trim_entries)
1102                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1103
1104         if (td->o.fill_device && td->error == ENOSPC) {
1105                 td->error = 0;
1106                 fio_mark_td_terminate(td);
1107         }
1108         if (!td->error) {
1109                 struct fio_file *f;
1110
1111                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1112                         workqueue_flush(&td->io_wq);
1113                         i = 0;
1114                 } else
1115                         i = td->cur_depth;
1116
1117                 if (i) {
1118                         ret = io_u_queued_complete(td, i);
1119                         if (td->o.fill_device && td->error == ENOSPC)
1120                                 td->error = 0;
1121                 }
1122
1123                 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1124                         td_set_runstate(td, TD_FSYNCING);
1125
1126                         for_each_file(td, f, i) {
1127                                 if (!fio_file_fsync(td, f))
1128                                         continue;
1129
1130                                 log_err("fio: end_fsync failed for file %s\n",
1131                                                                 f->file_name);
1132                         }
1133                 }
1134         } else
1135                 cleanup_pending_aio(td);
1136
1137         /*
1138          * stop job if we failed doing any IO
1139          */
1140         if (!ddir_rw_sum(td->this_io_bytes))
1141                 td->done = 1;
1142
1143         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1144                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1145 }
1146
1147 static void free_file_completion_logging(struct thread_data *td)
1148 {
1149         struct fio_file *f;
1150         unsigned int i;
1151
1152         for_each_file(td, f, i) {
1153                 if (!f->last_write_comp)
1154                         break;
1155                 sfree(f->last_write_comp);
1156         }
1157 }
1158
1159 static int init_file_completion_logging(struct thread_data *td,
1160                                         unsigned int depth)
1161 {
1162         struct fio_file *f;
1163         unsigned int i;
1164
1165         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1166                 return 0;
1167
1168         for_each_file(td, f, i) {
1169                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1170                 if (!f->last_write_comp)
1171                         goto cleanup;
1172         }
1173
1174         return 0;
1175
1176 cleanup:
1177         free_file_completion_logging(td);
1178         log_err("fio: failed to alloc write comp data\n");
1179         return 1;
1180 }
1181
1182 static void cleanup_io_u(struct thread_data *td)
1183 {
1184         struct io_u *io_u;
1185
1186         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1187
1188                 if (td->io_ops->io_u_free)
1189                         td->io_ops->io_u_free(td, io_u);
1190
1191                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1192         }
1193
1194         free_io_mem(td);
1195
1196         io_u_rexit(&td->io_u_requeues);
1197         io_u_qexit(&td->io_u_freelist, false);
1198         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1199
1200         free_file_completion_logging(td);
1201 }
1202
1203 static int init_io_u(struct thread_data *td)
1204 {
1205         struct io_u *io_u;
1206         int cl_align, i, max_units;
1207         int err;
1208
1209         max_units = td->o.iodepth;
1210
1211         err = 0;
1212         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1213         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1214         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1215
1216         if (err) {
1217                 log_err("fio: failed setting up IO queues\n");
1218                 return 1;
1219         }
1220
1221         cl_align = os_cache_line_size();
1222
1223         for (i = 0; i < max_units; i++) {
1224                 void *ptr;
1225
1226                 if (td->terminate)
1227                         return 1;
1228
1229                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1230                 if (!ptr) {
1231                         log_err("fio: unable to allocate aligned memory\n");
1232                         return 1;
1233                 }
1234
1235                 io_u = ptr;
1236                 memset(io_u, 0, sizeof(*io_u));
1237                 INIT_FLIST_HEAD(&io_u->verify_list);
1238                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1239
1240                 io_u->index = i;
1241                 io_u->flags = IO_U_F_FREE;
1242                 io_u_qpush(&td->io_u_freelist, io_u);
1243
1244                 /*
1245                  * io_u never leaves this stack, used for iteration of all
1246                  * io_u buffers.
1247                  */
1248                 io_u_qpush(&td->io_u_all, io_u);
1249
1250                 if (td->io_ops->io_u_init) {
1251                         int ret = td->io_ops->io_u_init(td, io_u);
1252
1253                         if (ret) {
1254                                 log_err("fio: failed to init engine data: %d\n", ret);
1255                                 return 1;
1256                         }
1257                 }
1258         }
1259
1260         init_io_u_buffers(td);
1261
1262         if (init_file_completion_logging(td, max_units))
1263                 return 1;
1264
1265         return 0;
1266 }
1267
1268 int init_io_u_buffers(struct thread_data *td)
1269 {
1270         struct io_u *io_u;
1271         unsigned long long max_bs, min_write;
1272         int i, max_units;
1273         int data_xfer = 1;
1274         char *p;
1275
1276         max_units = td->o.iodepth;
1277         max_bs = td_max_bs(td);
1278         min_write = td->o.min_bs[DDIR_WRITE];
1279         td->orig_buffer_size = (unsigned long long) max_bs
1280                                         * (unsigned long long) max_units;
1281
1282         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1283                 data_xfer = 0;
1284
1285         /*
1286          * if we may later need to do address alignment, then add any
1287          * possible adjustment here so that we don't cause a buffer
1288          * overflow later. this adjustment may be too much if we get
1289          * lucky and the allocator gives us an aligned address.
1290          */
1291         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1292             td_ioengine_flagged(td, FIO_RAWIO))
1293                 td->orig_buffer_size += page_mask + td->o.mem_align;
1294
1295         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1296                 unsigned long long bs;
1297
1298                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1299                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1300         }
1301
1302         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1303                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1304                 return 1;
1305         }
1306
1307         if (data_xfer && allocate_io_mem(td))
1308                 return 1;
1309
1310         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1311             td_ioengine_flagged(td, FIO_RAWIO))
1312                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1313         else
1314                 p = td->orig_buffer;
1315
1316         for (i = 0; i < max_units; i++) {
1317                 io_u = td->io_u_all.io_us[i];
1318                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1319
1320                 if (data_xfer) {
1321                         io_u->buf = p;
1322                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1323
1324                         if (td_write(td))
1325                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1326                         if (td_write(td) && td->o.verify_pattern_bytes) {
1327                                 /*
1328                                  * Fill the buffer with the pattern if we are
1329                                  * going to be doing writes.
1330                                  */
1331                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1332                         }
1333                 }
1334                 p += max_bs;
1335         }
1336
1337         return 0;
1338 }
1339
1340 /*
1341  * This function is Linux specific.
1342  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1343  */
1344 static int switch_ioscheduler(struct thread_data *td)
1345 {
1346 #ifdef FIO_HAVE_IOSCHED_SWITCH
1347         char tmp[256], tmp2[128], *p;
1348         FILE *f;
1349         int ret;
1350
1351         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1352                 return 0;
1353
1354         assert(td->files && td->files[0]);
1355         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1356
1357         f = fopen(tmp, "r+");
1358         if (!f) {
1359                 if (errno == ENOENT) {
1360                         log_err("fio: os or kernel doesn't support IO scheduler"
1361                                 " switching\n");
1362                         return 0;
1363                 }
1364                 td_verror(td, errno, "fopen iosched");
1365                 return 1;
1366         }
1367
1368         /*
1369          * Set io scheduler.
1370          */
1371         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1372         if (ferror(f) || ret != 1) {
1373                 td_verror(td, errno, "fwrite");
1374                 fclose(f);
1375                 return 1;
1376         }
1377
1378         rewind(f);
1379
1380         /*
1381          * Read back and check that the selected scheduler is now the default.
1382          */
1383         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1384         if (ferror(f) || ret < 0) {
1385                 td_verror(td, errno, "fread");
1386                 fclose(f);
1387                 return 1;
1388         }
1389         tmp[ret] = '\0';
1390         /*
1391          * either a list of io schedulers or "none\n" is expected. Strip the
1392          * trailing newline.
1393          */
1394         p = tmp;
1395         strsep(&p, "\n");
1396
1397         /*
1398          * Write to "none" entry doesn't fail, so check the result here.
1399          */
1400         if (!strcmp(tmp, "none")) {
1401                 log_err("fio: io scheduler is not tunable\n");
1402                 fclose(f);
1403                 return 0;
1404         }
1405
1406         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1407         if (!strstr(tmp, tmp2)) {
1408                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1409                 td_verror(td, EINVAL, "iosched_switch");
1410                 fclose(f);
1411                 return 1;
1412         }
1413
1414         fclose(f);
1415         return 0;
1416 #else
1417         return 0;
1418 #endif
1419 }
1420
1421 static bool keep_running(struct thread_data *td)
1422 {
1423         unsigned long long limit;
1424
1425         if (td->done)
1426                 return false;
1427         if (td->terminate)
1428                 return false;
1429         if (td->o.time_based)
1430                 return true;
1431         if (td->o.loops) {
1432                 td->o.loops--;
1433                 return true;
1434         }
1435         if (exceeds_number_ios(td))
1436                 return false;
1437
1438         if (td->o.io_size)
1439                 limit = td->o.io_size;
1440         else
1441                 limit = td->o.size;
1442
1443         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1444                 uint64_t diff;
1445
1446                 /*
1447                  * If the difference is less than the maximum IO size, we
1448                  * are done.
1449                  */
1450                 diff = limit - ddir_rw_sum(td->io_bytes);
1451                 if (diff < td_max_bs(td))
1452                         return false;
1453
1454                 if (fio_files_done(td) && !td->o.io_size)
1455                         return false;
1456
1457                 return true;
1458         }
1459
1460         return false;
1461 }
1462
1463 static int exec_string(struct thread_options *o, const char *string,
1464                        const char *mode)
1465 {
1466         int ret;
1467         char *str;
1468
1469         if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1470                 return -1;
1471
1472         log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1473                  o->name, mode);
1474         ret = system(str);
1475         if (ret == -1)
1476                 log_err("fio: exec of cmd <%s> failed\n", str);
1477
1478         free(str);
1479         return ret;
1480 }
1481
1482 /*
1483  * Dry run to compute correct state of numberio for verification.
1484  */
1485 static uint64_t do_dry_run(struct thread_data *td)
1486 {
1487         td_set_runstate(td, TD_RUNNING);
1488
1489         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1490                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1491                 struct io_u *io_u;
1492                 int ret;
1493
1494                 if (td->terminate || td->done)
1495                         break;
1496
1497                 io_u = get_io_u(td);
1498                 if (IS_ERR_OR_NULL(io_u))
1499                         break;
1500
1501                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1502                 io_u->error = 0;
1503                 io_u->resid = 0;
1504                 if (ddir_rw(acct_ddir(io_u)))
1505                         td->io_issues[acct_ddir(io_u)]++;
1506                 if (ddir_rw(io_u->ddir)) {
1507                         io_u_mark_depth(td, 1);
1508                         td->ts.total_io_u[io_u->ddir]++;
1509                 }
1510
1511                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1512                     td->o.do_verify &&
1513                     td->o.verify != VERIFY_NONE &&
1514                     !td->o.experimental_verify)
1515                         log_io_piece(td, io_u);
1516
1517                 ret = io_u_sync_complete(td, io_u);
1518                 (void) ret;
1519         }
1520
1521         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1522 }
1523
1524 struct fork_data {
1525         struct thread_data *td;
1526         struct sk_out *sk_out;
1527 };
1528
1529 /*
1530  * Entry point for the thread based jobs. The process based jobs end up
1531  * here as well, after a little setup.
1532  */
1533 static void *thread_main(void *data)
1534 {
1535         struct fork_data *fd = data;
1536         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1537         struct thread_data *td = fd->td;
1538         struct thread_options *o = &td->o;
1539         struct sk_out *sk_out = fd->sk_out;
1540         uint64_t bytes_done[DDIR_RWDIR_CNT];
1541         int deadlock_loop_cnt;
1542         bool clear_state;
1543         int res, ret;
1544
1545         sk_out_assign(sk_out);
1546         free(fd);
1547
1548         if (!o->use_thread) {
1549                 setsid();
1550                 td->pid = getpid();
1551         } else
1552                 td->pid = gettid();
1553
1554         fio_local_clock_init();
1555
1556         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1557
1558         if (is_backend)
1559                 fio_server_send_start(td);
1560
1561         INIT_FLIST_HEAD(&td->io_log_list);
1562         INIT_FLIST_HEAD(&td->io_hist_list);
1563         INIT_FLIST_HEAD(&td->verify_list);
1564         INIT_FLIST_HEAD(&td->trim_list);
1565         td->io_hist_tree = RB_ROOT;
1566
1567         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1568         if (ret) {
1569                 td_verror(td, ret, "mutex_cond_init_pshared");
1570                 goto err;
1571         }
1572         ret = cond_init_pshared(&td->verify_cond);
1573         if (ret) {
1574                 td_verror(td, ret, "mutex_cond_pshared");
1575                 goto err;
1576         }
1577
1578         td_set_runstate(td, TD_INITIALIZED);
1579         dprint(FD_MUTEX, "up startup_sem\n");
1580         fio_sem_up(startup_sem);
1581         dprint(FD_MUTEX, "wait on td->sem\n");
1582         fio_sem_down(td->sem);
1583         dprint(FD_MUTEX, "done waiting on td->sem\n");
1584
1585         /*
1586          * A new gid requires privilege, so we need to do this before setting
1587          * the uid.
1588          */
1589         if (o->gid != -1U && setgid(o->gid)) {
1590                 td_verror(td, errno, "setgid");
1591                 goto err;
1592         }
1593         if (o->uid != -1U && setuid(o->uid)) {
1594                 td_verror(td, errno, "setuid");
1595                 goto err;
1596         }
1597
1598         td_zone_gen_index(td);
1599
1600         /*
1601          * Do this early, we don't want the compress threads to be limited
1602          * to the same CPUs as the IO workers. So do this before we set
1603          * any potential CPU affinity
1604          */
1605         if (iolog_compress_init(td, sk_out))
1606                 goto err;
1607
1608         /*
1609          * If we have a gettimeofday() thread, make sure we exclude that
1610          * thread from this job
1611          */
1612         if (o->gtod_cpu)
1613                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1614
1615         /*
1616          * Set affinity first, in case it has an impact on the memory
1617          * allocations.
1618          */
1619         if (fio_option_is_set(o, cpumask)) {
1620                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1621                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1622                         if (!ret) {
1623                                 log_err("fio: no CPUs set\n");
1624                                 log_err("fio: Try increasing number of available CPUs\n");
1625                                 td_verror(td, EINVAL, "cpus_split");
1626                                 goto err;
1627                         }
1628                 }
1629                 ret = fio_setaffinity(td->pid, o->cpumask);
1630                 if (ret == -1) {
1631                         td_verror(td, errno, "cpu_set_affinity");
1632                         goto err;
1633                 }
1634         }
1635
1636 #ifdef CONFIG_LIBNUMA
1637         /* numa node setup */
1638         if (fio_option_is_set(o, numa_cpunodes) ||
1639             fio_option_is_set(o, numa_memnodes)) {
1640                 struct bitmask *mask;
1641
1642                 if (numa_available() < 0) {
1643                         td_verror(td, errno, "Does not support NUMA API\n");
1644                         goto err;
1645                 }
1646
1647                 if (fio_option_is_set(o, numa_cpunodes)) {
1648                         mask = numa_parse_nodestring(o->numa_cpunodes);
1649                         ret = numa_run_on_node_mask(mask);
1650                         numa_free_nodemask(mask);
1651                         if (ret == -1) {
1652                                 td_verror(td, errno, \
1653                                         "numa_run_on_node_mask failed\n");
1654                                 goto err;
1655                         }
1656                 }
1657
1658                 if (fio_option_is_set(o, numa_memnodes)) {
1659                         mask = NULL;
1660                         if (o->numa_memnodes)
1661                                 mask = numa_parse_nodestring(o->numa_memnodes);
1662
1663                         switch (o->numa_mem_mode) {
1664                         case MPOL_INTERLEAVE:
1665                                 numa_set_interleave_mask(mask);
1666                                 break;
1667                         case MPOL_BIND:
1668                                 numa_set_membind(mask);
1669                                 break;
1670                         case MPOL_LOCAL:
1671                                 numa_set_localalloc();
1672                                 break;
1673                         case MPOL_PREFERRED:
1674                                 numa_set_preferred(o->numa_mem_prefer_node);
1675                                 break;
1676                         case MPOL_DEFAULT:
1677                         default:
1678                                 break;
1679                         }
1680
1681                         if (mask)
1682                                 numa_free_nodemask(mask);
1683
1684                 }
1685         }
1686 #endif
1687
1688         if (fio_pin_memory(td))
1689                 goto err;
1690
1691         /*
1692          * May alter parameters that init_io_u() will use, so we need to
1693          * do this first.
1694          */
1695         if (!init_iolog(td))
1696                 goto err;
1697
1698         if (td_io_init(td))
1699                 goto err;
1700
1701         if (init_io_u(td))
1702                 goto err;
1703
1704         if (td->io_ops->post_init && td->io_ops->post_init(td))
1705                 goto err;
1706
1707         if (o->verify_async && verify_async_init(td))
1708                 goto err;
1709
1710         if (fio_option_is_set(o, ioprio) ||
1711             fio_option_is_set(o, ioprio_class)) {
1712                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1713                 if (ret == -1) {
1714                         td_verror(td, errno, "ioprio_set");
1715                         goto err;
1716                 }
1717         }
1718
1719         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1720                 goto err;
1721
1722         errno = 0;
1723         if (nice(o->nice) == -1 && errno != 0) {
1724                 td_verror(td, errno, "nice");
1725                 goto err;
1726         }
1727
1728         if (o->ioscheduler && switch_ioscheduler(td))
1729                 goto err;
1730
1731         if (!o->create_serialize && setup_files(td))
1732                 goto err;
1733
1734         if (!init_random_map(td))
1735                 goto err;
1736
1737         if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1738                 goto err;
1739
1740         if (o->pre_read && !pre_read_files(td))
1741                 goto err;
1742
1743         fio_verify_init(td);
1744
1745         if (rate_submit_init(td, sk_out))
1746                 goto err;
1747
1748         if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
1749                 td->thinktime_blocks_counter = td->io_blocks;
1750         else
1751                 td->thinktime_blocks_counter = td->io_issues;
1752
1753         set_epoch_time(td, o->log_unix_epoch);
1754         fio_getrusage(&td->ru_start);
1755         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1756         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1757         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1758
1759         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1760                         o->ratemin[DDIR_TRIM]) {
1761                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1762                                         sizeof(td->bw_sample_time));
1763                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1764                                         sizeof(td->bw_sample_time));
1765                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1766                                         sizeof(td->bw_sample_time));
1767         }
1768
1769         memset(bytes_done, 0, sizeof(bytes_done));
1770         clear_state = false;
1771
1772         while (keep_running(td)) {
1773                 uint64_t verify_bytes;
1774
1775                 fio_gettime(&td->start, NULL);
1776                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1777
1778                 if (clear_state) {
1779                         clear_io_state(td, 0);
1780
1781                         if (o->unlink_each_loop && unlink_all_files(td))
1782                                 break;
1783                 }
1784
1785                 prune_io_piece_log(td);
1786
1787                 if (td->o.verify_only && td_write(td))
1788                         verify_bytes = do_dry_run(td);
1789                 else {
1790                         do_io(td, bytes_done);
1791
1792                         if (!ddir_rw_sum(bytes_done)) {
1793                                 fio_mark_td_terminate(td);
1794                                 verify_bytes = 0;
1795                         } else {
1796                                 verify_bytes = bytes_done[DDIR_WRITE] +
1797                                                 bytes_done[DDIR_TRIM];
1798                         }
1799                 }
1800
1801                 /*
1802                  * If we took too long to shut down, the main thread could
1803                  * already consider us reaped/exited. If that happens, break
1804                  * out and clean up.
1805                  */
1806                 if (td->runstate >= TD_EXITED)
1807                         break;
1808
1809                 clear_state = true;
1810
1811                 /*
1812                  * Make sure we've successfully updated the rusage stats
1813                  * before waiting on the stat mutex. Otherwise we could have
1814                  * the stat thread holding stat mutex and waiting for
1815                  * the rusage_sem, which would never get upped because
1816                  * this thread is waiting for the stat mutex.
1817                  */
1818                 deadlock_loop_cnt = 0;
1819                 do {
1820                         check_update_rusage(td);
1821                         if (!fio_sem_down_trylock(stat_sem))
1822                                 break;
1823                         usleep(1000);
1824                         if (deadlock_loop_cnt++ > 5000) {
1825                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1826                                 td->error = EDEADLK;
1827                                 goto err;
1828                         }
1829                 } while (1);
1830
1831                 if (td_read(td) && td->io_bytes[DDIR_READ])
1832                         update_runtime(td, elapsed_us, DDIR_READ);
1833                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1834                         update_runtime(td, elapsed_us, DDIR_WRITE);
1835                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1836                         update_runtime(td, elapsed_us, DDIR_TRIM);
1837                 fio_gettime(&td->start, NULL);
1838                 fio_sem_up(stat_sem);
1839
1840                 if (td->error || td->terminate)
1841                         break;
1842
1843                 if (!o->do_verify ||
1844                     o->verify == VERIFY_NONE ||
1845                     td_ioengine_flagged(td, FIO_UNIDIR))
1846                         continue;
1847
1848                 clear_io_state(td, 0);
1849
1850                 fio_gettime(&td->start, NULL);
1851
1852                 do_verify(td, verify_bytes);
1853
1854                 /*
1855                  * See comment further up for why this is done here.
1856                  */
1857                 check_update_rusage(td);
1858
1859                 fio_sem_down(stat_sem);
1860                 update_runtime(td, elapsed_us, DDIR_READ);
1861                 fio_gettime(&td->start, NULL);
1862                 fio_sem_up(stat_sem);
1863
1864                 if (td->error || td->terminate)
1865                         break;
1866         }
1867
1868         /*
1869          * Acquire this lock if we were doing overlap checking in
1870          * offload mode so that we don't clean up this job while
1871          * another thread is checking its io_u's for overlap
1872          */
1873         if (td_offload_overlap(td)) {
1874                 int res = pthread_mutex_lock(&overlap_check);
1875                 assert(res == 0);
1876         }
1877         td_set_runstate(td, TD_FINISHING);
1878         if (td_offload_overlap(td)) {
1879                 res = pthread_mutex_unlock(&overlap_check);
1880                 assert(res == 0);
1881         }
1882
1883         update_rusage_stat(td);
1884         td->ts.total_run_time = mtime_since_now(&td->epoch);
1885         for_each_rw_ddir(ddir) {
1886                 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1887         }
1888
1889         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1890             (td->o.verify != VERIFY_NONE && td_write(td)))
1891                 verify_save_state(td->thread_number);
1892
1893         fio_unpin_memory(td);
1894
1895         td_writeout_logs(td, true);
1896
1897         iolog_compress_exit(td);
1898         rate_submit_exit(td);
1899
1900         if (o->exec_postrun)
1901                 exec_string(o, o->exec_postrun, "postrun");
1902
1903         if (exitall_on_terminate || (o->exitall_error && td->error))
1904                 fio_terminate_threads(td->groupid, td->o.exit_what);
1905
1906 err:
1907         if (td->error)
1908                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1909                                                         td->verror);
1910
1911         if (o->verify_async)
1912                 verify_async_exit(td);
1913
1914         close_and_free_files(td);
1915         cleanup_io_u(td);
1916         close_ioengine(td);
1917         cgroup_shutdown(td, cgroup_mnt);
1918         verify_free_state(td);
1919         td_zone_free_index(td);
1920
1921         if (fio_option_is_set(o, cpumask)) {
1922                 ret = fio_cpuset_exit(&o->cpumask);
1923                 if (ret)
1924                         td_verror(td, ret, "fio_cpuset_exit");
1925         }
1926
1927         /*
1928          * do this very late, it will log file closing as well
1929          */
1930         if (o->write_iolog_file)
1931                 write_iolog_close(td);
1932         if (td->io_log_rfile)
1933                 fclose(td->io_log_rfile);
1934
1935         td_set_runstate(td, TD_EXITED);
1936
1937         /*
1938          * Do this last after setting our runstate to exited, so we
1939          * know that the stat thread is signaled.
1940          */
1941         check_update_rusage(td);
1942
1943         sk_out_drop();
1944         return (void *) (uintptr_t) td->error;
1945 }
1946
1947 /*
1948  * Run over the job map and reap the threads that have exited, if any.
1949  */
1950 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1951                          uint64_t *m_rate)
1952 {
1953         struct thread_data *td;
1954         unsigned int cputhreads, realthreads, pending;
1955         int i, status, ret;
1956
1957         /*
1958          * reap exited threads (TD_EXITED -> TD_REAPED)
1959          */
1960         realthreads = pending = cputhreads = 0;
1961         for_each_td(td, i) {
1962                 int flags = 0;
1963
1964                  if (!strcmp(td->o.ioengine, "cpuio"))
1965                         cputhreads++;
1966                 else
1967                         realthreads++;
1968
1969                 if (!td->pid) {
1970                         pending++;
1971                         continue;
1972                 }
1973                 if (td->runstate == TD_REAPED)
1974                         continue;
1975                 if (td->o.use_thread) {
1976                         if (td->runstate == TD_EXITED) {
1977                                 td_set_runstate(td, TD_REAPED);
1978                                 goto reaped;
1979                         }
1980                         continue;
1981                 }
1982
1983                 flags = WNOHANG;
1984                 if (td->runstate == TD_EXITED)
1985                         flags = 0;
1986
1987                 /*
1988                  * check if someone quit or got killed in an unusual way
1989                  */
1990                 ret = waitpid(td->pid, &status, flags);
1991                 if (ret < 0) {
1992                         if (errno == ECHILD) {
1993                                 log_err("fio: pid=%d disappeared %d\n",
1994                                                 (int) td->pid, td->runstate);
1995                                 td->sig = ECHILD;
1996                                 td_set_runstate(td, TD_REAPED);
1997                                 goto reaped;
1998                         }
1999                         perror("waitpid");
2000                 } else if (ret == td->pid) {
2001                         if (WIFSIGNALED(status)) {
2002                                 int sig = WTERMSIG(status);
2003
2004                                 if (sig != SIGTERM && sig != SIGUSR2)
2005                                         log_err("fio: pid=%d, got signal=%d\n",
2006                                                         (int) td->pid, sig);
2007                                 td->sig = sig;
2008                                 td_set_runstate(td, TD_REAPED);
2009                                 goto reaped;
2010                         }
2011                         if (WIFEXITED(status)) {
2012                                 if (WEXITSTATUS(status) && !td->error)
2013                                         td->error = WEXITSTATUS(status);
2014
2015                                 td_set_runstate(td, TD_REAPED);
2016                                 goto reaped;
2017                         }
2018                 }
2019
2020                 /*
2021                  * If the job is stuck, do a forceful timeout of it and
2022                  * move on.
2023                  */
2024                 if (td->terminate &&
2025                     td->runstate < TD_FSYNCING &&
2026                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2027                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2028                                 "%lu seconds, it appears to be stuck. Doing "
2029                                 "forceful exit of this job.\n",
2030                                 td->o.name, td->runstate,
2031                                 (unsigned long) time_since_now(&td->terminate_time));
2032                         td_set_runstate(td, TD_REAPED);
2033                         goto reaped;
2034                 }
2035
2036                 /*
2037                  * thread is not dead, continue
2038                  */
2039                 pending++;
2040                 continue;
2041 reaped:
2042                 (*nr_running)--;
2043                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2044                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2045                 if (!td->pid)
2046                         pending--;
2047
2048                 if (td->error)
2049                         exit_value++;
2050
2051                 done_secs += mtime_since_now(&td->epoch) / 1000;
2052                 profile_td_exit(td);
2053                 flow_exit_job(td);
2054         }
2055
2056         if (*nr_running == cputhreads && !pending && realthreads)
2057                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2058 }
2059
2060 static bool __check_trigger_file(void)
2061 {
2062         struct stat sb;
2063
2064         if (!trigger_file)
2065                 return false;
2066
2067         if (stat(trigger_file, &sb))
2068                 return false;
2069
2070         if (unlink(trigger_file) < 0)
2071                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2072                                                         strerror(errno));
2073
2074         return true;
2075 }
2076
2077 static bool trigger_timedout(void)
2078 {
2079         if (trigger_timeout)
2080                 if (time_since_genesis() >= trigger_timeout) {
2081                         trigger_timeout = 0;
2082                         return true;
2083                 }
2084
2085         return false;
2086 }
2087
2088 void exec_trigger(const char *cmd)
2089 {
2090         int ret;
2091
2092         if (!cmd || cmd[0] == '\0')
2093                 return;
2094
2095         ret = system(cmd);
2096         if (ret == -1)
2097                 log_err("fio: failed executing %s trigger\n", cmd);
2098 }
2099
2100 void check_trigger_file(void)
2101 {
2102         if (__check_trigger_file() || trigger_timedout()) {
2103                 if (nr_clients)
2104                         fio_clients_send_trigger(trigger_remote_cmd);
2105                 else {
2106                         verify_save_state(IO_LIST_ALL);
2107                         fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2108                         exec_trigger(trigger_cmd);
2109                 }
2110         }
2111 }
2112
2113 static int fio_verify_load_state(struct thread_data *td)
2114 {
2115         int ret;
2116
2117         if (!td->o.verify_state)
2118                 return 0;
2119
2120         if (is_backend) {
2121                 void *data;
2122
2123                 ret = fio_server_get_verify_state(td->o.name,
2124                                         td->thread_number - 1, &data);
2125                 if (!ret)
2126                         verify_assign_state(td, data);
2127         } else {
2128                 char prefix[PATH_MAX];
2129
2130                 if (aux_path)
2131                         sprintf(prefix, "%s%clocal", aux_path,
2132                                         FIO_OS_PATH_SEPARATOR);
2133                 else
2134                         strcpy(prefix, "local");
2135                 ret = verify_load_state(td, prefix);
2136         }
2137
2138         return ret;
2139 }
2140
2141 static void do_usleep(unsigned int usecs)
2142 {
2143         check_for_running_stats();
2144         check_trigger_file();
2145         usleep(usecs);
2146 }
2147
2148 static bool check_mount_writes(struct thread_data *td)
2149 {
2150         struct fio_file *f;
2151         unsigned int i;
2152
2153         if (!td_write(td) || td->o.allow_mounted_write)
2154                 return false;
2155
2156         /*
2157          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2158          * are mkfs'd and mounted.
2159          */
2160         for_each_file(td, f, i) {
2161 #ifdef FIO_HAVE_CHARDEV_SIZE
2162                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2163 #else
2164                 if (f->filetype != FIO_TYPE_BLOCK)
2165 #endif
2166                         continue;
2167                 if (device_is_mounted(f->file_name))
2168                         goto mounted;
2169         }
2170
2171         return false;
2172 mounted:
2173         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2174         return true;
2175 }
2176
2177 static bool waitee_running(struct thread_data *me)
2178 {
2179         const char *waitee = me->o.wait_for;
2180         const char *self = me->o.name;
2181         struct thread_data *td;
2182         int i;
2183
2184         if (!waitee)
2185                 return false;
2186
2187         for_each_td(td, i) {
2188                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2189                         continue;
2190
2191                 if (td->runstate < TD_EXITED) {
2192                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2193                                         self, td->o.name,
2194                                         runstate_to_name(td->runstate));
2195                         return true;
2196                 }
2197         }
2198
2199         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2200         return false;
2201 }
2202
2203 /*
2204  * Main function for kicking off and reaping jobs, as needed.
2205  */
2206 static void run_threads(struct sk_out *sk_out)
2207 {
2208         struct thread_data *td;
2209         unsigned int i, todo, nr_running, nr_started;
2210         uint64_t m_rate, t_rate;
2211         uint64_t spent;
2212
2213         if (fio_gtod_offload && fio_start_gtod_thread())
2214                 return;
2215
2216         fio_idle_prof_init();
2217
2218         set_sig_handlers();
2219
2220         nr_thread = nr_process = 0;
2221         for_each_td(td, i) {
2222                 if (check_mount_writes(td))
2223                         return;
2224                 if (td->o.use_thread)
2225                         nr_thread++;
2226                 else
2227                         nr_process++;
2228         }
2229
2230         if (output_format & FIO_OUTPUT_NORMAL) {
2231                 struct buf_output out;
2232
2233                 buf_output_init(&out);
2234                 __log_buf(&out, "Starting ");
2235                 if (nr_thread)
2236                         __log_buf(&out, "%d thread%s", nr_thread,
2237                                                 nr_thread > 1 ? "s" : "");
2238                 if (nr_process) {
2239                         if (nr_thread)
2240                                 __log_buf(&out, " and ");
2241                         __log_buf(&out, "%d process%s", nr_process,
2242                                                 nr_process > 1 ? "es" : "");
2243                 }
2244                 __log_buf(&out, "\n");
2245                 log_info_buf(out.buf, out.buflen);
2246                 buf_output_free(&out);
2247         }
2248
2249         todo = thread_number;
2250         nr_running = 0;
2251         nr_started = 0;
2252         m_rate = t_rate = 0;
2253
2254         for_each_td(td, i) {
2255                 print_status_init(td->thread_number - 1);
2256
2257                 if (!td->o.create_serialize)
2258                         continue;
2259
2260                 if (fio_verify_load_state(td))
2261                         goto reap;
2262
2263                 /*
2264                  * do file setup here so it happens sequentially,
2265                  * we don't want X number of threads getting their
2266                  * client data interspersed on disk
2267                  */
2268                 if (setup_files(td)) {
2269 reap:
2270                         exit_value++;
2271                         if (td->error)
2272                                 log_err("fio: pid=%d, err=%d/%s\n",
2273                                         (int) td->pid, td->error, td->verror);
2274                         td_set_runstate(td, TD_REAPED);
2275                         todo--;
2276                 } else {
2277                         struct fio_file *f;
2278                         unsigned int j;
2279
2280                         /*
2281                          * for sharing to work, each job must always open
2282                          * its own files. so close them, if we opened them
2283                          * for creation
2284                          */
2285                         for_each_file(td, f, j) {
2286                                 if (fio_file_open(f))
2287                                         td_io_close_file(td, f);
2288                         }
2289                 }
2290         }
2291
2292         /* start idle threads before io threads start to run */
2293         fio_idle_prof_start();
2294
2295         set_genesis_time();
2296
2297         while (todo) {
2298                 struct thread_data *map[REAL_MAX_JOBS];
2299                 struct timespec this_start;
2300                 int this_jobs = 0, left;
2301                 struct fork_data *fd;
2302
2303                 /*
2304                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2305                  */
2306                 for_each_td(td, i) {
2307                         if (td->runstate != TD_NOT_CREATED)
2308                                 continue;
2309
2310                         /*
2311                          * never got a chance to start, killed by other
2312                          * thread for some reason
2313                          */
2314                         if (td->terminate) {
2315                                 todo--;
2316                                 continue;
2317                         }
2318
2319                         if (td->o.start_delay) {
2320                                 spent = utime_since_genesis();
2321
2322                                 if (td->o.start_delay > spent)
2323                                         continue;
2324                         }
2325
2326                         if (td->o.stonewall && (nr_started || nr_running)) {
2327                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2328                                                         td->o.name);
2329                                 break;
2330                         }
2331
2332                         if (waitee_running(td)) {
2333                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2334                                                 td->o.name, td->o.wait_for);
2335                                 continue;
2336                         }
2337
2338                         init_disk_util(td);
2339
2340                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2341                         td->update_rusage = 0;
2342
2343                         /*
2344                          * Set state to created. Thread will transition
2345                          * to TD_INITIALIZED when it's done setting up.
2346                          */
2347                         td_set_runstate(td, TD_CREATED);
2348                         map[this_jobs++] = td;
2349                         nr_started++;
2350
2351                         fd = calloc(1, sizeof(*fd));
2352                         fd->td = td;
2353                         fd->sk_out = sk_out;
2354
2355                         if (td->o.use_thread) {
2356                                 int ret;
2357
2358                                 dprint(FD_PROCESS, "will pthread_create\n");
2359                                 ret = pthread_create(&td->thread, NULL,
2360                                                         thread_main, fd);
2361                                 if (ret) {
2362                                         log_err("pthread_create: %s\n",
2363                                                         strerror(ret));
2364                                         free(fd);
2365                                         nr_started--;
2366                                         break;
2367                                 }
2368                                 fd = NULL;
2369                                 ret = pthread_detach(td->thread);
2370                                 if (ret)
2371                                         log_err("pthread_detach: %s",
2372                                                         strerror(ret));
2373                         } else {
2374                                 pid_t pid;
2375                                 dprint(FD_PROCESS, "will fork\n");
2376                                 pid = fork();
2377                                 if (!pid) {
2378                                         int ret;
2379
2380                                         ret = (int)(uintptr_t)thread_main(fd);
2381                                         _exit(ret);
2382                                 } else if (i == fio_debug_jobno)
2383                                         *fio_debug_jobp = pid;
2384                         }
2385                         dprint(FD_MUTEX, "wait on startup_sem\n");
2386                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2387                                 log_err("fio: job startup hung? exiting.\n");
2388                                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2389                                 fio_abort = true;
2390                                 nr_started--;
2391                                 free(fd);
2392                                 break;
2393                         }
2394                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2395                 }
2396
2397                 /*
2398                  * Wait for the started threads to transition to
2399                  * TD_INITIALIZED.
2400                  */
2401                 fio_gettime(&this_start, NULL);
2402                 left = this_jobs;
2403                 while (left && !fio_abort) {
2404                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2405                                 break;
2406
2407                         do_usleep(100000);
2408
2409                         for (i = 0; i < this_jobs; i++) {
2410                                 td = map[i];
2411                                 if (!td)
2412                                         continue;
2413                                 if (td->runstate == TD_INITIALIZED) {
2414                                         map[i] = NULL;
2415                                         left--;
2416                                 } else if (td->runstate >= TD_EXITED) {
2417                                         map[i] = NULL;
2418                                         left--;
2419                                         todo--;
2420                                         nr_running++; /* work-around... */
2421                                 }
2422                         }
2423                 }
2424
2425                 if (left) {
2426                         log_err("fio: %d job%s failed to start\n", left,
2427                                         left > 1 ? "s" : "");
2428                         for (i = 0; i < this_jobs; i++) {
2429                                 td = map[i];
2430                                 if (!td)
2431                                         continue;
2432                                 kill(td->pid, SIGTERM);
2433                         }
2434                         break;
2435                 }
2436
2437                 /*
2438                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2439                  */
2440                 for_each_td(td, i) {
2441                         if (td->runstate != TD_INITIALIZED)
2442                                 continue;
2443
2444                         if (in_ramp_time(td))
2445                                 td_set_runstate(td, TD_RAMP);
2446                         else
2447                                 td_set_runstate(td, TD_RUNNING);
2448                         nr_running++;
2449                         nr_started--;
2450                         m_rate += ddir_rw_sum(td->o.ratemin);
2451                         t_rate += ddir_rw_sum(td->o.rate);
2452                         todo--;
2453                         fio_sem_up(td->sem);
2454                 }
2455
2456                 reap_threads(&nr_running, &t_rate, &m_rate);
2457
2458                 if (todo)
2459                         do_usleep(100000);
2460         }
2461
2462         while (nr_running) {
2463                 reap_threads(&nr_running, &t_rate, &m_rate);
2464                 do_usleep(10000);
2465         }
2466
2467         fio_idle_prof_stop();
2468
2469         update_io_ticks();
2470 }
2471
2472 static void free_disk_util(void)
2473 {
2474         disk_util_prune_entries();
2475         helper_thread_destroy();
2476 }
2477
2478 int fio_backend(struct sk_out *sk_out)
2479 {
2480         struct thread_data *td;
2481         int i;
2482
2483         if (exec_profile) {
2484                 if (load_profile(exec_profile))
2485                         return 1;
2486                 free(exec_profile);
2487                 exec_profile = NULL;
2488         }
2489         if (!thread_number)
2490                 return 0;
2491
2492         if (write_bw_log) {
2493                 struct log_params p = {
2494                         .log_type = IO_LOG_TYPE_BW,
2495                 };
2496
2497                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2498                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2499                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2500         }
2501
2502         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2503         if (!sk_out)
2504                 is_local_backend = true;
2505         if (startup_sem == NULL)
2506                 return 1;
2507
2508         set_genesis_time();
2509         stat_init();
2510         if (helper_thread_create(startup_sem, sk_out))
2511                 log_err("fio: failed to create helper thread\n");
2512
2513         cgroup_list = smalloc(sizeof(*cgroup_list));
2514         if (cgroup_list)
2515                 INIT_FLIST_HEAD(cgroup_list);
2516
2517         run_threads(sk_out);
2518
2519         helper_thread_exit();
2520
2521         if (!fio_abort) {
2522                 __show_run_stats();
2523                 if (write_bw_log) {
2524                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2525                                 struct io_log *log = agg_io_log[i];
2526
2527                                 flush_log(log, false);
2528                                 free_log(log);
2529                         }
2530                 }
2531         }
2532
2533         for_each_td(td, i) {
2534                 steadystate_free(td);
2535                 fio_options_free(td);
2536                 if (td->rusage_sem) {
2537                         fio_sem_remove(td->rusage_sem);
2538                         td->rusage_sem = NULL;
2539                 }
2540                 fio_sem_remove(td->sem);
2541                 td->sem = NULL;
2542         }
2543
2544         free_disk_util();
2545         if (cgroup_list) {
2546                 cgroup_kill(cgroup_list);
2547                 sfree(cgroup_list);
2548         }
2549
2550         fio_sem_remove(startup_sem);
2551         stat_exit();
2552         return exit_value;
2553 }