file, i915: fix file reference for mmap_singleton()
[linux-block.git] / arch / xtensa / kernel / traps.c
1 /*
2  * arch/xtensa/kernel/traps.c
3  *
4  * Exception handling.
5  *
6  * Derived from code with the following copyrights:
7  * Copyright (C) 1994 - 1999 by Ralf Baechle
8  * Modified for R3000 by Paul M. Antoine, 1995, 1996
9  * Complete output from die() by Ulf Carlsson, 1998
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  *
12  * Essentially rewritten for the Xtensa architecture port.
13  *
14  * Copyright (C) 2001 - 2013 Tensilica Inc.
15  *
16  * Joe Taylor   <joe@tensilica.com, joetylr@yahoo.com>
17  * Chris Zankel <chris@zankel.net>
18  * Marc Gauthier<marc@tensilica.com, marc@alumni.uwaterloo.ca>
19  * Kevin Chea
20  *
21  * This file is subject to the terms and conditions of the GNU General Public
22  * License.  See the file "COPYING" in the main directory of this archive
23  * for more details.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/debug.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/stringify.h>
33 #include <linux/kallsyms.h>
34 #include <linux/delay.h>
35 #include <linux/hardirq.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pgtable.h>
38
39 #include <asm/stacktrace.h>
40 #include <asm/ptrace.h>
41 #include <asm/timex.h>
42 #include <linux/uaccess.h>
43 #include <asm/processor.h>
44 #include <asm/traps.h>
45 #include <asm/hw_breakpoint.h>
46
47 /*
48  * Machine specific interrupt handlers
49  */
50
51 static void do_illegal_instruction(struct pt_regs *regs);
52 static void do_div0(struct pt_regs *regs);
53 static void do_interrupt(struct pt_regs *regs);
54 #if XTENSA_FAKE_NMI
55 static void do_nmi(struct pt_regs *regs);
56 #endif
57 #ifdef CONFIG_XTENSA_LOAD_STORE
58 static void do_load_store(struct pt_regs *regs);
59 #endif
60 static void do_unaligned_user(struct pt_regs *regs);
61 static void do_multihit(struct pt_regs *regs);
62 #if XTENSA_HAVE_COPROCESSORS
63 static void do_coprocessor(struct pt_regs *regs);
64 #endif
65 static void do_debug(struct pt_regs *regs);
66
67 /*
68  * The vector table must be preceded by a save area (which
69  * implies it must be in RAM, unless one places RAM immediately
70  * before a ROM and puts the vector at the start of the ROM (!))
71  */
72
73 #define KRNL            0x01
74 #define USER            0x02
75
76 #define COPROCESSOR(x)                                                  \
77 { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, USER|KRNL, fast_coprocessor },\
78 { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, 0, do_coprocessor }
79
80 typedef struct {
81         int cause;
82         int fast;
83         void* handler;
84 } dispatch_init_table_t;
85
86 static dispatch_init_table_t __initdata dispatch_init_table[] = {
87
88 #ifdef CONFIG_USER_ABI_CALL0_PROBE
89 { EXCCAUSE_ILLEGAL_INSTRUCTION, USER,      fast_illegal_instruction_user },
90 #endif
91 { EXCCAUSE_ILLEGAL_INSTRUCTION, 0,         do_illegal_instruction},
92 { EXCCAUSE_SYSTEM_CALL,         USER,      fast_syscall_user },
93 { EXCCAUSE_SYSTEM_CALL,         0,         system_call },
94 /* EXCCAUSE_INSTRUCTION_FETCH unhandled */
95 #ifdef CONFIG_XTENSA_LOAD_STORE
96 { EXCCAUSE_LOAD_STORE_ERROR,    USER|KRNL, fast_load_store },
97 { EXCCAUSE_LOAD_STORE_ERROR,    0,         do_load_store },
98 #endif
99 { EXCCAUSE_LEVEL1_INTERRUPT,    0,         do_interrupt },
100 #ifdef SUPPORT_WINDOWED
101 { EXCCAUSE_ALLOCA,              USER|KRNL, fast_alloca },
102 #endif
103 { EXCCAUSE_INTEGER_DIVIDE_BY_ZERO, 0,      do_div0 },
104 /* EXCCAUSE_PRIVILEGED unhandled */
105 #if XCHAL_UNALIGNED_LOAD_EXCEPTION || XCHAL_UNALIGNED_STORE_EXCEPTION || \
106                 IS_ENABLED(CONFIG_XTENSA_LOAD_STORE)
107 #ifdef CONFIG_XTENSA_UNALIGNED_USER
108 { EXCCAUSE_UNALIGNED,           USER,      fast_unaligned },
109 #endif
110 { EXCCAUSE_UNALIGNED,           KRNL,      fast_unaligned },
111 #endif
112 { EXCCAUSE_UNALIGNED,           0,         do_unaligned_user },
113 #ifdef CONFIG_MMU
114 { EXCCAUSE_ITLB_MISS,                   0,         do_page_fault },
115 { EXCCAUSE_ITLB_MISS,                   USER|KRNL, fast_second_level_miss},
116 { EXCCAUSE_DTLB_MISS,                   USER|KRNL, fast_second_level_miss},
117 { EXCCAUSE_DTLB_MISS,                   0,         do_page_fault },
118 { EXCCAUSE_STORE_CACHE_ATTRIBUTE,       USER|KRNL, fast_store_prohibited },
119 #endif /* CONFIG_MMU */
120 #ifdef CONFIG_PFAULT
121 { EXCCAUSE_ITLB_MULTIHIT,               0,         do_multihit },
122 { EXCCAUSE_ITLB_PRIVILEGE,              0,         do_page_fault },
123 { EXCCAUSE_FETCH_CACHE_ATTRIBUTE,       0,         do_page_fault },
124 { EXCCAUSE_DTLB_MULTIHIT,               0,         do_multihit },
125 { EXCCAUSE_DTLB_PRIVILEGE,              0,         do_page_fault },
126 { EXCCAUSE_STORE_CACHE_ATTRIBUTE,       0,         do_page_fault },
127 { EXCCAUSE_LOAD_CACHE_ATTRIBUTE,        0,         do_page_fault },
128 #endif
129 /* XCCHAL_EXCCAUSE_FLOATING_POINT unhandled */
130 #if XTENSA_HAVE_COPROCESSOR(0)
131 COPROCESSOR(0),
132 #endif
133 #if XTENSA_HAVE_COPROCESSOR(1)
134 COPROCESSOR(1),
135 #endif
136 #if XTENSA_HAVE_COPROCESSOR(2)
137 COPROCESSOR(2),
138 #endif
139 #if XTENSA_HAVE_COPROCESSOR(3)
140 COPROCESSOR(3),
141 #endif
142 #if XTENSA_HAVE_COPROCESSOR(4)
143 COPROCESSOR(4),
144 #endif
145 #if XTENSA_HAVE_COPROCESSOR(5)
146 COPROCESSOR(5),
147 #endif
148 #if XTENSA_HAVE_COPROCESSOR(6)
149 COPROCESSOR(6),
150 #endif
151 #if XTENSA_HAVE_COPROCESSOR(7)
152 COPROCESSOR(7),
153 #endif
154 #if XTENSA_FAKE_NMI
155 { EXCCAUSE_MAPPED_NMI,                  0,              do_nmi },
156 #endif
157 { EXCCAUSE_MAPPED_DEBUG,                0,              do_debug },
158 { -1, -1, 0 }
159
160 };
161
162 /* The exception table <exc_table> serves two functions:
163  * 1. it contains three dispatch tables (fast_user, fast_kernel, default-c)
164  * 2. it is a temporary memory buffer for the exception handlers.
165  */
166
167 DEFINE_PER_CPU(struct exc_table, exc_table);
168 DEFINE_PER_CPU(struct debug_table, debug_table);
169
170 void die(const char*, struct pt_regs*, long);
171
172 static inline void
173 __die_if_kernel(const char *str, struct pt_regs *regs, long err)
174 {
175         if (!user_mode(regs))
176                 die(str, regs, err);
177 }
178
179 #ifdef CONFIG_PRINT_USER_CODE_ON_UNHANDLED_EXCEPTION
180 static inline void dump_user_code(struct pt_regs *regs)
181 {
182         char buf[32];
183
184         if (copy_from_user(buf, (void __user *)(regs->pc & -16), sizeof(buf)) == 0) {
185                 print_hex_dump(KERN_INFO, " ", DUMP_PREFIX_NONE,
186                                32, 1, buf, sizeof(buf), false);
187
188         }
189 }
190 #else
191 static inline void dump_user_code(struct pt_regs *regs)
192 {
193 }
194 #endif
195
196 /*
197  * Unhandled Exceptions. Kill user task or panic if in kernel space.
198  */
199
200 void do_unhandled(struct pt_regs *regs)
201 {
202         __die_if_kernel("Caught unhandled exception - should not happen",
203                         regs, SIGKILL);
204
205         /* If in user mode, send SIGILL signal to current process */
206         pr_info_ratelimited("Caught unhandled exception in '%s' "
207                             "(pid = %d, pc = %#010lx) - should not happen\n"
208                             "\tEXCCAUSE is %ld\n",
209                             current->comm, task_pid_nr(current), regs->pc,
210                             regs->exccause);
211         dump_user_code(regs);
212         force_sig(SIGILL);
213 }
214
215 /*
216  * Multi-hit exception. This if fatal!
217  */
218
219 static void do_multihit(struct pt_regs *regs)
220 {
221         die("Caught multihit exception", regs, SIGKILL);
222 }
223
224 /*
225  * IRQ handler.
226  */
227
228 #if XTENSA_FAKE_NMI
229
230 #define IS_POW2(v) (((v) & ((v) - 1)) == 0)
231
232 #if !(PROFILING_INTLEVEL == XCHAL_EXCM_LEVEL && \
233       IS_POW2(XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL)))
234 #warning "Fake NMI is requested for PMM, but there are other IRQs at or above its level."
235 #warning "Fake NMI will be used, but there will be a bugcheck if one of those IRQs fire."
236
237 static inline void check_valid_nmi(void)
238 {
239         unsigned intread = xtensa_get_sr(interrupt);
240         unsigned intenable = xtensa_get_sr(intenable);
241
242         BUG_ON(intread & intenable &
243                ~(XTENSA_INTLEVEL_ANDBELOW_MASK(PROFILING_INTLEVEL) ^
244                  XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL) ^
245                  BIT(XCHAL_PROFILING_INTERRUPT)));
246 }
247
248 #else
249
250 static inline void check_valid_nmi(void)
251 {
252 }
253
254 #endif
255
256 irqreturn_t xtensa_pmu_irq_handler(int irq, void *dev_id);
257
258 DEFINE_PER_CPU(unsigned long, nmi_count);
259
260 static void do_nmi(struct pt_regs *regs)
261 {
262         struct pt_regs *old_regs = set_irq_regs(regs);
263
264         nmi_enter();
265         ++*this_cpu_ptr(&nmi_count);
266         check_valid_nmi();
267         xtensa_pmu_irq_handler(0, NULL);
268         nmi_exit();
269         set_irq_regs(old_regs);
270 }
271 #endif
272
273 static void do_interrupt(struct pt_regs *regs)
274 {
275         static const unsigned int_level_mask[] = {
276                 0,
277                 XCHAL_INTLEVEL1_MASK,
278                 XCHAL_INTLEVEL2_MASK,
279                 XCHAL_INTLEVEL3_MASK,
280                 XCHAL_INTLEVEL4_MASK,
281                 XCHAL_INTLEVEL5_MASK,
282                 XCHAL_INTLEVEL6_MASK,
283                 XCHAL_INTLEVEL7_MASK,
284         };
285         struct pt_regs *old_regs = set_irq_regs(regs);
286         unsigned unhandled = ~0u;
287
288         irq_enter();
289
290         for (;;) {
291                 unsigned intread = xtensa_get_sr(interrupt);
292                 unsigned intenable = xtensa_get_sr(intenable);
293                 unsigned int_at_level = intread & intenable;
294                 unsigned level;
295
296                 for (level = LOCKLEVEL; level > 0; --level) {
297                         if (int_at_level & int_level_mask[level]) {
298                                 int_at_level &= int_level_mask[level];
299                                 if (int_at_level & unhandled)
300                                         int_at_level &= unhandled;
301                                 else
302                                         unhandled |= int_level_mask[level];
303                                 break;
304                         }
305                 }
306
307                 if (level == 0)
308                         break;
309
310                 /* clear lowest pending irq in the unhandled mask */
311                 unhandled ^= (int_at_level & -int_at_level);
312                 do_IRQ(__ffs(int_at_level), regs);
313         }
314
315         irq_exit();
316         set_irq_regs(old_regs);
317 }
318
319 static bool check_div0(struct pt_regs *regs)
320 {
321         static const u8 pattern[] = {'D', 'I', 'V', '0'};
322         const u8 *p;
323         u8 buf[5];
324
325         if (user_mode(regs)) {
326                 if (copy_from_user(buf, (void __user *)regs->pc + 2, 5))
327                         return false;
328                 p = buf;
329         } else {
330                 p = (const u8 *)regs->pc + 2;
331         }
332
333         return memcmp(p, pattern, sizeof(pattern)) == 0 ||
334                 memcmp(p + 1, pattern, sizeof(pattern)) == 0;
335 }
336
337 /*
338  * Illegal instruction. Fatal if in kernel space.
339  */
340
341 static void do_illegal_instruction(struct pt_regs *regs)
342 {
343 #ifdef CONFIG_USER_ABI_CALL0_PROBE
344         /*
345          * When call0 application encounters an illegal instruction fast
346          * exception handler will attempt to set PS.WOE and retry failing
347          * instruction.
348          * If we get here we know that that instruction is also illegal
349          * with PS.WOE set, so it's not related to the windowed option
350          * hence PS.WOE may be cleared.
351          */
352         if (regs->pc == current_thread_info()->ps_woe_fix_addr)
353                 regs->ps &= ~PS_WOE_MASK;
354 #endif
355         if (check_div0(regs)) {
356                 do_div0(regs);
357                 return;
358         }
359
360         __die_if_kernel("Illegal instruction in kernel", regs, SIGKILL);
361
362         /* If in user mode, send SIGILL signal to current process. */
363
364         pr_info_ratelimited("Illegal Instruction in '%s' (pid = %d, pc = %#010lx)\n",
365                             current->comm, task_pid_nr(current), regs->pc);
366         force_sig(SIGILL);
367 }
368
369 static void do_div0(struct pt_regs *regs)
370 {
371         __die_if_kernel("Unhandled division by 0 in kernel", regs, SIGKILL);
372         force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->pc);
373 }
374
375 #ifdef CONFIG_XTENSA_LOAD_STORE
376 static void do_load_store(struct pt_regs *regs)
377 {
378         __die_if_kernel("Unhandled load/store exception in kernel",
379                         regs, SIGKILL);
380
381         pr_info_ratelimited("Load/store error to %08lx in '%s' (pid = %d, pc = %#010lx)\n",
382                             regs->excvaddr, current->comm,
383                             task_pid_nr(current), regs->pc);
384         force_sig_fault(SIGBUS, BUS_ADRERR, (void *)regs->excvaddr);
385 }
386 #endif
387
388 /*
389  * Handle unaligned memory accesses from user space. Kill task.
390  *
391  * If CONFIG_UNALIGNED_USER is not set, we don't allow unaligned memory
392  * accesses causes from user space.
393  */
394
395 static void do_unaligned_user(struct pt_regs *regs)
396 {
397         __die_if_kernel("Unhandled unaligned exception in kernel",
398                         regs, SIGKILL);
399
400         pr_info_ratelimited("Unaligned memory access to %08lx in '%s' "
401                             "(pid = %d, pc = %#010lx)\n",
402                             regs->excvaddr, current->comm,
403                             task_pid_nr(current), regs->pc);
404         force_sig_fault(SIGBUS, BUS_ADRALN, (void *) regs->excvaddr);
405 }
406
407 #if XTENSA_HAVE_COPROCESSORS
408 static void do_coprocessor(struct pt_regs *regs)
409 {
410         coprocessor_flush_release_all(current_thread_info());
411 }
412 #endif
413
414 /* Handle debug events.
415  * When CONFIG_HAVE_HW_BREAKPOINT is on this handler is called with
416  * preemption disabled to avoid rescheduling and keep mapping of hardware
417  * breakpoint structures to debug registers intact, so that
418  * DEBUGCAUSE.DBNUM could be used in case of data breakpoint hit.
419  */
420 static void do_debug(struct pt_regs *regs)
421 {
422 #ifdef CONFIG_HAVE_HW_BREAKPOINT
423         int ret = check_hw_breakpoint(regs);
424
425         preempt_enable();
426         if (ret == 0)
427                 return;
428 #endif
429         __die_if_kernel("Breakpoint in kernel", regs, SIGKILL);
430
431         /* If in user mode, send SIGTRAP signal to current process */
432
433         force_sig(SIGTRAP);
434 }
435
436
437 #define set_handler(type, cause, handler)                               \
438         do {                                                            \
439                 unsigned int cpu;                                       \
440                                                                         \
441                 for_each_possible_cpu(cpu)                              \
442                         per_cpu(exc_table, cpu).type[cause] = (handler);\
443         } while (0)
444
445 /* Set exception C handler - for temporary use when probing exceptions */
446
447 xtensa_exception_handler *
448 __init trap_set_handler(int cause, xtensa_exception_handler *handler)
449 {
450         void *previous = per_cpu(exc_table, 0).default_handler[cause];
451
452         set_handler(default_handler, cause, handler);
453         return previous;
454 }
455
456
457 static void trap_init_excsave(void)
458 {
459         xtensa_set_sr(this_cpu_ptr(&exc_table), excsave1);
460 }
461
462 static void trap_init_debug(void)
463 {
464         unsigned long debugsave = (unsigned long)this_cpu_ptr(&debug_table);
465
466         this_cpu_ptr(&debug_table)->debug_exception = debug_exception;
467         __asm__ __volatile__("wsr %0, excsave" __stringify(XCHAL_DEBUGLEVEL)
468                              :: "a"(debugsave));
469 }
470
471 /*
472  * Initialize dispatch tables.
473  *
474  * The exception vectors are stored compressed the __init section in the
475  * dispatch_init_table. This function initializes the following three tables
476  * from that compressed table:
477  * - fast user          first dispatch table for user exceptions
478  * - fast kernel        first dispatch table for kernel exceptions
479  * - default C-handler  C-handler called by the default fast handler.
480  *
481  * See vectors.S for more details.
482  */
483
484 void __init trap_init(void)
485 {
486         int i;
487
488         /* Setup default vectors. */
489
490         for (i = 0; i < EXCCAUSE_N; i++) {
491                 set_handler(fast_user_handler, i, user_exception);
492                 set_handler(fast_kernel_handler, i, kernel_exception);
493                 set_handler(default_handler, i, do_unhandled);
494         }
495
496         /* Setup specific handlers. */
497
498         for(i = 0; dispatch_init_table[i].cause >= 0; i++) {
499                 int fast = dispatch_init_table[i].fast;
500                 int cause = dispatch_init_table[i].cause;
501                 void *handler = dispatch_init_table[i].handler;
502
503                 if (fast == 0)
504                         set_handler(default_handler, cause, handler);
505                 if ((fast & USER) != 0)
506                         set_handler(fast_user_handler, cause, handler);
507                 if ((fast & KRNL) != 0)
508                         set_handler(fast_kernel_handler, cause, handler);
509         }
510
511         /* Initialize EXCSAVE_1 to hold the address of the exception table. */
512         trap_init_excsave();
513         trap_init_debug();
514 }
515
516 #ifdef CONFIG_SMP
517 void secondary_trap_init(void)
518 {
519         trap_init_excsave();
520         trap_init_debug();
521 }
522 #endif
523
524 /*
525  * This function dumps the current valid window frame and other base registers.
526  */
527
528 void show_regs(struct pt_regs * regs)
529 {
530         int i;
531
532         show_regs_print_info(KERN_DEFAULT);
533
534         for (i = 0; i < 16; i++) {
535                 if ((i % 8) == 0)
536                         pr_info("a%02d:", i);
537                 pr_cont(" %08lx", regs->areg[i]);
538         }
539         pr_cont("\n");
540         pr_info("pc: %08lx, ps: %08lx, depc: %08lx, excvaddr: %08lx\n",
541                 regs->pc, regs->ps, regs->depc, regs->excvaddr);
542         pr_info("lbeg: %08lx, lend: %08lx lcount: %08lx, sar: %08lx\n",
543                 regs->lbeg, regs->lend, regs->lcount, regs->sar);
544         if (user_mode(regs))
545                 pr_cont("wb: %08lx, ws: %08lx, wmask: %08lx, syscall: %ld\n",
546                         regs->windowbase, regs->windowstart, regs->wmask,
547                         regs->syscall);
548 }
549
550 static int show_trace_cb(struct stackframe *frame, void *data)
551 {
552         const char *loglvl = data;
553
554         if (kernel_text_address(frame->pc))
555                 printk("%s [<%08lx>] %pB\n",
556                         loglvl, frame->pc, (void *)frame->pc);
557         return 0;
558 }
559
560 static void show_trace(struct task_struct *task, unsigned long *sp,
561                        const char *loglvl)
562 {
563         if (!sp)
564                 sp = stack_pointer(task);
565
566         printk("%sCall Trace:\n", loglvl);
567         walk_stackframe(sp, show_trace_cb, (void *)loglvl);
568 }
569
570 #define STACK_DUMP_ENTRY_SIZE 4
571 #define STACK_DUMP_LINE_SIZE 16
572 static size_t kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
573
574 struct stack_fragment
575 {
576         size_t len;
577         size_t off;
578         u8 *sp;
579         const char *loglvl;
580 };
581
582 static int show_stack_fragment_cb(struct stackframe *frame, void *data)
583 {
584         struct stack_fragment *sf = data;
585
586         while (sf->off < sf->len) {
587                 u8 line[STACK_DUMP_LINE_SIZE];
588                 size_t line_len = sf->len - sf->off > STACK_DUMP_LINE_SIZE ?
589                         STACK_DUMP_LINE_SIZE : sf->len - sf->off;
590                 bool arrow = sf->off == 0;
591
592                 if (frame && frame->sp == (unsigned long)(sf->sp + sf->off))
593                         arrow = true;
594
595                 __memcpy(line, sf->sp + sf->off, line_len);
596                 print_hex_dump(sf->loglvl, arrow ? "> " : "  ", DUMP_PREFIX_NONE,
597                                STACK_DUMP_LINE_SIZE, STACK_DUMP_ENTRY_SIZE,
598                                line, line_len, false);
599                 sf->off += STACK_DUMP_LINE_SIZE;
600                 if (arrow)
601                         return 0;
602         }
603         return 1;
604 }
605
606 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
607 {
608         struct stack_fragment sf;
609
610         if (!sp)
611                 sp = stack_pointer(task);
612
613         sf.len = min((-(size_t)sp) & (THREAD_SIZE - STACK_DUMP_ENTRY_SIZE),
614                      kstack_depth_to_print * STACK_DUMP_ENTRY_SIZE);
615         sf.off = 0;
616         sf.sp = (u8 *)sp;
617         sf.loglvl = loglvl;
618
619         printk("%sStack:\n", loglvl);
620         walk_stackframe(sp, show_stack_fragment_cb, &sf);
621         while (sf.off < sf.len)
622                 show_stack_fragment_cb(NULL, &sf);
623         show_trace(task, sp, loglvl);
624 }
625
626 DEFINE_SPINLOCK(die_lock);
627
628 void __noreturn die(const char * str, struct pt_regs * regs, long err)
629 {
630         static int die_counter;
631         const char *pr = "";
632
633         if (IS_ENABLED(CONFIG_PREEMPTION))
634                 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
635
636         console_verbose();
637         spin_lock_irq(&die_lock);
638
639         pr_info("%s: sig: %ld [#%d]%s\n", str, err, ++die_counter, pr);
640         show_regs(regs);
641         if (!user_mode(regs))
642                 show_stack(NULL, (unsigned long *)regs->areg[1], KERN_INFO);
643
644         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
645         spin_unlock_irq(&die_lock);
646
647         if (in_interrupt())
648                 panic("Fatal exception in interrupt");
649
650         if (panic_on_oops)
651                 panic("Fatal exception");
652
653         make_task_dead(err);
654 }