Merge branch 'x86/platform' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[linux-2.6-block.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/interface/xen-mca.h>
42 #include <xen/features.h>
43 #include <xen/page.h>
44 #include <xen/hvm.h>
45 #include <xen/hvc-console.h>
46 #include <xen/acpi.h>
47
48 #include <asm/paravirt.h>
49 #include <asm/apic.h>
50 #include <asm/page.h>
51 #include <asm/xen/pci.h>
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/fixmap.h>
55 #include <asm/processor.h>
56 #include <asm/proto.h>
57 #include <asm/msr-index.h>
58 #include <asm/traps.h>
59 #include <asm/setup.h>
60 #include <asm/desc.h>
61 #include <asm/pgalloc.h>
62 #include <asm/pgtable.h>
63 #include <asm/tlbflush.h>
64 #include <asm/reboot.h>
65 #include <asm/stackprotector.h>
66 #include <asm/hypervisor.h>
67 #include <asm/mwait.h>
68 #include <asm/pci_x86.h>
69
70 #ifdef CONFIG_ACPI
71 #include <linux/acpi.h>
72 #include <asm/acpi.h>
73 #include <acpi/pdc_intel.h>
74 #include <acpi/processor.h>
75 #include <xen/interface/platform.h>
76 #endif
77
78 #include "xen-ops.h"
79 #include "mmu.h"
80 #include "smp.h"
81 #include "multicalls.h"
82
83 #include <xen/events.h>
84
85 EXPORT_SYMBOL_GPL(hypercall_page);
86
87 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
88 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
89
90 enum xen_domain_type xen_domain_type = XEN_NATIVE;
91 EXPORT_SYMBOL_GPL(xen_domain_type);
92
93 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
94 EXPORT_SYMBOL(machine_to_phys_mapping);
95 unsigned long  machine_to_phys_nr;
96 EXPORT_SYMBOL(machine_to_phys_nr);
97
98 struct start_info *xen_start_info;
99 EXPORT_SYMBOL_GPL(xen_start_info);
100
101 struct shared_info xen_dummy_shared_info;
102
103 void *xen_initial_gdt;
104
105 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
106 __read_mostly int xen_have_vector_callback;
107 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
108
109 /*
110  * Point at some empty memory to start with. We map the real shared_info
111  * page as soon as fixmap is up and running.
112  */
113 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
114
115 /*
116  * Flag to determine whether vcpu info placement is available on all
117  * VCPUs.  We assume it is to start with, and then set it to zero on
118  * the first failure.  This is because it can succeed on some VCPUs
119  * and not others, since it can involve hypervisor memory allocation,
120  * or because the guest failed to guarantee all the appropriate
121  * constraints on all VCPUs (ie buffer can't cross a page boundary).
122  *
123  * Note that any particular CPU may be using a placed vcpu structure,
124  * but we can only optimise if the all are.
125  *
126  * 0: not available, 1: available
127  */
128 static int have_vcpu_info_placement = 1;
129
130 struct tls_descs {
131         struct desc_struct desc[3];
132 };
133
134 /*
135  * Updating the 3 TLS descriptors in the GDT on every task switch is
136  * surprisingly expensive so we avoid updating them if they haven't
137  * changed.  Since Xen writes different descriptors than the one
138  * passed in the update_descriptor hypercall we keep shadow copies to
139  * compare against.
140  */
141 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
142
143 static void clamp_max_cpus(void)
144 {
145 #ifdef CONFIG_SMP
146         if (setup_max_cpus > MAX_VIRT_CPUS)
147                 setup_max_cpus = MAX_VIRT_CPUS;
148 #endif
149 }
150
151 static void xen_vcpu_setup(int cpu)
152 {
153         struct vcpu_register_vcpu_info info;
154         int err;
155         struct vcpu_info *vcpup;
156
157         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
158
159         if (cpu < MAX_VIRT_CPUS)
160                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
161
162         if (!have_vcpu_info_placement) {
163                 if (cpu >= MAX_VIRT_CPUS)
164                         clamp_max_cpus();
165                 return;
166         }
167
168         vcpup = &per_cpu(xen_vcpu_info, cpu);
169         info.mfn = arbitrary_virt_to_mfn(vcpup);
170         info.offset = offset_in_page(vcpup);
171
172         /* Check to see if the hypervisor will put the vcpu_info
173            structure where we want it, which allows direct access via
174            a percpu-variable. */
175         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
176
177         if (err) {
178                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
179                 have_vcpu_info_placement = 0;
180                 clamp_max_cpus();
181         } else {
182                 /* This cpu is using the registered vcpu info, even if
183                    later ones fail to. */
184                 per_cpu(xen_vcpu, cpu) = vcpup;
185         }
186 }
187
188 /*
189  * On restore, set the vcpu placement up again.
190  * If it fails, then we're in a bad state, since
191  * we can't back out from using it...
192  */
193 void xen_vcpu_restore(void)
194 {
195         int cpu;
196
197         for_each_online_cpu(cpu) {
198                 bool other_cpu = (cpu != smp_processor_id());
199
200                 if (other_cpu &&
201                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
202                         BUG();
203
204                 xen_setup_runstate_info(cpu);
205
206                 if (have_vcpu_info_placement)
207                         xen_vcpu_setup(cpu);
208
209                 if (other_cpu &&
210                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
211                         BUG();
212         }
213 }
214
215 static void __init xen_banner(void)
216 {
217         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
218         struct xen_extraversion extra;
219         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
220
221         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
222                pv_info.name);
223         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
224                version >> 16, version & 0xffff, extra.extraversion,
225                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
226 }
227
228 #define CPUID_THERM_POWER_LEAF 6
229 #define APERFMPERF_PRESENT 0
230
231 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
232 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
233
234 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
235 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
236 static __read_mostly unsigned int cpuid_leaf5_edx_val;
237
238 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
239                       unsigned int *cx, unsigned int *dx)
240 {
241         unsigned maskebx = ~0;
242         unsigned maskecx = ~0;
243         unsigned maskedx = ~0;
244         unsigned setecx = 0;
245         /*
246          * Mask out inconvenient features, to try and disable as many
247          * unsupported kernel subsystems as possible.
248          */
249         switch (*ax) {
250         case 1:
251                 maskecx = cpuid_leaf1_ecx_mask;
252                 setecx = cpuid_leaf1_ecx_set_mask;
253                 maskedx = cpuid_leaf1_edx_mask;
254                 break;
255
256         case CPUID_MWAIT_LEAF:
257                 /* Synthesize the values.. */
258                 *ax = 0;
259                 *bx = 0;
260                 *cx = cpuid_leaf5_ecx_val;
261                 *dx = cpuid_leaf5_edx_val;
262                 return;
263
264         case CPUID_THERM_POWER_LEAF:
265                 /* Disabling APERFMPERF for kernel usage */
266                 maskecx = ~(1 << APERFMPERF_PRESENT);
267                 break;
268
269         case 0xb:
270                 /* Suppress extended topology stuff */
271                 maskebx = 0;
272                 break;
273         }
274
275         asm(XEN_EMULATE_PREFIX "cpuid"
276                 : "=a" (*ax),
277                   "=b" (*bx),
278                   "=c" (*cx),
279                   "=d" (*dx)
280                 : "0" (*ax), "2" (*cx));
281
282         *bx &= maskebx;
283         *cx &= maskecx;
284         *cx |= setecx;
285         *dx &= maskedx;
286
287 }
288
289 static bool __init xen_check_mwait(void)
290 {
291 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
292         !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
293         struct xen_platform_op op = {
294                 .cmd                    = XENPF_set_processor_pminfo,
295                 .u.set_pminfo.id        = -1,
296                 .u.set_pminfo.type      = XEN_PM_PDC,
297         };
298         uint32_t buf[3];
299         unsigned int ax, bx, cx, dx;
300         unsigned int mwait_mask;
301
302         /* We need to determine whether it is OK to expose the MWAIT
303          * capability to the kernel to harvest deeper than C3 states from ACPI
304          * _CST using the processor_harvest_xen.c module. For this to work, we
305          * need to gather the MWAIT_LEAF values (which the cstate.c code
306          * checks against). The hypervisor won't expose the MWAIT flag because
307          * it would break backwards compatibility; so we will find out directly
308          * from the hardware and hypercall.
309          */
310         if (!xen_initial_domain())
311                 return false;
312
313         ax = 1;
314         cx = 0;
315
316         native_cpuid(&ax, &bx, &cx, &dx);
317
318         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
319                      (1 << (X86_FEATURE_MWAIT % 32));
320
321         if ((cx & mwait_mask) != mwait_mask)
322                 return false;
323
324         /* We need to emulate the MWAIT_LEAF and for that we need both
325          * ecx and edx. The hypercall provides only partial information.
326          */
327
328         ax = CPUID_MWAIT_LEAF;
329         bx = 0;
330         cx = 0;
331         dx = 0;
332
333         native_cpuid(&ax, &bx, &cx, &dx);
334
335         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
336          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
337          */
338         buf[0] = ACPI_PDC_REVISION_ID;
339         buf[1] = 1;
340         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
341
342         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
343
344         if ((HYPERVISOR_dom0_op(&op) == 0) &&
345             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
346                 cpuid_leaf5_ecx_val = cx;
347                 cpuid_leaf5_edx_val = dx;
348         }
349         return true;
350 #else
351         return false;
352 #endif
353 }
354 static void __init xen_init_cpuid_mask(void)
355 {
356         unsigned int ax, bx, cx, dx;
357         unsigned int xsave_mask;
358
359         cpuid_leaf1_edx_mask =
360                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
361                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
362
363         if (!xen_initial_domain())
364                 cpuid_leaf1_edx_mask &=
365                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
366                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
367         ax = 1;
368         cx = 0;
369         xen_cpuid(&ax, &bx, &cx, &dx);
370
371         xsave_mask =
372                 (1 << (X86_FEATURE_XSAVE % 32)) |
373                 (1 << (X86_FEATURE_OSXSAVE % 32));
374
375         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
376         if ((cx & xsave_mask) != xsave_mask)
377                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
378         if (xen_check_mwait())
379                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
380 }
381
382 static void xen_set_debugreg(int reg, unsigned long val)
383 {
384         HYPERVISOR_set_debugreg(reg, val);
385 }
386
387 static unsigned long xen_get_debugreg(int reg)
388 {
389         return HYPERVISOR_get_debugreg(reg);
390 }
391
392 static void xen_end_context_switch(struct task_struct *next)
393 {
394         xen_mc_flush();
395         paravirt_end_context_switch(next);
396 }
397
398 static unsigned long xen_store_tr(void)
399 {
400         return 0;
401 }
402
403 /*
404  * Set the page permissions for a particular virtual address.  If the
405  * address is a vmalloc mapping (or other non-linear mapping), then
406  * find the linear mapping of the page and also set its protections to
407  * match.
408  */
409 static void set_aliased_prot(void *v, pgprot_t prot)
410 {
411         int level;
412         pte_t *ptep;
413         pte_t pte;
414         unsigned long pfn;
415         struct page *page;
416
417         ptep = lookup_address((unsigned long)v, &level);
418         BUG_ON(ptep == NULL);
419
420         pfn = pte_pfn(*ptep);
421         page = pfn_to_page(pfn);
422
423         pte = pfn_pte(pfn, prot);
424
425         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
426                 BUG();
427
428         if (!PageHighMem(page)) {
429                 void *av = __va(PFN_PHYS(pfn));
430
431                 if (av != v)
432                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
433                                 BUG();
434         } else
435                 kmap_flush_unused();
436 }
437
438 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
439 {
440         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
441         int i;
442
443         for(i = 0; i < entries; i += entries_per_page)
444                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
445 }
446
447 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
448 {
449         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
450         int i;
451
452         for(i = 0; i < entries; i += entries_per_page)
453                 set_aliased_prot(ldt + i, PAGE_KERNEL);
454 }
455
456 static void xen_set_ldt(const void *addr, unsigned entries)
457 {
458         struct mmuext_op *op;
459         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
460
461         trace_xen_cpu_set_ldt(addr, entries);
462
463         op = mcs.args;
464         op->cmd = MMUEXT_SET_LDT;
465         op->arg1.linear_addr = (unsigned long)addr;
466         op->arg2.nr_ents = entries;
467
468         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
469
470         xen_mc_issue(PARAVIRT_LAZY_CPU);
471 }
472
473 static void xen_load_gdt(const struct desc_ptr *dtr)
474 {
475         unsigned long va = dtr->address;
476         unsigned int size = dtr->size + 1;
477         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
478         unsigned long frames[pages];
479         int f;
480
481         /*
482          * A GDT can be up to 64k in size, which corresponds to 8192
483          * 8-byte entries, or 16 4k pages..
484          */
485
486         BUG_ON(size > 65536);
487         BUG_ON(va & ~PAGE_MASK);
488
489         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
490                 int level;
491                 pte_t *ptep;
492                 unsigned long pfn, mfn;
493                 void *virt;
494
495                 /*
496                  * The GDT is per-cpu and is in the percpu data area.
497                  * That can be virtually mapped, so we need to do a
498                  * page-walk to get the underlying MFN for the
499                  * hypercall.  The page can also be in the kernel's
500                  * linear range, so we need to RO that mapping too.
501                  */
502                 ptep = lookup_address(va, &level);
503                 BUG_ON(ptep == NULL);
504
505                 pfn = pte_pfn(*ptep);
506                 mfn = pfn_to_mfn(pfn);
507                 virt = __va(PFN_PHYS(pfn));
508
509                 frames[f] = mfn;
510
511                 make_lowmem_page_readonly((void *)va);
512                 make_lowmem_page_readonly(virt);
513         }
514
515         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
516                 BUG();
517 }
518
519 /*
520  * load_gdt for early boot, when the gdt is only mapped once
521  */
522 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
523 {
524         unsigned long va = dtr->address;
525         unsigned int size = dtr->size + 1;
526         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
527         unsigned long frames[pages];
528         int f;
529
530         /*
531          * A GDT can be up to 64k in size, which corresponds to 8192
532          * 8-byte entries, or 16 4k pages..
533          */
534
535         BUG_ON(size > 65536);
536         BUG_ON(va & ~PAGE_MASK);
537
538         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
539                 pte_t pte;
540                 unsigned long pfn, mfn;
541
542                 pfn = virt_to_pfn(va);
543                 mfn = pfn_to_mfn(pfn);
544
545                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
546
547                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
548                         BUG();
549
550                 frames[f] = mfn;
551         }
552
553         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
554                 BUG();
555 }
556
557 static inline bool desc_equal(const struct desc_struct *d1,
558                               const struct desc_struct *d2)
559 {
560         return d1->a == d2->a && d1->b == d2->b;
561 }
562
563 static void load_TLS_descriptor(struct thread_struct *t,
564                                 unsigned int cpu, unsigned int i)
565 {
566         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
567         struct desc_struct *gdt;
568         xmaddr_t maddr;
569         struct multicall_space mc;
570
571         if (desc_equal(shadow, &t->tls_array[i]))
572                 return;
573
574         *shadow = t->tls_array[i];
575
576         gdt = get_cpu_gdt_table(cpu);
577         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
578         mc = __xen_mc_entry(0);
579
580         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
581 }
582
583 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
584 {
585         /*
586          * XXX sleazy hack: If we're being called in a lazy-cpu zone
587          * and lazy gs handling is enabled, it means we're in a
588          * context switch, and %gs has just been saved.  This means we
589          * can zero it out to prevent faults on exit from the
590          * hypervisor if the next process has no %gs.  Either way, it
591          * has been saved, and the new value will get loaded properly.
592          * This will go away as soon as Xen has been modified to not
593          * save/restore %gs for normal hypercalls.
594          *
595          * On x86_64, this hack is not used for %gs, because gs points
596          * to KERNEL_GS_BASE (and uses it for PDA references), so we
597          * must not zero %gs on x86_64
598          *
599          * For x86_64, we need to zero %fs, otherwise we may get an
600          * exception between the new %fs descriptor being loaded and
601          * %fs being effectively cleared at __switch_to().
602          */
603         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
604 #ifdef CONFIG_X86_32
605                 lazy_load_gs(0);
606 #else
607                 loadsegment(fs, 0);
608 #endif
609         }
610
611         xen_mc_batch();
612
613         load_TLS_descriptor(t, cpu, 0);
614         load_TLS_descriptor(t, cpu, 1);
615         load_TLS_descriptor(t, cpu, 2);
616
617         xen_mc_issue(PARAVIRT_LAZY_CPU);
618 }
619
620 #ifdef CONFIG_X86_64
621 static void xen_load_gs_index(unsigned int idx)
622 {
623         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
624                 BUG();
625 }
626 #endif
627
628 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
629                                 const void *ptr)
630 {
631         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
632         u64 entry = *(u64 *)ptr;
633
634         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
635
636         preempt_disable();
637
638         xen_mc_flush();
639         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
640                 BUG();
641
642         preempt_enable();
643 }
644
645 static int cvt_gate_to_trap(int vector, const gate_desc *val,
646                             struct trap_info *info)
647 {
648         unsigned long addr;
649
650         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
651                 return 0;
652
653         info->vector = vector;
654
655         addr = gate_offset(*val);
656 #ifdef CONFIG_X86_64
657         /*
658          * Look for known traps using IST, and substitute them
659          * appropriately.  The debugger ones are the only ones we care
660          * about.  Xen will handle faults like double_fault,
661          * so we should never see them.  Warn if
662          * there's an unexpected IST-using fault handler.
663          */
664         if (addr == (unsigned long)debug)
665                 addr = (unsigned long)xen_debug;
666         else if (addr == (unsigned long)int3)
667                 addr = (unsigned long)xen_int3;
668         else if (addr == (unsigned long)stack_segment)
669                 addr = (unsigned long)xen_stack_segment;
670         else if (addr == (unsigned long)double_fault ||
671                  addr == (unsigned long)nmi) {
672                 /* Don't need to handle these */
673                 return 0;
674 #ifdef CONFIG_X86_MCE
675         } else if (addr == (unsigned long)machine_check) {
676                 /*
677                  * when xen hypervisor inject vMCE to guest,
678                  * use native mce handler to handle it
679                  */
680                 ;
681 #endif
682         } else {
683                 /* Some other trap using IST? */
684                 if (WARN_ON(val->ist != 0))
685                         return 0;
686         }
687 #endif  /* CONFIG_X86_64 */
688         info->address = addr;
689
690         info->cs = gate_segment(*val);
691         info->flags = val->dpl;
692         /* interrupt gates clear IF */
693         if (val->type == GATE_INTERRUPT)
694                 info->flags |= 1 << 2;
695
696         return 1;
697 }
698
699 /* Locations of each CPU's IDT */
700 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
701
702 /* Set an IDT entry.  If the entry is part of the current IDT, then
703    also update Xen. */
704 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
705 {
706         unsigned long p = (unsigned long)&dt[entrynum];
707         unsigned long start, end;
708
709         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
710
711         preempt_disable();
712
713         start = __this_cpu_read(idt_desc.address);
714         end = start + __this_cpu_read(idt_desc.size) + 1;
715
716         xen_mc_flush();
717
718         native_write_idt_entry(dt, entrynum, g);
719
720         if (p >= start && (p + 8) <= end) {
721                 struct trap_info info[2];
722
723                 info[1].address = 0;
724
725                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
726                         if (HYPERVISOR_set_trap_table(info))
727                                 BUG();
728         }
729
730         preempt_enable();
731 }
732
733 static void xen_convert_trap_info(const struct desc_ptr *desc,
734                                   struct trap_info *traps)
735 {
736         unsigned in, out, count;
737
738         count = (desc->size+1) / sizeof(gate_desc);
739         BUG_ON(count > 256);
740
741         for (in = out = 0; in < count; in++) {
742                 gate_desc *entry = (gate_desc*)(desc->address) + in;
743
744                 if (cvt_gate_to_trap(in, entry, &traps[out]))
745                         out++;
746         }
747         traps[out].address = 0;
748 }
749
750 void xen_copy_trap_info(struct trap_info *traps)
751 {
752         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
753
754         xen_convert_trap_info(desc, traps);
755 }
756
757 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
758    hold a spinlock to protect the static traps[] array (static because
759    it avoids allocation, and saves stack space). */
760 static void xen_load_idt(const struct desc_ptr *desc)
761 {
762         static DEFINE_SPINLOCK(lock);
763         static struct trap_info traps[257];
764
765         trace_xen_cpu_load_idt(desc);
766
767         spin_lock(&lock);
768
769         __get_cpu_var(idt_desc) = *desc;
770
771         xen_convert_trap_info(desc, traps);
772
773         xen_mc_flush();
774         if (HYPERVISOR_set_trap_table(traps))
775                 BUG();
776
777         spin_unlock(&lock);
778 }
779
780 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
781    they're handled differently. */
782 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
783                                 const void *desc, int type)
784 {
785         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
786
787         preempt_disable();
788
789         switch (type) {
790         case DESC_LDT:
791         case DESC_TSS:
792                 /* ignore */
793                 break;
794
795         default: {
796                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
797
798                 xen_mc_flush();
799                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
800                         BUG();
801         }
802
803         }
804
805         preempt_enable();
806 }
807
808 /*
809  * Version of write_gdt_entry for use at early boot-time needed to
810  * update an entry as simply as possible.
811  */
812 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
813                                             const void *desc, int type)
814 {
815         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
816
817         switch (type) {
818         case DESC_LDT:
819         case DESC_TSS:
820                 /* ignore */
821                 break;
822
823         default: {
824                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
825
826                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
827                         dt[entry] = *(struct desc_struct *)desc;
828         }
829
830         }
831 }
832
833 static void xen_load_sp0(struct tss_struct *tss,
834                          struct thread_struct *thread)
835 {
836         struct multicall_space mcs;
837
838         mcs = xen_mc_entry(0);
839         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
840         xen_mc_issue(PARAVIRT_LAZY_CPU);
841 }
842
843 static void xen_set_iopl_mask(unsigned mask)
844 {
845         struct physdev_set_iopl set_iopl;
846
847         /* Force the change at ring 0. */
848         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
849         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
850 }
851
852 static void xen_io_delay(void)
853 {
854 }
855
856 #ifdef CONFIG_X86_LOCAL_APIC
857 static unsigned long xen_set_apic_id(unsigned int x)
858 {
859         WARN_ON(1);
860         return x;
861 }
862 static unsigned int xen_get_apic_id(unsigned long x)
863 {
864         return ((x)>>24) & 0xFFu;
865 }
866 static u32 xen_apic_read(u32 reg)
867 {
868         struct xen_platform_op op = {
869                 .cmd = XENPF_get_cpuinfo,
870                 .interface_version = XENPF_INTERFACE_VERSION,
871                 .u.pcpu_info.xen_cpuid = 0,
872         };
873         int ret = 0;
874
875         /* Shouldn't need this as APIC is turned off for PV, and we only
876          * get called on the bootup processor. But just in case. */
877         if (!xen_initial_domain() || smp_processor_id())
878                 return 0;
879
880         if (reg == APIC_LVR)
881                 return 0x10;
882
883         if (reg != APIC_ID)
884                 return 0;
885
886         ret = HYPERVISOR_dom0_op(&op);
887         if (ret)
888                 return 0;
889
890         return op.u.pcpu_info.apic_id << 24;
891 }
892
893 static void xen_apic_write(u32 reg, u32 val)
894 {
895         /* Warn to see if there's any stray references */
896         WARN_ON(1);
897 }
898
899 static u64 xen_apic_icr_read(void)
900 {
901         return 0;
902 }
903
904 static void xen_apic_icr_write(u32 low, u32 id)
905 {
906         /* Warn to see if there's any stray references */
907         WARN_ON(1);
908 }
909
910 static void xen_apic_wait_icr_idle(void)
911 {
912         return;
913 }
914
915 static u32 xen_safe_apic_wait_icr_idle(void)
916 {
917         return 0;
918 }
919
920 static void set_xen_basic_apic_ops(void)
921 {
922         apic->read = xen_apic_read;
923         apic->write = xen_apic_write;
924         apic->icr_read = xen_apic_icr_read;
925         apic->icr_write = xen_apic_icr_write;
926         apic->wait_icr_idle = xen_apic_wait_icr_idle;
927         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
928         apic->set_apic_id = xen_set_apic_id;
929         apic->get_apic_id = xen_get_apic_id;
930
931 #ifdef CONFIG_SMP
932         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
933         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
934         apic->send_IPI_mask = xen_send_IPI_mask;
935         apic->send_IPI_all = xen_send_IPI_all;
936         apic->send_IPI_self = xen_send_IPI_self;
937 #endif
938 }
939
940 #endif
941
942 static void xen_clts(void)
943 {
944         struct multicall_space mcs;
945
946         mcs = xen_mc_entry(0);
947
948         MULTI_fpu_taskswitch(mcs.mc, 0);
949
950         xen_mc_issue(PARAVIRT_LAZY_CPU);
951 }
952
953 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
954
955 static unsigned long xen_read_cr0(void)
956 {
957         unsigned long cr0 = this_cpu_read(xen_cr0_value);
958
959         if (unlikely(cr0 == 0)) {
960                 cr0 = native_read_cr0();
961                 this_cpu_write(xen_cr0_value, cr0);
962         }
963
964         return cr0;
965 }
966
967 static void xen_write_cr0(unsigned long cr0)
968 {
969         struct multicall_space mcs;
970
971         this_cpu_write(xen_cr0_value, cr0);
972
973         /* Only pay attention to cr0.TS; everything else is
974            ignored. */
975         mcs = xen_mc_entry(0);
976
977         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
978
979         xen_mc_issue(PARAVIRT_LAZY_CPU);
980 }
981
982 static void xen_write_cr4(unsigned long cr4)
983 {
984         cr4 &= ~X86_CR4_PGE;
985         cr4 &= ~X86_CR4_PSE;
986
987         native_write_cr4(cr4);
988 }
989
990 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
991 {
992         int ret;
993
994         ret = 0;
995
996         switch (msr) {
997 #ifdef CONFIG_X86_64
998                 unsigned which;
999                 u64 base;
1000
1001         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1002         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1003         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1004
1005         set:
1006                 base = ((u64)high << 32) | low;
1007                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1008                         ret = -EIO;
1009                 break;
1010 #endif
1011
1012         case MSR_STAR:
1013         case MSR_CSTAR:
1014         case MSR_LSTAR:
1015         case MSR_SYSCALL_MASK:
1016         case MSR_IA32_SYSENTER_CS:
1017         case MSR_IA32_SYSENTER_ESP:
1018         case MSR_IA32_SYSENTER_EIP:
1019                 /* Fast syscall setup is all done in hypercalls, so
1020                    these are all ignored.  Stub them out here to stop
1021                    Xen console noise. */
1022                 break;
1023
1024         case MSR_IA32_CR_PAT:
1025                 if (smp_processor_id() == 0)
1026                         xen_set_pat(((u64)high << 32) | low);
1027                 break;
1028
1029         default:
1030                 ret = native_write_msr_safe(msr, low, high);
1031         }
1032
1033         return ret;
1034 }
1035
1036 void xen_setup_shared_info(void)
1037 {
1038         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1039                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1040                            xen_start_info->shared_info);
1041
1042                 HYPERVISOR_shared_info =
1043                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1044         } else
1045                 HYPERVISOR_shared_info =
1046                         (struct shared_info *)__va(xen_start_info->shared_info);
1047
1048 #ifndef CONFIG_SMP
1049         /* In UP this is as good a place as any to set up shared info */
1050         xen_setup_vcpu_info_placement();
1051 #endif
1052
1053         xen_setup_mfn_list_list();
1054 }
1055
1056 /* This is called once we have the cpu_possible_mask */
1057 void xen_setup_vcpu_info_placement(void)
1058 {
1059         int cpu;
1060
1061         for_each_possible_cpu(cpu)
1062                 xen_vcpu_setup(cpu);
1063
1064         /* xen_vcpu_setup managed to place the vcpu_info within the
1065            percpu area for all cpus, so make use of it */
1066         if (have_vcpu_info_placement) {
1067                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1068                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1069                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1070                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1071                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1072         }
1073 }
1074
1075 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1076                           unsigned long addr, unsigned len)
1077 {
1078         char *start, *end, *reloc;
1079         unsigned ret;
1080
1081         start = end = reloc = NULL;
1082
1083 #define SITE(op, x)                                                     \
1084         case PARAVIRT_PATCH(op.x):                                      \
1085         if (have_vcpu_info_placement) {                                 \
1086                 start = (char *)xen_##x##_direct;                       \
1087                 end = xen_##x##_direct_end;                             \
1088                 reloc = xen_##x##_direct_reloc;                         \
1089         }                                                               \
1090         goto patch_site
1091
1092         switch (type) {
1093                 SITE(pv_irq_ops, irq_enable);
1094                 SITE(pv_irq_ops, irq_disable);
1095                 SITE(pv_irq_ops, save_fl);
1096                 SITE(pv_irq_ops, restore_fl);
1097 #undef SITE
1098
1099         patch_site:
1100                 if (start == NULL || (end-start) > len)
1101                         goto default_patch;
1102
1103                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1104
1105                 /* Note: because reloc is assigned from something that
1106                    appears to be an array, gcc assumes it's non-null,
1107                    but doesn't know its relationship with start and
1108                    end. */
1109                 if (reloc > start && reloc < end) {
1110                         int reloc_off = reloc - start;
1111                         long *relocp = (long *)(insnbuf + reloc_off);
1112                         long delta = start - (char *)addr;
1113
1114                         *relocp += delta;
1115                 }
1116                 break;
1117
1118         default_patch:
1119         default:
1120                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1121                                              addr, len);
1122                 break;
1123         }
1124
1125         return ret;
1126 }
1127
1128 static const struct pv_info xen_info __initconst = {
1129         .paravirt_enabled = 1,
1130         .shared_kernel_pmd = 0,
1131
1132 #ifdef CONFIG_X86_64
1133         .extra_user_64bit_cs = FLAT_USER_CS64,
1134 #endif
1135
1136         .name = "Xen",
1137 };
1138
1139 static const struct pv_init_ops xen_init_ops __initconst = {
1140         .patch = xen_patch,
1141 };
1142
1143 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1144         .cpuid = xen_cpuid,
1145
1146         .set_debugreg = xen_set_debugreg,
1147         .get_debugreg = xen_get_debugreg,
1148
1149         .clts = xen_clts,
1150
1151         .read_cr0 = xen_read_cr0,
1152         .write_cr0 = xen_write_cr0,
1153
1154         .read_cr4 = native_read_cr4,
1155         .read_cr4_safe = native_read_cr4_safe,
1156         .write_cr4 = xen_write_cr4,
1157
1158         .wbinvd = native_wbinvd,
1159
1160         .read_msr = native_read_msr_safe,
1161         .write_msr = xen_write_msr_safe,
1162
1163         .read_tsc = native_read_tsc,
1164         .read_pmc = native_read_pmc,
1165
1166         .iret = xen_iret,
1167         .irq_enable_sysexit = xen_sysexit,
1168 #ifdef CONFIG_X86_64
1169         .usergs_sysret32 = xen_sysret32,
1170         .usergs_sysret64 = xen_sysret64,
1171 #endif
1172
1173         .load_tr_desc = paravirt_nop,
1174         .set_ldt = xen_set_ldt,
1175         .load_gdt = xen_load_gdt,
1176         .load_idt = xen_load_idt,
1177         .load_tls = xen_load_tls,
1178 #ifdef CONFIG_X86_64
1179         .load_gs_index = xen_load_gs_index,
1180 #endif
1181
1182         .alloc_ldt = xen_alloc_ldt,
1183         .free_ldt = xen_free_ldt,
1184
1185         .store_gdt = native_store_gdt,
1186         .store_idt = native_store_idt,
1187         .store_tr = xen_store_tr,
1188
1189         .write_ldt_entry = xen_write_ldt_entry,
1190         .write_gdt_entry = xen_write_gdt_entry,
1191         .write_idt_entry = xen_write_idt_entry,
1192         .load_sp0 = xen_load_sp0,
1193
1194         .set_iopl_mask = xen_set_iopl_mask,
1195         .io_delay = xen_io_delay,
1196
1197         /* Xen takes care of %gs when switching to usermode for us */
1198         .swapgs = paravirt_nop,
1199
1200         .start_context_switch = paravirt_start_context_switch,
1201         .end_context_switch = xen_end_context_switch,
1202 };
1203
1204 static const struct pv_apic_ops xen_apic_ops __initconst = {
1205 #ifdef CONFIG_X86_LOCAL_APIC
1206         .startup_ipi_hook = paravirt_nop,
1207 #endif
1208 };
1209
1210 static void xen_reboot(int reason)
1211 {
1212         struct sched_shutdown r = { .reason = reason };
1213
1214         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1215                 BUG();
1216 }
1217
1218 static void xen_restart(char *msg)
1219 {
1220         xen_reboot(SHUTDOWN_reboot);
1221 }
1222
1223 static void xen_emergency_restart(void)
1224 {
1225         xen_reboot(SHUTDOWN_reboot);
1226 }
1227
1228 static void xen_machine_halt(void)
1229 {
1230         xen_reboot(SHUTDOWN_poweroff);
1231 }
1232
1233 static void xen_machine_power_off(void)
1234 {
1235         if (pm_power_off)
1236                 pm_power_off();
1237         xen_reboot(SHUTDOWN_poweroff);
1238 }
1239
1240 static void xen_crash_shutdown(struct pt_regs *regs)
1241 {
1242         xen_reboot(SHUTDOWN_crash);
1243 }
1244
1245 static int
1246 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1247 {
1248         xen_reboot(SHUTDOWN_crash);
1249         return NOTIFY_DONE;
1250 }
1251
1252 static struct notifier_block xen_panic_block = {
1253         .notifier_call= xen_panic_event,
1254 };
1255
1256 int xen_panic_handler_init(void)
1257 {
1258         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1259         return 0;
1260 }
1261
1262 static const struct machine_ops xen_machine_ops __initconst = {
1263         .restart = xen_restart,
1264         .halt = xen_machine_halt,
1265         .power_off = xen_machine_power_off,
1266         .shutdown = xen_machine_halt,
1267         .crash_shutdown = xen_crash_shutdown,
1268         .emergency_restart = xen_emergency_restart,
1269 };
1270
1271 /*
1272  * Set up the GDT and segment registers for -fstack-protector.  Until
1273  * we do this, we have to be careful not to call any stack-protected
1274  * function, which is most of the kernel.
1275  */
1276 static void __init xen_setup_stackprotector(void)
1277 {
1278         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1279         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1280
1281         setup_stack_canary_segment(0);
1282         switch_to_new_gdt(0);
1283
1284         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1285         pv_cpu_ops.load_gdt = xen_load_gdt;
1286 }
1287
1288 /* First C function to be called on Xen boot */
1289 asmlinkage void __init xen_start_kernel(void)
1290 {
1291         struct physdev_set_iopl set_iopl;
1292         int rc;
1293         pgd_t *pgd;
1294
1295         if (!xen_start_info)
1296                 return;
1297
1298         xen_domain_type = XEN_PV_DOMAIN;
1299
1300         xen_setup_machphys_mapping();
1301
1302         /* Install Xen paravirt ops */
1303         pv_info = xen_info;
1304         pv_init_ops = xen_init_ops;
1305         pv_cpu_ops = xen_cpu_ops;
1306         pv_apic_ops = xen_apic_ops;
1307
1308         x86_init.resources.memory_setup = xen_memory_setup;
1309         x86_init.oem.arch_setup = xen_arch_setup;
1310         x86_init.oem.banner = xen_banner;
1311
1312         xen_init_time_ops();
1313
1314         /*
1315          * Set up some pagetable state before starting to set any ptes.
1316          */
1317
1318         xen_init_mmu_ops();
1319
1320         /* Prevent unwanted bits from being set in PTEs. */
1321         __supported_pte_mask &= ~_PAGE_GLOBAL;
1322 #if 0
1323         if (!xen_initial_domain())
1324 #endif
1325                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1326
1327         __supported_pte_mask |= _PAGE_IOMAP;
1328
1329         /*
1330          * Prevent page tables from being allocated in highmem, even
1331          * if CONFIG_HIGHPTE is enabled.
1332          */
1333         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1334
1335         /* Work out if we support NX */
1336         x86_configure_nx();
1337
1338         xen_setup_features();
1339
1340         /* Get mfn list */
1341         if (!xen_feature(XENFEAT_auto_translated_physmap))
1342                 xen_build_dynamic_phys_to_machine();
1343
1344         /*
1345          * Set up kernel GDT and segment registers, mainly so that
1346          * -fstack-protector code can be executed.
1347          */
1348         xen_setup_stackprotector();
1349
1350         xen_init_irq_ops();
1351         xen_init_cpuid_mask();
1352
1353 #ifdef CONFIG_X86_LOCAL_APIC
1354         /*
1355          * set up the basic apic ops.
1356          */
1357         set_xen_basic_apic_ops();
1358 #endif
1359
1360         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1361                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1362                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1363         }
1364
1365         machine_ops = xen_machine_ops;
1366
1367         /*
1368          * The only reliable way to retain the initial address of the
1369          * percpu gdt_page is to remember it here, so we can go and
1370          * mark it RW later, when the initial percpu area is freed.
1371          */
1372         xen_initial_gdt = &per_cpu(gdt_page, 0);
1373
1374         xen_smp_init();
1375
1376 #ifdef CONFIG_ACPI_NUMA
1377         /*
1378          * The pages we from Xen are not related to machine pages, so
1379          * any NUMA information the kernel tries to get from ACPI will
1380          * be meaningless.  Prevent it from trying.
1381          */
1382         acpi_numa = -1;
1383 #endif
1384
1385         pgd = (pgd_t *)xen_start_info->pt_base;
1386
1387         /* Don't do the full vcpu_info placement stuff until we have a
1388            possible map and a non-dummy shared_info. */
1389         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1390
1391         local_irq_disable();
1392         early_boot_irqs_disabled = true;
1393
1394         xen_raw_console_write("mapping kernel into physical memory\n");
1395         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1396
1397         /* Allocate and initialize top and mid mfn levels for p2m structure */
1398         xen_build_mfn_list_list();
1399
1400         /* keep using Xen gdt for now; no urgent need to change it */
1401
1402 #ifdef CONFIG_X86_32
1403         pv_info.kernel_rpl = 1;
1404         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1405                 pv_info.kernel_rpl = 0;
1406 #else
1407         pv_info.kernel_rpl = 0;
1408 #endif
1409         /* set the limit of our address space */
1410         xen_reserve_top();
1411
1412         /* We used to do this in xen_arch_setup, but that is too late on AMD
1413          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1414          * which pokes 0xcf8 port.
1415          */
1416         set_iopl.iopl = 1;
1417         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1418         if (rc != 0)
1419                 xen_raw_printk("physdev_op failed %d\n", rc);
1420
1421 #ifdef CONFIG_X86_32
1422         /* set up basic CPUID stuff */
1423         cpu_detect(&new_cpu_data);
1424         new_cpu_data.hard_math = 1;
1425         new_cpu_data.wp_works_ok = 1;
1426         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1427 #endif
1428
1429         /* Poke various useful things into boot_params */
1430         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1431         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1432                 ? __pa(xen_start_info->mod_start) : 0;
1433         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1434         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1435
1436         if (!xen_initial_domain()) {
1437                 add_preferred_console("xenboot", 0, NULL);
1438                 add_preferred_console("tty", 0, NULL);
1439                 add_preferred_console("hvc", 0, NULL);
1440                 if (pci_xen)
1441                         x86_init.pci.arch_init = pci_xen_init;
1442         } else {
1443                 const struct dom0_vga_console_info *info =
1444                         (void *)((char *)xen_start_info +
1445                                  xen_start_info->console.dom0.info_off);
1446
1447                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1448                 xen_start_info->console.domU.mfn = 0;
1449                 xen_start_info->console.domU.evtchn = 0;
1450
1451                 xen_init_apic();
1452
1453                 /* Make sure ACS will be enabled */
1454                 pci_request_acs();
1455
1456                 xen_acpi_sleep_register();
1457         }
1458 #ifdef CONFIG_PCI
1459         /* PCI BIOS service won't work from a PV guest. */
1460         pci_probe &= ~PCI_PROBE_BIOS;
1461 #endif
1462         xen_raw_console_write("about to get started...\n");
1463
1464         xen_setup_runstate_info(0);
1465
1466         /* Start the world */
1467 #ifdef CONFIG_X86_32
1468         i386_start_kernel();
1469 #else
1470         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1471 #endif
1472 }
1473
1474 void __ref xen_hvm_init_shared_info(void)
1475 {
1476         int cpu;
1477         struct xen_add_to_physmap xatp;
1478         static struct shared_info *shared_info_page = 0;
1479
1480         if (!shared_info_page)
1481                 shared_info_page = (struct shared_info *)
1482                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1483         xatp.domid = DOMID_SELF;
1484         xatp.idx = 0;
1485         xatp.space = XENMAPSPACE_shared_info;
1486         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1487         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1488                 BUG();
1489
1490         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1491
1492         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1493          * page, we use it in the event channel upcall and in some pvclock
1494          * related functions. We don't need the vcpu_info placement
1495          * optimizations because we don't use any pv_mmu or pv_irq op on
1496          * HVM.
1497          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1498          * online but xen_hvm_init_shared_info is run at resume time too and
1499          * in that case multiple vcpus might be online. */
1500         for_each_online_cpu(cpu) {
1501                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1502         }
1503 }
1504
1505 #ifdef CONFIG_XEN_PVHVM
1506 static void __init init_hvm_pv_info(void)
1507 {
1508         int major, minor;
1509         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1510         u64 pfn;
1511
1512         base = xen_cpuid_base();
1513         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1514
1515         major = eax >> 16;
1516         minor = eax & 0xffff;
1517         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1518
1519         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1520
1521         pfn = __pa(hypercall_page);
1522         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1523
1524         xen_setup_features();
1525
1526         pv_info.name = "Xen HVM";
1527
1528         xen_domain_type = XEN_HVM_DOMAIN;
1529 }
1530
1531 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1532                                     unsigned long action, void *hcpu)
1533 {
1534         int cpu = (long)hcpu;
1535         switch (action) {
1536         case CPU_UP_PREPARE:
1537                 xen_vcpu_setup(cpu);
1538                 if (xen_have_vector_callback)
1539                         xen_init_lock_cpu(cpu);
1540                 break;
1541         default:
1542                 break;
1543         }
1544         return NOTIFY_OK;
1545 }
1546
1547 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1548         .notifier_call  = xen_hvm_cpu_notify,
1549 };
1550
1551 static void __init xen_hvm_guest_init(void)
1552 {
1553         init_hvm_pv_info();
1554
1555         xen_hvm_init_shared_info();
1556
1557         if (xen_feature(XENFEAT_hvm_callback_vector))
1558                 xen_have_vector_callback = 1;
1559         xen_hvm_smp_init();
1560         register_cpu_notifier(&xen_hvm_cpu_notifier);
1561         xen_unplug_emulated_devices();
1562         x86_init.irqs.intr_init = xen_init_IRQ;
1563         xen_hvm_init_time_ops();
1564         xen_hvm_init_mmu_ops();
1565 }
1566
1567 static bool __init xen_hvm_platform(void)
1568 {
1569         if (xen_pv_domain())
1570                 return false;
1571
1572         if (!xen_cpuid_base())
1573                 return false;
1574
1575         return true;
1576 }
1577
1578 bool xen_hvm_need_lapic(void)
1579 {
1580         if (xen_pv_domain())
1581                 return false;
1582         if (!xen_hvm_domain())
1583                 return false;
1584         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1585                 return false;
1586         return true;
1587 }
1588 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1589
1590 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1591         .name                   = "Xen HVM",
1592         .detect                 = xen_hvm_platform,
1593         .init_platform          = xen_hvm_guest_init,
1594 };
1595 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1596 #endif