Merge branch 'md-next' of https://git.kernel.org/pub/scm/linux/kernel/git/song/md...
[linux-2.6-block.git] / arch / x86 / platform / uv / uv_time.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI RTC clock/timer routines.
4  *
5  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
6  *  Copyright (c) Dimitri Sivanich
7  */
8 #include <linux/clockchips.h>
9 #include <linux/slab.h>
10
11 #include <asm/uv/uv_mmrs.h>
12 #include <asm/uv/uv_hub.h>
13 #include <asm/uv/bios.h>
14 #include <asm/uv/uv.h>
15 #include <asm/apic.h>
16 #include <asm/cpu.h>
17
18 #define RTC_NAME                "sgi_rtc"
19
20 static u64 uv_read_rtc(struct clocksource *cs);
21 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
22 static int uv_rtc_shutdown(struct clock_event_device *evt);
23
24 static struct clocksource clocksource_uv = {
25         .name           = RTC_NAME,
26         .rating         = 299,
27         .read           = uv_read_rtc,
28         .mask           = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
29         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
30 };
31
32 static struct clock_event_device clock_event_device_uv = {
33         .name                   = RTC_NAME,
34         .features               = CLOCK_EVT_FEAT_ONESHOT,
35         .shift                  = 20,
36         .rating                 = 400,
37         .irq                    = -1,
38         .set_next_event         = uv_rtc_next_event,
39         .set_state_shutdown     = uv_rtc_shutdown,
40         .event_handler          = NULL,
41 };
42
43 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
44
45 /* There is one of these allocated per node */
46 struct uv_rtc_timer_head {
47         spinlock_t      lock;
48         /* next cpu waiting for timer, local node relative: */
49         int             next_cpu;
50         /* number of cpus on this node: */
51         int             ncpus;
52         struct {
53                 int     lcpu;           /* systemwide logical cpu number */
54                 u64     expires;        /* next timer expiration for this cpu */
55         } cpu[1];
56 };
57
58 /*
59  * Access to uv_rtc_timer_head via blade id.
60  */
61 static struct uv_rtc_timer_head         **blade_info __read_mostly;
62
63 static int                              uv_rtc_evt_enable;
64
65 /*
66  * Hardware interface routines
67  */
68
69 /* Send IPIs to another node */
70 static void uv_rtc_send_IPI(int cpu)
71 {
72         unsigned long apicid, val;
73         int pnode;
74
75         apicid = cpu_physical_id(cpu);
76         pnode = uv_apicid_to_pnode(apicid);
77         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
78               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
79               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
80
81         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
82 }
83
84 /* Check for an RTC interrupt pending */
85 static int uv_intr_pending(int pnode)
86 {
87         if (is_uvx_hub())
88                 return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
89                         UVXH_EVENT_OCCURRED2_RTC_1_MASK;
90         return 0;
91 }
92
93 /* Setup interrupt and return non-zero if early expiration occurred. */
94 static int uv_setup_intr(int cpu, u64 expires)
95 {
96         u64 val;
97         unsigned long apicid = cpu_physical_id(cpu);
98         int pnode = uv_cpu_to_pnode(cpu);
99
100         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
101                 UVH_RTC1_INT_CONFIG_M_MASK);
102         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
103
104         uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
105                               UVXH_EVENT_OCCURRED2_RTC_1_MASK);
106
107         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
108                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
109
110         /* Set configuration */
111         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
112         /* Initialize comparator value */
113         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
114
115         if (uv_read_rtc(NULL) <= expires)
116                 return 0;
117
118         return !uv_intr_pending(pnode);
119 }
120
121 /*
122  * Per-cpu timer tracking routines
123  */
124
125 static __init void uv_rtc_deallocate_timers(void)
126 {
127         int bid;
128
129         for_each_possible_blade(bid) {
130                 kfree(blade_info[bid]);
131         }
132         kfree(blade_info);
133 }
134
135 /* Allocate per-node list of cpu timer expiration times. */
136 static __init int uv_rtc_allocate_timers(void)
137 {
138         int cpu;
139
140         blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
141         if (!blade_info)
142                 return -ENOMEM;
143
144         for_each_present_cpu(cpu) {
145                 int nid = cpu_to_node(cpu);
146                 int bid = uv_cpu_to_blade_id(cpu);
147                 int bcpu = uv_cpu_blade_processor_id(cpu);
148                 struct uv_rtc_timer_head *head = blade_info[bid];
149
150                 if (!head) {
151                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
152                                 (uv_blade_nr_possible_cpus(bid) *
153                                         2 * sizeof(u64)),
154                                 GFP_KERNEL, nid);
155                         if (!head) {
156                                 uv_rtc_deallocate_timers();
157                                 return -ENOMEM;
158                         }
159                         spin_lock_init(&head->lock);
160                         head->ncpus = uv_blade_nr_possible_cpus(bid);
161                         head->next_cpu = -1;
162                         blade_info[bid] = head;
163                 }
164
165                 head->cpu[bcpu].lcpu = cpu;
166                 head->cpu[bcpu].expires = ULLONG_MAX;
167         }
168
169         return 0;
170 }
171
172 /* Find and set the next expiring timer.  */
173 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
174 {
175         u64 lowest = ULLONG_MAX;
176         int c, bcpu = -1;
177
178         head->next_cpu = -1;
179         for (c = 0; c < head->ncpus; c++) {
180                 u64 exp = head->cpu[c].expires;
181                 if (exp < lowest) {
182                         bcpu = c;
183                         lowest = exp;
184                 }
185         }
186         if (bcpu >= 0) {
187                 head->next_cpu = bcpu;
188                 c = head->cpu[bcpu].lcpu;
189                 if (uv_setup_intr(c, lowest))
190                         /* If we didn't set it up in time, trigger */
191                         uv_rtc_send_IPI(c);
192         } else {
193                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
194                         UVH_RTC1_INT_CONFIG_M_MASK);
195         }
196 }
197
198 /*
199  * Set expiration time for current cpu.
200  *
201  * Returns 1 if we missed the expiration time.
202  */
203 static int uv_rtc_set_timer(int cpu, u64 expires)
204 {
205         int pnode = uv_cpu_to_pnode(cpu);
206         int bid = uv_cpu_to_blade_id(cpu);
207         struct uv_rtc_timer_head *head = blade_info[bid];
208         int bcpu = uv_cpu_blade_processor_id(cpu);
209         u64 *t = &head->cpu[bcpu].expires;
210         unsigned long flags;
211         int next_cpu;
212
213         spin_lock_irqsave(&head->lock, flags);
214
215         next_cpu = head->next_cpu;
216         *t = expires;
217
218         /* Will this one be next to go off? */
219         if (next_cpu < 0 || bcpu == next_cpu ||
220                         expires < head->cpu[next_cpu].expires) {
221                 head->next_cpu = bcpu;
222                 if (uv_setup_intr(cpu, expires)) {
223                         *t = ULLONG_MAX;
224                         uv_rtc_find_next_timer(head, pnode);
225                         spin_unlock_irqrestore(&head->lock, flags);
226                         return -ETIME;
227                 }
228         }
229
230         spin_unlock_irqrestore(&head->lock, flags);
231         return 0;
232 }
233
234 /*
235  * Unset expiration time for current cpu.
236  *
237  * Returns 1 if this timer was pending.
238  */
239 static int uv_rtc_unset_timer(int cpu, int force)
240 {
241         int pnode = uv_cpu_to_pnode(cpu);
242         int bid = uv_cpu_to_blade_id(cpu);
243         struct uv_rtc_timer_head *head = blade_info[bid];
244         int bcpu = uv_cpu_blade_processor_id(cpu);
245         u64 *t = &head->cpu[bcpu].expires;
246         unsigned long flags;
247         int rc = 0;
248
249         spin_lock_irqsave(&head->lock, flags);
250
251         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
252                 rc = 1;
253
254         if (rc) {
255                 *t = ULLONG_MAX;
256                 /* Was the hardware setup for this timer? */
257                 if (head->next_cpu == bcpu)
258                         uv_rtc_find_next_timer(head, pnode);
259         }
260
261         spin_unlock_irqrestore(&head->lock, flags);
262
263         return rc;
264 }
265
266
267 /*
268  * Kernel interface routines.
269  */
270
271 /*
272  * Read the RTC.
273  *
274  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
275  * cachelines of it's own page.  This allows faster simultaneous reads
276  * from a given socket.
277  */
278 static u64 uv_read_rtc(struct clocksource *cs)
279 {
280         unsigned long offset;
281
282         if (uv_get_min_hub_revision_id() == 1)
283                 offset = 0;
284         else
285                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
286
287         return (u64)uv_read_local_mmr(UVH_RTC | offset);
288 }
289
290 /*
291  * Program the next event, relative to now
292  */
293 static int uv_rtc_next_event(unsigned long delta,
294                              struct clock_event_device *ced)
295 {
296         int ced_cpu = cpumask_first(ced->cpumask);
297
298         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
299 }
300
301 /*
302  * Shutdown the RTC timer
303  */
304 static int uv_rtc_shutdown(struct clock_event_device *evt)
305 {
306         int ced_cpu = cpumask_first(evt->cpumask);
307
308         uv_rtc_unset_timer(ced_cpu, 1);
309         return 0;
310 }
311
312 static void uv_rtc_interrupt(void)
313 {
314         int cpu = smp_processor_id();
315         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
316
317         if (!ced || !ced->event_handler)
318                 return;
319
320         if (uv_rtc_unset_timer(cpu, 0) != 1)
321                 return;
322
323         ced->event_handler(ced);
324 }
325
326 static int __init uv_enable_evt_rtc(char *str)
327 {
328         uv_rtc_evt_enable = 1;
329
330         return 1;
331 }
332 __setup("uvrtcevt", uv_enable_evt_rtc);
333
334 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
335 {
336         struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
337
338         *ced = clock_event_device_uv;
339         ced->cpumask = cpumask_of(smp_processor_id());
340         clockevents_register_device(ced);
341 }
342
343 static __init int uv_rtc_setup_clock(void)
344 {
345         int rc;
346
347         if (!is_uv_system())
348                 return -ENODEV;
349
350         rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
351         if (rc)
352                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
353         else
354                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
355                         sn_rtc_cycles_per_second/(unsigned long)1E6);
356
357         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
358                 return rc;
359
360         /* Setup and register clockevents */
361         rc = uv_rtc_allocate_timers();
362         if (rc)
363                 goto error;
364
365         x86_platform_ipi_callback = uv_rtc_interrupt;
366
367         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
368                                 NSEC_PER_SEC, clock_event_device_uv.shift);
369
370         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
371                                                 sn_rtc_cycles_per_second;
372         clock_event_device_uv.min_delta_ticks = 1;
373
374         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
375                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
376         clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
377
378         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
379         if (rc) {
380                 x86_platform_ipi_callback = NULL;
381                 uv_rtc_deallocate_timers();
382                 goto error;
383         }
384
385         printk(KERN_INFO "UV RTC clockevents registered\n");
386
387         return 0;
388
389 error:
390         clocksource_unregister(&clocksource_uv);
391         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
392
393         return rc;
394 }
395 arch_initcall(uv_rtc_setup_clock);