treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[linux-block.git] / arch / x86 / platform / uv / uv_time.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI RTC clock/timer routines.
4  *
5  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
6  *  Copyright (c) Dimitri Sivanich
7  */
8 #include <linux/clockchips.h>
9 #include <linux/slab.h>
10
11 #include <asm/uv/uv_mmrs.h>
12 #include <asm/uv/uv_hub.h>
13 #include <asm/uv/bios.h>
14 #include <asm/uv/uv.h>
15 #include <asm/apic.h>
16 #include <asm/cpu.h>
17
18 #define RTC_NAME                "sgi_rtc"
19
20 static u64 uv_read_rtc(struct clocksource *cs);
21 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
22 static int uv_rtc_shutdown(struct clock_event_device *evt);
23
24 static struct clocksource clocksource_uv = {
25         .name           = RTC_NAME,
26         .rating         = 299,
27         .read           = uv_read_rtc,
28         .mask           = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
29         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
30 };
31
32 static struct clock_event_device clock_event_device_uv = {
33         .name                   = RTC_NAME,
34         .features               = CLOCK_EVT_FEAT_ONESHOT,
35         .shift                  = 20,
36         .rating                 = 400,
37         .irq                    = -1,
38         .set_next_event         = uv_rtc_next_event,
39         .set_state_shutdown     = uv_rtc_shutdown,
40         .event_handler          = NULL,
41 };
42
43 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
44
45 /* There is one of these allocated per node */
46 struct uv_rtc_timer_head {
47         spinlock_t      lock;
48         /* next cpu waiting for timer, local node relative: */
49         int             next_cpu;
50         /* number of cpus on this node: */
51         int             ncpus;
52         struct {
53                 int     lcpu;           /* systemwide logical cpu number */
54                 u64     expires;        /* next timer expiration for this cpu */
55         } cpu[1];
56 };
57
58 /*
59  * Access to uv_rtc_timer_head via blade id.
60  */
61 static struct uv_rtc_timer_head         **blade_info __read_mostly;
62
63 static int                              uv_rtc_evt_enable;
64
65 /*
66  * Hardware interface routines
67  */
68
69 /* Send IPIs to another node */
70 static void uv_rtc_send_IPI(int cpu)
71 {
72         unsigned long apicid, val;
73         int pnode;
74
75         apicid = cpu_physical_id(cpu);
76         pnode = uv_apicid_to_pnode(apicid);
77         apicid |= uv_apicid_hibits;
78         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
79               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
80               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
81
82         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
83 }
84
85 /* Check for an RTC interrupt pending */
86 static int uv_intr_pending(int pnode)
87 {
88         if (is_uv1_hub())
89                 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
90                         UV1H_EVENT_OCCURRED0_RTC1_MASK;
91         else if (is_uvx_hub())
92                 return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
93                         UVXH_EVENT_OCCURRED2_RTC_1_MASK;
94         return 0;
95 }
96
97 /* Setup interrupt and return non-zero if early expiration occurred. */
98 static int uv_setup_intr(int cpu, u64 expires)
99 {
100         u64 val;
101         unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
102         int pnode = uv_cpu_to_pnode(cpu);
103
104         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
105                 UVH_RTC1_INT_CONFIG_M_MASK);
106         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
107
108         if (is_uv1_hub())
109                 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
110                                 UV1H_EVENT_OCCURRED0_RTC1_MASK);
111         else
112                 uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
113                                 UVXH_EVENT_OCCURRED2_RTC_1_MASK);
114
115         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
116                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
117
118         /* Set configuration */
119         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
120         /* Initialize comparator value */
121         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
122
123         if (uv_read_rtc(NULL) <= expires)
124                 return 0;
125
126         return !uv_intr_pending(pnode);
127 }
128
129 /*
130  * Per-cpu timer tracking routines
131  */
132
133 static __init void uv_rtc_deallocate_timers(void)
134 {
135         int bid;
136
137         for_each_possible_blade(bid) {
138                 kfree(blade_info[bid]);
139         }
140         kfree(blade_info);
141 }
142
143 /* Allocate per-node list of cpu timer expiration times. */
144 static __init int uv_rtc_allocate_timers(void)
145 {
146         int cpu;
147
148         blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
149         if (!blade_info)
150                 return -ENOMEM;
151
152         for_each_present_cpu(cpu) {
153                 int nid = cpu_to_node(cpu);
154                 int bid = uv_cpu_to_blade_id(cpu);
155                 int bcpu = uv_cpu_blade_processor_id(cpu);
156                 struct uv_rtc_timer_head *head = blade_info[bid];
157
158                 if (!head) {
159                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
160                                 (uv_blade_nr_possible_cpus(bid) *
161                                         2 * sizeof(u64)),
162                                 GFP_KERNEL, nid);
163                         if (!head) {
164                                 uv_rtc_deallocate_timers();
165                                 return -ENOMEM;
166                         }
167                         spin_lock_init(&head->lock);
168                         head->ncpus = uv_blade_nr_possible_cpus(bid);
169                         head->next_cpu = -1;
170                         blade_info[bid] = head;
171                 }
172
173                 head->cpu[bcpu].lcpu = cpu;
174                 head->cpu[bcpu].expires = ULLONG_MAX;
175         }
176
177         return 0;
178 }
179
180 /* Find and set the next expiring timer.  */
181 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
182 {
183         u64 lowest = ULLONG_MAX;
184         int c, bcpu = -1;
185
186         head->next_cpu = -1;
187         for (c = 0; c < head->ncpus; c++) {
188                 u64 exp = head->cpu[c].expires;
189                 if (exp < lowest) {
190                         bcpu = c;
191                         lowest = exp;
192                 }
193         }
194         if (bcpu >= 0) {
195                 head->next_cpu = bcpu;
196                 c = head->cpu[bcpu].lcpu;
197                 if (uv_setup_intr(c, lowest))
198                         /* If we didn't set it up in time, trigger */
199                         uv_rtc_send_IPI(c);
200         } else {
201                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
202                         UVH_RTC1_INT_CONFIG_M_MASK);
203         }
204 }
205
206 /*
207  * Set expiration time for current cpu.
208  *
209  * Returns 1 if we missed the expiration time.
210  */
211 static int uv_rtc_set_timer(int cpu, u64 expires)
212 {
213         int pnode = uv_cpu_to_pnode(cpu);
214         int bid = uv_cpu_to_blade_id(cpu);
215         struct uv_rtc_timer_head *head = blade_info[bid];
216         int bcpu = uv_cpu_blade_processor_id(cpu);
217         u64 *t = &head->cpu[bcpu].expires;
218         unsigned long flags;
219         int next_cpu;
220
221         spin_lock_irqsave(&head->lock, flags);
222
223         next_cpu = head->next_cpu;
224         *t = expires;
225
226         /* Will this one be next to go off? */
227         if (next_cpu < 0 || bcpu == next_cpu ||
228                         expires < head->cpu[next_cpu].expires) {
229                 head->next_cpu = bcpu;
230                 if (uv_setup_intr(cpu, expires)) {
231                         *t = ULLONG_MAX;
232                         uv_rtc_find_next_timer(head, pnode);
233                         spin_unlock_irqrestore(&head->lock, flags);
234                         return -ETIME;
235                 }
236         }
237
238         spin_unlock_irqrestore(&head->lock, flags);
239         return 0;
240 }
241
242 /*
243  * Unset expiration time for current cpu.
244  *
245  * Returns 1 if this timer was pending.
246  */
247 static int uv_rtc_unset_timer(int cpu, int force)
248 {
249         int pnode = uv_cpu_to_pnode(cpu);
250         int bid = uv_cpu_to_blade_id(cpu);
251         struct uv_rtc_timer_head *head = blade_info[bid];
252         int bcpu = uv_cpu_blade_processor_id(cpu);
253         u64 *t = &head->cpu[bcpu].expires;
254         unsigned long flags;
255         int rc = 0;
256
257         spin_lock_irqsave(&head->lock, flags);
258
259         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
260                 rc = 1;
261
262         if (rc) {
263                 *t = ULLONG_MAX;
264                 /* Was the hardware setup for this timer? */
265                 if (head->next_cpu == bcpu)
266                         uv_rtc_find_next_timer(head, pnode);
267         }
268
269         spin_unlock_irqrestore(&head->lock, flags);
270
271         return rc;
272 }
273
274
275 /*
276  * Kernel interface routines.
277  */
278
279 /*
280  * Read the RTC.
281  *
282  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
283  * cachelines of it's own page.  This allows faster simultaneous reads
284  * from a given socket.
285  */
286 static u64 uv_read_rtc(struct clocksource *cs)
287 {
288         unsigned long offset;
289
290         if (uv_get_min_hub_revision_id() == 1)
291                 offset = 0;
292         else
293                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
294
295         return (u64)uv_read_local_mmr(UVH_RTC | offset);
296 }
297
298 /*
299  * Program the next event, relative to now
300  */
301 static int uv_rtc_next_event(unsigned long delta,
302                              struct clock_event_device *ced)
303 {
304         int ced_cpu = cpumask_first(ced->cpumask);
305
306         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
307 }
308
309 /*
310  * Shutdown the RTC timer
311  */
312 static int uv_rtc_shutdown(struct clock_event_device *evt)
313 {
314         int ced_cpu = cpumask_first(evt->cpumask);
315
316         uv_rtc_unset_timer(ced_cpu, 1);
317         return 0;
318 }
319
320 static void uv_rtc_interrupt(void)
321 {
322         int cpu = smp_processor_id();
323         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
324
325         if (!ced || !ced->event_handler)
326                 return;
327
328         if (uv_rtc_unset_timer(cpu, 0) != 1)
329                 return;
330
331         ced->event_handler(ced);
332 }
333
334 static int __init uv_enable_evt_rtc(char *str)
335 {
336         uv_rtc_evt_enable = 1;
337
338         return 1;
339 }
340 __setup("uvrtcevt", uv_enable_evt_rtc);
341
342 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
343 {
344         struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
345
346         *ced = clock_event_device_uv;
347         ced->cpumask = cpumask_of(smp_processor_id());
348         clockevents_register_device(ced);
349 }
350
351 static __init int uv_rtc_setup_clock(void)
352 {
353         int rc;
354
355         if (!is_uv_system())
356                 return -ENODEV;
357
358         rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
359         if (rc)
360                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
361         else
362                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
363                         sn_rtc_cycles_per_second/(unsigned long)1E6);
364
365         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
366                 return rc;
367
368         /* Setup and register clockevents */
369         rc = uv_rtc_allocate_timers();
370         if (rc)
371                 goto error;
372
373         x86_platform_ipi_callback = uv_rtc_interrupt;
374
375         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
376                                 NSEC_PER_SEC, clock_event_device_uv.shift);
377
378         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
379                                                 sn_rtc_cycles_per_second;
380         clock_event_device_uv.min_delta_ticks = 1;
381
382         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
383                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
384         clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
385
386         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
387         if (rc) {
388                 x86_platform_ipi_callback = NULL;
389                 uv_rtc_deallocate_timers();
390                 goto error;
391         }
392
393         printk(KERN_INFO "UV RTC clockevents registered\n");
394
395         return 0;
396
397 error:
398         clocksource_unregister(&clocksource_uv);
399         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
400
401         return rc;
402 }
403 arch_initcall(uv_rtc_setup_clock);