Merge tag 'sound-5.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-block.git] / arch / x86 / platform / uv / uv_nmi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI NMI support routines
4  *
5  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6  * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7  * Copyright (c) Mike Travis
8  */
9
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/kdb.h>
13 #include <linux/kexec.h>
14 #include <linux/kgdb.h>
15 #include <linux/moduleparam.h>
16 #include <linux/nmi.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/slab.h>
20 #include <linux/clocksource.h>
21
22 #include <asm/apic.h>
23 #include <asm/current.h>
24 #include <asm/kdebug.h>
25 #include <asm/local64.h>
26 #include <asm/nmi.h>
27 #include <asm/reboot.h>
28 #include <asm/traps.h>
29 #include <asm/uv/uv.h>
30 #include <asm/uv/uv_hub.h>
31 #include <asm/uv/uv_mmrs.h>
32
33 /*
34  * UV handler for NMI
35  *
36  * Handle system-wide NMI events generated by the global 'power nmi' command.
37  *
38  * Basic operation is to field the NMI interrupt on each CPU and wait
39  * until all CPU's have arrived into the nmi handler.  If some CPU's do not
40  * make it into the handler, try and force them in with the IPI(NMI) signal.
41  *
42  * We also have to lessen UV Hub MMR accesses as much as possible as this
43  * disrupts the UV Hub's primary mission of directing NumaLink traffic and
44  * can cause system problems to occur.
45  *
46  * To do this we register our primary NMI notifier on the NMI_UNKNOWN
47  * chain.  This reduces the number of false NMI calls when the perf
48  * tools are running which generate an enormous number of NMIs per
49  * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
50  * very short as it only checks that if it has been "pinged" with the
51  * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
52  *
53  */
54
55 static struct uv_hub_nmi_s **uv_hub_nmi_list;
56
57 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
58
59 /* Newer SMM NMI handler, not present in all systems */
60 static unsigned long uvh_nmi_mmrx;              /* UVH_EVENT_OCCURRED0/1 */
61 static unsigned long uvh_nmi_mmrx_clear;        /* UVH_EVENT_OCCURRED0/1_ALIAS */
62 static int uvh_nmi_mmrx_shift;                  /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
63 static char *uvh_nmi_mmrx_type;                 /* "EXTIO_INT0" */
64
65 /* Non-zero indicates newer SMM NMI handler present */
66 static unsigned long uvh_nmi_mmrx_supported;    /* UVH_EXTIO_INT0_BROADCAST */
67
68 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
69 static unsigned long uvh_nmi_mmrx_req;          /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
70 static int uvh_nmi_mmrx_req_shift;              /* 62 */
71
72 /* UV hubless values */
73 #define NMI_CONTROL_PORT        0x70
74 #define NMI_DUMMY_PORT          0x71
75 #define PAD_OWN_GPP_D_0         0x2c
76 #define GPI_NMI_STS_GPP_D_0     0x164
77 #define GPI_NMI_ENA_GPP_D_0     0x174
78 #define STS_GPP_D_0_MASK        0x1
79 #define PAD_CFG_DW0_GPP_D_0     0x4c0
80 #define GPIROUTNMI              (1ul << 17)
81 #define PCH_PCR_GPIO_1_BASE     0xfdae0000ul
82 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
83
84 static u64 *pch_base;
85 static unsigned long nmi_mmr;
86 static unsigned long nmi_mmr_clear;
87 static unsigned long nmi_mmr_pending;
88
89 static atomic_t uv_in_nmi;
90 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
91 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
92 static atomic_t uv_nmi_slave_continue;
93 static cpumask_var_t uv_nmi_cpu_mask;
94
95 static atomic_t uv_nmi_kexec_failed;
96
97 /* Values for uv_nmi_slave_continue */
98 #define SLAVE_CLEAR     0
99 #define SLAVE_CONTINUE  1
100 #define SLAVE_EXIT      2
101
102 /*
103  * Default is all stack dumps go to the console and buffer.
104  * Lower level to send to log buffer only.
105  */
106 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
107 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
108
109 /*
110  * The following values show statistics on how perf events are affecting
111  * this system.
112  */
113 static int param_get_local64(char *buffer, const struct kernel_param *kp)
114 {
115         return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
116 }
117
118 static int param_set_local64(const char *val, const struct kernel_param *kp)
119 {
120         /* Clear on any write */
121         local64_set((local64_t *)kp->arg, 0);
122         return 0;
123 }
124
125 static const struct kernel_param_ops param_ops_local64 = {
126         .get = param_get_local64,
127         .set = param_set_local64,
128 };
129 #define param_check_local64(name, p) __param_check(name, p, local64_t)
130
131 static local64_t uv_nmi_count;
132 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
133
134 static local64_t uv_nmi_misses;
135 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
136
137 static local64_t uv_nmi_ping_count;
138 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
139
140 static local64_t uv_nmi_ping_misses;
141 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
142
143 /*
144  * Following values allow tuning for large systems under heavy loading
145  */
146 static int uv_nmi_initial_delay = 100;
147 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
148
149 static int uv_nmi_slave_delay = 100;
150 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
151
152 static int uv_nmi_loop_delay = 100;
153 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
154
155 static int uv_nmi_trigger_delay = 10000;
156 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
157
158 static int uv_nmi_wait_count = 100;
159 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
160
161 static int uv_nmi_retry_count = 500;
162 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
163
164 static bool uv_pch_intr_enable = true;
165 static bool uv_pch_intr_now_enabled;
166 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
167
168 static bool uv_pch_init_enable = true;
169 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
170
171 static int uv_nmi_debug;
172 module_param_named(debug, uv_nmi_debug, int, 0644);
173
174 #define nmi_debug(fmt, ...)                             \
175         do {                                            \
176                 if (uv_nmi_debug)                       \
177                         pr_info(fmt, ##__VA_ARGS__);    \
178         } while (0)
179
180 /* Valid NMI Actions */
181 #define ACTION_LEN      16
182 static struct nmi_action {
183         char    *action;
184         char    *desc;
185 } valid_acts[] = {
186         {       "kdump",        "do kernel crash dump"                  },
187         {       "dump",         "dump process stack for each cpu"       },
188         {       "ips",          "dump Inst Ptr info for each cpu"       },
189         {       "kdb",          "enter KDB (needs kgdboc= assignment)"  },
190         {       "kgdb",         "enter KGDB (needs gdb target remote)"  },
191         {       "health",       "check if CPUs respond to NMI"          },
192 };
193 typedef char action_t[ACTION_LEN];
194 static action_t uv_nmi_action = { "dump" };
195
196 static int param_get_action(char *buffer, const struct kernel_param *kp)
197 {
198         return sprintf(buffer, "%s\n", uv_nmi_action);
199 }
200
201 static int param_set_action(const char *val, const struct kernel_param *kp)
202 {
203         int i;
204         int n = ARRAY_SIZE(valid_acts);
205         char arg[ACTION_LEN], *p;
206
207         /* (remove possible '\n') */
208         strncpy(arg, val, ACTION_LEN - 1);
209         arg[ACTION_LEN - 1] = '\0';
210         p = strchr(arg, '\n');
211         if (p)
212                 *p = '\0';
213
214         for (i = 0; i < n; i++)
215                 if (!strcmp(arg, valid_acts[i].action))
216                         break;
217
218         if (i < n) {
219                 strcpy(uv_nmi_action, arg);
220                 pr_info("UV: New NMI action:%s\n", uv_nmi_action);
221                 return 0;
222         }
223
224         pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
225         for (i = 0; i < n; i++)
226                 pr_err("UV: %-8s - %s\n",
227                         valid_acts[i].action, valid_acts[i].desc);
228         return -EINVAL;
229 }
230
231 static const struct kernel_param_ops param_ops_action = {
232         .get = param_get_action,
233         .set = param_set_action,
234 };
235 #define param_check_action(name, p) __param_check(name, p, action_t)
236
237 module_param_named(action, uv_nmi_action, action, 0644);
238
239 static inline bool uv_nmi_action_is(const char *action)
240 {
241         return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
242 }
243
244 /* Setup which NMI support is present in system */
245 static void uv_nmi_setup_mmrs(void)
246 {
247         /* First determine arch specific MMRs to handshake with BIOS */
248         if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {
249                 uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
250                 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
251                 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
252                 uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
253
254                 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
255                 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
256                 uvh_nmi_mmrx_req_shift = 62;
257
258         } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) {
259                 uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
260                 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
261                 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
262                 uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
263
264                 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
265                 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
266                 uvh_nmi_mmrx_req_shift = 62;
267
268         } else {
269                 pr_err("UV:%s:cannot find EVENT_OCCURRED*_EXTIO_INT0\n",
270                         __func__);
271                 return;
272         }
273
274         /* Then find out if new NMI is supported */
275         if (likely(uv_read_local_mmr(uvh_nmi_mmrx_supported))) {
276                 uv_write_local_mmr(uvh_nmi_mmrx_req,
277                                         1UL << uvh_nmi_mmrx_req_shift);
278                 nmi_mmr = uvh_nmi_mmrx;
279                 nmi_mmr_clear = uvh_nmi_mmrx_clear;
280                 nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
281                 pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
282         } else {
283                 nmi_mmr = UVH_NMI_MMR;
284                 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
285                 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
286                 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
287         }
288 }
289
290 /* Read NMI MMR and check if NMI flag was set by BMC. */
291 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
292 {
293         hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
294         atomic_inc(&hub_nmi->read_mmr_count);
295         return !!(hub_nmi->nmi_value & nmi_mmr_pending);
296 }
297
298 static inline void uv_local_mmr_clear_nmi(void)
299 {
300         uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
301 }
302
303 /*
304  * UV hubless NMI handler functions
305  */
306 static inline void uv_reassert_nmi(void)
307 {
308         /* (from arch/x86/include/asm/mach_traps.h) */
309         outb(0x8f, NMI_CONTROL_PORT);
310         inb(NMI_DUMMY_PORT);            /* dummy read */
311         outb(0x0f, NMI_CONTROL_PORT);
312         inb(NMI_DUMMY_PORT);            /* dummy read */
313 }
314
315 static void uv_init_hubless_pch_io(int offset, int mask, int data)
316 {
317         int *addr = PCH_PCR_GPIO_ADDRESS(offset);
318         int readd = readl(addr);
319
320         if (mask) {                     /* OR in new data */
321                 int writed = (readd & ~mask) | data;
322
323                 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
324                         addr, readd, ~mask, data, writed);
325                 writel(writed, addr);
326         } else if (readd & data) {      /* clear status bit */
327                 nmi_debug("UV:PCH: %p = %x\n", addr, data);
328                 writel(data, addr);
329         }
330
331         (void)readl(addr);              /* flush write data */
332 }
333
334 static void uv_nmi_setup_hubless_intr(void)
335 {
336         uv_pch_intr_now_enabled = uv_pch_intr_enable;
337
338         uv_init_hubless_pch_io(
339                 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
340                 uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
341
342         nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
343                 uv_pch_intr_now_enabled ? "enabled" : "disabled");
344 }
345
346 static struct init_nmi {
347         unsigned int    offset;
348         unsigned int    mask;
349         unsigned int    data;
350 } init_nmi[] = {
351         {       /* HOSTSW_OWN_GPP_D_0 */
352         .offset = 0x84,
353         .mask = 0x1,
354         .data = 0x0,    /* ACPI Mode */
355         },
356
357 /* Clear status: */
358         {       /* GPI_INT_STS_GPP_D_0 */
359         .offset = 0x104,
360         .mask = 0x0,
361         .data = 0x1,    /* Clear Status */
362         },
363         {       /* GPI_GPE_STS_GPP_D_0 */
364         .offset = 0x124,
365         .mask = 0x0,
366         .data = 0x1,    /* Clear Status */
367         },
368         {       /* GPI_SMI_STS_GPP_D_0 */
369         .offset = 0x144,
370         .mask = 0x0,
371         .data = 0x1,    /* Clear Status */
372         },
373         {       /* GPI_NMI_STS_GPP_D_0 */
374         .offset = 0x164,
375         .mask = 0x0,
376         .data = 0x1,    /* Clear Status */
377         },
378
379 /* Disable interrupts: */
380         {       /* GPI_INT_EN_GPP_D_0 */
381         .offset = 0x114,
382         .mask = 0x1,
383         .data = 0x0,    /* Disable interrupt generation */
384         },
385         {       /* GPI_GPE_EN_GPP_D_0 */
386         .offset = 0x134,
387         .mask = 0x1,
388         .data = 0x0,    /* Disable interrupt generation */
389         },
390         {       /* GPI_SMI_EN_GPP_D_0 */
391         .offset = 0x154,
392         .mask = 0x1,
393         .data = 0x0,    /* Disable interrupt generation */
394         },
395         {       /* GPI_NMI_EN_GPP_D_0 */
396         .offset = 0x174,
397         .mask = 0x1,
398         .data = 0x0,    /* Disable interrupt generation */
399         },
400
401 /* Setup GPP_D_0 Pad Config: */
402         {       /* PAD_CFG_DW0_GPP_D_0 */
403         .offset = 0x4c0,
404         .mask = 0xffffffff,
405         .data = 0x82020100,
406 /*
407  *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
408  *
409  *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
410  *                                                from RX buffer (default)
411  *
412  *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
413  *
414  *  26:25 RX Level/Edge Configuration (RXEVCFG):
415  *      = 0h # Level
416  *      = 1h # Edge
417  *
418  *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
419  *
420  *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
421  * = 0 # Routing does not cause peripheral IRQ...
422  *     # (we want an NMI not an IRQ)
423  *
424  *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
425  *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
426  *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
427  *
428  *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
429  *   9    GPIO RX Disable (GPIORXDIS):
430  * = 0 # Enable the input buffer (active low enable)
431  *
432  *   8    GPIO TX Disable (GPIOTXDIS):
433  * = 1 # Disable the output buffer; i.e. Hi-Z
434  *
435  *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
436  *   0 GPIO TX State (GPIOTXSTATE):
437  * = 0 # (Leave at default)
438  */
439         },
440
441 /* Pad Config DW1 */
442         {       /* PAD_CFG_DW1_GPP_D_0 */
443         .offset = 0x4c4,
444         .mask = 0x3c00,
445         .data = 0,      /* Termination = none (default) */
446         },
447 };
448
449 static void uv_init_hubless_pch_d0(void)
450 {
451         int i, read;
452
453         read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
454         if (read != 0) {
455                 pr_info("UV: Hubless NMI already configured\n");
456                 return;
457         }
458
459         nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
460         for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
461                 uv_init_hubless_pch_io(init_nmi[i].offset,
462                                         init_nmi[i].mask,
463                                         init_nmi[i].data);
464         }
465 }
466
467 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
468 {
469         int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
470         int status = *pstat;
471
472         hub_nmi->nmi_value = status;
473         atomic_inc(&hub_nmi->read_mmr_count);
474
475         if (!(status & STS_GPP_D_0_MASK))       /* Not a UV external NMI */
476                 return 0;
477
478         *pstat = STS_GPP_D_0_MASK;      /* Is a UV NMI: clear GPP_D_0 status */
479         (void)*pstat;                   /* Flush write */
480
481         return 1;
482 }
483
484 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
485 {
486         if (hub_nmi->hub_present)
487                 return uv_nmi_test_mmr(hub_nmi);
488
489         if (hub_nmi->pch_owner)         /* Only PCH owner can check status */
490                 return uv_nmi_test_hubless(hub_nmi);
491
492         return -1;
493 }
494
495 /*
496  * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
497  * return true.  If first CPU in on the system, set global "in_nmi" flag.
498  */
499 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
500 {
501         int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
502
503         if (first) {
504                 atomic_set(&hub_nmi->cpu_owner, cpu);
505                 if (atomic_add_unless(&uv_in_nmi, 1, 1))
506                         atomic_set(&uv_nmi_cpu, cpu);
507
508                 atomic_inc(&hub_nmi->nmi_count);
509         }
510         return first;
511 }
512
513 /* Check if this is a system NMI event */
514 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
515 {
516         int cpu = smp_processor_id();
517         int nmi = 0;
518         int nmi_detected = 0;
519
520         local64_inc(&uv_nmi_count);
521         this_cpu_inc(uv_cpu_nmi.queries);
522
523         do {
524                 nmi = atomic_read(&hub_nmi->in_nmi);
525                 if (nmi)
526                         break;
527
528                 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
529                         nmi_detected = uv_test_nmi(hub_nmi);
530
531                         /* Check flag for UV external NMI */
532                         if (nmi_detected > 0) {
533                                 uv_set_in_nmi(cpu, hub_nmi);
534                                 nmi = 1;
535                                 break;
536                         }
537
538                         /* A non-PCH node in a hubless system waits for NMI */
539                         else if (nmi_detected < 0)
540                                 goto slave_wait;
541
542                         /* MMR/PCH NMI flag is clear */
543                         raw_spin_unlock(&hub_nmi->nmi_lock);
544
545                 } else {
546
547                         /* Wait a moment for the HUB NMI locker to set flag */
548 slave_wait:             cpu_relax();
549                         udelay(uv_nmi_slave_delay);
550
551                         /* Re-check hub in_nmi flag */
552                         nmi = atomic_read(&hub_nmi->in_nmi);
553                         if (nmi)
554                                 break;
555                 }
556
557                 /*
558                  * Check if this BMC missed setting the MMR NMI flag (or)
559                  * UV hubless system where only PCH owner can check flag
560                  */
561                 if (!nmi) {
562                         nmi = atomic_read(&uv_in_nmi);
563                         if (nmi)
564                                 uv_set_in_nmi(cpu, hub_nmi);
565                 }
566
567                 /* If we're holding the hub lock, release it now */
568                 if (nmi_detected < 0)
569                         raw_spin_unlock(&hub_nmi->nmi_lock);
570
571         } while (0);
572
573         if (!nmi)
574                 local64_inc(&uv_nmi_misses);
575
576         return nmi;
577 }
578
579 /* Need to reset the NMI MMR register, but only once per hub. */
580 static inline void uv_clear_nmi(int cpu)
581 {
582         struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
583
584         if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
585                 atomic_set(&hub_nmi->cpu_owner, -1);
586                 atomic_set(&hub_nmi->in_nmi, 0);
587                 if (hub_nmi->hub_present)
588                         uv_local_mmr_clear_nmi();
589                 else
590                         uv_reassert_nmi();
591                 raw_spin_unlock(&hub_nmi->nmi_lock);
592         }
593 }
594
595 /* Ping non-responding CPU's attempting to force them into the NMI handler */
596 static void uv_nmi_nr_cpus_ping(void)
597 {
598         int cpu;
599
600         for_each_cpu(cpu, uv_nmi_cpu_mask)
601                 uv_cpu_nmi_per(cpu).pinging = 1;
602
603         apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
604 }
605
606 /* Clean up flags for CPU's that ignored both NMI and ping */
607 static void uv_nmi_cleanup_mask(void)
608 {
609         int cpu;
610
611         for_each_cpu(cpu, uv_nmi_cpu_mask) {
612                 uv_cpu_nmi_per(cpu).pinging =  0;
613                 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
614                 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
615         }
616 }
617
618 /* Loop waiting as CPU's enter NMI handler */
619 static int uv_nmi_wait_cpus(int first)
620 {
621         int i, j, k, n = num_online_cpus();
622         int last_k = 0, waiting = 0;
623         int cpu = smp_processor_id();
624
625         if (first) {
626                 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
627                 k = 0;
628         } else {
629                 k = n - cpumask_weight(uv_nmi_cpu_mask);
630         }
631
632         /* PCH NMI causes only one CPU to respond */
633         if (first && uv_pch_intr_now_enabled) {
634                 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
635                 return n - k - 1;
636         }
637
638         udelay(uv_nmi_initial_delay);
639         for (i = 0; i < uv_nmi_retry_count; i++) {
640                 int loop_delay = uv_nmi_loop_delay;
641
642                 for_each_cpu(j, uv_nmi_cpu_mask) {
643                         if (uv_cpu_nmi_per(j).state) {
644                                 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
645                                 if (++k >= n)
646                                         break;
647                         }
648                 }
649                 if (k >= n) {           /* all in? */
650                         k = n;
651                         break;
652                 }
653                 if (last_k != k) {      /* abort if no new CPU's coming in */
654                         last_k = k;
655                         waiting = 0;
656                 } else if (++waiting > uv_nmi_wait_count)
657                         break;
658
659                 /* Extend delay if waiting only for CPU 0: */
660                 if (waiting && (n - k) == 1 &&
661                     cpumask_test_cpu(0, uv_nmi_cpu_mask))
662                         loop_delay *= 100;
663
664                 udelay(loop_delay);
665         }
666         atomic_set(&uv_nmi_cpus_in_nmi, k);
667         return n - k;
668 }
669
670 /* Wait until all slave CPU's have entered UV NMI handler */
671 static void uv_nmi_wait(int master)
672 {
673         /* Indicate this CPU is in: */
674         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
675
676         /* If not the first CPU in (the master), then we are a slave CPU */
677         if (!master)
678                 return;
679
680         do {
681                 /* Wait for all other CPU's to gather here */
682                 if (!uv_nmi_wait_cpus(1))
683                         break;
684
685                 /* If not all made it in, send IPI NMI to them */
686                 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
687                          cpumask_weight(uv_nmi_cpu_mask),
688                          cpumask_pr_args(uv_nmi_cpu_mask));
689
690                 uv_nmi_nr_cpus_ping();
691
692                 /* If all CPU's are in, then done */
693                 if (!uv_nmi_wait_cpus(0))
694                         break;
695
696                 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
697                          cpumask_weight(uv_nmi_cpu_mask),
698                          cpumask_pr_args(uv_nmi_cpu_mask));
699         } while (0);
700
701         pr_alert("UV: %d of %d CPUs in NMI\n",
702                 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
703 }
704
705 /* Dump Instruction Pointer header */
706 static void uv_nmi_dump_cpu_ip_hdr(void)
707 {
708         pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
709                 "CPU", "PID", "COMMAND", "IP");
710 }
711
712 /* Dump Instruction Pointer info */
713 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
714 {
715         pr_info("UV: %4d %6d %-32.32s %pS",
716                 cpu, current->pid, current->comm, (void *)regs->ip);
717 }
718
719 /*
720  * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
721  * failed, then we provide "dump" as an alternate action.  Action "dump" now
722  * also includes the show "ips" (instruction pointers) action whereas the
723  * action "ips" only displays instruction pointers for the non-idle CPU's.
724  * This is an abbreviated form of the "ps" command.
725  */
726 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
727 {
728         const char *dots = " ................................. ";
729
730         if (cpu == 0)
731                 uv_nmi_dump_cpu_ip_hdr();
732
733         if (current->pid != 0 || !uv_nmi_action_is("ips"))
734                 uv_nmi_dump_cpu_ip(cpu, regs);
735
736         if (uv_nmi_action_is("dump")) {
737                 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
738                 show_regs(regs);
739         }
740
741         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
742 }
743
744 /* Trigger a slave CPU to dump it's state */
745 static void uv_nmi_trigger_dump(int cpu)
746 {
747         int retry = uv_nmi_trigger_delay;
748
749         if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
750                 return;
751
752         uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
753         do {
754                 cpu_relax();
755                 udelay(10);
756                 if (uv_cpu_nmi_per(cpu).state
757                                 != UV_NMI_STATE_DUMP)
758                         return;
759         } while (--retry > 0);
760
761         pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
762         uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
763 }
764
765 /* Wait until all CPU's ready to exit */
766 static void uv_nmi_sync_exit(int master)
767 {
768         atomic_dec(&uv_nmi_cpus_in_nmi);
769         if (master) {
770                 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
771                         cpu_relax();
772                 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
773         } else {
774                 while (atomic_read(&uv_nmi_slave_continue))
775                         cpu_relax();
776         }
777 }
778
779 /* Current "health" check is to check which CPU's are responsive */
780 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
781 {
782         if (master) {
783                 int in = atomic_read(&uv_nmi_cpus_in_nmi);
784                 int out = num_online_cpus() - in;
785
786                 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
787                 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
788         } else {
789                 while (!atomic_read(&uv_nmi_slave_continue))
790                         cpu_relax();
791         }
792         uv_nmi_sync_exit(master);
793 }
794
795 /* Walk through CPU list and dump state of each */
796 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
797 {
798         if (master) {
799                 int tcpu;
800                 int ignored = 0;
801                 int saved_console_loglevel = console_loglevel;
802
803                 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
804                         uv_nmi_action_is("ips") ? "IPs" : "processes",
805                         atomic_read(&uv_nmi_cpus_in_nmi), cpu);
806
807                 console_loglevel = uv_nmi_loglevel;
808                 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
809                 for_each_online_cpu(tcpu) {
810                         if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
811                                 ignored++;
812                         else if (tcpu == cpu)
813                                 uv_nmi_dump_state_cpu(tcpu, regs);
814                         else
815                                 uv_nmi_trigger_dump(tcpu);
816                 }
817                 if (ignored)
818                         pr_alert("UV: %d CPUs ignored NMI\n", ignored);
819
820                 console_loglevel = saved_console_loglevel;
821                 pr_alert("UV: process trace complete\n");
822         } else {
823                 while (!atomic_read(&uv_nmi_slave_continue))
824                         cpu_relax();
825                 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
826                         cpu_relax();
827                 uv_nmi_dump_state_cpu(cpu, regs);
828         }
829         uv_nmi_sync_exit(master);
830 }
831
832 static void uv_nmi_touch_watchdogs(void)
833 {
834         touch_softlockup_watchdog_sync();
835         clocksource_touch_watchdog();
836         rcu_cpu_stall_reset();
837         touch_nmi_watchdog();
838 }
839
840 static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
841 {
842         /* Check if kdump kernel loaded for both main and secondary CPUs */
843         if (!kexec_crash_image) {
844                 if (main)
845                         pr_err("UV: NMI error: kdump kernel not loaded\n");
846                 return;
847         }
848
849         /* Call crash to dump system state */
850         if (main) {
851                 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
852                 crash_kexec(regs);
853
854                 pr_emerg("UV: crash_kexec unexpectedly returned\n");
855                 atomic_set(&uv_nmi_kexec_failed, 1);
856
857         } else { /* secondary */
858
859                 /* If kdump kernel fails, secondaries will exit this loop */
860                 while (atomic_read(&uv_nmi_kexec_failed) == 0) {
861
862                         /* Once shootdown cpus starts, they do not return */
863                         run_crash_ipi_callback(regs);
864
865                         mdelay(10);
866                 }
867         }
868 }
869
870 #ifdef CONFIG_KGDB
871 #ifdef CONFIG_KGDB_KDB
872 static inline int uv_nmi_kdb_reason(void)
873 {
874         return KDB_REASON_SYSTEM_NMI;
875 }
876 #else /* !CONFIG_KGDB_KDB */
877 static inline int uv_nmi_kdb_reason(void)
878 {
879         /* Ensure user is expecting to attach gdb remote */
880         if (uv_nmi_action_is("kgdb"))
881                 return 0;
882
883         pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
884         return -1;
885 }
886 #endif /* CONFIG_KGDB_KDB */
887
888 /*
889  * Call KGDB/KDB from NMI handler
890  *
891  * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
892  * 'kdb' has no affect on which is used.  See the KGDB documentation for further
893  * information.
894  */
895 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
896 {
897         if (master) {
898                 int reason = uv_nmi_kdb_reason();
899                 int ret;
900
901                 if (reason < 0)
902                         return;
903
904                 /* Call KGDB NMI handler as MASTER */
905                 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
906                                 &uv_nmi_slave_continue);
907                 if (ret) {
908                         pr_alert("KGDB returned error, is kgdboc set?\n");
909                         atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
910                 }
911         } else {
912                 /* Wait for KGDB signal that it's ready for slaves to enter */
913                 int sig;
914
915                 do {
916                         cpu_relax();
917                         sig = atomic_read(&uv_nmi_slave_continue);
918                 } while (!sig);
919
920                 /* Call KGDB as slave */
921                 if (sig == SLAVE_CONTINUE)
922                         kgdb_nmicallback(cpu, regs);
923         }
924         uv_nmi_sync_exit(master);
925 }
926
927 #else /* !CONFIG_KGDB */
928 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
929 {
930         pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
931 }
932 #endif /* !CONFIG_KGDB */
933
934 /*
935  * UV NMI handler
936  */
937 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
938 {
939         struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
940         int cpu = smp_processor_id();
941         int master = 0;
942         unsigned long flags;
943
944         local_irq_save(flags);
945
946         /* If not a UV System NMI, ignore */
947         if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
948                 local_irq_restore(flags);
949                 return NMI_DONE;
950         }
951
952         /* Indicate we are the first CPU into the NMI handler */
953         master = (atomic_read(&uv_nmi_cpu) == cpu);
954
955         /* If NMI action is "kdump", then attempt to do it */
956         if (uv_nmi_action_is("kdump")) {
957                 uv_nmi_kdump(cpu, master, regs);
958
959                 /* Unexpected return, revert action to "dump" */
960                 if (master)
961                         strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
962         }
963
964         /* Pause as all CPU's enter the NMI handler */
965         uv_nmi_wait(master);
966
967         /* Process actions other than "kdump": */
968         if (uv_nmi_action_is("health")) {
969                 uv_nmi_action_health(cpu, regs, master);
970         } else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
971                 uv_nmi_dump_state(cpu, regs, master);
972         } else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
973                 uv_call_kgdb_kdb(cpu, regs, master);
974         } else {
975                 if (master)
976                         pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
977                 uv_nmi_sync_exit(master);
978         }
979
980         /* Clear per_cpu "in_nmi" flag */
981         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
982
983         /* Clear MMR NMI flag on each hub */
984         uv_clear_nmi(cpu);
985
986         /* Clear global flags */
987         if (master) {
988                 if (cpumask_weight(uv_nmi_cpu_mask))
989                         uv_nmi_cleanup_mask();
990                 atomic_set(&uv_nmi_cpus_in_nmi, -1);
991                 atomic_set(&uv_nmi_cpu, -1);
992                 atomic_set(&uv_in_nmi, 0);
993                 atomic_set(&uv_nmi_kexec_failed, 0);
994                 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
995         }
996
997         uv_nmi_touch_watchdogs();
998         local_irq_restore(flags);
999
1000         return NMI_HANDLED;
1001 }
1002
1003 /*
1004  * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1005  */
1006 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1007 {
1008         int ret;
1009
1010         this_cpu_inc(uv_cpu_nmi.queries);
1011         if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1012                 local64_inc(&uv_nmi_ping_misses);
1013                 return NMI_DONE;
1014         }
1015
1016         this_cpu_inc(uv_cpu_nmi.pings);
1017         local64_inc(&uv_nmi_ping_count);
1018         ret = uv_handle_nmi(reason, regs);
1019         this_cpu_write(uv_cpu_nmi.pinging, 0);
1020         return ret;
1021 }
1022
1023 static void uv_register_nmi_notifier(void)
1024 {
1025         if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1026                 pr_warn("UV: NMI handler failed to register\n");
1027
1028         if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1029                 pr_warn("UV: PING NMI handler failed to register\n");
1030 }
1031
1032 void uv_nmi_init(void)
1033 {
1034         unsigned int value;
1035
1036         /*
1037          * Unmask NMI on all CPU's
1038          */
1039         value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1040         value &= ~APIC_LVT_MASKED;
1041         apic_write(APIC_LVT1, value);
1042 }
1043
1044 /* Setup HUB NMI info */
1045 static void __init uv_nmi_setup_common(bool hubbed)
1046 {
1047         int size = sizeof(void *) * (1 << NODES_SHIFT);
1048         int cpu;
1049
1050         uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1051         nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1052         BUG_ON(!uv_hub_nmi_list);
1053         size = sizeof(struct uv_hub_nmi_s);
1054         for_each_present_cpu(cpu) {
1055                 int nid = cpu_to_node(cpu);
1056                 if (uv_hub_nmi_list[nid] == NULL) {
1057                         uv_hub_nmi_list[nid] = kzalloc_node(size,
1058                                                             GFP_KERNEL, nid);
1059                         BUG_ON(!uv_hub_nmi_list[nid]);
1060                         raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1061                         atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1062                         uv_hub_nmi_list[nid]->hub_present = hubbed;
1063                         uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1064                 }
1065                 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1066         }
1067         BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1068 }
1069
1070 /* Setup for UV Hub systems */
1071 void __init uv_nmi_setup(void)
1072 {
1073         uv_nmi_setup_mmrs();
1074         uv_nmi_setup_common(true);
1075         uv_register_nmi_notifier();
1076         pr_info("UV: Hub NMI enabled\n");
1077 }
1078
1079 /* Setup for UV Hubless systems */
1080 void __init uv_nmi_setup_hubless(void)
1081 {
1082         uv_nmi_setup_common(false);
1083         pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1084         nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1085                 pch_base, PCH_PCR_GPIO_1_BASE);
1086         if (uv_pch_init_enable)
1087                 uv_init_hubless_pch_d0();
1088         uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1089                                 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1090         uv_nmi_setup_hubless_intr();
1091         /* Ensure NMI enabled in Processor Interface Reg: */
1092         uv_reassert_nmi();
1093         uv_register_nmi_notifier();
1094         pr_info("UV: PCH NMI enabled\n");
1095 }