Merge tag 'x86_platform_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / arch / x86 / platform / uv / uv_nmi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI NMI support routines
4  *
5  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6  * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7  * Copyright (c) Mike Travis
8  */
9
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/kdb.h>
13 #include <linux/kexec.h>
14 #include <linux/kgdb.h>
15 #include <linux/moduleparam.h>
16 #include <linux/nmi.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/slab.h>
20 #include <linux/clocksource.h>
21
22 #include <asm/apic.h>
23 #include <asm/current.h>
24 #include <asm/kdebug.h>
25 #include <asm/local64.h>
26 #include <asm/nmi.h>
27 #include <asm/reboot.h>
28 #include <asm/traps.h>
29 #include <asm/uv/uv.h>
30 #include <asm/uv/uv_hub.h>
31 #include <asm/uv/uv_mmrs.h>
32
33 /*
34  * UV handler for NMI
35  *
36  * Handle system-wide NMI events generated by the global 'power nmi' command.
37  *
38  * Basic operation is to field the NMI interrupt on each CPU and wait
39  * until all CPU's have arrived into the nmi handler.  If some CPU's do not
40  * make it into the handler, try and force them in with the IPI(NMI) signal.
41  *
42  * We also have to lessen UV Hub MMR accesses as much as possible as this
43  * disrupts the UV Hub's primary mission of directing NumaLink traffic and
44  * can cause system problems to occur.
45  *
46  * To do this we register our primary NMI notifier on the NMI_UNKNOWN
47  * chain.  This reduces the number of false NMI calls when the perf
48  * tools are running which generate an enormous number of NMIs per
49  * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
50  * very short as it only checks that if it has been "pinged" with the
51  * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
52  *
53  */
54
55 static struct uv_hub_nmi_s **uv_hub_nmi_list;
56
57 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
58
59 /* Newer SMM NMI handler, not present in all systems */
60 static unsigned long uvh_nmi_mmrx;              /* UVH_EVENT_OCCURRED0/1 */
61 static unsigned long uvh_nmi_mmrx_clear;        /* UVH_EVENT_OCCURRED0/1_ALIAS */
62 static int uvh_nmi_mmrx_shift;                  /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
63 static char *uvh_nmi_mmrx_type;                 /* "EXTIO_INT0" */
64
65 /* Non-zero indicates newer SMM NMI handler present */
66 static unsigned long uvh_nmi_mmrx_supported;    /* UVH_EXTIO_INT0_BROADCAST */
67
68 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
69 static unsigned long uvh_nmi_mmrx_req;          /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
70 static int uvh_nmi_mmrx_req_shift;              /* 62 */
71
72 /* UV hubless values */
73 #define NMI_CONTROL_PORT        0x70
74 #define NMI_DUMMY_PORT          0x71
75 #define PAD_OWN_GPP_D_0         0x2c
76 #define GPI_NMI_STS_GPP_D_0     0x164
77 #define GPI_NMI_ENA_GPP_D_0     0x174
78 #define STS_GPP_D_0_MASK        0x1
79 #define PAD_CFG_DW0_GPP_D_0     0x4c0
80 #define GPIROUTNMI              (1ul << 17)
81 #define PCH_PCR_GPIO_1_BASE     0xfdae0000ul
82 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
83
84 static u64 *pch_base;
85 static unsigned long nmi_mmr;
86 static unsigned long nmi_mmr_clear;
87 static unsigned long nmi_mmr_pending;
88
89 static atomic_t uv_in_nmi;
90 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
91 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
92 static atomic_t uv_nmi_slave_continue;
93 static cpumask_var_t uv_nmi_cpu_mask;
94
95 static atomic_t uv_nmi_kexec_failed;
96
97 /* Values for uv_nmi_slave_continue */
98 #define SLAVE_CLEAR     0
99 #define SLAVE_CONTINUE  1
100 #define SLAVE_EXIT      2
101
102 /*
103  * Default is all stack dumps go to the console and buffer.
104  * Lower level to send to log buffer only.
105  */
106 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
107 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
108
109 /*
110  * The following values show statistics on how perf events are affecting
111  * this system.
112  */
113 static int param_get_local64(char *buffer, const struct kernel_param *kp)
114 {
115         return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
116 }
117
118 static int param_set_local64(const char *val, const struct kernel_param *kp)
119 {
120         /* Clear on any write */
121         local64_set((local64_t *)kp->arg, 0);
122         return 0;
123 }
124
125 static const struct kernel_param_ops param_ops_local64 = {
126         .get = param_get_local64,
127         .set = param_set_local64,
128 };
129 #define param_check_local64(name, p) __param_check(name, p, local64_t)
130
131 static local64_t uv_nmi_count;
132 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
133
134 static local64_t uv_nmi_misses;
135 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
136
137 static local64_t uv_nmi_ping_count;
138 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
139
140 static local64_t uv_nmi_ping_misses;
141 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
142
143 /*
144  * Following values allow tuning for large systems under heavy loading
145  */
146 static int uv_nmi_initial_delay = 100;
147 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
148
149 static int uv_nmi_slave_delay = 100;
150 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
151
152 static int uv_nmi_loop_delay = 100;
153 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
154
155 static int uv_nmi_trigger_delay = 10000;
156 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
157
158 static int uv_nmi_wait_count = 100;
159 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
160
161 static int uv_nmi_retry_count = 500;
162 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
163
164 static bool uv_pch_intr_enable = true;
165 static bool uv_pch_intr_now_enabled;
166 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
167
168 static bool uv_pch_init_enable = true;
169 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
170
171 static int uv_nmi_debug;
172 module_param_named(debug, uv_nmi_debug, int, 0644);
173
174 #define nmi_debug(fmt, ...)                             \
175         do {                                            \
176                 if (uv_nmi_debug)                       \
177                         pr_info(fmt, ##__VA_ARGS__);    \
178         } while (0)
179
180 /* Valid NMI Actions */
181 #define ACTION_LEN      16
182 static struct nmi_action {
183         char    *action;
184         char    *desc;
185 } valid_acts[] = {
186         {       "kdump",        "do kernel crash dump"                  },
187         {       "dump",         "dump process stack for each cpu"       },
188         {       "ips",          "dump Inst Ptr info for each cpu"       },
189         {       "kdb",          "enter KDB (needs kgdboc= assignment)"  },
190         {       "kgdb",         "enter KGDB (needs gdb target remote)"  },
191         {       "health",       "check if CPUs respond to NMI"          },
192 };
193 typedef char action_t[ACTION_LEN];
194 static action_t uv_nmi_action = { "dump" };
195
196 static int param_get_action(char *buffer, const struct kernel_param *kp)
197 {
198         return sprintf(buffer, "%s\n", uv_nmi_action);
199 }
200
201 static int param_set_action(const char *val, const struct kernel_param *kp)
202 {
203         int i;
204         int n = ARRAY_SIZE(valid_acts);
205         char arg[ACTION_LEN], *p;
206
207         /* (remove possible '\n') */
208         strncpy(arg, val, ACTION_LEN - 1);
209         arg[ACTION_LEN - 1] = '\0';
210         p = strchr(arg, '\n');
211         if (p)
212                 *p = '\0';
213
214         for (i = 0; i < n; i++)
215                 if (!strcmp(arg, valid_acts[i].action))
216                         break;
217
218         if (i < n) {
219                 strcpy(uv_nmi_action, arg);
220                 pr_info("UV: New NMI action:%s\n", uv_nmi_action);
221                 return 0;
222         }
223
224         pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
225         for (i = 0; i < n; i++)
226                 pr_err("UV: %-8s - %s\n",
227                         valid_acts[i].action, valid_acts[i].desc);
228         return -EINVAL;
229 }
230
231 static const struct kernel_param_ops param_ops_action = {
232         .get = param_get_action,
233         .set = param_set_action,
234 };
235 #define param_check_action(name, p) __param_check(name, p, action_t)
236
237 module_param_named(action, uv_nmi_action, action, 0644);
238
239 static inline bool uv_nmi_action_is(const char *action)
240 {
241         return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
242 }
243
244 /* Setup which NMI support is present in system */
245 static void uv_nmi_setup_mmrs(void)
246 {
247         bool new_nmi_method_only = false;
248
249         /* First determine arch specific MMRs to handshake with BIOS */
250         if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {      /* UV2,3,4 setup */
251                 uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
252                 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
253                 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
254                 uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
255
256                 uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
257                 uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
258                 uvh_nmi_mmrx_req_shift = 62;
259
260         } else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */
261                 uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
262                 uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
263                 uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
264                 uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
265
266                 new_nmi_method_only = true;             /* Newer nmi always valid on UV5+ */
267                 uvh_nmi_mmrx_req = 0;                   /* no request bit to clear */
268
269         } else {
270                 pr_err("UV:%s:NMI support not available on this system\n", __func__);
271                 return;
272         }
273
274         /* Then find out if new NMI is supported */
275         if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) {
276                 if (uvh_nmi_mmrx_req)
277                         uv_write_local_mmr(uvh_nmi_mmrx_req,
278                                                 1UL << uvh_nmi_mmrx_req_shift);
279                 nmi_mmr = uvh_nmi_mmrx;
280                 nmi_mmr_clear = uvh_nmi_mmrx_clear;
281                 nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
282                 pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
283         } else {
284                 nmi_mmr = UVH_NMI_MMR;
285                 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
286                 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
287                 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
288         }
289 }
290
291 /* Read NMI MMR and check if NMI flag was set by BMC. */
292 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
293 {
294         hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
295         atomic_inc(&hub_nmi->read_mmr_count);
296         return !!(hub_nmi->nmi_value & nmi_mmr_pending);
297 }
298
299 static inline void uv_local_mmr_clear_nmi(void)
300 {
301         uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
302 }
303
304 /*
305  * UV hubless NMI handler functions
306  */
307 static inline void uv_reassert_nmi(void)
308 {
309         /* (from arch/x86/include/asm/mach_traps.h) */
310         outb(0x8f, NMI_CONTROL_PORT);
311         inb(NMI_DUMMY_PORT);            /* dummy read */
312         outb(0x0f, NMI_CONTROL_PORT);
313         inb(NMI_DUMMY_PORT);            /* dummy read */
314 }
315
316 static void uv_init_hubless_pch_io(int offset, int mask, int data)
317 {
318         int *addr = PCH_PCR_GPIO_ADDRESS(offset);
319         int readd = readl(addr);
320
321         if (mask) {                     /* OR in new data */
322                 int writed = (readd & ~mask) | data;
323
324                 nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
325                         addr, readd, ~mask, data, writed);
326                 writel(writed, addr);
327         } else if (readd & data) {      /* clear status bit */
328                 nmi_debug("UV:PCH: %p = %x\n", addr, data);
329                 writel(data, addr);
330         }
331
332         (void)readl(addr);              /* flush write data */
333 }
334
335 static void uv_nmi_setup_hubless_intr(void)
336 {
337         uv_pch_intr_now_enabled = uv_pch_intr_enable;
338
339         uv_init_hubless_pch_io(
340                 PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
341                 uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
342
343         nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
344                 uv_pch_intr_now_enabled ? "enabled" : "disabled");
345 }
346
347 static struct init_nmi {
348         unsigned int    offset;
349         unsigned int    mask;
350         unsigned int    data;
351 } init_nmi[] = {
352         {       /* HOSTSW_OWN_GPP_D_0 */
353         .offset = 0x84,
354         .mask = 0x1,
355         .data = 0x0,    /* ACPI Mode */
356         },
357
358 /* Clear status: */
359         {       /* GPI_INT_STS_GPP_D_0 */
360         .offset = 0x104,
361         .mask = 0x0,
362         .data = 0x1,    /* Clear Status */
363         },
364         {       /* GPI_GPE_STS_GPP_D_0 */
365         .offset = 0x124,
366         .mask = 0x0,
367         .data = 0x1,    /* Clear Status */
368         },
369         {       /* GPI_SMI_STS_GPP_D_0 */
370         .offset = 0x144,
371         .mask = 0x0,
372         .data = 0x1,    /* Clear Status */
373         },
374         {       /* GPI_NMI_STS_GPP_D_0 */
375         .offset = 0x164,
376         .mask = 0x0,
377         .data = 0x1,    /* Clear Status */
378         },
379
380 /* Disable interrupts: */
381         {       /* GPI_INT_EN_GPP_D_0 */
382         .offset = 0x114,
383         .mask = 0x1,
384         .data = 0x0,    /* Disable interrupt generation */
385         },
386         {       /* GPI_GPE_EN_GPP_D_0 */
387         .offset = 0x134,
388         .mask = 0x1,
389         .data = 0x0,    /* Disable interrupt generation */
390         },
391         {       /* GPI_SMI_EN_GPP_D_0 */
392         .offset = 0x154,
393         .mask = 0x1,
394         .data = 0x0,    /* Disable interrupt generation */
395         },
396         {       /* GPI_NMI_EN_GPP_D_0 */
397         .offset = 0x174,
398         .mask = 0x1,
399         .data = 0x0,    /* Disable interrupt generation */
400         },
401
402 /* Setup GPP_D_0 Pad Config: */
403         {       /* PAD_CFG_DW0_GPP_D_0 */
404         .offset = 0x4c0,
405         .mask = 0xffffffff,
406         .data = 0x82020100,
407 /*
408  *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
409  *
410  *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
411  *                                                from RX buffer (default)
412  *
413  *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
414  *
415  *  26:25 RX Level/Edge Configuration (RXEVCFG):
416  *      = 0h # Level
417  *      = 1h # Edge
418  *
419  *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
420  *
421  *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
422  * = 0 # Routing does not cause peripheral IRQ...
423  *     # (we want an NMI not an IRQ)
424  *
425  *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
426  *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
427  *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
428  *
429  *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
430  *   9    GPIO RX Disable (GPIORXDIS):
431  * = 0 # Enable the input buffer (active low enable)
432  *
433  *   8    GPIO TX Disable (GPIOTXDIS):
434  * = 1 # Disable the output buffer; i.e. Hi-Z
435  *
436  *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
437  *   0 GPIO TX State (GPIOTXSTATE):
438  * = 0 # (Leave at default)
439  */
440         },
441
442 /* Pad Config DW1 */
443         {       /* PAD_CFG_DW1_GPP_D_0 */
444         .offset = 0x4c4,
445         .mask = 0x3c00,
446         .data = 0,      /* Termination = none (default) */
447         },
448 };
449
450 static void uv_init_hubless_pch_d0(void)
451 {
452         int i, read;
453
454         read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
455         if (read != 0) {
456                 pr_info("UV: Hubless NMI already configured\n");
457                 return;
458         }
459
460         nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
461         for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
462                 uv_init_hubless_pch_io(init_nmi[i].offset,
463                                         init_nmi[i].mask,
464                                         init_nmi[i].data);
465         }
466 }
467
468 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
469 {
470         int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
471         int status = *pstat;
472
473         hub_nmi->nmi_value = status;
474         atomic_inc(&hub_nmi->read_mmr_count);
475
476         if (!(status & STS_GPP_D_0_MASK))       /* Not a UV external NMI */
477                 return 0;
478
479         *pstat = STS_GPP_D_0_MASK;      /* Is a UV NMI: clear GPP_D_0 status */
480         (void)*pstat;                   /* Flush write */
481
482         return 1;
483 }
484
485 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
486 {
487         if (hub_nmi->hub_present)
488                 return uv_nmi_test_mmr(hub_nmi);
489
490         if (hub_nmi->pch_owner)         /* Only PCH owner can check status */
491                 return uv_nmi_test_hubless(hub_nmi);
492
493         return -1;
494 }
495
496 /*
497  * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
498  * return true.  If first CPU in on the system, set global "in_nmi" flag.
499  */
500 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
501 {
502         int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
503
504         if (first) {
505                 atomic_set(&hub_nmi->cpu_owner, cpu);
506                 if (atomic_add_unless(&uv_in_nmi, 1, 1))
507                         atomic_set(&uv_nmi_cpu, cpu);
508
509                 atomic_inc(&hub_nmi->nmi_count);
510         }
511         return first;
512 }
513
514 /* Check if this is a system NMI event */
515 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
516 {
517         int cpu = smp_processor_id();
518         int nmi = 0;
519         int nmi_detected = 0;
520
521         local64_inc(&uv_nmi_count);
522         this_cpu_inc(uv_cpu_nmi.queries);
523
524         do {
525                 nmi = atomic_read(&hub_nmi->in_nmi);
526                 if (nmi)
527                         break;
528
529                 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
530                         nmi_detected = uv_test_nmi(hub_nmi);
531
532                         /* Check flag for UV external NMI */
533                         if (nmi_detected > 0) {
534                                 uv_set_in_nmi(cpu, hub_nmi);
535                                 nmi = 1;
536                                 break;
537                         }
538
539                         /* A non-PCH node in a hubless system waits for NMI */
540                         else if (nmi_detected < 0)
541                                 goto slave_wait;
542
543                         /* MMR/PCH NMI flag is clear */
544                         raw_spin_unlock(&hub_nmi->nmi_lock);
545
546                 } else {
547
548                         /* Wait a moment for the HUB NMI locker to set flag */
549 slave_wait:             cpu_relax();
550                         udelay(uv_nmi_slave_delay);
551
552                         /* Re-check hub in_nmi flag */
553                         nmi = atomic_read(&hub_nmi->in_nmi);
554                         if (nmi)
555                                 break;
556                 }
557
558                 /*
559                  * Check if this BMC missed setting the MMR NMI flag (or)
560                  * UV hubless system where only PCH owner can check flag
561                  */
562                 if (!nmi) {
563                         nmi = atomic_read(&uv_in_nmi);
564                         if (nmi)
565                                 uv_set_in_nmi(cpu, hub_nmi);
566                 }
567
568                 /* If we're holding the hub lock, release it now */
569                 if (nmi_detected < 0)
570                         raw_spin_unlock(&hub_nmi->nmi_lock);
571
572         } while (0);
573
574         if (!nmi)
575                 local64_inc(&uv_nmi_misses);
576
577         return nmi;
578 }
579
580 /* Need to reset the NMI MMR register, but only once per hub. */
581 static inline void uv_clear_nmi(int cpu)
582 {
583         struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
584
585         if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
586                 atomic_set(&hub_nmi->cpu_owner, -1);
587                 atomic_set(&hub_nmi->in_nmi, 0);
588                 if (hub_nmi->hub_present)
589                         uv_local_mmr_clear_nmi();
590                 else
591                         uv_reassert_nmi();
592                 raw_spin_unlock(&hub_nmi->nmi_lock);
593         }
594 }
595
596 /* Ping non-responding CPU's attempting to force them into the NMI handler */
597 static void uv_nmi_nr_cpus_ping(void)
598 {
599         int cpu;
600
601         for_each_cpu(cpu, uv_nmi_cpu_mask)
602                 uv_cpu_nmi_per(cpu).pinging = 1;
603
604         apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
605 }
606
607 /* Clean up flags for CPU's that ignored both NMI and ping */
608 static void uv_nmi_cleanup_mask(void)
609 {
610         int cpu;
611
612         for_each_cpu(cpu, uv_nmi_cpu_mask) {
613                 uv_cpu_nmi_per(cpu).pinging =  0;
614                 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
615                 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
616         }
617 }
618
619 /* Loop waiting as CPU's enter NMI handler */
620 static int uv_nmi_wait_cpus(int first)
621 {
622         int i, j, k, n = num_online_cpus();
623         int last_k = 0, waiting = 0;
624         int cpu = smp_processor_id();
625
626         if (first) {
627                 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
628                 k = 0;
629         } else {
630                 k = n - cpumask_weight(uv_nmi_cpu_mask);
631         }
632
633         /* PCH NMI causes only one CPU to respond */
634         if (first && uv_pch_intr_now_enabled) {
635                 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
636                 return n - k - 1;
637         }
638
639         udelay(uv_nmi_initial_delay);
640         for (i = 0; i < uv_nmi_retry_count; i++) {
641                 int loop_delay = uv_nmi_loop_delay;
642
643                 for_each_cpu(j, uv_nmi_cpu_mask) {
644                         if (uv_cpu_nmi_per(j).state) {
645                                 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
646                                 if (++k >= n)
647                                         break;
648                         }
649                 }
650                 if (k >= n) {           /* all in? */
651                         k = n;
652                         break;
653                 }
654                 if (last_k != k) {      /* abort if no new CPU's coming in */
655                         last_k = k;
656                         waiting = 0;
657                 } else if (++waiting > uv_nmi_wait_count)
658                         break;
659
660                 /* Extend delay if waiting only for CPU 0: */
661                 if (waiting && (n - k) == 1 &&
662                     cpumask_test_cpu(0, uv_nmi_cpu_mask))
663                         loop_delay *= 100;
664
665                 udelay(loop_delay);
666         }
667         atomic_set(&uv_nmi_cpus_in_nmi, k);
668         return n - k;
669 }
670
671 /* Wait until all slave CPU's have entered UV NMI handler */
672 static void uv_nmi_wait(int master)
673 {
674         /* Indicate this CPU is in: */
675         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
676
677         /* If not the first CPU in (the master), then we are a slave CPU */
678         if (!master)
679                 return;
680
681         do {
682                 /* Wait for all other CPU's to gather here */
683                 if (!uv_nmi_wait_cpus(1))
684                         break;
685
686                 /* If not all made it in, send IPI NMI to them */
687                 pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
688                          cpumask_weight(uv_nmi_cpu_mask),
689                          cpumask_pr_args(uv_nmi_cpu_mask));
690
691                 uv_nmi_nr_cpus_ping();
692
693                 /* If all CPU's are in, then done */
694                 if (!uv_nmi_wait_cpus(0))
695                         break;
696
697                 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
698                          cpumask_weight(uv_nmi_cpu_mask),
699                          cpumask_pr_args(uv_nmi_cpu_mask));
700         } while (0);
701
702         pr_alert("UV: %d of %d CPUs in NMI\n",
703                 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
704 }
705
706 /* Dump Instruction Pointer header */
707 static void uv_nmi_dump_cpu_ip_hdr(void)
708 {
709         pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
710                 "CPU", "PID", "COMMAND", "IP");
711 }
712
713 /* Dump Instruction Pointer info */
714 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
715 {
716         pr_info("UV: %4d %6d %-32.32s %pS",
717                 cpu, current->pid, current->comm, (void *)regs->ip);
718 }
719
720 /*
721  * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
722  * failed, then we provide "dump" as an alternate action.  Action "dump" now
723  * also includes the show "ips" (instruction pointers) action whereas the
724  * action "ips" only displays instruction pointers for the non-idle CPU's.
725  * This is an abbreviated form of the "ps" command.
726  */
727 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
728 {
729         const char *dots = " ................................. ";
730
731         if (cpu == 0)
732                 uv_nmi_dump_cpu_ip_hdr();
733
734         if (current->pid != 0 || !uv_nmi_action_is("ips"))
735                 uv_nmi_dump_cpu_ip(cpu, regs);
736
737         if (uv_nmi_action_is("dump")) {
738                 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
739                 show_regs(regs);
740         }
741
742         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
743 }
744
745 /* Trigger a slave CPU to dump it's state */
746 static void uv_nmi_trigger_dump(int cpu)
747 {
748         int retry = uv_nmi_trigger_delay;
749
750         if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
751                 return;
752
753         uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
754         do {
755                 cpu_relax();
756                 udelay(10);
757                 if (uv_cpu_nmi_per(cpu).state
758                                 != UV_NMI_STATE_DUMP)
759                         return;
760         } while (--retry > 0);
761
762         pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
763         uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
764 }
765
766 /* Wait until all CPU's ready to exit */
767 static void uv_nmi_sync_exit(int master)
768 {
769         atomic_dec(&uv_nmi_cpus_in_nmi);
770         if (master) {
771                 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
772                         cpu_relax();
773                 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
774         } else {
775                 while (atomic_read(&uv_nmi_slave_continue))
776                         cpu_relax();
777         }
778 }
779
780 /* Current "health" check is to check which CPU's are responsive */
781 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
782 {
783         if (master) {
784                 int in = atomic_read(&uv_nmi_cpus_in_nmi);
785                 int out = num_online_cpus() - in;
786
787                 pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
788                 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
789         } else {
790                 while (!atomic_read(&uv_nmi_slave_continue))
791                         cpu_relax();
792         }
793         uv_nmi_sync_exit(master);
794 }
795
796 /* Walk through CPU list and dump state of each */
797 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
798 {
799         if (master) {
800                 int tcpu;
801                 int ignored = 0;
802                 int saved_console_loglevel = console_loglevel;
803
804                 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
805                         uv_nmi_action_is("ips") ? "IPs" : "processes",
806                         atomic_read(&uv_nmi_cpus_in_nmi), cpu);
807
808                 console_loglevel = uv_nmi_loglevel;
809                 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
810                 for_each_online_cpu(tcpu) {
811                         if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
812                                 ignored++;
813                         else if (tcpu == cpu)
814                                 uv_nmi_dump_state_cpu(tcpu, regs);
815                         else
816                                 uv_nmi_trigger_dump(tcpu);
817                 }
818                 if (ignored)
819                         pr_alert("UV: %d CPUs ignored NMI\n", ignored);
820
821                 console_loglevel = saved_console_loglevel;
822                 pr_alert("UV: process trace complete\n");
823         } else {
824                 while (!atomic_read(&uv_nmi_slave_continue))
825                         cpu_relax();
826                 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
827                         cpu_relax();
828                 uv_nmi_dump_state_cpu(cpu, regs);
829         }
830         uv_nmi_sync_exit(master);
831 }
832
833 static void uv_nmi_touch_watchdogs(void)
834 {
835         touch_softlockup_watchdog_sync();
836         clocksource_touch_watchdog();
837         rcu_cpu_stall_reset();
838         touch_nmi_watchdog();
839 }
840
841 static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
842 {
843         /* Check if kdump kernel loaded for both main and secondary CPUs */
844         if (!kexec_crash_image) {
845                 if (main)
846                         pr_err("UV: NMI error: kdump kernel not loaded\n");
847                 return;
848         }
849
850         /* Call crash to dump system state */
851         if (main) {
852                 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
853                 crash_kexec(regs);
854
855                 pr_emerg("UV: crash_kexec unexpectedly returned\n");
856                 atomic_set(&uv_nmi_kexec_failed, 1);
857
858         } else { /* secondary */
859
860                 /* If kdump kernel fails, secondaries will exit this loop */
861                 while (atomic_read(&uv_nmi_kexec_failed) == 0) {
862
863                         /* Once shootdown cpus starts, they do not return */
864                         run_crash_ipi_callback(regs);
865
866                         mdelay(10);
867                 }
868         }
869 }
870
871 #ifdef CONFIG_KGDB
872 #ifdef CONFIG_KGDB_KDB
873 static inline int uv_nmi_kdb_reason(void)
874 {
875         return KDB_REASON_SYSTEM_NMI;
876 }
877 #else /* !CONFIG_KGDB_KDB */
878 static inline int uv_nmi_kdb_reason(void)
879 {
880         /* Ensure user is expecting to attach gdb remote */
881         if (uv_nmi_action_is("kgdb"))
882                 return 0;
883
884         pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
885         return -1;
886 }
887 #endif /* CONFIG_KGDB_KDB */
888
889 /*
890  * Call KGDB/KDB from NMI handler
891  *
892  * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
893  * 'kdb' has no affect on which is used.  See the KGDB documentation for further
894  * information.
895  */
896 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
897 {
898         if (master) {
899                 int reason = uv_nmi_kdb_reason();
900                 int ret;
901
902                 if (reason < 0)
903                         return;
904
905                 /* Call KGDB NMI handler as MASTER */
906                 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
907                                 &uv_nmi_slave_continue);
908                 if (ret) {
909                         pr_alert("KGDB returned error, is kgdboc set?\n");
910                         atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
911                 }
912         } else {
913                 /* Wait for KGDB signal that it's ready for slaves to enter */
914                 int sig;
915
916                 do {
917                         cpu_relax();
918                         sig = atomic_read(&uv_nmi_slave_continue);
919                 } while (!sig);
920
921                 /* Call KGDB as slave */
922                 if (sig == SLAVE_CONTINUE)
923                         kgdb_nmicallback(cpu, regs);
924         }
925         uv_nmi_sync_exit(master);
926 }
927
928 #else /* !CONFIG_KGDB */
929 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
930 {
931         pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
932 }
933 #endif /* !CONFIG_KGDB */
934
935 /*
936  * UV NMI handler
937  */
938 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
939 {
940         struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
941         int cpu = smp_processor_id();
942         int master = 0;
943         unsigned long flags;
944
945         local_irq_save(flags);
946
947         /* If not a UV System NMI, ignore */
948         if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
949                 local_irq_restore(flags);
950                 return NMI_DONE;
951         }
952
953         /* Indicate we are the first CPU into the NMI handler */
954         master = (atomic_read(&uv_nmi_cpu) == cpu);
955
956         /* If NMI action is "kdump", then attempt to do it */
957         if (uv_nmi_action_is("kdump")) {
958                 uv_nmi_kdump(cpu, master, regs);
959
960                 /* Unexpected return, revert action to "dump" */
961                 if (master)
962                         strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
963         }
964
965         /* Pause as all CPU's enter the NMI handler */
966         uv_nmi_wait(master);
967
968         /* Process actions other than "kdump": */
969         if (uv_nmi_action_is("health")) {
970                 uv_nmi_action_health(cpu, regs, master);
971         } else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
972                 uv_nmi_dump_state(cpu, regs, master);
973         } else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
974                 uv_call_kgdb_kdb(cpu, regs, master);
975         } else {
976                 if (master)
977                         pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
978                 uv_nmi_sync_exit(master);
979         }
980
981         /* Clear per_cpu "in_nmi" flag */
982         this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
983
984         /* Clear MMR NMI flag on each hub */
985         uv_clear_nmi(cpu);
986
987         /* Clear global flags */
988         if (master) {
989                 if (!cpumask_empty(uv_nmi_cpu_mask))
990                         uv_nmi_cleanup_mask();
991                 atomic_set(&uv_nmi_cpus_in_nmi, -1);
992                 atomic_set(&uv_nmi_cpu, -1);
993                 atomic_set(&uv_in_nmi, 0);
994                 atomic_set(&uv_nmi_kexec_failed, 0);
995                 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
996         }
997
998         uv_nmi_touch_watchdogs();
999         local_irq_restore(flags);
1000
1001         return NMI_HANDLED;
1002 }
1003
1004 /*
1005  * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1006  */
1007 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1008 {
1009         int ret;
1010
1011         this_cpu_inc(uv_cpu_nmi.queries);
1012         if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1013                 local64_inc(&uv_nmi_ping_misses);
1014                 return NMI_DONE;
1015         }
1016
1017         this_cpu_inc(uv_cpu_nmi.pings);
1018         local64_inc(&uv_nmi_ping_count);
1019         ret = uv_handle_nmi(reason, regs);
1020         this_cpu_write(uv_cpu_nmi.pinging, 0);
1021         return ret;
1022 }
1023
1024 static void uv_register_nmi_notifier(void)
1025 {
1026         if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1027                 pr_warn("UV: NMI handler failed to register\n");
1028
1029         if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1030                 pr_warn("UV: PING NMI handler failed to register\n");
1031 }
1032
1033 void uv_nmi_init(void)
1034 {
1035         unsigned int value;
1036
1037         /*
1038          * Unmask NMI on all CPU's
1039          */
1040         value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1041         value &= ~APIC_LVT_MASKED;
1042         apic_write(APIC_LVT1, value);
1043 }
1044
1045 /* Setup HUB NMI info */
1046 static void __init uv_nmi_setup_common(bool hubbed)
1047 {
1048         int size = sizeof(void *) * (1 << NODES_SHIFT);
1049         int cpu;
1050
1051         uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1052         nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1053         BUG_ON(!uv_hub_nmi_list);
1054         size = sizeof(struct uv_hub_nmi_s);
1055         for_each_present_cpu(cpu) {
1056                 int nid = cpu_to_node(cpu);
1057                 if (uv_hub_nmi_list[nid] == NULL) {
1058                         uv_hub_nmi_list[nid] = kzalloc_node(size,
1059                                                             GFP_KERNEL, nid);
1060                         BUG_ON(!uv_hub_nmi_list[nid]);
1061                         raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1062                         atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1063                         uv_hub_nmi_list[nid]->hub_present = hubbed;
1064                         uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1065                 }
1066                 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1067         }
1068         BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1069 }
1070
1071 /* Setup for UV Hub systems */
1072 void __init uv_nmi_setup(void)
1073 {
1074         uv_nmi_setup_mmrs();
1075         uv_nmi_setup_common(true);
1076         uv_register_nmi_notifier();
1077         pr_info("UV: Hub NMI enabled\n");
1078 }
1079
1080 /* Setup for UV Hubless systems */
1081 void __init uv_nmi_setup_hubless(void)
1082 {
1083         uv_nmi_setup_common(false);
1084         pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1085         nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1086                 pch_base, PCH_PCR_GPIO_1_BASE);
1087         if (uv_pch_init_enable)
1088                 uv_init_hubless_pch_d0();
1089         uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1090                                 STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1091         uv_nmi_setup_hubless_intr();
1092         /* Ensure NMI enabled in Processor Interface Reg: */
1093         uv_reassert_nmi();
1094         uv_register_nmi_notifier();
1095         pr_info("UV: PCH NMI enabled\n");
1096 }