Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/efi.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37
38 #include <asm/setup.h>
39 #include <asm/page.h>
40 #include <asm/e820/api.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50
51 /*
52  * We allocate runtime services regions top-down, starting from -4G, i.e.
53  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54  */
55 static u64 efi_va = EFI_VA_START;
56
57 struct efi_scratch efi_scratch;
58
59 static void __init early_code_mapping_set_exec(int executable)
60 {
61         efi_memory_desc_t *md;
62
63         if (!(__supported_pte_mask & _PAGE_NX))
64                 return;
65
66         /* Make EFI service code area executable */
67         for_each_efi_memory_desc(md) {
68                 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
69                     md->type == EFI_BOOT_SERVICES_CODE)
70                         efi_set_executable(md, executable);
71         }
72 }
73
74 pgd_t * __init efi_call_phys_prolog(void)
75 {
76         unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
77         pgd_t *save_pgd, *pgd_k, *pgd_efi;
78         p4d_t *p4d, *p4d_k, *p4d_efi;
79         pud_t *pud;
80
81         int pgd;
82         int n_pgds, i, j;
83
84         if (!efi_enabled(EFI_OLD_MEMMAP)) {
85                 save_pgd = (pgd_t *)__read_cr3();
86                 write_cr3((unsigned long)efi_scratch.efi_pgt);
87                 goto out;
88         }
89
90         early_code_mapping_set_exec(1);
91
92         n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93         save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94
95         /*
96          * Build 1:1 identity mapping for efi=old_map usage. Note that
97          * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
98          * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
99          * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
100          * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
101          * This means here we can only reuse the PMD tables of the direct mapping.
102          */
103         for (pgd = 0; pgd < n_pgds; pgd++) {
104                 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
105                 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
106                 pgd_efi = pgd_offset_k(addr_pgd);
107                 save_pgd[pgd] = *pgd_efi;
108
109                 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
110                 if (!p4d) {
111                         pr_err("Failed to allocate p4d table!\n");
112                         goto out;
113                 }
114
115                 for (i = 0; i < PTRS_PER_P4D; i++) {
116                         addr_p4d = addr_pgd + i * P4D_SIZE;
117                         p4d_efi = p4d + p4d_index(addr_p4d);
118
119                         pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
120                         if (!pud) {
121                                 pr_err("Failed to allocate pud table!\n");
122                                 goto out;
123                         }
124
125                         for (j = 0; j < PTRS_PER_PUD; j++) {
126                                 addr_pud = addr_p4d + j * PUD_SIZE;
127
128                                 if (addr_pud > (max_pfn << PAGE_SHIFT))
129                                         break;
130
131                                 vaddr = (unsigned long)__va(addr_pud);
132
133                                 pgd_k = pgd_offset_k(vaddr);
134                                 p4d_k = p4d_offset(pgd_k, vaddr);
135                                 pud[j] = *pud_offset(p4d_k, vaddr);
136                         }
137                 }
138                 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
139         }
140
141 out:
142         __flush_tlb_all();
143
144         return save_pgd;
145 }
146
147 void __init efi_call_phys_epilog(pgd_t *save_pgd)
148 {
149         /*
150          * After the lock is released, the original page table is restored.
151          */
152         int pgd_idx, i;
153         int nr_pgds;
154         pgd_t *pgd;
155         p4d_t *p4d;
156         pud_t *pud;
157
158         if (!efi_enabled(EFI_OLD_MEMMAP)) {
159                 write_cr3((unsigned long)save_pgd);
160                 __flush_tlb_all();
161                 return;
162         }
163
164         nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
165
166         for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
167                 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
168                 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
169
170                 if (!(pgd_val(*pgd) & _PAGE_PRESENT))
171                         continue;
172
173                 for (i = 0; i < PTRS_PER_P4D; i++) {
174                         p4d = p4d_offset(pgd,
175                                          pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
176
177                         if (!(p4d_val(*p4d) & _PAGE_PRESENT))
178                                 continue;
179
180                         pud = (pud_t *)p4d_page_vaddr(*p4d);
181                         pud_free(&init_mm, pud);
182                 }
183
184                 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
185                 p4d_free(&init_mm, p4d);
186         }
187
188         kfree(save_pgd);
189
190         __flush_tlb_all();
191         early_code_mapping_set_exec(0);
192 }
193
194 static pgd_t *efi_pgd;
195
196 /*
197  * We need our own copy of the higher levels of the page tables
198  * because we want to avoid inserting EFI region mappings (EFI_VA_END
199  * to EFI_VA_START) into the standard kernel page tables. Everything
200  * else can be shared, see efi_sync_low_kernel_mappings().
201  *
202  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
203  * allocation.
204  */
205 int __init efi_alloc_page_tables(void)
206 {
207         pgd_t *pgd;
208         p4d_t *p4d;
209         pud_t *pud;
210         gfp_t gfp_mask;
211
212         if (efi_enabled(EFI_OLD_MEMMAP))
213                 return 0;
214
215         gfp_mask = GFP_KERNEL | __GFP_ZERO;
216         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
217         if (!efi_pgd)
218                 return -ENOMEM;
219
220         pgd = efi_pgd + pgd_index(EFI_VA_END);
221         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
222         if (!p4d) {
223                 free_page((unsigned long)efi_pgd);
224                 return -ENOMEM;
225         }
226
227         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
228         if (!pud) {
229                 if (CONFIG_PGTABLE_LEVELS > 4)
230                         free_page((unsigned long) pgd_page_vaddr(*pgd));
231                 free_page((unsigned long)efi_pgd);
232                 return -ENOMEM;
233         }
234
235         return 0;
236 }
237
238 /*
239  * Add low kernel mappings for passing arguments to EFI functions.
240  */
241 void efi_sync_low_kernel_mappings(void)
242 {
243         unsigned num_entries;
244         pgd_t *pgd_k, *pgd_efi;
245         p4d_t *p4d_k, *p4d_efi;
246         pud_t *pud_k, *pud_efi;
247
248         if (efi_enabled(EFI_OLD_MEMMAP))
249                 return;
250
251         /*
252          * We can share all PGD entries apart from the one entry that
253          * covers the EFI runtime mapping space.
254          *
255          * Make sure the EFI runtime region mappings are guaranteed to
256          * only span a single PGD entry and that the entry also maps
257          * other important kernel regions.
258          */
259         BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
260         BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
261                         (EFI_VA_END & PGDIR_MASK));
262
263         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
264         pgd_k = pgd_offset_k(PAGE_OFFSET);
265
266         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
267         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
268
269         /*
270          * As with PGDs, we share all P4D entries apart from the one entry
271          * that covers the EFI runtime mapping space.
272          */
273         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
274         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
275
276         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
277         pgd_k = pgd_offset_k(EFI_VA_END);
278         p4d_efi = p4d_offset(pgd_efi, 0);
279         p4d_k = p4d_offset(pgd_k, 0);
280
281         num_entries = p4d_index(EFI_VA_END);
282         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
283
284         /*
285          * We share all the PUD entries apart from those that map the
286          * EFI regions. Copy around them.
287          */
288         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
289         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
290
291         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
292         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
293         pud_efi = pud_offset(p4d_efi, 0);
294         pud_k = pud_offset(p4d_k, 0);
295
296         num_entries = pud_index(EFI_VA_END);
297         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
298
299         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
300         pud_k = pud_offset(p4d_k, EFI_VA_START);
301
302         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
303         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
304 }
305
306 /*
307  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
308  */
309 static inline phys_addr_t
310 virt_to_phys_or_null_size(void *va, unsigned long size)
311 {
312         bool bad_size;
313
314         if (!va)
315                 return 0;
316
317         if (virt_addr_valid(va))
318                 return virt_to_phys(va);
319
320         /*
321          * A fully aligned variable on the stack is guaranteed not to
322          * cross a page bounary. Try to catch strings on the stack by
323          * checking that 'size' is a power of two.
324          */
325         bad_size = size > PAGE_SIZE || !is_power_of_2(size);
326
327         WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
328
329         return slow_virt_to_phys(va);
330 }
331
332 #define virt_to_phys_or_null(addr)                              \
333         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
334
335 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
336 {
337         unsigned long pfn, text, pf;
338         struct page *page;
339         unsigned npages;
340         pgd_t *pgd;
341
342         if (efi_enabled(EFI_OLD_MEMMAP))
343                 return 0;
344
345         /*
346          * Since the PGD is encrypted, set the encryption mask so that when
347          * this value is loaded into cr3 the PGD will be decrypted during
348          * the pagetable walk.
349          */
350         efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
351         pgd = efi_pgd;
352
353         /*
354          * It can happen that the physical address of new_memmap lands in memory
355          * which is not mapped in the EFI page table. Therefore we need to go
356          * and ident-map those pages containing the map before calling
357          * phys_efi_set_virtual_address_map().
358          */
359         pfn = pa_memmap >> PAGE_SHIFT;
360         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
361         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
362                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
363                 return 1;
364         }
365
366         efi_scratch.use_pgd = true;
367
368         /*
369          * Certain firmware versions are way too sentimential and still believe
370          * they are exclusive and unquestionable owners of the first physical page,
371          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
372          * (but then write-access it later during SetVirtualAddressMap()).
373          *
374          * Create a 1:1 mapping for this page, to avoid triple faults during early
375          * boot with such firmware. We are free to hand this page to the BIOS,
376          * as trim_bios_range() will reserve the first page and isolate it away
377          * from memory allocators anyway.
378          */
379         pf = _PAGE_RW;
380         if (sev_active())
381                 pf |= _PAGE_ENC;
382
383         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
384                 pr_err("Failed to create 1:1 mapping for the first page!\n");
385                 return 1;
386         }
387
388         /*
389          * When making calls to the firmware everything needs to be 1:1
390          * mapped and addressable with 32-bit pointers. Map the kernel
391          * text and allocate a new stack because we can't rely on the
392          * stack pointer being < 4GB.
393          */
394         if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
395                 return 0;
396
397         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
398         if (!page)
399                 panic("Unable to allocate EFI runtime stack < 4GB\n");
400
401         efi_scratch.phys_stack = virt_to_phys(page_address(page));
402         efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
403
404         npages = (_etext - _text) >> PAGE_SHIFT;
405         text = __pa(_text);
406         pfn = text >> PAGE_SHIFT;
407
408         pf = _PAGE_RW | _PAGE_ENC;
409         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
410                 pr_err("Failed to map kernel text 1:1\n");
411                 return 1;
412         }
413
414         return 0;
415 }
416
417 static void __init __map_region(efi_memory_desc_t *md, u64 va)
418 {
419         unsigned long flags = _PAGE_RW;
420         unsigned long pfn;
421         pgd_t *pgd = efi_pgd;
422
423         if (!(md->attribute & EFI_MEMORY_WB))
424                 flags |= _PAGE_PCD;
425
426         if (sev_active())
427                 flags |= _PAGE_ENC;
428
429         pfn = md->phys_addr >> PAGE_SHIFT;
430         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
431                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
432                            md->phys_addr, va);
433 }
434
435 void __init efi_map_region(efi_memory_desc_t *md)
436 {
437         unsigned long size = md->num_pages << PAGE_SHIFT;
438         u64 pa = md->phys_addr;
439
440         if (efi_enabled(EFI_OLD_MEMMAP))
441                 return old_map_region(md);
442
443         /*
444          * Make sure the 1:1 mappings are present as a catch-all for b0rked
445          * firmware which doesn't update all internal pointers after switching
446          * to virtual mode and would otherwise crap on us.
447          */
448         __map_region(md, md->phys_addr);
449
450         /*
451          * Enforce the 1:1 mapping as the default virtual address when
452          * booting in EFI mixed mode, because even though we may be
453          * running a 64-bit kernel, the firmware may only be 32-bit.
454          */
455         if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
456                 md->virt_addr = md->phys_addr;
457                 return;
458         }
459
460         efi_va -= size;
461
462         /* Is PA 2M-aligned? */
463         if (!(pa & (PMD_SIZE - 1))) {
464                 efi_va &= PMD_MASK;
465         } else {
466                 u64 pa_offset = pa & (PMD_SIZE - 1);
467                 u64 prev_va = efi_va;
468
469                 /* get us the same offset within this 2M page */
470                 efi_va = (efi_va & PMD_MASK) + pa_offset;
471
472                 if (efi_va > prev_va)
473                         efi_va -= PMD_SIZE;
474         }
475
476         if (efi_va < EFI_VA_END) {
477                 pr_warn(FW_WARN "VA address range overflow!\n");
478                 return;
479         }
480
481         /* Do the VA map */
482         __map_region(md, efi_va);
483         md->virt_addr = efi_va;
484 }
485
486 /*
487  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
488  * md->virt_addr is the original virtual address which had been mapped in kexec
489  * 1st kernel.
490  */
491 void __init efi_map_region_fixed(efi_memory_desc_t *md)
492 {
493         __map_region(md, md->phys_addr);
494         __map_region(md, md->virt_addr);
495 }
496
497 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
498                                  u32 type, u64 attribute)
499 {
500         unsigned long last_map_pfn;
501
502         if (type == EFI_MEMORY_MAPPED_IO)
503                 return ioremap(phys_addr, size);
504
505         last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
506         if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
507                 unsigned long top = last_map_pfn << PAGE_SHIFT;
508                 efi_ioremap(top, size - (top - phys_addr), type, attribute);
509         }
510
511         if (!(attribute & EFI_MEMORY_WB))
512                 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
513
514         return (void __iomem *)__va(phys_addr);
515 }
516
517 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
518 {
519         efi_setup = phys_addr + sizeof(struct setup_data);
520 }
521
522 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
523 {
524         unsigned long pfn;
525         pgd_t *pgd = efi_pgd;
526         int err1, err2;
527
528         /* Update the 1:1 mapping */
529         pfn = md->phys_addr >> PAGE_SHIFT;
530         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
531         if (err1) {
532                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
533                            md->phys_addr, md->virt_addr);
534         }
535
536         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
537         if (err2) {
538                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
539                            md->phys_addr, md->virt_addr);
540         }
541
542         return err1 || err2;
543 }
544
545 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
546 {
547         unsigned long pf = 0;
548
549         if (md->attribute & EFI_MEMORY_XP)
550                 pf |= _PAGE_NX;
551
552         if (!(md->attribute & EFI_MEMORY_RO))
553                 pf |= _PAGE_RW;
554
555         if (sev_active())
556                 pf |= _PAGE_ENC;
557
558         return efi_update_mappings(md, pf);
559 }
560
561 void __init efi_runtime_update_mappings(void)
562 {
563         efi_memory_desc_t *md;
564
565         if (efi_enabled(EFI_OLD_MEMMAP)) {
566                 if (__supported_pte_mask & _PAGE_NX)
567                         runtime_code_page_mkexec();
568                 return;
569         }
570
571         /*
572          * Use the EFI Memory Attribute Table for mapping permissions if it
573          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
574          */
575         if (efi_enabled(EFI_MEM_ATTR)) {
576                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
577                 return;
578         }
579
580         /*
581          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
582          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
583          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
584          * published by the firmware. Even if we find a buggy implementation of
585          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
586          * EFI_PROPERTIES_TABLE, because of the same reason.
587          */
588
589         if (!efi_enabled(EFI_NX_PE_DATA))
590                 return;
591
592         for_each_efi_memory_desc(md) {
593                 unsigned long pf = 0;
594
595                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
596                         continue;
597
598                 if (!(md->attribute & EFI_MEMORY_WB))
599                         pf |= _PAGE_PCD;
600
601                 if ((md->attribute & EFI_MEMORY_XP) ||
602                         (md->type == EFI_RUNTIME_SERVICES_DATA))
603                         pf |= _PAGE_NX;
604
605                 if (!(md->attribute & EFI_MEMORY_RO) &&
606                         (md->type != EFI_RUNTIME_SERVICES_CODE))
607                         pf |= _PAGE_RW;
608
609                 if (sev_active())
610                         pf |= _PAGE_ENC;
611
612                 efi_update_mappings(md, pf);
613         }
614 }
615
616 void __init efi_dump_pagetable(void)
617 {
618 #ifdef CONFIG_EFI_PGT_DUMP
619         if (efi_enabled(EFI_OLD_MEMMAP))
620                 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
621         else
622                 ptdump_walk_pgd_level(NULL, efi_pgd);
623 #endif
624 }
625
626 #ifdef CONFIG_EFI_MIXED
627 extern efi_status_t efi64_thunk(u32, ...);
628
629 #define runtime_service32(func)                                          \
630 ({                                                                       \
631         u32 table = (u32)(unsigned long)efi.systab;                      \
632         u32 *rt, *___f;                                                  \
633                                                                          \
634         rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));  \
635         ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
636         *___f;                                                           \
637 })
638
639 /*
640  * Switch to the EFI page tables early so that we can access the 1:1
641  * runtime services mappings which are not mapped in any other page
642  * tables. This function must be called before runtime_service32().
643  *
644  * Also, disable interrupts because the IDT points to 64-bit handlers,
645  * which aren't going to function correctly when we switch to 32-bit.
646  */
647 #define efi_thunk(f, ...)                                               \
648 ({                                                                      \
649         efi_status_t __s;                                               \
650         unsigned long __flags;                                          \
651         u32 __func;                                                     \
652                                                                         \
653         local_irq_save(__flags);                                        \
654         arch_efi_call_virt_setup();                                     \
655                                                                         \
656         __func = runtime_service32(f);                                  \
657         __s = efi64_thunk(__func, __VA_ARGS__);                         \
658                                                                         \
659         arch_efi_call_virt_teardown();                                  \
660         local_irq_restore(__flags);                                     \
661                                                                         \
662         __s;                                                            \
663 })
664
665 efi_status_t efi_thunk_set_virtual_address_map(
666         void *phys_set_virtual_address_map,
667         unsigned long memory_map_size,
668         unsigned long descriptor_size,
669         u32 descriptor_version,
670         efi_memory_desc_t *virtual_map)
671 {
672         efi_status_t status;
673         unsigned long flags;
674         u32 func;
675
676         efi_sync_low_kernel_mappings();
677         local_irq_save(flags);
678
679         efi_scratch.prev_cr3 = __read_cr3();
680         write_cr3((unsigned long)efi_scratch.efi_pgt);
681         __flush_tlb_all();
682
683         func = (u32)(unsigned long)phys_set_virtual_address_map;
684         status = efi64_thunk(func, memory_map_size, descriptor_size,
685                              descriptor_version, virtual_map);
686
687         write_cr3(efi_scratch.prev_cr3);
688         __flush_tlb_all();
689         local_irq_restore(flags);
690
691         return status;
692 }
693
694 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
695 {
696         efi_status_t status;
697         u32 phys_tm, phys_tc;
698
699         spin_lock(&rtc_lock);
700
701         phys_tm = virt_to_phys_or_null(tm);
702         phys_tc = virt_to_phys_or_null(tc);
703
704         status = efi_thunk(get_time, phys_tm, phys_tc);
705
706         spin_unlock(&rtc_lock);
707
708         return status;
709 }
710
711 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
712 {
713         efi_status_t status;
714         u32 phys_tm;
715
716         spin_lock(&rtc_lock);
717
718         phys_tm = virt_to_phys_or_null(tm);
719
720         status = efi_thunk(set_time, phys_tm);
721
722         spin_unlock(&rtc_lock);
723
724         return status;
725 }
726
727 static efi_status_t
728 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
729                           efi_time_t *tm)
730 {
731         efi_status_t status;
732         u32 phys_enabled, phys_pending, phys_tm;
733
734         spin_lock(&rtc_lock);
735
736         phys_enabled = virt_to_phys_or_null(enabled);
737         phys_pending = virt_to_phys_or_null(pending);
738         phys_tm = virt_to_phys_or_null(tm);
739
740         status = efi_thunk(get_wakeup_time, phys_enabled,
741                              phys_pending, phys_tm);
742
743         spin_unlock(&rtc_lock);
744
745         return status;
746 }
747
748 static efi_status_t
749 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
750 {
751         efi_status_t status;
752         u32 phys_tm;
753
754         spin_lock(&rtc_lock);
755
756         phys_tm = virt_to_phys_or_null(tm);
757
758         status = efi_thunk(set_wakeup_time, enabled, phys_tm);
759
760         spin_unlock(&rtc_lock);
761
762         return status;
763 }
764
765 static unsigned long efi_name_size(efi_char16_t *name)
766 {
767         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
768 }
769
770 static efi_status_t
771 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
772                        u32 *attr, unsigned long *data_size, void *data)
773 {
774         efi_status_t status;
775         u32 phys_name, phys_vendor, phys_attr;
776         u32 phys_data_size, phys_data;
777
778         phys_data_size = virt_to_phys_or_null(data_size);
779         phys_vendor = virt_to_phys_or_null(vendor);
780         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
781         phys_attr = virt_to_phys_or_null(attr);
782         phys_data = virt_to_phys_or_null_size(data, *data_size);
783
784         status = efi_thunk(get_variable, phys_name, phys_vendor,
785                            phys_attr, phys_data_size, phys_data);
786
787         return status;
788 }
789
790 static efi_status_t
791 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
792                        u32 attr, unsigned long data_size, void *data)
793 {
794         u32 phys_name, phys_vendor, phys_data;
795         efi_status_t status;
796
797         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
798         phys_vendor = virt_to_phys_or_null(vendor);
799         phys_data = virt_to_phys_or_null_size(data, data_size);
800
801         /* If data_size is > sizeof(u32) we've got problems */
802         status = efi_thunk(set_variable, phys_name, phys_vendor,
803                            attr, data_size, phys_data);
804
805         return status;
806 }
807
808 static efi_status_t
809 efi_thunk_get_next_variable(unsigned long *name_size,
810                             efi_char16_t *name,
811                             efi_guid_t *vendor)
812 {
813         efi_status_t status;
814         u32 phys_name_size, phys_name, phys_vendor;
815
816         phys_name_size = virt_to_phys_or_null(name_size);
817         phys_vendor = virt_to_phys_or_null(vendor);
818         phys_name = virt_to_phys_or_null_size(name, *name_size);
819
820         status = efi_thunk(get_next_variable, phys_name_size,
821                            phys_name, phys_vendor);
822
823         return status;
824 }
825
826 static efi_status_t
827 efi_thunk_get_next_high_mono_count(u32 *count)
828 {
829         efi_status_t status;
830         u32 phys_count;
831
832         phys_count = virt_to_phys_or_null(count);
833         status = efi_thunk(get_next_high_mono_count, phys_count);
834
835         return status;
836 }
837
838 static void
839 efi_thunk_reset_system(int reset_type, efi_status_t status,
840                        unsigned long data_size, efi_char16_t *data)
841 {
842         u32 phys_data;
843
844         phys_data = virt_to_phys_or_null_size(data, data_size);
845
846         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
847 }
848
849 static efi_status_t
850 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
851                          unsigned long count, unsigned long sg_list)
852 {
853         /*
854          * To properly support this function we would need to repackage
855          * 'capsules' because the firmware doesn't understand 64-bit
856          * pointers.
857          */
858         return EFI_UNSUPPORTED;
859 }
860
861 static efi_status_t
862 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
863                               u64 *remaining_space,
864                               u64 *max_variable_size)
865 {
866         efi_status_t status;
867         u32 phys_storage, phys_remaining, phys_max;
868
869         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
870                 return EFI_UNSUPPORTED;
871
872         phys_storage = virt_to_phys_or_null(storage_space);
873         phys_remaining = virt_to_phys_or_null(remaining_space);
874         phys_max = virt_to_phys_or_null(max_variable_size);
875
876         status = efi_thunk(query_variable_info, attr, phys_storage,
877                            phys_remaining, phys_max);
878
879         return status;
880 }
881
882 static efi_status_t
883 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
884                              unsigned long count, u64 *max_size,
885                              int *reset_type)
886 {
887         /*
888          * To properly support this function we would need to repackage
889          * 'capsules' because the firmware doesn't understand 64-bit
890          * pointers.
891          */
892         return EFI_UNSUPPORTED;
893 }
894
895 void efi_thunk_runtime_setup(void)
896 {
897         efi.get_time = efi_thunk_get_time;
898         efi.set_time = efi_thunk_set_time;
899         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
900         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
901         efi.get_variable = efi_thunk_get_variable;
902         efi.get_next_variable = efi_thunk_get_next_variable;
903         efi.set_variable = efi_thunk_set_variable;
904         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
905         efi.reset_system = efi_thunk_reset_system;
906         efi.query_variable_info = efi_thunk_query_variable_info;
907         efi.update_capsule = efi_thunk_update_capsule;
908         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
909 }
910 #endif /* CONFIG_EFI_MIXED */