Merge branches 'atags', 'cache-l2x0', 'clkdev', 'fixes', 'integrator', 'misc', 'opcod...
[linux-2.6-block.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/export.h>
35 #include <linux/bootmem.h>
36 #include <linux/memblock.h>
37 #include <linux/spinlock.h>
38 #include <linux/uaccess.h>
39 #include <linux/time.h>
40 #include <linux/io.h>
41 #include <linux/reboot.h>
42 #include <linux/bcd.h>
43
44 #include <asm/setup.h>
45 #include <asm/efi.h>
46 #include <asm/time.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlbflush.h>
49 #include <asm/x86_init.h>
50
51 #define EFI_DEBUG       1
52
53 int efi_enabled;
54 EXPORT_SYMBOL(efi_enabled);
55
56 struct efi __read_mostly efi = {
57         .mps        = EFI_INVALID_TABLE_ADDR,
58         .acpi       = EFI_INVALID_TABLE_ADDR,
59         .acpi20     = EFI_INVALID_TABLE_ADDR,
60         .smbios     = EFI_INVALID_TABLE_ADDR,
61         .sal_systab = EFI_INVALID_TABLE_ADDR,
62         .boot_info  = EFI_INVALID_TABLE_ADDR,
63         .hcdp       = EFI_INVALID_TABLE_ADDR,
64         .uga        = EFI_INVALID_TABLE_ADDR,
65         .uv_systab  = EFI_INVALID_TABLE_ADDR,
66 };
67 EXPORT_SYMBOL(efi);
68
69 struct efi_memory_map memmap;
70
71 bool efi_64bit;
72 static bool efi_native;
73
74 static struct efi efi_phys __initdata;
75 static efi_system_table_t efi_systab __initdata;
76
77 static int __init setup_noefi(char *arg)
78 {
79         efi_enabled = 0;
80         return 0;
81 }
82 early_param("noefi", setup_noefi);
83
84 int add_efi_memmap;
85 EXPORT_SYMBOL(add_efi_memmap);
86
87 static int __init setup_add_efi_memmap(char *arg)
88 {
89         add_efi_memmap = 1;
90         return 0;
91 }
92 early_param("add_efi_memmap", setup_add_efi_memmap);
93
94
95 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
96 {
97         unsigned long flags;
98         efi_status_t status;
99
100         spin_lock_irqsave(&rtc_lock, flags);
101         status = efi_call_virt2(get_time, tm, tc);
102         spin_unlock_irqrestore(&rtc_lock, flags);
103         return status;
104 }
105
106 static efi_status_t virt_efi_set_time(efi_time_t *tm)
107 {
108         unsigned long flags;
109         efi_status_t status;
110
111         spin_lock_irqsave(&rtc_lock, flags);
112         status = efi_call_virt1(set_time, tm);
113         spin_unlock_irqrestore(&rtc_lock, flags);
114         return status;
115 }
116
117 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
118                                              efi_bool_t *pending,
119                                              efi_time_t *tm)
120 {
121         unsigned long flags;
122         efi_status_t status;
123
124         spin_lock_irqsave(&rtc_lock, flags);
125         status = efi_call_virt3(get_wakeup_time,
126                                 enabled, pending, tm);
127         spin_unlock_irqrestore(&rtc_lock, flags);
128         return status;
129 }
130
131 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
132 {
133         unsigned long flags;
134         efi_status_t status;
135
136         spin_lock_irqsave(&rtc_lock, flags);
137         status = efi_call_virt2(set_wakeup_time,
138                                 enabled, tm);
139         spin_unlock_irqrestore(&rtc_lock, flags);
140         return status;
141 }
142
143 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
144                                           efi_guid_t *vendor,
145                                           u32 *attr,
146                                           unsigned long *data_size,
147                                           void *data)
148 {
149         return efi_call_virt5(get_variable,
150                               name, vendor, attr,
151                               data_size, data);
152 }
153
154 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
155                                                efi_char16_t *name,
156                                                efi_guid_t *vendor)
157 {
158         return efi_call_virt3(get_next_variable,
159                               name_size, name, vendor);
160 }
161
162 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
163                                           efi_guid_t *vendor,
164                                           u32 attr,
165                                           unsigned long data_size,
166                                           void *data)
167 {
168         return efi_call_virt5(set_variable,
169                               name, vendor, attr,
170                               data_size, data);
171 }
172
173 static efi_status_t virt_efi_query_variable_info(u32 attr,
174                                                  u64 *storage_space,
175                                                  u64 *remaining_space,
176                                                  u64 *max_variable_size)
177 {
178         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
179                 return EFI_UNSUPPORTED;
180
181         return efi_call_virt4(query_variable_info, attr, storage_space,
182                               remaining_space, max_variable_size);
183 }
184
185 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
186 {
187         return efi_call_virt1(get_next_high_mono_count, count);
188 }
189
190 static void virt_efi_reset_system(int reset_type,
191                                   efi_status_t status,
192                                   unsigned long data_size,
193                                   efi_char16_t *data)
194 {
195         efi_call_virt4(reset_system, reset_type, status,
196                        data_size, data);
197 }
198
199 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
200                                             unsigned long count,
201                                             unsigned long sg_list)
202 {
203         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
204                 return EFI_UNSUPPORTED;
205
206         return efi_call_virt3(update_capsule, capsules, count, sg_list);
207 }
208
209 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
210                                                 unsigned long count,
211                                                 u64 *max_size,
212                                                 int *reset_type)
213 {
214         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
215                 return EFI_UNSUPPORTED;
216
217         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
218                               reset_type);
219 }
220
221 static efi_status_t __init phys_efi_set_virtual_address_map(
222         unsigned long memory_map_size,
223         unsigned long descriptor_size,
224         u32 descriptor_version,
225         efi_memory_desc_t *virtual_map)
226 {
227         efi_status_t status;
228
229         efi_call_phys_prelog();
230         status = efi_call_phys4(efi_phys.set_virtual_address_map,
231                                 memory_map_size, descriptor_size,
232                                 descriptor_version, virtual_map);
233         efi_call_phys_epilog();
234         return status;
235 }
236
237 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
238                                              efi_time_cap_t *tc)
239 {
240         unsigned long flags;
241         efi_status_t status;
242
243         spin_lock_irqsave(&rtc_lock, flags);
244         efi_call_phys_prelog();
245         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
246                                 virt_to_phys(tc));
247         efi_call_phys_epilog();
248         spin_unlock_irqrestore(&rtc_lock, flags);
249         return status;
250 }
251
252 int efi_set_rtc_mmss(unsigned long nowtime)
253 {
254         int real_seconds, real_minutes;
255         efi_status_t    status;
256         efi_time_t      eft;
257         efi_time_cap_t  cap;
258
259         status = efi.get_time(&eft, &cap);
260         if (status != EFI_SUCCESS) {
261                 pr_err("Oops: efitime: can't read time!\n");
262                 return -1;
263         }
264
265         real_seconds = nowtime % 60;
266         real_minutes = nowtime / 60;
267         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
268                 real_minutes += 30;
269         real_minutes %= 60;
270         eft.minute = real_minutes;
271         eft.second = real_seconds;
272
273         status = efi.set_time(&eft);
274         if (status != EFI_SUCCESS) {
275                 pr_err("Oops: efitime: can't write time!\n");
276                 return -1;
277         }
278         return 0;
279 }
280
281 unsigned long efi_get_time(void)
282 {
283         efi_status_t status;
284         efi_time_t eft;
285         efi_time_cap_t cap;
286
287         status = efi.get_time(&eft, &cap);
288         if (status != EFI_SUCCESS)
289                 pr_err("Oops: efitime: can't read time!\n");
290
291         return mktime(eft.year, eft.month, eft.day, eft.hour,
292                       eft.minute, eft.second);
293 }
294
295 /*
296  * Tell the kernel about the EFI memory map.  This might include
297  * more than the max 128 entries that can fit in the e820 legacy
298  * (zeropage) memory map.
299  */
300
301 static void __init do_add_efi_memmap(void)
302 {
303         void *p;
304
305         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
306                 efi_memory_desc_t *md = p;
307                 unsigned long long start = md->phys_addr;
308                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
309                 int e820_type;
310
311                 switch (md->type) {
312                 case EFI_LOADER_CODE:
313                 case EFI_LOADER_DATA:
314                 case EFI_BOOT_SERVICES_CODE:
315                 case EFI_BOOT_SERVICES_DATA:
316                 case EFI_CONVENTIONAL_MEMORY:
317                         if (md->attribute & EFI_MEMORY_WB)
318                                 e820_type = E820_RAM;
319                         else
320                                 e820_type = E820_RESERVED;
321                         break;
322                 case EFI_ACPI_RECLAIM_MEMORY:
323                         e820_type = E820_ACPI;
324                         break;
325                 case EFI_ACPI_MEMORY_NVS:
326                         e820_type = E820_NVS;
327                         break;
328                 case EFI_UNUSABLE_MEMORY:
329                         e820_type = E820_UNUSABLE;
330                         break;
331                 default:
332                         /*
333                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
334                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
335                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
336                          */
337                         e820_type = E820_RESERVED;
338                         break;
339                 }
340                 e820_add_region(start, size, e820_type);
341         }
342         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
343 }
344
345 int __init efi_memblock_x86_reserve_range(void)
346 {
347         unsigned long pmap;
348
349 #ifdef CONFIG_X86_32
350         /* Can't handle data above 4GB at this time */
351         if (boot_params.efi_info.efi_memmap_hi) {
352                 pr_err("Memory map is above 4GB, disabling EFI.\n");
353                 return -EINVAL;
354         }
355         pmap = boot_params.efi_info.efi_memmap;
356 #else
357         pmap = (boot_params.efi_info.efi_memmap |
358                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
359 #endif
360         memmap.phys_map = (void *)pmap;
361         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
362                 boot_params.efi_info.efi_memdesc_size;
363         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
364         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
365         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
366
367         return 0;
368 }
369
370 #if EFI_DEBUG
371 static void __init print_efi_memmap(void)
372 {
373         efi_memory_desc_t *md;
374         void *p;
375         int i;
376
377         for (p = memmap.map, i = 0;
378              p < memmap.map_end;
379              p += memmap.desc_size, i++) {
380                 md = p;
381                 pr_info("mem%02u: type=%u, attr=0x%llx, "
382                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
383                         i, md->type, md->attribute, md->phys_addr,
384                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
385                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
386         }
387 }
388 #endif  /*  EFI_DEBUG  */
389
390 void __init efi_reserve_boot_services(void)
391 {
392         void *p;
393
394         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
395                 efi_memory_desc_t *md = p;
396                 u64 start = md->phys_addr;
397                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
398
399                 if (md->type != EFI_BOOT_SERVICES_CODE &&
400                     md->type != EFI_BOOT_SERVICES_DATA)
401                         continue;
402                 /* Only reserve where possible:
403                  * - Not within any already allocated areas
404                  * - Not over any memory area (really needed, if above?)
405                  * - Not within any part of the kernel
406                  * - Not the bios reserved area
407                 */
408                 if ((start+size >= virt_to_phys(_text)
409                                 && start <= virt_to_phys(_end)) ||
410                         !e820_all_mapped(start, start+size, E820_RAM) ||
411                         memblock_is_region_reserved(start, size)) {
412                         /* Could not reserve, skip it */
413                         md->num_pages = 0;
414                         memblock_dbg("Could not reserve boot range "
415                                         "[0x%010llx-0x%010llx]\n",
416                                                 start, start+size-1);
417                 } else
418                         memblock_reserve(start, size);
419         }
420 }
421
422 static void __init efi_free_boot_services(void)
423 {
424         void *p;
425
426         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
427                 efi_memory_desc_t *md = p;
428                 unsigned long long start = md->phys_addr;
429                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
430
431                 if (md->type != EFI_BOOT_SERVICES_CODE &&
432                     md->type != EFI_BOOT_SERVICES_DATA)
433                         continue;
434
435                 /* Could not reserve boot area */
436                 if (!size)
437                         continue;
438
439                 free_bootmem_late(start, size);
440         }
441 }
442
443 static int __init efi_systab_init(void *phys)
444 {
445         if (efi_64bit) {
446                 efi_system_table_64_t *systab64;
447                 u64 tmp = 0;
448
449                 systab64 = early_ioremap((unsigned long)phys,
450                                          sizeof(*systab64));
451                 if (systab64 == NULL) {
452                         pr_err("Couldn't map the system table!\n");
453                         return -ENOMEM;
454                 }
455
456                 efi_systab.hdr = systab64->hdr;
457                 efi_systab.fw_vendor = systab64->fw_vendor;
458                 tmp |= systab64->fw_vendor;
459                 efi_systab.fw_revision = systab64->fw_revision;
460                 efi_systab.con_in_handle = systab64->con_in_handle;
461                 tmp |= systab64->con_in_handle;
462                 efi_systab.con_in = systab64->con_in;
463                 tmp |= systab64->con_in;
464                 efi_systab.con_out_handle = systab64->con_out_handle;
465                 tmp |= systab64->con_out_handle;
466                 efi_systab.con_out = systab64->con_out;
467                 tmp |= systab64->con_out;
468                 efi_systab.stderr_handle = systab64->stderr_handle;
469                 tmp |= systab64->stderr_handle;
470                 efi_systab.stderr = systab64->stderr;
471                 tmp |= systab64->stderr;
472                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
473                 tmp |= systab64->runtime;
474                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
475                 tmp |= systab64->boottime;
476                 efi_systab.nr_tables = systab64->nr_tables;
477                 efi_systab.tables = systab64->tables;
478                 tmp |= systab64->tables;
479
480                 early_iounmap(systab64, sizeof(*systab64));
481 #ifdef CONFIG_X86_32
482                 if (tmp >> 32) {
483                         pr_err("EFI data located above 4GB, disabling EFI.\n");
484                         return -EINVAL;
485                 }
486 #endif
487         } else {
488                 efi_system_table_32_t *systab32;
489
490                 systab32 = early_ioremap((unsigned long)phys,
491                                          sizeof(*systab32));
492                 if (systab32 == NULL) {
493                         pr_err("Couldn't map the system table!\n");
494                         return -ENOMEM;
495                 }
496
497                 efi_systab.hdr = systab32->hdr;
498                 efi_systab.fw_vendor = systab32->fw_vendor;
499                 efi_systab.fw_revision = systab32->fw_revision;
500                 efi_systab.con_in_handle = systab32->con_in_handle;
501                 efi_systab.con_in = systab32->con_in;
502                 efi_systab.con_out_handle = systab32->con_out_handle;
503                 efi_systab.con_out = systab32->con_out;
504                 efi_systab.stderr_handle = systab32->stderr_handle;
505                 efi_systab.stderr = systab32->stderr;
506                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
507                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
508                 efi_systab.nr_tables = systab32->nr_tables;
509                 efi_systab.tables = systab32->tables;
510
511                 early_iounmap(systab32, sizeof(*systab32));
512         }
513
514         efi.systab = &efi_systab;
515
516         /*
517          * Verify the EFI Table
518          */
519         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
520                 pr_err("System table signature incorrect!\n");
521                 return -EINVAL;
522         }
523         if ((efi.systab->hdr.revision >> 16) == 0)
524                 pr_err("Warning: System table version "
525                        "%d.%02d, expected 1.00 or greater!\n",
526                        efi.systab->hdr.revision >> 16,
527                        efi.systab->hdr.revision & 0xffff);
528
529         return 0;
530 }
531
532 static int __init efi_config_init(u64 tables, int nr_tables)
533 {
534         void *config_tables, *tablep;
535         int i, sz;
536
537         if (efi_64bit)
538                 sz = sizeof(efi_config_table_64_t);
539         else
540                 sz = sizeof(efi_config_table_32_t);
541
542         /*
543          * Let's see what config tables the firmware passed to us.
544          */
545         config_tables = early_ioremap(tables, nr_tables * sz);
546         if (config_tables == NULL) {
547                 pr_err("Could not map Configuration table!\n");
548                 return -ENOMEM;
549         }
550
551         tablep = config_tables;
552         pr_info("");
553         for (i = 0; i < efi.systab->nr_tables; i++) {
554                 efi_guid_t guid;
555                 unsigned long table;
556
557                 if (efi_64bit) {
558                         u64 table64;
559                         guid = ((efi_config_table_64_t *)tablep)->guid;
560                         table64 = ((efi_config_table_64_t *)tablep)->table;
561                         table = table64;
562 #ifdef CONFIG_X86_32
563                         if (table64 >> 32) {
564                                 pr_cont("\n");
565                                 pr_err("Table located above 4GB, disabling EFI.\n");
566                                 early_iounmap(config_tables,
567                                               efi.systab->nr_tables * sz);
568                                 return -EINVAL;
569                         }
570 #endif
571                 } else {
572                         guid = ((efi_config_table_32_t *)tablep)->guid;
573                         table = ((efi_config_table_32_t *)tablep)->table;
574                 }
575                 if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
576                         efi.mps = table;
577                         pr_cont(" MPS=0x%lx ", table);
578                 } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
579                         efi.acpi20 = table;
580                         pr_cont(" ACPI 2.0=0x%lx ", table);
581                 } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
582                         efi.acpi = table;
583                         pr_cont(" ACPI=0x%lx ", table);
584                 } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
585                         efi.smbios = table;
586                         pr_cont(" SMBIOS=0x%lx ", table);
587 #ifdef CONFIG_X86_UV
588                 } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
589                         efi.uv_systab = table;
590                         pr_cont(" UVsystab=0x%lx ", table);
591 #endif
592                 } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
593                         efi.hcdp = table;
594                         pr_cont(" HCDP=0x%lx ", table);
595                 } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
596                         efi.uga = table;
597                         pr_cont(" UGA=0x%lx ", table);
598                 }
599                 tablep += sz;
600         }
601         pr_cont("\n");
602         early_iounmap(config_tables, efi.systab->nr_tables * sz);
603         return 0;
604 }
605
606 static int __init efi_runtime_init(void)
607 {
608         efi_runtime_services_t *runtime;
609
610         /*
611          * Check out the runtime services table. We need to map
612          * the runtime services table so that we can grab the physical
613          * address of several of the EFI runtime functions, needed to
614          * set the firmware into virtual mode.
615          */
616         runtime = early_ioremap((unsigned long)efi.systab->runtime,
617                                 sizeof(efi_runtime_services_t));
618         if (!runtime) {
619                 pr_err("Could not map the runtime service table!\n");
620                 return -ENOMEM;
621         }
622         /*
623          * We will only need *early* access to the following
624          * two EFI runtime services before set_virtual_address_map
625          * is invoked.
626          */
627         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
628         efi_phys.set_virtual_address_map =
629                 (efi_set_virtual_address_map_t *)
630                 runtime->set_virtual_address_map;
631         /*
632          * Make efi_get_time can be called before entering
633          * virtual mode.
634          */
635         efi.get_time = phys_efi_get_time;
636         early_iounmap(runtime, sizeof(efi_runtime_services_t));
637
638         return 0;
639 }
640
641 static int __init efi_memmap_init(void)
642 {
643         /* Map the EFI memory map */
644         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
645                                    memmap.nr_map * memmap.desc_size);
646         if (memmap.map == NULL) {
647                 pr_err("Could not map the memory map!\n");
648                 return -ENOMEM;
649         }
650         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
651
652         if (add_efi_memmap)
653                 do_add_efi_memmap();
654
655         return 0;
656 }
657
658 void __init efi_init(void)
659 {
660         efi_char16_t *c16;
661         char vendor[100] = "unknown";
662         int i = 0;
663         void *tmp;
664
665 #ifdef CONFIG_X86_32
666         if (boot_params.efi_info.efi_systab_hi ||
667             boot_params.efi_info.efi_memmap_hi) {
668                 pr_info("Table located above 4GB, disabling EFI.\n");
669                 efi_enabled = 0;
670                 return;
671         }
672         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
673         efi_native = !efi_64bit;
674 #else
675         efi_phys.systab = (efi_system_table_t *)
676                           (boot_params.efi_info.efi_systab |
677                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
678         efi_native = efi_64bit;
679 #endif
680
681         if (efi_systab_init(efi_phys.systab)) {
682                 efi_enabled = 0;
683                 return;
684         }
685
686         /*
687          * Show what we know for posterity
688          */
689         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
690         if (c16) {
691                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
692                         vendor[i] = *c16++;
693                 vendor[i] = '\0';
694         } else
695                 pr_err("Could not map the firmware vendor!\n");
696         early_iounmap(tmp, 2);
697
698         pr_info("EFI v%u.%.02u by %s\n",
699                 efi.systab->hdr.revision >> 16,
700                 efi.systab->hdr.revision & 0xffff, vendor);
701
702         if (efi_config_init(efi.systab->tables, efi.systab->nr_tables)) {
703                 efi_enabled = 0;
704                 return;
705         }
706
707         /*
708          * Note: We currently don't support runtime services on an EFI
709          * that doesn't match the kernel 32/64-bit mode.
710          */
711
712         if (!efi_native)
713                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
714         else if (efi_runtime_init()) {
715                 efi_enabled = 0;
716                 return;
717         }
718
719         if (efi_memmap_init()) {
720                 efi_enabled = 0;
721                 return;
722         }
723 #ifdef CONFIG_X86_32
724         if (efi_native) {
725                 x86_platform.get_wallclock = efi_get_time;
726                 x86_platform.set_wallclock = efi_set_rtc_mmss;
727         }
728 #endif
729
730 #if EFI_DEBUG
731         print_efi_memmap();
732 #endif
733 }
734
735 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
736 {
737         u64 addr, npages;
738
739         addr = md->virt_addr;
740         npages = md->num_pages;
741
742         memrange_efi_to_native(&addr, &npages);
743
744         if (executable)
745                 set_memory_x(addr, npages);
746         else
747                 set_memory_nx(addr, npages);
748 }
749
750 static void __init runtime_code_page_mkexec(void)
751 {
752         efi_memory_desc_t *md;
753         void *p;
754
755         /* Make EFI runtime service code area executable */
756         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
757                 md = p;
758
759                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
760                         continue;
761
762                 efi_set_executable(md, true);
763         }
764 }
765
766 /*
767  * This function will switch the EFI runtime services to virtual mode.
768  * Essentially, look through the EFI memmap and map every region that
769  * has the runtime attribute bit set in its memory descriptor and update
770  * that memory descriptor with the virtual address obtained from ioremap().
771  * This enables the runtime services to be called without having to
772  * thunk back into physical mode for every invocation.
773  */
774 void __init efi_enter_virtual_mode(void)
775 {
776         efi_memory_desc_t *md, *prev_md = NULL;
777         efi_status_t status;
778         unsigned long size;
779         u64 end, systab, addr, npages, end_pfn;
780         void *p, *va, *new_memmap = NULL;
781         int count = 0;
782
783         efi.systab = NULL;
784
785         /*
786          * We don't do virtual mode, since we don't do runtime services, on
787          * non-native EFI
788          */
789
790         if (!efi_native)
791                 goto out;
792
793         /* Merge contiguous regions of the same type and attribute */
794         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
795                 u64 prev_size;
796                 md = p;
797
798                 if (!prev_md) {
799                         prev_md = md;
800                         continue;
801                 }
802
803                 if (prev_md->type != md->type ||
804                     prev_md->attribute != md->attribute) {
805                         prev_md = md;
806                         continue;
807                 }
808
809                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
810
811                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
812                         prev_md->num_pages += md->num_pages;
813                         md->type = EFI_RESERVED_TYPE;
814                         md->attribute = 0;
815                         continue;
816                 }
817                 prev_md = md;
818         }
819
820         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
821                 md = p;
822                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
823                     md->type != EFI_BOOT_SERVICES_CODE &&
824                     md->type != EFI_BOOT_SERVICES_DATA)
825                         continue;
826
827                 size = md->num_pages << EFI_PAGE_SHIFT;
828                 end = md->phys_addr + size;
829
830                 end_pfn = PFN_UP(end);
831                 if (end_pfn <= max_low_pfn_mapped
832                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
833                         && end_pfn <= max_pfn_mapped))
834                         va = __va(md->phys_addr);
835                 else
836                         va = efi_ioremap(md->phys_addr, size, md->type);
837
838                 md->virt_addr = (u64) (unsigned long) va;
839
840                 if (!va) {
841                         pr_err("ioremap of 0x%llX failed!\n",
842                                (unsigned long long)md->phys_addr);
843                         continue;
844                 }
845
846                 if (!(md->attribute & EFI_MEMORY_WB)) {
847                         addr = md->virt_addr;
848                         npages = md->num_pages;
849                         memrange_efi_to_native(&addr, &npages);
850                         set_memory_uc(addr, npages);
851                 }
852
853                 systab = (u64) (unsigned long) efi_phys.systab;
854                 if (md->phys_addr <= systab && systab < end) {
855                         systab += md->virt_addr - md->phys_addr;
856                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
857                 }
858                 new_memmap = krealloc(new_memmap,
859                                       (count + 1) * memmap.desc_size,
860                                       GFP_KERNEL);
861                 memcpy(new_memmap + (count * memmap.desc_size), md,
862                        memmap.desc_size);
863                 count++;
864         }
865
866         BUG_ON(!efi.systab);
867
868         status = phys_efi_set_virtual_address_map(
869                 memmap.desc_size * count,
870                 memmap.desc_size,
871                 memmap.desc_version,
872                 (efi_memory_desc_t *)__pa(new_memmap));
873
874         if (status != EFI_SUCCESS) {
875                 pr_alert("Unable to switch EFI into virtual mode "
876                          "(status=%lx)!\n", status);
877                 panic("EFI call to SetVirtualAddressMap() failed!");
878         }
879
880         /*
881          * Thankfully, it does seem that no runtime services other than
882          * SetVirtualAddressMap() will touch boot services code, so we can
883          * get rid of it all at this point
884          */
885         efi_free_boot_services();
886
887         /*
888          * Now that EFI is in virtual mode, update the function
889          * pointers in the runtime service table to the new virtual addresses.
890          *
891          * Call EFI services through wrapper functions.
892          */
893         efi.get_time = virt_efi_get_time;
894         efi.set_time = virt_efi_set_time;
895         efi.get_wakeup_time = virt_efi_get_wakeup_time;
896         efi.set_wakeup_time = virt_efi_set_wakeup_time;
897         efi.get_variable = virt_efi_get_variable;
898         efi.get_next_variable = virt_efi_get_next_variable;
899         efi.set_variable = virt_efi_set_variable;
900         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
901         efi.reset_system = virt_efi_reset_system;
902         efi.set_virtual_address_map = NULL;
903         efi.query_variable_info = virt_efi_query_variable_info;
904         efi.update_capsule = virt_efi_update_capsule;
905         efi.query_capsule_caps = virt_efi_query_capsule_caps;
906         if (__supported_pte_mask & _PAGE_NX)
907                 runtime_code_page_mkexec();
908
909 out:
910         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
911         memmap.map = NULL;
912         kfree(new_memmap);
913 }
914
915 /*
916  * Convenience functions to obtain memory types and attributes
917  */
918 u32 efi_mem_type(unsigned long phys_addr)
919 {
920         efi_memory_desc_t *md;
921         void *p;
922
923         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
924                 md = p;
925                 if ((md->phys_addr <= phys_addr) &&
926                     (phys_addr < (md->phys_addr +
927                                   (md->num_pages << EFI_PAGE_SHIFT))))
928                         return md->type;
929         }
930         return 0;
931 }
932
933 u64 efi_mem_attributes(unsigned long phys_addr)
934 {
935         efi_memory_desc_t *md;
936         void *p;
937
938         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
939                 md = p;
940                 if ((md->phys_addr <= phys_addr) &&
941                     (phys_addr < (md->phys_addr +
942                                   (md->num_pages << EFI_PAGE_SHIFT))))
943                         return md->attribute;
944         }
945         return 0;
946 }