Merge tag 'nfs-for-5.20-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-block.git] / arch / x86 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18
19 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
20 {
21         if (len == 1)
22                 *ptr = bytes;
23         else if (len == 2)
24                 *(u16 *)ptr = bytes;
25         else {
26                 *(u32 *)ptr = bytes;
27                 barrier();
28         }
29         return ptr + len;
30 }
31
32 #define EMIT(bytes, len) \
33         do { prog = emit_code(prog, bytes, len); } while (0)
34
35 #define EMIT1(b1)               EMIT(b1, 1)
36 #define EMIT2(b1, b2)           EMIT((b1) + ((b2) << 8), 2)
37 #define EMIT3(b1, b2, b3)       EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
38 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
39
40 #define EMIT1_off32(b1, off) \
41         do { EMIT1(b1); EMIT(off, 4); } while (0)
42 #define EMIT2_off32(b1, b2, off) \
43         do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
44 #define EMIT3_off32(b1, b2, b3, off) \
45         do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
46 #define EMIT4_off32(b1, b2, b3, b4, off) \
47         do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
48
49 #ifdef CONFIG_X86_KERNEL_IBT
50 #define EMIT_ENDBR()    EMIT(gen_endbr(), 4)
51 #else
52 #define EMIT_ENDBR()
53 #endif
54
55 static bool is_imm8(int value)
56 {
57         return value <= 127 && value >= -128;
58 }
59
60 static bool is_simm32(s64 value)
61 {
62         return value == (s64)(s32)value;
63 }
64
65 static bool is_uimm32(u64 value)
66 {
67         return value == (u64)(u32)value;
68 }
69
70 /* mov dst, src */
71 #define EMIT_mov(DST, SRC)                                                               \
72         do {                                                                             \
73                 if (DST != SRC)                                                          \
74                         EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
75         } while (0)
76
77 static int bpf_size_to_x86_bytes(int bpf_size)
78 {
79         if (bpf_size == BPF_W)
80                 return 4;
81         else if (bpf_size == BPF_H)
82                 return 2;
83         else if (bpf_size == BPF_B)
84                 return 1;
85         else if (bpf_size == BPF_DW)
86                 return 4; /* imm32 */
87         else
88                 return 0;
89 }
90
91 /*
92  * List of x86 cond jumps opcodes (. + s8)
93  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
94  */
95 #define X86_JB  0x72
96 #define X86_JAE 0x73
97 #define X86_JE  0x74
98 #define X86_JNE 0x75
99 #define X86_JBE 0x76
100 #define X86_JA  0x77
101 #define X86_JL  0x7C
102 #define X86_JGE 0x7D
103 #define X86_JLE 0x7E
104 #define X86_JG  0x7F
105
106 /* Pick a register outside of BPF range for JIT internal work */
107 #define AUX_REG (MAX_BPF_JIT_REG + 1)
108 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
109
110 /*
111  * The following table maps BPF registers to x86-64 registers.
112  *
113  * x86-64 register R12 is unused, since if used as base address
114  * register in load/store instructions, it always needs an
115  * extra byte of encoding and is callee saved.
116  *
117  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
118  * trampoline. x86-64 register R10 is used for blinding (if enabled).
119  */
120 static const int reg2hex[] = {
121         [BPF_REG_0] = 0,  /* RAX */
122         [BPF_REG_1] = 7,  /* RDI */
123         [BPF_REG_2] = 6,  /* RSI */
124         [BPF_REG_3] = 2,  /* RDX */
125         [BPF_REG_4] = 1,  /* RCX */
126         [BPF_REG_5] = 0,  /* R8  */
127         [BPF_REG_6] = 3,  /* RBX callee saved */
128         [BPF_REG_7] = 5,  /* R13 callee saved */
129         [BPF_REG_8] = 6,  /* R14 callee saved */
130         [BPF_REG_9] = 7,  /* R15 callee saved */
131         [BPF_REG_FP] = 5, /* RBP readonly */
132         [BPF_REG_AX] = 2, /* R10 temp register */
133         [AUX_REG] = 3,    /* R11 temp register */
134         [X86_REG_R9] = 1, /* R9 register, 6th function argument */
135 };
136
137 static const int reg2pt_regs[] = {
138         [BPF_REG_0] = offsetof(struct pt_regs, ax),
139         [BPF_REG_1] = offsetof(struct pt_regs, di),
140         [BPF_REG_2] = offsetof(struct pt_regs, si),
141         [BPF_REG_3] = offsetof(struct pt_regs, dx),
142         [BPF_REG_4] = offsetof(struct pt_regs, cx),
143         [BPF_REG_5] = offsetof(struct pt_regs, r8),
144         [BPF_REG_6] = offsetof(struct pt_regs, bx),
145         [BPF_REG_7] = offsetof(struct pt_regs, r13),
146         [BPF_REG_8] = offsetof(struct pt_regs, r14),
147         [BPF_REG_9] = offsetof(struct pt_regs, r15),
148 };
149
150 /*
151  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
152  * which need extra byte of encoding.
153  * rax,rcx,...,rbp have simpler encoding
154  */
155 static bool is_ereg(u32 reg)
156 {
157         return (1 << reg) & (BIT(BPF_REG_5) |
158                              BIT(AUX_REG) |
159                              BIT(BPF_REG_7) |
160                              BIT(BPF_REG_8) |
161                              BIT(BPF_REG_9) |
162                              BIT(X86_REG_R9) |
163                              BIT(BPF_REG_AX));
164 }
165
166 /*
167  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
168  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
169  * of encoding. al,cl,dl,bl have simpler encoding.
170  */
171 static bool is_ereg_8l(u32 reg)
172 {
173         return is_ereg(reg) ||
174             (1 << reg) & (BIT(BPF_REG_1) |
175                           BIT(BPF_REG_2) |
176                           BIT(BPF_REG_FP));
177 }
178
179 static bool is_axreg(u32 reg)
180 {
181         return reg == BPF_REG_0;
182 }
183
184 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
185 static u8 add_1mod(u8 byte, u32 reg)
186 {
187         if (is_ereg(reg))
188                 byte |= 1;
189         return byte;
190 }
191
192 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
193 {
194         if (is_ereg(r1))
195                 byte |= 1;
196         if (is_ereg(r2))
197                 byte |= 4;
198         return byte;
199 }
200
201 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
202 static u8 add_1reg(u8 byte, u32 dst_reg)
203 {
204         return byte + reg2hex[dst_reg];
205 }
206
207 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
208 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
209 {
210         return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
211 }
212
213 /* Some 1-byte opcodes for binary ALU operations */
214 static u8 simple_alu_opcodes[] = {
215         [BPF_ADD] = 0x01,
216         [BPF_SUB] = 0x29,
217         [BPF_AND] = 0x21,
218         [BPF_OR] = 0x09,
219         [BPF_XOR] = 0x31,
220         [BPF_LSH] = 0xE0,
221         [BPF_RSH] = 0xE8,
222         [BPF_ARSH] = 0xF8,
223 };
224
225 static void jit_fill_hole(void *area, unsigned int size)
226 {
227         /* Fill whole space with INT3 instructions */
228         memset(area, 0xcc, size);
229 }
230
231 int bpf_arch_text_invalidate(void *dst, size_t len)
232 {
233         return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
234 }
235
236 struct jit_context {
237         int cleanup_addr; /* Epilogue code offset */
238
239         /*
240          * Program specific offsets of labels in the code; these rely on the
241          * JIT doing at least 2 passes, recording the position on the first
242          * pass, only to generate the correct offset on the second pass.
243          */
244         int tail_call_direct_label;
245         int tail_call_indirect_label;
246 };
247
248 /* Maximum number of bytes emitted while JITing one eBPF insn */
249 #define BPF_MAX_INSN_SIZE       128
250 #define BPF_INSN_SAFETY         64
251
252 /* Number of bytes emit_patch() needs to generate instructions */
253 #define X86_PATCH_SIZE          5
254 /* Number of bytes that will be skipped on tailcall */
255 #define X86_TAIL_CALL_OFFSET    (11 + ENDBR_INSN_SIZE)
256
257 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
258 {
259         u8 *prog = *pprog;
260
261         if (callee_regs_used[0])
262                 EMIT1(0x53);         /* push rbx */
263         if (callee_regs_used[1])
264                 EMIT2(0x41, 0x55);   /* push r13 */
265         if (callee_regs_used[2])
266                 EMIT2(0x41, 0x56);   /* push r14 */
267         if (callee_regs_used[3])
268                 EMIT2(0x41, 0x57);   /* push r15 */
269         *pprog = prog;
270 }
271
272 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
273 {
274         u8 *prog = *pprog;
275
276         if (callee_regs_used[3])
277                 EMIT2(0x41, 0x5F);   /* pop r15 */
278         if (callee_regs_used[2])
279                 EMIT2(0x41, 0x5E);   /* pop r14 */
280         if (callee_regs_used[1])
281                 EMIT2(0x41, 0x5D);   /* pop r13 */
282         if (callee_regs_used[0])
283                 EMIT1(0x5B);         /* pop rbx */
284         *pprog = prog;
285 }
286
287 /*
288  * Emit x86-64 prologue code for BPF program.
289  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
290  * while jumping to another program
291  */
292 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
293                           bool tail_call_reachable, bool is_subprog)
294 {
295         u8 *prog = *pprog;
296
297         /* BPF trampoline can be made to work without these nops,
298          * but let's waste 5 bytes for now and optimize later
299          */
300         EMIT_ENDBR();
301         memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
302         prog += X86_PATCH_SIZE;
303         if (!ebpf_from_cbpf) {
304                 if (tail_call_reachable && !is_subprog)
305                         EMIT2(0x31, 0xC0); /* xor eax, eax */
306                 else
307                         EMIT2(0x66, 0x90); /* nop2 */
308         }
309         EMIT1(0x55);             /* push rbp */
310         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
311
312         /* X86_TAIL_CALL_OFFSET is here */
313         EMIT_ENDBR();
314
315         /* sub rsp, rounded_stack_depth */
316         if (stack_depth)
317                 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
318         if (tail_call_reachable)
319                 EMIT1(0x50);         /* push rax */
320         *pprog = prog;
321 }
322
323 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
324 {
325         u8 *prog = *pprog;
326         s64 offset;
327
328         offset = func - (ip + X86_PATCH_SIZE);
329         if (!is_simm32(offset)) {
330                 pr_err("Target call %p is out of range\n", func);
331                 return -ERANGE;
332         }
333         EMIT1_off32(opcode, offset);
334         *pprog = prog;
335         return 0;
336 }
337
338 static int emit_call(u8 **pprog, void *func, void *ip)
339 {
340         return emit_patch(pprog, func, ip, 0xE8);
341 }
342
343 static int emit_jump(u8 **pprog, void *func, void *ip)
344 {
345         return emit_patch(pprog, func, ip, 0xE9);
346 }
347
348 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
349                                 void *old_addr, void *new_addr)
350 {
351         const u8 *nop_insn = x86_nops[5];
352         u8 old_insn[X86_PATCH_SIZE];
353         u8 new_insn[X86_PATCH_SIZE];
354         u8 *prog;
355         int ret;
356
357         memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
358         if (old_addr) {
359                 prog = old_insn;
360                 ret = t == BPF_MOD_CALL ?
361                       emit_call(&prog, old_addr, ip) :
362                       emit_jump(&prog, old_addr, ip);
363                 if (ret)
364                         return ret;
365         }
366
367         memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
368         if (new_addr) {
369                 prog = new_insn;
370                 ret = t == BPF_MOD_CALL ?
371                       emit_call(&prog, new_addr, ip) :
372                       emit_jump(&prog, new_addr, ip);
373                 if (ret)
374                         return ret;
375         }
376
377         ret = -EBUSY;
378         mutex_lock(&text_mutex);
379         if (memcmp(ip, old_insn, X86_PATCH_SIZE))
380                 goto out;
381         ret = 1;
382         if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
383                 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
384                 ret = 0;
385         }
386 out:
387         mutex_unlock(&text_mutex);
388         return ret;
389 }
390
391 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
392                        void *old_addr, void *new_addr)
393 {
394         if (!is_kernel_text((long)ip) &&
395             !is_bpf_text_address((long)ip))
396                 /* BPF poking in modules is not supported */
397                 return -EINVAL;
398
399         /*
400          * See emit_prologue(), for IBT builds the trampoline hook is preceded
401          * with an ENDBR instruction.
402          */
403         if (is_endbr(*(u32 *)ip))
404                 ip += ENDBR_INSN_SIZE;
405
406         return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
407 }
408
409 #define EMIT_LFENCE()   EMIT3(0x0F, 0xAE, 0xE8)
410
411 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
412 {
413         u8 *prog = *pprog;
414
415         if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
416                 EMIT_LFENCE();
417                 EMIT2(0xFF, 0xE0 + reg);
418         } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
419                 OPTIMIZER_HIDE_VAR(reg);
420                 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
421         } else {
422                 EMIT2(0xFF, 0xE0 + reg);
423         }
424
425         *pprog = prog;
426 }
427
428 static void emit_return(u8 **pprog, u8 *ip)
429 {
430         u8 *prog = *pprog;
431
432         if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
433                 emit_jump(&prog, &__x86_return_thunk, ip);
434         } else {
435                 EMIT1(0xC3);            /* ret */
436                 if (IS_ENABLED(CONFIG_SLS))
437                         EMIT1(0xCC);    /* int3 */
438         }
439
440         *pprog = prog;
441 }
442
443 /*
444  * Generate the following code:
445  *
446  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
447  *   if (index >= array->map.max_entries)
448  *     goto out;
449  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
450  *     goto out;
451  *   prog = array->ptrs[index];
452  *   if (prog == NULL)
453  *     goto out;
454  *   goto *(prog->bpf_func + prologue_size);
455  * out:
456  */
457 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
458                                         u32 stack_depth, u8 *ip,
459                                         struct jit_context *ctx)
460 {
461         int tcc_off = -4 - round_up(stack_depth, 8);
462         u8 *prog = *pprog, *start = *pprog;
463         int offset;
464
465         /*
466          * rdi - pointer to ctx
467          * rsi - pointer to bpf_array
468          * rdx - index in bpf_array
469          */
470
471         /*
472          * if (index >= array->map.max_entries)
473          *      goto out;
474          */
475         EMIT2(0x89, 0xD2);                        /* mov edx, edx */
476         EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
477               offsetof(struct bpf_array, map.max_entries));
478
479         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
480         EMIT2(X86_JBE, offset);                   /* jbe out */
481
482         /*
483          * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
484          *      goto out;
485          */
486         EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
487         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
488
489         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
490         EMIT2(X86_JAE, offset);                   /* jae out */
491         EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
492         EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
493
494         /* prog = array->ptrs[index]; */
495         EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
496                     offsetof(struct bpf_array, ptrs));
497
498         /*
499          * if (prog == NULL)
500          *      goto out;
501          */
502         EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
503
504         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
505         EMIT2(X86_JE, offset);                    /* je out */
506
507         pop_callee_regs(&prog, callee_regs_used);
508
509         EMIT1(0x58);                              /* pop rax */
510         if (stack_depth)
511                 EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
512                             round_up(stack_depth, 8));
513
514         /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
515         EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
516               offsetof(struct bpf_prog, bpf_func));
517         EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
518               X86_TAIL_CALL_OFFSET);
519         /*
520          * Now we're ready to jump into next BPF program
521          * rdi == ctx (1st arg)
522          * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
523          */
524         emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
525
526         /* out: */
527         ctx->tail_call_indirect_label = prog - start;
528         *pprog = prog;
529 }
530
531 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
532                                       u8 **pprog, u8 *ip,
533                                       bool *callee_regs_used, u32 stack_depth,
534                                       struct jit_context *ctx)
535 {
536         int tcc_off = -4 - round_up(stack_depth, 8);
537         u8 *prog = *pprog, *start = *pprog;
538         int offset;
539
540         /*
541          * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
542          *      goto out;
543          */
544         EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
545         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
546
547         offset = ctx->tail_call_direct_label - (prog + 2 - start);
548         EMIT2(X86_JAE, offset);                       /* jae out */
549         EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
550         EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
551
552         poke->tailcall_bypass = ip + (prog - start);
553         poke->adj_off = X86_TAIL_CALL_OFFSET;
554         poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
555         poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
556
557         emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
558                   poke->tailcall_bypass);
559
560         pop_callee_regs(&prog, callee_regs_used);
561         EMIT1(0x58);                                  /* pop rax */
562         if (stack_depth)
563                 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
564
565         memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
566         prog += X86_PATCH_SIZE;
567
568         /* out: */
569         ctx->tail_call_direct_label = prog - start;
570
571         *pprog = prog;
572 }
573
574 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
575 {
576         struct bpf_jit_poke_descriptor *poke;
577         struct bpf_array *array;
578         struct bpf_prog *target;
579         int i, ret;
580
581         for (i = 0; i < prog->aux->size_poke_tab; i++) {
582                 poke = &prog->aux->poke_tab[i];
583                 if (poke->aux && poke->aux != prog->aux)
584                         continue;
585
586                 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
587
588                 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
589                         continue;
590
591                 array = container_of(poke->tail_call.map, struct bpf_array, map);
592                 mutex_lock(&array->aux->poke_mutex);
593                 target = array->ptrs[poke->tail_call.key];
594                 if (target) {
595                         ret = __bpf_arch_text_poke(poke->tailcall_target,
596                                                    BPF_MOD_JUMP, NULL,
597                                                    (u8 *)target->bpf_func +
598                                                    poke->adj_off);
599                         BUG_ON(ret < 0);
600                         ret = __bpf_arch_text_poke(poke->tailcall_bypass,
601                                                    BPF_MOD_JUMP,
602                                                    (u8 *)poke->tailcall_target +
603                                                    X86_PATCH_SIZE, NULL);
604                         BUG_ON(ret < 0);
605                 }
606                 WRITE_ONCE(poke->tailcall_target_stable, true);
607                 mutex_unlock(&array->aux->poke_mutex);
608         }
609 }
610
611 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
612                            u32 dst_reg, const u32 imm32)
613 {
614         u8 *prog = *pprog;
615         u8 b1, b2, b3;
616
617         /*
618          * Optimization: if imm32 is positive, use 'mov %eax, imm32'
619          * (which zero-extends imm32) to save 2 bytes.
620          */
621         if (sign_propagate && (s32)imm32 < 0) {
622                 /* 'mov %rax, imm32' sign extends imm32 */
623                 b1 = add_1mod(0x48, dst_reg);
624                 b2 = 0xC7;
625                 b3 = 0xC0;
626                 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
627                 goto done;
628         }
629
630         /*
631          * Optimization: if imm32 is zero, use 'xor %eax, %eax'
632          * to save 3 bytes.
633          */
634         if (imm32 == 0) {
635                 if (is_ereg(dst_reg))
636                         EMIT1(add_2mod(0x40, dst_reg, dst_reg));
637                 b2 = 0x31; /* xor */
638                 b3 = 0xC0;
639                 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
640                 goto done;
641         }
642
643         /* mov %eax, imm32 */
644         if (is_ereg(dst_reg))
645                 EMIT1(add_1mod(0x40, dst_reg));
646         EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
647 done:
648         *pprog = prog;
649 }
650
651 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
652                            const u32 imm32_hi, const u32 imm32_lo)
653 {
654         u8 *prog = *pprog;
655
656         if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
657                 /*
658                  * For emitting plain u32, where sign bit must not be
659                  * propagated LLVM tends to load imm64 over mov32
660                  * directly, so save couple of bytes by just doing
661                  * 'mov %eax, imm32' instead.
662                  */
663                 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
664         } else {
665                 /* movabsq %rax, imm64 */
666                 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
667                 EMIT(imm32_lo, 4);
668                 EMIT(imm32_hi, 4);
669         }
670
671         *pprog = prog;
672 }
673
674 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
675 {
676         u8 *prog = *pprog;
677
678         if (is64) {
679                 /* mov dst, src */
680                 EMIT_mov(dst_reg, src_reg);
681         } else {
682                 /* mov32 dst, src */
683                 if (is_ereg(dst_reg) || is_ereg(src_reg))
684                         EMIT1(add_2mod(0x40, dst_reg, src_reg));
685                 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
686         }
687
688         *pprog = prog;
689 }
690
691 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
692 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
693 {
694         u8 *prog = *pprog;
695
696         if (is_imm8(off)) {
697                 /* 1-byte signed displacement.
698                  *
699                  * If off == 0 we could skip this and save one extra byte, but
700                  * special case of x86 R13 which always needs an offset is not
701                  * worth the hassle
702                  */
703                 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
704         } else {
705                 /* 4-byte signed displacement */
706                 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
707         }
708         *pprog = prog;
709 }
710
711 /*
712  * Emit a REX byte if it will be necessary to address these registers
713  */
714 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
715 {
716         u8 *prog = *pprog;
717
718         if (is64)
719                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
720         else if (is_ereg(dst_reg) || is_ereg(src_reg))
721                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
722         *pprog = prog;
723 }
724
725 /*
726  * Similar version of maybe_emit_mod() for a single register
727  */
728 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
729 {
730         u8 *prog = *pprog;
731
732         if (is64)
733                 EMIT1(add_1mod(0x48, reg));
734         else if (is_ereg(reg))
735                 EMIT1(add_1mod(0x40, reg));
736         *pprog = prog;
737 }
738
739 /* LDX: dst_reg = *(u8*)(src_reg + off) */
740 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
741 {
742         u8 *prog = *pprog;
743
744         switch (size) {
745         case BPF_B:
746                 /* Emit 'movzx rax, byte ptr [rax + off]' */
747                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
748                 break;
749         case BPF_H:
750                 /* Emit 'movzx rax, word ptr [rax + off]' */
751                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
752                 break;
753         case BPF_W:
754                 /* Emit 'mov eax, dword ptr [rax+0x14]' */
755                 if (is_ereg(dst_reg) || is_ereg(src_reg))
756                         EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
757                 else
758                         EMIT1(0x8B);
759                 break;
760         case BPF_DW:
761                 /* Emit 'mov rax, qword ptr [rax+0x14]' */
762                 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
763                 break;
764         }
765         emit_insn_suffix(&prog, src_reg, dst_reg, off);
766         *pprog = prog;
767 }
768
769 /* STX: *(u8*)(dst_reg + off) = src_reg */
770 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
771 {
772         u8 *prog = *pprog;
773
774         switch (size) {
775         case BPF_B:
776                 /* Emit 'mov byte ptr [rax + off], al' */
777                 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
778                         /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
779                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
780                 else
781                         EMIT1(0x88);
782                 break;
783         case BPF_H:
784                 if (is_ereg(dst_reg) || is_ereg(src_reg))
785                         EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
786                 else
787                         EMIT2(0x66, 0x89);
788                 break;
789         case BPF_W:
790                 if (is_ereg(dst_reg) || is_ereg(src_reg))
791                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
792                 else
793                         EMIT1(0x89);
794                 break;
795         case BPF_DW:
796                 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
797                 break;
798         }
799         emit_insn_suffix(&prog, dst_reg, src_reg, off);
800         *pprog = prog;
801 }
802
803 static int emit_atomic(u8 **pprog, u8 atomic_op,
804                        u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
805 {
806         u8 *prog = *pprog;
807
808         EMIT1(0xF0); /* lock prefix */
809
810         maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
811
812         /* emit opcode */
813         switch (atomic_op) {
814         case BPF_ADD:
815         case BPF_AND:
816         case BPF_OR:
817         case BPF_XOR:
818                 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
819                 EMIT1(simple_alu_opcodes[atomic_op]);
820                 break;
821         case BPF_ADD | BPF_FETCH:
822                 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
823                 EMIT2(0x0F, 0xC1);
824                 break;
825         case BPF_XCHG:
826                 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
827                 EMIT1(0x87);
828                 break;
829         case BPF_CMPXCHG:
830                 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
831                 EMIT2(0x0F, 0xB1);
832                 break;
833         default:
834                 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
835                 return -EFAULT;
836         }
837
838         emit_insn_suffix(&prog, dst_reg, src_reg, off);
839
840         *pprog = prog;
841         return 0;
842 }
843
844 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
845 {
846         u32 reg = x->fixup >> 8;
847
848         /* jump over faulting load and clear dest register */
849         *(unsigned long *)((void *)regs + reg) = 0;
850         regs->ip += x->fixup & 0xff;
851         return true;
852 }
853
854 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
855                              bool *regs_used, bool *tail_call_seen)
856 {
857         int i;
858
859         for (i = 1; i <= insn_cnt; i++, insn++) {
860                 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
861                         *tail_call_seen = true;
862                 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
863                         regs_used[0] = true;
864                 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
865                         regs_used[1] = true;
866                 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
867                         regs_used[2] = true;
868                 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
869                         regs_used[3] = true;
870         }
871 }
872
873 static void emit_nops(u8 **pprog, int len)
874 {
875         u8 *prog = *pprog;
876         int i, noplen;
877
878         while (len > 0) {
879                 noplen = len;
880
881                 if (noplen > ASM_NOP_MAX)
882                         noplen = ASM_NOP_MAX;
883
884                 for (i = 0; i < noplen; i++)
885                         EMIT1(x86_nops[noplen][i]);
886                 len -= noplen;
887         }
888
889         *pprog = prog;
890 }
891
892 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
893
894 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
895                   int oldproglen, struct jit_context *ctx, bool jmp_padding)
896 {
897         bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
898         struct bpf_insn *insn = bpf_prog->insnsi;
899         bool callee_regs_used[4] = {};
900         int insn_cnt = bpf_prog->len;
901         bool tail_call_seen = false;
902         bool seen_exit = false;
903         u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
904         int i, excnt = 0;
905         int ilen, proglen = 0;
906         u8 *prog = temp;
907         int err;
908
909         detect_reg_usage(insn, insn_cnt, callee_regs_used,
910                          &tail_call_seen);
911
912         /* tail call's presence in current prog implies it is reachable */
913         tail_call_reachable |= tail_call_seen;
914
915         emit_prologue(&prog, bpf_prog->aux->stack_depth,
916                       bpf_prog_was_classic(bpf_prog), tail_call_reachable,
917                       bpf_prog->aux->func_idx != 0);
918         push_callee_regs(&prog, callee_regs_used);
919
920         ilen = prog - temp;
921         if (rw_image)
922                 memcpy(rw_image + proglen, temp, ilen);
923         proglen += ilen;
924         addrs[0] = proglen;
925         prog = temp;
926
927         for (i = 1; i <= insn_cnt; i++, insn++) {
928                 const s32 imm32 = insn->imm;
929                 u32 dst_reg = insn->dst_reg;
930                 u32 src_reg = insn->src_reg;
931                 u8 b2 = 0, b3 = 0;
932                 u8 *start_of_ldx;
933                 s64 jmp_offset;
934                 u8 jmp_cond;
935                 u8 *func;
936                 int nops;
937
938                 switch (insn->code) {
939                         /* ALU */
940                 case BPF_ALU | BPF_ADD | BPF_X:
941                 case BPF_ALU | BPF_SUB | BPF_X:
942                 case BPF_ALU | BPF_AND | BPF_X:
943                 case BPF_ALU | BPF_OR | BPF_X:
944                 case BPF_ALU | BPF_XOR | BPF_X:
945                 case BPF_ALU64 | BPF_ADD | BPF_X:
946                 case BPF_ALU64 | BPF_SUB | BPF_X:
947                 case BPF_ALU64 | BPF_AND | BPF_X:
948                 case BPF_ALU64 | BPF_OR | BPF_X:
949                 case BPF_ALU64 | BPF_XOR | BPF_X:
950                         maybe_emit_mod(&prog, dst_reg, src_reg,
951                                        BPF_CLASS(insn->code) == BPF_ALU64);
952                         b2 = simple_alu_opcodes[BPF_OP(insn->code)];
953                         EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
954                         break;
955
956                 case BPF_ALU64 | BPF_MOV | BPF_X:
957                 case BPF_ALU | BPF_MOV | BPF_X:
958                         emit_mov_reg(&prog,
959                                      BPF_CLASS(insn->code) == BPF_ALU64,
960                                      dst_reg, src_reg);
961                         break;
962
963                         /* neg dst */
964                 case BPF_ALU | BPF_NEG:
965                 case BPF_ALU64 | BPF_NEG:
966                         maybe_emit_1mod(&prog, dst_reg,
967                                         BPF_CLASS(insn->code) == BPF_ALU64);
968                         EMIT2(0xF7, add_1reg(0xD8, dst_reg));
969                         break;
970
971                 case BPF_ALU | BPF_ADD | BPF_K:
972                 case BPF_ALU | BPF_SUB | BPF_K:
973                 case BPF_ALU | BPF_AND | BPF_K:
974                 case BPF_ALU | BPF_OR | BPF_K:
975                 case BPF_ALU | BPF_XOR | BPF_K:
976                 case BPF_ALU64 | BPF_ADD | BPF_K:
977                 case BPF_ALU64 | BPF_SUB | BPF_K:
978                 case BPF_ALU64 | BPF_AND | BPF_K:
979                 case BPF_ALU64 | BPF_OR | BPF_K:
980                 case BPF_ALU64 | BPF_XOR | BPF_K:
981                         maybe_emit_1mod(&prog, dst_reg,
982                                         BPF_CLASS(insn->code) == BPF_ALU64);
983
984                         /*
985                          * b3 holds 'normal' opcode, b2 short form only valid
986                          * in case dst is eax/rax.
987                          */
988                         switch (BPF_OP(insn->code)) {
989                         case BPF_ADD:
990                                 b3 = 0xC0;
991                                 b2 = 0x05;
992                                 break;
993                         case BPF_SUB:
994                                 b3 = 0xE8;
995                                 b2 = 0x2D;
996                                 break;
997                         case BPF_AND:
998                                 b3 = 0xE0;
999                                 b2 = 0x25;
1000                                 break;
1001                         case BPF_OR:
1002                                 b3 = 0xC8;
1003                                 b2 = 0x0D;
1004                                 break;
1005                         case BPF_XOR:
1006                                 b3 = 0xF0;
1007                                 b2 = 0x35;
1008                                 break;
1009                         }
1010
1011                         if (is_imm8(imm32))
1012                                 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1013                         else if (is_axreg(dst_reg))
1014                                 EMIT1_off32(b2, imm32);
1015                         else
1016                                 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1017                         break;
1018
1019                 case BPF_ALU64 | BPF_MOV | BPF_K:
1020                 case BPF_ALU | BPF_MOV | BPF_K:
1021                         emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1022                                        dst_reg, imm32);
1023                         break;
1024
1025                 case BPF_LD | BPF_IMM | BPF_DW:
1026                         emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1027                         insn++;
1028                         i++;
1029                         break;
1030
1031                         /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1032                 case BPF_ALU | BPF_MOD | BPF_X:
1033                 case BPF_ALU | BPF_DIV | BPF_X:
1034                 case BPF_ALU | BPF_MOD | BPF_K:
1035                 case BPF_ALU | BPF_DIV | BPF_K:
1036                 case BPF_ALU64 | BPF_MOD | BPF_X:
1037                 case BPF_ALU64 | BPF_DIV | BPF_X:
1038                 case BPF_ALU64 | BPF_MOD | BPF_K:
1039                 case BPF_ALU64 | BPF_DIV | BPF_K: {
1040                         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1041
1042                         if (dst_reg != BPF_REG_0)
1043                                 EMIT1(0x50); /* push rax */
1044                         if (dst_reg != BPF_REG_3)
1045                                 EMIT1(0x52); /* push rdx */
1046
1047                         if (BPF_SRC(insn->code) == BPF_X) {
1048                                 if (src_reg == BPF_REG_0 ||
1049                                     src_reg == BPF_REG_3) {
1050                                         /* mov r11, src_reg */
1051                                         EMIT_mov(AUX_REG, src_reg);
1052                                         src_reg = AUX_REG;
1053                                 }
1054                         } else {
1055                                 /* mov r11, imm32 */
1056                                 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1057                                 src_reg = AUX_REG;
1058                         }
1059
1060                         if (dst_reg != BPF_REG_0)
1061                                 /* mov rax, dst_reg */
1062                                 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1063
1064                         /*
1065                          * xor edx, edx
1066                          * equivalent to 'xor rdx, rdx', but one byte less
1067                          */
1068                         EMIT2(0x31, 0xd2);
1069
1070                         /* div src_reg */
1071                         maybe_emit_1mod(&prog, src_reg, is64);
1072                         EMIT2(0xF7, add_1reg(0xF0, src_reg));
1073
1074                         if (BPF_OP(insn->code) == BPF_MOD &&
1075                             dst_reg != BPF_REG_3)
1076                                 /* mov dst_reg, rdx */
1077                                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1078                         else if (BPF_OP(insn->code) == BPF_DIV &&
1079                                  dst_reg != BPF_REG_0)
1080                                 /* mov dst_reg, rax */
1081                                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1082
1083                         if (dst_reg != BPF_REG_3)
1084                                 EMIT1(0x5A); /* pop rdx */
1085                         if (dst_reg != BPF_REG_0)
1086                                 EMIT1(0x58); /* pop rax */
1087                         break;
1088                 }
1089
1090                 case BPF_ALU | BPF_MUL | BPF_K:
1091                 case BPF_ALU64 | BPF_MUL | BPF_K:
1092                         maybe_emit_mod(&prog, dst_reg, dst_reg,
1093                                        BPF_CLASS(insn->code) == BPF_ALU64);
1094
1095                         if (is_imm8(imm32))
1096                                 /* imul dst_reg, dst_reg, imm8 */
1097                                 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1098                                       imm32);
1099                         else
1100                                 /* imul dst_reg, dst_reg, imm32 */
1101                                 EMIT2_off32(0x69,
1102                                             add_2reg(0xC0, dst_reg, dst_reg),
1103                                             imm32);
1104                         break;
1105
1106                 case BPF_ALU | BPF_MUL | BPF_X:
1107                 case BPF_ALU64 | BPF_MUL | BPF_X:
1108                         maybe_emit_mod(&prog, src_reg, dst_reg,
1109                                        BPF_CLASS(insn->code) == BPF_ALU64);
1110
1111                         /* imul dst_reg, src_reg */
1112                         EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1113                         break;
1114
1115                         /* Shifts */
1116                 case BPF_ALU | BPF_LSH | BPF_K:
1117                 case BPF_ALU | BPF_RSH | BPF_K:
1118                 case BPF_ALU | BPF_ARSH | BPF_K:
1119                 case BPF_ALU64 | BPF_LSH | BPF_K:
1120                 case BPF_ALU64 | BPF_RSH | BPF_K:
1121                 case BPF_ALU64 | BPF_ARSH | BPF_K:
1122                         maybe_emit_1mod(&prog, dst_reg,
1123                                         BPF_CLASS(insn->code) == BPF_ALU64);
1124
1125                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1126                         if (imm32 == 1)
1127                                 EMIT2(0xD1, add_1reg(b3, dst_reg));
1128                         else
1129                                 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1130                         break;
1131
1132                 case BPF_ALU | BPF_LSH | BPF_X:
1133                 case BPF_ALU | BPF_RSH | BPF_X:
1134                 case BPF_ALU | BPF_ARSH | BPF_X:
1135                 case BPF_ALU64 | BPF_LSH | BPF_X:
1136                 case BPF_ALU64 | BPF_RSH | BPF_X:
1137                 case BPF_ALU64 | BPF_ARSH | BPF_X:
1138
1139                         /* Check for bad case when dst_reg == rcx */
1140                         if (dst_reg == BPF_REG_4) {
1141                                 /* mov r11, dst_reg */
1142                                 EMIT_mov(AUX_REG, dst_reg);
1143                                 dst_reg = AUX_REG;
1144                         }
1145
1146                         if (src_reg != BPF_REG_4) { /* common case */
1147                                 EMIT1(0x51); /* push rcx */
1148
1149                                 /* mov rcx, src_reg */
1150                                 EMIT_mov(BPF_REG_4, src_reg);
1151                         }
1152
1153                         /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1154                         maybe_emit_1mod(&prog, dst_reg,
1155                                         BPF_CLASS(insn->code) == BPF_ALU64);
1156
1157                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1158                         EMIT2(0xD3, add_1reg(b3, dst_reg));
1159
1160                         if (src_reg != BPF_REG_4)
1161                                 EMIT1(0x59); /* pop rcx */
1162
1163                         if (insn->dst_reg == BPF_REG_4)
1164                                 /* mov dst_reg, r11 */
1165                                 EMIT_mov(insn->dst_reg, AUX_REG);
1166                         break;
1167
1168                 case BPF_ALU | BPF_END | BPF_FROM_BE:
1169                         switch (imm32) {
1170                         case 16:
1171                                 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1172                                 EMIT1(0x66);
1173                                 if (is_ereg(dst_reg))
1174                                         EMIT1(0x41);
1175                                 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1176
1177                                 /* Emit 'movzwl eax, ax' */
1178                                 if (is_ereg(dst_reg))
1179                                         EMIT3(0x45, 0x0F, 0xB7);
1180                                 else
1181                                         EMIT2(0x0F, 0xB7);
1182                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1183                                 break;
1184                         case 32:
1185                                 /* Emit 'bswap eax' to swap lower 4 bytes */
1186                                 if (is_ereg(dst_reg))
1187                                         EMIT2(0x41, 0x0F);
1188                                 else
1189                                         EMIT1(0x0F);
1190                                 EMIT1(add_1reg(0xC8, dst_reg));
1191                                 break;
1192                         case 64:
1193                                 /* Emit 'bswap rax' to swap 8 bytes */
1194                                 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1195                                       add_1reg(0xC8, dst_reg));
1196                                 break;
1197                         }
1198                         break;
1199
1200                 case BPF_ALU | BPF_END | BPF_FROM_LE:
1201                         switch (imm32) {
1202                         case 16:
1203                                 /*
1204                                  * Emit 'movzwl eax, ax' to zero extend 16-bit
1205                                  * into 64 bit
1206                                  */
1207                                 if (is_ereg(dst_reg))
1208                                         EMIT3(0x45, 0x0F, 0xB7);
1209                                 else
1210                                         EMIT2(0x0F, 0xB7);
1211                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1212                                 break;
1213                         case 32:
1214                                 /* Emit 'mov eax, eax' to clear upper 32-bits */
1215                                 if (is_ereg(dst_reg))
1216                                         EMIT1(0x45);
1217                                 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1218                                 break;
1219                         case 64:
1220                                 /* nop */
1221                                 break;
1222                         }
1223                         break;
1224
1225                         /* speculation barrier */
1226                 case BPF_ST | BPF_NOSPEC:
1227                         if (boot_cpu_has(X86_FEATURE_XMM2))
1228                                 EMIT_LFENCE();
1229                         break;
1230
1231                         /* ST: *(u8*)(dst_reg + off) = imm */
1232                 case BPF_ST | BPF_MEM | BPF_B:
1233                         if (is_ereg(dst_reg))
1234                                 EMIT2(0x41, 0xC6);
1235                         else
1236                                 EMIT1(0xC6);
1237                         goto st;
1238                 case BPF_ST | BPF_MEM | BPF_H:
1239                         if (is_ereg(dst_reg))
1240                                 EMIT3(0x66, 0x41, 0xC7);
1241                         else
1242                                 EMIT2(0x66, 0xC7);
1243                         goto st;
1244                 case BPF_ST | BPF_MEM | BPF_W:
1245                         if (is_ereg(dst_reg))
1246                                 EMIT2(0x41, 0xC7);
1247                         else
1248                                 EMIT1(0xC7);
1249                         goto st;
1250                 case BPF_ST | BPF_MEM | BPF_DW:
1251                         EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1252
1253 st:                     if (is_imm8(insn->off))
1254                                 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1255                         else
1256                                 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1257
1258                         EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1259                         break;
1260
1261                         /* STX: *(u8*)(dst_reg + off) = src_reg */
1262                 case BPF_STX | BPF_MEM | BPF_B:
1263                 case BPF_STX | BPF_MEM | BPF_H:
1264                 case BPF_STX | BPF_MEM | BPF_W:
1265                 case BPF_STX | BPF_MEM | BPF_DW:
1266                         emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1267                         break;
1268
1269                         /* LDX: dst_reg = *(u8*)(src_reg + off) */
1270                 case BPF_LDX | BPF_MEM | BPF_B:
1271                 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1272                 case BPF_LDX | BPF_MEM | BPF_H:
1273                 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1274                 case BPF_LDX | BPF_MEM | BPF_W:
1275                 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1276                 case BPF_LDX | BPF_MEM | BPF_DW:
1277                 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1278                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1279                                 /* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1280                                  * add abs(insn->off) to the limit to make sure that negative
1281                                  * offset won't be an issue.
1282                                  * insn->off is s16, so it won't affect valid pointers.
1283                                  */
1284                                 u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1285                                 u8 *end_of_jmp1, *end_of_jmp2;
1286
1287                                 /* Conservatively check that src_reg + insn->off is a kernel address:
1288                                  * 1. src_reg + insn->off >= limit
1289                                  * 2. src_reg + insn->off doesn't become small positive.
1290                                  * Cannot do src_reg + insn->off >= limit in one branch,
1291                                  * since it needs two spare registers, but JIT has only one.
1292                                  */
1293
1294                                 /* movabsq r11, limit */
1295                                 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1296                                 EMIT((u32)limit, 4);
1297                                 EMIT(limit >> 32, 4);
1298                                 /* cmp src_reg, r11 */
1299                                 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1300                                 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1301                                 /* if unsigned '<' goto end_of_jmp2 */
1302                                 EMIT2(X86_JB, 0);
1303                                 end_of_jmp1 = prog;
1304
1305                                 /* mov r11, src_reg */
1306                                 emit_mov_reg(&prog, true, AUX_REG, src_reg);
1307                                 /* add r11, insn->off */
1308                                 maybe_emit_1mod(&prog, AUX_REG, true);
1309                                 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1310                                 /* jmp if not carry to start_of_ldx
1311                                  * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1312                                  * that has to be rejected.
1313                                  */
1314                                 EMIT2(0x73 /* JNC */, 0);
1315                                 end_of_jmp2 = prog;
1316
1317                                 /* xor dst_reg, dst_reg */
1318                                 emit_mov_imm32(&prog, false, dst_reg, 0);
1319                                 /* jmp byte_after_ldx */
1320                                 EMIT2(0xEB, 0);
1321
1322                                 /* populate jmp_offset for JB above to jump to xor dst_reg */
1323                                 end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1324                                 /* populate jmp_offset for JNC above to jump to start_of_ldx */
1325                                 start_of_ldx = prog;
1326                                 end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1327                         }
1328                         emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1329                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1330                                 struct exception_table_entry *ex;
1331                                 u8 *_insn = image + proglen + (start_of_ldx - temp);
1332                                 s64 delta;
1333
1334                                 /* populate jmp_offset for JMP above */
1335                                 start_of_ldx[-1] = prog - start_of_ldx;
1336
1337                                 if (!bpf_prog->aux->extable)
1338                                         break;
1339
1340                                 if (excnt >= bpf_prog->aux->num_exentries) {
1341                                         pr_err("ex gen bug\n");
1342                                         return -EFAULT;
1343                                 }
1344                                 ex = &bpf_prog->aux->extable[excnt++];
1345
1346                                 delta = _insn - (u8 *)&ex->insn;
1347                                 if (!is_simm32(delta)) {
1348                                         pr_err("extable->insn doesn't fit into 32-bit\n");
1349                                         return -EFAULT;
1350                                 }
1351                                 /* switch ex to rw buffer for writes */
1352                                 ex = (void *)rw_image + ((void *)ex - (void *)image);
1353
1354                                 ex->insn = delta;
1355
1356                                 ex->data = EX_TYPE_BPF;
1357
1358                                 if (dst_reg > BPF_REG_9) {
1359                                         pr_err("verifier error\n");
1360                                         return -EFAULT;
1361                                 }
1362                                 /*
1363                                  * Compute size of x86 insn and its target dest x86 register.
1364                                  * ex_handler_bpf() will use lower 8 bits to adjust
1365                                  * pt_regs->ip to jump over this x86 instruction
1366                                  * and upper bits to figure out which pt_regs to zero out.
1367                                  * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1368                                  * of 4 bytes will be ignored and rbx will be zero inited.
1369                                  */
1370                                 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1371                         }
1372                         break;
1373
1374                 case BPF_STX | BPF_ATOMIC | BPF_W:
1375                 case BPF_STX | BPF_ATOMIC | BPF_DW:
1376                         if (insn->imm == (BPF_AND | BPF_FETCH) ||
1377                             insn->imm == (BPF_OR | BPF_FETCH) ||
1378                             insn->imm == (BPF_XOR | BPF_FETCH)) {
1379                                 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1380                                 u32 real_src_reg = src_reg;
1381                                 u32 real_dst_reg = dst_reg;
1382                                 u8 *branch_target;
1383
1384                                 /*
1385                                  * Can't be implemented with a single x86 insn.
1386                                  * Need to do a CMPXCHG loop.
1387                                  */
1388
1389                                 /* Will need RAX as a CMPXCHG operand so save R0 */
1390                                 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1391                                 if (src_reg == BPF_REG_0)
1392                                         real_src_reg = BPF_REG_AX;
1393                                 if (dst_reg == BPF_REG_0)
1394                                         real_dst_reg = BPF_REG_AX;
1395
1396                                 branch_target = prog;
1397                                 /* Load old value */
1398                                 emit_ldx(&prog, BPF_SIZE(insn->code),
1399                                          BPF_REG_0, real_dst_reg, insn->off);
1400                                 /*
1401                                  * Perform the (commutative) operation locally,
1402                                  * put the result in the AUX_REG.
1403                                  */
1404                                 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1405                                 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1406                                 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1407                                       add_2reg(0xC0, AUX_REG, real_src_reg));
1408                                 /* Attempt to swap in new value */
1409                                 err = emit_atomic(&prog, BPF_CMPXCHG,
1410                                                   real_dst_reg, AUX_REG,
1411                                                   insn->off,
1412                                                   BPF_SIZE(insn->code));
1413                                 if (WARN_ON(err))
1414                                         return err;
1415                                 /*
1416                                  * ZF tells us whether we won the race. If it's
1417                                  * cleared we need to try again.
1418                                  */
1419                                 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1420                                 /* Return the pre-modification value */
1421                                 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1422                                 /* Restore R0 after clobbering RAX */
1423                                 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1424                                 break;
1425                         }
1426
1427                         err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1428                                           insn->off, BPF_SIZE(insn->code));
1429                         if (err)
1430                                 return err;
1431                         break;
1432
1433                         /* call */
1434                 case BPF_JMP | BPF_CALL:
1435                         func = (u8 *) __bpf_call_base + imm32;
1436                         if (tail_call_reachable) {
1437                                 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1438                                 EMIT3_off32(0x48, 0x8B, 0x85,
1439                                             -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1440                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1441                                         return -EINVAL;
1442                         } else {
1443                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1444                                         return -EINVAL;
1445                         }
1446                         break;
1447
1448                 case BPF_JMP | BPF_TAIL_CALL:
1449                         if (imm32)
1450                                 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1451                                                           &prog, image + addrs[i - 1],
1452                                                           callee_regs_used,
1453                                                           bpf_prog->aux->stack_depth,
1454                                                           ctx);
1455                         else
1456                                 emit_bpf_tail_call_indirect(&prog,
1457                                                             callee_regs_used,
1458                                                             bpf_prog->aux->stack_depth,
1459                                                             image + addrs[i - 1],
1460                                                             ctx);
1461                         break;
1462
1463                         /* cond jump */
1464                 case BPF_JMP | BPF_JEQ | BPF_X:
1465                 case BPF_JMP | BPF_JNE | BPF_X:
1466                 case BPF_JMP | BPF_JGT | BPF_X:
1467                 case BPF_JMP | BPF_JLT | BPF_X:
1468                 case BPF_JMP | BPF_JGE | BPF_X:
1469                 case BPF_JMP | BPF_JLE | BPF_X:
1470                 case BPF_JMP | BPF_JSGT | BPF_X:
1471                 case BPF_JMP | BPF_JSLT | BPF_X:
1472                 case BPF_JMP | BPF_JSGE | BPF_X:
1473                 case BPF_JMP | BPF_JSLE | BPF_X:
1474                 case BPF_JMP32 | BPF_JEQ | BPF_X:
1475                 case BPF_JMP32 | BPF_JNE | BPF_X:
1476                 case BPF_JMP32 | BPF_JGT | BPF_X:
1477                 case BPF_JMP32 | BPF_JLT | BPF_X:
1478                 case BPF_JMP32 | BPF_JGE | BPF_X:
1479                 case BPF_JMP32 | BPF_JLE | BPF_X:
1480                 case BPF_JMP32 | BPF_JSGT | BPF_X:
1481                 case BPF_JMP32 | BPF_JSLT | BPF_X:
1482                 case BPF_JMP32 | BPF_JSGE | BPF_X:
1483                 case BPF_JMP32 | BPF_JSLE | BPF_X:
1484                         /* cmp dst_reg, src_reg */
1485                         maybe_emit_mod(&prog, dst_reg, src_reg,
1486                                        BPF_CLASS(insn->code) == BPF_JMP);
1487                         EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1488                         goto emit_cond_jmp;
1489
1490                 case BPF_JMP | BPF_JSET | BPF_X:
1491                 case BPF_JMP32 | BPF_JSET | BPF_X:
1492                         /* test dst_reg, src_reg */
1493                         maybe_emit_mod(&prog, dst_reg, src_reg,
1494                                        BPF_CLASS(insn->code) == BPF_JMP);
1495                         EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1496                         goto emit_cond_jmp;
1497
1498                 case BPF_JMP | BPF_JSET | BPF_K:
1499                 case BPF_JMP32 | BPF_JSET | BPF_K:
1500                         /* test dst_reg, imm32 */
1501                         maybe_emit_1mod(&prog, dst_reg,
1502                                         BPF_CLASS(insn->code) == BPF_JMP);
1503                         EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1504                         goto emit_cond_jmp;
1505
1506                 case BPF_JMP | BPF_JEQ | BPF_K:
1507                 case BPF_JMP | BPF_JNE | BPF_K:
1508                 case BPF_JMP | BPF_JGT | BPF_K:
1509                 case BPF_JMP | BPF_JLT | BPF_K:
1510                 case BPF_JMP | BPF_JGE | BPF_K:
1511                 case BPF_JMP | BPF_JLE | BPF_K:
1512                 case BPF_JMP | BPF_JSGT | BPF_K:
1513                 case BPF_JMP | BPF_JSLT | BPF_K:
1514                 case BPF_JMP | BPF_JSGE | BPF_K:
1515                 case BPF_JMP | BPF_JSLE | BPF_K:
1516                 case BPF_JMP32 | BPF_JEQ | BPF_K:
1517                 case BPF_JMP32 | BPF_JNE | BPF_K:
1518                 case BPF_JMP32 | BPF_JGT | BPF_K:
1519                 case BPF_JMP32 | BPF_JLT | BPF_K:
1520                 case BPF_JMP32 | BPF_JGE | BPF_K:
1521                 case BPF_JMP32 | BPF_JLE | BPF_K:
1522                 case BPF_JMP32 | BPF_JSGT | BPF_K:
1523                 case BPF_JMP32 | BPF_JSLT | BPF_K:
1524                 case BPF_JMP32 | BPF_JSGE | BPF_K:
1525                 case BPF_JMP32 | BPF_JSLE | BPF_K:
1526                         /* test dst_reg, dst_reg to save one extra byte */
1527                         if (imm32 == 0) {
1528                                 maybe_emit_mod(&prog, dst_reg, dst_reg,
1529                                                BPF_CLASS(insn->code) == BPF_JMP);
1530                                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1531                                 goto emit_cond_jmp;
1532                         }
1533
1534                         /* cmp dst_reg, imm8/32 */
1535                         maybe_emit_1mod(&prog, dst_reg,
1536                                         BPF_CLASS(insn->code) == BPF_JMP);
1537
1538                         if (is_imm8(imm32))
1539                                 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1540                         else
1541                                 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1542
1543 emit_cond_jmp:          /* Convert BPF opcode to x86 */
1544                         switch (BPF_OP(insn->code)) {
1545                         case BPF_JEQ:
1546                                 jmp_cond = X86_JE;
1547                                 break;
1548                         case BPF_JSET:
1549                         case BPF_JNE:
1550                                 jmp_cond = X86_JNE;
1551                                 break;
1552                         case BPF_JGT:
1553                                 /* GT is unsigned '>', JA in x86 */
1554                                 jmp_cond = X86_JA;
1555                                 break;
1556                         case BPF_JLT:
1557                                 /* LT is unsigned '<', JB in x86 */
1558                                 jmp_cond = X86_JB;
1559                                 break;
1560                         case BPF_JGE:
1561                                 /* GE is unsigned '>=', JAE in x86 */
1562                                 jmp_cond = X86_JAE;
1563                                 break;
1564                         case BPF_JLE:
1565                                 /* LE is unsigned '<=', JBE in x86 */
1566                                 jmp_cond = X86_JBE;
1567                                 break;
1568                         case BPF_JSGT:
1569                                 /* Signed '>', GT in x86 */
1570                                 jmp_cond = X86_JG;
1571                                 break;
1572                         case BPF_JSLT:
1573                                 /* Signed '<', LT in x86 */
1574                                 jmp_cond = X86_JL;
1575                                 break;
1576                         case BPF_JSGE:
1577                                 /* Signed '>=', GE in x86 */
1578                                 jmp_cond = X86_JGE;
1579                                 break;
1580                         case BPF_JSLE:
1581                                 /* Signed '<=', LE in x86 */
1582                                 jmp_cond = X86_JLE;
1583                                 break;
1584                         default: /* to silence GCC warning */
1585                                 return -EFAULT;
1586                         }
1587                         jmp_offset = addrs[i + insn->off] - addrs[i];
1588                         if (is_imm8(jmp_offset)) {
1589                                 if (jmp_padding) {
1590                                         /* To keep the jmp_offset valid, the extra bytes are
1591                                          * padded before the jump insn, so we subtract the
1592                                          * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1593                                          *
1594                                          * If the previous pass already emits an imm8
1595                                          * jmp_cond, then this BPF insn won't shrink, so
1596                                          * "nops" is 0.
1597                                          *
1598                                          * On the other hand, if the previous pass emits an
1599                                          * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1600                                          * keep the image from shrinking further.
1601                                          *
1602                                          * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1603                                          *     is 2 bytes, so the size difference is 4 bytes.
1604                                          */
1605                                         nops = INSN_SZ_DIFF - 2;
1606                                         if (nops != 0 && nops != 4) {
1607                                                 pr_err("unexpected jmp_cond padding: %d bytes\n",
1608                                                        nops);
1609                                                 return -EFAULT;
1610                                         }
1611                                         emit_nops(&prog, nops);
1612                                 }
1613                                 EMIT2(jmp_cond, jmp_offset);
1614                         } else if (is_simm32(jmp_offset)) {
1615                                 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1616                         } else {
1617                                 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1618                                 return -EFAULT;
1619                         }
1620
1621                         break;
1622
1623                 case BPF_JMP | BPF_JA:
1624                         if (insn->off == -1)
1625                                 /* -1 jmp instructions will always jump
1626                                  * backwards two bytes. Explicitly handling
1627                                  * this case avoids wasting too many passes
1628                                  * when there are long sequences of replaced
1629                                  * dead code.
1630                                  */
1631                                 jmp_offset = -2;
1632                         else
1633                                 jmp_offset = addrs[i + insn->off] - addrs[i];
1634
1635                         if (!jmp_offset) {
1636                                 /*
1637                                  * If jmp_padding is enabled, the extra nops will
1638                                  * be inserted. Otherwise, optimize out nop jumps.
1639                                  */
1640                                 if (jmp_padding) {
1641                                         /* There are 3 possible conditions.
1642                                          * (1) This BPF_JA is already optimized out in
1643                                          *     the previous run, so there is no need
1644                                          *     to pad any extra byte (0 byte).
1645                                          * (2) The previous pass emits an imm8 jmp,
1646                                          *     so we pad 2 bytes to match the previous
1647                                          *     insn size.
1648                                          * (3) Similarly, the previous pass emits an
1649                                          *     imm32 jmp, and 5 bytes is padded.
1650                                          */
1651                                         nops = INSN_SZ_DIFF;
1652                                         if (nops != 0 && nops != 2 && nops != 5) {
1653                                                 pr_err("unexpected nop jump padding: %d bytes\n",
1654                                                        nops);
1655                                                 return -EFAULT;
1656                                         }
1657                                         emit_nops(&prog, nops);
1658                                 }
1659                                 break;
1660                         }
1661 emit_jmp:
1662                         if (is_imm8(jmp_offset)) {
1663                                 if (jmp_padding) {
1664                                         /* To avoid breaking jmp_offset, the extra bytes
1665                                          * are padded before the actual jmp insn, so
1666                                          * 2 bytes is subtracted from INSN_SZ_DIFF.
1667                                          *
1668                                          * If the previous pass already emits an imm8
1669                                          * jmp, there is nothing to pad (0 byte).
1670                                          *
1671                                          * If it emits an imm32 jmp (5 bytes) previously
1672                                          * and now an imm8 jmp (2 bytes), then we pad
1673                                          * (5 - 2 = 3) bytes to stop the image from
1674                                          * shrinking further.
1675                                          */
1676                                         nops = INSN_SZ_DIFF - 2;
1677                                         if (nops != 0 && nops != 3) {
1678                                                 pr_err("unexpected jump padding: %d bytes\n",
1679                                                        nops);
1680                                                 return -EFAULT;
1681                                         }
1682                                         emit_nops(&prog, INSN_SZ_DIFF - 2);
1683                                 }
1684                                 EMIT2(0xEB, jmp_offset);
1685                         } else if (is_simm32(jmp_offset)) {
1686                                 EMIT1_off32(0xE9, jmp_offset);
1687                         } else {
1688                                 pr_err("jmp gen bug %llx\n", jmp_offset);
1689                                 return -EFAULT;
1690                         }
1691                         break;
1692
1693                 case BPF_JMP | BPF_EXIT:
1694                         if (seen_exit) {
1695                                 jmp_offset = ctx->cleanup_addr - addrs[i];
1696                                 goto emit_jmp;
1697                         }
1698                         seen_exit = true;
1699                         /* Update cleanup_addr */
1700                         ctx->cleanup_addr = proglen;
1701                         pop_callee_regs(&prog, callee_regs_used);
1702                         EMIT1(0xC9);         /* leave */
1703                         emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1704                         break;
1705
1706                 default:
1707                         /*
1708                          * By design x86-64 JIT should support all BPF instructions.
1709                          * This error will be seen if new instruction was added
1710                          * to the interpreter, but not to the JIT, or if there is
1711                          * junk in bpf_prog.
1712                          */
1713                         pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1714                         return -EINVAL;
1715                 }
1716
1717                 ilen = prog - temp;
1718                 if (ilen > BPF_MAX_INSN_SIZE) {
1719                         pr_err("bpf_jit: fatal insn size error\n");
1720                         return -EFAULT;
1721                 }
1722
1723                 if (image) {
1724                         /*
1725                          * When populating the image, assert that:
1726                          *
1727                          *  i) We do not write beyond the allocated space, and
1728                          * ii) addrs[i] did not change from the prior run, in order
1729                          *     to validate assumptions made for computing branch
1730                          *     displacements.
1731                          */
1732                         if (unlikely(proglen + ilen > oldproglen ||
1733                                      proglen + ilen != addrs[i])) {
1734                                 pr_err("bpf_jit: fatal error\n");
1735                                 return -EFAULT;
1736                         }
1737                         memcpy(rw_image + proglen, temp, ilen);
1738                 }
1739                 proglen += ilen;
1740                 addrs[i] = proglen;
1741                 prog = temp;
1742         }
1743
1744         if (image && excnt != bpf_prog->aux->num_exentries) {
1745                 pr_err("extable is not populated\n");
1746                 return -EFAULT;
1747         }
1748         return proglen;
1749 }
1750
1751 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1752                       int stack_size)
1753 {
1754         int i;
1755         /* Store function arguments to stack.
1756          * For a function that accepts two pointers the sequence will be:
1757          * mov QWORD PTR [rbp-0x10],rdi
1758          * mov QWORD PTR [rbp-0x8],rsi
1759          */
1760         for (i = 0; i < min(nr_args, 6); i++)
1761                 emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1762                          BPF_REG_FP,
1763                          i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1764                          -(stack_size - i * 8));
1765 }
1766
1767 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1768                          int stack_size)
1769 {
1770         int i;
1771
1772         /* Restore function arguments from stack.
1773          * For a function that accepts two pointers the sequence will be:
1774          * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1775          * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1776          */
1777         for (i = 0; i < min(nr_args, 6); i++)
1778                 emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1779                          i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1780                          BPF_REG_FP,
1781                          -(stack_size - i * 8));
1782 }
1783
1784 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1785                            struct bpf_tramp_link *l, int stack_size,
1786                            int run_ctx_off, bool save_ret)
1787 {
1788         void (*exit)(struct bpf_prog *prog, u64 start,
1789                      struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_exit;
1790         u64 (*enter)(struct bpf_prog *prog,
1791                      struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_enter;
1792         u8 *prog = *pprog;
1793         u8 *jmp_insn;
1794         int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1795         struct bpf_prog *p = l->link.prog;
1796         u64 cookie = l->cookie;
1797
1798         /* mov rdi, cookie */
1799         emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1800
1801         /* Prepare struct bpf_tramp_run_ctx.
1802          *
1803          * bpf_tramp_run_ctx is already preserved by
1804          * arch_prepare_bpf_trampoline().
1805          *
1806          * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1807          */
1808         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1809
1810         if (p->aux->sleepable) {
1811                 enter = __bpf_prog_enter_sleepable;
1812                 exit = __bpf_prog_exit_sleepable;
1813         } else if (p->expected_attach_type == BPF_LSM_CGROUP) {
1814                 enter = __bpf_prog_enter_lsm_cgroup;
1815                 exit = __bpf_prog_exit_lsm_cgroup;
1816         }
1817
1818         /* arg1: mov rdi, progs[i] */
1819         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1820         /* arg2: lea rsi, [rbp - ctx_cookie_off] */
1821         EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1822
1823         if (emit_call(&prog, enter, prog))
1824                 return -EINVAL;
1825         /* remember prog start time returned by __bpf_prog_enter */
1826         emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1827
1828         /* if (__bpf_prog_enter*(prog) == 0)
1829          *      goto skip_exec_of_prog;
1830          */
1831         EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1832         /* emit 2 nops that will be replaced with JE insn */
1833         jmp_insn = prog;
1834         emit_nops(&prog, 2);
1835
1836         /* arg1: lea rdi, [rbp - stack_size] */
1837         EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1838         /* arg2: progs[i]->insnsi for interpreter */
1839         if (!p->jited)
1840                 emit_mov_imm64(&prog, BPF_REG_2,
1841                                (long) p->insnsi >> 32,
1842                                (u32) (long) p->insnsi);
1843         /* call JITed bpf program or interpreter */
1844         if (emit_call(&prog, p->bpf_func, prog))
1845                 return -EINVAL;
1846
1847         /*
1848          * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1849          * of the previous call which is then passed on the stack to
1850          * the next BPF program.
1851          *
1852          * BPF_TRAMP_FENTRY trampoline may need to return the return
1853          * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1854          */
1855         if (save_ret)
1856                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1857
1858         /* replace 2 nops with JE insn, since jmp target is known */
1859         jmp_insn[0] = X86_JE;
1860         jmp_insn[1] = prog - jmp_insn - 2;
1861
1862         /* arg1: mov rdi, progs[i] */
1863         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1864         /* arg2: mov rsi, rbx <- start time in nsec */
1865         emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1866         /* arg3: lea rdx, [rbp - run_ctx_off] */
1867         EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1868         if (emit_call(&prog, exit, prog))
1869                 return -EINVAL;
1870
1871         *pprog = prog;
1872         return 0;
1873 }
1874
1875 static void emit_align(u8 **pprog, u32 align)
1876 {
1877         u8 *target, *prog = *pprog;
1878
1879         target = PTR_ALIGN(prog, align);
1880         if (target != prog)
1881                 emit_nops(&prog, target - prog);
1882
1883         *pprog = prog;
1884 }
1885
1886 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1887 {
1888         u8 *prog = *pprog;
1889         s64 offset;
1890
1891         offset = func - (ip + 2 + 4);
1892         if (!is_simm32(offset)) {
1893                 pr_err("Target %p is out of range\n", func);
1894                 return -EINVAL;
1895         }
1896         EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1897         *pprog = prog;
1898         return 0;
1899 }
1900
1901 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1902                       struct bpf_tramp_links *tl, int stack_size,
1903                       int run_ctx_off, bool save_ret)
1904 {
1905         int i;
1906         u8 *prog = *pprog;
1907
1908         for (i = 0; i < tl->nr_links; i++) {
1909                 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
1910                                     run_ctx_off, save_ret))
1911                         return -EINVAL;
1912         }
1913         *pprog = prog;
1914         return 0;
1915 }
1916
1917 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1918                               struct bpf_tramp_links *tl, int stack_size,
1919                               int run_ctx_off, u8 **branches)
1920 {
1921         u8 *prog = *pprog;
1922         int i;
1923
1924         /* The first fmod_ret program will receive a garbage return value.
1925          * Set this to 0 to avoid confusing the program.
1926          */
1927         emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1928         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1929         for (i = 0; i < tl->nr_links; i++) {
1930                 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
1931                         return -EINVAL;
1932
1933                 /* mod_ret prog stored return value into [rbp - 8]. Emit:
1934                  * if (*(u64 *)(rbp - 8) !=  0)
1935                  *      goto do_fexit;
1936                  */
1937                 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
1938                 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1939
1940                 /* Save the location of the branch and Generate 6 nops
1941                  * (4 bytes for an offset and 2 bytes for the jump) These nops
1942                  * are replaced with a conditional jump once do_fexit (i.e. the
1943                  * start of the fexit invocation) is finalized.
1944                  */
1945                 branches[i] = prog;
1946                 emit_nops(&prog, 4 + 2);
1947         }
1948
1949         *pprog = prog;
1950         return 0;
1951 }
1952
1953 /* Example:
1954  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1955  * its 'struct btf_func_model' will be nr_args=2
1956  * The assembly code when eth_type_trans is executing after trampoline:
1957  *
1958  * push rbp
1959  * mov rbp, rsp
1960  * sub rsp, 16                     // space for skb and dev
1961  * push rbx                        // temp regs to pass start time
1962  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1963  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1964  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1965  * mov rbx, rax                    // remember start time in bpf stats are enabled
1966  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1967  * call addr_of_jited_FENTRY_prog
1968  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1969  * mov rsi, rbx                    // prog start time
1970  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1971  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1972  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1973  * pop rbx
1974  * leave
1975  * ret
1976  *
1977  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1978  * replaced with 'call generated_bpf_trampoline'. When it returns
1979  * eth_type_trans will continue executing with original skb and dev pointers.
1980  *
1981  * The assembly code when eth_type_trans is called from trampoline:
1982  *
1983  * push rbp
1984  * mov rbp, rsp
1985  * sub rsp, 24                     // space for skb, dev, return value
1986  * push rbx                        // temp regs to pass start time
1987  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1988  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1989  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1990  * mov rbx, rax                    // remember start time if bpf stats are enabled
1991  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1992  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1993  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1994  * mov rsi, rbx                    // prog start time
1995  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1996  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1997  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1998  * call eth_type_trans+5           // execute body of eth_type_trans
1999  * mov qword ptr [rbp - 8], rax    // save return value
2000  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2001  * mov rbx, rax                    // remember start time in bpf stats are enabled
2002  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2003  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2004  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2005  * mov rsi, rbx                    // prog start time
2006  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2007  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2008  * pop rbx
2009  * leave
2010  * add rsp, 8                      // skip eth_type_trans's frame
2011  * ret                             // return to its caller
2012  */
2013 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2014                                 const struct btf_func_model *m, u32 flags,
2015                                 struct bpf_tramp_links *tlinks,
2016                                 void *orig_call)
2017 {
2018         int ret, i, nr_args = m->nr_args;
2019         int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2020         struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2021         struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2022         struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2023         u8 **branches = NULL;
2024         u8 *prog;
2025         bool save_ret;
2026
2027         /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2028         if (nr_args > 6)
2029                 return -ENOTSUPP;
2030
2031         /* Generated trampoline stack layout:
2032          *
2033          * RBP + 8         [ return address  ]
2034          * RBP + 0         [ RBP             ]
2035          *
2036          * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2037          *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2038          *
2039          *                 [ reg_argN        ]  always
2040          *                 [ ...             ]
2041          * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2042          *
2043          * RBP - args_off  [ args count      ]  always
2044          *
2045          * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2046          *
2047          * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2048          */
2049
2050         /* room for return value of orig_call or fentry prog */
2051         save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2052         if (save_ret)
2053                 stack_size += 8;
2054
2055         regs_off = stack_size;
2056
2057         /* args count  */
2058         stack_size += 8;
2059         args_off = stack_size;
2060
2061         if (flags & BPF_TRAMP_F_IP_ARG)
2062                 stack_size += 8; /* room for IP address argument */
2063
2064         ip_off = stack_size;
2065
2066         stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2067         run_ctx_off = stack_size;
2068
2069         if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2070                 /* skip patched call instruction and point orig_call to actual
2071                  * body of the kernel function.
2072                  */
2073                 if (is_endbr(*(u32 *)orig_call))
2074                         orig_call += ENDBR_INSN_SIZE;
2075                 orig_call += X86_PATCH_SIZE;
2076         }
2077
2078         prog = image;
2079
2080         EMIT_ENDBR();
2081         EMIT1(0x55);             /* push rbp */
2082         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2083         EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2084         EMIT1(0x53);             /* push rbx */
2085
2086         /* Store number of arguments of the traced function:
2087          *   mov rax, nr_args
2088          *   mov QWORD PTR [rbp - args_off], rax
2089          */
2090         emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args);
2091         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2092
2093         if (flags & BPF_TRAMP_F_IP_ARG) {
2094                 /* Store IP address of the traced function:
2095                  * mov rax, QWORD PTR [rbp + 8]
2096                  * sub rax, X86_PATCH_SIZE
2097                  * mov QWORD PTR [rbp - ip_off], rax
2098                  */
2099                 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2100                 EMIT4(0x48, 0x83, 0xe8, X86_PATCH_SIZE);
2101                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2102         }
2103
2104         save_regs(m, &prog, nr_args, regs_off);
2105
2106         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2107                 /* arg1: mov rdi, im */
2108                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2109                 if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2110                         ret = -EINVAL;
2111                         goto cleanup;
2112                 }
2113         }
2114
2115         if (fentry->nr_links)
2116                 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2117                                flags & BPF_TRAMP_F_RET_FENTRY_RET))
2118                         return -EINVAL;
2119
2120         if (fmod_ret->nr_links) {
2121                 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2122                                    GFP_KERNEL);
2123                 if (!branches)
2124                         return -ENOMEM;
2125
2126                 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2127                                        run_ctx_off, branches)) {
2128                         ret = -EINVAL;
2129                         goto cleanup;
2130                 }
2131         }
2132
2133         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2134                 restore_regs(m, &prog, nr_args, regs_off);
2135
2136                 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2137                         emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2138                         EMIT2(0xff, 0xd0); /* call *rax */
2139                 } else {
2140                         /* call original function */
2141                         if (emit_call(&prog, orig_call, prog)) {
2142                                 ret = -EINVAL;
2143                                 goto cleanup;
2144                         }
2145                 }
2146                 /* remember return value in a stack for bpf prog to access */
2147                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2148                 im->ip_after_call = prog;
2149                 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2150                 prog += X86_PATCH_SIZE;
2151         }
2152
2153         if (fmod_ret->nr_links) {
2154                 /* From Intel 64 and IA-32 Architectures Optimization
2155                  * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2156                  * Coding Rule 11: All branch targets should be 16-byte
2157                  * aligned.
2158                  */
2159                 emit_align(&prog, 16);
2160                 /* Update the branches saved in invoke_bpf_mod_ret with the
2161                  * aligned address of do_fexit.
2162                  */
2163                 for (i = 0; i < fmod_ret->nr_links; i++)
2164                         emit_cond_near_jump(&branches[i], prog, branches[i],
2165                                             X86_JNE);
2166         }
2167
2168         if (fexit->nr_links)
2169                 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2170                         ret = -EINVAL;
2171                         goto cleanup;
2172                 }
2173
2174         if (flags & BPF_TRAMP_F_RESTORE_REGS)
2175                 restore_regs(m, &prog, nr_args, regs_off);
2176
2177         /* This needs to be done regardless. If there were fmod_ret programs,
2178          * the return value is only updated on the stack and still needs to be
2179          * restored to R0.
2180          */
2181         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2182                 im->ip_epilogue = prog;
2183                 /* arg1: mov rdi, im */
2184                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2185                 if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2186                         ret = -EINVAL;
2187                         goto cleanup;
2188                 }
2189         }
2190         /* restore return value of orig_call or fentry prog back into RAX */
2191         if (save_ret)
2192                 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2193
2194         EMIT1(0x5B); /* pop rbx */
2195         EMIT1(0xC9); /* leave */
2196         if (flags & BPF_TRAMP_F_SKIP_FRAME)
2197                 /* skip our return address and return to parent */
2198                 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2199         emit_return(&prog, prog);
2200         /* Make sure the trampoline generation logic doesn't overflow */
2201         if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2202                 ret = -EFAULT;
2203                 goto cleanup;
2204         }
2205         ret = prog - (u8 *)image;
2206
2207 cleanup:
2208         kfree(branches);
2209         return ret;
2210 }
2211
2212 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2213 {
2214         u8 *jg_reloc, *prog = *pprog;
2215         int pivot, err, jg_bytes = 1;
2216         s64 jg_offset;
2217
2218         if (a == b) {
2219                 /* Leaf node of recursion, i.e. not a range of indices
2220                  * anymore.
2221                  */
2222                 EMIT1(add_1mod(0x48, BPF_REG_3));       /* cmp rdx,func */
2223                 if (!is_simm32(progs[a]))
2224                         return -1;
2225                 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2226                             progs[a]);
2227                 err = emit_cond_near_jump(&prog,        /* je func */
2228                                           (void *)progs[a], prog,
2229                                           X86_JE);
2230                 if (err)
2231                         return err;
2232
2233                 emit_indirect_jump(&prog, 2 /* rdx */, prog);
2234
2235                 *pprog = prog;
2236                 return 0;
2237         }
2238
2239         /* Not a leaf node, so we pivot, and recursively descend into
2240          * the lower and upper ranges.
2241          */
2242         pivot = (b - a) / 2;
2243         EMIT1(add_1mod(0x48, BPF_REG_3));               /* cmp rdx,func */
2244         if (!is_simm32(progs[a + pivot]))
2245                 return -1;
2246         EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2247
2248         if (pivot > 2) {                                /* jg upper_part */
2249                 /* Require near jump. */
2250                 jg_bytes = 4;
2251                 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2252         } else {
2253                 EMIT2(X86_JG, 0);
2254         }
2255         jg_reloc = prog;
2256
2257         err = emit_bpf_dispatcher(&prog, a, a + pivot,  /* emit lower_part */
2258                                   progs);
2259         if (err)
2260                 return err;
2261
2262         /* From Intel 64 and IA-32 Architectures Optimization
2263          * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2264          * Coding Rule 11: All branch targets should be 16-byte
2265          * aligned.
2266          */
2267         emit_align(&prog, 16);
2268         jg_offset = prog - jg_reloc;
2269         emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2270
2271         err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2272                                   b, progs);
2273         if (err)
2274                 return err;
2275
2276         *pprog = prog;
2277         return 0;
2278 }
2279
2280 static int cmp_ips(const void *a, const void *b)
2281 {
2282         const s64 *ipa = a;
2283         const s64 *ipb = b;
2284
2285         if (*ipa > *ipb)
2286                 return 1;
2287         if (*ipa < *ipb)
2288                 return -1;
2289         return 0;
2290 }
2291
2292 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2293 {
2294         u8 *prog = image;
2295
2296         sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2297         return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2298 }
2299
2300 struct x64_jit_data {
2301         struct bpf_binary_header *rw_header;
2302         struct bpf_binary_header *header;
2303         int *addrs;
2304         u8 *image;
2305         int proglen;
2306         struct jit_context ctx;
2307 };
2308
2309 #define MAX_PASSES 20
2310 #define PADDING_PASSES (MAX_PASSES - 5)
2311
2312 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2313 {
2314         struct bpf_binary_header *rw_header = NULL;
2315         struct bpf_binary_header *header = NULL;
2316         struct bpf_prog *tmp, *orig_prog = prog;
2317         struct x64_jit_data *jit_data;
2318         int proglen, oldproglen = 0;
2319         struct jit_context ctx = {};
2320         bool tmp_blinded = false;
2321         bool extra_pass = false;
2322         bool padding = false;
2323         u8 *rw_image = NULL;
2324         u8 *image = NULL;
2325         int *addrs;
2326         int pass;
2327         int i;
2328
2329         if (!prog->jit_requested)
2330                 return orig_prog;
2331
2332         tmp = bpf_jit_blind_constants(prog);
2333         /*
2334          * If blinding was requested and we failed during blinding,
2335          * we must fall back to the interpreter.
2336          */
2337         if (IS_ERR(tmp))
2338                 return orig_prog;
2339         if (tmp != prog) {
2340                 tmp_blinded = true;
2341                 prog = tmp;
2342         }
2343
2344         jit_data = prog->aux->jit_data;
2345         if (!jit_data) {
2346                 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2347                 if (!jit_data) {
2348                         prog = orig_prog;
2349                         goto out;
2350                 }
2351                 prog->aux->jit_data = jit_data;
2352         }
2353         addrs = jit_data->addrs;
2354         if (addrs) {
2355                 ctx = jit_data->ctx;
2356                 oldproglen = jit_data->proglen;
2357                 image = jit_data->image;
2358                 header = jit_data->header;
2359                 rw_header = jit_data->rw_header;
2360                 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2361                 extra_pass = true;
2362                 padding = true;
2363                 goto skip_init_addrs;
2364         }
2365         addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2366         if (!addrs) {
2367                 prog = orig_prog;
2368                 goto out_addrs;
2369         }
2370
2371         /*
2372          * Before first pass, make a rough estimation of addrs[]
2373          * each BPF instruction is translated to less than 64 bytes
2374          */
2375         for (proglen = 0, i = 0; i <= prog->len; i++) {
2376                 proglen += 64;
2377                 addrs[i] = proglen;
2378         }
2379         ctx.cleanup_addr = proglen;
2380 skip_init_addrs:
2381
2382         /*
2383          * JITed image shrinks with every pass and the loop iterates
2384          * until the image stops shrinking. Very large BPF programs
2385          * may converge on the last pass. In such case do one more
2386          * pass to emit the final image.
2387          */
2388         for (pass = 0; pass < MAX_PASSES || image; pass++) {
2389                 if (!padding && pass >= PADDING_PASSES)
2390                         padding = true;
2391                 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2392                 if (proglen <= 0) {
2393 out_image:
2394                         image = NULL;
2395                         if (header) {
2396                                 bpf_arch_text_copy(&header->size, &rw_header->size,
2397                                                    sizeof(rw_header->size));
2398                                 bpf_jit_binary_pack_free(header, rw_header);
2399                         }
2400                         /* Fall back to interpreter mode */
2401                         prog = orig_prog;
2402                         if (extra_pass) {
2403                                 prog->bpf_func = NULL;
2404                                 prog->jited = 0;
2405                                 prog->jited_len = 0;
2406                         }
2407                         goto out_addrs;
2408                 }
2409                 if (image) {
2410                         if (proglen != oldproglen) {
2411                                 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2412                                        proglen, oldproglen);
2413                                 goto out_image;
2414                         }
2415                         break;
2416                 }
2417                 if (proglen == oldproglen) {
2418                         /*
2419                          * The number of entries in extable is the number of BPF_LDX
2420                          * insns that access kernel memory via "pointer to BTF type".
2421                          * The verifier changed their opcode from LDX|MEM|size
2422                          * to LDX|PROBE_MEM|size to make JITing easier.
2423                          */
2424                         u32 align = __alignof__(struct exception_table_entry);
2425                         u32 extable_size = prog->aux->num_exentries *
2426                                 sizeof(struct exception_table_entry);
2427
2428                         /* allocate module memory for x86 insns and extable */
2429                         header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2430                                                            &image, align, &rw_header, &rw_image,
2431                                                            jit_fill_hole);
2432                         if (!header) {
2433                                 prog = orig_prog;
2434                                 goto out_addrs;
2435                         }
2436                         prog->aux->extable = (void *) image + roundup(proglen, align);
2437                 }
2438                 oldproglen = proglen;
2439                 cond_resched();
2440         }
2441
2442         if (bpf_jit_enable > 1)
2443                 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2444
2445         if (image) {
2446                 if (!prog->is_func || extra_pass) {
2447                         /*
2448                          * bpf_jit_binary_pack_finalize fails in two scenarios:
2449                          *   1) header is not pointing to proper module memory;
2450                          *   2) the arch doesn't support bpf_arch_text_copy().
2451                          *
2452                          * Both cases are serious bugs and justify WARN_ON.
2453                          */
2454                         if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2455                                 /* header has been freed */
2456                                 header = NULL;
2457                                 goto out_image;
2458                         }
2459
2460                         bpf_tail_call_direct_fixup(prog);
2461                 } else {
2462                         jit_data->addrs = addrs;
2463                         jit_data->ctx = ctx;
2464                         jit_data->proglen = proglen;
2465                         jit_data->image = image;
2466                         jit_data->header = header;
2467                         jit_data->rw_header = rw_header;
2468                 }
2469                 prog->bpf_func = (void *)image;
2470                 prog->jited = 1;
2471                 prog->jited_len = proglen;
2472         } else {
2473                 prog = orig_prog;
2474         }
2475
2476         if (!image || !prog->is_func || extra_pass) {
2477                 if (image)
2478                         bpf_prog_fill_jited_linfo(prog, addrs + 1);
2479 out_addrs:
2480                 kvfree(addrs);
2481                 kfree(jit_data);
2482                 prog->aux->jit_data = NULL;
2483         }
2484 out:
2485         if (tmp_blinded)
2486                 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2487                                            tmp : orig_prog);
2488         return prog;
2489 }
2490
2491 bool bpf_jit_supports_kfunc_call(void)
2492 {
2493         return true;
2494 }
2495
2496 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2497 {
2498         if (text_poke_copy(dst, src, len) == NULL)
2499                 return ERR_PTR(-EINVAL);
2500         return dst;
2501 }
2502
2503 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2504 bool bpf_jit_supports_subprog_tailcalls(void)
2505 {
2506         return true;
2507 }
2508
2509 void bpf_jit_free(struct bpf_prog *prog)
2510 {
2511         if (prog->jited) {
2512                 struct x64_jit_data *jit_data = prog->aux->jit_data;
2513                 struct bpf_binary_header *hdr;
2514
2515                 /*
2516                  * If we fail the final pass of JIT (from jit_subprogs),
2517                  * the program may not be finalized yet. Call finalize here
2518                  * before freeing it.
2519                  */
2520                 if (jit_data) {
2521                         bpf_jit_binary_pack_finalize(prog, jit_data->header,
2522                                                      jit_data->rw_header);
2523                         kvfree(jit_data->addrs);
2524                         kfree(jit_data);
2525                 }
2526                 hdr = bpf_jit_binary_pack_hdr(prog);
2527                 bpf_jit_binary_pack_free(hdr, NULL);
2528                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2529         }
2530
2531         bpf_prog_unlock_free(prog);
2532 }