arm64: dt marvell: Fix AP806 system controller size
[linux-2.6-block.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32
33 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
34                             u16 *new_asid, bool *need_flush)
35 {
36         u16 asid;
37
38         if (!static_cpu_has(X86_FEATURE_PCID)) {
39                 *new_asid = 0;
40                 *need_flush = true;
41                 return;
42         }
43
44         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
45                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
46                     next->context.ctx_id)
47                         continue;
48
49                 *new_asid = asid;
50                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
51                                next_tlb_gen);
52                 return;
53         }
54
55         /*
56          * We don't currently own an ASID slot on this CPU.
57          * Allocate a slot.
58          */
59         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
60         if (*new_asid >= TLB_NR_DYN_ASIDS) {
61                 *new_asid = 0;
62                 this_cpu_write(cpu_tlbstate.next_asid, 1);
63         }
64         *need_flush = true;
65 }
66
67 void leave_mm(int cpu)
68 {
69         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
70
71         /*
72          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
73          * If so, our callers still expect us to flush the TLB, but there
74          * aren't any user TLB entries in init_mm to worry about.
75          *
76          * This needs to happen before any other sanity checks due to
77          * intel_idle's shenanigans.
78          */
79         if (loaded_mm == &init_mm)
80                 return;
81
82         /* Warn if we're not lazy. */
83         WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
84
85         switch_mm(NULL, &init_mm, NULL);
86 }
87
88 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
89                struct task_struct *tsk)
90 {
91         unsigned long flags;
92
93         local_irq_save(flags);
94         switch_mm_irqs_off(prev, next, tsk);
95         local_irq_restore(flags);
96 }
97
98 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
99                         struct task_struct *tsk)
100 {
101         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
102         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
103         unsigned cpu = smp_processor_id();
104         u64 next_tlb_gen;
105
106         /*
107          * NB: The scheduler will call us with prev == next when switching
108          * from lazy TLB mode to normal mode if active_mm isn't changing.
109          * When this happens, we don't assume that CR3 (and hence
110          * cpu_tlbstate.loaded_mm) matches next.
111          *
112          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
113          */
114
115         /* We don't want flush_tlb_func_* to run concurrently with us. */
116         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
117                 WARN_ON_ONCE(!irqs_disabled());
118
119         /*
120          * Verify that CR3 is what we think it is.  This will catch
121          * hypothetical buggy code that directly switches to swapper_pg_dir
122          * without going through leave_mm() / switch_mm_irqs_off() or that
123          * does something like write_cr3(read_cr3_pa()).
124          *
125          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
126          * isn't free.
127          */
128 #ifdef CONFIG_DEBUG_VM
129         if (WARN_ON_ONCE(__read_cr3() !=
130                          (__sme_pa(real_prev->pgd) | prev_asid))) {
131                 /*
132                  * If we were to BUG here, we'd be very likely to kill
133                  * the system so hard that we don't see the call trace.
134                  * Try to recover instead by ignoring the error and doing
135                  * a global flush to minimize the chance of corruption.
136                  *
137                  * (This is far from being a fully correct recovery.
138                  *  Architecturally, the CPU could prefetch something
139                  *  back into an incorrect ASID slot and leave it there
140                  *  to cause trouble down the road.  It's better than
141                  *  nothing, though.)
142                  */
143                 __flush_tlb_all();
144         }
145 #endif
146
147         if (real_prev == next) {
148                 VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
149                           next->context.ctx_id);
150
151                 if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
152                         /*
153                          * There's nothing to do: we weren't lazy, and we
154                          * aren't changing our mm.  We don't need to flush
155                          * anything, nor do we need to update CR3, CR4, or
156                          * LDTR.
157                          */
158                         return;
159                 }
160
161                 /* Resume remote flushes and then read tlb_gen. */
162                 cpumask_set_cpu(cpu, mm_cpumask(next));
163                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
164
165                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
166                     next_tlb_gen) {
167                         /*
168                          * Ideally, we'd have a flush_tlb() variant that
169                          * takes the known CR3 value as input.  This would
170                          * be faster on Xen PV and on hypothetical CPUs
171                          * on which INVPCID is fast.
172                          */
173                         this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
174                                        next_tlb_gen);
175                         write_cr3(__sme_pa(next->pgd) | prev_asid);
176                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
177                                         TLB_FLUSH_ALL);
178                 }
179
180                 /*
181                  * We just exited lazy mode, which means that CR4 and/or LDTR
182                  * may be stale.  (Changes to the required CR4 and LDTR states
183                  * are not reflected in tlb_gen.)
184                  */
185         } else {
186                 u16 new_asid;
187                 bool need_flush;
188
189                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
190                         /*
191                          * If our current stack is in vmalloc space and isn't
192                          * mapped in the new pgd, we'll double-fault.  Forcibly
193                          * map it.
194                          */
195                         unsigned int index = pgd_index(current_stack_pointer());
196                         pgd_t *pgd = next->pgd + index;
197
198                         if (unlikely(pgd_none(*pgd)))
199                                 set_pgd(pgd, init_mm.pgd[index]);
200                 }
201
202                 /* Stop remote flushes for the previous mm */
203                 if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
204                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
205
206                 VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
207
208                 /*
209                  * Start remote flushes and then read tlb_gen.
210                  */
211                 cpumask_set_cpu(cpu, mm_cpumask(next));
212                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
213
214                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
215
216                 if (need_flush) {
217                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
218                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
219                         write_cr3(__sme_pa(next->pgd) | new_asid);
220                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
221                                         TLB_FLUSH_ALL);
222                 } else {
223                         /* The new ASID is already up to date. */
224                         write_cr3(__sme_pa(next->pgd) | new_asid | CR3_NOFLUSH);
225                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
226                 }
227
228                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
229                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
230         }
231
232         load_mm_cr4(next);
233         switch_ldt(real_prev, next);
234 }
235
236 /*
237  * Call this when reinitializing a CPU.  It fixes the following potential
238  * problems:
239  *
240  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
241  *   because the CPU was taken down and came back up with CR3's PCID
242  *   bits clear.  CPU hotplug can do this.
243  *
244  * - The TLB contains junk in slots corresponding to inactive ASIDs.
245  *
246  * - The CPU went so far out to lunch that it may have missed a TLB
247  *   flush.
248  */
249 void initialize_tlbstate_and_flush(void)
250 {
251         int i;
252         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
253         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
254         unsigned long cr3 = __read_cr3();
255
256         /* Assert that CR3 already references the right mm. */
257         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
258
259         /*
260          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
261          * doesn't work like other CR4 bits because it can only be set from
262          * long mode.)
263          */
264         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
265                 !(cr4_read_shadow() & X86_CR4_PCIDE));
266
267         /* Force ASID 0 and force a TLB flush. */
268         write_cr3(cr3 & ~CR3_PCID_MASK);
269
270         /* Reinitialize tlbstate. */
271         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
272         this_cpu_write(cpu_tlbstate.next_asid, 1);
273         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
274         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
275
276         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
277                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
278 }
279
280 /*
281  * flush_tlb_func_common()'s memory ordering requirement is that any
282  * TLB fills that happen after we flush the TLB are ordered after we
283  * read active_mm's tlb_gen.  We don't need any explicit barriers
284  * because all x86 flush operations are serializing and the
285  * atomic64_read operation won't be reordered by the compiler.
286  */
287 static void flush_tlb_func_common(const struct flush_tlb_info *f,
288                                   bool local, enum tlb_flush_reason reason)
289 {
290         /*
291          * We have three different tlb_gen values in here.  They are:
292          *
293          * - mm_tlb_gen:     the latest generation.
294          * - local_tlb_gen:  the generation that this CPU has already caught
295          *                   up to.
296          * - f->new_tlb_gen: the generation that the requester of the flush
297          *                   wants us to catch up to.
298          */
299         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
300         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
301         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
302         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
303
304         /* This code cannot presently handle being reentered. */
305         VM_WARN_ON(!irqs_disabled());
306
307         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
308                    loaded_mm->context.ctx_id);
309
310         if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
311                 /*
312                  * We're in lazy mode -- don't flush.  We can get here on
313                  * remote flushes due to races and on local flushes if a
314                  * kernel thread coincidentally flushes the mm it's lazily
315                  * still using.
316                  */
317                 return;
318         }
319
320         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
321                 /*
322                  * There's nothing to do: we're already up to date.  This can
323                  * happen if two concurrent flushes happen -- the first flush to
324                  * be handled can catch us all the way up, leaving no work for
325                  * the second flush.
326                  */
327                 trace_tlb_flush(reason, 0);
328                 return;
329         }
330
331         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
332         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
333
334         /*
335          * If we get to this point, we know that our TLB is out of date.
336          * This does not strictly imply that we need to flush (it's
337          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
338          * going to need to flush in the very near future, so we might
339          * as well get it over with.
340          *
341          * The only question is whether to do a full or partial flush.
342          *
343          * We do a partial flush if requested and two extra conditions
344          * are met:
345          *
346          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
347          *    we've always done all needed flushes to catch up to
348          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
349          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
350          *    us up to date for tlb_gen 3 is the partial flush we're
351          *    processing.
352          *
353          *    As an example of why this check is needed, suppose that there
354          *    are two concurrent flushes.  The first is a full flush that
355          *    changes context.tlb_gen from 1 to 2.  The second is a partial
356          *    flush that changes context.tlb_gen from 2 to 3.  If they get
357          *    processed on this CPU in reverse order, we'll see
358          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
359          *    If we were to use __flush_tlb_single() and set local_tlb_gen to
360          *    3, we'd be break the invariant: we'd update local_tlb_gen above
361          *    1 without the full flush that's needed for tlb_gen 2.
362          *
363          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
364          *    Partial TLB flushes are not all that much cheaper than full TLB
365          *    flushes, so it seems unlikely that it would be a performance win
366          *    to do a partial flush if that won't bring our TLB fully up to
367          *    date.  By doing a full flush instead, we can increase
368          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
369          *    avoid another flush in the very near future.
370          */
371         if (f->end != TLB_FLUSH_ALL &&
372             f->new_tlb_gen == local_tlb_gen + 1 &&
373             f->new_tlb_gen == mm_tlb_gen) {
374                 /* Partial flush */
375                 unsigned long addr;
376                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
377
378                 addr = f->start;
379                 while (addr < f->end) {
380                         __flush_tlb_single(addr);
381                         addr += PAGE_SIZE;
382                 }
383                 if (local)
384                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
385                 trace_tlb_flush(reason, nr_pages);
386         } else {
387                 /* Full flush. */
388                 local_flush_tlb();
389                 if (local)
390                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
391                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
392         }
393
394         /* Both paths above update our state to mm_tlb_gen. */
395         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
396 }
397
398 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
399 {
400         const struct flush_tlb_info *f = info;
401
402         flush_tlb_func_common(f, true, reason);
403 }
404
405 static void flush_tlb_func_remote(void *info)
406 {
407         const struct flush_tlb_info *f = info;
408
409         inc_irq_stat(irq_tlb_count);
410
411         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
412                 return;
413
414         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
415         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
416 }
417
418 void native_flush_tlb_others(const struct cpumask *cpumask,
419                              const struct flush_tlb_info *info)
420 {
421         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
422         if (info->end == TLB_FLUSH_ALL)
423                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
424         else
425                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
426                                 (info->end - info->start) >> PAGE_SHIFT);
427
428         if (is_uv_system()) {
429                 /*
430                  * This whole special case is confused.  UV has a "Broadcast
431                  * Assist Unit", which seems to be a fancy way to send IPIs.
432                  * Back when x86 used an explicit TLB flush IPI, UV was
433                  * optimized to use its own mechanism.  These days, x86 uses
434                  * smp_call_function_many(), but UV still uses a manual IPI,
435                  * and that IPI's action is out of date -- it does a manual
436                  * flush instead of calling flush_tlb_func_remote().  This
437                  * means that the percpu tlb_gen variables won't be updated
438                  * and we'll do pointless flushes on future context switches.
439                  *
440                  * Rather than hooking native_flush_tlb_others() here, I think
441                  * that UV should be updated so that smp_call_function_many(),
442                  * etc, are optimal on UV.
443                  */
444                 unsigned int cpu;
445
446                 cpu = smp_processor_id();
447                 cpumask = uv_flush_tlb_others(cpumask, info);
448                 if (cpumask)
449                         smp_call_function_many(cpumask, flush_tlb_func_remote,
450                                                (void *)info, 1);
451                 return;
452         }
453         smp_call_function_many(cpumask, flush_tlb_func_remote,
454                                (void *)info, 1);
455 }
456
457 /*
458  * See Documentation/x86/tlb.txt for details.  We choose 33
459  * because it is large enough to cover the vast majority (at
460  * least 95%) of allocations, and is small enough that we are
461  * confident it will not cause too much overhead.  Each single
462  * flush is about 100 ns, so this caps the maximum overhead at
463  * _about_ 3,000 ns.
464  *
465  * This is in units of pages.
466  */
467 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
468
469 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
470                                 unsigned long end, unsigned long vmflag)
471 {
472         int cpu;
473
474         struct flush_tlb_info info = {
475                 .mm = mm,
476         };
477
478         cpu = get_cpu();
479
480         /* This is also a barrier that synchronizes with switch_mm(). */
481         info.new_tlb_gen = inc_mm_tlb_gen(mm);
482
483         /* Should we flush just the requested range? */
484         if ((end != TLB_FLUSH_ALL) &&
485             !(vmflag & VM_HUGETLB) &&
486             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
487                 info.start = start;
488                 info.end = end;
489         } else {
490                 info.start = 0UL;
491                 info.end = TLB_FLUSH_ALL;
492         }
493
494         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
495                 VM_WARN_ON(irqs_disabled());
496                 local_irq_disable();
497                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
498                 local_irq_enable();
499         }
500
501         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
502                 flush_tlb_others(mm_cpumask(mm), &info);
503
504         put_cpu();
505 }
506
507
508 static void do_flush_tlb_all(void *info)
509 {
510         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
511         __flush_tlb_all();
512 }
513
514 void flush_tlb_all(void)
515 {
516         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
517         on_each_cpu(do_flush_tlb_all, NULL, 1);
518 }
519
520 static void do_kernel_range_flush(void *info)
521 {
522         struct flush_tlb_info *f = info;
523         unsigned long addr;
524
525         /* flush range by one by one 'invlpg' */
526         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
527                 __flush_tlb_single(addr);
528 }
529
530 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
531 {
532
533         /* Balance as user space task's flush, a bit conservative */
534         if (end == TLB_FLUSH_ALL ||
535             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
536                 on_each_cpu(do_flush_tlb_all, NULL, 1);
537         } else {
538                 struct flush_tlb_info info;
539                 info.start = start;
540                 info.end = end;
541                 on_each_cpu(do_kernel_range_flush, &info, 1);
542         }
543 }
544
545 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
546 {
547         struct flush_tlb_info info = {
548                 .mm = NULL,
549                 .start = 0UL,
550                 .end = TLB_FLUSH_ALL,
551         };
552
553         int cpu = get_cpu();
554
555         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
556                 VM_WARN_ON(irqs_disabled());
557                 local_irq_disable();
558                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
559                 local_irq_enable();
560         }
561
562         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
563                 flush_tlb_others(&batch->cpumask, &info);
564
565         cpumask_clear(&batch->cpumask);
566
567         put_cpu();
568 }
569
570 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
571                              size_t count, loff_t *ppos)
572 {
573         char buf[32];
574         unsigned int len;
575
576         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
577         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
578 }
579
580 static ssize_t tlbflush_write_file(struct file *file,
581                  const char __user *user_buf, size_t count, loff_t *ppos)
582 {
583         char buf[32];
584         ssize_t len;
585         int ceiling;
586
587         len = min(count, sizeof(buf) - 1);
588         if (copy_from_user(buf, user_buf, len))
589                 return -EFAULT;
590
591         buf[len] = '\0';
592         if (kstrtoint(buf, 0, &ceiling))
593                 return -EINVAL;
594
595         if (ceiling < 0)
596                 return -EINVAL;
597
598         tlb_single_page_flush_ceiling = ceiling;
599         return count;
600 }
601
602 static const struct file_operations fops_tlbflush = {
603         .read = tlbflush_read_file,
604         .write = tlbflush_write_file,
605         .llseek = default_llseek,
606 };
607
608 static int __init create_tlb_single_page_flush_ceiling(void)
609 {
610         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
611                             arch_debugfs_dir, NULL, &fops_tlbflush);
612         return 0;
613 }
614 late_initcall(create_tlb_single_page_flush_ceiling);