mm: remove include/linux/bootmem.h
[linux-2.6-block.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/memblock.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33         unsigned long   *vaddr;
34         pgd_t           *pgd;
35         pgprot_t        mask_set;
36         pgprot_t        mask_clr;
37         unsigned long   numpages;
38         int             flags;
39         unsigned long   pfn;
40         unsigned        force_split             : 1,
41                         force_static_prot       : 1;
42         int             curpage;
43         struct page     **pages;
44 };
45
46 enum cpa_warn {
47         CPA_CONFLICT,
48         CPA_PROTECT,
49         CPA_DETECT,
50 };
51
52 static const int cpa_warn_level = CPA_PROTECT;
53
54 /*
55  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
56  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
57  * entries change the page attribute in parallel to some other cpu
58  * splitting a large page entry along with changing the attribute.
59  */
60 static DEFINE_SPINLOCK(cpa_lock);
61
62 #define CPA_FLUSHTLB 1
63 #define CPA_ARRAY 2
64 #define CPA_PAGES_ARRAY 4
65 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
66
67 #ifdef CONFIG_PROC_FS
68 static unsigned long direct_pages_count[PG_LEVEL_NUM];
69
70 void update_page_count(int level, unsigned long pages)
71 {
72         /* Protect against CPA */
73         spin_lock(&pgd_lock);
74         direct_pages_count[level] += pages;
75         spin_unlock(&pgd_lock);
76 }
77
78 static void split_page_count(int level)
79 {
80         if (direct_pages_count[level] == 0)
81                 return;
82
83         direct_pages_count[level]--;
84         direct_pages_count[level - 1] += PTRS_PER_PTE;
85 }
86
87 void arch_report_meminfo(struct seq_file *m)
88 {
89         seq_printf(m, "DirectMap4k:    %8lu kB\n",
90                         direct_pages_count[PG_LEVEL_4K] << 2);
91 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
92         seq_printf(m, "DirectMap2M:    %8lu kB\n",
93                         direct_pages_count[PG_LEVEL_2M] << 11);
94 #else
95         seq_printf(m, "DirectMap4M:    %8lu kB\n",
96                         direct_pages_count[PG_LEVEL_2M] << 12);
97 #endif
98         if (direct_gbpages)
99                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
100                         direct_pages_count[PG_LEVEL_1G] << 20);
101 }
102 #else
103 static inline void split_page_count(int level) { }
104 #endif
105
106 #ifdef CONFIG_X86_CPA_STATISTICS
107
108 static unsigned long cpa_1g_checked;
109 static unsigned long cpa_1g_sameprot;
110 static unsigned long cpa_1g_preserved;
111 static unsigned long cpa_2m_checked;
112 static unsigned long cpa_2m_sameprot;
113 static unsigned long cpa_2m_preserved;
114 static unsigned long cpa_4k_install;
115
116 static inline void cpa_inc_1g_checked(void)
117 {
118         cpa_1g_checked++;
119 }
120
121 static inline void cpa_inc_2m_checked(void)
122 {
123         cpa_2m_checked++;
124 }
125
126 static inline void cpa_inc_4k_install(void)
127 {
128         cpa_4k_install++;
129 }
130
131 static inline void cpa_inc_lp_sameprot(int level)
132 {
133         if (level == PG_LEVEL_1G)
134                 cpa_1g_sameprot++;
135         else
136                 cpa_2m_sameprot++;
137 }
138
139 static inline void cpa_inc_lp_preserved(int level)
140 {
141         if (level == PG_LEVEL_1G)
142                 cpa_1g_preserved++;
143         else
144                 cpa_2m_preserved++;
145 }
146
147 static int cpastats_show(struct seq_file *m, void *p)
148 {
149         seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
150         seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
151         seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
152         seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
153         seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
154         seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
155         seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
156         return 0;
157 }
158
159 static int cpastats_open(struct inode *inode, struct file *file)
160 {
161         return single_open(file, cpastats_show, NULL);
162 }
163
164 static const struct file_operations cpastats_fops = {
165         .open           = cpastats_open,
166         .read           = seq_read,
167         .llseek         = seq_lseek,
168         .release        = single_release,
169 };
170
171 static int __init cpa_stats_init(void)
172 {
173         debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
174                             &cpastats_fops);
175         return 0;
176 }
177 late_initcall(cpa_stats_init);
178 #else
179 static inline void cpa_inc_1g_checked(void) { }
180 static inline void cpa_inc_2m_checked(void) { }
181 static inline void cpa_inc_4k_install(void) { }
182 static inline void cpa_inc_lp_sameprot(int level) { }
183 static inline void cpa_inc_lp_preserved(int level) { }
184 #endif
185
186
187 static inline int
188 within(unsigned long addr, unsigned long start, unsigned long end)
189 {
190         return addr >= start && addr < end;
191 }
192
193 static inline int
194 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
195 {
196         return addr >= start && addr <= end;
197 }
198
199 #ifdef CONFIG_X86_64
200
201 static inline unsigned long highmap_start_pfn(void)
202 {
203         return __pa_symbol(_text) >> PAGE_SHIFT;
204 }
205
206 static inline unsigned long highmap_end_pfn(void)
207 {
208         /* Do not reference physical address outside the kernel. */
209         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
210 }
211
212 static bool __cpa_pfn_in_highmap(unsigned long pfn)
213 {
214         /*
215          * Kernel text has an alias mapping at a high address, known
216          * here as "highmap".
217          */
218         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
219 }
220
221 #else
222
223 static bool __cpa_pfn_in_highmap(unsigned long pfn)
224 {
225         /* There is no highmap on 32-bit */
226         return false;
227 }
228
229 #endif
230
231 /*
232  * Flushing functions
233  */
234
235 /**
236  * clflush_cache_range - flush a cache range with clflush
237  * @vaddr:      virtual start address
238  * @size:       number of bytes to flush
239  *
240  * clflushopt is an unordered instruction which needs fencing with mfence or
241  * sfence to avoid ordering issues.
242  */
243 void clflush_cache_range(void *vaddr, unsigned int size)
244 {
245         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
246         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
247         void *vend = vaddr + size;
248
249         if (p >= vend)
250                 return;
251
252         mb();
253
254         for (; p < vend; p += clflush_size)
255                 clflushopt(p);
256
257         mb();
258 }
259 EXPORT_SYMBOL_GPL(clflush_cache_range);
260
261 void arch_invalidate_pmem(void *addr, size_t size)
262 {
263         clflush_cache_range(addr, size);
264 }
265 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
266
267 static void __cpa_flush_all(void *arg)
268 {
269         unsigned long cache = (unsigned long)arg;
270
271         /*
272          * Flush all to work around Errata in early athlons regarding
273          * large page flushing.
274          */
275         __flush_tlb_all();
276
277         if (cache && boot_cpu_data.x86 >= 4)
278                 wbinvd();
279 }
280
281 static void cpa_flush_all(unsigned long cache)
282 {
283         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
284
285         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
286 }
287
288 static bool __cpa_flush_range(unsigned long start, int numpages, int cache)
289 {
290         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
291
292         WARN_ON(PAGE_ALIGN(start) != start);
293
294         if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
295                 cpa_flush_all(cache);
296                 return true;
297         }
298
299         flush_tlb_kernel_range(start, start + PAGE_SIZE * numpages);
300
301         return !cache;
302 }
303
304 static void cpa_flush_range(unsigned long start, int numpages, int cache)
305 {
306         unsigned int i, level;
307         unsigned long addr;
308
309         if (__cpa_flush_range(start, numpages, cache))
310                 return;
311
312         /*
313          * We only need to flush on one CPU,
314          * clflush is a MESI-coherent instruction that
315          * will cause all other CPUs to flush the same
316          * cachelines:
317          */
318         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
319                 pte_t *pte = lookup_address(addr, &level);
320
321                 /*
322                  * Only flush present addresses:
323                  */
324                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
325                         clflush_cache_range((void *) addr, PAGE_SIZE);
326         }
327 }
328
329 static void cpa_flush_array(unsigned long baddr, unsigned long *start,
330                             int numpages, int cache,
331                             int in_flags, struct page **pages)
332 {
333         unsigned int i, level;
334
335         if (__cpa_flush_range(baddr, numpages, cache))
336                 return;
337
338         /*
339          * We only need to flush on one CPU,
340          * clflush is a MESI-coherent instruction that
341          * will cause all other CPUs to flush the same
342          * cachelines:
343          */
344         for (i = 0; i < numpages; i++) {
345                 unsigned long addr;
346                 pte_t *pte;
347
348                 if (in_flags & CPA_PAGES_ARRAY)
349                         addr = (unsigned long)page_address(pages[i]);
350                 else
351                         addr = start[i];
352
353                 pte = lookup_address(addr, &level);
354
355                 /*
356                  * Only flush present addresses:
357                  */
358                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
359                         clflush_cache_range((void *)addr, PAGE_SIZE);
360         }
361 }
362
363 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
364                      unsigned long r2_start, unsigned long r2_end)
365 {
366         return (r1_start <= r2_end && r1_end >= r2_start) ||
367                 (r2_start <= r1_end && r2_end >= r1_start);
368 }
369
370 #ifdef CONFIG_PCI_BIOS
371 /*
372  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
373  * based config access (CONFIG_PCI_GOBIOS) support.
374  */
375 #define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
376 #define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
377
378 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
379 {
380         if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
381                 return _PAGE_NX;
382         return 0;
383 }
384 #else
385 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
386 {
387         return 0;
388 }
389 #endif
390
391 /*
392  * The .rodata section needs to be read-only. Using the pfn catches all
393  * aliases.  This also includes __ro_after_init, so do not enforce until
394  * kernel_set_to_readonly is true.
395  */
396 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
397 {
398         unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
399
400         /*
401          * Note: __end_rodata is at page aligned and not inclusive, so
402          * subtract 1 to get the last enforced PFN in the rodata area.
403          */
404         epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
405
406         if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
407                 return _PAGE_RW;
408         return 0;
409 }
410
411 /*
412  * Protect kernel text against becoming non executable by forbidding
413  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
414  * out of which the kernel actually executes.  Do not protect the low
415  * mapping.
416  *
417  * This does not cover __inittext since that is gone after boot.
418  */
419 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
420 {
421         unsigned long t_end = (unsigned long)_etext - 1;
422         unsigned long t_start = (unsigned long)_text;
423
424         if (overlaps(start, end, t_start, t_end))
425                 return _PAGE_NX;
426         return 0;
427 }
428
429 #if defined(CONFIG_X86_64)
430 /*
431  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
432  * kernel text mappings for the large page aligned text, rodata sections
433  * will be always read-only. For the kernel identity mappings covering the
434  * holes caused by this alignment can be anything that user asks.
435  *
436  * This will preserve the large page mappings for kernel text/data at no
437  * extra cost.
438  */
439 static pgprotval_t protect_kernel_text_ro(unsigned long start,
440                                           unsigned long end)
441 {
442         unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
443         unsigned long t_start = (unsigned long)_text;
444         unsigned int level;
445
446         if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
447                 return 0;
448         /*
449          * Don't enforce the !RW mapping for the kernel text mapping, if
450          * the current mapping is already using small page mapping.  No
451          * need to work hard to preserve large page mappings in this case.
452          *
453          * This also fixes the Linux Xen paravirt guest boot failure caused
454          * by unexpected read-only mappings for kernel identity
455          * mappings. In this paravirt guest case, the kernel text mapping
456          * and the kernel identity mapping share the same page-table pages,
457          * so the protections for kernel text and identity mappings have to
458          * be the same.
459          */
460         if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
461                 return _PAGE_RW;
462         return 0;
463 }
464 #else
465 static pgprotval_t protect_kernel_text_ro(unsigned long start,
466                                           unsigned long end)
467 {
468         return 0;
469 }
470 #endif
471
472 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
473 {
474         return (pgprot_val(prot) & ~val) != pgprot_val(prot);
475 }
476
477 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
478                                   unsigned long start, unsigned long end,
479                                   unsigned long pfn, const char *txt)
480 {
481         static const char *lvltxt[] = {
482                 [CPA_CONFLICT]  = "conflict",
483                 [CPA_PROTECT]   = "protect",
484                 [CPA_DETECT]    = "detect",
485         };
486
487         if (warnlvl > cpa_warn_level || !conflicts(prot, val))
488                 return;
489
490         pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
491                 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
492                 (unsigned long long)val);
493 }
494
495 /*
496  * Certain areas of memory on x86 require very specific protection flags,
497  * for example the BIOS area or kernel text. Callers don't always get this
498  * right (again, ioremap() on BIOS memory is not uncommon) so this function
499  * checks and fixes these known static required protection bits.
500  */
501 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
502                                           unsigned long pfn, unsigned long npg,
503                                           int warnlvl)
504 {
505         pgprotval_t forbidden, res;
506         unsigned long end;
507
508         /*
509          * There is no point in checking RW/NX conflicts when the requested
510          * mapping is setting the page !PRESENT.
511          */
512         if (!(pgprot_val(prot) & _PAGE_PRESENT))
513                 return prot;
514
515         /* Operate on the virtual address */
516         end = start + npg * PAGE_SIZE - 1;
517
518         res = protect_kernel_text(start, end);
519         check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
520         forbidden = res;
521
522         res = protect_kernel_text_ro(start, end);
523         check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
524         forbidden |= res;
525
526         /* Check the PFN directly */
527         res = protect_pci_bios(pfn, pfn + npg - 1);
528         check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
529         forbidden |= res;
530
531         res = protect_rodata(pfn, pfn + npg - 1);
532         check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
533         forbidden |= res;
534
535         return __pgprot(pgprot_val(prot) & ~forbidden);
536 }
537
538 /*
539  * Lookup the page table entry for a virtual address in a specific pgd.
540  * Return a pointer to the entry and the level of the mapping.
541  */
542 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
543                              unsigned int *level)
544 {
545         p4d_t *p4d;
546         pud_t *pud;
547         pmd_t *pmd;
548
549         *level = PG_LEVEL_NONE;
550
551         if (pgd_none(*pgd))
552                 return NULL;
553
554         p4d = p4d_offset(pgd, address);
555         if (p4d_none(*p4d))
556                 return NULL;
557
558         *level = PG_LEVEL_512G;
559         if (p4d_large(*p4d) || !p4d_present(*p4d))
560                 return (pte_t *)p4d;
561
562         pud = pud_offset(p4d, address);
563         if (pud_none(*pud))
564                 return NULL;
565
566         *level = PG_LEVEL_1G;
567         if (pud_large(*pud) || !pud_present(*pud))
568                 return (pte_t *)pud;
569
570         pmd = pmd_offset(pud, address);
571         if (pmd_none(*pmd))
572                 return NULL;
573
574         *level = PG_LEVEL_2M;
575         if (pmd_large(*pmd) || !pmd_present(*pmd))
576                 return (pte_t *)pmd;
577
578         *level = PG_LEVEL_4K;
579
580         return pte_offset_kernel(pmd, address);
581 }
582
583 /*
584  * Lookup the page table entry for a virtual address. Return a pointer
585  * to the entry and the level of the mapping.
586  *
587  * Note: We return pud and pmd either when the entry is marked large
588  * or when the present bit is not set. Otherwise we would return a
589  * pointer to a nonexisting mapping.
590  */
591 pte_t *lookup_address(unsigned long address, unsigned int *level)
592 {
593         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
594 }
595 EXPORT_SYMBOL_GPL(lookup_address);
596
597 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
598                                   unsigned int *level)
599 {
600         if (cpa->pgd)
601                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
602                                                address, level);
603
604         return lookup_address(address, level);
605 }
606
607 /*
608  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
609  * or NULL if not present.
610  */
611 pmd_t *lookup_pmd_address(unsigned long address)
612 {
613         pgd_t *pgd;
614         p4d_t *p4d;
615         pud_t *pud;
616
617         pgd = pgd_offset_k(address);
618         if (pgd_none(*pgd))
619                 return NULL;
620
621         p4d = p4d_offset(pgd, address);
622         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
623                 return NULL;
624
625         pud = pud_offset(p4d, address);
626         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
627                 return NULL;
628
629         return pmd_offset(pud, address);
630 }
631
632 /*
633  * This is necessary because __pa() does not work on some
634  * kinds of memory, like vmalloc() or the alloc_remap()
635  * areas on 32-bit NUMA systems.  The percpu areas can
636  * end up in this kind of memory, for instance.
637  *
638  * This could be optimized, but it is only intended to be
639  * used at inititalization time, and keeping it
640  * unoptimized should increase the testing coverage for
641  * the more obscure platforms.
642  */
643 phys_addr_t slow_virt_to_phys(void *__virt_addr)
644 {
645         unsigned long virt_addr = (unsigned long)__virt_addr;
646         phys_addr_t phys_addr;
647         unsigned long offset;
648         enum pg_level level;
649         pte_t *pte;
650
651         pte = lookup_address(virt_addr, &level);
652         BUG_ON(!pte);
653
654         /*
655          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
656          * before being left-shifted PAGE_SHIFT bits -- this trick is to
657          * make 32-PAE kernel work correctly.
658          */
659         switch (level) {
660         case PG_LEVEL_1G:
661                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
662                 offset = virt_addr & ~PUD_PAGE_MASK;
663                 break;
664         case PG_LEVEL_2M:
665                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
666                 offset = virt_addr & ~PMD_PAGE_MASK;
667                 break;
668         default:
669                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
670                 offset = virt_addr & ~PAGE_MASK;
671         }
672
673         return (phys_addr_t)(phys_addr | offset);
674 }
675 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
676
677 /*
678  * Set the new pmd in all the pgds we know about:
679  */
680 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
681 {
682         /* change init_mm */
683         set_pte_atomic(kpte, pte);
684 #ifdef CONFIG_X86_32
685         if (!SHARED_KERNEL_PMD) {
686                 struct page *page;
687
688                 list_for_each_entry(page, &pgd_list, lru) {
689                         pgd_t *pgd;
690                         p4d_t *p4d;
691                         pud_t *pud;
692                         pmd_t *pmd;
693
694                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
695                         p4d = p4d_offset(pgd, address);
696                         pud = pud_offset(p4d, address);
697                         pmd = pmd_offset(pud, address);
698                         set_pte_atomic((pte_t *)pmd, pte);
699                 }
700         }
701 #endif
702 }
703
704 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
705 {
706         /*
707          * _PAGE_GLOBAL means "global page" for present PTEs.
708          * But, it is also used to indicate _PAGE_PROTNONE
709          * for non-present PTEs.
710          *
711          * This ensures that a _PAGE_GLOBAL PTE going from
712          * present to non-present is not confused as
713          * _PAGE_PROTNONE.
714          */
715         if (!(pgprot_val(prot) & _PAGE_PRESENT))
716                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
717
718         return prot;
719 }
720
721 static int __should_split_large_page(pte_t *kpte, unsigned long address,
722                                      struct cpa_data *cpa)
723 {
724         unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
725         pgprot_t old_prot, new_prot, req_prot, chk_prot;
726         pte_t new_pte, old_pte, *tmp;
727         enum pg_level level;
728
729         /*
730          * Check for races, another CPU might have split this page
731          * up already:
732          */
733         tmp = _lookup_address_cpa(cpa, address, &level);
734         if (tmp != kpte)
735                 return 1;
736
737         switch (level) {
738         case PG_LEVEL_2M:
739                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
740                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
741                 cpa_inc_2m_checked();
742                 break;
743         case PG_LEVEL_1G:
744                 old_prot = pud_pgprot(*(pud_t *)kpte);
745                 old_pfn = pud_pfn(*(pud_t *)kpte);
746                 cpa_inc_1g_checked();
747                 break;
748         default:
749                 return -EINVAL;
750         }
751
752         psize = page_level_size(level);
753         pmask = page_level_mask(level);
754
755         /*
756          * Calculate the number of pages, which fit into this large
757          * page starting at address:
758          */
759         lpaddr = (address + psize) & pmask;
760         numpages = (lpaddr - address) >> PAGE_SHIFT;
761         if (numpages < cpa->numpages)
762                 cpa->numpages = numpages;
763
764         /*
765          * We are safe now. Check whether the new pgprot is the same:
766          * Convert protection attributes to 4k-format, as cpa->mask* are set
767          * up accordingly.
768          */
769         old_pte = *kpte;
770         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
771         req_prot = pgprot_large_2_4k(old_prot);
772
773         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
774         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
775
776         /*
777          * req_prot is in format of 4k pages. It must be converted to large
778          * page format: the caching mode includes the PAT bit located at
779          * different bit positions in the two formats.
780          */
781         req_prot = pgprot_4k_2_large(req_prot);
782         req_prot = pgprot_clear_protnone_bits(req_prot);
783         if (pgprot_val(req_prot) & _PAGE_PRESENT)
784                 pgprot_val(req_prot) |= _PAGE_PSE;
785
786         /*
787          * old_pfn points to the large page base pfn. So we need to add the
788          * offset of the virtual address:
789          */
790         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
791         cpa->pfn = pfn;
792
793         /*
794          * Calculate the large page base address and the number of 4K pages
795          * in the large page
796          */
797         lpaddr = address & pmask;
798         numpages = psize >> PAGE_SHIFT;
799
800         /*
801          * Sanity check that the existing mapping is correct versus the static
802          * protections. static_protections() guards against !PRESENT, so no
803          * extra conditional required here.
804          */
805         chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
806                                       CPA_CONFLICT);
807
808         if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
809                 /*
810                  * Split the large page and tell the split code to
811                  * enforce static protections.
812                  */
813                 cpa->force_static_prot = 1;
814                 return 1;
815         }
816
817         /*
818          * Optimization: If the requested pgprot is the same as the current
819          * pgprot, then the large page can be preserved and no updates are
820          * required independent of alignment and length of the requested
821          * range. The above already established that the current pgprot is
822          * correct, which in consequence makes the requested pgprot correct
823          * as well if it is the same. The static protection scan below will
824          * not come to a different conclusion.
825          */
826         if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
827                 cpa_inc_lp_sameprot(level);
828                 return 0;
829         }
830
831         /*
832          * If the requested range does not cover the full page, split it up
833          */
834         if (address != lpaddr || cpa->numpages != numpages)
835                 return 1;
836
837         /*
838          * Check whether the requested pgprot is conflicting with a static
839          * protection requirement in the large page.
840          */
841         new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
842                                       CPA_DETECT);
843
844         /*
845          * If there is a conflict, split the large page.
846          *
847          * There used to be a 4k wise evaluation trying really hard to
848          * preserve the large pages, but experimentation has shown, that this
849          * does not help at all. There might be corner cases which would
850          * preserve one large page occasionally, but it's really not worth the
851          * extra code and cycles for the common case.
852          */
853         if (pgprot_val(req_prot) != pgprot_val(new_prot))
854                 return 1;
855
856         /* All checks passed. Update the large page mapping. */
857         new_pte = pfn_pte(old_pfn, new_prot);
858         __set_pmd_pte(kpte, address, new_pte);
859         cpa->flags |= CPA_FLUSHTLB;
860         cpa_inc_lp_preserved(level);
861         return 0;
862 }
863
864 static int should_split_large_page(pte_t *kpte, unsigned long address,
865                                    struct cpa_data *cpa)
866 {
867         int do_split;
868
869         if (cpa->force_split)
870                 return 1;
871
872         spin_lock(&pgd_lock);
873         do_split = __should_split_large_page(kpte, address, cpa);
874         spin_unlock(&pgd_lock);
875
876         return do_split;
877 }
878
879 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
880                           pgprot_t ref_prot, unsigned long address,
881                           unsigned long size)
882 {
883         unsigned int npg = PFN_DOWN(size);
884         pgprot_t prot;
885
886         /*
887          * If should_split_large_page() discovered an inconsistent mapping,
888          * remove the invalid protection in the split mapping.
889          */
890         if (!cpa->force_static_prot)
891                 goto set;
892
893         prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);
894
895         if (pgprot_val(prot) == pgprot_val(ref_prot))
896                 goto set;
897
898         /*
899          * If this is splitting a PMD, fix it up. PUD splits cannot be
900          * fixed trivially as that would require to rescan the newly
901          * installed PMD mappings after returning from split_large_page()
902          * so an eventual further split can allocate the necessary PTE
903          * pages. Warn for now and revisit it in case this actually
904          * happens.
905          */
906         if (size == PAGE_SIZE)
907                 ref_prot = prot;
908         else
909                 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
910 set:
911         set_pte(pte, pfn_pte(pfn, ref_prot));
912 }
913
914 static int
915 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
916                    struct page *base)
917 {
918         unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
919         pte_t *pbase = (pte_t *)page_address(base);
920         unsigned int i, level;
921         pgprot_t ref_prot;
922         pte_t *tmp;
923
924         spin_lock(&pgd_lock);
925         /*
926          * Check for races, another CPU might have split this page
927          * up for us already:
928          */
929         tmp = _lookup_address_cpa(cpa, address, &level);
930         if (tmp != kpte) {
931                 spin_unlock(&pgd_lock);
932                 return 1;
933         }
934
935         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
936
937         switch (level) {
938         case PG_LEVEL_2M:
939                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
940                 /*
941                  * Clear PSE (aka _PAGE_PAT) and move
942                  * PAT bit to correct position.
943                  */
944                 ref_prot = pgprot_large_2_4k(ref_prot);
945                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
946                 lpaddr = address & PMD_MASK;
947                 lpinc = PAGE_SIZE;
948                 break;
949
950         case PG_LEVEL_1G:
951                 ref_prot = pud_pgprot(*(pud_t *)kpte);
952                 ref_pfn = pud_pfn(*(pud_t *)kpte);
953                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
954                 lpaddr = address & PUD_MASK;
955                 lpinc = PMD_SIZE;
956                 /*
957                  * Clear the PSE flags if the PRESENT flag is not set
958                  * otherwise pmd_present/pmd_huge will return true
959                  * even on a non present pmd.
960                  */
961                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
962                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
963                 break;
964
965         default:
966                 spin_unlock(&pgd_lock);
967                 return 1;
968         }
969
970         ref_prot = pgprot_clear_protnone_bits(ref_prot);
971
972         /*
973          * Get the target pfn from the original entry:
974          */
975         pfn = ref_pfn;
976         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
977                 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
978
979         if (virt_addr_valid(address)) {
980                 unsigned long pfn = PFN_DOWN(__pa(address));
981
982                 if (pfn_range_is_mapped(pfn, pfn + 1))
983                         split_page_count(level);
984         }
985
986         /*
987          * Install the new, split up pagetable.
988          *
989          * We use the standard kernel pagetable protections for the new
990          * pagetable protections, the actual ptes set above control the
991          * primary protection behavior:
992          */
993         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
994
995         /*
996          * Do a global flush tlb after splitting the large page
997          * and before we do the actual change page attribute in the PTE.
998          *
999          * Without this, we violate the TLB application note, that says:
1000          * "The TLBs may contain both ordinary and large-page
1001          *  translations for a 4-KByte range of linear addresses. This
1002          *  may occur if software modifies the paging structures so that
1003          *  the page size used for the address range changes. If the two
1004          *  translations differ with respect to page frame or attributes
1005          *  (e.g., permissions), processor behavior is undefined and may
1006          *  be implementation-specific."
1007          *
1008          * We do this global tlb flush inside the cpa_lock, so that we
1009          * don't allow any other cpu, with stale tlb entries change the
1010          * page attribute in parallel, that also falls into the
1011          * just split large page entry.
1012          */
1013         flush_tlb_all();
1014         spin_unlock(&pgd_lock);
1015
1016         return 0;
1017 }
1018
1019 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1020                             unsigned long address)
1021 {
1022         struct page *base;
1023
1024         if (!debug_pagealloc_enabled())
1025                 spin_unlock(&cpa_lock);
1026         base = alloc_pages(GFP_KERNEL, 0);
1027         if (!debug_pagealloc_enabled())
1028                 spin_lock(&cpa_lock);
1029         if (!base)
1030                 return -ENOMEM;
1031
1032         if (__split_large_page(cpa, kpte, address, base))
1033                 __free_page(base);
1034
1035         return 0;
1036 }
1037
1038 static bool try_to_free_pte_page(pte_t *pte)
1039 {
1040         int i;
1041
1042         for (i = 0; i < PTRS_PER_PTE; i++)
1043                 if (!pte_none(pte[i]))
1044                         return false;
1045
1046         free_page((unsigned long)pte);
1047         return true;
1048 }
1049
1050 static bool try_to_free_pmd_page(pmd_t *pmd)
1051 {
1052         int i;
1053
1054         for (i = 0; i < PTRS_PER_PMD; i++)
1055                 if (!pmd_none(pmd[i]))
1056                         return false;
1057
1058         free_page((unsigned long)pmd);
1059         return true;
1060 }
1061
1062 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1063 {
1064         pte_t *pte = pte_offset_kernel(pmd, start);
1065
1066         while (start < end) {
1067                 set_pte(pte, __pte(0));
1068
1069                 start += PAGE_SIZE;
1070                 pte++;
1071         }
1072
1073         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1074                 pmd_clear(pmd);
1075                 return true;
1076         }
1077         return false;
1078 }
1079
1080 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1081                               unsigned long start, unsigned long end)
1082 {
1083         if (unmap_pte_range(pmd, start, end))
1084                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1085                         pud_clear(pud);
1086 }
1087
1088 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1089 {
1090         pmd_t *pmd = pmd_offset(pud, start);
1091
1092         /*
1093          * Not on a 2MB page boundary?
1094          */
1095         if (start & (PMD_SIZE - 1)) {
1096                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1097                 unsigned long pre_end = min_t(unsigned long, end, next_page);
1098
1099                 __unmap_pmd_range(pud, pmd, start, pre_end);
1100
1101                 start = pre_end;
1102                 pmd++;
1103         }
1104
1105         /*
1106          * Try to unmap in 2M chunks.
1107          */
1108         while (end - start >= PMD_SIZE) {
1109                 if (pmd_large(*pmd))
1110                         pmd_clear(pmd);
1111                 else
1112                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1113
1114                 start += PMD_SIZE;
1115                 pmd++;
1116         }
1117
1118         /*
1119          * 4K leftovers?
1120          */
1121         if (start < end)
1122                 return __unmap_pmd_range(pud, pmd, start, end);
1123
1124         /*
1125          * Try again to free the PMD page if haven't succeeded above.
1126          */
1127         if (!pud_none(*pud))
1128                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1129                         pud_clear(pud);
1130 }
1131
1132 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1133 {
1134         pud_t *pud = pud_offset(p4d, start);
1135
1136         /*
1137          * Not on a GB page boundary?
1138          */
1139         if (start & (PUD_SIZE - 1)) {
1140                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1141                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
1142
1143                 unmap_pmd_range(pud, start, pre_end);
1144
1145                 start = pre_end;
1146                 pud++;
1147         }
1148
1149         /*
1150          * Try to unmap in 1G chunks?
1151          */
1152         while (end - start >= PUD_SIZE) {
1153
1154                 if (pud_large(*pud))
1155                         pud_clear(pud);
1156                 else
1157                         unmap_pmd_range(pud, start, start + PUD_SIZE);
1158
1159                 start += PUD_SIZE;
1160                 pud++;
1161         }
1162
1163         /*
1164          * 2M leftovers?
1165          */
1166         if (start < end)
1167                 unmap_pmd_range(pud, start, end);
1168
1169         /*
1170          * No need to try to free the PUD page because we'll free it in
1171          * populate_pgd's error path
1172          */
1173 }
1174
1175 static int alloc_pte_page(pmd_t *pmd)
1176 {
1177         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1178         if (!pte)
1179                 return -1;
1180
1181         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1182         return 0;
1183 }
1184
1185 static int alloc_pmd_page(pud_t *pud)
1186 {
1187         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1188         if (!pmd)
1189                 return -1;
1190
1191         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1192         return 0;
1193 }
1194
1195 static void populate_pte(struct cpa_data *cpa,
1196                          unsigned long start, unsigned long end,
1197                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1198 {
1199         pte_t *pte;
1200
1201         pte = pte_offset_kernel(pmd, start);
1202
1203         pgprot = pgprot_clear_protnone_bits(pgprot);
1204
1205         while (num_pages-- && start < end) {
1206                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1207
1208                 start    += PAGE_SIZE;
1209                 cpa->pfn++;
1210                 pte++;
1211         }
1212 }
1213
1214 static long populate_pmd(struct cpa_data *cpa,
1215                          unsigned long start, unsigned long end,
1216                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1217 {
1218         long cur_pages = 0;
1219         pmd_t *pmd;
1220         pgprot_t pmd_pgprot;
1221
1222         /*
1223          * Not on a 2M boundary?
1224          */
1225         if (start & (PMD_SIZE - 1)) {
1226                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1227                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1228
1229                 pre_end   = min_t(unsigned long, pre_end, next_page);
1230                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1231                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1232
1233                 /*
1234                  * Need a PTE page?
1235                  */
1236                 pmd = pmd_offset(pud, start);
1237                 if (pmd_none(*pmd))
1238                         if (alloc_pte_page(pmd))
1239                                 return -1;
1240
1241                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1242
1243                 start = pre_end;
1244         }
1245
1246         /*
1247          * We mapped them all?
1248          */
1249         if (num_pages == cur_pages)
1250                 return cur_pages;
1251
1252         pmd_pgprot = pgprot_4k_2_large(pgprot);
1253
1254         while (end - start >= PMD_SIZE) {
1255
1256                 /*
1257                  * We cannot use a 1G page so allocate a PMD page if needed.
1258                  */
1259                 if (pud_none(*pud))
1260                         if (alloc_pmd_page(pud))
1261                                 return -1;
1262
1263                 pmd = pmd_offset(pud, start);
1264
1265                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1266                                         canon_pgprot(pmd_pgprot))));
1267
1268                 start     += PMD_SIZE;
1269                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1270                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1271         }
1272
1273         /*
1274          * Map trailing 4K pages.
1275          */
1276         if (start < end) {
1277                 pmd = pmd_offset(pud, start);
1278                 if (pmd_none(*pmd))
1279                         if (alloc_pte_page(pmd))
1280                                 return -1;
1281
1282                 populate_pte(cpa, start, end, num_pages - cur_pages,
1283                              pmd, pgprot);
1284         }
1285         return num_pages;
1286 }
1287
1288 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1289                         pgprot_t pgprot)
1290 {
1291         pud_t *pud;
1292         unsigned long end;
1293         long cur_pages = 0;
1294         pgprot_t pud_pgprot;
1295
1296         end = start + (cpa->numpages << PAGE_SHIFT);
1297
1298         /*
1299          * Not on a Gb page boundary? => map everything up to it with
1300          * smaller pages.
1301          */
1302         if (start & (PUD_SIZE - 1)) {
1303                 unsigned long pre_end;
1304                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1305
1306                 pre_end   = min_t(unsigned long, end, next_page);
1307                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1308                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1309
1310                 pud = pud_offset(p4d, start);
1311
1312                 /*
1313                  * Need a PMD page?
1314                  */
1315                 if (pud_none(*pud))
1316                         if (alloc_pmd_page(pud))
1317                                 return -1;
1318
1319                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1320                                          pud, pgprot);
1321                 if (cur_pages < 0)
1322                         return cur_pages;
1323
1324                 start = pre_end;
1325         }
1326
1327         /* We mapped them all? */
1328         if (cpa->numpages == cur_pages)
1329                 return cur_pages;
1330
1331         pud = pud_offset(p4d, start);
1332         pud_pgprot = pgprot_4k_2_large(pgprot);
1333
1334         /*
1335          * Map everything starting from the Gb boundary, possibly with 1G pages
1336          */
1337         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1338                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1339                                    canon_pgprot(pud_pgprot))));
1340
1341                 start     += PUD_SIZE;
1342                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1343                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1344                 pud++;
1345         }
1346
1347         /* Map trailing leftover */
1348         if (start < end) {
1349                 long tmp;
1350
1351                 pud = pud_offset(p4d, start);
1352                 if (pud_none(*pud))
1353                         if (alloc_pmd_page(pud))
1354                                 return -1;
1355
1356                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1357                                    pud, pgprot);
1358                 if (tmp < 0)
1359                         return cur_pages;
1360
1361                 cur_pages += tmp;
1362         }
1363         return cur_pages;
1364 }
1365
1366 /*
1367  * Restrictions for kernel page table do not necessarily apply when mapping in
1368  * an alternate PGD.
1369  */
1370 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1371 {
1372         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1373         pud_t *pud = NULL;      /* shut up gcc */
1374         p4d_t *p4d;
1375         pgd_t *pgd_entry;
1376         long ret;
1377
1378         pgd_entry = cpa->pgd + pgd_index(addr);
1379
1380         if (pgd_none(*pgd_entry)) {
1381                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1382                 if (!p4d)
1383                         return -1;
1384
1385                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1386         }
1387
1388         /*
1389          * Allocate a PUD page and hand it down for mapping.
1390          */
1391         p4d = p4d_offset(pgd_entry, addr);
1392         if (p4d_none(*p4d)) {
1393                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1394                 if (!pud)
1395                         return -1;
1396
1397                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1398         }
1399
1400         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1401         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1402
1403         ret = populate_pud(cpa, addr, p4d, pgprot);
1404         if (ret < 0) {
1405                 /*
1406                  * Leave the PUD page in place in case some other CPU or thread
1407                  * already found it, but remove any useless entries we just
1408                  * added to it.
1409                  */
1410                 unmap_pud_range(p4d, addr,
1411                                 addr + (cpa->numpages << PAGE_SHIFT));
1412                 return ret;
1413         }
1414
1415         cpa->numpages = ret;
1416         return 0;
1417 }
1418
1419 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1420                                int primary)
1421 {
1422         if (cpa->pgd) {
1423                 /*
1424                  * Right now, we only execute this code path when mapping
1425                  * the EFI virtual memory map regions, no other users
1426                  * provide a ->pgd value. This may change in the future.
1427                  */
1428                 return populate_pgd(cpa, vaddr);
1429         }
1430
1431         /*
1432          * Ignore all non primary paths.
1433          */
1434         if (!primary) {
1435                 cpa->numpages = 1;
1436                 return 0;
1437         }
1438
1439         /*
1440          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1441          * to have holes.
1442          * Also set numpages to '1' indicating that we processed cpa req for
1443          * one virtual address page and its pfn. TBD: numpages can be set based
1444          * on the initial value and the level returned by lookup_address().
1445          */
1446         if (within(vaddr, PAGE_OFFSET,
1447                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1448                 cpa->numpages = 1;
1449                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1450                 return 0;
1451
1452         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1453                 /* Faults in the highmap are OK, so do not warn: */
1454                 return -EFAULT;
1455         } else {
1456                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1457                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1458                         *cpa->vaddr);
1459
1460                 return -EFAULT;
1461         }
1462 }
1463
1464 static int __change_page_attr(struct cpa_data *cpa, int primary)
1465 {
1466         unsigned long address;
1467         int do_split, err;
1468         unsigned int level;
1469         pte_t *kpte, old_pte;
1470
1471         if (cpa->flags & CPA_PAGES_ARRAY) {
1472                 struct page *page = cpa->pages[cpa->curpage];
1473                 if (unlikely(PageHighMem(page)))
1474                         return 0;
1475                 address = (unsigned long)page_address(page);
1476         } else if (cpa->flags & CPA_ARRAY)
1477                 address = cpa->vaddr[cpa->curpage];
1478         else
1479                 address = *cpa->vaddr;
1480 repeat:
1481         kpte = _lookup_address_cpa(cpa, address, &level);
1482         if (!kpte)
1483                 return __cpa_process_fault(cpa, address, primary);
1484
1485         old_pte = *kpte;
1486         if (pte_none(old_pte))
1487                 return __cpa_process_fault(cpa, address, primary);
1488
1489         if (level == PG_LEVEL_4K) {
1490                 pte_t new_pte;
1491                 pgprot_t new_prot = pte_pgprot(old_pte);
1492                 unsigned long pfn = pte_pfn(old_pte);
1493
1494                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1495                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1496
1497                 cpa_inc_4k_install();
1498                 new_prot = static_protections(new_prot, address, pfn, 1,
1499                                               CPA_PROTECT);
1500
1501                 new_prot = pgprot_clear_protnone_bits(new_prot);
1502
1503                 /*
1504                  * We need to keep the pfn from the existing PTE,
1505                  * after all we're only going to change it's attributes
1506                  * not the memory it points to
1507                  */
1508                 new_pte = pfn_pte(pfn, new_prot);
1509                 cpa->pfn = pfn;
1510                 /*
1511                  * Do we really change anything ?
1512                  */
1513                 if (pte_val(old_pte) != pte_val(new_pte)) {
1514                         set_pte_atomic(kpte, new_pte);
1515                         cpa->flags |= CPA_FLUSHTLB;
1516                 }
1517                 cpa->numpages = 1;
1518                 return 0;
1519         }
1520
1521         /*
1522          * Check, whether we can keep the large page intact
1523          * and just change the pte:
1524          */
1525         do_split = should_split_large_page(kpte, address, cpa);
1526         /*
1527          * When the range fits into the existing large page,
1528          * return. cp->numpages and cpa->tlbflush have been updated in
1529          * try_large_page:
1530          */
1531         if (do_split <= 0)
1532                 return do_split;
1533
1534         /*
1535          * We have to split the large page:
1536          */
1537         err = split_large_page(cpa, kpte, address);
1538         if (!err)
1539                 goto repeat;
1540
1541         return err;
1542 }
1543
1544 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1545
1546 static int cpa_process_alias(struct cpa_data *cpa)
1547 {
1548         struct cpa_data alias_cpa;
1549         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1550         unsigned long vaddr;
1551         int ret;
1552
1553         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1554                 return 0;
1555
1556         /*
1557          * No need to redo, when the primary call touched the direct
1558          * mapping already:
1559          */
1560         if (cpa->flags & CPA_PAGES_ARRAY) {
1561                 struct page *page = cpa->pages[cpa->curpage];
1562                 if (unlikely(PageHighMem(page)))
1563                         return 0;
1564                 vaddr = (unsigned long)page_address(page);
1565         } else if (cpa->flags & CPA_ARRAY)
1566                 vaddr = cpa->vaddr[cpa->curpage];
1567         else
1568                 vaddr = *cpa->vaddr;
1569
1570         if (!(within(vaddr, PAGE_OFFSET,
1571                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1572
1573                 alias_cpa = *cpa;
1574                 alias_cpa.vaddr = &laddr;
1575                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1576
1577                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1578                 if (ret)
1579                         return ret;
1580         }
1581
1582 #ifdef CONFIG_X86_64
1583         /*
1584          * If the primary call didn't touch the high mapping already
1585          * and the physical address is inside the kernel map, we need
1586          * to touch the high mapped kernel as well:
1587          */
1588         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1589             __cpa_pfn_in_highmap(cpa->pfn)) {
1590                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1591                                                __START_KERNEL_map - phys_base;
1592                 alias_cpa = *cpa;
1593                 alias_cpa.vaddr = &temp_cpa_vaddr;
1594                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1595
1596                 /*
1597                  * The high mapping range is imprecise, so ignore the
1598                  * return value.
1599                  */
1600                 __change_page_attr_set_clr(&alias_cpa, 0);
1601         }
1602 #endif
1603
1604         return 0;
1605 }
1606
1607 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1608 {
1609         unsigned long numpages = cpa->numpages;
1610         int ret;
1611
1612         while (numpages) {
1613                 /*
1614                  * Store the remaining nr of pages for the large page
1615                  * preservation check.
1616                  */
1617                 cpa->numpages = numpages;
1618                 /* for array changes, we can't use large page */
1619                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1620                         cpa->numpages = 1;
1621
1622                 if (!debug_pagealloc_enabled())
1623                         spin_lock(&cpa_lock);
1624                 ret = __change_page_attr(cpa, checkalias);
1625                 if (!debug_pagealloc_enabled())
1626                         spin_unlock(&cpa_lock);
1627                 if (ret)
1628                         return ret;
1629
1630                 if (checkalias) {
1631                         ret = cpa_process_alias(cpa);
1632                         if (ret)
1633                                 return ret;
1634                 }
1635
1636                 /*
1637                  * Adjust the number of pages with the result of the
1638                  * CPA operation. Either a large page has been
1639                  * preserved or a single page update happened.
1640                  */
1641                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1642                 numpages -= cpa->numpages;
1643                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1644                         cpa->curpage++;
1645                 else
1646                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1647
1648         }
1649         return 0;
1650 }
1651
1652 /*
1653  * Machine check recovery code needs to change cache mode of poisoned
1654  * pages to UC to avoid speculative access logging another error. But
1655  * passing the address of the 1:1 mapping to set_memory_uc() is a fine
1656  * way to encourage a speculative access. So we cheat and flip the top
1657  * bit of the address. This works fine for the code that updates the
1658  * page tables. But at the end of the process we need to flush the cache
1659  * and the non-canonical address causes a #GP fault when used by the
1660  * CLFLUSH instruction.
1661  *
1662  * But in the common case we already have a canonical address. This code
1663  * will fix the top bit if needed and is a no-op otherwise.
1664  */
1665 static inline unsigned long make_addr_canonical_again(unsigned long addr)
1666 {
1667 #ifdef CONFIG_X86_64
1668         return (long)(addr << 1) >> 1;
1669 #else
1670         return addr;
1671 #endif
1672 }
1673
1674
1675 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1676                                     pgprot_t mask_set, pgprot_t mask_clr,
1677                                     int force_split, int in_flag,
1678                                     struct page **pages)
1679 {
1680         struct cpa_data cpa;
1681         int ret, cache, checkalias;
1682         unsigned long baddr = 0;
1683
1684         memset(&cpa, 0, sizeof(cpa));
1685
1686         /*
1687          * Check, if we are requested to set a not supported
1688          * feature.  Clearing non-supported features is OK.
1689          */
1690         mask_set = canon_pgprot(mask_set);
1691
1692         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1693                 return 0;
1694
1695         /* Ensure we are PAGE_SIZE aligned */
1696         if (in_flag & CPA_ARRAY) {
1697                 int i;
1698                 for (i = 0; i < numpages; i++) {
1699                         if (addr[i] & ~PAGE_MASK) {
1700                                 addr[i] &= PAGE_MASK;
1701                                 WARN_ON_ONCE(1);
1702                         }
1703                 }
1704         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1705                 /*
1706                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1707                  * No need to cehck in that case
1708                  */
1709                 if (*addr & ~PAGE_MASK) {
1710                         *addr &= PAGE_MASK;
1711                         /*
1712                          * People should not be passing in unaligned addresses:
1713                          */
1714                         WARN_ON_ONCE(1);
1715                 }
1716                 /*
1717                  * Save address for cache flush. *addr is modified in the call
1718                  * to __change_page_attr_set_clr() below.
1719                  */
1720                 baddr = make_addr_canonical_again(*addr);
1721         }
1722
1723         /* Must avoid aliasing mappings in the highmem code */
1724         kmap_flush_unused();
1725
1726         vm_unmap_aliases();
1727
1728         cpa.vaddr = addr;
1729         cpa.pages = pages;
1730         cpa.numpages = numpages;
1731         cpa.mask_set = mask_set;
1732         cpa.mask_clr = mask_clr;
1733         cpa.flags = 0;
1734         cpa.curpage = 0;
1735         cpa.force_split = force_split;
1736
1737         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1738                 cpa.flags |= in_flag;
1739
1740         /* No alias checking for _NX bit modifications */
1741         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1742         /* Has caller explicitly disabled alias checking? */
1743         if (in_flag & CPA_NO_CHECK_ALIAS)
1744                 checkalias = 0;
1745
1746         ret = __change_page_attr_set_clr(&cpa, checkalias);
1747
1748         /*
1749          * Check whether we really changed something:
1750          */
1751         if (!(cpa.flags & CPA_FLUSHTLB))
1752                 goto out;
1753
1754         /*
1755          * No need to flush, when we did not set any of the caching
1756          * attributes:
1757          */
1758         cache = !!pgprot2cachemode(mask_set);
1759
1760         /*
1761          * On error; flush everything to be sure.
1762          */
1763         if (ret) {
1764                 cpa_flush_all(cache);
1765                 goto out;
1766         }
1767
1768         if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1769                 cpa_flush_array(baddr, addr, numpages, cache,
1770                                 cpa.flags, pages);
1771         } else {
1772                 cpa_flush_range(baddr, numpages, cache);
1773         }
1774
1775 out:
1776         return ret;
1777 }
1778
1779 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1780                                        pgprot_t mask, int array)
1781 {
1782         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1783                 (array ? CPA_ARRAY : 0), NULL);
1784 }
1785
1786 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1787                                          pgprot_t mask, int array)
1788 {
1789         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1790                 (array ? CPA_ARRAY : 0), NULL);
1791 }
1792
1793 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1794                                        pgprot_t mask)
1795 {
1796         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1797                 CPA_PAGES_ARRAY, pages);
1798 }
1799
1800 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1801                                          pgprot_t mask)
1802 {
1803         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1804                 CPA_PAGES_ARRAY, pages);
1805 }
1806
1807 int _set_memory_uc(unsigned long addr, int numpages)
1808 {
1809         /*
1810          * for now UC MINUS. see comments in ioremap_nocache()
1811          * If you really need strong UC use ioremap_uc(), but note
1812          * that you cannot override IO areas with set_memory_*() as
1813          * these helpers cannot work with IO memory.
1814          */
1815         return change_page_attr_set(&addr, numpages,
1816                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1817                                     0);
1818 }
1819
1820 int set_memory_uc(unsigned long addr, int numpages)
1821 {
1822         int ret;
1823
1824         /*
1825          * for now UC MINUS. see comments in ioremap_nocache()
1826          */
1827         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1828                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1829         if (ret)
1830                 goto out_err;
1831
1832         ret = _set_memory_uc(addr, numpages);
1833         if (ret)
1834                 goto out_free;
1835
1836         return 0;
1837
1838 out_free:
1839         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1840 out_err:
1841         return ret;
1842 }
1843 EXPORT_SYMBOL(set_memory_uc);
1844
1845 static int _set_memory_array(unsigned long *addr, int addrinarray,
1846                 enum page_cache_mode new_type)
1847 {
1848         enum page_cache_mode set_type;
1849         int i, j;
1850         int ret;
1851
1852         for (i = 0; i < addrinarray; i++) {
1853                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1854                                         new_type, NULL);
1855                 if (ret)
1856                         goto out_free;
1857         }
1858
1859         /* If WC, set to UC- first and then WC */
1860         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1861                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1862
1863         ret = change_page_attr_set(addr, addrinarray,
1864                                    cachemode2pgprot(set_type), 1);
1865
1866         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1867                 ret = change_page_attr_set_clr(addr, addrinarray,
1868                                                cachemode2pgprot(
1869                                                 _PAGE_CACHE_MODE_WC),
1870                                                __pgprot(_PAGE_CACHE_MASK),
1871                                                0, CPA_ARRAY, NULL);
1872         if (ret)
1873                 goto out_free;
1874
1875         return 0;
1876
1877 out_free:
1878         for (j = 0; j < i; j++)
1879                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1880
1881         return ret;
1882 }
1883
1884 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1885 {
1886         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1887 }
1888 EXPORT_SYMBOL(set_memory_array_uc);
1889
1890 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1891 {
1892         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1893 }
1894 EXPORT_SYMBOL(set_memory_array_wc);
1895
1896 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1897 {
1898         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1899 }
1900 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1901
1902 int _set_memory_wc(unsigned long addr, int numpages)
1903 {
1904         int ret;
1905         unsigned long addr_copy = addr;
1906
1907         ret = change_page_attr_set(&addr, numpages,
1908                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1909                                    0);
1910         if (!ret) {
1911                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1912                                                cachemode2pgprot(
1913                                                 _PAGE_CACHE_MODE_WC),
1914                                                __pgprot(_PAGE_CACHE_MASK),
1915                                                0, 0, NULL);
1916         }
1917         return ret;
1918 }
1919
1920 int set_memory_wc(unsigned long addr, int numpages)
1921 {
1922         int ret;
1923
1924         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1925                 _PAGE_CACHE_MODE_WC, NULL);
1926         if (ret)
1927                 return ret;
1928
1929         ret = _set_memory_wc(addr, numpages);
1930         if (ret)
1931                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1932
1933         return ret;
1934 }
1935 EXPORT_SYMBOL(set_memory_wc);
1936
1937 int _set_memory_wt(unsigned long addr, int numpages)
1938 {
1939         return change_page_attr_set(&addr, numpages,
1940                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1941 }
1942
1943 int set_memory_wt(unsigned long addr, int numpages)
1944 {
1945         int ret;
1946
1947         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1948                               _PAGE_CACHE_MODE_WT, NULL);
1949         if (ret)
1950                 return ret;
1951
1952         ret = _set_memory_wt(addr, numpages);
1953         if (ret)
1954                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1955
1956         return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(set_memory_wt);
1959
1960 int _set_memory_wb(unsigned long addr, int numpages)
1961 {
1962         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1963         return change_page_attr_clear(&addr, numpages,
1964                                       __pgprot(_PAGE_CACHE_MASK), 0);
1965 }
1966
1967 int set_memory_wb(unsigned long addr, int numpages)
1968 {
1969         int ret;
1970
1971         ret = _set_memory_wb(addr, numpages);
1972         if (ret)
1973                 return ret;
1974
1975         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1976         return 0;
1977 }
1978 EXPORT_SYMBOL(set_memory_wb);
1979
1980 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1981 {
1982         int i;
1983         int ret;
1984
1985         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1986         ret = change_page_attr_clear(addr, addrinarray,
1987                                       __pgprot(_PAGE_CACHE_MASK), 1);
1988         if (ret)
1989                 return ret;
1990
1991         for (i = 0; i < addrinarray; i++)
1992                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1993
1994         return 0;
1995 }
1996 EXPORT_SYMBOL(set_memory_array_wb);
1997
1998 int set_memory_x(unsigned long addr, int numpages)
1999 {
2000         if (!(__supported_pte_mask & _PAGE_NX))
2001                 return 0;
2002
2003         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2004 }
2005 EXPORT_SYMBOL(set_memory_x);
2006
2007 int set_memory_nx(unsigned long addr, int numpages)
2008 {
2009         if (!(__supported_pte_mask & _PAGE_NX))
2010                 return 0;
2011
2012         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2013 }
2014 EXPORT_SYMBOL(set_memory_nx);
2015
2016 int set_memory_ro(unsigned long addr, int numpages)
2017 {
2018         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
2019 }
2020
2021 int set_memory_rw(unsigned long addr, int numpages)
2022 {
2023         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2024 }
2025
2026 int set_memory_np(unsigned long addr, int numpages)
2027 {
2028         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2029 }
2030
2031 int set_memory_np_noalias(unsigned long addr, int numpages)
2032 {
2033         int cpa_flags = CPA_NO_CHECK_ALIAS;
2034
2035         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2036                                         __pgprot(_PAGE_PRESENT), 0,
2037                                         cpa_flags, NULL);
2038 }
2039
2040 int set_memory_4k(unsigned long addr, int numpages)
2041 {
2042         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2043                                         __pgprot(0), 1, 0, NULL);
2044 }
2045
2046 int set_memory_nonglobal(unsigned long addr, int numpages)
2047 {
2048         return change_page_attr_clear(&addr, numpages,
2049                                       __pgprot(_PAGE_GLOBAL), 0);
2050 }
2051
2052 int set_memory_global(unsigned long addr, int numpages)
2053 {
2054         return change_page_attr_set(&addr, numpages,
2055                                     __pgprot(_PAGE_GLOBAL), 0);
2056 }
2057
2058 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2059 {
2060         struct cpa_data cpa;
2061         unsigned long start;
2062         int ret;
2063
2064         /* Nothing to do if memory encryption is not active */
2065         if (!mem_encrypt_active())
2066                 return 0;
2067
2068         /* Should not be working on unaligned addresses */
2069         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2070                 addr &= PAGE_MASK;
2071
2072         start = addr;
2073
2074         memset(&cpa, 0, sizeof(cpa));
2075         cpa.vaddr = &addr;
2076         cpa.numpages = numpages;
2077         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2078         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2079         cpa.pgd = init_mm.pgd;
2080
2081         /* Must avoid aliasing mappings in the highmem code */
2082         kmap_flush_unused();
2083         vm_unmap_aliases();
2084
2085         /*
2086          * Before changing the encryption attribute, we need to flush caches.
2087          */
2088         cpa_flush_range(start, numpages, 1);
2089
2090         ret = __change_page_attr_set_clr(&cpa, 1);
2091
2092         /*
2093          * After changing the encryption attribute, we need to flush TLBs
2094          * again in case any speculative TLB caching occurred (but no need
2095          * to flush caches again).  We could just use cpa_flush_all(), but
2096          * in case TLB flushing gets optimized in the cpa_flush_range()
2097          * path use the same logic as above.
2098          */
2099         cpa_flush_range(start, numpages, 0);
2100
2101         return ret;
2102 }
2103
2104 int set_memory_encrypted(unsigned long addr, int numpages)
2105 {
2106         return __set_memory_enc_dec(addr, numpages, true);
2107 }
2108 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2109
2110 int set_memory_decrypted(unsigned long addr, int numpages)
2111 {
2112         return __set_memory_enc_dec(addr, numpages, false);
2113 }
2114 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2115
2116 int set_pages_uc(struct page *page, int numpages)
2117 {
2118         unsigned long addr = (unsigned long)page_address(page);
2119
2120         return set_memory_uc(addr, numpages);
2121 }
2122 EXPORT_SYMBOL(set_pages_uc);
2123
2124 static int _set_pages_array(struct page **pages, int addrinarray,
2125                 enum page_cache_mode new_type)
2126 {
2127         unsigned long start;
2128         unsigned long end;
2129         enum page_cache_mode set_type;
2130         int i;
2131         int free_idx;
2132         int ret;
2133
2134         for (i = 0; i < addrinarray; i++) {
2135                 if (PageHighMem(pages[i]))
2136                         continue;
2137                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2138                 end = start + PAGE_SIZE;
2139                 if (reserve_memtype(start, end, new_type, NULL))
2140                         goto err_out;
2141         }
2142
2143         /* If WC, set to UC- first and then WC */
2144         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2145                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2146
2147         ret = cpa_set_pages_array(pages, addrinarray,
2148                                   cachemode2pgprot(set_type));
2149         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2150                 ret = change_page_attr_set_clr(NULL, addrinarray,
2151                                                cachemode2pgprot(
2152                                                 _PAGE_CACHE_MODE_WC),
2153                                                __pgprot(_PAGE_CACHE_MASK),
2154                                                0, CPA_PAGES_ARRAY, pages);
2155         if (ret)
2156                 goto err_out;
2157         return 0; /* Success */
2158 err_out:
2159         free_idx = i;
2160         for (i = 0; i < free_idx; i++) {
2161                 if (PageHighMem(pages[i]))
2162                         continue;
2163                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2164                 end = start + PAGE_SIZE;
2165                 free_memtype(start, end);
2166         }
2167         return -EINVAL;
2168 }
2169
2170 int set_pages_array_uc(struct page **pages, int addrinarray)
2171 {
2172         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
2173 }
2174 EXPORT_SYMBOL(set_pages_array_uc);
2175
2176 int set_pages_array_wc(struct page **pages, int addrinarray)
2177 {
2178         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
2179 }
2180 EXPORT_SYMBOL(set_pages_array_wc);
2181
2182 int set_pages_array_wt(struct page **pages, int addrinarray)
2183 {
2184         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
2185 }
2186 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2187
2188 int set_pages_wb(struct page *page, int numpages)
2189 {
2190         unsigned long addr = (unsigned long)page_address(page);
2191
2192         return set_memory_wb(addr, numpages);
2193 }
2194 EXPORT_SYMBOL(set_pages_wb);
2195
2196 int set_pages_array_wb(struct page **pages, int addrinarray)
2197 {
2198         int retval;
2199         unsigned long start;
2200         unsigned long end;
2201         int i;
2202
2203         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2204         retval = cpa_clear_pages_array(pages, addrinarray,
2205                         __pgprot(_PAGE_CACHE_MASK));
2206         if (retval)
2207                 return retval;
2208
2209         for (i = 0; i < addrinarray; i++) {
2210                 if (PageHighMem(pages[i]))
2211                         continue;
2212                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2213                 end = start + PAGE_SIZE;
2214                 free_memtype(start, end);
2215         }
2216
2217         return 0;
2218 }
2219 EXPORT_SYMBOL(set_pages_array_wb);
2220
2221 int set_pages_x(struct page *page, int numpages)
2222 {
2223         unsigned long addr = (unsigned long)page_address(page);
2224
2225         return set_memory_x(addr, numpages);
2226 }
2227 EXPORT_SYMBOL(set_pages_x);
2228
2229 int set_pages_nx(struct page *page, int numpages)
2230 {
2231         unsigned long addr = (unsigned long)page_address(page);
2232
2233         return set_memory_nx(addr, numpages);
2234 }
2235 EXPORT_SYMBOL(set_pages_nx);
2236
2237 int set_pages_ro(struct page *page, int numpages)
2238 {
2239         unsigned long addr = (unsigned long)page_address(page);
2240
2241         return set_memory_ro(addr, numpages);
2242 }
2243
2244 int set_pages_rw(struct page *page, int numpages)
2245 {
2246         unsigned long addr = (unsigned long)page_address(page);
2247
2248         return set_memory_rw(addr, numpages);
2249 }
2250
2251 #ifdef CONFIG_DEBUG_PAGEALLOC
2252
2253 static int __set_pages_p(struct page *page, int numpages)
2254 {
2255         unsigned long tempaddr = (unsigned long) page_address(page);
2256         struct cpa_data cpa = { .vaddr = &tempaddr,
2257                                 .pgd = NULL,
2258                                 .numpages = numpages,
2259                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2260                                 .mask_clr = __pgprot(0),
2261                                 .flags = 0};
2262
2263         /*
2264          * No alias checking needed for setting present flag. otherwise,
2265          * we may need to break large pages for 64-bit kernel text
2266          * mappings (this adds to complexity if we want to do this from
2267          * atomic context especially). Let's keep it simple!
2268          */
2269         return __change_page_attr_set_clr(&cpa, 0);
2270 }
2271
2272 static int __set_pages_np(struct page *page, int numpages)
2273 {
2274         unsigned long tempaddr = (unsigned long) page_address(page);
2275         struct cpa_data cpa = { .vaddr = &tempaddr,
2276                                 .pgd = NULL,
2277                                 .numpages = numpages,
2278                                 .mask_set = __pgprot(0),
2279                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2280                                 .flags = 0};
2281
2282         /*
2283          * No alias checking needed for setting not present flag. otherwise,
2284          * we may need to break large pages for 64-bit kernel text
2285          * mappings (this adds to complexity if we want to do this from
2286          * atomic context especially). Let's keep it simple!
2287          */
2288         return __change_page_attr_set_clr(&cpa, 0);
2289 }
2290
2291 void __kernel_map_pages(struct page *page, int numpages, int enable)
2292 {
2293         if (PageHighMem(page))
2294                 return;
2295         if (!enable) {
2296                 debug_check_no_locks_freed(page_address(page),
2297                                            numpages * PAGE_SIZE);
2298         }
2299
2300         /*
2301          * The return value is ignored as the calls cannot fail.
2302          * Large pages for identity mappings are not used at boot time
2303          * and hence no memory allocations during large page split.
2304          */
2305         if (enable)
2306                 __set_pages_p(page, numpages);
2307         else
2308                 __set_pages_np(page, numpages);
2309
2310         /*
2311          * We should perform an IPI and flush all tlbs,
2312          * but that can deadlock->flush only current cpu:
2313          */
2314         __flush_tlb_all();
2315
2316         arch_flush_lazy_mmu_mode();
2317 }
2318
2319 #ifdef CONFIG_HIBERNATION
2320
2321 bool kernel_page_present(struct page *page)
2322 {
2323         unsigned int level;
2324         pte_t *pte;
2325
2326         if (PageHighMem(page))
2327                 return false;
2328
2329         pte = lookup_address((unsigned long)page_address(page), &level);
2330         return (pte_val(*pte) & _PAGE_PRESENT);
2331 }
2332
2333 #endif /* CONFIG_HIBERNATION */
2334
2335 #endif /* CONFIG_DEBUG_PAGEALLOC */
2336
2337 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2338                             unsigned numpages, unsigned long page_flags)
2339 {
2340         int retval = -EINVAL;
2341
2342         struct cpa_data cpa = {
2343                 .vaddr = &address,
2344                 .pfn = pfn,
2345                 .pgd = pgd,
2346                 .numpages = numpages,
2347                 .mask_set = __pgprot(0),
2348                 .mask_clr = __pgprot(0),
2349                 .flags = 0,
2350         };
2351
2352         if (!(__supported_pte_mask & _PAGE_NX))
2353                 goto out;
2354
2355         if (!(page_flags & _PAGE_NX))
2356                 cpa.mask_clr = __pgprot(_PAGE_NX);
2357
2358         if (!(page_flags & _PAGE_RW))
2359                 cpa.mask_clr = __pgprot(_PAGE_RW);
2360
2361         if (!(page_flags & _PAGE_ENC))
2362                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2363
2364         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2365
2366         retval = __change_page_attr_set_clr(&cpa, 0);
2367         __flush_tlb_all();
2368
2369 out:
2370         return retval;
2371 }
2372
2373 /*
2374  * The testcases use internal knowledge of the implementation that shouldn't
2375  * be exposed to the rest of the kernel. Include these directly here.
2376  */
2377 #ifdef CONFIG_CPA_DEBUG
2378 #include "pageattr-test.c"
2379 #endif