Merge tag 'nfs-for-6.12-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-2.6-block.git] / arch / x86 / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>                /* test_thread_flag(), ...      */
8 #include <linux/sched/task_stack.h>     /* task_stack_*(), ...          */
9 #include <linux/kdebug.h>               /* oops_begin/end, ...          */
10 #include <linux/extable.h>              /* search_exception_tables      */
11 #include <linux/memblock.h>             /* max_low_pfn                  */
12 #include <linux/kfence.h>               /* kfence_handle_page_fault     */
13 #include <linux/kprobes.h>              /* NOKPROBE_SYMBOL, ...         */
14 #include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
15 #include <linux/perf_event.h>           /* perf_sw_event                */
16 #include <linux/hugetlb.h>              /* hstate_index_to_shift        */
17 #include <linux/prefetch.h>             /* prefetchw                    */
18 #include <linux/context_tracking.h>     /* exception_enter(), ...       */
19 #include <linux/uaccess.h>              /* faulthandler_disabled()      */
20 #include <linux/efi.h>                  /* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h>                   /* find_and_lock_vma() */
23 #include <linux/vmalloc.h>
24
25 #include <asm/cpufeature.h>             /* boot_cpu_has, ...            */
26 #include <asm/traps.h>                  /* dotraplinkage, ...           */
27 #include <asm/fixmap.h>                 /* VSYSCALL_ADDR                */
28 #include <asm/vsyscall.h>               /* emulate_vsyscall             */
29 #include <asm/vm86.h>                   /* struct vm86                  */
30 #include <asm/mmu_context.h>            /* vma_pkey()                   */
31 #include <asm/efi.h>                    /* efi_crash_gracefully_on_page_fault()*/
32 #include <asm/desc.h>                   /* store_idt(), ...             */
33 #include <asm/cpu_entry_area.h>         /* exception stack              */
34 #include <asm/pgtable_areas.h>          /* VMALLOC_START, ...           */
35 #include <asm/kvm_para.h>               /* kvm_handle_async_pf          */
36 #include <asm/vdso.h>                   /* fixup_vdso_exception()       */
37 #include <asm/irq_stack.h>
38 #include <asm/fred.h>
39 #include <asm/sev.h>                    /* snp_dump_hva_rmpentry()      */
40
41 #define CREATE_TRACE_POINTS
42 #include <asm/trace/exceptions.h>
43
44 /*
45  * Returns 0 if mmiotrace is disabled, or if the fault is not
46  * handled by mmiotrace:
47  */
48 static nokprobe_inline int
49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
50 {
51         if (unlikely(is_kmmio_active()))
52                 if (kmmio_handler(regs, addr) == 1)
53                         return -1;
54         return 0;
55 }
56
57 /*
58  * Prefetch quirks:
59  *
60  * 32-bit mode:
61  *
62  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
63  *   Check that here and ignore it.  This is AMD erratum #91.
64  *
65  * 64-bit mode:
66  *
67  *   Sometimes the CPU reports invalid exceptions on prefetch.
68  *   Check that here and ignore it.
69  *
70  * Opcode checker based on code by Richard Brunner.
71  */
72 static inline int
73 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
74                       unsigned char opcode, int *prefetch)
75 {
76         unsigned char instr_hi = opcode & 0xf0;
77         unsigned char instr_lo = opcode & 0x0f;
78
79         switch (instr_hi) {
80         case 0x20:
81         case 0x30:
82                 /*
83                  * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
84                  * In X86_64 long mode, the CPU will signal invalid
85                  * opcode if some of these prefixes are present so
86                  * X86_64 will never get here anyway
87                  */
88                 return ((instr_lo & 7) == 0x6);
89 #ifdef CONFIG_X86_64
90         case 0x40:
91                 /*
92                  * In 64-bit mode 0x40..0x4F are valid REX prefixes
93                  */
94                 return (!user_mode(regs) || user_64bit_mode(regs));
95 #endif
96         case 0x60:
97                 /* 0x64 thru 0x67 are valid prefixes in all modes. */
98                 return (instr_lo & 0xC) == 0x4;
99         case 0xF0:
100                 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
101                 return !instr_lo || (instr_lo>>1) == 1;
102         case 0x00:
103                 /* Prefetch instruction is 0x0F0D or 0x0F18 */
104                 if (get_kernel_nofault(opcode, instr))
105                         return 0;
106
107                 *prefetch = (instr_lo == 0xF) &&
108                         (opcode == 0x0D || opcode == 0x18);
109                 return 0;
110         default:
111                 return 0;
112         }
113 }
114
115 static bool is_amd_k8_pre_npt(void)
116 {
117         struct cpuinfo_x86 *c = &boot_cpu_data;
118
119         return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
120                         c->x86_vendor == X86_VENDOR_AMD &&
121                         c->x86 == 0xf && c->x86_model < 0x40);
122 }
123
124 static int
125 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
126 {
127         unsigned char *max_instr;
128         unsigned char *instr;
129         int prefetch = 0;
130
131         /* Erratum #91 affects AMD K8, pre-NPT CPUs */
132         if (!is_amd_k8_pre_npt())
133                 return 0;
134
135         /*
136          * If it was a exec (instruction fetch) fault on NX page, then
137          * do not ignore the fault:
138          */
139         if (error_code & X86_PF_INSTR)
140                 return 0;
141
142         instr = (void *)convert_ip_to_linear(current, regs);
143         max_instr = instr + 15;
144
145         /*
146          * This code has historically always bailed out if IP points to a
147          * not-present page (e.g. due to a race).  No one has ever
148          * complained about this.
149          */
150         pagefault_disable();
151
152         while (instr < max_instr) {
153                 unsigned char opcode;
154
155                 if (user_mode(regs)) {
156                         if (get_user(opcode, (unsigned char __user *) instr))
157                                 break;
158                 } else {
159                         if (get_kernel_nofault(opcode, instr))
160                                 break;
161                 }
162
163                 instr++;
164
165                 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
166                         break;
167         }
168
169         pagefault_enable();
170         return prefetch;
171 }
172
173 DEFINE_SPINLOCK(pgd_lock);
174 LIST_HEAD(pgd_list);
175
176 #ifdef CONFIG_X86_32
177 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
178 {
179         unsigned index = pgd_index(address);
180         pgd_t *pgd_k;
181         p4d_t *p4d, *p4d_k;
182         pud_t *pud, *pud_k;
183         pmd_t *pmd, *pmd_k;
184
185         pgd += index;
186         pgd_k = init_mm.pgd + index;
187
188         if (!pgd_present(*pgd_k))
189                 return NULL;
190
191         /*
192          * set_pgd(pgd, *pgd_k); here would be useless on PAE
193          * and redundant with the set_pmd() on non-PAE. As would
194          * set_p4d/set_pud.
195          */
196         p4d = p4d_offset(pgd, address);
197         p4d_k = p4d_offset(pgd_k, address);
198         if (!p4d_present(*p4d_k))
199                 return NULL;
200
201         pud = pud_offset(p4d, address);
202         pud_k = pud_offset(p4d_k, address);
203         if (!pud_present(*pud_k))
204                 return NULL;
205
206         pmd = pmd_offset(pud, address);
207         pmd_k = pmd_offset(pud_k, address);
208
209         if (pmd_present(*pmd) != pmd_present(*pmd_k))
210                 set_pmd(pmd, *pmd_k);
211
212         if (!pmd_present(*pmd_k))
213                 return NULL;
214         else
215                 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
216
217         return pmd_k;
218 }
219
220 /*
221  *   Handle a fault on the vmalloc or module mapping area
222  *
223  *   This is needed because there is a race condition between the time
224  *   when the vmalloc mapping code updates the PMD to the point in time
225  *   where it synchronizes this update with the other page-tables in the
226  *   system.
227  *
228  *   In this race window another thread/CPU can map an area on the same
229  *   PMD, finds it already present and does not synchronize it with the
230  *   rest of the system yet. As a result v[mz]alloc might return areas
231  *   which are not mapped in every page-table in the system, causing an
232  *   unhandled page-fault when they are accessed.
233  */
234 static noinline int vmalloc_fault(unsigned long address)
235 {
236         unsigned long pgd_paddr;
237         pmd_t *pmd_k;
238         pte_t *pte_k;
239
240         /* Make sure we are in vmalloc area: */
241         if (!(address >= VMALLOC_START && address < VMALLOC_END))
242                 return -1;
243
244         /*
245          * Synchronize this task's top level page-table
246          * with the 'reference' page table.
247          *
248          * Do _not_ use "current" here. We might be inside
249          * an interrupt in the middle of a task switch..
250          */
251         pgd_paddr = read_cr3_pa();
252         pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
253         if (!pmd_k)
254                 return -1;
255
256         if (pmd_leaf(*pmd_k))
257                 return 0;
258
259         pte_k = pte_offset_kernel(pmd_k, address);
260         if (!pte_present(*pte_k))
261                 return -1;
262
263         return 0;
264 }
265 NOKPROBE_SYMBOL(vmalloc_fault);
266
267 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
268 {
269         unsigned long addr;
270
271         for (addr = start & PMD_MASK;
272              addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
273              addr += PMD_SIZE) {
274                 struct page *page;
275
276                 spin_lock(&pgd_lock);
277                 list_for_each_entry(page, &pgd_list, lru) {
278                         spinlock_t *pgt_lock;
279
280                         /* the pgt_lock only for Xen */
281                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
282
283                         spin_lock(pgt_lock);
284                         vmalloc_sync_one(page_address(page), addr);
285                         spin_unlock(pgt_lock);
286                 }
287                 spin_unlock(&pgd_lock);
288         }
289 }
290
291 static bool low_pfn(unsigned long pfn)
292 {
293         return pfn < max_low_pfn;
294 }
295
296 static void dump_pagetable(unsigned long address)
297 {
298         pgd_t *base = __va(read_cr3_pa());
299         pgd_t *pgd = &base[pgd_index(address)];
300         p4d_t *p4d;
301         pud_t *pud;
302         pmd_t *pmd;
303         pte_t *pte;
304
305 #ifdef CONFIG_X86_PAE
306         pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
307         if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
308                 goto out;
309 #define pr_pde pr_cont
310 #else
311 #define pr_pde pr_info
312 #endif
313         p4d = p4d_offset(pgd, address);
314         pud = pud_offset(p4d, address);
315         pmd = pmd_offset(pud, address);
316         pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
317 #undef pr_pde
318
319         /*
320          * We must not directly access the pte in the highpte
321          * case if the page table is located in highmem.
322          * And let's rather not kmap-atomic the pte, just in case
323          * it's allocated already:
324          */
325         if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
326                 goto out;
327
328         pte = pte_offset_kernel(pmd, address);
329         pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
330 out:
331         pr_cont("\n");
332 }
333
334 #else /* CONFIG_X86_64: */
335
336 #ifdef CONFIG_CPU_SUP_AMD
337 static const char errata93_warning[] =
338 KERN_ERR 
339 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
340 "******* Working around it, but it may cause SEGVs or burn power.\n"
341 "******* Please consider a BIOS update.\n"
342 "******* Disabling USB legacy in the BIOS may also help.\n";
343 #endif
344
345 static int bad_address(void *p)
346 {
347         unsigned long dummy;
348
349         return get_kernel_nofault(dummy, (unsigned long *)p);
350 }
351
352 static void dump_pagetable(unsigned long address)
353 {
354         pgd_t *base = __va(read_cr3_pa());
355         pgd_t *pgd = base + pgd_index(address);
356         p4d_t *p4d;
357         pud_t *pud;
358         pmd_t *pmd;
359         pte_t *pte;
360
361         if (bad_address(pgd))
362                 goto bad;
363
364         pr_info("PGD %lx ", pgd_val(*pgd));
365
366         if (!pgd_present(*pgd))
367                 goto out;
368
369         p4d = p4d_offset(pgd, address);
370         if (bad_address(p4d))
371                 goto bad;
372
373         pr_cont("P4D %lx ", p4d_val(*p4d));
374         if (!p4d_present(*p4d) || p4d_leaf(*p4d))
375                 goto out;
376
377         pud = pud_offset(p4d, address);
378         if (bad_address(pud))
379                 goto bad;
380
381         pr_cont("PUD %lx ", pud_val(*pud));
382         if (!pud_present(*pud) || pud_leaf(*pud))
383                 goto out;
384
385         pmd = pmd_offset(pud, address);
386         if (bad_address(pmd))
387                 goto bad;
388
389         pr_cont("PMD %lx ", pmd_val(*pmd));
390         if (!pmd_present(*pmd) || pmd_leaf(*pmd))
391                 goto out;
392
393         pte = pte_offset_kernel(pmd, address);
394         if (bad_address(pte))
395                 goto bad;
396
397         pr_cont("PTE %lx", pte_val(*pte));
398 out:
399         pr_cont("\n");
400         return;
401 bad:
402         pr_info("BAD\n");
403 }
404
405 #endif /* CONFIG_X86_64 */
406
407 /*
408  * Workaround for K8 erratum #93 & buggy BIOS.
409  *
410  * BIOS SMM functions are required to use a specific workaround
411  * to avoid corruption of the 64bit RIP register on C stepping K8.
412  *
413  * A lot of BIOS that didn't get tested properly miss this.
414  *
415  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
416  * Try to work around it here.
417  *
418  * Note we only handle faults in kernel here.
419  * Does nothing on 32-bit.
420  */
421 static int is_errata93(struct pt_regs *regs, unsigned long address)
422 {
423 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
424         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
425             || boot_cpu_data.x86 != 0xf)
426                 return 0;
427
428         if (user_mode(regs))
429                 return 0;
430
431         if (address != regs->ip)
432                 return 0;
433
434         if ((address >> 32) != 0)
435                 return 0;
436
437         address |= 0xffffffffUL << 32;
438         if ((address >= (u64)_stext && address <= (u64)_etext) ||
439             (address >= MODULES_VADDR && address <= MODULES_END)) {
440                 printk_once(errata93_warning);
441                 regs->ip = address;
442                 return 1;
443         }
444 #endif
445         return 0;
446 }
447
448 /*
449  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
450  * to illegal addresses >4GB.
451  *
452  * We catch this in the page fault handler because these addresses
453  * are not reachable. Just detect this case and return.  Any code
454  * segment in LDT is compatibility mode.
455  */
456 static int is_errata100(struct pt_regs *regs, unsigned long address)
457 {
458 #ifdef CONFIG_X86_64
459         if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
460                 return 1;
461 #endif
462         return 0;
463 }
464
465 /* Pentium F0 0F C7 C8 bug workaround: */
466 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
467                        unsigned long address)
468 {
469 #ifdef CONFIG_X86_F00F_BUG
470         if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
471             idt_is_f00f_address(address)) {
472                 handle_invalid_op(regs);
473                 return 1;
474         }
475 #endif
476         return 0;
477 }
478
479 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
480 {
481         u32 offset = (index >> 3) * sizeof(struct desc_struct);
482         unsigned long addr;
483         struct ldttss_desc desc;
484
485         if (index == 0) {
486                 pr_alert("%s: NULL\n", name);
487                 return;
488         }
489
490         if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
491                 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
492                 return;
493         }
494
495         if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
496                               sizeof(struct ldttss_desc))) {
497                 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
498                          name, index);
499                 return;
500         }
501
502         addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
503 #ifdef CONFIG_X86_64
504         addr |= ((u64)desc.base3 << 32);
505 #endif
506         pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
507                  name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
508 }
509
510 static void
511 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
512 {
513         if (!oops_may_print())
514                 return;
515
516         if (error_code & X86_PF_INSTR) {
517                 unsigned int level;
518                 bool nx, rw;
519                 pgd_t *pgd;
520                 pte_t *pte;
521
522                 pgd = __va(read_cr3_pa());
523                 pgd += pgd_index(address);
524
525                 pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
526
527                 if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
528                         pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
529                                 from_kuid(&init_user_ns, current_uid()));
530                 if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
531                                 (pgd_flags(*pgd) & _PAGE_USER) &&
532                                 (__read_cr4() & X86_CR4_SMEP))
533                         pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
534                                 from_kuid(&init_user_ns, current_uid()));
535         }
536
537         if (address < PAGE_SIZE && !user_mode(regs))
538                 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
539                         (void *)address);
540         else
541                 pr_alert("BUG: unable to handle page fault for address: %px\n",
542                         (void *)address);
543
544         pr_alert("#PF: %s %s in %s mode\n",
545                  (error_code & X86_PF_USER)  ? "user" : "supervisor",
546                  (error_code & X86_PF_INSTR) ? "instruction fetch" :
547                  (error_code & X86_PF_WRITE) ? "write access" :
548                                                "read access",
549                              user_mode(regs) ? "user" : "kernel");
550         pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
551                  !(error_code & X86_PF_PROT) ? "not-present page" :
552                  (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
553                  (error_code & X86_PF_PK)    ? "protection keys violation" :
554                  (error_code & X86_PF_RMP)   ? "RMP violation" :
555                                                "permissions violation");
556
557         if (!(error_code & X86_PF_USER) && user_mode(regs)) {
558                 struct desc_ptr idt, gdt;
559                 u16 ldtr, tr;
560
561                 /*
562                  * This can happen for quite a few reasons.  The more obvious
563                  * ones are faults accessing the GDT, or LDT.  Perhaps
564                  * surprisingly, if the CPU tries to deliver a benign or
565                  * contributory exception from user code and gets a page fault
566                  * during delivery, the page fault can be delivered as though
567                  * it originated directly from user code.  This could happen
568                  * due to wrong permissions on the IDT, GDT, LDT, TSS, or
569                  * kernel or IST stack.
570                  */
571                 store_idt(&idt);
572
573                 /* Usable even on Xen PV -- it's just slow. */
574                 native_store_gdt(&gdt);
575
576                 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
577                          idt.address, idt.size, gdt.address, gdt.size);
578
579                 store_ldt(ldtr);
580                 show_ldttss(&gdt, "LDTR", ldtr);
581
582                 store_tr(tr);
583                 show_ldttss(&gdt, "TR", tr);
584         }
585
586         dump_pagetable(address);
587
588         if (error_code & X86_PF_RMP)
589                 snp_dump_hva_rmpentry(address);
590 }
591
592 static noinline void
593 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
594             unsigned long address)
595 {
596         struct task_struct *tsk;
597         unsigned long flags;
598         int sig;
599
600         flags = oops_begin();
601         tsk = current;
602         sig = SIGKILL;
603
604         printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
605                tsk->comm, address);
606         dump_pagetable(address);
607
608         if (__die("Bad pagetable", regs, error_code))
609                 sig = 0;
610
611         oops_end(flags, regs, sig);
612 }
613
614 static void sanitize_error_code(unsigned long address,
615                                 unsigned long *error_code)
616 {
617         /*
618          * To avoid leaking information about the kernel page
619          * table layout, pretend that user-mode accesses to
620          * kernel addresses are always protection faults.
621          *
622          * NB: This means that failed vsyscalls with vsyscall=none
623          * will have the PROT bit.  This doesn't leak any
624          * information and does not appear to cause any problems.
625          */
626         if (address >= TASK_SIZE_MAX)
627                 *error_code |= X86_PF_PROT;
628 }
629
630 static void set_signal_archinfo(unsigned long address,
631                                 unsigned long error_code)
632 {
633         struct task_struct *tsk = current;
634
635         tsk->thread.trap_nr = X86_TRAP_PF;
636         tsk->thread.error_code = error_code | X86_PF_USER;
637         tsk->thread.cr2 = address;
638 }
639
640 static noinline void
641 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
642                 unsigned long address)
643 {
644 #ifdef CONFIG_VMAP_STACK
645         struct stack_info info;
646 #endif
647         unsigned long flags;
648         int sig;
649
650         if (user_mode(regs)) {
651                 /*
652                  * Implicit kernel access from user mode?  Skip the stack
653                  * overflow and EFI special cases.
654                  */
655                 goto oops;
656         }
657
658 #ifdef CONFIG_VMAP_STACK
659         /*
660          * Stack overflow?  During boot, we can fault near the initial
661          * stack in the direct map, but that's not an overflow -- check
662          * that we're in vmalloc space to avoid this.
663          */
664         if (is_vmalloc_addr((void *)address) &&
665             get_stack_guard_info((void *)address, &info)) {
666                 /*
667                  * We're likely to be running with very little stack space
668                  * left.  It's plausible that we'd hit this condition but
669                  * double-fault even before we get this far, in which case
670                  * we're fine: the double-fault handler will deal with it.
671                  *
672                  * We don't want to make it all the way into the oops code
673                  * and then double-fault, though, because we're likely to
674                  * break the console driver and lose most of the stack dump.
675                  */
676                 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
677                               handle_stack_overflow,
678                               ASM_CALL_ARG3,
679                               , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
680
681                 unreachable();
682         }
683 #endif
684
685         /*
686          * Buggy firmware could access regions which might page fault.  If
687          * this happens, EFI has a special OOPS path that will try to
688          * avoid hanging the system.
689          */
690         if (IS_ENABLED(CONFIG_EFI))
691                 efi_crash_gracefully_on_page_fault(address);
692
693         /* Only not-present faults should be handled by KFENCE. */
694         if (!(error_code & X86_PF_PROT) &&
695             kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
696                 return;
697
698 oops:
699         /*
700          * Oops. The kernel tried to access some bad page. We'll have to
701          * terminate things with extreme prejudice:
702          */
703         flags = oops_begin();
704
705         show_fault_oops(regs, error_code, address);
706
707         if (task_stack_end_corrupted(current))
708                 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
709
710         sig = SIGKILL;
711         if (__die("Oops", regs, error_code))
712                 sig = 0;
713
714         /* Executive summary in case the body of the oops scrolled away */
715         printk(KERN_DEFAULT "CR2: %016lx\n", address);
716
717         oops_end(flags, regs, sig);
718 }
719
720 static noinline void
721 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
722                          unsigned long address, int signal, int si_code,
723                          u32 pkey)
724 {
725         WARN_ON_ONCE(user_mode(regs));
726
727         /* Are we prepared to handle this kernel fault? */
728         if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
729                 return;
730
731         /*
732          * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
733          * instruction.
734          */
735         if (is_prefetch(regs, error_code, address))
736                 return;
737
738         page_fault_oops(regs, error_code, address);
739 }
740
741 /*
742  * Print out info about fatal segfaults, if the show_unhandled_signals
743  * sysctl is set:
744  */
745 static inline void
746 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
747                 unsigned long address, struct task_struct *tsk)
748 {
749         const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
750         /* This is a racy snapshot, but it's better than nothing. */
751         int cpu = raw_smp_processor_id();
752
753         if (!unhandled_signal(tsk, SIGSEGV))
754                 return;
755
756         if (!printk_ratelimit())
757                 return;
758
759         printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
760                 loglvl, tsk->comm, task_pid_nr(tsk), address,
761                 (void *)regs->ip, (void *)regs->sp, error_code);
762
763         print_vma_addr(KERN_CONT " in ", regs->ip);
764
765         /*
766          * Dump the likely CPU where the fatal segfault happened.
767          * This can help identify faulty hardware.
768          */
769         printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
770                topology_core_id(cpu), topology_physical_package_id(cpu));
771
772
773         printk(KERN_CONT "\n");
774
775         show_opcodes(regs, loglvl);
776 }
777
778 static void
779 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
780                        unsigned long address, u32 pkey, int si_code)
781 {
782         struct task_struct *tsk = current;
783
784         if (!user_mode(regs)) {
785                 kernelmode_fixup_or_oops(regs, error_code, address,
786                                          SIGSEGV, si_code, pkey);
787                 return;
788         }
789
790         if (!(error_code & X86_PF_USER)) {
791                 /* Implicit user access to kernel memory -- just oops */
792                 page_fault_oops(regs, error_code, address);
793                 return;
794         }
795
796         /*
797          * User mode accesses just cause a SIGSEGV.
798          * It's possible to have interrupts off here:
799          */
800         local_irq_enable();
801
802         /*
803          * Valid to do another page fault here because this one came
804          * from user space:
805          */
806         if (is_prefetch(regs, error_code, address))
807                 return;
808
809         if (is_errata100(regs, address))
810                 return;
811
812         sanitize_error_code(address, &error_code);
813
814         if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
815                 return;
816
817         if (likely(show_unhandled_signals))
818                 show_signal_msg(regs, error_code, address, tsk);
819
820         set_signal_archinfo(address, error_code);
821
822         if (si_code == SEGV_PKUERR)
823                 force_sig_pkuerr((void __user *)address, pkey);
824         else
825                 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
826
827         local_irq_disable();
828 }
829
830 static noinline void
831 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
832                      unsigned long address)
833 {
834         __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
835 }
836
837 static void
838 __bad_area(struct pt_regs *regs, unsigned long error_code,
839            unsigned long address, struct mm_struct *mm,
840            struct vm_area_struct *vma, u32 pkey, int si_code)
841 {
842         /*
843          * Something tried to access memory that isn't in our memory map..
844          * Fix it, but check if it's kernel or user first..
845          */
846         if (mm)
847                 mmap_read_unlock(mm);
848         else
849                 vma_end_read(vma);
850
851         __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
852 }
853
854 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
855                 struct vm_area_struct *vma)
856 {
857         /* This code is always called on the current mm */
858         bool foreign = false;
859
860         if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
861                 return false;
862         if (error_code & X86_PF_PK)
863                 return true;
864         /* this checks permission keys on the VMA: */
865         if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
866                                        (error_code & X86_PF_INSTR), foreign))
867                 return true;
868         return false;
869 }
870
871 static noinline void
872 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
873                       unsigned long address, struct mm_struct *mm,
874                       struct vm_area_struct *vma)
875 {
876         /*
877          * This OSPKE check is not strictly necessary at runtime.
878          * But, doing it this way allows compiler optimizations
879          * if pkeys are compiled out.
880          */
881         if (bad_area_access_from_pkeys(error_code, vma)) {
882                 /*
883                  * A protection key fault means that the PKRU value did not allow
884                  * access to some PTE.  Userspace can figure out what PKRU was
885                  * from the XSAVE state.  This function captures the pkey from
886                  * the vma and passes it to userspace so userspace can discover
887                  * which protection key was set on the PTE.
888                  *
889                  * If we get here, we know that the hardware signaled a X86_PF_PK
890                  * fault and that there was a VMA once we got in the fault
891                  * handler.  It does *not* guarantee that the VMA we find here
892                  * was the one that we faulted on.
893                  *
894                  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
895                  * 2. T1   : set PKRU to deny access to pkey=4, touches page
896                  * 3. T1   : faults...
897                  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
898                  * 5. T1   : enters fault handler, takes mmap_lock, etc...
899                  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
900                  *           faulted on a pte with its pkey=4.
901                  */
902                 u32 pkey = vma_pkey(vma);
903
904                 __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
905         } else {
906                 __bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
907         }
908 }
909
910 static void
911 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
912           vm_fault_t fault)
913 {
914         /* Kernel mode? Handle exceptions or die: */
915         if (!user_mode(regs)) {
916                 kernelmode_fixup_or_oops(regs, error_code, address,
917                                          SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
918                 return;
919         }
920
921         /* User-space => ok to do another page fault: */
922         if (is_prefetch(regs, error_code, address))
923                 return;
924
925         sanitize_error_code(address, &error_code);
926
927         if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
928                 return;
929
930         set_signal_archinfo(address, error_code);
931
932 #ifdef CONFIG_MEMORY_FAILURE
933         if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
934                 struct task_struct *tsk = current;
935                 unsigned lsb = 0;
936
937                 pr_err(
938         "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
939                         tsk->comm, tsk->pid, address);
940                 if (fault & VM_FAULT_HWPOISON_LARGE)
941                         lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
942                 if (fault & VM_FAULT_HWPOISON)
943                         lsb = PAGE_SHIFT;
944                 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
945                 return;
946         }
947 #endif
948         force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
949 }
950
951 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
952 {
953         if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
954                 return 0;
955
956         if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
957                 return 0;
958
959         return 1;
960 }
961
962 /*
963  * Handle a spurious fault caused by a stale TLB entry.
964  *
965  * This allows us to lazily refresh the TLB when increasing the
966  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
967  * eagerly is very expensive since that implies doing a full
968  * cross-processor TLB flush, even if no stale TLB entries exist
969  * on other processors.
970  *
971  * Spurious faults may only occur if the TLB contains an entry with
972  * fewer permission than the page table entry.  Non-present (P = 0)
973  * and reserved bit (R = 1) faults are never spurious.
974  *
975  * There are no security implications to leaving a stale TLB when
976  * increasing the permissions on a page.
977  *
978  * Returns non-zero if a spurious fault was handled, zero otherwise.
979  *
980  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981  * (Optional Invalidation).
982  */
983 static noinline int
984 spurious_kernel_fault(unsigned long error_code, unsigned long address)
985 {
986         pgd_t *pgd;
987         p4d_t *p4d;
988         pud_t *pud;
989         pmd_t *pmd;
990         pte_t *pte;
991         int ret;
992
993         /*
994          * Only writes to RO or instruction fetches from NX may cause
995          * spurious faults.
996          *
997          * These could be from user or supervisor accesses but the TLB
998          * is only lazily flushed after a kernel mapping protection
999          * change, so user accesses are not expected to cause spurious
1000          * faults.
1001          */
1002         if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1003             error_code != (X86_PF_INSTR | X86_PF_PROT))
1004                 return 0;
1005
1006         pgd = init_mm.pgd + pgd_index(address);
1007         if (!pgd_present(*pgd))
1008                 return 0;
1009
1010         p4d = p4d_offset(pgd, address);
1011         if (!p4d_present(*p4d))
1012                 return 0;
1013
1014         if (p4d_leaf(*p4d))
1015                 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1016
1017         pud = pud_offset(p4d, address);
1018         if (!pud_present(*pud))
1019                 return 0;
1020
1021         if (pud_leaf(*pud))
1022                 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1023
1024         pmd = pmd_offset(pud, address);
1025         if (!pmd_present(*pmd))
1026                 return 0;
1027
1028         if (pmd_leaf(*pmd))
1029                 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1030
1031         pte = pte_offset_kernel(pmd, address);
1032         if (!pte_present(*pte))
1033                 return 0;
1034
1035         ret = spurious_kernel_fault_check(error_code, pte);
1036         if (!ret)
1037                 return 0;
1038
1039         /*
1040          * Make sure we have permissions in PMD.
1041          * If not, then there's a bug in the page tables:
1042          */
1043         ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1044         WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1045
1046         return ret;
1047 }
1048 NOKPROBE_SYMBOL(spurious_kernel_fault);
1049
1050 int show_unhandled_signals = 1;
1051
1052 static inline int
1053 access_error(unsigned long error_code, struct vm_area_struct *vma)
1054 {
1055         /* This is only called for the current mm, so: */
1056         bool foreign = false;
1057
1058         /*
1059          * Read or write was blocked by protection keys.  This is
1060          * always an unconditional error and can never result in
1061          * a follow-up action to resolve the fault, like a COW.
1062          */
1063         if (error_code & X86_PF_PK)
1064                 return 1;
1065
1066         /*
1067          * SGX hardware blocked the access.  This usually happens
1068          * when the enclave memory contents have been destroyed, like
1069          * after a suspend/resume cycle. In any case, the kernel can't
1070          * fix the cause of the fault.  Handle the fault as an access
1071          * error even in cases where no actual access violation
1072          * occurred.  This allows userspace to rebuild the enclave in
1073          * response to the signal.
1074          */
1075         if (unlikely(error_code & X86_PF_SGX))
1076                 return 1;
1077
1078         /*
1079          * Make sure to check the VMA so that we do not perform
1080          * faults just to hit a X86_PF_PK as soon as we fill in a
1081          * page.
1082          */
1083         if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1084                                        (error_code & X86_PF_INSTR), foreign))
1085                 return 1;
1086
1087         /*
1088          * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1089          * shadow stack VMAs. All other accesses result in an error.
1090          */
1091         if (error_code & X86_PF_SHSTK) {
1092                 if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1093                         return 1;
1094                 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1095                         return 1;
1096                 return 0;
1097         }
1098
1099         if (error_code & X86_PF_WRITE) {
1100                 /* write, present and write, not present: */
1101                 if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1102                         return 1;
1103                 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1104                         return 1;
1105                 return 0;
1106         }
1107
1108         /* read, present: */
1109         if (unlikely(error_code & X86_PF_PROT))
1110                 return 1;
1111
1112         /* read, not present: */
1113         if (unlikely(!vma_is_accessible(vma)))
1114                 return 1;
1115
1116         return 0;
1117 }
1118
1119 bool fault_in_kernel_space(unsigned long address)
1120 {
1121         /*
1122          * On 64-bit systems, the vsyscall page is at an address above
1123          * TASK_SIZE_MAX, but is not considered part of the kernel
1124          * address space.
1125          */
1126         if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1127                 return false;
1128
1129         return address >= TASK_SIZE_MAX;
1130 }
1131
1132 /*
1133  * Called for all faults where 'address' is part of the kernel address
1134  * space.  Might get called for faults that originate from *code* that
1135  * ran in userspace or the kernel.
1136  */
1137 static void
1138 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1139                    unsigned long address)
1140 {
1141         /*
1142          * Protection keys exceptions only happen on user pages.  We
1143          * have no user pages in the kernel portion of the address
1144          * space, so do not expect them here.
1145          */
1146         WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1147
1148 #ifdef CONFIG_X86_32
1149         /*
1150          * We can fault-in kernel-space virtual memory on-demand. The
1151          * 'reference' page table is init_mm.pgd.
1152          *
1153          * NOTE! We MUST NOT take any locks for this case. We may
1154          * be in an interrupt or a critical region, and should
1155          * only copy the information from the master page table,
1156          * nothing more.
1157          *
1158          * Before doing this on-demand faulting, ensure that the
1159          * fault is not any of the following:
1160          * 1. A fault on a PTE with a reserved bit set.
1161          * 2. A fault caused by a user-mode access.  (Do not demand-
1162          *    fault kernel memory due to user-mode accesses).
1163          * 3. A fault caused by a page-level protection violation.
1164          *    (A demand fault would be on a non-present page which
1165          *     would have X86_PF_PROT==0).
1166          *
1167          * This is only needed to close a race condition on x86-32 in
1168          * the vmalloc mapping/unmapping code. See the comment above
1169          * vmalloc_fault() for details. On x86-64 the race does not
1170          * exist as the vmalloc mappings don't need to be synchronized
1171          * there.
1172          */
1173         if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1174                 if (vmalloc_fault(address) >= 0)
1175                         return;
1176         }
1177 #endif
1178
1179         if (is_f00f_bug(regs, hw_error_code, address))
1180                 return;
1181
1182         /* Was the fault spurious, caused by lazy TLB invalidation? */
1183         if (spurious_kernel_fault(hw_error_code, address))
1184                 return;
1185
1186         /* kprobes don't want to hook the spurious faults: */
1187         if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1188                 return;
1189
1190         /*
1191          * Note, despite being a "bad area", there are quite a few
1192          * acceptable reasons to get here, such as erratum fixups
1193          * and handling kernel code that can fault, like get_user().
1194          *
1195          * Don't take the mm semaphore here. If we fixup a prefetch
1196          * fault we could otherwise deadlock:
1197          */
1198         bad_area_nosemaphore(regs, hw_error_code, address);
1199 }
1200 NOKPROBE_SYMBOL(do_kern_addr_fault);
1201
1202 /*
1203  * Handle faults in the user portion of the address space.  Nothing in here
1204  * should check X86_PF_USER without a specific justification: for almost
1205  * all purposes, we should treat a normal kernel access to user memory
1206  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1207  * The one exception is AC flag handling, which is, per the x86
1208  * architecture, special for WRUSS.
1209  */
1210 static inline
1211 void do_user_addr_fault(struct pt_regs *regs,
1212                         unsigned long error_code,
1213                         unsigned long address)
1214 {
1215         struct vm_area_struct *vma;
1216         struct task_struct *tsk;
1217         struct mm_struct *mm;
1218         vm_fault_t fault;
1219         unsigned int flags = FAULT_FLAG_DEFAULT;
1220
1221         tsk = current;
1222         mm = tsk->mm;
1223
1224         if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1225                 /*
1226                  * Whoops, this is kernel mode code trying to execute from
1227                  * user memory.  Unless this is AMD erratum #93, which
1228                  * corrupts RIP such that it looks like a user address,
1229                  * this is unrecoverable.  Don't even try to look up the
1230                  * VMA or look for extable entries.
1231                  */
1232                 if (is_errata93(regs, address))
1233                         return;
1234
1235                 page_fault_oops(regs, error_code, address);
1236                 return;
1237         }
1238
1239         /* kprobes don't want to hook the spurious faults: */
1240         if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1241                 return;
1242
1243         /*
1244          * Reserved bits are never expected to be set on
1245          * entries in the user portion of the page tables.
1246          */
1247         if (unlikely(error_code & X86_PF_RSVD))
1248                 pgtable_bad(regs, error_code, address);
1249
1250         /*
1251          * If SMAP is on, check for invalid kernel (supervisor) access to user
1252          * pages in the user address space.  The odd case here is WRUSS,
1253          * which, according to the preliminary documentation, does not respect
1254          * SMAP and will have the USER bit set so, in all cases, SMAP
1255          * enforcement appears to be consistent with the USER bit.
1256          */
1257         if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1258                      !(error_code & X86_PF_USER) &&
1259                      !(regs->flags & X86_EFLAGS_AC))) {
1260                 /*
1261                  * No extable entry here.  This was a kernel access to an
1262                  * invalid pointer.  get_kernel_nofault() will not get here.
1263                  */
1264                 page_fault_oops(regs, error_code, address);
1265                 return;
1266         }
1267
1268         /*
1269          * If we're in an interrupt, have no user context or are running
1270          * in a region with pagefaults disabled then we must not take the fault
1271          */
1272         if (unlikely(faulthandler_disabled() || !mm)) {
1273                 bad_area_nosemaphore(regs, error_code, address);
1274                 return;
1275         }
1276
1277         /* Legacy check - remove this after verifying that it doesn't trigger */
1278         if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1279                 bad_area_nosemaphore(regs, error_code, address);
1280                 return;
1281         }
1282
1283         local_irq_enable();
1284
1285         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1286
1287         /*
1288          * Read-only permissions can not be expressed in shadow stack PTEs.
1289          * Treat all shadow stack accesses as WRITE faults. This ensures
1290          * that the MM will prepare everything (e.g., break COW) such that
1291          * maybe_mkwrite() can create a proper shadow stack PTE.
1292          */
1293         if (error_code & X86_PF_SHSTK)
1294                 flags |= FAULT_FLAG_WRITE;
1295         if (error_code & X86_PF_WRITE)
1296                 flags |= FAULT_FLAG_WRITE;
1297         if (error_code & X86_PF_INSTR)
1298                 flags |= FAULT_FLAG_INSTRUCTION;
1299
1300         /*
1301          * We set FAULT_FLAG_USER based on the register state, not
1302          * based on X86_PF_USER. User space accesses that cause
1303          * system page faults are still user accesses.
1304          */
1305         if (user_mode(regs))
1306                 flags |= FAULT_FLAG_USER;
1307
1308 #ifdef CONFIG_X86_64
1309         /*
1310          * Faults in the vsyscall page might need emulation.  The
1311          * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312          * considered to be part of the user address space.
1313          *
1314          * The vsyscall page does not have a "real" VMA, so do this
1315          * emulation before we go searching for VMAs.
1316          *
1317          * PKRU never rejects instruction fetches, so we don't need
1318          * to consider the PF_PK bit.
1319          */
1320         if (is_vsyscall_vaddr(address)) {
1321                 if (emulate_vsyscall(error_code, regs, address))
1322                         return;
1323         }
1324 #endif
1325
1326         if (!(flags & FAULT_FLAG_USER))
1327                 goto lock_mmap;
1328
1329         vma = lock_vma_under_rcu(mm, address);
1330         if (!vma)
1331                 goto lock_mmap;
1332
1333         if (unlikely(access_error(error_code, vma))) {
1334                 bad_area_access_error(regs, error_code, address, NULL, vma);
1335                 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1336                 return;
1337         }
1338         fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1339         if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1340                 vma_end_read(vma);
1341
1342         if (!(fault & VM_FAULT_RETRY)) {
1343                 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1344                 goto done;
1345         }
1346         count_vm_vma_lock_event(VMA_LOCK_RETRY);
1347         if (fault & VM_FAULT_MAJOR)
1348                 flags |= FAULT_FLAG_TRIED;
1349
1350         /* Quick path to respond to signals */
1351         if (fault_signal_pending(fault, regs)) {
1352                 if (!user_mode(regs))
1353                         kernelmode_fixup_or_oops(regs, error_code, address,
1354                                                  SIGBUS, BUS_ADRERR,
1355                                                  ARCH_DEFAULT_PKEY);
1356                 return;
1357         }
1358 lock_mmap:
1359
1360 retry:
1361         vma = lock_mm_and_find_vma(mm, address, regs);
1362         if (unlikely(!vma)) {
1363                 bad_area_nosemaphore(regs, error_code, address);
1364                 return;
1365         }
1366
1367         /*
1368          * Ok, we have a good vm_area for this memory access, so
1369          * we can handle it..
1370          */
1371         if (unlikely(access_error(error_code, vma))) {
1372                 bad_area_access_error(regs, error_code, address, mm, vma);
1373                 return;
1374         }
1375
1376         /*
1377          * If for any reason at all we couldn't handle the fault,
1378          * make sure we exit gracefully rather than endlessly redo
1379          * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1380          * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1381          *
1382          * Note that handle_userfault() may also release and reacquire mmap_lock
1383          * (and not return with VM_FAULT_RETRY), when returning to userland to
1384          * repeat the page fault later with a VM_FAULT_NOPAGE retval
1385          * (potentially after handling any pending signal during the return to
1386          * userland). The return to userland is identified whenever
1387          * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1388          */
1389         fault = handle_mm_fault(vma, address, flags, regs);
1390
1391         if (fault_signal_pending(fault, regs)) {
1392                 /*
1393                  * Quick path to respond to signals.  The core mm code
1394                  * has unlocked the mm for us if we get here.
1395                  */
1396                 if (!user_mode(regs))
1397                         kernelmode_fixup_or_oops(regs, error_code, address,
1398                                                  SIGBUS, BUS_ADRERR,
1399                                                  ARCH_DEFAULT_PKEY);
1400                 return;
1401         }
1402
1403         /* The fault is fully completed (including releasing mmap lock) */
1404         if (fault & VM_FAULT_COMPLETED)
1405                 return;
1406
1407         /*
1408          * If we need to retry the mmap_lock has already been released,
1409          * and if there is a fatal signal pending there is no guarantee
1410          * that we made any progress. Handle this case first.
1411          */
1412         if (unlikely(fault & VM_FAULT_RETRY)) {
1413                 flags |= FAULT_FLAG_TRIED;
1414                 goto retry;
1415         }
1416
1417         mmap_read_unlock(mm);
1418 done:
1419         if (likely(!(fault & VM_FAULT_ERROR)))
1420                 return;
1421
1422         if (fatal_signal_pending(current) && !user_mode(regs)) {
1423                 kernelmode_fixup_or_oops(regs, error_code, address,
1424                                          0, 0, ARCH_DEFAULT_PKEY);
1425                 return;
1426         }
1427
1428         if (fault & VM_FAULT_OOM) {
1429                 /* Kernel mode? Handle exceptions or die: */
1430                 if (!user_mode(regs)) {
1431                         kernelmode_fixup_or_oops(regs, error_code, address,
1432                                                  SIGSEGV, SEGV_MAPERR,
1433                                                  ARCH_DEFAULT_PKEY);
1434                         return;
1435                 }
1436
1437                 /*
1438                  * We ran out of memory, call the OOM killer, and return the
1439                  * userspace (which will retry the fault, or kill us if we got
1440                  * oom-killed):
1441                  */
1442                 pagefault_out_of_memory();
1443         } else {
1444                 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1445                              VM_FAULT_HWPOISON_LARGE))
1446                         do_sigbus(regs, error_code, address, fault);
1447                 else if (fault & VM_FAULT_SIGSEGV)
1448                         bad_area_nosemaphore(regs, error_code, address);
1449                 else
1450                         BUG();
1451         }
1452 }
1453 NOKPROBE_SYMBOL(do_user_addr_fault);
1454
1455 static __always_inline void
1456 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1457                          unsigned long address)
1458 {
1459         if (!trace_pagefault_enabled())
1460                 return;
1461
1462         if (user_mode(regs))
1463                 trace_page_fault_user(address, regs, error_code);
1464         else
1465                 trace_page_fault_kernel(address, regs, error_code);
1466 }
1467
1468 static __always_inline void
1469 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1470                               unsigned long address)
1471 {
1472         trace_page_fault_entries(regs, error_code, address);
1473
1474         if (unlikely(kmmio_fault(regs, address)))
1475                 return;
1476
1477         /* Was the fault on kernel-controlled part of the address space? */
1478         if (unlikely(fault_in_kernel_space(address))) {
1479                 do_kern_addr_fault(regs, error_code, address);
1480         } else {
1481                 do_user_addr_fault(regs, error_code, address);
1482                 /*
1483                  * User address page fault handling might have reenabled
1484                  * interrupts. Fixing up all potential exit points of
1485                  * do_user_addr_fault() and its leaf functions is just not
1486                  * doable w/o creating an unholy mess or turning the code
1487                  * upside down.
1488                  */
1489                 local_irq_disable();
1490         }
1491 }
1492
1493 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1494 {
1495         irqentry_state_t state;
1496         unsigned long address;
1497
1498         address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1499
1500         prefetchw(&current->mm->mmap_lock);
1501
1502         /*
1503          * KVM uses #PF vector to deliver 'page not present' events to guests
1504          * (asynchronous page fault mechanism). The event happens when a
1505          * userspace task is trying to access some valid (from guest's point of
1506          * view) memory which is not currently mapped by the host (e.g. the
1507          * memory is swapped out). Note, the corresponding "page ready" event
1508          * which is injected when the memory becomes available, is delivered via
1509          * an interrupt mechanism and not a #PF exception
1510          * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1511          *
1512          * We are relying on the interrupted context being sane (valid RSP,
1513          * relevant locks not held, etc.), which is fine as long as the
1514          * interrupted context had IF=1.  We are also relying on the KVM
1515          * async pf type field and CR2 being read consistently instead of
1516          * getting values from real and async page faults mixed up.
1517          *
1518          * Fingers crossed.
1519          *
1520          * The async #PF handling code takes care of idtentry handling
1521          * itself.
1522          */
1523         if (kvm_handle_async_pf(regs, (u32)address))
1524                 return;
1525
1526         /*
1527          * Entry handling for valid #PF from kernel mode is slightly
1528          * different: RCU is already watching and ct_irq_enter() must not
1529          * be invoked because a kernel fault on a user space address might
1530          * sleep.
1531          *
1532          * In case the fault hit a RCU idle region the conditional entry
1533          * code reenabled RCU to avoid subsequent wreckage which helps
1534          * debuggability.
1535          */
1536         state = irqentry_enter(regs);
1537
1538         instrumentation_begin();
1539         handle_page_fault(regs, error_code, address);
1540         instrumentation_end();
1541
1542         irqentry_exit(regs, state);
1543 }