Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[linux-2.6-block.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213         unsigned long flags;
214
215         /*
216          * Disabling irqs at this point since the following code could be
217          * interrupted and executed through kvm_arch_hardware_disable()
218          */
219         local_irq_save(flags);
220         if (locals->registered) {
221                 locals->registered = false;
222                 user_return_notifier_unregister(urn);
223         }
224         local_irq_restore(flags);
225         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226                 values = &locals->values[slot];
227                 if (values->host != values->curr) {
228                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
229                         values->curr = values->host;
230                 }
231         }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236         u64 value;
237         unsigned int cpu = smp_processor_id();
238         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240         /* only read, and nobody should modify it at this time,
241          * so don't need lock */
242         if (slot >= shared_msrs_global.nr) {
243                 printk(KERN_ERR "kvm: invalid MSR slot!");
244                 return;
245         }
246         rdmsrl_safe(msr, &value);
247         smsr->values[slot].host = value;
248         smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254         shared_msrs_global.msrs[slot] = msr;
255         if (slot >= shared_msrs_global.nr)
256                 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262         unsigned i;
263
264         for (i = 0; i < shared_msrs_global.nr; ++i)
265                 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270         unsigned int cpu = smp_processor_id();
271         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272         int err;
273
274         if (((value ^ smsr->values[slot].curr) & mask) == 0)
275                 return 0;
276         smsr->values[slot].curr = value;
277         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278         if (err)
279                 return 1;
280
281         if (!smsr->registered) {
282                 smsr->urn.on_user_return = kvm_on_user_return;
283                 user_return_notifier_register(&smsr->urn);
284                 smsr->registered = true;
285         }
286         return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295         if (smsr->registered)
296                 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307         u64 old_state = vcpu->arch.apic_base &
308                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309         u64 new_state = msr_info->data &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314         if (!msr_info->host_initiated &&
315             ((msr_info->data & reserved_bits) != 0 ||
316              new_state == X2APIC_ENABLE ||
317              (new_state == MSR_IA32_APICBASE_ENABLE &&
318               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320               old_state == 0)))
321                 return 1;
322
323         kvm_lapic_set_base(vcpu, msr_info->data);
324         return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330         /* Fault while not rebooting.  We want the trace. */
331         BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN            0
336 #define EXCPT_CONTRIBUTORY      1
337 #define EXCPT_PF                2
338
339 static int exception_class(int vector)
340 {
341         switch (vector) {
342         case PF_VECTOR:
343                 return EXCPT_PF;
344         case DE_VECTOR:
345         case TS_VECTOR:
346         case NP_VECTOR:
347         case SS_VECTOR:
348         case GP_VECTOR:
349                 return EXCPT_CONTRIBUTORY;
350         default:
351                 break;
352         }
353         return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT             0
357 #define EXCPT_TRAP              1
358 #define EXCPT_ABORT             2
359 #define EXCPT_INTERRUPT         3
360
361 static int exception_type(int vector)
362 {
363         unsigned int mask;
364
365         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366                 return EXCPT_INTERRUPT;
367
368         mask = 1 << vector;
369
370         /* #DB is trap, as instruction watchpoints are handled elsewhere */
371         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372                 return EXCPT_TRAP;
373
374         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375                 return EXCPT_ABORT;
376
377         /* Reserved exceptions will result in fault */
378         return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382                 unsigned nr, bool has_error, u32 error_code,
383                 bool reinject)
384 {
385         u32 prev_nr;
386         int class1, class2;
387
388         kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390         if (!vcpu->arch.exception.pending) {
391         queue:
392                 if (has_error && !is_protmode(vcpu))
393                         has_error = false;
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = has_error;
396                 vcpu->arch.exception.nr = nr;
397                 vcpu->arch.exception.error_code = error_code;
398                 vcpu->arch.exception.reinject = reinject;
399                 return;
400         }
401
402         /* to check exception */
403         prev_nr = vcpu->arch.exception.nr;
404         if (prev_nr == DF_VECTOR) {
405                 /* triple fault -> shutdown */
406                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407                 return;
408         }
409         class1 = exception_class(prev_nr);
410         class2 = exception_class(nr);
411         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413                 /* generate double fault per SDM Table 5-5 */
414                 vcpu->arch.exception.pending = true;
415                 vcpu->arch.exception.has_error_code = true;
416                 vcpu->arch.exception.nr = DF_VECTOR;
417                 vcpu->arch.exception.error_code = 0;
418         } else
419                 /* replace previous exception with a new one in a hope
420                    that instruction re-execution will regenerate lost
421                    exception */
422                 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427         kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433         kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439         if (err)
440                 kvm_inject_gp(vcpu, 0);
441         else
442                 return kvm_skip_emulated_instruction(vcpu);
443
444         return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450         ++vcpu->stat.pf_guest;
451         vcpu->arch.cr2 = fault->address;
452         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460         else
461                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463         return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468         atomic_inc(&vcpu->arch.nmi_queued);
469         kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475         kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481         kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
487  * a #GP and return false.
488  */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492                 return true;
493         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494         return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501                 return true;
502
503         kvm_queue_exception(vcpu, UD_VECTOR);
504         return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509  * This function will be used to read from the physical memory of the currently
510  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511  * can read from guest physical or from the guest's guest physical memory.
512  */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514                             gfn_t ngfn, void *data, int offset, int len,
515                             u32 access)
516 {
517         struct x86_exception exception;
518         gfn_t real_gfn;
519         gpa_t ngpa;
520
521         ngpa     = gfn_to_gpa(ngfn);
522         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523         if (real_gfn == UNMAPPED_GVA)
524                 return -EFAULT;
525
526         real_gfn = gpa_to_gfn(real_gfn);
527
528         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533                                void *data, int offset, int len, u32 access)
534 {
535         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536                                        data, offset, len, access);
537 }
538
539 /*
540  * Load the pae pdptrs.  Return true is they are all valid.
541  */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546         int i;
547         int ret;
548         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551                                       offset * sizeof(u64), sizeof(pdpte),
552                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
553         if (ret < 0) {
554                 ret = 0;
555                 goto out;
556         }
557         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558                 if ((pdpte[i] & PT_PRESENT_MASK) &&
559                     (pdpte[i] &
560                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561                         ret = 0;
562                         goto out;
563                 }
564         }
565         ret = 1;
566
567         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568         __set_bit(VCPU_EXREG_PDPTR,
569                   (unsigned long *)&vcpu->arch.regs_avail);
570         __set_bit(VCPU_EXREG_PDPTR,
571                   (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574         return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581         bool changed = true;
582         int offset;
583         gfn_t gfn;
584         int r;
585
586         if (is_long_mode(vcpu) || !is_pae(vcpu))
587                 return false;
588
589         if (!test_bit(VCPU_EXREG_PDPTR,
590                       (unsigned long *)&vcpu->arch.regs_avail))
591                 return true;
592
593         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
597         if (r < 0)
598                 goto out;
599         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602         return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608         unsigned long old_cr0 = kvm_read_cr0(vcpu);
609         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611         cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614         if (cr0 & 0xffffffff00000000UL)
615                 return 1;
616 #endif
617
618         cr0 &= ~CR0_RESERVED_BITS;
619
620         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621                 return 1;
622
623         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624                 return 1;
625
626         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628                 if ((vcpu->arch.efer & EFER_LME)) {
629                         int cs_db, cs_l;
630
631                         if (!is_pae(vcpu))
632                                 return 1;
633                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634                         if (cs_l)
635                                 return 1;
636                 } else
637 #endif
638                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639                                                  kvm_read_cr3(vcpu)))
640                         return 1;
641         }
642
643         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644                 return 1;
645
646         kvm_x86_ops->set_cr0(vcpu, cr0);
647
648         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649                 kvm_clear_async_pf_completion_queue(vcpu);
650                 kvm_async_pf_hash_reset(vcpu);
651         }
652
653         if ((cr0 ^ old_cr0) & update_bits)
654                 kvm_mmu_reset_context(vcpu);
655
656         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661         return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674                         !vcpu->guest_xcr0_loaded) {
675                 /* kvm_set_xcr() also depends on this */
676                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677                 vcpu->guest_xcr0_loaded = 1;
678         }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683         if (vcpu->guest_xcr0_loaded) {
684                 if (vcpu->arch.xcr0 != host_xcr0)
685                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686                 vcpu->guest_xcr0_loaded = 0;
687         }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692         u64 xcr0 = xcr;
693         u64 old_xcr0 = vcpu->arch.xcr0;
694         u64 valid_bits;
695
696         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
697         if (index != XCR_XFEATURE_ENABLED_MASK)
698                 return 1;
699         if (!(xcr0 & XFEATURE_MASK_FP))
700                 return 1;
701         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702                 return 1;
703
704         /*
705          * Do not allow the guest to set bits that we do not support
706          * saving.  However, xcr0 bit 0 is always set, even if the
707          * emulated CPU does not support XSAVE (see fx_init).
708          */
709         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710         if (xcr0 & ~valid_bits)
711                 return 1;
712
713         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715                 return 1;
716
717         if (xcr0 & XFEATURE_MASK_AVX512) {
718                 if (!(xcr0 & XFEATURE_MASK_YMM))
719                         return 1;
720                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721                         return 1;
722         }
723         vcpu->arch.xcr0 = xcr0;
724
725         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726                 kvm_update_cpuid(vcpu);
727         return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733             __kvm_set_xcr(vcpu, index, xcr)) {
734                 kvm_inject_gp(vcpu, 0);
735                 return 1;
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743         unsigned long old_cr4 = kvm_read_cr4(vcpu);
744         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747         if (cr4 & CR4_RESERVED_BITS)
748                 return 1;
749
750         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751                 return 1;
752
753         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754                 return 1;
755
756         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757                 return 1;
758
759         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760                 return 1;
761
762         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763                 return 1;
764
765         if (is_long_mode(vcpu)) {
766                 if (!(cr4 & X86_CR4_PAE))
767                         return 1;
768         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769                    && ((cr4 ^ old_cr4) & pdptr_bits)
770                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                    kvm_read_cr3(vcpu)))
772                 return 1;
773
774         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775                 if (!guest_cpuid_has_pcid(vcpu))
776                         return 1;
777
778                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780                         return 1;
781         }
782
783         if (kvm_x86_ops->set_cr4(vcpu, cr4))
784                 return 1;
785
786         if (((cr4 ^ old_cr4) & pdptr_bits) ||
787             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788                 kvm_mmu_reset_context(vcpu);
789
790         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791                 kvm_update_cpuid(vcpu);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800         cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804                 kvm_mmu_sync_roots(vcpu);
805                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806                 return 0;
807         }
808
809         if (is_long_mode(vcpu)) {
810                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811                         return 1;
812         } else if (is_pae(vcpu) && is_paging(vcpu) &&
813                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814                 return 1;
815
816         vcpu->arch.cr3 = cr3;
817         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818         kvm_mmu_new_cr3(vcpu);
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825         if (cr8 & CR8_RESERVED_BITS)
826                 return 1;
827         if (lapic_in_kernel(vcpu))
828                 kvm_lapic_set_tpr(vcpu, cr8);
829         else
830                 vcpu->arch.cr8 = cr8;
831         return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837         if (lapic_in_kernel(vcpu))
838                 return kvm_lapic_get_cr8(vcpu);
839         else
840                 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846         int i;
847
848         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849                 for (i = 0; i < KVM_NR_DB_REGS; i++)
850                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852         }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863         unsigned long dr7;
864
865         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866                 dr7 = vcpu->arch.guest_debug_dr7;
867         else
868                 dr7 = vcpu->arch.dr7;
869         kvm_x86_ops->set_dr7(vcpu, dr7);
870         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871         if (dr7 & DR7_BP_EN_MASK)
872                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877         u64 fixed = DR6_FIXED_1;
878
879         if (!guest_cpuid_has_rtm(vcpu))
880                 fixed |= DR6_RTM;
881         return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886         switch (dr) {
887         case 0 ... 3:
888                 vcpu->arch.db[dr] = val;
889                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                         vcpu->arch.eff_db[dr] = val;
891                 break;
892         case 4:
893                 /* fall through */
894         case 6:
895                 if (val & 0xffffffff00000000ULL)
896                         return -1; /* #GP */
897                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898                 kvm_update_dr6(vcpu);
899                 break;
900         case 5:
901                 /* fall through */
902         default: /* 7 */
903                 if (val & 0xffffffff00000000ULL)
904                         return -1; /* #GP */
905                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906                 kvm_update_dr7(vcpu);
907                 break;
908         }
909
910         return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915         if (__kvm_set_dr(vcpu, dr, val)) {
916                 kvm_inject_gp(vcpu, 0);
917                 return 1;
918         }
919         return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925         switch (dr) {
926         case 0 ... 3:
927                 *val = vcpu->arch.db[dr];
928                 break;
929         case 4:
930                 /* fall through */
931         case 6:
932                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933                         *val = vcpu->arch.dr6;
934                 else
935                         *val = kvm_x86_ops->get_dr6(vcpu);
936                 break;
937         case 5:
938                 /* fall through */
939         default: /* 7 */
940                 *val = vcpu->arch.dr7;
941                 break;
942         }
943         return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950         u64 data;
951         int err;
952
953         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954         if (err)
955                 return err;
956         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958         return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965  *
966  * This list is modified at module load time to reflect the
967  * capabilities of the host cpu. This capabilities test skips MSRs that are
968  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969  * may depend on host virtualization features rather than host cpu features.
970  */
971
972 static u32 msrs_to_save[] = {
973         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974         MSR_STAR,
975 #ifdef CONFIG_X86_64
976         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991         HV_X64_MSR_RESET,
992         HV_X64_MSR_VP_INDEX,
993         HV_X64_MSR_VP_RUNTIME,
994         HV_X64_MSR_SCONTROL,
995         HV_X64_MSR_STIMER0_CONFIG,
996         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997         MSR_KVM_PV_EOI_EN,
998
999         MSR_IA32_TSC_ADJUST,
1000         MSR_IA32_TSCDEADLINE,
1001         MSR_IA32_MISC_ENABLE,
1002         MSR_IA32_MCG_STATUS,
1003         MSR_IA32_MCG_CTL,
1004         MSR_IA32_MCG_EXT_CTL,
1005         MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012         if (efer & efer_reserved_bits)
1013                 return false;
1014
1015         if (efer & EFER_FFXSR) {
1016                 struct kvm_cpuid_entry2 *feat;
1017
1018                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020                         return false;
1021         }
1022
1023         if (efer & EFER_SVME) {
1024                 struct kvm_cpuid_entry2 *feat;
1025
1026                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028                         return false;
1029         }
1030
1031         return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037         u64 old_efer = vcpu->arch.efer;
1038
1039         if (!kvm_valid_efer(vcpu, efer))
1040                 return 1;
1041
1042         if (is_paging(vcpu)
1043             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044                 return 1;
1045
1046         efer &= ~EFER_LMA;
1047         efer |= vcpu->arch.efer & EFER_LMA;
1048
1049         kvm_x86_ops->set_efer(vcpu, efer);
1050
1051         /* Update reserved bits */
1052         if ((efer ^ old_efer) & EFER_NX)
1053                 kvm_mmu_reset_context(vcpu);
1054
1055         return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060        efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065  * Writes msr value into into the appropriate "register".
1066  * Returns 0 on success, non-0 otherwise.
1067  * Assumes vcpu_load() was already called.
1068  */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071         switch (msr->index) {
1072         case MSR_FS_BASE:
1073         case MSR_GS_BASE:
1074         case MSR_KERNEL_GS_BASE:
1075         case MSR_CSTAR:
1076         case MSR_LSTAR:
1077                 if (is_noncanonical_address(msr->data))
1078                         return 1;
1079                 break;
1080         case MSR_IA32_SYSENTER_EIP:
1081         case MSR_IA32_SYSENTER_ESP:
1082                 /*
1083                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084                  * non-canonical address is written on Intel but not on
1085                  * AMD (which ignores the top 32-bits, because it does
1086                  * not implement 64-bit SYSENTER).
1087                  *
1088                  * 64-bit code should hence be able to write a non-canonical
1089                  * value on AMD.  Making the address canonical ensures that
1090                  * vmentry does not fail on Intel after writing a non-canonical
1091                  * value, and that something deterministic happens if the guest
1092                  * invokes 64-bit SYSENTER.
1093                  */
1094                 msr->data = get_canonical(msr->data);
1095         }
1096         return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101  * Adapt set_msr() to msr_io()'s calling convention
1102  */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105         struct msr_data msr;
1106         int r;
1107
1108         msr.index = index;
1109         msr.host_initiated = true;
1110         r = kvm_get_msr(vcpu, &msr);
1111         if (r)
1112                 return r;
1113
1114         *data = msr.data;
1115         return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120         struct msr_data msr;
1121
1122         msr.data = *data;
1123         msr.index = index;
1124         msr.host_initiated = true;
1125         return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130         seqcount_t      seq;
1131
1132         struct { /* extract of a clocksource struct */
1133                 int vclock_mode;
1134                 u64     cycle_last;
1135                 u64     mask;
1136                 u32     mult;
1137                 u32     shift;
1138         } clock;
1139
1140         u64             boot_ns;
1141         u64             nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149         u64 boot_ns;
1150
1151         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153         write_seqcount_begin(&vdata->seq);
1154
1155         /* copy pvclock gtod data */
1156         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1157         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1158         vdata->clock.mask               = tk->tkr_mono.mask;
1159         vdata->clock.mult               = tk->tkr_mono.mult;
1160         vdata->clock.shift              = tk->tkr_mono.shift;
1161
1162         vdata->boot_ns                  = boot_ns;
1163         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1164
1165         write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171         /*
1172          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173          * vcpu_enter_guest.  This function is only called from
1174          * the physical CPU that is running vcpu.
1175          */
1176         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181         int version;
1182         int r;
1183         struct pvclock_wall_clock wc;
1184         struct timespec64 boot;
1185
1186         if (!wall_clock)
1187                 return;
1188
1189         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190         if (r)
1191                 return;
1192
1193         if (version & 1)
1194                 ++version;  /* first time write, random junk */
1195
1196         ++version;
1197
1198         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199                 return;
1200
1201         /*
1202          * The guest calculates current wall clock time by adding
1203          * system time (updated by kvm_guest_time_update below) to the
1204          * wall clock specified here.  guest system time equals host
1205          * system time for us, thus we must fill in host boot time here.
1206          */
1207         getboottime64(&boot);
1208
1209         if (kvm->arch.kvmclock_offset) {
1210                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211                 boot = timespec64_sub(boot, ts);
1212         }
1213         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214         wc.nsec = boot.tv_nsec;
1215         wc.version = version;
1216
1217         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219         version++;
1220         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225         do_shl32_div32(dividend, divisor);
1226         return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230                                s8 *pshift, u32 *pmultiplier)
1231 {
1232         uint64_t scaled64;
1233         int32_t  shift = 0;
1234         uint64_t tps64;
1235         uint32_t tps32;
1236
1237         tps64 = base_hz;
1238         scaled64 = scaled_hz;
1239         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240                 tps64 >>= 1;
1241                 shift--;
1242         }
1243
1244         tps32 = (uint32_t)tps64;
1245         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247                         scaled64 >>= 1;
1248                 else
1249                         tps32 <<= 1;
1250                 shift++;
1251         }
1252
1253         *pshift = shift;
1254         *pmultiplier = div_frac(scaled64, tps32);
1255
1256         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269         u64 v = (u64)khz * (1000000 + ppm);
1270         do_div(v, 1000000);
1271         return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276         u64 ratio;
1277
1278         /* Guest TSC same frequency as host TSC? */
1279         if (!scale) {
1280                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281                 return 0;
1282         }
1283
1284         /* TSC scaling supported? */
1285         if (!kvm_has_tsc_control) {
1286                 if (user_tsc_khz > tsc_khz) {
1287                         vcpu->arch.tsc_catchup = 1;
1288                         vcpu->arch.tsc_always_catchup = 1;
1289                         return 0;
1290                 } else {
1291                         WARN(1, "user requested TSC rate below hardware speed\n");
1292                         return -1;
1293                 }
1294         }
1295
1296         /* TSC scaling required  - calculate ratio */
1297         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298                                 user_tsc_khz, tsc_khz);
1299
1300         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302                           user_tsc_khz);
1303                 return -1;
1304         }
1305
1306         vcpu->arch.tsc_scaling_ratio = ratio;
1307         return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312         u32 thresh_lo, thresh_hi;
1313         int use_scaling = 0;
1314
1315         /* tsc_khz can be zero if TSC calibration fails */
1316         if (user_tsc_khz == 0) {
1317                 /* set tsc_scaling_ratio to a safe value */
1318                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319                 return -1;
1320         }
1321
1322         /* Compute a scale to convert nanoseconds in TSC cycles */
1323         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324                            &vcpu->arch.virtual_tsc_shift,
1325                            &vcpu->arch.virtual_tsc_mult);
1326         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328         /*
1329          * Compute the variation in TSC rate which is acceptable
1330          * within the range of tolerance and decide if the
1331          * rate being applied is within that bounds of the hardware
1332          * rate.  If so, no scaling or compensation need be done.
1333          */
1334         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338                 use_scaling = 1;
1339         }
1340         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346                                       vcpu->arch.virtual_tsc_mult,
1347                                       vcpu->arch.virtual_tsc_shift);
1348         tsc += vcpu->arch.this_tsc_write;
1349         return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355         bool vcpus_matched;
1356         struct kvm_arch *ka = &vcpu->kvm->arch;
1357         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360                          atomic_read(&vcpu->kvm->online_vcpus));
1361
1362         /*
1363          * Once the masterclock is enabled, always perform request in
1364          * order to update it.
1365          *
1366          * In order to enable masterclock, the host clocksource must be TSC
1367          * and the vcpus need to have matched TSCs.  When that happens,
1368          * perform request to enable masterclock.
1369          */
1370         if (ka->use_master_clock ||
1371             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375                             atomic_read(&vcpu->kvm->online_vcpus),
1376                             ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382         u64 curr_offset = vcpu->arch.tsc_offset;
1383         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387  * Multiply tsc by a fixed point number represented by ratio.
1388  *
1389  * The most significant 64-N bits (mult) of ratio represent the
1390  * integral part of the fixed point number; the remaining N bits
1391  * (frac) represent the fractional part, ie. ratio represents a fixed
1392  * point number (mult + frac * 2^(-N)).
1393  *
1394  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395  */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403         u64 _tsc = tsc;
1404         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406         if (ratio != kvm_default_tsc_scaling_ratio)
1407                 _tsc = __scale_tsc(ratio, tsc);
1408
1409         return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415         u64 tsc;
1416
1417         tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419         return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431         vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436         struct kvm *kvm = vcpu->kvm;
1437         u64 offset, ns, elapsed;
1438         unsigned long flags;
1439         s64 usdiff;
1440         bool matched;
1441         bool already_matched;
1442         u64 data = msr->data;
1443
1444         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445         offset = kvm_compute_tsc_offset(vcpu, data);
1446         ns = ktime_get_boot_ns();
1447         elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449         if (vcpu->arch.virtual_tsc_khz) {
1450                 int faulted = 0;
1451
1452                 /* n.b - signed multiplication and division required */
1453                 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457                 /* do_div() only does unsigned */
1458                 asm("1: idivl %[divisor]\n"
1459                     "2: xor %%edx, %%edx\n"
1460                     "   movl $0, %[faulted]\n"
1461                     "3:\n"
1462                     ".section .fixup,\"ax\"\n"
1463                     "4: movl $1, %[faulted]\n"
1464                     "   jmp  3b\n"
1465                     ".previous\n"
1466
1467                 _ASM_EXTABLE(1b, 4b)
1468
1469                 : "=A"(usdiff), [faulted] "=r" (faulted)
1470                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473                 do_div(elapsed, 1000);
1474                 usdiff -= elapsed;
1475                 if (usdiff < 0)
1476                         usdiff = -usdiff;
1477
1478                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479                 if (faulted)
1480                         usdiff = USEC_PER_SEC;
1481         } else
1482                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484         /*
1485          * Special case: TSC write with a small delta (1 second) of virtual
1486          * cycle time against real time is interpreted as an attempt to
1487          * synchronize the CPU.
1488          *
1489          * For a reliable TSC, we can match TSC offsets, and for an unstable
1490          * TSC, we add elapsed time in this computation.  We could let the
1491          * compensation code attempt to catch up if we fall behind, but
1492          * it's better to try to match offsets from the beginning.
1493          */
1494         if (usdiff < USEC_PER_SEC &&
1495             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496                 if (!check_tsc_unstable()) {
1497                         offset = kvm->arch.cur_tsc_offset;
1498                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1499                 } else {
1500                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1501                         data += delta;
1502                         offset = kvm_compute_tsc_offset(vcpu, data);
1503                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504                 }
1505                 matched = true;
1506                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507         } else {
1508                 /*
1509                  * We split periods of matched TSC writes into generations.
1510                  * For each generation, we track the original measured
1511                  * nanosecond time, offset, and write, so if TSCs are in
1512                  * sync, we can match exact offset, and if not, we can match
1513                  * exact software computation in compute_guest_tsc()
1514                  *
1515                  * These values are tracked in kvm->arch.cur_xxx variables.
1516                  */
1517                 kvm->arch.cur_tsc_generation++;
1518                 kvm->arch.cur_tsc_nsec = ns;
1519                 kvm->arch.cur_tsc_write = data;
1520                 kvm->arch.cur_tsc_offset = offset;
1521                 matched = false;
1522                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523                          kvm->arch.cur_tsc_generation, data);
1524         }
1525
1526         /*
1527          * We also track th most recent recorded KHZ, write and time to
1528          * allow the matching interval to be extended at each write.
1529          */
1530         kvm->arch.last_tsc_nsec = ns;
1531         kvm->arch.last_tsc_write = data;
1532         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534         vcpu->arch.last_guest_tsc = data;
1535
1536         /* Keep track of which generation this VCPU has synchronized to */
1537         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542                 update_ia32_tsc_adjust_msr(vcpu, offset);
1543         kvm_vcpu_write_tsc_offset(vcpu, offset);
1544         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547         if (!matched) {
1548                 kvm->arch.nr_vcpus_matched_tsc = 0;
1549         } else if (!already_matched) {
1550                 kvm->arch.nr_vcpus_matched_tsc++;
1551         }
1552
1553         kvm_track_tsc_matching(vcpu);
1554         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560                                            s64 adjustment)
1561 {
1562         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568                 WARN_ON(adjustment < 0);
1569         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570         adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static u64 read_tsc(void)
1576 {
1577         u64 ret = (u64)rdtsc_ordered();
1578         u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580         if (likely(ret >= last))
1581                 return ret;
1582
1583         /*
1584          * GCC likes to generate cmov here, but this branch is extremely
1585          * predictable (it's just a function of time and the likely is
1586          * very likely) and there's a data dependence, so force GCC
1587          * to generate a branch instead.  I don't barrier() because
1588          * we don't actually need a barrier, and if this function
1589          * ever gets inlined it will generate worse code.
1590          */
1591         asm volatile ("");
1592         return last;
1593 }
1594
1595 static inline u64 vgettsc(u64 *cycle_now)
1596 {
1597         long v;
1598         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600         *cycle_now = read_tsc();
1601
1602         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603         return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1607 {
1608         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609         unsigned long seq;
1610         int mode;
1611         u64 ns;
1612
1613         do {
1614                 seq = read_seqcount_begin(&gtod->seq);
1615                 mode = gtod->clock.vclock_mode;
1616                 ns = gtod->nsec_base;
1617                 ns += vgettsc(cycle_now);
1618                 ns >>= gtod->clock.shift;
1619                 ns += gtod->boot_ns;
1620         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621         *t = ns;
1622
1623         return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1628 {
1629         /* checked again under seqlock below */
1630         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631                 return false;
1632
1633         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638  *
1639  * Assuming a stable TSC across physical CPUS, and a stable TSC
1640  * across virtual CPUs, the following condition is possible.
1641  * Each numbered line represents an event visible to both
1642  * CPUs at the next numbered event.
1643  *
1644  * "timespecX" represents host monotonic time. "tscX" represents
1645  * RDTSC value.
1646  *
1647  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1648  *
1649  * 1.  read timespec0,tsc0
1650  * 2.                                   | timespec1 = timespec0 + N
1651  *                                      | tsc1 = tsc0 + M
1652  * 3. transition to guest               | transition to guest
1653  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1655  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656  *
1657  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658  *
1659  *      - ret0 < ret1
1660  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661  *              ...
1662  *      - 0 < N - M => M < N
1663  *
1664  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665  * always the case (the difference between two distinct xtime instances
1666  * might be smaller then the difference between corresponding TSC reads,
1667  * when updating guest vcpus pvclock areas).
1668  *
1669  * To avoid that problem, do not allow visibility of distinct
1670  * system_timestamp/tsc_timestamp values simultaneously: use a master
1671  * copy of host monotonic time values. Update that master copy
1672  * in lockstep.
1673  *
1674  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675  *
1676  */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681         struct kvm_arch *ka = &kvm->arch;
1682         int vclock_mode;
1683         bool host_tsc_clocksource, vcpus_matched;
1684
1685         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686                         atomic_read(&kvm->online_vcpus));
1687
1688         /*
1689          * If the host uses TSC clock, then passthrough TSC as stable
1690          * to the guest.
1691          */
1692         host_tsc_clocksource = kvm_get_time_and_clockread(
1693                                         &ka->master_kernel_ns,
1694                                         &ka->master_cycle_now);
1695
1696         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697                                 && !backwards_tsc_observed
1698                                 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700         if (ka->use_master_clock)
1701                 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705                                         vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717         int i;
1718         struct kvm_vcpu *vcpu;
1719         struct kvm_arch *ka = &kvm->arch;
1720
1721         spin_lock(&ka->pvclock_gtod_sync_lock);
1722         kvm_make_mclock_inprogress_request(kvm);
1723         /* no guest entries from this point */
1724         pvclock_update_vm_gtod_copy(kvm);
1725
1726         kvm_for_each_vcpu(i, vcpu, kvm)
1727                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729         /* guest entries allowed */
1730         kvm_for_each_vcpu(i, vcpu, kvm)
1731                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733         spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739         struct kvm_arch *ka = &kvm->arch;
1740         struct pvclock_vcpu_time_info hv_clock;
1741
1742         spin_lock(&ka->pvclock_gtod_sync_lock);
1743         if (!ka->use_master_clock) {
1744                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746         }
1747
1748         hv_clock.tsc_timestamp = ka->master_cycle_now;
1749         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750         spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753                            &hv_clock.tsc_shift,
1754                            &hv_clock.tsc_to_system_mul);
1755         return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760         unsigned long flags;
1761         s64 ns;
1762
1763         local_irq_save(flags);
1764         ns = __get_kvmclock_ns(kvm);
1765         local_irq_restore(flags);
1766
1767         return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772         struct kvm_vcpu_arch *vcpu = &v->arch;
1773         struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776                 &guest_hv_clock, sizeof(guest_hv_clock))))
1777                 return;
1778
1779         /* This VCPU is paused, but it's legal for a guest to read another
1780          * VCPU's kvmclock, so we really have to follow the specification where
1781          * it says that version is odd if data is being modified, and even after
1782          * it is consistent.
1783          *
1784          * Version field updates must be kept separate.  This is because
1785          * kvm_write_guest_cached might use a "rep movs" instruction, and
1786          * writes within a string instruction are weakly ordered.  So there
1787          * are three writes overall.
1788          *
1789          * As a small optimization, only write the version field in the first
1790          * and third write.  The vcpu->pv_time cache is still valid, because the
1791          * version field is the first in the struct.
1792          */
1793         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797                                 &vcpu->hv_clock,
1798                                 sizeof(vcpu->hv_clock.version));
1799
1800         smp_wmb();
1801
1802         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805         if (vcpu->pvclock_set_guest_stopped_request) {
1806                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807                 vcpu->pvclock_set_guest_stopped_request = false;
1808         }
1809
1810         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813                                 &vcpu->hv_clock,
1814                                 sizeof(vcpu->hv_clock));
1815
1816         smp_wmb();
1817
1818         vcpu->hv_clock.version++;
1819         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820                                 &vcpu->hv_clock,
1821                                 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826         unsigned long flags, tgt_tsc_khz;
1827         struct kvm_vcpu_arch *vcpu = &v->arch;
1828         struct kvm_arch *ka = &v->kvm->arch;
1829         s64 kernel_ns;
1830         u64 tsc_timestamp, host_tsc;
1831         u8 pvclock_flags;
1832         bool use_master_clock;
1833
1834         kernel_ns = 0;
1835         host_tsc = 0;
1836
1837         /*
1838          * If the host uses TSC clock, then passthrough TSC as stable
1839          * to the guest.
1840          */
1841         spin_lock(&ka->pvclock_gtod_sync_lock);
1842         use_master_clock = ka->use_master_clock;
1843         if (use_master_clock) {
1844                 host_tsc = ka->master_cycle_now;
1845                 kernel_ns = ka->master_kernel_ns;
1846         }
1847         spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849         /* Keep irq disabled to prevent changes to the clock */
1850         local_irq_save(flags);
1851         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852         if (unlikely(tgt_tsc_khz == 0)) {
1853                 local_irq_restore(flags);
1854                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855                 return 1;
1856         }
1857         if (!use_master_clock) {
1858                 host_tsc = rdtsc();
1859                 kernel_ns = ktime_get_boot_ns();
1860         }
1861
1862         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864         /*
1865          * We may have to catch up the TSC to match elapsed wall clock
1866          * time for two reasons, even if kvmclock is used.
1867          *   1) CPU could have been running below the maximum TSC rate
1868          *   2) Broken TSC compensation resets the base at each VCPU
1869          *      entry to avoid unknown leaps of TSC even when running
1870          *      again on the same CPU.  This may cause apparent elapsed
1871          *      time to disappear, and the guest to stand still or run
1872          *      very slowly.
1873          */
1874         if (vcpu->tsc_catchup) {
1875                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876                 if (tsc > tsc_timestamp) {
1877                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878                         tsc_timestamp = tsc;
1879                 }
1880         }
1881
1882         local_irq_restore(flags);
1883
1884         /* With all the info we got, fill in the values */
1885
1886         if (kvm_has_tsc_control)
1887                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891                                    &vcpu->hv_clock.tsc_shift,
1892                                    &vcpu->hv_clock.tsc_to_system_mul);
1893                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894         }
1895
1896         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898         vcpu->last_guest_tsc = tsc_timestamp;
1899
1900         /* If the host uses TSC clocksource, then it is stable */
1901         pvclock_flags = 0;
1902         if (use_master_clock)
1903                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905         vcpu->hv_clock.flags = pvclock_flags;
1906
1907         if (vcpu->pv_time_enabled)
1908                 kvm_setup_pvclock_page(v);
1909         if (v == kvm_get_vcpu(v->kvm, 0))
1910                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911         return 0;
1912 }
1913
1914 /*
1915  * kvmclock updates which are isolated to a given vcpu, such as
1916  * vcpu->cpu migration, should not allow system_timestamp from
1917  * the rest of the vcpus to remain static. Otherwise ntp frequency
1918  * correction applies to one vcpu's system_timestamp but not
1919  * the others.
1920  *
1921  * So in those cases, request a kvmclock update for all vcpus.
1922  * We need to rate-limit these requests though, as they can
1923  * considerably slow guests that have a large number of vcpus.
1924  * The time for a remote vcpu to update its kvmclock is bound
1925  * by the delay we use to rate-limit the updates.
1926  */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932         int i;
1933         struct delayed_work *dwork = to_delayed_work(work);
1934         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935                                            kvmclock_update_work);
1936         struct kvm *kvm = container_of(ka, struct kvm, arch);
1937         struct kvm_vcpu *vcpu;
1938
1939         kvm_for_each_vcpu(i, vcpu, kvm) {
1940                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941                 kvm_vcpu_kick(vcpu);
1942         }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947         struct kvm *kvm = v->kvm;
1948
1949         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951                                         KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958         struct delayed_work *dwork = to_delayed_work(work);
1959         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960                                            kvmclock_sync_work);
1961         struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963         if (!kvmclock_periodic_sync)
1964                 return;
1965
1966         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968                                         KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973         u64 mcg_cap = vcpu->arch.mcg_cap;
1974         unsigned bank_num = mcg_cap & 0xff;
1975
1976         switch (msr) {
1977         case MSR_IA32_MCG_STATUS:
1978                 vcpu->arch.mcg_status = data;
1979                 break;
1980         case MSR_IA32_MCG_CTL:
1981                 if (!(mcg_cap & MCG_CTL_P))
1982                         return 1;
1983                 if (data != 0 && data != ~(u64)0)
1984                         return -1;
1985                 vcpu->arch.mcg_ctl = data;
1986                 break;
1987         default:
1988                 if (msr >= MSR_IA32_MC0_CTL &&
1989                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1990                         u32 offset = msr - MSR_IA32_MC0_CTL;
1991                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1992                          * some Linux kernels though clear bit 10 in bank 4 to
1993                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994                          * this to avoid an uncatched #GP in the guest
1995                          */
1996                         if ((offset & 0x3) == 0 &&
1997                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1998                                 return -1;
1999                         vcpu->arch.mce_banks[offset] = data;
2000                         break;
2001                 }
2002                 return 1;
2003         }
2004         return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009         struct kvm *kvm = vcpu->kvm;
2010         int lm = is_long_mode(vcpu);
2011         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014                 : kvm->arch.xen_hvm_config.blob_size_32;
2015         u32 page_num = data & ~PAGE_MASK;
2016         u64 page_addr = data & PAGE_MASK;
2017         u8 *page;
2018         int r;
2019
2020         r = -E2BIG;
2021         if (page_num >= blob_size)
2022                 goto out;
2023         r = -ENOMEM;
2024         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025         if (IS_ERR(page)) {
2026                 r = PTR_ERR(page);
2027                 goto out;
2028         }
2029         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030                 goto out_free;
2031         r = 0;
2032 out_free:
2033         kfree(page);
2034 out:
2035         return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040         gpa_t gpa = data & ~0x3f;
2041
2042         /* Bits 2:5 are reserved, Should be zero */
2043         if (data & 0x3c)
2044                 return 1;
2045
2046         vcpu->arch.apf.msr_val = data;
2047
2048         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049                 kvm_clear_async_pf_completion_queue(vcpu);
2050                 kvm_async_pf_hash_reset(vcpu);
2051                 return 0;
2052         }
2053
2054         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055                                         sizeof(u32)))
2056                 return 1;
2057
2058         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059         kvm_async_pf_wakeup_all(vcpu);
2060         return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065         vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071                 return;
2072
2073         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075                 return;
2076
2077         vcpu->arch.st.steal.preempted = 0;
2078
2079         if (vcpu->arch.st.steal.version & 1)
2080                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2081
2082         vcpu->arch.st.steal.version += 1;
2083
2084         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087         smp_wmb();
2088
2089         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090                 vcpu->arch.st.last_steal;
2091         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096         smp_wmb();
2097
2098         vcpu->arch.st.steal.version += 1;
2099
2100         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106         bool pr = false;
2107         u32 msr = msr_info->index;
2108         u64 data = msr_info->data;
2109
2110         switch (msr) {
2111         case MSR_AMD64_NB_CFG:
2112         case MSR_IA32_UCODE_REV:
2113         case MSR_IA32_UCODE_WRITE:
2114         case MSR_VM_HSAVE_PA:
2115         case MSR_AMD64_PATCH_LOADER:
2116         case MSR_AMD64_BU_CFG2:
2117                 break;
2118
2119         case MSR_EFER:
2120                 return set_efer(vcpu, data);
2121         case MSR_K7_HWCR:
2122                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2123                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2124                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2125                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2126                 if (data != 0) {
2127                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128                                     data);
2129                         return 1;
2130                 }
2131                 break;
2132         case MSR_FAM10H_MMIO_CONF_BASE:
2133                 if (data != 0) {
2134                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135                                     "0x%llx\n", data);
2136                         return 1;
2137                 }
2138                 break;
2139         case MSR_IA32_DEBUGCTLMSR:
2140                 if (!data) {
2141                         /* We support the non-activated case already */
2142                         break;
2143                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144                         /* Values other than LBR and BTF are vendor-specific,
2145                            thus reserved and should throw a #GP */
2146                         return 1;
2147                 }
2148                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149                             __func__, data);
2150                 break;
2151         case 0x200 ... 0x2ff:
2152                 return kvm_mtrr_set_msr(vcpu, msr, data);
2153         case MSR_IA32_APICBASE:
2154                 return kvm_set_apic_base(vcpu, msr_info);
2155         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156                 return kvm_x2apic_msr_write(vcpu, msr, data);
2157         case MSR_IA32_TSCDEADLINE:
2158                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159                 break;
2160         case MSR_IA32_TSC_ADJUST:
2161                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162                         if (!msr_info->host_initiated) {
2163                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164                                 adjust_tsc_offset_guest(vcpu, adj);
2165                         }
2166                         vcpu->arch.ia32_tsc_adjust_msr = data;
2167                 }
2168                 break;
2169         case MSR_IA32_MISC_ENABLE:
2170                 vcpu->arch.ia32_misc_enable_msr = data;
2171                 break;
2172         case MSR_IA32_SMBASE:
2173                 if (!msr_info->host_initiated)
2174                         return 1;
2175                 vcpu->arch.smbase = data;
2176                 break;
2177         case MSR_KVM_WALL_CLOCK_NEW:
2178         case MSR_KVM_WALL_CLOCK:
2179                 vcpu->kvm->arch.wall_clock = data;
2180                 kvm_write_wall_clock(vcpu->kvm, data);
2181                 break;
2182         case MSR_KVM_SYSTEM_TIME_NEW:
2183         case MSR_KVM_SYSTEM_TIME: {
2184                 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186                 kvmclock_reset(vcpu);
2187
2188                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193                                         &vcpu->requests);
2194
2195                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2196                 }
2197
2198                 vcpu->arch.time = data;
2199                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201                 /* we verify if the enable bit is set... */
2202                 if (!(data & 1))
2203                         break;
2204
2205                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206                      &vcpu->arch.pv_time, data & ~1ULL,
2207                      sizeof(struct pvclock_vcpu_time_info)))
2208                         vcpu->arch.pv_time_enabled = false;
2209                 else
2210                         vcpu->arch.pv_time_enabled = true;
2211
2212                 break;
2213         }
2214         case MSR_KVM_ASYNC_PF_EN:
2215                 if (kvm_pv_enable_async_pf(vcpu, data))
2216                         return 1;
2217                 break;
2218         case MSR_KVM_STEAL_TIME:
2219
2220                 if (unlikely(!sched_info_on()))
2221                         return 1;
2222
2223                 if (data & KVM_STEAL_RESERVED_MASK)
2224                         return 1;
2225
2226                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227                                                 data & KVM_STEAL_VALID_BITS,
2228                                                 sizeof(struct kvm_steal_time)))
2229                         return 1;
2230
2231                 vcpu->arch.st.msr_val = data;
2232
2233                 if (!(data & KVM_MSR_ENABLED))
2234                         break;
2235
2236                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238                 break;
2239         case MSR_KVM_PV_EOI_EN:
2240                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241                         return 1;
2242                 break;
2243
2244         case MSR_IA32_MCG_CTL:
2245         case MSR_IA32_MCG_STATUS:
2246         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247                 return set_msr_mce(vcpu, msr, data);
2248
2249         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251                 pr = true; /* fall through */
2252         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255                         return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257                 if (pr || data != 0)
2258                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259                                     "0x%x data 0x%llx\n", msr, data);
2260                 break;
2261         case MSR_K7_CLK_CTL:
2262                 /*
2263                  * Ignore all writes to this no longer documented MSR.
2264                  * Writes are only relevant for old K7 processors,
2265                  * all pre-dating SVM, but a recommended workaround from
2266                  * AMD for these chips. It is possible to specify the
2267                  * affected processor models on the command line, hence
2268                  * the need to ignore the workaround.
2269                  */
2270                 break;
2271         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273         case HV_X64_MSR_CRASH_CTL:
2274         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275                 return kvm_hv_set_msr_common(vcpu, msr, data,
2276                                              msr_info->host_initiated);
2277         case MSR_IA32_BBL_CR_CTL3:
2278                 /* Drop writes to this legacy MSR -- see rdmsr
2279                  * counterpart for further detail.
2280                  */
2281                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282                 break;
2283         case MSR_AMD64_OSVW_ID_LENGTH:
2284                 if (!guest_cpuid_has_osvw(vcpu))
2285                         return 1;
2286                 vcpu->arch.osvw.length = data;
2287                 break;
2288         case MSR_AMD64_OSVW_STATUS:
2289                 if (!guest_cpuid_has_osvw(vcpu))
2290                         return 1;
2291                 vcpu->arch.osvw.status = data;
2292                 break;
2293         default:
2294                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295                         return xen_hvm_config(vcpu, data);
2296                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297                         return kvm_pmu_set_msr(vcpu, msr_info);
2298                 if (!ignore_msrs) {
2299                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300                                     msr, data);
2301                         return 1;
2302                 } else {
2303                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304                                     msr, data);
2305                         break;
2306                 }
2307         }
2308         return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314  * Reads an msr value (of 'msr_index') into 'pdata'.
2315  * Returns 0 on success, non-0 otherwise.
2316  * Assumes vcpu_load() was already called.
2317  */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320         return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 data;
2327         u64 mcg_cap = vcpu->arch.mcg_cap;
2328         unsigned bank_num = mcg_cap & 0xff;
2329
2330         switch (msr) {
2331         case MSR_IA32_P5_MC_ADDR:
2332         case MSR_IA32_P5_MC_TYPE:
2333                 data = 0;
2334                 break;
2335         case MSR_IA32_MCG_CAP:
2336                 data = vcpu->arch.mcg_cap;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P))
2340                         return 1;
2341                 data = vcpu->arch.mcg_ctl;
2342                 break;
2343         case MSR_IA32_MCG_STATUS:
2344                 data = vcpu->arch.mcg_status;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         data = vcpu->arch.mce_banks[offset];
2351                         break;
2352                 }
2353                 return 1;
2354         }
2355         *pdata = data;
2356         return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361         switch (msr_info->index) {
2362         case MSR_IA32_PLATFORM_ID:
2363         case MSR_IA32_EBL_CR_POWERON:
2364         case MSR_IA32_DEBUGCTLMSR:
2365         case MSR_IA32_LASTBRANCHFROMIP:
2366         case MSR_IA32_LASTBRANCHTOIP:
2367         case MSR_IA32_LASTINTFROMIP:
2368         case MSR_IA32_LASTINTTOIP:
2369         case MSR_K8_SYSCFG:
2370         case MSR_K8_TSEG_ADDR:
2371         case MSR_K8_TSEG_MASK:
2372         case MSR_K7_HWCR:
2373         case MSR_VM_HSAVE_PA:
2374         case MSR_K8_INT_PENDING_MSG:
2375         case MSR_AMD64_NB_CFG:
2376         case MSR_FAM10H_MMIO_CONF_BASE:
2377         case MSR_AMD64_BU_CFG2:
2378         case MSR_IA32_PERF_CTL:
2379                 msr_info->data = 0;
2380                 break;
2381         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387                 msr_info->data = 0;
2388                 break;
2389         case MSR_IA32_UCODE_REV:
2390                 msr_info->data = 0x100000000ULL;
2391                 break;
2392         case MSR_MTRRcap:
2393         case 0x200 ... 0x2ff:
2394                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395         case 0xcd: /* fsb frequency */
2396                 msr_info->data = 3;
2397                 break;
2398                 /*
2399                  * MSR_EBC_FREQUENCY_ID
2400                  * Conservative value valid for even the basic CPU models.
2401                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403                  * and 266MHz for model 3, or 4. Set Core Clock
2404                  * Frequency to System Bus Frequency Ratio to 1 (bits
2405                  * 31:24) even though these are only valid for CPU
2406                  * models > 2, however guests may end up dividing or
2407                  * multiplying by zero otherwise.
2408                  */
2409         case MSR_EBC_FREQUENCY_ID:
2410                 msr_info->data = 1 << 24;
2411                 break;
2412         case MSR_IA32_APICBASE:
2413                 msr_info->data = kvm_get_apic_base(vcpu);
2414                 break;
2415         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417                 break;
2418         case MSR_IA32_TSCDEADLINE:
2419                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420                 break;
2421         case MSR_IA32_TSC_ADJUST:
2422                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423                 break;
2424         case MSR_IA32_MISC_ENABLE:
2425                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426                 break;
2427         case MSR_IA32_SMBASE:
2428                 if (!msr_info->host_initiated)
2429                         return 1;
2430                 msr_info->data = vcpu->arch.smbase;
2431                 break;
2432         case MSR_IA32_PERF_STATUS:
2433                 /* TSC increment by tick */
2434                 msr_info->data = 1000ULL;
2435                 /* CPU multiplier */
2436                 msr_info->data |= (((uint64_t)4ULL) << 40);
2437                 break;
2438         case MSR_EFER:
2439                 msr_info->data = vcpu->arch.efer;
2440                 break;
2441         case MSR_KVM_WALL_CLOCK:
2442         case MSR_KVM_WALL_CLOCK_NEW:
2443                 msr_info->data = vcpu->kvm->arch.wall_clock;
2444                 break;
2445         case MSR_KVM_SYSTEM_TIME:
2446         case MSR_KVM_SYSTEM_TIME_NEW:
2447                 msr_info->data = vcpu->arch.time;
2448                 break;
2449         case MSR_KVM_ASYNC_PF_EN:
2450                 msr_info->data = vcpu->arch.apf.msr_val;
2451                 break;
2452         case MSR_KVM_STEAL_TIME:
2453                 msr_info->data = vcpu->arch.st.msr_val;
2454                 break;
2455         case MSR_KVM_PV_EOI_EN:
2456                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457                 break;
2458         case MSR_IA32_P5_MC_ADDR:
2459         case MSR_IA32_P5_MC_TYPE:
2460         case MSR_IA32_MCG_CAP:
2461         case MSR_IA32_MCG_CTL:
2462         case MSR_IA32_MCG_STATUS:
2463         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465         case MSR_K7_CLK_CTL:
2466                 /*
2467                  * Provide expected ramp-up count for K7. All other
2468                  * are set to zero, indicating minimum divisors for
2469                  * every field.
2470                  *
2471                  * This prevents guest kernels on AMD host with CPU
2472                  * type 6, model 8 and higher from exploding due to
2473                  * the rdmsr failing.
2474                  */
2475                 msr_info->data = 0x20000000;
2476                 break;
2477         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479         case HV_X64_MSR_CRASH_CTL:
2480         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481                 return kvm_hv_get_msr_common(vcpu,
2482                                              msr_info->index, &msr_info->data);
2483                 break;
2484         case MSR_IA32_BBL_CR_CTL3:
2485                 /* This legacy MSR exists but isn't fully documented in current
2486                  * silicon.  It is however accessed by winxp in very narrow
2487                  * scenarios where it sets bit #19, itself documented as
2488                  * a "reserved" bit.  Best effort attempt to source coherent
2489                  * read data here should the balance of the register be
2490                  * interpreted by the guest:
2491                  *
2492                  * L2 cache control register 3: 64GB range, 256KB size,
2493                  * enabled, latency 0x1, configured
2494                  */
2495                 msr_info->data = 0xbe702111;
2496                 break;
2497         case MSR_AMD64_OSVW_ID_LENGTH:
2498                 if (!guest_cpuid_has_osvw(vcpu))
2499                         return 1;
2500                 msr_info->data = vcpu->arch.osvw.length;
2501                 break;
2502         case MSR_AMD64_OSVW_STATUS:
2503                 if (!guest_cpuid_has_osvw(vcpu))
2504                         return 1;
2505                 msr_info->data = vcpu->arch.osvw.status;
2506                 break;
2507         default:
2508                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510                 if (!ignore_msrs) {
2511                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512                                                msr_info->index);
2513                         return 1;
2514                 } else {
2515                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516                         msr_info->data = 0;
2517                 }
2518                 break;
2519         }
2520         return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525  * Read or write a bunch of msrs. All parameters are kernel addresses.
2526  *
2527  * @return number of msrs set successfully.
2528  */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530                     struct kvm_msr_entry *entries,
2531                     int (*do_msr)(struct kvm_vcpu *vcpu,
2532                                   unsigned index, u64 *data))
2533 {
2534         int i, idx;
2535
2536         idx = srcu_read_lock(&vcpu->kvm->srcu);
2537         for (i = 0; i < msrs->nmsrs; ++i)
2538                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539                         break;
2540         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542         return i;
2543 }
2544
2545 /*
2546  * Read or write a bunch of msrs. Parameters are user addresses.
2547  *
2548  * @return number of msrs set successfully.
2549  */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551                   int (*do_msr)(struct kvm_vcpu *vcpu,
2552                                 unsigned index, u64 *data),
2553                   int writeback)
2554 {
2555         struct kvm_msrs msrs;
2556         struct kvm_msr_entry *entries;
2557         int r, n;
2558         unsigned size;
2559
2560         r = -EFAULT;
2561         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562                 goto out;
2563
2564         r = -E2BIG;
2565         if (msrs.nmsrs >= MAX_IO_MSRS)
2566                 goto out;
2567
2568         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569         entries = memdup_user(user_msrs->entries, size);
2570         if (IS_ERR(entries)) {
2571                 r = PTR_ERR(entries);
2572                 goto out;
2573         }
2574
2575         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576         if (r < 0)
2577                 goto out_free;
2578
2579         r = -EFAULT;
2580         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581                 goto out_free;
2582
2583         r = n;
2584
2585 out_free:
2586         kfree(entries);
2587 out:
2588         return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593         int r;
2594
2595         switch (ext) {
2596         case KVM_CAP_IRQCHIP:
2597         case KVM_CAP_HLT:
2598         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599         case KVM_CAP_SET_TSS_ADDR:
2600         case KVM_CAP_EXT_CPUID:
2601         case KVM_CAP_EXT_EMUL_CPUID:
2602         case KVM_CAP_CLOCKSOURCE:
2603         case KVM_CAP_PIT:
2604         case KVM_CAP_NOP_IO_DELAY:
2605         case KVM_CAP_MP_STATE:
2606         case KVM_CAP_SYNC_MMU:
2607         case KVM_CAP_USER_NMI:
2608         case KVM_CAP_REINJECT_CONTROL:
2609         case KVM_CAP_IRQ_INJECT_STATUS:
2610         case KVM_CAP_IOEVENTFD:
2611         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612         case KVM_CAP_PIT2:
2613         case KVM_CAP_PIT_STATE2:
2614         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615         case KVM_CAP_XEN_HVM:
2616         case KVM_CAP_VCPU_EVENTS:
2617         case KVM_CAP_HYPERV:
2618         case KVM_CAP_HYPERV_VAPIC:
2619         case KVM_CAP_HYPERV_SPIN:
2620         case KVM_CAP_HYPERV_SYNIC:
2621         case KVM_CAP_PCI_SEGMENT:
2622         case KVM_CAP_DEBUGREGS:
2623         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624         case KVM_CAP_XSAVE:
2625         case KVM_CAP_ASYNC_PF:
2626         case KVM_CAP_GET_TSC_KHZ:
2627         case KVM_CAP_KVMCLOCK_CTRL:
2628         case KVM_CAP_READONLY_MEM:
2629         case KVM_CAP_HYPERV_TIME:
2630         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631         case KVM_CAP_TSC_DEADLINE_TIMER:
2632         case KVM_CAP_ENABLE_CAP_VM:
2633         case KVM_CAP_DISABLE_QUIRKS:
2634         case KVM_CAP_SET_BOOT_CPU_ID:
2635         case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637         case KVM_CAP_ASSIGN_DEV_IRQ:
2638         case KVM_CAP_PCI_2_3:
2639 #endif
2640                 r = 1;
2641                 break;
2642         case KVM_CAP_ADJUST_CLOCK:
2643                 r = KVM_CLOCK_TSC_STABLE;
2644                 break;
2645         case KVM_CAP_X86_SMM:
2646                 /* SMBASE is usually relocated above 1M on modern chipsets,
2647                  * and SMM handlers might indeed rely on 4G segment limits,
2648                  * so do not report SMM to be available if real mode is
2649                  * emulated via vm86 mode.  Still, do not go to great lengths
2650                  * to avoid userspace's usage of the feature, because it is a
2651                  * fringe case that is not enabled except via specific settings
2652                  * of the module parameters.
2653                  */
2654                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655                 break;
2656         case KVM_CAP_COALESCED_MMIO:
2657                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658                 break;
2659         case KVM_CAP_VAPIC:
2660                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661                 break;
2662         case KVM_CAP_NR_VCPUS:
2663                 r = KVM_SOFT_MAX_VCPUS;
2664                 break;
2665         case KVM_CAP_MAX_VCPUS:
2666                 r = KVM_MAX_VCPUS;
2667                 break;
2668         case KVM_CAP_NR_MEMSLOTS:
2669                 r = KVM_USER_MEM_SLOTS;
2670                 break;
2671         case KVM_CAP_PV_MMU:    /* obsolete */
2672                 r = 0;
2673                 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675         case KVM_CAP_IOMMU:
2676                 r = iommu_present(&pci_bus_type);
2677                 break;
2678 #endif
2679         case KVM_CAP_MCE:
2680                 r = KVM_MAX_MCE_BANKS;
2681                 break;
2682         case KVM_CAP_XCRS:
2683                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684                 break;
2685         case KVM_CAP_TSC_CONTROL:
2686                 r = kvm_has_tsc_control;
2687                 break;
2688         case KVM_CAP_X2APIC_API:
2689                 r = KVM_X2APIC_API_VALID_FLAGS;
2690                 break;
2691         default:
2692                 r = 0;
2693                 break;
2694         }
2695         return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700                         unsigned int ioctl, unsigned long arg)
2701 {
2702         void __user *argp = (void __user *)arg;
2703         long r;
2704
2705         switch (ioctl) {
2706         case KVM_GET_MSR_INDEX_LIST: {
2707                 struct kvm_msr_list __user *user_msr_list = argp;
2708                 struct kvm_msr_list msr_list;
2709                 unsigned n;
2710
2711                 r = -EFAULT;
2712                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713                         goto out;
2714                 n = msr_list.nmsrs;
2715                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717                         goto out;
2718                 r = -E2BIG;
2719                 if (n < msr_list.nmsrs)
2720                         goto out;
2721                 r = -EFAULT;
2722                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723                                  num_msrs_to_save * sizeof(u32)))
2724                         goto out;
2725                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726                                  &emulated_msrs,
2727                                  num_emulated_msrs * sizeof(u32)))
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         case KVM_GET_SUPPORTED_CPUID:
2733         case KVM_GET_EMULATED_CPUID: {
2734                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735                 struct kvm_cpuid2 cpuid;
2736
2737                 r = -EFAULT;
2738                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739                         goto out;
2740
2741                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742                                             ioctl);
2743                 if (r)
2744                         goto out;
2745
2746                 r = -EFAULT;
2747                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748                         goto out;
2749                 r = 0;
2750                 break;
2751         }
2752         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753                 r = -EFAULT;
2754                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755                                  sizeof(kvm_mce_cap_supported)))
2756                         goto out;
2757                 r = 0;
2758                 break;
2759         }
2760         default:
2761                 r = -EINVAL;
2762         }
2763 out:
2764         return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769         wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784         /* Address WBINVD may be executed by guest */
2785         if (need_emulate_wbinvd(vcpu)) {
2786                 if (kvm_x86_ops->has_wbinvd_exit())
2787                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789                         smp_call_function_single(vcpu->cpu,
2790                                         wbinvd_ipi, NULL, 1);
2791         }
2792
2793         kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795         /* Apply any externally detected TSC adjustments (due to suspend) */
2796         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798                 vcpu->arch.tsc_offset_adjustment = 0;
2799                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800         }
2801
2802         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804                                 rdtsc() - vcpu->arch.last_host_tsc;
2805                 if (tsc_delta < 0)
2806                         mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808                 if (check_tsc_unstable()) {
2809                         u64 offset = kvm_compute_tsc_offset(vcpu,
2810                                                 vcpu->arch.last_guest_tsc);
2811                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2812                         vcpu->arch.tsc_catchup = 1;
2813                 }
2814                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815                                 kvm_x86_ops->set_hv_timer(vcpu,
2816                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2817                         kvm_lapic_switch_to_sw_timer(vcpu);
2818                 /*
2819                  * On a host with synchronized TSC, there is no need to update
2820                  * kvmclock on vcpu->cpu migration
2821                  */
2822                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824                 if (vcpu->cpu != cpu)
2825                         kvm_migrate_timers(vcpu);
2826                 vcpu->cpu = cpu;
2827         }
2828
2829         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835                 return;
2836
2837         vcpu->arch.st.steal.preempted = 1;
2838
2839         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840                         &vcpu->arch.st.steal.preempted,
2841                         offsetof(struct kvm_steal_time, preempted),
2842                         sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847         int idx;
2848         /*
2849          * Disable page faults because we're in atomic context here.
2850          * kvm_write_guest_offset_cached() would call might_fault()
2851          * that relies on pagefault_disable() to tell if there's a
2852          * bug. NOTE: the write to guest memory may not go through if
2853          * during postcopy live migration or if there's heavy guest
2854          * paging.
2855          */
2856         pagefault_disable();
2857         /*
2858          * kvm_memslots() will be called by
2859          * kvm_write_guest_offset_cached() so take the srcu lock.
2860          */
2861         idx = srcu_read_lock(&vcpu->kvm->srcu);
2862         kvm_steal_time_set_preempted(vcpu);
2863         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2864         pagefault_enable();
2865         kvm_x86_ops->vcpu_put(vcpu);
2866         kvm_put_guest_fpu(vcpu);
2867         vcpu->arch.last_host_tsc = rdtsc();
2868 }
2869
2870 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2871                                     struct kvm_lapic_state *s)
2872 {
2873         if (vcpu->arch.apicv_active)
2874                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2875
2876         return kvm_apic_get_state(vcpu, s);
2877 }
2878
2879 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2880                                     struct kvm_lapic_state *s)
2881 {
2882         int r;
2883
2884         r = kvm_apic_set_state(vcpu, s);
2885         if (r)
2886                 return r;
2887         update_cr8_intercept(vcpu);
2888
2889         return 0;
2890 }
2891
2892 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2893 {
2894         return (!lapic_in_kernel(vcpu) ||
2895                 kvm_apic_accept_pic_intr(vcpu));
2896 }
2897
2898 /*
2899  * if userspace requested an interrupt window, check that the
2900  * interrupt window is open.
2901  *
2902  * No need to exit to userspace if we already have an interrupt queued.
2903  */
2904 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2905 {
2906         return kvm_arch_interrupt_allowed(vcpu) &&
2907                 !kvm_cpu_has_interrupt(vcpu) &&
2908                 !kvm_event_needs_reinjection(vcpu) &&
2909                 kvm_cpu_accept_dm_intr(vcpu);
2910 }
2911
2912 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2913                                     struct kvm_interrupt *irq)
2914 {
2915         if (irq->irq >= KVM_NR_INTERRUPTS)
2916                 return -EINVAL;
2917
2918         if (!irqchip_in_kernel(vcpu->kvm)) {
2919                 kvm_queue_interrupt(vcpu, irq->irq, false);
2920                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2921                 return 0;
2922         }
2923
2924         /*
2925          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2926          * fail for in-kernel 8259.
2927          */
2928         if (pic_in_kernel(vcpu->kvm))
2929                 return -ENXIO;
2930
2931         if (vcpu->arch.pending_external_vector != -1)
2932                 return -EEXIST;
2933
2934         vcpu->arch.pending_external_vector = irq->irq;
2935         kvm_make_request(KVM_REQ_EVENT, vcpu);
2936         return 0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2940 {
2941         kvm_inject_nmi(vcpu);
2942
2943         return 0;
2944 }
2945
2946 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2947 {
2948         kvm_make_request(KVM_REQ_SMI, vcpu);
2949
2950         return 0;
2951 }
2952
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2954                                            struct kvm_tpr_access_ctl *tac)
2955 {
2956         if (tac->flags)
2957                 return -EINVAL;
2958         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2959         return 0;
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2963                                         u64 mcg_cap)
2964 {
2965         int r;
2966         unsigned bank_num = mcg_cap & 0xff, bank;
2967
2968         r = -EINVAL;
2969         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2970                 goto out;
2971         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2972                 goto out;
2973         r = 0;
2974         vcpu->arch.mcg_cap = mcg_cap;
2975         /* Init IA32_MCG_CTL to all 1s */
2976         if (mcg_cap & MCG_CTL_P)
2977                 vcpu->arch.mcg_ctl = ~(u64)0;
2978         /* Init IA32_MCi_CTL to all 1s */
2979         for (bank = 0; bank < bank_num; bank++)
2980                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2981
2982         if (kvm_x86_ops->setup_mce)
2983                 kvm_x86_ops->setup_mce(vcpu);
2984 out:
2985         return r;
2986 }
2987
2988 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2989                                       struct kvm_x86_mce *mce)
2990 {
2991         u64 mcg_cap = vcpu->arch.mcg_cap;
2992         unsigned bank_num = mcg_cap & 0xff;
2993         u64 *banks = vcpu->arch.mce_banks;
2994
2995         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2996                 return -EINVAL;
2997         /*
2998          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2999          * reporting is disabled
3000          */
3001         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3002             vcpu->arch.mcg_ctl != ~(u64)0)
3003                 return 0;
3004         banks += 4 * mce->bank;
3005         /*
3006          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3007          * reporting is disabled for the bank
3008          */
3009         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3010                 return 0;
3011         if (mce->status & MCI_STATUS_UC) {
3012                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3013                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3014                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3015                         return 0;
3016                 }
3017                 if (banks[1] & MCI_STATUS_VAL)
3018                         mce->status |= MCI_STATUS_OVER;
3019                 banks[2] = mce->addr;
3020                 banks[3] = mce->misc;
3021                 vcpu->arch.mcg_status = mce->mcg_status;
3022                 banks[1] = mce->status;
3023                 kvm_queue_exception(vcpu, MC_VECTOR);
3024         } else if (!(banks[1] & MCI_STATUS_VAL)
3025                    || !(banks[1] & MCI_STATUS_UC)) {
3026                 if (banks[1] & MCI_STATUS_VAL)
3027                         mce->status |= MCI_STATUS_OVER;
3028                 banks[2] = mce->addr;
3029                 banks[3] = mce->misc;
3030                 banks[1] = mce->status;
3031         } else
3032                 banks[1] |= MCI_STATUS_OVER;
3033         return 0;
3034 }
3035
3036 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3037                                                struct kvm_vcpu_events *events)
3038 {
3039         process_nmi(vcpu);
3040         events->exception.injected =
3041                 vcpu->arch.exception.pending &&
3042                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3043         events->exception.nr = vcpu->arch.exception.nr;
3044         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3045         events->exception.pad = 0;
3046         events->exception.error_code = vcpu->arch.exception.error_code;
3047
3048         events->interrupt.injected =
3049                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3050         events->interrupt.nr = vcpu->arch.interrupt.nr;
3051         events->interrupt.soft = 0;
3052         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3053
3054         events->nmi.injected = vcpu->arch.nmi_injected;
3055         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3056         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3057         events->nmi.pad = 0;
3058
3059         events->sipi_vector = 0; /* never valid when reporting to user space */
3060
3061         events->smi.smm = is_smm(vcpu);
3062         events->smi.pending = vcpu->arch.smi_pending;
3063         events->smi.smm_inside_nmi =
3064                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3065         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3066
3067         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068                          | KVM_VCPUEVENT_VALID_SHADOW
3069                          | KVM_VCPUEVENT_VALID_SMM);
3070         memset(&events->reserved, 0, sizeof(events->reserved));
3071 }
3072
3073 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3074                                               struct kvm_vcpu_events *events)
3075 {
3076         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3077                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3078                               | KVM_VCPUEVENT_VALID_SHADOW
3079                               | KVM_VCPUEVENT_VALID_SMM))
3080                 return -EINVAL;
3081
3082         if (events->exception.injected &&
3083             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3084                 return -EINVAL;
3085
3086         process_nmi(vcpu);
3087         vcpu->arch.exception.pending = events->exception.injected;
3088         vcpu->arch.exception.nr = events->exception.nr;
3089         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3090         vcpu->arch.exception.error_code = events->exception.error_code;
3091
3092         vcpu->arch.interrupt.pending = events->interrupt.injected;
3093         vcpu->arch.interrupt.nr = events->interrupt.nr;
3094         vcpu->arch.interrupt.soft = events->interrupt.soft;
3095         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3096                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3097                                                   events->interrupt.shadow);
3098
3099         vcpu->arch.nmi_injected = events->nmi.injected;
3100         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3101                 vcpu->arch.nmi_pending = events->nmi.pending;
3102         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3103
3104         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3105             lapic_in_kernel(vcpu))
3106                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3107
3108         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3109                 if (events->smi.smm)
3110                         vcpu->arch.hflags |= HF_SMM_MASK;
3111                 else
3112                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3113                 vcpu->arch.smi_pending = events->smi.pending;
3114                 if (events->smi.smm_inside_nmi)
3115                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3116                 else
3117                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3118                 if (lapic_in_kernel(vcpu)) {
3119                         if (events->smi.latched_init)
3120                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3121                         else
3122                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3123                 }
3124         }
3125
3126         kvm_make_request(KVM_REQ_EVENT, vcpu);
3127
3128         return 0;
3129 }
3130
3131 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3132                                              struct kvm_debugregs *dbgregs)
3133 {
3134         unsigned long val;
3135
3136         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3137         kvm_get_dr(vcpu, 6, &val);
3138         dbgregs->dr6 = val;
3139         dbgregs->dr7 = vcpu->arch.dr7;
3140         dbgregs->flags = 0;
3141         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3142 }
3143
3144 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3145                                             struct kvm_debugregs *dbgregs)
3146 {
3147         if (dbgregs->flags)
3148                 return -EINVAL;
3149
3150         if (dbgregs->dr6 & ~0xffffffffull)
3151                 return -EINVAL;
3152         if (dbgregs->dr7 & ~0xffffffffull)
3153                 return -EINVAL;
3154
3155         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3156         kvm_update_dr0123(vcpu);
3157         vcpu->arch.dr6 = dbgregs->dr6;
3158         kvm_update_dr6(vcpu);
3159         vcpu->arch.dr7 = dbgregs->dr7;
3160         kvm_update_dr7(vcpu);
3161
3162         return 0;
3163 }
3164
3165 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3166
3167 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3168 {
3169         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3170         u64 xstate_bv = xsave->header.xfeatures;
3171         u64 valid;
3172
3173         /*
3174          * Copy legacy XSAVE area, to avoid complications with CPUID
3175          * leaves 0 and 1 in the loop below.
3176          */
3177         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3178
3179         /* Set XSTATE_BV */
3180         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3181
3182         /*
3183          * Copy each region from the possibly compacted offset to the
3184          * non-compacted offset.
3185          */
3186         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3187         while (valid) {
3188                 u64 feature = valid & -valid;
3189                 int index = fls64(feature) - 1;
3190                 void *src = get_xsave_addr(xsave, feature);
3191
3192                 if (src) {
3193                         u32 size, offset, ecx, edx;
3194                         cpuid_count(XSTATE_CPUID, index,
3195                                     &size, &offset, &ecx, &edx);
3196                         memcpy(dest + offset, src, size);
3197                 }
3198
3199                 valid -= feature;
3200         }
3201 }
3202
3203 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3204 {
3205         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3206         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3207         u64 valid;
3208
3209         /*
3210          * Copy legacy XSAVE area, to avoid complications with CPUID
3211          * leaves 0 and 1 in the loop below.
3212          */
3213         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3214
3215         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3216         xsave->header.xfeatures = xstate_bv;
3217         if (boot_cpu_has(X86_FEATURE_XSAVES))
3218                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3219
3220         /*
3221          * Copy each region from the non-compacted offset to the
3222          * possibly compacted offset.
3223          */
3224         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3225         while (valid) {
3226                 u64 feature = valid & -valid;
3227                 int index = fls64(feature) - 1;
3228                 void *dest = get_xsave_addr(xsave, feature);
3229
3230                 if (dest) {
3231                         u32 size, offset, ecx, edx;
3232                         cpuid_count(XSTATE_CPUID, index,
3233                                     &size, &offset, &ecx, &edx);
3234                         memcpy(dest, src + offset, size);
3235                 }
3236
3237                 valid -= feature;
3238         }
3239 }
3240
3241 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3242                                          struct kvm_xsave *guest_xsave)
3243 {
3244         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3245                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3246                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3247         } else {
3248                 memcpy(guest_xsave->region,
3249                         &vcpu->arch.guest_fpu.state.fxsave,
3250                         sizeof(struct fxregs_state));
3251                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3252                         XFEATURE_MASK_FPSSE;
3253         }
3254 }
3255
3256 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3257                                         struct kvm_xsave *guest_xsave)
3258 {
3259         u64 xstate_bv =
3260                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3261
3262         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3263                 /*
3264                  * Here we allow setting states that are not present in
3265                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3266                  * with old userspace.
3267                  */
3268                 if (xstate_bv & ~kvm_supported_xcr0())
3269                         return -EINVAL;
3270                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3271         } else {
3272                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3273                         return -EINVAL;
3274                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3275                         guest_xsave->region, sizeof(struct fxregs_state));
3276         }
3277         return 0;
3278 }
3279
3280 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3281                                         struct kvm_xcrs *guest_xcrs)
3282 {
3283         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3284                 guest_xcrs->nr_xcrs = 0;
3285                 return;
3286         }
3287
3288         guest_xcrs->nr_xcrs = 1;
3289         guest_xcrs->flags = 0;
3290         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3291         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3292 }
3293
3294 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3295                                        struct kvm_xcrs *guest_xcrs)
3296 {
3297         int i, r = 0;
3298
3299         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3300                 return -EINVAL;
3301
3302         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3303                 return -EINVAL;
3304
3305         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3306                 /* Only support XCR0 currently */
3307                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3308                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3309                                 guest_xcrs->xcrs[i].value);
3310                         break;
3311                 }
3312         if (r)
3313                 r = -EINVAL;
3314         return r;
3315 }
3316
3317 /*
3318  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3319  * stopped by the hypervisor.  This function will be called from the host only.
3320  * EINVAL is returned when the host attempts to set the flag for a guest that
3321  * does not support pv clocks.
3322  */
3323 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3324 {
3325         if (!vcpu->arch.pv_time_enabled)
3326                 return -EINVAL;
3327         vcpu->arch.pvclock_set_guest_stopped_request = true;
3328         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3329         return 0;
3330 }
3331
3332 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3333                                      struct kvm_enable_cap *cap)
3334 {
3335         if (cap->flags)
3336                 return -EINVAL;
3337
3338         switch (cap->cap) {
3339         case KVM_CAP_HYPERV_SYNIC:
3340                 return kvm_hv_activate_synic(vcpu);
3341         default:
3342                 return -EINVAL;
3343         }
3344 }
3345
3346 long kvm_arch_vcpu_ioctl(struct file *filp,
3347                          unsigned int ioctl, unsigned long arg)
3348 {
3349         struct kvm_vcpu *vcpu = filp->private_data;
3350         void __user *argp = (void __user *)arg;
3351         int r;
3352         union {
3353                 struct kvm_lapic_state *lapic;
3354                 struct kvm_xsave *xsave;
3355                 struct kvm_xcrs *xcrs;
3356                 void *buffer;
3357         } u;
3358
3359         u.buffer = NULL;
3360         switch (ioctl) {
3361         case KVM_GET_LAPIC: {
3362                 r = -EINVAL;
3363                 if (!lapic_in_kernel(vcpu))
3364                         goto out;
3365                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3366
3367                 r = -ENOMEM;
3368                 if (!u.lapic)
3369                         goto out;
3370                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3371                 if (r)
3372                         goto out;
3373                 r = -EFAULT;
3374                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3375                         goto out;
3376                 r = 0;
3377                 break;
3378         }
3379         case KVM_SET_LAPIC: {
3380                 r = -EINVAL;
3381                 if (!lapic_in_kernel(vcpu))
3382                         goto out;
3383                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3384                 if (IS_ERR(u.lapic))
3385                         return PTR_ERR(u.lapic);
3386
3387                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3388                 break;
3389         }
3390         case KVM_INTERRUPT: {
3391                 struct kvm_interrupt irq;
3392
3393                 r = -EFAULT;
3394                 if (copy_from_user(&irq, argp, sizeof irq))
3395                         goto out;
3396                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3397                 break;
3398         }
3399         case KVM_NMI: {
3400                 r = kvm_vcpu_ioctl_nmi(vcpu);
3401                 break;
3402         }
3403         case KVM_SMI: {
3404                 r = kvm_vcpu_ioctl_smi(vcpu);
3405                 break;
3406         }
3407         case KVM_SET_CPUID: {
3408                 struct kvm_cpuid __user *cpuid_arg = argp;
3409                 struct kvm_cpuid cpuid;
3410
3411                 r = -EFAULT;
3412                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413                         goto out;
3414                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3415                 break;
3416         }
3417         case KVM_SET_CPUID2: {
3418                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3419                 struct kvm_cpuid2 cpuid;
3420
3421                 r = -EFAULT;
3422                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3423                         goto out;
3424                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3425                                               cpuid_arg->entries);
3426                 break;
3427         }
3428         case KVM_GET_CPUID2: {
3429                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3430                 struct kvm_cpuid2 cpuid;
3431
3432                 r = -EFAULT;
3433                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3434                         goto out;
3435                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3436                                               cpuid_arg->entries);
3437                 if (r)
3438                         goto out;
3439                 r = -EFAULT;
3440                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3441                         goto out;
3442                 r = 0;
3443                 break;
3444         }
3445         case KVM_GET_MSRS:
3446                 r = msr_io(vcpu, argp, do_get_msr, 1);
3447                 break;
3448         case KVM_SET_MSRS:
3449                 r = msr_io(vcpu, argp, do_set_msr, 0);
3450                 break;
3451         case KVM_TPR_ACCESS_REPORTING: {
3452                 struct kvm_tpr_access_ctl tac;
3453
3454                 r = -EFAULT;
3455                 if (copy_from_user(&tac, argp, sizeof tac))
3456                         goto out;
3457                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3458                 if (r)
3459                         goto out;
3460                 r = -EFAULT;
3461                 if (copy_to_user(argp, &tac, sizeof tac))
3462                         goto out;
3463                 r = 0;
3464                 break;
3465         };
3466         case KVM_SET_VAPIC_ADDR: {
3467                 struct kvm_vapic_addr va;
3468                 int idx;
3469
3470                 r = -EINVAL;
3471                 if (!lapic_in_kernel(vcpu))
3472                         goto out;
3473                 r = -EFAULT;
3474                 if (copy_from_user(&va, argp, sizeof va))
3475                         goto out;
3476                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3477                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3478                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3479                 break;
3480         }
3481         case KVM_X86_SETUP_MCE: {
3482                 u64 mcg_cap;
3483
3484                 r = -EFAULT;
3485                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3486                         goto out;
3487                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3488                 break;
3489         }
3490         case KVM_X86_SET_MCE: {
3491                 struct kvm_x86_mce mce;
3492
3493                 r = -EFAULT;
3494                 if (copy_from_user(&mce, argp, sizeof mce))
3495                         goto out;
3496                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3497                 break;
3498         }
3499         case KVM_GET_VCPU_EVENTS: {
3500                 struct kvm_vcpu_events events;
3501
3502                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3503
3504                 r = -EFAULT;
3505                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3506                         break;
3507                 r = 0;
3508                 break;
3509         }
3510         case KVM_SET_VCPU_EVENTS: {
3511                 struct kvm_vcpu_events events;
3512
3513                 r = -EFAULT;
3514                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3515                         break;
3516
3517                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3518                 break;
3519         }
3520         case KVM_GET_DEBUGREGS: {
3521                 struct kvm_debugregs dbgregs;
3522
3523                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3524
3525                 r = -EFAULT;
3526                 if (copy_to_user(argp, &dbgregs,
3527                                  sizeof(struct kvm_debugregs)))
3528                         break;
3529                 r = 0;
3530                 break;
3531         }
3532         case KVM_SET_DEBUGREGS: {
3533                 struct kvm_debugregs dbgregs;
3534
3535                 r = -EFAULT;
3536                 if (copy_from_user(&dbgregs, argp,
3537                                    sizeof(struct kvm_debugregs)))
3538                         break;
3539
3540                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3541                 break;
3542         }
3543         case KVM_GET_XSAVE: {
3544                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3545                 r = -ENOMEM;
3546                 if (!u.xsave)
3547                         break;
3548
3549                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3550
3551                 r = -EFAULT;
3552                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3553                         break;
3554                 r = 0;
3555                 break;
3556         }
3557         case KVM_SET_XSAVE: {
3558                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3559                 if (IS_ERR(u.xsave))
3560                         return PTR_ERR(u.xsave);
3561
3562                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3563                 break;
3564         }
3565         case KVM_GET_XCRS: {
3566                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3567                 r = -ENOMEM;
3568                 if (!u.xcrs)
3569                         break;
3570
3571                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3572
3573                 r = -EFAULT;
3574                 if (copy_to_user(argp, u.xcrs,
3575                                  sizeof(struct kvm_xcrs)))
3576                         break;
3577                 r = 0;
3578                 break;
3579         }
3580         case KVM_SET_XCRS: {
3581                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3582                 if (IS_ERR(u.xcrs))
3583                         return PTR_ERR(u.xcrs);
3584
3585                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3586                 break;
3587         }
3588         case KVM_SET_TSC_KHZ: {
3589                 u32 user_tsc_khz;
3590
3591                 r = -EINVAL;
3592                 user_tsc_khz = (u32)arg;
3593
3594                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3595                         goto out;
3596
3597                 if (user_tsc_khz == 0)
3598                         user_tsc_khz = tsc_khz;
3599
3600                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3601                         r = 0;
3602
3603                 goto out;
3604         }
3605         case KVM_GET_TSC_KHZ: {
3606                 r = vcpu->arch.virtual_tsc_khz;
3607                 goto out;
3608         }
3609         case KVM_KVMCLOCK_CTRL: {
3610                 r = kvm_set_guest_paused(vcpu);
3611                 goto out;
3612         }
3613         case KVM_ENABLE_CAP: {
3614                 struct kvm_enable_cap cap;
3615
3616                 r = -EFAULT;
3617                 if (copy_from_user(&cap, argp, sizeof(cap)))
3618                         goto out;
3619                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3620                 break;
3621         }
3622         default:
3623                 r = -EINVAL;
3624         }
3625 out:
3626         kfree(u.buffer);
3627         return r;
3628 }
3629
3630 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3631 {
3632         return VM_FAULT_SIGBUS;
3633 }
3634
3635 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3636 {
3637         int ret;
3638
3639         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3640                 return -EINVAL;
3641         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3642         return ret;
3643 }
3644
3645 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3646                                               u64 ident_addr)
3647 {
3648         kvm->arch.ept_identity_map_addr = ident_addr;
3649         return 0;
3650 }
3651
3652 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3653                                           u32 kvm_nr_mmu_pages)
3654 {
3655         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3656                 return -EINVAL;
3657
3658         mutex_lock(&kvm->slots_lock);
3659
3660         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3661         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3662
3663         mutex_unlock(&kvm->slots_lock);
3664         return 0;
3665 }
3666
3667 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3668 {
3669         return kvm->arch.n_max_mmu_pages;
3670 }
3671
3672 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3673 {
3674         int r;
3675
3676         r = 0;
3677         switch (chip->chip_id) {
3678         case KVM_IRQCHIP_PIC_MASTER:
3679                 memcpy(&chip->chip.pic,
3680                         &pic_irqchip(kvm)->pics[0],
3681                         sizeof(struct kvm_pic_state));
3682                 break;
3683         case KVM_IRQCHIP_PIC_SLAVE:
3684                 memcpy(&chip->chip.pic,
3685                         &pic_irqchip(kvm)->pics[1],
3686                         sizeof(struct kvm_pic_state));
3687                 break;
3688         case KVM_IRQCHIP_IOAPIC:
3689                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3690                 break;
3691         default:
3692                 r = -EINVAL;
3693                 break;
3694         }
3695         return r;
3696 }
3697
3698 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3699 {
3700         int r;
3701
3702         r = 0;
3703         switch (chip->chip_id) {
3704         case KVM_IRQCHIP_PIC_MASTER:
3705                 spin_lock(&pic_irqchip(kvm)->lock);
3706                 memcpy(&pic_irqchip(kvm)->pics[0],
3707                         &chip->chip.pic,
3708                         sizeof(struct kvm_pic_state));
3709                 spin_unlock(&pic_irqchip(kvm)->lock);
3710                 break;
3711         case KVM_IRQCHIP_PIC_SLAVE:
3712                 spin_lock(&pic_irqchip(kvm)->lock);
3713                 memcpy(&pic_irqchip(kvm)->pics[1],
3714                         &chip->chip.pic,
3715                         sizeof(struct kvm_pic_state));
3716                 spin_unlock(&pic_irqchip(kvm)->lock);
3717                 break;
3718         case KVM_IRQCHIP_IOAPIC:
3719                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3720                 break;
3721         default:
3722                 r = -EINVAL;
3723                 break;
3724         }
3725         kvm_pic_update_irq(pic_irqchip(kvm));
3726         return r;
3727 }
3728
3729 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3730 {
3731         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3732
3733         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3734
3735         mutex_lock(&kps->lock);
3736         memcpy(ps, &kps->channels, sizeof(*ps));
3737         mutex_unlock(&kps->lock);
3738         return 0;
3739 }
3740
3741 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3742 {
3743         int i;
3744         struct kvm_pit *pit = kvm->arch.vpit;
3745
3746         mutex_lock(&pit->pit_state.lock);
3747         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3748         for (i = 0; i < 3; i++)
3749                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3750         mutex_unlock(&pit->pit_state.lock);
3751         return 0;
3752 }
3753
3754 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3755 {
3756         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3757         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3758                 sizeof(ps->channels));
3759         ps->flags = kvm->arch.vpit->pit_state.flags;
3760         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3761         memset(&ps->reserved, 0, sizeof(ps->reserved));
3762         return 0;
3763 }
3764
3765 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3766 {
3767         int start = 0;
3768         int i;
3769         u32 prev_legacy, cur_legacy;
3770         struct kvm_pit *pit = kvm->arch.vpit;
3771
3772         mutex_lock(&pit->pit_state.lock);
3773         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3774         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3775         if (!prev_legacy && cur_legacy)
3776                 start = 1;
3777         memcpy(&pit->pit_state.channels, &ps->channels,
3778                sizeof(pit->pit_state.channels));
3779         pit->pit_state.flags = ps->flags;
3780         for (i = 0; i < 3; i++)
3781                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3782                                    start && i == 0);
3783         mutex_unlock(&pit->pit_state.lock);
3784         return 0;
3785 }
3786
3787 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3788                                  struct kvm_reinject_control *control)
3789 {
3790         struct kvm_pit *pit = kvm->arch.vpit;
3791
3792         if (!pit)
3793                 return -ENXIO;
3794
3795         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3796          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3797          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3798          */
3799         mutex_lock(&pit->pit_state.lock);
3800         kvm_pit_set_reinject(pit, control->pit_reinject);
3801         mutex_unlock(&pit->pit_state.lock);
3802
3803         return 0;
3804 }
3805
3806 /**
3807  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3808  * @kvm: kvm instance
3809  * @log: slot id and address to which we copy the log
3810  *
3811  * Steps 1-4 below provide general overview of dirty page logging. See
3812  * kvm_get_dirty_log_protect() function description for additional details.
3813  *
3814  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3815  * always flush the TLB (step 4) even if previous step failed  and the dirty
3816  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3817  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3818  * writes will be marked dirty for next log read.
3819  *
3820  *   1. Take a snapshot of the bit and clear it if needed.
3821  *   2. Write protect the corresponding page.
3822  *   3. Copy the snapshot to the userspace.
3823  *   4. Flush TLB's if needed.
3824  */
3825 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3826 {
3827         bool is_dirty = false;
3828         int r;
3829
3830         mutex_lock(&kvm->slots_lock);
3831
3832         /*
3833          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3834          */
3835         if (kvm_x86_ops->flush_log_dirty)
3836                 kvm_x86_ops->flush_log_dirty(kvm);
3837
3838         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3839
3840         /*
3841          * All the TLBs can be flushed out of mmu lock, see the comments in
3842          * kvm_mmu_slot_remove_write_access().
3843          */
3844         lockdep_assert_held(&kvm->slots_lock);
3845         if (is_dirty)
3846                 kvm_flush_remote_tlbs(kvm);
3847
3848         mutex_unlock(&kvm->slots_lock);
3849         return r;
3850 }
3851
3852 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3853                         bool line_status)
3854 {
3855         if (!irqchip_in_kernel(kvm))
3856                 return -ENXIO;
3857
3858         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3859                                         irq_event->irq, irq_event->level,
3860                                         line_status);
3861         return 0;
3862 }
3863
3864 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3865                                    struct kvm_enable_cap *cap)
3866 {
3867         int r;
3868
3869         if (cap->flags)
3870                 return -EINVAL;
3871
3872         switch (cap->cap) {
3873         case KVM_CAP_DISABLE_QUIRKS:
3874                 kvm->arch.disabled_quirks = cap->args[0];
3875                 r = 0;
3876                 break;
3877         case KVM_CAP_SPLIT_IRQCHIP: {
3878                 mutex_lock(&kvm->lock);
3879                 r = -EINVAL;
3880                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3881                         goto split_irqchip_unlock;
3882                 r = -EEXIST;
3883                 if (irqchip_in_kernel(kvm))
3884                         goto split_irqchip_unlock;
3885                 if (kvm->created_vcpus)
3886                         goto split_irqchip_unlock;
3887                 r = kvm_setup_empty_irq_routing(kvm);
3888                 if (r)
3889                         goto split_irqchip_unlock;
3890                 /* Pairs with irqchip_in_kernel. */
3891                 smp_wmb();
3892                 kvm->arch.irqchip_split = true;
3893                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3894                 r = 0;
3895 split_irqchip_unlock:
3896                 mutex_unlock(&kvm->lock);
3897                 break;
3898         }
3899         case KVM_CAP_X2APIC_API:
3900                 r = -EINVAL;
3901                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3902                         break;
3903
3904                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3905                         kvm->arch.x2apic_format = true;
3906                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3907                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3908
3909                 r = 0;
3910                 break;
3911         default:
3912                 r = -EINVAL;
3913                 break;
3914         }
3915         return r;
3916 }
3917
3918 long kvm_arch_vm_ioctl(struct file *filp,
3919                        unsigned int ioctl, unsigned long arg)
3920 {
3921         struct kvm *kvm = filp->private_data;
3922         void __user *argp = (void __user *)arg;
3923         int r = -ENOTTY;
3924         /*
3925          * This union makes it completely explicit to gcc-3.x
3926          * that these two variables' stack usage should be
3927          * combined, not added together.
3928          */
3929         union {
3930                 struct kvm_pit_state ps;
3931                 struct kvm_pit_state2 ps2;
3932                 struct kvm_pit_config pit_config;
3933         } u;
3934
3935         switch (ioctl) {
3936         case KVM_SET_TSS_ADDR:
3937                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3938                 break;
3939         case KVM_SET_IDENTITY_MAP_ADDR: {
3940                 u64 ident_addr;
3941
3942                 r = -EFAULT;
3943                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3944                         goto out;
3945                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3946                 break;
3947         }
3948         case KVM_SET_NR_MMU_PAGES:
3949                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3950                 break;
3951         case KVM_GET_NR_MMU_PAGES:
3952                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3953                 break;
3954         case KVM_CREATE_IRQCHIP: {
3955                 struct kvm_pic *vpic;
3956
3957                 mutex_lock(&kvm->lock);
3958                 r = -EEXIST;
3959                 if (kvm->arch.vpic)
3960                         goto create_irqchip_unlock;
3961                 r = -EINVAL;
3962                 if (kvm->created_vcpus)
3963                         goto create_irqchip_unlock;
3964                 r = -ENOMEM;
3965                 vpic = kvm_create_pic(kvm);
3966                 if (vpic) {
3967                         r = kvm_ioapic_init(kvm);
3968                         if (r) {
3969                                 mutex_lock(&kvm->slots_lock);
3970                                 kvm_destroy_pic(vpic);
3971                                 mutex_unlock(&kvm->slots_lock);
3972                                 goto create_irqchip_unlock;
3973                         }
3974                 } else
3975                         goto create_irqchip_unlock;
3976                 r = kvm_setup_default_irq_routing(kvm);
3977                 if (r) {
3978                         mutex_lock(&kvm->slots_lock);
3979                         mutex_lock(&kvm->irq_lock);
3980                         kvm_ioapic_destroy(kvm);
3981                         kvm_destroy_pic(vpic);
3982                         mutex_unlock(&kvm->irq_lock);
3983                         mutex_unlock(&kvm->slots_lock);
3984                         goto create_irqchip_unlock;
3985                 }
3986                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3987                 smp_wmb();
3988                 kvm->arch.vpic = vpic;
3989         create_irqchip_unlock:
3990                 mutex_unlock(&kvm->lock);
3991                 break;
3992         }
3993         case KVM_CREATE_PIT:
3994                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3995                 goto create_pit;
3996         case KVM_CREATE_PIT2:
3997                 r = -EFAULT;
3998                 if (copy_from_user(&u.pit_config, argp,
3999                                    sizeof(struct kvm_pit_config)))
4000                         goto out;
4001         create_pit:
4002                 mutex_lock(&kvm->lock);
4003                 r = -EEXIST;
4004                 if (kvm->arch.vpit)
4005                         goto create_pit_unlock;
4006                 r = -ENOMEM;
4007                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4008                 if (kvm->arch.vpit)
4009                         r = 0;
4010         create_pit_unlock:
4011                 mutex_unlock(&kvm->lock);
4012                 break;
4013         case KVM_GET_IRQCHIP: {
4014                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4015                 struct kvm_irqchip *chip;
4016
4017                 chip = memdup_user(argp, sizeof(*chip));
4018                 if (IS_ERR(chip)) {
4019                         r = PTR_ERR(chip);
4020                         goto out;
4021                 }
4022
4023                 r = -ENXIO;
4024                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4025                         goto get_irqchip_out;
4026                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4027                 if (r)
4028                         goto get_irqchip_out;
4029                 r = -EFAULT;
4030                 if (copy_to_user(argp, chip, sizeof *chip))
4031                         goto get_irqchip_out;
4032                 r = 0;
4033         get_irqchip_out:
4034                 kfree(chip);
4035                 break;
4036         }
4037         case KVM_SET_IRQCHIP: {
4038                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4039                 struct kvm_irqchip *chip;
4040
4041                 chip = memdup_user(argp, sizeof(*chip));
4042                 if (IS_ERR(chip)) {
4043                         r = PTR_ERR(chip);
4044                         goto out;
4045                 }
4046
4047                 r = -ENXIO;
4048                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4049                         goto set_irqchip_out;
4050                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4051                 if (r)
4052                         goto set_irqchip_out;
4053                 r = 0;
4054         set_irqchip_out:
4055                 kfree(chip);
4056                 break;
4057         }
4058         case KVM_GET_PIT: {
4059                 r = -EFAULT;
4060                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4061                         goto out;
4062                 r = -ENXIO;
4063                 if (!kvm->arch.vpit)
4064                         goto out;
4065                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4066                 if (r)
4067                         goto out;
4068                 r = -EFAULT;
4069                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4070                         goto out;
4071                 r = 0;
4072                 break;
4073         }
4074         case KVM_SET_PIT: {
4075                 r = -EFAULT;
4076                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4077                         goto out;
4078                 r = -ENXIO;
4079                 if (!kvm->arch.vpit)
4080                         goto out;
4081                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4082                 break;
4083         }
4084         case KVM_GET_PIT2: {
4085                 r = -ENXIO;
4086                 if (!kvm->arch.vpit)
4087                         goto out;
4088                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4089                 if (r)
4090                         goto out;
4091                 r = -EFAULT;
4092                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4093                         goto out;
4094                 r = 0;
4095                 break;
4096         }
4097         case KVM_SET_PIT2: {
4098                 r = -EFAULT;
4099                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4100                         goto out;
4101                 r = -ENXIO;
4102                 if (!kvm->arch.vpit)
4103                         goto out;
4104                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4105                 break;
4106         }
4107         case KVM_REINJECT_CONTROL: {
4108                 struct kvm_reinject_control control;
4109                 r =  -EFAULT;
4110                 if (copy_from_user(&control, argp, sizeof(control)))
4111                         goto out;
4112                 r = kvm_vm_ioctl_reinject(kvm, &control);
4113                 break;
4114         }
4115         case KVM_SET_BOOT_CPU_ID:
4116                 r = 0;
4117                 mutex_lock(&kvm->lock);
4118                 if (kvm->created_vcpus)
4119                         r = -EBUSY;
4120                 else
4121                         kvm->arch.bsp_vcpu_id = arg;
4122                 mutex_unlock(&kvm->lock);
4123                 break;
4124         case KVM_XEN_HVM_CONFIG: {
4125                 r = -EFAULT;
4126                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4127                                    sizeof(struct kvm_xen_hvm_config)))
4128                         goto out;
4129                 r = -EINVAL;
4130                 if (kvm->arch.xen_hvm_config.flags)
4131                         goto out;
4132                 r = 0;
4133                 break;
4134         }
4135         case KVM_SET_CLOCK: {
4136                 struct kvm_clock_data user_ns;
4137                 u64 now_ns;
4138
4139                 r = -EFAULT;
4140                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4141                         goto out;
4142
4143                 r = -EINVAL;
4144                 if (user_ns.flags)
4145                         goto out;
4146
4147                 r = 0;
4148                 local_irq_disable();
4149                 now_ns = __get_kvmclock_ns(kvm);
4150                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4151                 local_irq_enable();
4152                 kvm_gen_update_masterclock(kvm);
4153                 break;
4154         }
4155         case KVM_GET_CLOCK: {
4156                 struct kvm_clock_data user_ns;
4157                 u64 now_ns;
4158
4159                 local_irq_disable();
4160                 now_ns = __get_kvmclock_ns(kvm);
4161                 user_ns.clock = now_ns;
4162                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4163                 local_irq_enable();
4164                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4165
4166                 r = -EFAULT;
4167                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4168                         goto out;
4169                 r = 0;
4170                 break;
4171         }
4172         case KVM_ENABLE_CAP: {
4173                 struct kvm_enable_cap cap;
4174
4175                 r = -EFAULT;
4176                 if (copy_from_user(&cap, argp, sizeof(cap)))
4177                         goto out;
4178                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4179                 break;
4180         }
4181         default:
4182                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4183         }
4184 out:
4185         return r;
4186 }
4187
4188 static void kvm_init_msr_list(void)
4189 {
4190         u32 dummy[2];
4191         unsigned i, j;
4192
4193         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4194                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4195                         continue;
4196
4197                 /*
4198                  * Even MSRs that are valid in the host may not be exposed
4199                  * to the guests in some cases.
4200                  */
4201                 switch (msrs_to_save[i]) {
4202                 case MSR_IA32_BNDCFGS:
4203                         if (!kvm_x86_ops->mpx_supported())
4204                                 continue;
4205                         break;
4206                 case MSR_TSC_AUX:
4207                         if (!kvm_x86_ops->rdtscp_supported())
4208                                 continue;
4209                         break;
4210                 default:
4211                         break;
4212                 }
4213
4214                 if (j < i)
4215                         msrs_to_save[j] = msrs_to_save[i];
4216                 j++;
4217         }
4218         num_msrs_to_save = j;
4219
4220         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4221                 switch (emulated_msrs[i]) {
4222                 case MSR_IA32_SMBASE:
4223                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4224                                 continue;
4225                         break;
4226                 default:
4227                         break;
4228                 }
4229
4230                 if (j < i)
4231                         emulated_msrs[j] = emulated_msrs[i];
4232                 j++;
4233         }
4234         num_emulated_msrs = j;
4235 }
4236
4237 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4238                            const void *v)
4239 {
4240         int handled = 0;
4241         int n;
4242
4243         do {
4244                 n = min(len, 8);
4245                 if (!(lapic_in_kernel(vcpu) &&
4246                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4247                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4248                         break;
4249                 handled += n;
4250                 addr += n;
4251                 len -= n;
4252                 v += n;
4253         } while (len);
4254
4255         return handled;
4256 }
4257
4258 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4259 {
4260         int handled = 0;
4261         int n;
4262
4263         do {
4264                 n = min(len, 8);
4265                 if (!(lapic_in_kernel(vcpu) &&
4266                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4267                                          addr, n, v))
4268                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4269                         break;
4270                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4271                 handled += n;
4272                 addr += n;
4273                 len -= n;
4274                 v += n;
4275         } while (len);
4276
4277         return handled;
4278 }
4279
4280 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4281                         struct kvm_segment *var, int seg)
4282 {
4283         kvm_x86_ops->set_segment(vcpu, var, seg);
4284 }
4285
4286 void kvm_get_segment(struct kvm_vcpu *vcpu,
4287                      struct kvm_segment *var, int seg)
4288 {
4289         kvm_x86_ops->get_segment(vcpu, var, seg);
4290 }
4291
4292 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4293                            struct x86_exception *exception)
4294 {
4295         gpa_t t_gpa;
4296
4297         BUG_ON(!mmu_is_nested(vcpu));
4298
4299         /* NPT walks are always user-walks */
4300         access |= PFERR_USER_MASK;
4301         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4302
4303         return t_gpa;
4304 }
4305
4306 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4307                               struct x86_exception *exception)
4308 {
4309         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4310         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4311 }
4312
4313  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4314                                 struct x86_exception *exception)
4315 {
4316         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4317         access |= PFERR_FETCH_MASK;
4318         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4319 }
4320
4321 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4322                                struct x86_exception *exception)
4323 {
4324         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4325         access |= PFERR_WRITE_MASK;
4326         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4327 }
4328
4329 /* uses this to access any guest's mapped memory without checking CPL */
4330 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4331                                 struct x86_exception *exception)
4332 {
4333         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4334 }
4335
4336 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4337                                       struct kvm_vcpu *vcpu, u32 access,
4338                                       struct x86_exception *exception)
4339 {
4340         void *data = val;
4341         int r = X86EMUL_CONTINUE;
4342
4343         while (bytes) {
4344                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4345                                                             exception);
4346                 unsigned offset = addr & (PAGE_SIZE-1);
4347                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4348                 int ret;
4349
4350                 if (gpa == UNMAPPED_GVA)
4351                         return X86EMUL_PROPAGATE_FAULT;
4352                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4353                                                offset, toread);
4354                 if (ret < 0) {
4355                         r = X86EMUL_IO_NEEDED;
4356                         goto out;
4357                 }
4358
4359                 bytes -= toread;
4360                 data += toread;
4361                 addr += toread;
4362         }
4363 out:
4364         return r;
4365 }
4366
4367 /* used for instruction fetching */
4368 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4369                                 gva_t addr, void *val, unsigned int bytes,
4370                                 struct x86_exception *exception)
4371 {
4372         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4373         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4374         unsigned offset;
4375         int ret;
4376
4377         /* Inline kvm_read_guest_virt_helper for speed.  */
4378         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4379                                                     exception);
4380         if (unlikely(gpa == UNMAPPED_GVA))
4381                 return X86EMUL_PROPAGATE_FAULT;
4382
4383         offset = addr & (PAGE_SIZE-1);
4384         if (WARN_ON(offset + bytes > PAGE_SIZE))
4385                 bytes = (unsigned)PAGE_SIZE - offset;
4386         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4387                                        offset, bytes);
4388         if (unlikely(ret < 0))
4389                 return X86EMUL_IO_NEEDED;
4390
4391         return X86EMUL_CONTINUE;
4392 }
4393
4394 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4395                                gva_t addr, void *val, unsigned int bytes,
4396                                struct x86_exception *exception)
4397 {
4398         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4399         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4400
4401         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4402                                           exception);
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4405
4406 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4407                                       gva_t addr, void *val, unsigned int bytes,
4408                                       struct x86_exception *exception)
4409 {
4410         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4411         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4412 }
4413
4414 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4415                 unsigned long addr, void *val, unsigned int bytes)
4416 {
4417         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4419
4420         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4421 }
4422
4423 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4424                                        gva_t addr, void *val,
4425                                        unsigned int bytes,
4426                                        struct x86_exception *exception)
4427 {
4428         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4429         void *data = val;
4430         int r = X86EMUL_CONTINUE;
4431
4432         while (bytes) {
4433                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4434                                                              PFERR_WRITE_MASK,
4435                                                              exception);
4436                 unsigned offset = addr & (PAGE_SIZE-1);
4437                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4438                 int ret;
4439
4440                 if (gpa == UNMAPPED_GVA)
4441                         return X86EMUL_PROPAGATE_FAULT;
4442                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4443                 if (ret < 0) {
4444                         r = X86EMUL_IO_NEEDED;
4445                         goto out;
4446                 }
4447
4448                 bytes -= towrite;
4449                 data += towrite;
4450                 addr += towrite;
4451         }
4452 out:
4453         return r;
4454 }
4455 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4456
4457 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4458                                 gpa_t *gpa, struct x86_exception *exception,
4459                                 bool write)
4460 {
4461         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4462                 | (write ? PFERR_WRITE_MASK : 0);
4463
4464         /*
4465          * currently PKRU is only applied to ept enabled guest so
4466          * there is no pkey in EPT page table for L1 guest or EPT
4467          * shadow page table for L2 guest.
4468          */
4469         if (vcpu_match_mmio_gva(vcpu, gva)
4470             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4471                                  vcpu->arch.access, 0, access)) {
4472                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4473                                         (gva & (PAGE_SIZE - 1));
4474                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4475                 return 1;
4476         }
4477
4478         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4479
4480         if (*gpa == UNMAPPED_GVA)
4481                 return -1;
4482
4483         /* For APIC access vmexit */
4484         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4485                 return 1;
4486
4487         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4488                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4489                 return 1;
4490         }
4491
4492         return 0;
4493 }
4494
4495 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4496                         const void *val, int bytes)
4497 {
4498         int ret;
4499
4500         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4501         if (ret < 0)
4502                 return 0;
4503         kvm_page_track_write(vcpu, gpa, val, bytes);
4504         return 1;
4505 }
4506
4507 struct read_write_emulator_ops {
4508         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4509                                   int bytes);
4510         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4511                                   void *val, int bytes);
4512         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4513                                int bytes, void *val);
4514         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4515                                     void *val, int bytes);
4516         bool write;
4517 };
4518
4519 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4520 {
4521         if (vcpu->mmio_read_completed) {
4522                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4523                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4524                 vcpu->mmio_read_completed = 0;
4525                 return 1;
4526         }
4527
4528         return 0;
4529 }
4530
4531 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4532                         void *val, int bytes)
4533 {
4534         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4535 }
4536
4537 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4538                          void *val, int bytes)
4539 {
4540         return emulator_write_phys(vcpu, gpa, val, bytes);
4541 }
4542
4543 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4544 {
4545         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4546         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4547 }
4548
4549 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4550                           void *val, int bytes)
4551 {
4552         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4553         return X86EMUL_IO_NEEDED;
4554 }
4555
4556 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4557                            void *val, int bytes)
4558 {
4559         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4560
4561         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4562         return X86EMUL_CONTINUE;
4563 }
4564
4565 static const struct read_write_emulator_ops read_emultor = {
4566         .read_write_prepare = read_prepare,
4567         .read_write_emulate = read_emulate,
4568         .read_write_mmio = vcpu_mmio_read,
4569         .read_write_exit_mmio = read_exit_mmio,
4570 };
4571
4572 static const struct read_write_emulator_ops write_emultor = {
4573         .read_write_emulate = write_emulate,
4574         .read_write_mmio = write_mmio,
4575         .read_write_exit_mmio = write_exit_mmio,
4576         .write = true,
4577 };
4578
4579 static int emulator_read_write_onepage(unsigned long addr, void *val,
4580                                        unsigned int bytes,
4581                                        struct x86_exception *exception,
4582                                        struct kvm_vcpu *vcpu,
4583                                        const struct read_write_emulator_ops *ops)
4584 {
4585         gpa_t gpa;
4586         int handled, ret;
4587         bool write = ops->write;
4588         struct kvm_mmio_fragment *frag;
4589
4590         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4591
4592         if (ret < 0)
4593                 return X86EMUL_PROPAGATE_FAULT;
4594
4595         /* For APIC access vmexit */
4596         if (ret)
4597                 goto mmio;
4598
4599         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4600                 return X86EMUL_CONTINUE;
4601
4602 mmio:
4603         /*
4604          * Is this MMIO handled locally?
4605          */
4606         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4607         if (handled == bytes)
4608                 return X86EMUL_CONTINUE;
4609
4610         gpa += handled;
4611         bytes -= handled;
4612         val += handled;
4613
4614         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4615         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4616         frag->gpa = gpa;
4617         frag->data = val;
4618         frag->len = bytes;
4619         return X86EMUL_CONTINUE;
4620 }
4621
4622 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4623                         unsigned long addr,
4624                         void *val, unsigned int bytes,
4625                         struct x86_exception *exception,
4626                         const struct read_write_emulator_ops *ops)
4627 {
4628         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4629         gpa_t gpa;
4630         int rc;
4631
4632         if (ops->read_write_prepare &&
4633                   ops->read_write_prepare(vcpu, val, bytes))
4634                 return X86EMUL_CONTINUE;
4635
4636         vcpu->mmio_nr_fragments = 0;
4637
4638         /* Crossing a page boundary? */
4639         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4640                 int now;
4641
4642                 now = -addr & ~PAGE_MASK;
4643                 rc = emulator_read_write_onepage(addr, val, now, exception,
4644                                                  vcpu, ops);
4645
4646                 if (rc != X86EMUL_CONTINUE)
4647                         return rc;
4648                 addr += now;
4649                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4650                         addr = (u32)addr;
4651                 val += now;
4652                 bytes -= now;
4653         }
4654
4655         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4656                                          vcpu, ops);
4657         if (rc != X86EMUL_CONTINUE)
4658                 return rc;
4659
4660         if (!vcpu->mmio_nr_fragments)
4661                 return rc;
4662
4663         gpa = vcpu->mmio_fragments[0].gpa;
4664
4665         vcpu->mmio_needed = 1;
4666         vcpu->mmio_cur_fragment = 0;
4667
4668         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4669         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4670         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4671         vcpu->run->mmio.phys_addr = gpa;
4672
4673         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4674 }
4675
4676 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4677                                   unsigned long addr,
4678                                   void *val,
4679                                   unsigned int bytes,
4680                                   struct x86_exception *exception)
4681 {
4682         return emulator_read_write(ctxt, addr, val, bytes,
4683                                    exception, &read_emultor);
4684 }
4685
4686 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4687                             unsigned long addr,
4688                             const void *val,
4689                             unsigned int bytes,
4690                             struct x86_exception *exception)
4691 {
4692         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4693                                    exception, &write_emultor);
4694 }
4695
4696 #define CMPXCHG_TYPE(t, ptr, old, new) \
4697         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4698
4699 #ifdef CONFIG_X86_64
4700 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4701 #else
4702 #  define CMPXCHG64(ptr, old, new) \
4703         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4704 #endif
4705
4706 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4707                                      unsigned long addr,
4708                                      const void *old,
4709                                      const void *new,
4710                                      unsigned int bytes,
4711                                      struct x86_exception *exception)
4712 {
4713         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4714         gpa_t gpa;
4715         struct page *page;
4716         char *kaddr;
4717         bool exchanged;
4718
4719         /* guests cmpxchg8b have to be emulated atomically */
4720         if (bytes > 8 || (bytes & (bytes - 1)))
4721                 goto emul_write;
4722
4723         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4724
4725         if (gpa == UNMAPPED_GVA ||
4726             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4727                 goto emul_write;
4728
4729         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4730                 goto emul_write;
4731
4732         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4733         if (is_error_page(page))
4734                 goto emul_write;
4735
4736         kaddr = kmap_atomic(page);
4737         kaddr += offset_in_page(gpa);
4738         switch (bytes) {
4739         case 1:
4740                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4741                 break;
4742         case 2:
4743                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4744                 break;
4745         case 4:
4746                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4747                 break;
4748         case 8:
4749                 exchanged = CMPXCHG64(kaddr, old, new);
4750                 break;
4751         default:
4752                 BUG();
4753         }
4754         kunmap_atomic(kaddr);
4755         kvm_release_page_dirty(page);
4756
4757         if (!exchanged)
4758                 return X86EMUL_CMPXCHG_FAILED;
4759
4760         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4761         kvm_page_track_write(vcpu, gpa, new, bytes);
4762
4763         return X86EMUL_CONTINUE;
4764
4765 emul_write:
4766         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4767
4768         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4769 }
4770
4771 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4772 {
4773         /* TODO: String I/O for in kernel device */
4774         int r;
4775
4776         if (vcpu->arch.pio.in)
4777                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4778                                     vcpu->arch.pio.size, pd);
4779         else
4780                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4781                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4782                                      pd);
4783         return r;
4784 }
4785
4786 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4787                                unsigned short port, void *val,
4788                                unsigned int count, bool in)
4789 {
4790         vcpu->arch.pio.port = port;
4791         vcpu->arch.pio.in = in;
4792         vcpu->arch.pio.count  = count;
4793         vcpu->arch.pio.size = size;
4794
4795         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4796                 vcpu->arch.pio.count = 0;
4797                 return 1;
4798         }
4799
4800         vcpu->run->exit_reason = KVM_EXIT_IO;
4801         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4802         vcpu->run->io.size = size;
4803         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4804         vcpu->run->io.count = count;
4805         vcpu->run->io.port = port;
4806
4807         return 0;
4808 }
4809
4810 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4811                                     int size, unsigned short port, void *val,
4812                                     unsigned int count)
4813 {
4814         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4815         int ret;
4816
4817         if (vcpu->arch.pio.count)
4818                 goto data_avail;
4819
4820         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4821         if (ret) {
4822 data_avail:
4823                 memcpy(val, vcpu->arch.pio_data, size * count);
4824                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4825                 vcpu->arch.pio.count = 0;
4826                 return 1;
4827         }
4828
4829         return 0;
4830 }
4831
4832 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4833                                      int size, unsigned short port,
4834                                      const void *val, unsigned int count)
4835 {
4836         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4837
4838         memcpy(vcpu->arch.pio_data, val, size * count);
4839         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4840         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4841 }
4842
4843 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4844 {
4845         return kvm_x86_ops->get_segment_base(vcpu, seg);
4846 }
4847
4848 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4849 {
4850         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4851 }
4852
4853 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4854 {
4855         if (!need_emulate_wbinvd(vcpu))
4856                 return X86EMUL_CONTINUE;
4857
4858         if (kvm_x86_ops->has_wbinvd_exit()) {
4859                 int cpu = get_cpu();
4860
4861                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4862                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4863                                 wbinvd_ipi, NULL, 1);
4864                 put_cpu();
4865                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4866         } else
4867                 wbinvd();
4868         return X86EMUL_CONTINUE;
4869 }
4870
4871 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4872 {
4873         kvm_emulate_wbinvd_noskip(vcpu);
4874         return kvm_skip_emulated_instruction(vcpu);
4875 }
4876 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4877
4878
4879
4880 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4881 {
4882         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4883 }
4884
4885 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4886                            unsigned long *dest)
4887 {
4888         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4889 }
4890
4891 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4892                            unsigned long value)
4893 {
4894
4895         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4896 }
4897
4898 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4899 {
4900         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4901 }
4902
4903 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4904 {
4905         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4906         unsigned long value;
4907
4908         switch (cr) {
4909         case 0:
4910                 value = kvm_read_cr0(vcpu);
4911                 break;
4912         case 2:
4913                 value = vcpu->arch.cr2;
4914                 break;
4915         case 3:
4916                 value = kvm_read_cr3(vcpu);
4917                 break;
4918         case 4:
4919                 value = kvm_read_cr4(vcpu);
4920                 break;
4921         case 8:
4922                 value = kvm_get_cr8(vcpu);
4923                 break;
4924         default:
4925                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4926                 return 0;
4927         }
4928
4929         return value;
4930 }
4931
4932 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4933 {
4934         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4935         int res = 0;
4936
4937         switch (cr) {
4938         case 0:
4939                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4940                 break;
4941         case 2:
4942                 vcpu->arch.cr2 = val;
4943                 break;
4944         case 3:
4945                 res = kvm_set_cr3(vcpu, val);
4946                 break;
4947         case 4:
4948                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4949                 break;
4950         case 8:
4951                 res = kvm_set_cr8(vcpu, val);
4952                 break;
4953         default:
4954                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4955                 res = -1;
4956         }
4957
4958         return res;
4959 }
4960
4961 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4962 {
4963         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4964 }
4965
4966 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4967 {
4968         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4969 }
4970
4971 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4972 {
4973         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4974 }
4975
4976 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4977 {
4978         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4979 }
4980
4981 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4982 {
4983         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4984 }
4985
4986 static unsigned long emulator_get_cached_segment_base(
4987         struct x86_emulate_ctxt *ctxt, int seg)
4988 {
4989         return get_segment_base(emul_to_vcpu(ctxt), seg);
4990 }
4991
4992 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4993                                  struct desc_struct *desc, u32 *base3,
4994                                  int seg)
4995 {
4996         struct kvm_segment var;
4997
4998         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4999         *selector = var.selector;
5000
5001         if (var.unusable) {
5002                 memset(desc, 0, sizeof(*desc));
5003                 return false;
5004         }
5005
5006         if (var.g)
5007                 var.limit >>= 12;
5008         set_desc_limit(desc, var.limit);
5009         set_desc_base(desc, (unsigned long)var.base);
5010 #ifdef CONFIG_X86_64
5011         if (base3)
5012                 *base3 = var.base >> 32;
5013 #endif
5014         desc->type = var.type;
5015         desc->s = var.s;
5016         desc->dpl = var.dpl;
5017         desc->p = var.present;
5018         desc->avl = var.avl;
5019         desc->l = var.l;
5020         desc->d = var.db;
5021         desc->g = var.g;
5022
5023         return true;
5024 }
5025
5026 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5027                                  struct desc_struct *desc, u32 base3,
5028                                  int seg)
5029 {
5030         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5031         struct kvm_segment var;
5032
5033         var.selector = selector;
5034         var.base = get_desc_base(desc);
5035 #ifdef CONFIG_X86_64
5036         var.base |= ((u64)base3) << 32;
5037 #endif
5038         var.limit = get_desc_limit(desc);
5039         if (desc->g)
5040                 var.limit = (var.limit << 12) | 0xfff;
5041         var.type = desc->type;
5042         var.dpl = desc->dpl;
5043         var.db = desc->d;
5044         var.s = desc->s;
5045         var.l = desc->l;
5046         var.g = desc->g;
5047         var.avl = desc->avl;
5048         var.present = desc->p;
5049         var.unusable = !var.present;
5050         var.padding = 0;
5051
5052         kvm_set_segment(vcpu, &var, seg);
5053         return;
5054 }
5055
5056 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5057                             u32 msr_index, u64 *pdata)
5058 {
5059         struct msr_data msr;
5060         int r;
5061
5062         msr.index = msr_index;
5063         msr.host_initiated = false;
5064         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5065         if (r)
5066                 return r;
5067
5068         *pdata = msr.data;
5069         return 0;
5070 }
5071
5072 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5073                             u32 msr_index, u64 data)
5074 {
5075         struct msr_data msr;
5076
5077         msr.data = data;
5078         msr.index = msr_index;
5079         msr.host_initiated = false;
5080         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5081 }
5082
5083 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5084 {
5085         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5086
5087         return vcpu->arch.smbase;
5088 }
5089
5090 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5091 {
5092         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5093
5094         vcpu->arch.smbase = smbase;
5095 }
5096
5097 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5098                               u32 pmc)
5099 {
5100         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5101 }
5102
5103 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5104                              u32 pmc, u64 *pdata)
5105 {
5106         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5107 }
5108
5109 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5110 {
5111         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5112 }
5113
5114 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5115 {
5116         preempt_disable();
5117         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5118 }
5119
5120 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5121 {
5122         preempt_enable();
5123 }
5124
5125 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5126                               struct x86_instruction_info *info,
5127                               enum x86_intercept_stage stage)
5128 {
5129         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5130 }
5131
5132 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5133                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5134 {
5135         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5136 }
5137
5138 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5139 {
5140         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5141 }
5142
5143 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5144 {
5145         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5146 }
5147
5148 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5149 {
5150         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5151 }
5152
5153 static const struct x86_emulate_ops emulate_ops = {
5154         .read_gpr            = emulator_read_gpr,
5155         .write_gpr           = emulator_write_gpr,
5156         .read_std            = kvm_read_guest_virt_system,
5157         .write_std           = kvm_write_guest_virt_system,
5158         .read_phys           = kvm_read_guest_phys_system,
5159         .fetch               = kvm_fetch_guest_virt,
5160         .read_emulated       = emulator_read_emulated,
5161         .write_emulated      = emulator_write_emulated,
5162         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5163         .invlpg              = emulator_invlpg,
5164         .pio_in_emulated     = emulator_pio_in_emulated,
5165         .pio_out_emulated    = emulator_pio_out_emulated,
5166         .get_segment         = emulator_get_segment,
5167         .set_segment         = emulator_set_segment,
5168         .get_cached_segment_base = emulator_get_cached_segment_base,
5169         .get_gdt             = emulator_get_gdt,
5170         .get_idt             = emulator_get_idt,
5171         .set_gdt             = emulator_set_gdt,
5172         .set_idt             = emulator_set_idt,
5173         .get_cr              = emulator_get_cr,
5174         .set_cr              = emulator_set_cr,
5175         .cpl                 = emulator_get_cpl,
5176         .get_dr              = emulator_get_dr,
5177         .set_dr              = emulator_set_dr,
5178         .get_smbase          = emulator_get_smbase,
5179         .set_smbase          = emulator_set_smbase,
5180         .set_msr             = emulator_set_msr,
5181         .get_msr             = emulator_get_msr,
5182         .check_pmc           = emulator_check_pmc,
5183         .read_pmc            = emulator_read_pmc,
5184         .halt                = emulator_halt,
5185         .wbinvd              = emulator_wbinvd,
5186         .fix_hypercall       = emulator_fix_hypercall,
5187         .get_fpu             = emulator_get_fpu,
5188         .put_fpu             = emulator_put_fpu,
5189         .intercept           = emulator_intercept,
5190         .get_cpuid           = emulator_get_cpuid,
5191         .set_nmi_mask        = emulator_set_nmi_mask,
5192 };
5193
5194 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5195 {
5196         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5197         /*
5198          * an sti; sti; sequence only disable interrupts for the first
5199          * instruction. So, if the last instruction, be it emulated or
5200          * not, left the system with the INT_STI flag enabled, it
5201          * means that the last instruction is an sti. We should not
5202          * leave the flag on in this case. The same goes for mov ss
5203          */
5204         if (int_shadow & mask)
5205                 mask = 0;
5206         if (unlikely(int_shadow || mask)) {
5207                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5208                 if (!mask)
5209                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5210         }
5211 }
5212
5213 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5214 {
5215         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5216         if (ctxt->exception.vector == PF_VECTOR)
5217                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5218
5219         if (ctxt->exception.error_code_valid)
5220                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5221                                       ctxt->exception.error_code);
5222         else
5223                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5224         return false;
5225 }
5226
5227 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5228 {
5229         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5230         int cs_db, cs_l;
5231
5232         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5233
5234         ctxt->eflags = kvm_get_rflags(vcpu);
5235         ctxt->eip = kvm_rip_read(vcpu);
5236         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5237                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5238                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5239                      cs_db                              ? X86EMUL_MODE_PROT32 :
5240                                                           X86EMUL_MODE_PROT16;
5241         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5242         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5243         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5244         ctxt->emul_flags = vcpu->arch.hflags;
5245
5246         init_decode_cache(ctxt);
5247         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5248 }
5249
5250 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5251 {
5252         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5253         int ret;
5254
5255         init_emulate_ctxt(vcpu);
5256
5257         ctxt->op_bytes = 2;
5258         ctxt->ad_bytes = 2;
5259         ctxt->_eip = ctxt->eip + inc_eip;
5260         ret = emulate_int_real(ctxt, irq);
5261
5262         if (ret != X86EMUL_CONTINUE)
5263                 return EMULATE_FAIL;
5264
5265         ctxt->eip = ctxt->_eip;
5266         kvm_rip_write(vcpu, ctxt->eip);
5267         kvm_set_rflags(vcpu, ctxt->eflags);
5268
5269         if (irq == NMI_VECTOR)
5270                 vcpu->arch.nmi_pending = 0;
5271         else
5272                 vcpu->arch.interrupt.pending = false;
5273
5274         return EMULATE_DONE;
5275 }
5276 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5277
5278 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5279 {
5280         int r = EMULATE_DONE;
5281
5282         ++vcpu->stat.insn_emulation_fail;
5283         trace_kvm_emulate_insn_failed(vcpu);
5284         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5285                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5286                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5287                 vcpu->run->internal.ndata = 0;
5288                 r = EMULATE_FAIL;
5289         }
5290         kvm_queue_exception(vcpu, UD_VECTOR);
5291
5292         return r;
5293 }
5294
5295 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5296                                   bool write_fault_to_shadow_pgtable,
5297                                   int emulation_type)
5298 {
5299         gpa_t gpa = cr2;
5300         kvm_pfn_t pfn;
5301
5302         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5303                 return false;
5304
5305         if (!vcpu->arch.mmu.direct_map) {
5306                 /*
5307                  * Write permission should be allowed since only
5308                  * write access need to be emulated.
5309                  */
5310                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5311
5312                 /*
5313                  * If the mapping is invalid in guest, let cpu retry
5314                  * it to generate fault.
5315                  */
5316                 if (gpa == UNMAPPED_GVA)
5317                         return true;
5318         }
5319
5320         /*
5321          * Do not retry the unhandleable instruction if it faults on the
5322          * readonly host memory, otherwise it will goto a infinite loop:
5323          * retry instruction -> write #PF -> emulation fail -> retry
5324          * instruction -> ...
5325          */
5326         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5327
5328         /*
5329          * If the instruction failed on the error pfn, it can not be fixed,
5330          * report the error to userspace.
5331          */
5332         if (is_error_noslot_pfn(pfn))
5333                 return false;
5334
5335         kvm_release_pfn_clean(pfn);
5336
5337         /* The instructions are well-emulated on direct mmu. */
5338         if (vcpu->arch.mmu.direct_map) {
5339                 unsigned int indirect_shadow_pages;
5340
5341                 spin_lock(&vcpu->kvm->mmu_lock);
5342                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5343                 spin_unlock(&vcpu->kvm->mmu_lock);
5344
5345                 if (indirect_shadow_pages)
5346                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5347
5348                 return true;
5349         }
5350
5351         /*
5352          * if emulation was due to access to shadowed page table
5353          * and it failed try to unshadow page and re-enter the
5354          * guest to let CPU execute the instruction.
5355          */
5356         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5357
5358         /*
5359          * If the access faults on its page table, it can not
5360          * be fixed by unprotecting shadow page and it should
5361          * be reported to userspace.
5362          */
5363         return !write_fault_to_shadow_pgtable;
5364 }
5365
5366 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5367                               unsigned long cr2,  int emulation_type)
5368 {
5369         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5370         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5371
5372         last_retry_eip = vcpu->arch.last_retry_eip;
5373         last_retry_addr = vcpu->arch.last_retry_addr;
5374
5375         /*
5376          * If the emulation is caused by #PF and it is non-page_table
5377          * writing instruction, it means the VM-EXIT is caused by shadow
5378          * page protected, we can zap the shadow page and retry this
5379          * instruction directly.
5380          *
5381          * Note: if the guest uses a non-page-table modifying instruction
5382          * on the PDE that points to the instruction, then we will unmap
5383          * the instruction and go to an infinite loop. So, we cache the
5384          * last retried eip and the last fault address, if we meet the eip
5385          * and the address again, we can break out of the potential infinite
5386          * loop.
5387          */
5388         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5389
5390         if (!(emulation_type & EMULTYPE_RETRY))
5391                 return false;
5392
5393         if (x86_page_table_writing_insn(ctxt))
5394                 return false;
5395
5396         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5397                 return false;
5398
5399         vcpu->arch.last_retry_eip = ctxt->eip;
5400         vcpu->arch.last_retry_addr = cr2;
5401
5402         if (!vcpu->arch.mmu.direct_map)
5403                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5404
5405         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5406
5407         return true;
5408 }
5409
5410 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5411 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5412
5413 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5414 {
5415         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5416                 /* This is a good place to trace that we are exiting SMM.  */
5417                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5418
5419                 /* Process a latched INIT or SMI, if any.  */
5420                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5421         }
5422
5423         kvm_mmu_reset_context(vcpu);
5424 }
5425
5426 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5427 {
5428         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5429
5430         vcpu->arch.hflags = emul_flags;
5431
5432         if (changed & HF_SMM_MASK)
5433                 kvm_smm_changed(vcpu);
5434 }
5435
5436 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5437                                 unsigned long *db)
5438 {
5439         u32 dr6 = 0;
5440         int i;
5441         u32 enable, rwlen;
5442
5443         enable = dr7;
5444         rwlen = dr7 >> 16;
5445         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5446                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5447                         dr6 |= (1 << i);
5448         return dr6;
5449 }
5450
5451 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5452 {
5453         struct kvm_run *kvm_run = vcpu->run;
5454
5455         /*
5456          * rflags is the old, "raw" value of the flags.  The new value has
5457          * not been saved yet.
5458          *
5459          * This is correct even for TF set by the guest, because "the
5460          * processor will not generate this exception after the instruction
5461          * that sets the TF flag".
5462          */
5463         if (unlikely(rflags & X86_EFLAGS_TF)) {
5464                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5465                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5466                                                   DR6_RTM;
5467                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5468                         kvm_run->debug.arch.exception = DB_VECTOR;
5469                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5470                         *r = EMULATE_USER_EXIT;
5471                 } else {
5472                         /*
5473                          * "Certain debug exceptions may clear bit 0-3.  The
5474                          * remaining contents of the DR6 register are never
5475                          * cleared by the processor".
5476                          */
5477                         vcpu->arch.dr6 &= ~15;
5478                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5479                         kvm_queue_exception(vcpu, DB_VECTOR);
5480                 }
5481         }
5482 }
5483
5484 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5485 {
5486         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5487         int r = EMULATE_DONE;
5488
5489         kvm_x86_ops->skip_emulated_instruction(vcpu);
5490         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5491         return r == EMULATE_DONE;
5492 }
5493 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5494
5495 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5496 {
5497         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5498             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5499                 struct kvm_run *kvm_run = vcpu->run;
5500                 unsigned long eip = kvm_get_linear_rip(vcpu);
5501                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5502                                            vcpu->arch.guest_debug_dr7,
5503                                            vcpu->arch.eff_db);
5504
5505                 if (dr6 != 0) {
5506                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5507                         kvm_run->debug.arch.pc = eip;
5508                         kvm_run->debug.arch.exception = DB_VECTOR;
5509                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5510                         *r = EMULATE_USER_EXIT;
5511                         return true;
5512                 }
5513         }
5514
5515         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5516             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5517                 unsigned long eip = kvm_get_linear_rip(vcpu);
5518                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5519                                            vcpu->arch.dr7,
5520                                            vcpu->arch.db);
5521
5522                 if (dr6 != 0) {
5523                         vcpu->arch.dr6 &= ~15;
5524                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5525                         kvm_queue_exception(vcpu, DB_VECTOR);
5526                         *r = EMULATE_DONE;
5527                         return true;
5528                 }
5529         }
5530
5531         return false;
5532 }
5533
5534 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5535                             unsigned long cr2,
5536                             int emulation_type,
5537                             void *insn,
5538                             int insn_len)
5539 {
5540         int r;
5541         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5542         bool writeback = true;
5543         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5544
5545         /*
5546          * Clear write_fault_to_shadow_pgtable here to ensure it is
5547          * never reused.
5548          */
5549         vcpu->arch.write_fault_to_shadow_pgtable = false;
5550         kvm_clear_exception_queue(vcpu);
5551
5552         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5553                 init_emulate_ctxt(vcpu);
5554
5555                 /*
5556                  * We will reenter on the same instruction since
5557                  * we do not set complete_userspace_io.  This does not
5558                  * handle watchpoints yet, those would be handled in
5559                  * the emulate_ops.
5560                  */
5561                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5562                         return r;
5563
5564                 ctxt->interruptibility = 0;
5565                 ctxt->have_exception = false;
5566                 ctxt->exception.vector = -1;
5567                 ctxt->perm_ok = false;
5568
5569                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5570
5571                 r = x86_decode_insn(ctxt, insn, insn_len);
5572
5573                 trace_kvm_emulate_insn_start(vcpu);
5574                 ++vcpu->stat.insn_emulation;
5575                 if (r != EMULATION_OK)  {
5576                         if (emulation_type & EMULTYPE_TRAP_UD)
5577                                 return EMULATE_FAIL;
5578                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5579                                                 emulation_type))
5580                                 return EMULATE_DONE;
5581                         if (emulation_type & EMULTYPE_SKIP)
5582                                 return EMULATE_FAIL;
5583                         return handle_emulation_failure(vcpu);
5584                 }
5585         }
5586
5587         if (emulation_type & EMULTYPE_SKIP) {
5588                 kvm_rip_write(vcpu, ctxt->_eip);
5589                 if (ctxt->eflags & X86_EFLAGS_RF)
5590                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5591                 return EMULATE_DONE;
5592         }
5593
5594         if (retry_instruction(ctxt, cr2, emulation_type))
5595                 return EMULATE_DONE;
5596
5597         /* this is needed for vmware backdoor interface to work since it
5598            changes registers values  during IO operation */
5599         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5600                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5601                 emulator_invalidate_register_cache(ctxt);
5602         }
5603
5604 restart:
5605         r = x86_emulate_insn(ctxt);
5606
5607         if (r == EMULATION_INTERCEPTED)
5608                 return EMULATE_DONE;
5609
5610         if (r == EMULATION_FAILED) {
5611                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5612                                         emulation_type))
5613                         return EMULATE_DONE;
5614
5615                 return handle_emulation_failure(vcpu);
5616         }
5617
5618         if (ctxt->have_exception) {
5619                 r = EMULATE_DONE;
5620                 if (inject_emulated_exception(vcpu))
5621                         return r;
5622         } else if (vcpu->arch.pio.count) {
5623                 if (!vcpu->arch.pio.in) {
5624                         /* FIXME: return into emulator if single-stepping.  */
5625                         vcpu->arch.pio.count = 0;
5626                 } else {
5627                         writeback = false;
5628                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5629                 }
5630                 r = EMULATE_USER_EXIT;
5631         } else if (vcpu->mmio_needed) {
5632                 if (!vcpu->mmio_is_write)
5633                         writeback = false;
5634                 r = EMULATE_USER_EXIT;
5635                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5636         } else if (r == EMULATION_RESTART)
5637                 goto restart;
5638         else
5639                 r = EMULATE_DONE;
5640
5641         if (writeback) {
5642                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5643                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5644                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5645                 if (vcpu->arch.hflags != ctxt->emul_flags)
5646                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5647                 kvm_rip_write(vcpu, ctxt->eip);
5648                 if (r == EMULATE_DONE)
5649                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5650                 if (!ctxt->have_exception ||
5651                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5652                         __kvm_set_rflags(vcpu, ctxt->eflags);
5653
5654                 /*
5655                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5656                  * do nothing, and it will be requested again as soon as
5657                  * the shadow expires.  But we still need to check here,
5658                  * because POPF has no interrupt shadow.
5659                  */
5660                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5661                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5662         } else
5663                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5664
5665         return r;
5666 }
5667 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5668
5669 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5670 {
5671         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5672         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5673                                             size, port, &val, 1);
5674         /* do not return to emulator after return from userspace */
5675         vcpu->arch.pio.count = 0;
5676         return ret;
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5679
5680 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5681 {
5682         unsigned long val;
5683
5684         /* We should only ever be called with arch.pio.count equal to 1 */
5685         BUG_ON(vcpu->arch.pio.count != 1);
5686
5687         /* For size less than 4 we merge, else we zero extend */
5688         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5689                                         : 0;
5690
5691         /*
5692          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5693          * the copy and tracing
5694          */
5695         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5696                                  vcpu->arch.pio.port, &val, 1);
5697         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5698
5699         return 1;
5700 }
5701
5702 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5703 {
5704         unsigned long val;
5705         int ret;
5706
5707         /* For size less than 4 we merge, else we zero extend */
5708         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5709
5710         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5711                                        &val, 1);
5712         if (ret) {
5713                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5714                 return ret;
5715         }
5716
5717         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5718
5719         return 0;
5720 }
5721 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5722
5723 static int kvmclock_cpu_down_prep(unsigned int cpu)
5724 {
5725         __this_cpu_write(cpu_tsc_khz, 0);
5726         return 0;
5727 }
5728
5729 static void tsc_khz_changed(void *data)
5730 {
5731         struct cpufreq_freqs *freq = data;
5732         unsigned long khz = 0;
5733
5734         if (data)
5735                 khz = freq->new;
5736         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5737                 khz = cpufreq_quick_get(raw_smp_processor_id());
5738         if (!khz)
5739                 khz = tsc_khz;
5740         __this_cpu_write(cpu_tsc_khz, khz);
5741 }
5742
5743 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5744                                      void *data)
5745 {
5746         struct cpufreq_freqs *freq = data;
5747         struct kvm *kvm;
5748         struct kvm_vcpu *vcpu;
5749         int i, send_ipi = 0;
5750
5751         /*
5752          * We allow guests to temporarily run on slowing clocks,
5753          * provided we notify them after, or to run on accelerating
5754          * clocks, provided we notify them before.  Thus time never
5755          * goes backwards.
5756          *
5757          * However, we have a problem.  We can't atomically update
5758          * the frequency of a given CPU from this function; it is
5759          * merely a notifier, which can be called from any CPU.
5760          * Changing the TSC frequency at arbitrary points in time
5761          * requires a recomputation of local variables related to
5762          * the TSC for each VCPU.  We must flag these local variables
5763          * to be updated and be sure the update takes place with the
5764          * new frequency before any guests proceed.
5765          *
5766          * Unfortunately, the combination of hotplug CPU and frequency
5767          * change creates an intractable locking scenario; the order
5768          * of when these callouts happen is undefined with respect to
5769          * CPU hotplug, and they can race with each other.  As such,
5770          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5771          * undefined; you can actually have a CPU frequency change take
5772          * place in between the computation of X and the setting of the
5773          * variable.  To protect against this problem, all updates of
5774          * the per_cpu tsc_khz variable are done in an interrupt
5775          * protected IPI, and all callers wishing to update the value
5776          * must wait for a synchronous IPI to complete (which is trivial
5777          * if the caller is on the CPU already).  This establishes the
5778          * necessary total order on variable updates.
5779          *
5780          * Note that because a guest time update may take place
5781          * anytime after the setting of the VCPU's request bit, the
5782          * correct TSC value must be set before the request.  However,
5783          * to ensure the update actually makes it to any guest which
5784          * starts running in hardware virtualization between the set
5785          * and the acquisition of the spinlock, we must also ping the
5786          * CPU after setting the request bit.
5787          *
5788          */
5789
5790         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5791                 return 0;
5792         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5793                 return 0;
5794
5795         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5796
5797         spin_lock(&kvm_lock);
5798         list_for_each_entry(kvm, &vm_list, vm_list) {
5799                 kvm_for_each_vcpu(i, vcpu, kvm) {
5800                         if (vcpu->cpu != freq->cpu)
5801                                 continue;
5802                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5803                         if (vcpu->cpu != smp_processor_id())
5804                                 send_ipi = 1;
5805                 }
5806         }
5807         spin_unlock(&kvm_lock);
5808
5809         if (freq->old < freq->new && send_ipi) {
5810                 /*
5811                  * We upscale the frequency.  Must make the guest
5812                  * doesn't see old kvmclock values while running with
5813                  * the new frequency, otherwise we risk the guest sees
5814                  * time go backwards.
5815                  *
5816                  * In case we update the frequency for another cpu
5817                  * (which might be in guest context) send an interrupt
5818                  * to kick the cpu out of guest context.  Next time
5819                  * guest context is entered kvmclock will be updated,
5820                  * so the guest will not see stale values.
5821                  */
5822                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5823         }
5824         return 0;
5825 }
5826
5827 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5828         .notifier_call  = kvmclock_cpufreq_notifier
5829 };
5830
5831 static int kvmclock_cpu_online(unsigned int cpu)
5832 {
5833         tsc_khz_changed(NULL);
5834         return 0;
5835 }
5836
5837 static void kvm_timer_init(void)
5838 {
5839         max_tsc_khz = tsc_khz;
5840
5841         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5842 #ifdef CONFIG_CPU_FREQ
5843                 struct cpufreq_policy policy;
5844                 int cpu;
5845
5846                 memset(&policy, 0, sizeof(policy));
5847                 cpu = get_cpu();
5848                 cpufreq_get_policy(&policy, cpu);
5849                 if (policy.cpuinfo.max_freq)
5850                         max_tsc_khz = policy.cpuinfo.max_freq;
5851                 put_cpu();
5852 #endif
5853                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5854                                           CPUFREQ_TRANSITION_NOTIFIER);
5855         }
5856         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5857
5858         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5859                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5860 }
5861
5862 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5863
5864 int kvm_is_in_guest(void)
5865 {
5866         return __this_cpu_read(current_vcpu) != NULL;
5867 }
5868
5869 static int kvm_is_user_mode(void)
5870 {
5871         int user_mode = 3;
5872
5873         if (__this_cpu_read(current_vcpu))
5874                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5875
5876         return user_mode != 0;
5877 }
5878
5879 static unsigned long kvm_get_guest_ip(void)
5880 {
5881         unsigned long ip = 0;
5882
5883         if (__this_cpu_read(current_vcpu))
5884                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5885
5886         return ip;
5887 }
5888
5889 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5890         .is_in_guest            = kvm_is_in_guest,
5891         .is_user_mode           = kvm_is_user_mode,
5892         .get_guest_ip           = kvm_get_guest_ip,
5893 };
5894
5895 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5896 {
5897         __this_cpu_write(current_vcpu, vcpu);
5898 }
5899 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5900
5901 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5902 {
5903         __this_cpu_write(current_vcpu, NULL);
5904 }
5905 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5906
5907 static void kvm_set_mmio_spte_mask(void)
5908 {
5909         u64 mask;
5910         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5911
5912         /*
5913          * Set the reserved bits and the present bit of an paging-structure
5914          * entry to generate page fault with PFER.RSV = 1.
5915          */
5916          /* Mask the reserved physical address bits. */
5917         mask = rsvd_bits(maxphyaddr, 51);
5918
5919         /* Bit 62 is always reserved for 32bit host. */
5920         mask |= 0x3ull << 62;
5921
5922         /* Set the present bit. */
5923         mask |= 1ull;
5924
5925 #ifdef CONFIG_X86_64
5926         /*
5927          * If reserved bit is not supported, clear the present bit to disable
5928          * mmio page fault.
5929          */
5930         if (maxphyaddr == 52)
5931                 mask &= ~1ull;
5932 #endif
5933
5934         kvm_mmu_set_mmio_spte_mask(mask);
5935 }
5936
5937 #ifdef CONFIG_X86_64
5938 static void pvclock_gtod_update_fn(struct work_struct *work)
5939 {
5940         struct kvm *kvm;
5941
5942         struct kvm_vcpu *vcpu;
5943         int i;
5944
5945         spin_lock(&kvm_lock);
5946         list_for_each_entry(kvm, &vm_list, vm_list)
5947                 kvm_for_each_vcpu(i, vcpu, kvm)
5948                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5949         atomic_set(&kvm_guest_has_master_clock, 0);
5950         spin_unlock(&kvm_lock);
5951 }
5952
5953 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5954
5955 /*
5956  * Notification about pvclock gtod data update.
5957  */
5958 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5959                                void *priv)
5960 {
5961         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5962         struct timekeeper *tk = priv;
5963
5964         update_pvclock_gtod(tk);
5965
5966         /* disable master clock if host does not trust, or does not
5967          * use, TSC clocksource
5968          */
5969         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5970             atomic_read(&kvm_guest_has_master_clock) != 0)
5971                 queue_work(system_long_wq, &pvclock_gtod_work);
5972
5973         return 0;
5974 }
5975
5976 static struct notifier_block pvclock_gtod_notifier = {
5977         .notifier_call = pvclock_gtod_notify,
5978 };
5979 #endif
5980
5981 int kvm_arch_init(void *opaque)
5982 {
5983         int r;
5984         struct kvm_x86_ops *ops = opaque;
5985
5986         if (kvm_x86_ops) {
5987                 printk(KERN_ERR "kvm: already loaded the other module\n");
5988                 r = -EEXIST;
5989                 goto out;
5990         }
5991
5992         if (!ops->cpu_has_kvm_support()) {
5993                 printk(KERN_ERR "kvm: no hardware support\n");
5994                 r = -EOPNOTSUPP;
5995                 goto out;
5996         }
5997         if (ops->disabled_by_bios()) {
5998                 printk(KERN_ERR "kvm: disabled by bios\n");
5999                 r = -EOPNOTSUPP;
6000                 goto out;
6001         }
6002
6003         r = -ENOMEM;
6004         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6005         if (!shared_msrs) {
6006                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6007                 goto out;
6008         }
6009
6010         r = kvm_mmu_module_init();
6011         if (r)
6012                 goto out_free_percpu;
6013
6014         kvm_set_mmio_spte_mask();
6015
6016         kvm_x86_ops = ops;
6017
6018         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6019                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6020                         PT_PRESENT_MASK);
6021         kvm_timer_init();
6022
6023         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6024
6025         if (boot_cpu_has(X86_FEATURE_XSAVE))
6026                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6027
6028         kvm_lapic_init();
6029 #ifdef CONFIG_X86_64
6030         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6031 #endif
6032
6033         return 0;
6034
6035 out_free_percpu:
6036         free_percpu(shared_msrs);
6037 out:
6038         return r;
6039 }
6040
6041 void kvm_arch_exit(void)
6042 {
6043         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6044
6045         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6046                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6047                                             CPUFREQ_TRANSITION_NOTIFIER);
6048         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6049 #ifdef CONFIG_X86_64
6050         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6051 #endif
6052         kvm_x86_ops = NULL;
6053         kvm_mmu_module_exit();
6054         free_percpu(shared_msrs);
6055 }
6056
6057 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6058 {
6059         ++vcpu->stat.halt_exits;
6060         if (lapic_in_kernel(vcpu)) {
6061                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6062                 return 1;
6063         } else {
6064                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6065                 return 0;
6066         }
6067 }
6068 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6069
6070 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6071 {
6072         int ret = kvm_skip_emulated_instruction(vcpu);
6073         /*
6074          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6075          * KVM_EXIT_DEBUG here.
6076          */
6077         return kvm_vcpu_halt(vcpu) && ret;
6078 }
6079 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6080
6081 /*
6082  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6083  *
6084  * @apicid - apicid of vcpu to be kicked.
6085  */
6086 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6087 {
6088         struct kvm_lapic_irq lapic_irq;
6089
6090         lapic_irq.shorthand = 0;
6091         lapic_irq.dest_mode = 0;
6092         lapic_irq.dest_id = apicid;
6093         lapic_irq.msi_redir_hint = false;
6094
6095         lapic_irq.delivery_mode = APIC_DM_REMRD;
6096         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6097 }
6098
6099 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6100 {
6101         vcpu->arch.apicv_active = false;
6102         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6103 }
6104
6105 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6106 {
6107         unsigned long nr, a0, a1, a2, a3, ret;
6108         int op_64_bit, r;
6109
6110         r = kvm_skip_emulated_instruction(vcpu);
6111
6112         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6113                 return kvm_hv_hypercall(vcpu);
6114
6115         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6116         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6117         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6118         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6119         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6120
6121         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6122
6123         op_64_bit = is_64_bit_mode(vcpu);
6124         if (!op_64_bit) {
6125                 nr &= 0xFFFFFFFF;
6126                 a0 &= 0xFFFFFFFF;
6127                 a1 &= 0xFFFFFFFF;
6128                 a2 &= 0xFFFFFFFF;
6129                 a3 &= 0xFFFFFFFF;
6130         }
6131
6132         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6133                 ret = -KVM_EPERM;
6134                 goto out;
6135         }
6136
6137         switch (nr) {
6138         case KVM_HC_VAPIC_POLL_IRQ:
6139                 ret = 0;
6140                 break;
6141         case KVM_HC_KICK_CPU:
6142                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6143                 ret = 0;
6144                 break;
6145         default:
6146                 ret = -KVM_ENOSYS;
6147                 break;
6148         }
6149 out:
6150         if (!op_64_bit)
6151                 ret = (u32)ret;
6152         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6153         ++vcpu->stat.hypercalls;
6154         return r;
6155 }
6156 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6157
6158 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6159 {
6160         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6161         char instruction[3];
6162         unsigned long rip = kvm_rip_read(vcpu);
6163
6164         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6165
6166         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6167 }
6168
6169 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6170 {
6171         return vcpu->run->request_interrupt_window &&
6172                 likely(!pic_in_kernel(vcpu->kvm));
6173 }
6174
6175 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6176 {
6177         struct kvm_run *kvm_run = vcpu->run;
6178
6179         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6180         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6181         kvm_run->cr8 = kvm_get_cr8(vcpu);
6182         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6183         kvm_run->ready_for_interrupt_injection =
6184                 pic_in_kernel(vcpu->kvm) ||
6185                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6186 }
6187
6188 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6189 {
6190         int max_irr, tpr;
6191
6192         if (!kvm_x86_ops->update_cr8_intercept)
6193                 return;
6194
6195         if (!lapic_in_kernel(vcpu))
6196                 return;
6197
6198         if (vcpu->arch.apicv_active)
6199                 return;
6200
6201         if (!vcpu->arch.apic->vapic_addr)
6202                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6203         else
6204                 max_irr = -1;
6205
6206         if (max_irr != -1)
6207                 max_irr >>= 4;
6208
6209         tpr = kvm_lapic_get_cr8(vcpu);
6210
6211         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6212 }
6213
6214 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6215 {
6216         int r;
6217
6218         /* try to reinject previous events if any */
6219         if (vcpu->arch.exception.pending) {
6220                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6221                                         vcpu->arch.exception.has_error_code,
6222                                         vcpu->arch.exception.error_code);
6223
6224                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6225                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6226                                              X86_EFLAGS_RF);
6227
6228                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6229                     (vcpu->arch.dr7 & DR7_GD)) {
6230                         vcpu->arch.dr7 &= ~DR7_GD;
6231                         kvm_update_dr7(vcpu);
6232                 }
6233
6234                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6235                                           vcpu->arch.exception.has_error_code,
6236                                           vcpu->arch.exception.error_code,
6237                                           vcpu->arch.exception.reinject);
6238                 return 0;
6239         }
6240
6241         if (vcpu->arch.nmi_injected) {
6242                 kvm_x86_ops->set_nmi(vcpu);
6243                 return 0;
6244         }
6245
6246         if (vcpu->arch.interrupt.pending) {
6247                 kvm_x86_ops->set_irq(vcpu);
6248                 return 0;
6249         }
6250
6251         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6252                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6253                 if (r != 0)
6254                         return r;
6255         }
6256
6257         /* try to inject new event if pending */
6258         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6259                 vcpu->arch.smi_pending = false;
6260                 enter_smm(vcpu);
6261         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6262                 --vcpu->arch.nmi_pending;
6263                 vcpu->arch.nmi_injected = true;
6264                 kvm_x86_ops->set_nmi(vcpu);
6265         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6266                 /*
6267                  * Because interrupts can be injected asynchronously, we are
6268                  * calling check_nested_events again here to avoid a race condition.
6269                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6270                  * proposal and current concerns.  Perhaps we should be setting
6271                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6272                  */
6273                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6274                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6275                         if (r != 0)
6276                                 return r;
6277                 }
6278                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6279                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6280                                             false);
6281                         kvm_x86_ops->set_irq(vcpu);
6282                 }
6283         }
6284
6285         return 0;
6286 }
6287
6288 static void process_nmi(struct kvm_vcpu *vcpu)
6289 {
6290         unsigned limit = 2;
6291
6292         /*
6293          * x86 is limited to one NMI running, and one NMI pending after it.
6294          * If an NMI is already in progress, limit further NMIs to just one.
6295          * Otherwise, allow two (and we'll inject the first one immediately).
6296          */
6297         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6298                 limit = 1;
6299
6300         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6301         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6302         kvm_make_request(KVM_REQ_EVENT, vcpu);
6303 }
6304
6305 #define put_smstate(type, buf, offset, val)                       \
6306         *(type *)((buf) + (offset) - 0x7e00) = val
6307
6308 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6309 {
6310         u32 flags = 0;
6311         flags |= seg->g       << 23;
6312         flags |= seg->db      << 22;
6313         flags |= seg->l       << 21;
6314         flags |= seg->avl     << 20;
6315         flags |= seg->present << 15;
6316         flags |= seg->dpl     << 13;
6317         flags |= seg->s       << 12;
6318         flags |= seg->type    << 8;
6319         return flags;
6320 }
6321
6322 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6323 {
6324         struct kvm_segment seg;
6325         int offset;
6326
6327         kvm_get_segment(vcpu, &seg, n);
6328         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6329
6330         if (n < 3)
6331                 offset = 0x7f84 + n * 12;
6332         else
6333                 offset = 0x7f2c + (n - 3) * 12;
6334
6335         put_smstate(u32, buf, offset + 8, seg.base);
6336         put_smstate(u32, buf, offset + 4, seg.limit);
6337         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6338 }
6339
6340 #ifdef CONFIG_X86_64
6341 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6342 {
6343         struct kvm_segment seg;
6344         int offset;
6345         u16 flags;
6346
6347         kvm_get_segment(vcpu, &seg, n);
6348         offset = 0x7e00 + n * 16;
6349
6350         flags = enter_smm_get_segment_flags(&seg) >> 8;
6351         put_smstate(u16, buf, offset, seg.selector);
6352         put_smstate(u16, buf, offset + 2, flags);
6353         put_smstate(u32, buf, offset + 4, seg.limit);
6354         put_smstate(u64, buf, offset + 8, seg.base);
6355 }
6356 #endif
6357
6358 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6359 {
6360         struct desc_ptr dt;
6361         struct kvm_segment seg;
6362         unsigned long val;
6363         int i;
6364
6365         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6366         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6367         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6368         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6369
6370         for (i = 0; i < 8; i++)
6371                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6372
6373         kvm_get_dr(vcpu, 6, &val);
6374         put_smstate(u32, buf, 0x7fcc, (u32)val);
6375         kvm_get_dr(vcpu, 7, &val);
6376         put_smstate(u32, buf, 0x7fc8, (u32)val);
6377
6378         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6379         put_smstate(u32, buf, 0x7fc4, seg.selector);
6380         put_smstate(u32, buf, 0x7f64, seg.base);
6381         put_smstate(u32, buf, 0x7f60, seg.limit);
6382         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6383
6384         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6385         put_smstate(u32, buf, 0x7fc0, seg.selector);
6386         put_smstate(u32, buf, 0x7f80, seg.base);
6387         put_smstate(u32, buf, 0x7f7c, seg.limit);
6388         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6389
6390         kvm_x86_ops->get_gdt(vcpu, &dt);
6391         put_smstate(u32, buf, 0x7f74, dt.address);
6392         put_smstate(u32, buf, 0x7f70, dt.size);
6393
6394         kvm_x86_ops->get_idt(vcpu, &dt);
6395         put_smstate(u32, buf, 0x7f58, dt.address);
6396         put_smstate(u32, buf, 0x7f54, dt.size);
6397
6398         for (i = 0; i < 6; i++)
6399                 enter_smm_save_seg_32(vcpu, buf, i);
6400
6401         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6402
6403         /* revision id */
6404         put_smstate(u32, buf, 0x7efc, 0x00020000);
6405         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6406 }
6407
6408 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6409 {
6410 #ifdef CONFIG_X86_64
6411         struct desc_ptr dt;
6412         struct kvm_segment seg;
6413         unsigned long val;
6414         int i;
6415
6416         for (i = 0; i < 16; i++)
6417                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6418
6419         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6420         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6421
6422         kvm_get_dr(vcpu, 6, &val);
6423         put_smstate(u64, buf, 0x7f68, val);
6424         kvm_get_dr(vcpu, 7, &val);
6425         put_smstate(u64, buf, 0x7f60, val);
6426
6427         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6428         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6429         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6430
6431         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6432
6433         /* revision id */
6434         put_smstate(u32, buf, 0x7efc, 0x00020064);
6435
6436         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6437
6438         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6439         put_smstate(u16, buf, 0x7e90, seg.selector);
6440         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6441         put_smstate(u32, buf, 0x7e94, seg.limit);
6442         put_smstate(u64, buf, 0x7e98, seg.base);
6443
6444         kvm_x86_ops->get_idt(vcpu, &dt);
6445         put_smstate(u32, buf, 0x7e84, dt.size);
6446         put_smstate(u64, buf, 0x7e88, dt.address);
6447
6448         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6449         put_smstate(u16, buf, 0x7e70, seg.selector);
6450         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6451         put_smstate(u32, buf, 0x7e74, seg.limit);
6452         put_smstate(u64, buf, 0x7e78, seg.base);
6453
6454         kvm_x86_ops->get_gdt(vcpu, &dt);
6455         put_smstate(u32, buf, 0x7e64, dt.size);
6456         put_smstate(u64, buf, 0x7e68, dt.address);
6457
6458         for (i = 0; i < 6; i++)
6459                 enter_smm_save_seg_64(vcpu, buf, i);
6460 #else
6461         WARN_ON_ONCE(1);
6462 #endif
6463 }
6464
6465 static void enter_smm(struct kvm_vcpu *vcpu)
6466 {
6467         struct kvm_segment cs, ds;
6468         struct desc_ptr dt;
6469         char buf[512];
6470         u32 cr0;
6471
6472         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6473         vcpu->arch.hflags |= HF_SMM_MASK;
6474         memset(buf, 0, 512);
6475         if (guest_cpuid_has_longmode(vcpu))
6476                 enter_smm_save_state_64(vcpu, buf);
6477         else
6478                 enter_smm_save_state_32(vcpu, buf);
6479
6480         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6481
6482         if (kvm_x86_ops->get_nmi_mask(vcpu))
6483                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6484         else
6485                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6486
6487         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6488         kvm_rip_write(vcpu, 0x8000);
6489
6490         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6491         kvm_x86_ops->set_cr0(vcpu, cr0);
6492         vcpu->arch.cr0 = cr0;
6493
6494         kvm_x86_ops->set_cr4(vcpu, 0);
6495
6496         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6497         dt.address = dt.size = 0;
6498         kvm_x86_ops->set_idt(vcpu, &dt);
6499
6500         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6501
6502         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6503         cs.base = vcpu->arch.smbase;
6504
6505         ds.selector = 0;
6506         ds.base = 0;
6507
6508         cs.limit    = ds.limit = 0xffffffff;
6509         cs.type     = ds.type = 0x3;
6510         cs.dpl      = ds.dpl = 0;
6511         cs.db       = ds.db = 0;
6512         cs.s        = ds.s = 1;
6513         cs.l        = ds.l = 0;
6514         cs.g        = ds.g = 1;
6515         cs.avl      = ds.avl = 0;
6516         cs.present  = ds.present = 1;
6517         cs.unusable = ds.unusable = 0;
6518         cs.padding  = ds.padding = 0;
6519
6520         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6521         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6522         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6523         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6524         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6525         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6526
6527         if (guest_cpuid_has_longmode(vcpu))
6528                 kvm_x86_ops->set_efer(vcpu, 0);
6529
6530         kvm_update_cpuid(vcpu);
6531         kvm_mmu_reset_context(vcpu);
6532 }
6533
6534 static void process_smi(struct kvm_vcpu *vcpu)
6535 {
6536         vcpu->arch.smi_pending = true;
6537         kvm_make_request(KVM_REQ_EVENT, vcpu);
6538 }
6539
6540 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6541 {
6542         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6543 }
6544
6545 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6546 {
6547         u64 eoi_exit_bitmap[4];
6548
6549         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6550                 return;
6551
6552         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6553
6554         if (irqchip_split(vcpu->kvm))
6555                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6556         else {
6557                 if (vcpu->arch.apicv_active)
6558                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6559                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6560         }
6561         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6562                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6563         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6564 }
6565
6566 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6567 {
6568         ++vcpu->stat.tlb_flush;
6569         kvm_x86_ops->tlb_flush(vcpu);
6570 }
6571
6572 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6573 {
6574         struct page *page = NULL;
6575
6576         if (!lapic_in_kernel(vcpu))
6577                 return;
6578
6579         if (!kvm_x86_ops->set_apic_access_page_addr)
6580                 return;
6581
6582         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6583         if (is_error_page(page))
6584                 return;
6585         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6586
6587         /*
6588          * Do not pin apic access page in memory, the MMU notifier
6589          * will call us again if it is migrated or swapped out.
6590          */
6591         put_page(page);
6592 }
6593 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6594
6595 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6596                                            unsigned long address)
6597 {
6598         /*
6599          * The physical address of apic access page is stored in the VMCS.
6600          * Update it when it becomes invalid.
6601          */
6602         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6603                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6604 }
6605
6606 /*
6607  * Returns 1 to let vcpu_run() continue the guest execution loop without
6608  * exiting to the userspace.  Otherwise, the value will be returned to the
6609  * userspace.
6610  */
6611 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6612 {
6613         int r;
6614         bool req_int_win =
6615                 dm_request_for_irq_injection(vcpu) &&
6616                 kvm_cpu_accept_dm_intr(vcpu);
6617
6618         bool req_immediate_exit = false;
6619
6620         if (vcpu->requests) {
6621                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6622                         kvm_mmu_unload(vcpu);
6623                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6624                         __kvm_migrate_timers(vcpu);
6625                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6626                         kvm_gen_update_masterclock(vcpu->kvm);
6627                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6628                         kvm_gen_kvmclock_update(vcpu);
6629                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6630                         r = kvm_guest_time_update(vcpu);
6631                         if (unlikely(r))
6632                                 goto out;
6633                 }
6634                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6635                         kvm_mmu_sync_roots(vcpu);
6636                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6637                         kvm_vcpu_flush_tlb(vcpu);
6638                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6639                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6640                         r = 0;
6641                         goto out;
6642                 }
6643                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6644                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6645                         r = 0;
6646                         goto out;
6647                 }
6648                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6649                         vcpu->fpu_active = 0;
6650                         kvm_x86_ops->fpu_deactivate(vcpu);
6651                 }
6652                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6653                         /* Page is swapped out. Do synthetic halt */
6654                         vcpu->arch.apf.halted = true;
6655                         r = 1;
6656                         goto out;
6657                 }
6658                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6659                         record_steal_time(vcpu);
6660                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6661                         process_smi(vcpu);
6662                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6663                         process_nmi(vcpu);
6664                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6665                         kvm_pmu_handle_event(vcpu);
6666                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6667                         kvm_pmu_deliver_pmi(vcpu);
6668                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6669                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6670                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6671                                      vcpu->arch.ioapic_handled_vectors)) {
6672                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6673                                 vcpu->run->eoi.vector =
6674                                                 vcpu->arch.pending_ioapic_eoi;
6675                                 r = 0;
6676                                 goto out;
6677                         }
6678                 }
6679                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6680                         vcpu_scan_ioapic(vcpu);
6681                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6682                         kvm_vcpu_reload_apic_access_page(vcpu);
6683                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6684                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6685                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6686                         r = 0;
6687                         goto out;
6688                 }
6689                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6690                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6691                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6692                         r = 0;
6693                         goto out;
6694                 }
6695                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6696                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6697                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6698                         r = 0;
6699                         goto out;
6700                 }
6701
6702                 /*
6703                  * KVM_REQ_HV_STIMER has to be processed after
6704                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6705                  * depend on the guest clock being up-to-date
6706                  */
6707                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6708                         kvm_hv_process_stimers(vcpu);
6709         }
6710
6711         /*
6712          * KVM_REQ_EVENT is not set when posted interrupts are set by
6713          * VT-d hardware, so we have to update RVI unconditionally.
6714          */
6715         if (kvm_lapic_enabled(vcpu)) {
6716                 /*
6717                  * Update architecture specific hints for APIC
6718                  * virtual interrupt delivery.
6719                  */
6720                 if (vcpu->arch.apicv_active)
6721                         kvm_x86_ops->hwapic_irr_update(vcpu,
6722                                 kvm_lapic_find_highest_irr(vcpu));
6723         }
6724
6725         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6726                 kvm_apic_accept_events(vcpu);
6727                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6728                         r = 1;
6729                         goto out;
6730                 }
6731
6732                 if (inject_pending_event(vcpu, req_int_win) != 0)
6733                         req_immediate_exit = true;
6734                 else {
6735                         /* Enable NMI/IRQ window open exits if needed.
6736                          *
6737                          * SMIs have two cases: 1) they can be nested, and
6738                          * then there is nothing to do here because RSM will
6739                          * cause a vmexit anyway; 2) or the SMI can be pending
6740                          * because inject_pending_event has completed the
6741                          * injection of an IRQ or NMI from the previous vmexit,
6742                          * and then we request an immediate exit to inject the SMI.
6743                          */
6744                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6745                                 req_immediate_exit = true;
6746                         if (vcpu->arch.nmi_pending)
6747                                 kvm_x86_ops->enable_nmi_window(vcpu);
6748                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6749                                 kvm_x86_ops->enable_irq_window(vcpu);
6750                 }
6751
6752                 if (kvm_lapic_enabled(vcpu)) {
6753                         update_cr8_intercept(vcpu);
6754                         kvm_lapic_sync_to_vapic(vcpu);
6755                 }
6756         }
6757
6758         r = kvm_mmu_reload(vcpu);
6759         if (unlikely(r)) {
6760                 goto cancel_injection;
6761         }
6762
6763         preempt_disable();
6764
6765         kvm_x86_ops->prepare_guest_switch(vcpu);
6766         if (vcpu->fpu_active)
6767                 kvm_load_guest_fpu(vcpu);
6768         vcpu->mode = IN_GUEST_MODE;
6769
6770         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6771
6772         /*
6773          * We should set ->mode before check ->requests,
6774          * Please see the comment in kvm_make_all_cpus_request.
6775          * This also orders the write to mode from any reads
6776          * to the page tables done while the VCPU is running.
6777          * Please see the comment in kvm_flush_remote_tlbs.
6778          */
6779         smp_mb__after_srcu_read_unlock();
6780
6781         local_irq_disable();
6782
6783         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6784             || need_resched() || signal_pending(current)) {
6785                 vcpu->mode = OUTSIDE_GUEST_MODE;
6786                 smp_wmb();
6787                 local_irq_enable();
6788                 preempt_enable();
6789                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6790                 r = 1;
6791                 goto cancel_injection;
6792         }
6793
6794         kvm_load_guest_xcr0(vcpu);
6795
6796         if (req_immediate_exit) {
6797                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6798                 smp_send_reschedule(vcpu->cpu);
6799         }
6800
6801         trace_kvm_entry(vcpu->vcpu_id);
6802         wait_lapic_expire(vcpu);
6803         guest_enter_irqoff();
6804
6805         if (unlikely(vcpu->arch.switch_db_regs)) {
6806                 set_debugreg(0, 7);
6807                 set_debugreg(vcpu->arch.eff_db[0], 0);
6808                 set_debugreg(vcpu->arch.eff_db[1], 1);
6809                 set_debugreg(vcpu->arch.eff_db[2], 2);
6810                 set_debugreg(vcpu->arch.eff_db[3], 3);
6811                 set_debugreg(vcpu->arch.dr6, 6);
6812                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6813         }
6814
6815         kvm_x86_ops->run(vcpu);
6816
6817         /*
6818          * Do this here before restoring debug registers on the host.  And
6819          * since we do this before handling the vmexit, a DR access vmexit
6820          * can (a) read the correct value of the debug registers, (b) set
6821          * KVM_DEBUGREG_WONT_EXIT again.
6822          */
6823         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6824                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6825                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6826                 kvm_update_dr0123(vcpu);
6827                 kvm_update_dr6(vcpu);
6828                 kvm_update_dr7(vcpu);
6829                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6830         }
6831
6832         /*
6833          * If the guest has used debug registers, at least dr7
6834          * will be disabled while returning to the host.
6835          * If we don't have active breakpoints in the host, we don't
6836          * care about the messed up debug address registers. But if
6837          * we have some of them active, restore the old state.
6838          */
6839         if (hw_breakpoint_active())
6840                 hw_breakpoint_restore();
6841
6842         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6843
6844         vcpu->mode = OUTSIDE_GUEST_MODE;
6845         smp_wmb();
6846
6847         kvm_put_guest_xcr0(vcpu);
6848
6849         kvm_x86_ops->handle_external_intr(vcpu);
6850
6851         ++vcpu->stat.exits;
6852
6853         guest_exit_irqoff();
6854
6855         local_irq_enable();
6856         preempt_enable();
6857
6858         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6859
6860         /*
6861          * Profile KVM exit RIPs:
6862          */
6863         if (unlikely(prof_on == KVM_PROFILING)) {
6864                 unsigned long rip = kvm_rip_read(vcpu);
6865                 profile_hit(KVM_PROFILING, (void *)rip);
6866         }
6867
6868         if (unlikely(vcpu->arch.tsc_always_catchup))
6869                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6870
6871         if (vcpu->arch.apic_attention)
6872                 kvm_lapic_sync_from_vapic(vcpu);
6873
6874         r = kvm_x86_ops->handle_exit(vcpu);
6875         return r;
6876
6877 cancel_injection:
6878         kvm_x86_ops->cancel_injection(vcpu);
6879         if (unlikely(vcpu->arch.apic_attention))
6880                 kvm_lapic_sync_from_vapic(vcpu);
6881 out:
6882         return r;
6883 }
6884
6885 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6886 {
6887         if (!kvm_arch_vcpu_runnable(vcpu) &&
6888             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6889                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6890                 kvm_vcpu_block(vcpu);
6891                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6892
6893                 if (kvm_x86_ops->post_block)
6894                         kvm_x86_ops->post_block(vcpu);
6895
6896                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6897                         return 1;
6898         }
6899
6900         kvm_apic_accept_events(vcpu);
6901         switch(vcpu->arch.mp_state) {
6902         case KVM_MP_STATE_HALTED:
6903                 vcpu->arch.pv.pv_unhalted = false;
6904                 vcpu->arch.mp_state =
6905                         KVM_MP_STATE_RUNNABLE;
6906         case KVM_MP_STATE_RUNNABLE:
6907                 vcpu->arch.apf.halted = false;
6908                 break;
6909         case KVM_MP_STATE_INIT_RECEIVED:
6910                 break;
6911         default:
6912                 return -EINTR;
6913                 break;
6914         }
6915         return 1;
6916 }
6917
6918 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6919 {
6920         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6921                 !vcpu->arch.apf.halted);
6922 }
6923
6924 static int vcpu_run(struct kvm_vcpu *vcpu)
6925 {
6926         int r;
6927         struct kvm *kvm = vcpu->kvm;
6928
6929         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6930
6931         for (;;) {
6932                 if (kvm_vcpu_running(vcpu)) {
6933                         r = vcpu_enter_guest(vcpu);
6934                 } else {
6935                         r = vcpu_block(kvm, vcpu);
6936                 }
6937
6938                 if (r <= 0)
6939                         break;
6940
6941                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6942                 if (kvm_cpu_has_pending_timer(vcpu))
6943                         kvm_inject_pending_timer_irqs(vcpu);
6944
6945                 if (dm_request_for_irq_injection(vcpu) &&
6946                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6947                         r = 0;
6948                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6949                         ++vcpu->stat.request_irq_exits;
6950                         break;
6951                 }
6952
6953                 kvm_check_async_pf_completion(vcpu);
6954
6955                 if (signal_pending(current)) {
6956                         r = -EINTR;
6957                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6958                         ++vcpu->stat.signal_exits;
6959                         break;
6960                 }
6961                 if (need_resched()) {
6962                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6963                         cond_resched();
6964                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6965                 }
6966         }
6967
6968         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6969
6970         return r;
6971 }
6972
6973 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6974 {
6975         int r;
6976         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6977         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6978         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6979         if (r != EMULATE_DONE)
6980                 return 0;
6981         return 1;
6982 }
6983
6984 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6985 {
6986         BUG_ON(!vcpu->arch.pio.count);
6987
6988         return complete_emulated_io(vcpu);
6989 }
6990
6991 /*
6992  * Implements the following, as a state machine:
6993  *
6994  * read:
6995  *   for each fragment
6996  *     for each mmio piece in the fragment
6997  *       write gpa, len
6998  *       exit
6999  *       copy data
7000  *   execute insn
7001  *
7002  * write:
7003  *   for each fragment
7004  *     for each mmio piece in the fragment
7005  *       write gpa, len
7006  *       copy data
7007  *       exit
7008  */
7009 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7010 {
7011         struct kvm_run *run = vcpu->run;
7012         struct kvm_mmio_fragment *frag;
7013         unsigned len;
7014
7015         BUG_ON(!vcpu->mmio_needed);
7016
7017         /* Complete previous fragment */
7018         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7019         len = min(8u, frag->len);
7020         if (!vcpu->mmio_is_write)
7021                 memcpy(frag->data, run->mmio.data, len);
7022
7023         if (frag->len <= 8) {
7024                 /* Switch to the next fragment. */
7025                 frag++;
7026                 vcpu->mmio_cur_fragment++;
7027         } else {
7028                 /* Go forward to the next mmio piece. */
7029                 frag->data += len;
7030                 frag->gpa += len;
7031                 frag->len -= len;
7032         }
7033
7034         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7035                 vcpu->mmio_needed = 0;
7036
7037                 /* FIXME: return into emulator if single-stepping.  */
7038                 if (vcpu->mmio_is_write)
7039                         return 1;
7040                 vcpu->mmio_read_completed = 1;
7041                 return complete_emulated_io(vcpu);
7042         }
7043
7044         run->exit_reason = KVM_EXIT_MMIO;
7045         run->mmio.phys_addr = frag->gpa;
7046         if (vcpu->mmio_is_write)
7047                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7048         run->mmio.len = min(8u, frag->len);
7049         run->mmio.is_write = vcpu->mmio_is_write;
7050         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7051         return 0;
7052 }
7053
7054
7055 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7056 {
7057         struct fpu *fpu = &current->thread.fpu;
7058         int r;
7059         sigset_t sigsaved;
7060
7061         fpu__activate_curr(fpu);
7062
7063         if (vcpu->sigset_active)
7064                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7065
7066         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7067                 kvm_vcpu_block(vcpu);
7068                 kvm_apic_accept_events(vcpu);
7069                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7070                 r = -EAGAIN;
7071                 goto out;
7072         }
7073
7074         /* re-sync apic's tpr */
7075         if (!lapic_in_kernel(vcpu)) {
7076                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7077                         r = -EINVAL;
7078                         goto out;
7079                 }
7080         }
7081
7082         if (unlikely(vcpu->arch.complete_userspace_io)) {
7083                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7084                 vcpu->arch.complete_userspace_io = NULL;
7085                 r = cui(vcpu);
7086                 if (r <= 0)
7087                         goto out;
7088         } else
7089                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7090
7091         r = vcpu_run(vcpu);
7092
7093 out:
7094         post_kvm_run_save(vcpu);
7095         if (vcpu->sigset_active)
7096                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7097
7098         return r;
7099 }
7100
7101 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7102 {
7103         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7104                 /*
7105                  * We are here if userspace calls get_regs() in the middle of
7106                  * instruction emulation. Registers state needs to be copied
7107                  * back from emulation context to vcpu. Userspace shouldn't do
7108                  * that usually, but some bad designed PV devices (vmware
7109                  * backdoor interface) need this to work
7110                  */
7111                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7112                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7113         }
7114         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7115         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7116         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7117         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7118         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7119         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7120         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7121         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7122 #ifdef CONFIG_X86_64
7123         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7124         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7125         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7126         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7127         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7128         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7129         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7130         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7131 #endif
7132
7133         regs->rip = kvm_rip_read(vcpu);
7134         regs->rflags = kvm_get_rflags(vcpu);
7135
7136         return 0;
7137 }
7138
7139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7140 {
7141         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7142         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7143
7144         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7145         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7146         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7147         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7148         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7149         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7150         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7151         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7152 #ifdef CONFIG_X86_64
7153         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7154         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7155         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7156         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7157         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7158         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7159         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7160         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7161 #endif
7162
7163         kvm_rip_write(vcpu, regs->rip);
7164         kvm_set_rflags(vcpu, regs->rflags);
7165
7166         vcpu->arch.exception.pending = false;
7167
7168         kvm_make_request(KVM_REQ_EVENT, vcpu);
7169
7170         return 0;
7171 }
7172
7173 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7174 {
7175         struct kvm_segment cs;
7176
7177         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7178         *db = cs.db;
7179         *l = cs.l;
7180 }
7181 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7182
7183 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7184                                   struct kvm_sregs *sregs)
7185 {
7186         struct desc_ptr dt;
7187
7188         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7189         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7190         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7191         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7192         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7193         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7194
7195         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7196         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7197
7198         kvm_x86_ops->get_idt(vcpu, &dt);
7199         sregs->idt.limit = dt.size;
7200         sregs->idt.base = dt.address;
7201         kvm_x86_ops->get_gdt(vcpu, &dt);
7202         sregs->gdt.limit = dt.size;
7203         sregs->gdt.base = dt.address;
7204
7205         sregs->cr0 = kvm_read_cr0(vcpu);
7206         sregs->cr2 = vcpu->arch.cr2;
7207         sregs->cr3 = kvm_read_cr3(vcpu);
7208         sregs->cr4 = kvm_read_cr4(vcpu);
7209         sregs->cr8 = kvm_get_cr8(vcpu);
7210         sregs->efer = vcpu->arch.efer;
7211         sregs->apic_base = kvm_get_apic_base(vcpu);
7212
7213         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7214
7215         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7216                 set_bit(vcpu->arch.interrupt.nr,
7217                         (unsigned long *)sregs->interrupt_bitmap);
7218
7219         return 0;
7220 }
7221
7222 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7223                                     struct kvm_mp_state *mp_state)
7224 {
7225         kvm_apic_accept_events(vcpu);
7226         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7227                                         vcpu->arch.pv.pv_unhalted)
7228                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7229         else
7230                 mp_state->mp_state = vcpu->arch.mp_state;
7231
7232         return 0;
7233 }
7234
7235 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7236                                     struct kvm_mp_state *mp_state)
7237 {
7238         if (!lapic_in_kernel(vcpu) &&
7239             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7240                 return -EINVAL;
7241
7242         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7243                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7244                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7245         } else
7246                 vcpu->arch.mp_state = mp_state->mp_state;
7247         kvm_make_request(KVM_REQ_EVENT, vcpu);
7248         return 0;
7249 }
7250
7251 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7252                     int reason, bool has_error_code, u32 error_code)
7253 {
7254         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7255         int ret;
7256
7257         init_emulate_ctxt(vcpu);
7258
7259         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7260                                    has_error_code, error_code);
7261
7262         if (ret)
7263                 return EMULATE_FAIL;
7264
7265         kvm_rip_write(vcpu, ctxt->eip);
7266         kvm_set_rflags(vcpu, ctxt->eflags);
7267         kvm_make_request(KVM_REQ_EVENT, vcpu);
7268         return EMULATE_DONE;
7269 }
7270 EXPORT_SYMBOL_GPL(kvm_task_switch);
7271
7272 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7273                                   struct kvm_sregs *sregs)
7274 {
7275         struct msr_data apic_base_msr;
7276         int mmu_reset_needed = 0;
7277         int pending_vec, max_bits, idx;
7278         struct desc_ptr dt;
7279
7280         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7281                 return -EINVAL;
7282
7283         dt.size = sregs->idt.limit;
7284         dt.address = sregs->idt.base;
7285         kvm_x86_ops->set_idt(vcpu, &dt);
7286         dt.size = sregs->gdt.limit;
7287         dt.address = sregs->gdt.base;
7288         kvm_x86_ops->set_gdt(vcpu, &dt);
7289
7290         vcpu->arch.cr2 = sregs->cr2;
7291         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7292         vcpu->arch.cr3 = sregs->cr3;
7293         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7294
7295         kvm_set_cr8(vcpu, sregs->cr8);
7296
7297         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7298         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7299         apic_base_msr.data = sregs->apic_base;
7300         apic_base_msr.host_initiated = true;
7301         kvm_set_apic_base(vcpu, &apic_base_msr);
7302
7303         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7304         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7305         vcpu->arch.cr0 = sregs->cr0;
7306
7307         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7308         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7309         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7310                 kvm_update_cpuid(vcpu);
7311
7312         idx = srcu_read_lock(&vcpu->kvm->srcu);
7313         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7314                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7315                 mmu_reset_needed = 1;
7316         }
7317         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7318
7319         if (mmu_reset_needed)
7320                 kvm_mmu_reset_context(vcpu);
7321
7322         max_bits = KVM_NR_INTERRUPTS;
7323         pending_vec = find_first_bit(
7324                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7325         if (pending_vec < max_bits) {
7326                 kvm_queue_interrupt(vcpu, pending_vec, false);
7327                 pr_debug("Set back pending irq %d\n", pending_vec);
7328         }
7329
7330         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7331         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7332         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7333         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7334         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7335         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7336
7337         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7338         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7339
7340         update_cr8_intercept(vcpu);
7341
7342         /* Older userspace won't unhalt the vcpu on reset. */
7343         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7344             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7345             !is_protmode(vcpu))
7346                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7347
7348         kvm_make_request(KVM_REQ_EVENT, vcpu);
7349
7350         return 0;
7351 }
7352
7353 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7354                                         struct kvm_guest_debug *dbg)
7355 {
7356         unsigned long rflags;
7357         int i, r;
7358
7359         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7360                 r = -EBUSY;
7361                 if (vcpu->arch.exception.pending)
7362                         goto out;
7363                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7364                         kvm_queue_exception(vcpu, DB_VECTOR);
7365                 else
7366                         kvm_queue_exception(vcpu, BP_VECTOR);
7367         }
7368
7369         /*
7370          * Read rflags as long as potentially injected trace flags are still
7371          * filtered out.
7372          */
7373         rflags = kvm_get_rflags(vcpu);
7374
7375         vcpu->guest_debug = dbg->control;
7376         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7377                 vcpu->guest_debug = 0;
7378
7379         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7380                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7381                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7382                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7383         } else {
7384                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7385                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7386         }
7387         kvm_update_dr7(vcpu);
7388
7389         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7390                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7391                         get_segment_base(vcpu, VCPU_SREG_CS);
7392
7393         /*
7394          * Trigger an rflags update that will inject or remove the trace
7395          * flags.
7396          */
7397         kvm_set_rflags(vcpu, rflags);
7398
7399         kvm_x86_ops->update_bp_intercept(vcpu);
7400
7401         r = 0;
7402
7403 out:
7404
7405         return r;
7406 }
7407
7408 /*
7409  * Translate a guest virtual address to a guest physical address.
7410  */
7411 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7412                                     struct kvm_translation *tr)
7413 {
7414         unsigned long vaddr = tr->linear_address;
7415         gpa_t gpa;
7416         int idx;
7417
7418         idx = srcu_read_lock(&vcpu->kvm->srcu);
7419         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7420         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7421         tr->physical_address = gpa;
7422         tr->valid = gpa != UNMAPPED_GVA;
7423         tr->writeable = 1;
7424         tr->usermode = 0;
7425
7426         return 0;
7427 }
7428
7429 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7430 {
7431         struct fxregs_state *fxsave =
7432                         &vcpu->arch.guest_fpu.state.fxsave;
7433
7434         memcpy(fpu->fpr, fxsave->st_space, 128);
7435         fpu->fcw = fxsave->cwd;
7436         fpu->fsw = fxsave->swd;
7437         fpu->ftwx = fxsave->twd;
7438         fpu->last_opcode = fxsave->fop;
7439         fpu->last_ip = fxsave->rip;
7440         fpu->last_dp = fxsave->rdp;
7441         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7442
7443         return 0;
7444 }
7445
7446 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7447 {
7448         struct fxregs_state *fxsave =
7449                         &vcpu->arch.guest_fpu.state.fxsave;
7450
7451         memcpy(fxsave->st_space, fpu->fpr, 128);
7452         fxsave->cwd = fpu->fcw;
7453         fxsave->swd = fpu->fsw;
7454         fxsave->twd = fpu->ftwx;
7455         fxsave->fop = fpu->last_opcode;
7456         fxsave->rip = fpu->last_ip;
7457         fxsave->rdp = fpu->last_dp;
7458         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7459
7460         return 0;
7461 }
7462
7463 static void fx_init(struct kvm_vcpu *vcpu)
7464 {
7465         fpstate_init(&vcpu->arch.guest_fpu.state);
7466         if (boot_cpu_has(X86_FEATURE_XSAVES))
7467                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7468                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7469
7470         /*
7471          * Ensure guest xcr0 is valid for loading
7472          */
7473         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7474
7475         vcpu->arch.cr0 |= X86_CR0_ET;
7476 }
7477
7478 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7479 {
7480         if (vcpu->guest_fpu_loaded)
7481                 return;
7482
7483         /*
7484          * Restore all possible states in the guest,
7485          * and assume host would use all available bits.
7486          * Guest xcr0 would be loaded later.
7487          */
7488         vcpu->guest_fpu_loaded = 1;
7489         __kernel_fpu_begin();
7490         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7491         trace_kvm_fpu(1);
7492 }
7493
7494 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7495 {
7496         if (!vcpu->guest_fpu_loaded)
7497                 return;
7498
7499         vcpu->guest_fpu_loaded = 0;
7500         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7501         __kernel_fpu_end();
7502         ++vcpu->stat.fpu_reload;
7503         trace_kvm_fpu(0);
7504 }
7505
7506 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7507 {
7508         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7509
7510         kvmclock_reset(vcpu);
7511
7512         kvm_x86_ops->vcpu_free(vcpu);
7513         free_cpumask_var(wbinvd_dirty_mask);
7514 }
7515
7516 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7517                                                 unsigned int id)
7518 {
7519         struct kvm_vcpu *vcpu;
7520
7521         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7522                 printk_once(KERN_WARNING
7523                 "kvm: SMP vm created on host with unstable TSC; "
7524                 "guest TSC will not be reliable\n");
7525
7526         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7527
7528         return vcpu;
7529 }
7530
7531 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7532 {
7533         int r;
7534
7535         kvm_vcpu_mtrr_init(vcpu);
7536         r = vcpu_load(vcpu);
7537         if (r)
7538                 return r;
7539         kvm_vcpu_reset(vcpu, false);
7540         kvm_mmu_setup(vcpu);
7541         vcpu_put(vcpu);
7542         return r;
7543 }
7544
7545 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7546 {
7547         struct msr_data msr;
7548         struct kvm *kvm = vcpu->kvm;
7549
7550         if (vcpu_load(vcpu))
7551                 return;
7552         msr.data = 0x0;
7553         msr.index = MSR_IA32_TSC;
7554         msr.host_initiated = true;
7555         kvm_write_tsc(vcpu, &msr);
7556         vcpu_put(vcpu);
7557
7558         if (!kvmclock_periodic_sync)
7559                 return;
7560
7561         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7562                                         KVMCLOCK_SYNC_PERIOD);
7563 }
7564
7565 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7566 {
7567         int r;
7568         vcpu->arch.apf.msr_val = 0;
7569
7570         r = vcpu_load(vcpu);
7571         BUG_ON(r);
7572         kvm_mmu_unload(vcpu);
7573         vcpu_put(vcpu);
7574
7575         kvm_x86_ops->vcpu_free(vcpu);
7576 }
7577
7578 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7579 {
7580         vcpu->arch.hflags = 0;
7581
7582         vcpu->arch.smi_pending = 0;
7583         atomic_set(&vcpu->arch.nmi_queued, 0);
7584         vcpu->arch.nmi_pending = 0;
7585         vcpu->arch.nmi_injected = false;
7586         kvm_clear_interrupt_queue(vcpu);
7587         kvm_clear_exception_queue(vcpu);
7588
7589         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7590         kvm_update_dr0123(vcpu);
7591         vcpu->arch.dr6 = DR6_INIT;
7592         kvm_update_dr6(vcpu);
7593         vcpu->arch.dr7 = DR7_FIXED_1;
7594         kvm_update_dr7(vcpu);
7595
7596         vcpu->arch.cr2 = 0;
7597
7598         kvm_make_request(KVM_REQ_EVENT, vcpu);
7599         vcpu->arch.apf.msr_val = 0;
7600         vcpu->arch.st.msr_val = 0;
7601
7602         kvmclock_reset(vcpu);
7603
7604         kvm_clear_async_pf_completion_queue(vcpu);
7605         kvm_async_pf_hash_reset(vcpu);
7606         vcpu->arch.apf.halted = false;
7607
7608         if (!init_event) {
7609                 kvm_pmu_reset(vcpu);
7610                 vcpu->arch.smbase = 0x30000;
7611         }
7612
7613         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7614         vcpu->arch.regs_avail = ~0;
7615         vcpu->arch.regs_dirty = ~0;
7616
7617         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7618 }
7619
7620 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7621 {
7622         struct kvm_segment cs;
7623
7624         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7625         cs.selector = vector << 8;
7626         cs.base = vector << 12;
7627         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7628         kvm_rip_write(vcpu, 0);
7629 }
7630
7631 int kvm_arch_hardware_enable(void)
7632 {
7633         struct kvm *kvm;
7634         struct kvm_vcpu *vcpu;
7635         int i;
7636         int ret;
7637         u64 local_tsc;
7638         u64 max_tsc = 0;
7639         bool stable, backwards_tsc = false;
7640
7641         kvm_shared_msr_cpu_online();
7642         ret = kvm_x86_ops->hardware_enable();
7643         if (ret != 0)
7644                 return ret;
7645
7646         local_tsc = rdtsc();
7647         stable = !check_tsc_unstable();
7648         list_for_each_entry(kvm, &vm_list, vm_list) {
7649                 kvm_for_each_vcpu(i, vcpu, kvm) {
7650                         if (!stable && vcpu->cpu == smp_processor_id())
7651                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7652                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7653                                 backwards_tsc = true;
7654                                 if (vcpu->arch.last_host_tsc > max_tsc)
7655                                         max_tsc = vcpu->arch.last_host_tsc;
7656                         }
7657                 }
7658         }
7659
7660         /*
7661          * Sometimes, even reliable TSCs go backwards.  This happens on
7662          * platforms that reset TSC during suspend or hibernate actions, but
7663          * maintain synchronization.  We must compensate.  Fortunately, we can
7664          * detect that condition here, which happens early in CPU bringup,
7665          * before any KVM threads can be running.  Unfortunately, we can't
7666          * bring the TSCs fully up to date with real time, as we aren't yet far
7667          * enough into CPU bringup that we know how much real time has actually
7668          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7669          * variables that haven't been updated yet.
7670          *
7671          * So we simply find the maximum observed TSC above, then record the
7672          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7673          * the adjustment will be applied.  Note that we accumulate
7674          * adjustments, in case multiple suspend cycles happen before some VCPU
7675          * gets a chance to run again.  In the event that no KVM threads get a
7676          * chance to run, we will miss the entire elapsed period, as we'll have
7677          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7678          * loose cycle time.  This isn't too big a deal, since the loss will be
7679          * uniform across all VCPUs (not to mention the scenario is extremely
7680          * unlikely). It is possible that a second hibernate recovery happens
7681          * much faster than a first, causing the observed TSC here to be
7682          * smaller; this would require additional padding adjustment, which is
7683          * why we set last_host_tsc to the local tsc observed here.
7684          *
7685          * N.B. - this code below runs only on platforms with reliable TSC,
7686          * as that is the only way backwards_tsc is set above.  Also note
7687          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7688          * have the same delta_cyc adjustment applied if backwards_tsc
7689          * is detected.  Note further, this adjustment is only done once,
7690          * as we reset last_host_tsc on all VCPUs to stop this from being
7691          * called multiple times (one for each physical CPU bringup).
7692          *
7693          * Platforms with unreliable TSCs don't have to deal with this, they
7694          * will be compensated by the logic in vcpu_load, which sets the TSC to
7695          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7696          * guarantee that they stay in perfect synchronization.
7697          */
7698         if (backwards_tsc) {
7699                 u64 delta_cyc = max_tsc - local_tsc;
7700                 backwards_tsc_observed = true;
7701                 list_for_each_entry(kvm, &vm_list, vm_list) {
7702                         kvm_for_each_vcpu(i, vcpu, kvm) {
7703                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7704                                 vcpu->arch.last_host_tsc = local_tsc;
7705                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7706                         }
7707
7708                         /*
7709                          * We have to disable TSC offset matching.. if you were
7710                          * booting a VM while issuing an S4 host suspend....
7711                          * you may have some problem.  Solving this issue is
7712                          * left as an exercise to the reader.
7713                          */
7714                         kvm->arch.last_tsc_nsec = 0;
7715                         kvm->arch.last_tsc_write = 0;
7716                 }
7717
7718         }
7719         return 0;
7720 }
7721
7722 void kvm_arch_hardware_disable(void)
7723 {
7724         kvm_x86_ops->hardware_disable();
7725         drop_user_return_notifiers();
7726 }
7727
7728 int kvm_arch_hardware_setup(void)
7729 {
7730         int r;
7731
7732         r = kvm_x86_ops->hardware_setup();
7733         if (r != 0)
7734                 return r;
7735
7736         if (kvm_has_tsc_control) {
7737                 /*
7738                  * Make sure the user can only configure tsc_khz values that
7739                  * fit into a signed integer.
7740                  * A min value is not calculated needed because it will always
7741                  * be 1 on all machines.
7742                  */
7743                 u64 max = min(0x7fffffffULL,
7744                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7745                 kvm_max_guest_tsc_khz = max;
7746
7747                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7748         }
7749
7750         kvm_init_msr_list();
7751         return 0;
7752 }
7753
7754 void kvm_arch_hardware_unsetup(void)
7755 {
7756         kvm_x86_ops->hardware_unsetup();
7757 }
7758
7759 void kvm_arch_check_processor_compat(void *rtn)
7760 {
7761         kvm_x86_ops->check_processor_compatibility(rtn);
7762 }
7763
7764 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7765 {
7766         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7767 }
7768 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7769
7770 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7771 {
7772         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7773 }
7774
7775 struct static_key kvm_no_apic_vcpu __read_mostly;
7776 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7777
7778 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7779 {
7780         struct page *page;
7781         struct kvm *kvm;
7782         int r;
7783
7784         BUG_ON(vcpu->kvm == NULL);
7785         kvm = vcpu->kvm;
7786
7787         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7788         vcpu->arch.pv.pv_unhalted = false;
7789         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7790         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7791                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7792         else
7793                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7794
7795         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7796         if (!page) {
7797                 r = -ENOMEM;
7798                 goto fail;
7799         }
7800         vcpu->arch.pio_data = page_address(page);
7801
7802         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7803
7804         r = kvm_mmu_create(vcpu);
7805         if (r < 0)
7806                 goto fail_free_pio_data;
7807
7808         if (irqchip_in_kernel(kvm)) {
7809                 r = kvm_create_lapic(vcpu);
7810                 if (r < 0)
7811                         goto fail_mmu_destroy;
7812         } else
7813                 static_key_slow_inc(&kvm_no_apic_vcpu);
7814
7815         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7816                                        GFP_KERNEL);
7817         if (!vcpu->arch.mce_banks) {
7818                 r = -ENOMEM;
7819                 goto fail_free_lapic;
7820         }
7821         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7822
7823         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7824                 r = -ENOMEM;
7825                 goto fail_free_mce_banks;
7826         }
7827
7828         fx_init(vcpu);
7829
7830         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7831         vcpu->arch.pv_time_enabled = false;
7832
7833         vcpu->arch.guest_supported_xcr0 = 0;
7834         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7835
7836         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7837
7838         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7839
7840         kvm_async_pf_hash_reset(vcpu);
7841         kvm_pmu_init(vcpu);
7842
7843         vcpu->arch.pending_external_vector = -1;
7844
7845         kvm_hv_vcpu_init(vcpu);
7846
7847         return 0;
7848
7849 fail_free_mce_banks:
7850         kfree(vcpu->arch.mce_banks);
7851 fail_free_lapic:
7852         kvm_free_lapic(vcpu);
7853 fail_mmu_destroy:
7854         kvm_mmu_destroy(vcpu);
7855 fail_free_pio_data:
7856         free_page((unsigned long)vcpu->arch.pio_data);
7857 fail:
7858         return r;
7859 }
7860
7861 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7862 {
7863         int idx;
7864
7865         kvm_hv_vcpu_uninit(vcpu);
7866         kvm_pmu_destroy(vcpu);
7867         kfree(vcpu->arch.mce_banks);
7868         kvm_free_lapic(vcpu);
7869         idx = srcu_read_lock(&vcpu->kvm->srcu);
7870         kvm_mmu_destroy(vcpu);
7871         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7872         free_page((unsigned long)vcpu->arch.pio_data);
7873         if (!lapic_in_kernel(vcpu))
7874                 static_key_slow_dec(&kvm_no_apic_vcpu);
7875 }
7876
7877 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7878 {
7879         kvm_x86_ops->sched_in(vcpu, cpu);
7880 }
7881
7882 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7883 {
7884         if (type)
7885                 return -EINVAL;
7886
7887         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7888         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7889         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7890         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7891         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7892
7893         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7894         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7895         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7896         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7897                 &kvm->arch.irq_sources_bitmap);
7898
7899         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7900         mutex_init(&kvm->arch.apic_map_lock);
7901         mutex_init(&kvm->arch.hyperv.hv_lock);
7902         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7903
7904         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7905         pvclock_update_vm_gtod_copy(kvm);
7906
7907         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7908         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7909
7910         kvm_page_track_init(kvm);
7911         kvm_mmu_init_vm(kvm);
7912
7913         if (kvm_x86_ops->vm_init)
7914                 return kvm_x86_ops->vm_init(kvm);
7915
7916         return 0;
7917 }
7918
7919 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7920 {
7921         int r;
7922         r = vcpu_load(vcpu);
7923         BUG_ON(r);
7924         kvm_mmu_unload(vcpu);
7925         vcpu_put(vcpu);
7926 }
7927
7928 static void kvm_free_vcpus(struct kvm *kvm)
7929 {
7930         unsigned int i;
7931         struct kvm_vcpu *vcpu;
7932
7933         /*
7934          * Unpin any mmu pages first.
7935          */
7936         kvm_for_each_vcpu(i, vcpu, kvm) {
7937                 kvm_clear_async_pf_completion_queue(vcpu);
7938                 kvm_unload_vcpu_mmu(vcpu);
7939         }
7940         kvm_for_each_vcpu(i, vcpu, kvm)
7941                 kvm_arch_vcpu_free(vcpu);
7942
7943         mutex_lock(&kvm->lock);
7944         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7945                 kvm->vcpus[i] = NULL;
7946
7947         atomic_set(&kvm->online_vcpus, 0);
7948         mutex_unlock(&kvm->lock);
7949 }
7950
7951 void kvm_arch_sync_events(struct kvm *kvm)
7952 {
7953         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7954         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7955         kvm_free_all_assigned_devices(kvm);
7956         kvm_free_pit(kvm);
7957 }
7958
7959 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7960 {
7961         int i, r;
7962         unsigned long hva;
7963         struct kvm_memslots *slots = kvm_memslots(kvm);
7964         struct kvm_memory_slot *slot, old;
7965
7966         /* Called with kvm->slots_lock held.  */
7967         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7968                 return -EINVAL;
7969
7970         slot = id_to_memslot(slots, id);
7971         if (size) {
7972                 if (slot->npages)
7973                         return -EEXIST;
7974
7975                 /*
7976                  * MAP_SHARED to prevent internal slot pages from being moved
7977                  * by fork()/COW.
7978                  */
7979                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7980                               MAP_SHARED | MAP_ANONYMOUS, 0);
7981                 if (IS_ERR((void *)hva))
7982                         return PTR_ERR((void *)hva);
7983         } else {
7984                 if (!slot->npages)
7985                         return 0;
7986
7987                 hva = 0;
7988         }
7989
7990         old = *slot;
7991         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7992                 struct kvm_userspace_memory_region m;
7993
7994                 m.slot = id | (i << 16);
7995                 m.flags = 0;
7996                 m.guest_phys_addr = gpa;
7997                 m.userspace_addr = hva;
7998                 m.memory_size = size;
7999                 r = __kvm_set_memory_region(kvm, &m);
8000                 if (r < 0)
8001                         return r;
8002         }
8003
8004         if (!size) {
8005                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8006                 WARN_ON(r < 0);
8007         }
8008
8009         return 0;
8010 }
8011 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8012
8013 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8014 {
8015         int r;
8016
8017         mutex_lock(&kvm->slots_lock);
8018         r = __x86_set_memory_region(kvm, id, gpa, size);
8019         mutex_unlock(&kvm->slots_lock);
8020
8021         return r;
8022 }
8023 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8024
8025 void kvm_arch_destroy_vm(struct kvm *kvm)
8026 {
8027         if (current->mm == kvm->mm) {
8028                 /*
8029                  * Free memory regions allocated on behalf of userspace,
8030                  * unless the the memory map has changed due to process exit
8031                  * or fd copying.
8032                  */
8033                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8034                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8035                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8036         }
8037         if (kvm_x86_ops->vm_destroy)
8038                 kvm_x86_ops->vm_destroy(kvm);
8039         kvm_iommu_unmap_guest(kvm);
8040         kfree(kvm->arch.vpic);
8041         kfree(kvm->arch.vioapic);
8042         kvm_free_vcpus(kvm);
8043         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8044         kvm_mmu_uninit_vm(kvm);
8045 }
8046
8047 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8048                            struct kvm_memory_slot *dont)
8049 {
8050         int i;
8051
8052         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8053                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8054                         kvfree(free->arch.rmap[i]);
8055                         free->arch.rmap[i] = NULL;
8056                 }
8057                 if (i == 0)
8058                         continue;
8059
8060                 if (!dont || free->arch.lpage_info[i - 1] !=
8061                              dont->arch.lpage_info[i - 1]) {
8062                         kvfree(free->arch.lpage_info[i - 1]);
8063                         free->arch.lpage_info[i - 1] = NULL;
8064                 }
8065         }
8066
8067         kvm_page_track_free_memslot(free, dont);
8068 }
8069
8070 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8071                             unsigned long npages)
8072 {
8073         int i;
8074
8075         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8076                 struct kvm_lpage_info *linfo;
8077                 unsigned long ugfn;
8078                 int lpages;
8079                 int level = i + 1;
8080
8081                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8082                                       slot->base_gfn, level) + 1;
8083
8084                 slot->arch.rmap[i] =
8085                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8086                 if (!slot->arch.rmap[i])
8087                         goto out_free;
8088                 if (i == 0)
8089                         continue;
8090
8091                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8092                 if (!linfo)
8093                         goto out_free;
8094
8095                 slot->arch.lpage_info[i - 1] = linfo;
8096
8097                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8098                         linfo[0].disallow_lpage = 1;
8099                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8100                         linfo[lpages - 1].disallow_lpage = 1;
8101                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8102                 /*
8103                  * If the gfn and userspace address are not aligned wrt each
8104                  * other, or if explicitly asked to, disable large page
8105                  * support for this slot
8106                  */
8107                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8108                     !kvm_largepages_enabled()) {
8109                         unsigned long j;
8110
8111                         for (j = 0; j < lpages; ++j)
8112                                 linfo[j].disallow_lpage = 1;
8113                 }
8114         }
8115
8116         if (kvm_page_track_create_memslot(slot, npages))
8117                 goto out_free;
8118
8119         return 0;
8120
8121 out_free:
8122         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8123                 kvfree(slot->arch.rmap[i]);
8124                 slot->arch.rmap[i] = NULL;
8125                 if (i == 0)
8126                         continue;
8127
8128                 kvfree(slot->arch.lpage_info[i - 1]);
8129                 slot->arch.lpage_info[i - 1] = NULL;
8130         }
8131         return -ENOMEM;
8132 }
8133
8134 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8135 {
8136         /*
8137          * memslots->generation has been incremented.
8138          * mmio generation may have reached its maximum value.
8139          */
8140         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8141 }
8142
8143 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8144                                 struct kvm_memory_slot *memslot,
8145                                 const struct kvm_userspace_memory_region *mem,
8146                                 enum kvm_mr_change change)
8147 {
8148         return 0;
8149 }
8150
8151 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8152                                      struct kvm_memory_slot *new)
8153 {
8154         /* Still write protect RO slot */
8155         if (new->flags & KVM_MEM_READONLY) {
8156                 kvm_mmu_slot_remove_write_access(kvm, new);
8157                 return;
8158         }
8159
8160         /*
8161          * Call kvm_x86_ops dirty logging hooks when they are valid.
8162          *
8163          * kvm_x86_ops->slot_disable_log_dirty is called when:
8164          *
8165          *  - KVM_MR_CREATE with dirty logging is disabled
8166          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8167          *
8168          * The reason is, in case of PML, we need to set D-bit for any slots
8169          * with dirty logging disabled in order to eliminate unnecessary GPA
8170          * logging in PML buffer (and potential PML buffer full VMEXT). This
8171          * guarantees leaving PML enabled during guest's lifetime won't have
8172          * any additonal overhead from PML when guest is running with dirty
8173          * logging disabled for memory slots.
8174          *
8175          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8176          * to dirty logging mode.
8177          *
8178          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8179          *
8180          * In case of write protect:
8181          *
8182          * Write protect all pages for dirty logging.
8183          *
8184          * All the sptes including the large sptes which point to this
8185          * slot are set to readonly. We can not create any new large
8186          * spte on this slot until the end of the logging.
8187          *
8188          * See the comments in fast_page_fault().
8189          */
8190         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8191                 if (kvm_x86_ops->slot_enable_log_dirty)
8192                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8193                 else
8194                         kvm_mmu_slot_remove_write_access(kvm, new);
8195         } else {
8196                 if (kvm_x86_ops->slot_disable_log_dirty)
8197                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8198         }
8199 }
8200
8201 void kvm_arch_commit_memory_region(struct kvm *kvm,
8202                                 const struct kvm_userspace_memory_region *mem,
8203                                 const struct kvm_memory_slot *old,
8204                                 const struct kvm_memory_slot *new,
8205                                 enum kvm_mr_change change)
8206 {
8207         int nr_mmu_pages = 0;
8208
8209         if (!kvm->arch.n_requested_mmu_pages)
8210                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8211
8212         if (nr_mmu_pages)
8213                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8214
8215         /*
8216          * Dirty logging tracks sptes in 4k granularity, meaning that large
8217          * sptes have to be split.  If live migration is successful, the guest
8218          * in the source machine will be destroyed and large sptes will be
8219          * created in the destination. However, if the guest continues to run
8220          * in the source machine (for example if live migration fails), small
8221          * sptes will remain around and cause bad performance.
8222          *
8223          * Scan sptes if dirty logging has been stopped, dropping those
8224          * which can be collapsed into a single large-page spte.  Later
8225          * page faults will create the large-page sptes.
8226          */
8227         if ((change != KVM_MR_DELETE) &&
8228                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8229                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8230                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8231
8232         /*
8233          * Set up write protection and/or dirty logging for the new slot.
8234          *
8235          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8236          * been zapped so no dirty logging staff is needed for old slot. For
8237          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8238          * new and it's also covered when dealing with the new slot.
8239          *
8240          * FIXME: const-ify all uses of struct kvm_memory_slot.
8241          */
8242         if (change != KVM_MR_DELETE)
8243                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8244 }
8245
8246 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8247 {
8248         kvm_mmu_invalidate_zap_all_pages(kvm);
8249 }
8250
8251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8252                                    struct kvm_memory_slot *slot)
8253 {
8254         kvm_page_track_flush_slot(kvm, slot);
8255 }
8256
8257 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8258 {
8259         if (!list_empty_careful(&vcpu->async_pf.done))
8260                 return true;
8261
8262         if (kvm_apic_has_events(vcpu))
8263                 return true;
8264
8265         if (vcpu->arch.pv.pv_unhalted)
8266                 return true;
8267
8268         if (atomic_read(&vcpu->arch.nmi_queued))
8269                 return true;
8270
8271         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8272                 return true;
8273
8274         if (kvm_arch_interrupt_allowed(vcpu) &&
8275             kvm_cpu_has_interrupt(vcpu))
8276                 return true;
8277
8278         if (kvm_hv_has_stimer_pending(vcpu))
8279                 return true;
8280
8281         return false;
8282 }
8283
8284 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8285 {
8286         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8287                 kvm_x86_ops->check_nested_events(vcpu, false);
8288
8289         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8290 }
8291
8292 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8293 {
8294         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8295 }
8296
8297 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8298 {
8299         return kvm_x86_ops->interrupt_allowed(vcpu);
8300 }
8301
8302 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8303 {
8304         if (is_64_bit_mode(vcpu))
8305                 return kvm_rip_read(vcpu);
8306         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8307                      kvm_rip_read(vcpu));
8308 }
8309 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8310
8311 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8312 {
8313         return kvm_get_linear_rip(vcpu) == linear_rip;
8314 }
8315 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8316
8317 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8318 {
8319         unsigned long rflags;
8320
8321         rflags = kvm_x86_ops->get_rflags(vcpu);
8322         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8323                 rflags &= ~X86_EFLAGS_TF;
8324         return rflags;
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8327
8328 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8329 {
8330         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8331             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8332                 rflags |= X86_EFLAGS_TF;
8333         kvm_x86_ops->set_rflags(vcpu, rflags);
8334 }
8335
8336 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8337 {
8338         __kvm_set_rflags(vcpu, rflags);
8339         kvm_make_request(KVM_REQ_EVENT, vcpu);
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8342
8343 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8344 {
8345         int r;
8346
8347         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8348               work->wakeup_all)
8349                 return;
8350
8351         r = kvm_mmu_reload(vcpu);
8352         if (unlikely(r))
8353                 return;
8354
8355         if (!vcpu->arch.mmu.direct_map &&
8356               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8357                 return;
8358
8359         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8360 }
8361
8362 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8363 {
8364         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8365 }
8366
8367 static inline u32 kvm_async_pf_next_probe(u32 key)
8368 {
8369         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8370 }
8371
8372 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8373 {
8374         u32 key = kvm_async_pf_hash_fn(gfn);
8375
8376         while (vcpu->arch.apf.gfns[key] != ~0)
8377                 key = kvm_async_pf_next_probe(key);
8378
8379         vcpu->arch.apf.gfns[key] = gfn;
8380 }
8381
8382 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8383 {
8384         int i;
8385         u32 key = kvm_async_pf_hash_fn(gfn);
8386
8387         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8388                      (vcpu->arch.apf.gfns[key] != gfn &&
8389                       vcpu->arch.apf.gfns[key] != ~0); i++)
8390                 key = kvm_async_pf_next_probe(key);
8391
8392         return key;
8393 }
8394
8395 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8396 {
8397         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8398 }
8399
8400 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8401 {
8402         u32 i, j, k;
8403
8404         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8405         while (true) {
8406                 vcpu->arch.apf.gfns[i] = ~0;
8407                 do {
8408                         j = kvm_async_pf_next_probe(j);
8409                         if (vcpu->arch.apf.gfns[j] == ~0)
8410                                 return;
8411                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8412                         /*
8413                          * k lies cyclically in ]i,j]
8414                          * |    i.k.j |
8415                          * |....j i.k.| or  |.k..j i...|
8416                          */
8417                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8418                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8419                 i = j;
8420         }
8421 }
8422
8423 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8424 {
8425
8426         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8427                                       sizeof(val));
8428 }
8429
8430 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8431                                      struct kvm_async_pf *work)
8432 {
8433         struct x86_exception fault;
8434
8435         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8436         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8437
8438         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8439             (vcpu->arch.apf.send_user_only &&
8440              kvm_x86_ops->get_cpl(vcpu) == 0))
8441                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8442         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8443                 fault.vector = PF_VECTOR;
8444                 fault.error_code_valid = true;
8445                 fault.error_code = 0;
8446                 fault.nested_page_fault = false;
8447                 fault.address = work->arch.token;
8448                 kvm_inject_page_fault(vcpu, &fault);
8449         }
8450 }
8451
8452 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8453                                  struct kvm_async_pf *work)
8454 {
8455         struct x86_exception fault;
8456
8457         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8458         if (work->wakeup_all)
8459                 work->arch.token = ~0; /* broadcast wakeup */
8460         else
8461                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8462
8463         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8464             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8465                 fault.vector = PF_VECTOR;
8466                 fault.error_code_valid = true;
8467                 fault.error_code = 0;
8468                 fault.nested_page_fault = false;
8469                 fault.address = work->arch.token;
8470                 kvm_inject_page_fault(vcpu, &fault);
8471         }
8472         vcpu->arch.apf.halted = false;
8473         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8474 }
8475
8476 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8477 {
8478         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8479                 return true;
8480         else
8481                 return !kvm_event_needs_reinjection(vcpu) &&
8482                         kvm_x86_ops->interrupt_allowed(vcpu);
8483 }
8484
8485 void kvm_arch_start_assignment(struct kvm *kvm)
8486 {
8487         atomic_inc(&kvm->arch.assigned_device_count);
8488 }
8489 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8490
8491 void kvm_arch_end_assignment(struct kvm *kvm)
8492 {
8493         atomic_dec(&kvm->arch.assigned_device_count);
8494 }
8495 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8496
8497 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8498 {
8499         return atomic_read(&kvm->arch.assigned_device_count);
8500 }
8501 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8502
8503 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8504 {
8505         atomic_inc(&kvm->arch.noncoherent_dma_count);
8506 }
8507 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8508
8509 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8510 {
8511         atomic_dec(&kvm->arch.noncoherent_dma_count);
8512 }
8513 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8514
8515 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8516 {
8517         return atomic_read(&kvm->arch.noncoherent_dma_count);
8518 }
8519 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8520
8521 bool kvm_arch_has_irq_bypass(void)
8522 {
8523         return kvm_x86_ops->update_pi_irte != NULL;
8524 }
8525
8526 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8527                                       struct irq_bypass_producer *prod)
8528 {
8529         struct kvm_kernel_irqfd *irqfd =
8530                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8531
8532         irqfd->producer = prod;
8533
8534         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8535                                            prod->irq, irqfd->gsi, 1);
8536 }
8537
8538 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8539                                       struct irq_bypass_producer *prod)
8540 {
8541         int ret;
8542         struct kvm_kernel_irqfd *irqfd =
8543                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8544
8545         WARN_ON(irqfd->producer != prod);
8546         irqfd->producer = NULL;
8547
8548         /*
8549          * When producer of consumer is unregistered, we change back to
8550          * remapped mode, so we can re-use the current implementation
8551          * when the irq is masked/disabled or the consumer side (KVM
8552          * int this case doesn't want to receive the interrupts.
8553         */
8554         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8555         if (ret)
8556                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8557                        " fails: %d\n", irqfd->consumer.token, ret);
8558 }
8559
8560 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8561                                    uint32_t guest_irq, bool set)
8562 {
8563         if (!kvm_x86_ops->update_pi_irte)
8564                 return -EINVAL;
8565
8566         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8567 }
8568
8569 bool kvm_vector_hashing_enabled(void)
8570 {
8571         return vector_hashing;
8572 }
8573 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8574
8575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);