KVM: x86: do not go through vcpu in __get_kvmclock_ns
[linux-block.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213
214         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
215                 values = &locals->values[slot];
216                 if (values->host != values->curr) {
217                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
218                         values->curr = values->host;
219                 }
220         }
221         locals->registered = false;
222         user_return_notifier_unregister(urn);
223 }
224
225 static void shared_msr_update(unsigned slot, u32 msr)
226 {
227         u64 value;
228         unsigned int cpu = smp_processor_id();
229         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
230
231         /* only read, and nobody should modify it at this time,
232          * so don't need lock */
233         if (slot >= shared_msrs_global.nr) {
234                 printk(KERN_ERR "kvm: invalid MSR slot!");
235                 return;
236         }
237         rdmsrl_safe(msr, &value);
238         smsr->values[slot].host = value;
239         smsr->values[slot].curr = value;
240 }
241
242 void kvm_define_shared_msr(unsigned slot, u32 msr)
243 {
244         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
245         shared_msrs_global.msrs[slot] = msr;
246         if (slot >= shared_msrs_global.nr)
247                 shared_msrs_global.nr = slot + 1;
248 }
249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
250
251 static void kvm_shared_msr_cpu_online(void)
252 {
253         unsigned i;
254
255         for (i = 0; i < shared_msrs_global.nr; ++i)
256                 shared_msr_update(i, shared_msrs_global.msrs[i]);
257 }
258
259 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
260 {
261         unsigned int cpu = smp_processor_id();
262         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263         int err;
264
265         if (((value ^ smsr->values[slot].curr) & mask) == 0)
266                 return 0;
267         smsr->values[slot].curr = value;
268         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
269         if (err)
270                 return 1;
271
272         if (!smsr->registered) {
273                 smsr->urn.on_user_return = kvm_on_user_return;
274                 user_return_notifier_register(&smsr->urn);
275                 smsr->registered = true;
276         }
277         return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280
281 static void drop_user_return_notifiers(void)
282 {
283         unsigned int cpu = smp_processor_id();
284         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285
286         if (smsr->registered)
287                 kvm_on_user_return(&smsr->urn);
288 }
289
290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292         return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295
296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298         u64 old_state = vcpu->arch.apic_base &
299                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300         u64 new_state = msr_info->data &
301                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304
305         if (!msr_info->host_initiated &&
306             ((msr_info->data & reserved_bits) != 0 ||
307              new_state == X2APIC_ENABLE ||
308              (new_state == MSR_IA32_APICBASE_ENABLE &&
309               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311               old_state == 0)))
312                 return 1;
313
314         kvm_lapic_set_base(vcpu, msr_info->data);
315         return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318
319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321         /* Fault while not rebooting.  We want the trace. */
322         BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325
326 #define EXCPT_BENIGN            0
327 #define EXCPT_CONTRIBUTORY      1
328 #define EXCPT_PF                2
329
330 static int exception_class(int vector)
331 {
332         switch (vector) {
333         case PF_VECTOR:
334                 return EXCPT_PF;
335         case DE_VECTOR:
336         case TS_VECTOR:
337         case NP_VECTOR:
338         case SS_VECTOR:
339         case GP_VECTOR:
340                 return EXCPT_CONTRIBUTORY;
341         default:
342                 break;
343         }
344         return EXCPT_BENIGN;
345 }
346
347 #define EXCPT_FAULT             0
348 #define EXCPT_TRAP              1
349 #define EXCPT_ABORT             2
350 #define EXCPT_INTERRUPT         3
351
352 static int exception_type(int vector)
353 {
354         unsigned int mask;
355
356         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357                 return EXCPT_INTERRUPT;
358
359         mask = 1 << vector;
360
361         /* #DB is trap, as instruction watchpoints are handled elsewhere */
362         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363                 return EXCPT_TRAP;
364
365         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366                 return EXCPT_ABORT;
367
368         /* Reserved exceptions will result in fault */
369         return EXCPT_FAULT;
370 }
371
372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373                 unsigned nr, bool has_error, u32 error_code,
374                 bool reinject)
375 {
376         u32 prev_nr;
377         int class1, class2;
378
379         kvm_make_request(KVM_REQ_EVENT, vcpu);
380
381         if (!vcpu->arch.exception.pending) {
382         queue:
383                 if (has_error && !is_protmode(vcpu))
384                         has_error = false;
385                 vcpu->arch.exception.pending = true;
386                 vcpu->arch.exception.has_error_code = has_error;
387                 vcpu->arch.exception.nr = nr;
388                 vcpu->arch.exception.error_code = error_code;
389                 vcpu->arch.exception.reinject = reinject;
390                 return;
391         }
392
393         /* to check exception */
394         prev_nr = vcpu->arch.exception.nr;
395         if (prev_nr == DF_VECTOR) {
396                 /* triple fault -> shutdown */
397                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398                 return;
399         }
400         class1 = exception_class(prev_nr);
401         class2 = exception_class(nr);
402         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404                 /* generate double fault per SDM Table 5-5 */
405                 vcpu->arch.exception.pending = true;
406                 vcpu->arch.exception.has_error_code = true;
407                 vcpu->arch.exception.nr = DF_VECTOR;
408                 vcpu->arch.exception.error_code = 0;
409         } else
410                 /* replace previous exception with a new one in a hope
411                    that instruction re-execution will regenerate lost
412                    exception */
413                 goto queue;
414 }
415
416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418         kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421
422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424         kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427
428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430         if (err)
431                 kvm_inject_gp(vcpu, 0);
432         else
433                 kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436
437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         ++vcpu->stat.pf_guest;
440         vcpu->arch.cr2 = fault->address;
441         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444
445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449         else
450                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451
452         return fault->nested_page_fault;
453 }
454
455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457         atomic_inc(&vcpu->arch.nmi_queued);
458         kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461
462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464         kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467
468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470         kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473
474 /*
475  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
476  * a #GP and return false.
477  */
478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481                 return true;
482         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483         return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486
487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490                 return true;
491
492         kvm_queue_exception(vcpu, UD_VECTOR);
493         return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496
497 /*
498  * This function will be used to read from the physical memory of the currently
499  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500  * can read from guest physical or from the guest's guest physical memory.
501  */
502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503                             gfn_t ngfn, void *data, int offset, int len,
504                             u32 access)
505 {
506         struct x86_exception exception;
507         gfn_t real_gfn;
508         gpa_t ngpa;
509
510         ngpa     = gfn_to_gpa(ngfn);
511         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512         if (real_gfn == UNMAPPED_GVA)
513                 return -EFAULT;
514
515         real_gfn = gpa_to_gfn(real_gfn);
516
517         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520
521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522                                void *data, int offset, int len, u32 access)
523 {
524         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525                                        data, offset, len, access);
526 }
527
528 /*
529  * Load the pae pdptrs.  Return true is they are all valid.
530  */
531 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
532 {
533         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
534         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
535         int i;
536         int ret;
537         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
538
539         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
540                                       offset * sizeof(u64), sizeof(pdpte),
541                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
542         if (ret < 0) {
543                 ret = 0;
544                 goto out;
545         }
546         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
547                 if ((pdpte[i] & PT_PRESENT_MASK) &&
548                     (pdpte[i] &
549                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
550                         ret = 0;
551                         goto out;
552                 }
553         }
554         ret = 1;
555
556         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
557         __set_bit(VCPU_EXREG_PDPTR,
558                   (unsigned long *)&vcpu->arch.regs_avail);
559         __set_bit(VCPU_EXREG_PDPTR,
560                   (unsigned long *)&vcpu->arch.regs_dirty);
561 out:
562
563         return ret;
564 }
565 EXPORT_SYMBOL_GPL(load_pdptrs);
566
567 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
568 {
569         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
570         bool changed = true;
571         int offset;
572         gfn_t gfn;
573         int r;
574
575         if (is_long_mode(vcpu) || !is_pae(vcpu))
576                 return false;
577
578         if (!test_bit(VCPU_EXREG_PDPTR,
579                       (unsigned long *)&vcpu->arch.regs_avail))
580                 return true;
581
582         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
583         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
584         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
585                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
586         if (r < 0)
587                 goto out;
588         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
589 out:
590
591         return changed;
592 }
593
594 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
595 {
596         unsigned long old_cr0 = kvm_read_cr0(vcpu);
597         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
598
599         cr0 |= X86_CR0_ET;
600
601 #ifdef CONFIG_X86_64
602         if (cr0 & 0xffffffff00000000UL)
603                 return 1;
604 #endif
605
606         cr0 &= ~CR0_RESERVED_BITS;
607
608         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
609                 return 1;
610
611         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
612                 return 1;
613
614         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
615 #ifdef CONFIG_X86_64
616                 if ((vcpu->arch.efer & EFER_LME)) {
617                         int cs_db, cs_l;
618
619                         if (!is_pae(vcpu))
620                                 return 1;
621                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
622                         if (cs_l)
623                                 return 1;
624                 } else
625 #endif
626                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
627                                                  kvm_read_cr3(vcpu)))
628                         return 1;
629         }
630
631         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
632                 return 1;
633
634         kvm_x86_ops->set_cr0(vcpu, cr0);
635
636         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
637                 kvm_clear_async_pf_completion_queue(vcpu);
638                 kvm_async_pf_hash_reset(vcpu);
639         }
640
641         if ((cr0 ^ old_cr0) & update_bits)
642                 kvm_mmu_reset_context(vcpu);
643
644         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
645             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
646             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
647                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
648
649         return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_set_cr0);
652
653 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
654 {
655         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
656 }
657 EXPORT_SYMBOL_GPL(kvm_lmsw);
658
659 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
660 {
661         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
662                         !vcpu->guest_xcr0_loaded) {
663                 /* kvm_set_xcr() also depends on this */
664                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
665                 vcpu->guest_xcr0_loaded = 1;
666         }
667 }
668
669 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
670 {
671         if (vcpu->guest_xcr0_loaded) {
672                 if (vcpu->arch.xcr0 != host_xcr0)
673                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
674                 vcpu->guest_xcr0_loaded = 0;
675         }
676 }
677
678 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
679 {
680         u64 xcr0 = xcr;
681         u64 old_xcr0 = vcpu->arch.xcr0;
682         u64 valid_bits;
683
684         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
685         if (index != XCR_XFEATURE_ENABLED_MASK)
686                 return 1;
687         if (!(xcr0 & XFEATURE_MASK_FP))
688                 return 1;
689         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
690                 return 1;
691
692         /*
693          * Do not allow the guest to set bits that we do not support
694          * saving.  However, xcr0 bit 0 is always set, even if the
695          * emulated CPU does not support XSAVE (see fx_init).
696          */
697         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
698         if (xcr0 & ~valid_bits)
699                 return 1;
700
701         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
702             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
703                 return 1;
704
705         if (xcr0 & XFEATURE_MASK_AVX512) {
706                 if (!(xcr0 & XFEATURE_MASK_YMM))
707                         return 1;
708                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
709                         return 1;
710         }
711         vcpu->arch.xcr0 = xcr0;
712
713         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
714                 kvm_update_cpuid(vcpu);
715         return 0;
716 }
717
718 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
719 {
720         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
721             __kvm_set_xcr(vcpu, index, xcr)) {
722                 kvm_inject_gp(vcpu, 0);
723                 return 1;
724         }
725         return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_xcr);
728
729 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
730 {
731         unsigned long old_cr4 = kvm_read_cr4(vcpu);
732         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
733                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
734
735         if (cr4 & CR4_RESERVED_BITS)
736                 return 1;
737
738         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
739                 return 1;
740
741         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
742                 return 1;
743
744         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
745                 return 1;
746
747         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
748                 return 1;
749
750         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
751                 return 1;
752
753         if (is_long_mode(vcpu)) {
754                 if (!(cr4 & X86_CR4_PAE))
755                         return 1;
756         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
757                    && ((cr4 ^ old_cr4) & pdptr_bits)
758                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
759                                    kvm_read_cr3(vcpu)))
760                 return 1;
761
762         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
763                 if (!guest_cpuid_has_pcid(vcpu))
764                         return 1;
765
766                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
767                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
768                         return 1;
769         }
770
771         if (kvm_x86_ops->set_cr4(vcpu, cr4))
772                 return 1;
773
774         if (((cr4 ^ old_cr4) & pdptr_bits) ||
775             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
776                 kvm_mmu_reset_context(vcpu);
777
778         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
779                 kvm_update_cpuid(vcpu);
780
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_set_cr4);
784
785 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787 #ifdef CONFIG_X86_64
788         cr3 &= ~CR3_PCID_INVD;
789 #endif
790
791         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
792                 kvm_mmu_sync_roots(vcpu);
793                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
794                 return 0;
795         }
796
797         if (is_long_mode(vcpu)) {
798                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
799                         return 1;
800         } else if (is_pae(vcpu) && is_paging(vcpu) &&
801                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
802                 return 1;
803
804         vcpu->arch.cr3 = cr3;
805         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
806         kvm_mmu_new_cr3(vcpu);
807         return 0;
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_cr3);
810
811 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
812 {
813         if (cr8 & CR8_RESERVED_BITS)
814                 return 1;
815         if (lapic_in_kernel(vcpu))
816                 kvm_lapic_set_tpr(vcpu, cr8);
817         else
818                 vcpu->arch.cr8 = cr8;
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr8);
822
823 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
824 {
825         if (lapic_in_kernel(vcpu))
826                 return kvm_lapic_get_cr8(vcpu);
827         else
828                 return vcpu->arch.cr8;
829 }
830 EXPORT_SYMBOL_GPL(kvm_get_cr8);
831
832 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
833 {
834         int i;
835
836         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
837                 for (i = 0; i < KVM_NR_DB_REGS; i++)
838                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
839                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
840         }
841 }
842
843 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
844 {
845         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
846                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
847 }
848
849 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
850 {
851         unsigned long dr7;
852
853         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
854                 dr7 = vcpu->arch.guest_debug_dr7;
855         else
856                 dr7 = vcpu->arch.dr7;
857         kvm_x86_ops->set_dr7(vcpu, dr7);
858         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
859         if (dr7 & DR7_BP_EN_MASK)
860                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
861 }
862
863 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
864 {
865         u64 fixed = DR6_FIXED_1;
866
867         if (!guest_cpuid_has_rtm(vcpu))
868                 fixed |= DR6_RTM;
869         return fixed;
870 }
871
872 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
873 {
874         switch (dr) {
875         case 0 ... 3:
876                 vcpu->arch.db[dr] = val;
877                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
878                         vcpu->arch.eff_db[dr] = val;
879                 break;
880         case 4:
881                 /* fall through */
882         case 6:
883                 if (val & 0xffffffff00000000ULL)
884                         return -1; /* #GP */
885                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
886                 kvm_update_dr6(vcpu);
887                 break;
888         case 5:
889                 /* fall through */
890         default: /* 7 */
891                 if (val & 0xffffffff00000000ULL)
892                         return -1; /* #GP */
893                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
894                 kvm_update_dr7(vcpu);
895                 break;
896         }
897
898         return 0;
899 }
900
901 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
902 {
903         if (__kvm_set_dr(vcpu, dr, val)) {
904                 kvm_inject_gp(vcpu, 0);
905                 return 1;
906         }
907         return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_set_dr);
910
911 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
912 {
913         switch (dr) {
914         case 0 ... 3:
915                 *val = vcpu->arch.db[dr];
916                 break;
917         case 4:
918                 /* fall through */
919         case 6:
920                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
921                         *val = vcpu->arch.dr6;
922                 else
923                         *val = kvm_x86_ops->get_dr6(vcpu);
924                 break;
925         case 5:
926                 /* fall through */
927         default: /* 7 */
928                 *val = vcpu->arch.dr7;
929                 break;
930         }
931         return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_get_dr);
934
935 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
936 {
937         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938         u64 data;
939         int err;
940
941         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
942         if (err)
943                 return err;
944         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
945         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
946         return err;
947 }
948 EXPORT_SYMBOL_GPL(kvm_rdpmc);
949
950 /*
951  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
952  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
953  *
954  * This list is modified at module load time to reflect the
955  * capabilities of the host cpu. This capabilities test skips MSRs that are
956  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
957  * may depend on host virtualization features rather than host cpu features.
958  */
959
960 static u32 msrs_to_save[] = {
961         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
962         MSR_STAR,
963 #ifdef CONFIG_X86_64
964         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
965 #endif
966         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
967         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
968 };
969
970 static unsigned num_msrs_to_save;
971
972 static u32 emulated_msrs[] = {
973         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
974         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
975         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
976         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
977         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
978         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
979         HV_X64_MSR_RESET,
980         HV_X64_MSR_VP_INDEX,
981         HV_X64_MSR_VP_RUNTIME,
982         HV_X64_MSR_SCONTROL,
983         HV_X64_MSR_STIMER0_CONFIG,
984         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
985         MSR_KVM_PV_EOI_EN,
986
987         MSR_IA32_TSC_ADJUST,
988         MSR_IA32_TSCDEADLINE,
989         MSR_IA32_MISC_ENABLE,
990         MSR_IA32_MCG_STATUS,
991         MSR_IA32_MCG_CTL,
992         MSR_IA32_MCG_EXT_CTL,
993         MSR_IA32_SMBASE,
994 };
995
996 static unsigned num_emulated_msrs;
997
998 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
999 {
1000         if (efer & efer_reserved_bits)
1001                 return false;
1002
1003         if (efer & EFER_FFXSR) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1008                         return false;
1009         }
1010
1011         if (efer & EFER_SVME) {
1012                 struct kvm_cpuid_entry2 *feat;
1013
1014                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1015                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1016                         return false;
1017         }
1018
1019         return true;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1022
1023 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1024 {
1025         u64 old_efer = vcpu->arch.efer;
1026
1027         if (!kvm_valid_efer(vcpu, efer))
1028                 return 1;
1029
1030         if (is_paging(vcpu)
1031             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1032                 return 1;
1033
1034         efer &= ~EFER_LMA;
1035         efer |= vcpu->arch.efer & EFER_LMA;
1036
1037         kvm_x86_ops->set_efer(vcpu, efer);
1038
1039         /* Update reserved bits */
1040         if ((efer ^ old_efer) & EFER_NX)
1041                 kvm_mmu_reset_context(vcpu);
1042
1043         return 0;
1044 }
1045
1046 void kvm_enable_efer_bits(u64 mask)
1047 {
1048        efer_reserved_bits &= ~mask;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1051
1052 /*
1053  * Writes msr value into into the appropriate "register".
1054  * Returns 0 on success, non-0 otherwise.
1055  * Assumes vcpu_load() was already called.
1056  */
1057 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1058 {
1059         switch (msr->index) {
1060         case MSR_FS_BASE:
1061         case MSR_GS_BASE:
1062         case MSR_KERNEL_GS_BASE:
1063         case MSR_CSTAR:
1064         case MSR_LSTAR:
1065                 if (is_noncanonical_address(msr->data))
1066                         return 1;
1067                 break;
1068         case MSR_IA32_SYSENTER_EIP:
1069         case MSR_IA32_SYSENTER_ESP:
1070                 /*
1071                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072                  * non-canonical address is written on Intel but not on
1073                  * AMD (which ignores the top 32-bits, because it does
1074                  * not implement 64-bit SYSENTER).
1075                  *
1076                  * 64-bit code should hence be able to write a non-canonical
1077                  * value on AMD.  Making the address canonical ensures that
1078                  * vmentry does not fail on Intel after writing a non-canonical
1079                  * value, and that something deterministic happens if the guest
1080                  * invokes 64-bit SYSENTER.
1081                  */
1082                 msr->data = get_canonical(msr->data);
1083         }
1084         return kvm_x86_ops->set_msr(vcpu, msr);
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_msr);
1087
1088 /*
1089  * Adapt set_msr() to msr_io()'s calling convention
1090  */
1091 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092 {
1093         struct msr_data msr;
1094         int r;
1095
1096         msr.index = index;
1097         msr.host_initiated = true;
1098         r = kvm_get_msr(vcpu, &msr);
1099         if (r)
1100                 return r;
1101
1102         *data = msr.data;
1103         return 0;
1104 }
1105
1106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107 {
1108         struct msr_data msr;
1109
1110         msr.data = *data;
1111         msr.index = index;
1112         msr.host_initiated = true;
1113         return kvm_set_msr(vcpu, &msr);
1114 }
1115
1116 #ifdef CONFIG_X86_64
1117 struct pvclock_gtod_data {
1118         seqcount_t      seq;
1119
1120         struct { /* extract of a clocksource struct */
1121                 int vclock_mode;
1122                 cycle_t cycle_last;
1123                 cycle_t mask;
1124                 u32     mult;
1125                 u32     shift;
1126         } clock;
1127
1128         u64             boot_ns;
1129         u64             nsec_base;
1130 };
1131
1132 static struct pvclock_gtod_data pvclock_gtod_data;
1133
1134 static void update_pvclock_gtod(struct timekeeper *tk)
1135 {
1136         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1137         u64 boot_ns;
1138
1139         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1140
1141         write_seqcount_begin(&vdata->seq);
1142
1143         /* copy pvclock gtod data */
1144         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1145         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1146         vdata->clock.mask               = tk->tkr_mono.mask;
1147         vdata->clock.mult               = tk->tkr_mono.mult;
1148         vdata->clock.shift              = tk->tkr_mono.shift;
1149
1150         vdata->boot_ns                  = boot_ns;
1151         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1152
1153         write_seqcount_end(&vdata->seq);
1154 }
1155 #endif
1156
1157 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1158 {
1159         /*
1160          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161          * vcpu_enter_guest.  This function is only called from
1162          * the physical CPU that is running vcpu.
1163          */
1164         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1165 }
1166
1167 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1168 {
1169         int version;
1170         int r;
1171         struct pvclock_wall_clock wc;
1172         struct timespec64 boot;
1173
1174         if (!wall_clock)
1175                 return;
1176
1177         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1178         if (r)
1179                 return;
1180
1181         if (version & 1)
1182                 ++version;  /* first time write, random junk */
1183
1184         ++version;
1185
1186         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1187                 return;
1188
1189         /*
1190          * The guest calculates current wall clock time by adding
1191          * system time (updated by kvm_guest_time_update below) to the
1192          * wall clock specified here.  guest system time equals host
1193          * system time for us, thus we must fill in host boot time here.
1194          */
1195         getboottime64(&boot);
1196
1197         if (kvm->arch.kvmclock_offset) {
1198                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1199                 boot = timespec64_sub(boot, ts);
1200         }
1201         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1202         wc.nsec = boot.tv_nsec;
1203         wc.version = version;
1204
1205         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1206
1207         version++;
1208         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1209 }
1210
1211 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1212 {
1213         do_shl32_div32(dividend, divisor);
1214         return dividend;
1215 }
1216
1217 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1218                                s8 *pshift, u32 *pmultiplier)
1219 {
1220         uint64_t scaled64;
1221         int32_t  shift = 0;
1222         uint64_t tps64;
1223         uint32_t tps32;
1224
1225         tps64 = base_hz;
1226         scaled64 = scaled_hz;
1227         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1228                 tps64 >>= 1;
1229                 shift--;
1230         }
1231
1232         tps32 = (uint32_t)tps64;
1233         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1234                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1235                         scaled64 >>= 1;
1236                 else
1237                         tps32 <<= 1;
1238                 shift++;
1239         }
1240
1241         *pshift = shift;
1242         *pmultiplier = div_frac(scaled64, tps32);
1243
1244         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1246 }
1247
1248 #ifdef CONFIG_X86_64
1249 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1250 #endif
1251
1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1253 static unsigned long max_tsc_khz;
1254
1255 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1256 {
1257         u64 v = (u64)khz * (1000000 + ppm);
1258         do_div(v, 1000000);
1259         return v;
1260 }
1261
1262 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1263 {
1264         u64 ratio;
1265
1266         /* Guest TSC same frequency as host TSC? */
1267         if (!scale) {
1268                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1269                 return 0;
1270         }
1271
1272         /* TSC scaling supported? */
1273         if (!kvm_has_tsc_control) {
1274                 if (user_tsc_khz > tsc_khz) {
1275                         vcpu->arch.tsc_catchup = 1;
1276                         vcpu->arch.tsc_always_catchup = 1;
1277                         return 0;
1278                 } else {
1279                         WARN(1, "user requested TSC rate below hardware speed\n");
1280                         return -1;
1281                 }
1282         }
1283
1284         /* TSC scaling required  - calculate ratio */
1285         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1286                                 user_tsc_khz, tsc_khz);
1287
1288         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1289                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1290                           user_tsc_khz);
1291                 return -1;
1292         }
1293
1294         vcpu->arch.tsc_scaling_ratio = ratio;
1295         return 0;
1296 }
1297
1298 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1299 {
1300         u32 thresh_lo, thresh_hi;
1301         int use_scaling = 0;
1302
1303         /* tsc_khz can be zero if TSC calibration fails */
1304         if (user_tsc_khz == 0) {
1305                 /* set tsc_scaling_ratio to a safe value */
1306                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1307                 return -1;
1308         }
1309
1310         /* Compute a scale to convert nanoseconds in TSC cycles */
1311         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1312                            &vcpu->arch.virtual_tsc_shift,
1313                            &vcpu->arch.virtual_tsc_mult);
1314         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1315
1316         /*
1317          * Compute the variation in TSC rate which is acceptable
1318          * within the range of tolerance and decide if the
1319          * rate being applied is within that bounds of the hardware
1320          * rate.  If so, no scaling or compensation need be done.
1321          */
1322         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1323         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1324         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1325                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1326                 use_scaling = 1;
1327         }
1328         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1329 }
1330
1331 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1332 {
1333         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1334                                       vcpu->arch.virtual_tsc_mult,
1335                                       vcpu->arch.virtual_tsc_shift);
1336         tsc += vcpu->arch.this_tsc_write;
1337         return tsc;
1338 }
1339
1340 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1341 {
1342 #ifdef CONFIG_X86_64
1343         bool vcpus_matched;
1344         struct kvm_arch *ka = &vcpu->kvm->arch;
1345         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1348                          atomic_read(&vcpu->kvm->online_vcpus));
1349
1350         /*
1351          * Once the masterclock is enabled, always perform request in
1352          * order to update it.
1353          *
1354          * In order to enable masterclock, the host clocksource must be TSC
1355          * and the vcpus need to have matched TSCs.  When that happens,
1356          * perform request to enable masterclock.
1357          */
1358         if (ka->use_master_clock ||
1359             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1360                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1361
1362         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1363                             atomic_read(&vcpu->kvm->online_vcpus),
1364                             ka->use_master_clock, gtod->clock.vclock_mode);
1365 #endif
1366 }
1367
1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1369 {
1370         u64 curr_offset = vcpu->arch.tsc_offset;
1371         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1372 }
1373
1374 /*
1375  * Multiply tsc by a fixed point number represented by ratio.
1376  *
1377  * The most significant 64-N bits (mult) of ratio represent the
1378  * integral part of the fixed point number; the remaining N bits
1379  * (frac) represent the fractional part, ie. ratio represents a fixed
1380  * point number (mult + frac * 2^(-N)).
1381  *
1382  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1383  */
1384 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1385 {
1386         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1387 }
1388
1389 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1390 {
1391         u64 _tsc = tsc;
1392         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1393
1394         if (ratio != kvm_default_tsc_scaling_ratio)
1395                 _tsc = __scale_tsc(ratio, tsc);
1396
1397         return _tsc;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1400
1401 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1402 {
1403         u64 tsc;
1404
1405         tsc = kvm_scale_tsc(vcpu, rdtsc());
1406
1407         return target_tsc - tsc;
1408 }
1409
1410 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1411 {
1412         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1415
1416 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1417 {
1418         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1419         vcpu->arch.tsc_offset = offset;
1420 }
1421
1422 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1423 {
1424         struct kvm *kvm = vcpu->kvm;
1425         u64 offset, ns, elapsed;
1426         unsigned long flags;
1427         s64 usdiff;
1428         bool matched;
1429         bool already_matched;
1430         u64 data = msr->data;
1431
1432         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1433         offset = kvm_compute_tsc_offset(vcpu, data);
1434         ns = ktime_get_boot_ns();
1435         elapsed = ns - kvm->arch.last_tsc_nsec;
1436
1437         if (vcpu->arch.virtual_tsc_khz) {
1438                 int faulted = 0;
1439
1440                 /* n.b - signed multiplication and division required */
1441                 usdiff = data - kvm->arch.last_tsc_write;
1442 #ifdef CONFIG_X86_64
1443                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1444 #else
1445                 /* do_div() only does unsigned */
1446                 asm("1: idivl %[divisor]\n"
1447                     "2: xor %%edx, %%edx\n"
1448                     "   movl $0, %[faulted]\n"
1449                     "3:\n"
1450                     ".section .fixup,\"ax\"\n"
1451                     "4: movl $1, %[faulted]\n"
1452                     "   jmp  3b\n"
1453                     ".previous\n"
1454
1455                 _ASM_EXTABLE(1b, 4b)
1456
1457                 : "=A"(usdiff), [faulted] "=r" (faulted)
1458                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1459
1460 #endif
1461                 do_div(elapsed, 1000);
1462                 usdiff -= elapsed;
1463                 if (usdiff < 0)
1464                         usdiff = -usdiff;
1465
1466                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1467                 if (faulted)
1468                         usdiff = USEC_PER_SEC;
1469         } else
1470                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1471
1472         /*
1473          * Special case: TSC write with a small delta (1 second) of virtual
1474          * cycle time against real time is interpreted as an attempt to
1475          * synchronize the CPU.
1476          *
1477          * For a reliable TSC, we can match TSC offsets, and for an unstable
1478          * TSC, we add elapsed time in this computation.  We could let the
1479          * compensation code attempt to catch up if we fall behind, but
1480          * it's better to try to match offsets from the beginning.
1481          */
1482         if (usdiff < USEC_PER_SEC &&
1483             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1484                 if (!check_tsc_unstable()) {
1485                         offset = kvm->arch.cur_tsc_offset;
1486                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1487                 } else {
1488                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1489                         data += delta;
1490                         offset = kvm_compute_tsc_offset(vcpu, data);
1491                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1492                 }
1493                 matched = true;
1494                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1495         } else {
1496                 /*
1497                  * We split periods of matched TSC writes into generations.
1498                  * For each generation, we track the original measured
1499                  * nanosecond time, offset, and write, so if TSCs are in
1500                  * sync, we can match exact offset, and if not, we can match
1501                  * exact software computation in compute_guest_tsc()
1502                  *
1503                  * These values are tracked in kvm->arch.cur_xxx variables.
1504                  */
1505                 kvm->arch.cur_tsc_generation++;
1506                 kvm->arch.cur_tsc_nsec = ns;
1507                 kvm->arch.cur_tsc_write = data;
1508                 kvm->arch.cur_tsc_offset = offset;
1509                 matched = false;
1510                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1511                          kvm->arch.cur_tsc_generation, data);
1512         }
1513
1514         /*
1515          * We also track th most recent recorded KHZ, write and time to
1516          * allow the matching interval to be extended at each write.
1517          */
1518         kvm->arch.last_tsc_nsec = ns;
1519         kvm->arch.last_tsc_write = data;
1520         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1521
1522         vcpu->arch.last_guest_tsc = data;
1523
1524         /* Keep track of which generation this VCPU has synchronized to */
1525         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1526         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1527         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1528
1529         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1530                 update_ia32_tsc_adjust_msr(vcpu, offset);
1531         kvm_vcpu_write_tsc_offset(vcpu, offset);
1532         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1533
1534         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1535         if (!matched) {
1536                 kvm->arch.nr_vcpus_matched_tsc = 0;
1537         } else if (!already_matched) {
1538                 kvm->arch.nr_vcpus_matched_tsc++;
1539         }
1540
1541         kvm_track_tsc_matching(vcpu);
1542         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1543 }
1544
1545 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1546
1547 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1548                                            s64 adjustment)
1549 {
1550         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1551 }
1552
1553 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1554 {
1555         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1556                 WARN_ON(adjustment < 0);
1557         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1558         adjust_tsc_offset_guest(vcpu, adjustment);
1559 }
1560
1561 #ifdef CONFIG_X86_64
1562
1563 static cycle_t read_tsc(void)
1564 {
1565         cycle_t ret = (cycle_t)rdtsc_ordered();
1566         u64 last = pvclock_gtod_data.clock.cycle_last;
1567
1568         if (likely(ret >= last))
1569                 return ret;
1570
1571         /*
1572          * GCC likes to generate cmov here, but this branch is extremely
1573          * predictable (it's just a function of time and the likely is
1574          * very likely) and there's a data dependence, so force GCC
1575          * to generate a branch instead.  I don't barrier() because
1576          * we don't actually need a barrier, and if this function
1577          * ever gets inlined it will generate worse code.
1578          */
1579         asm volatile ("");
1580         return last;
1581 }
1582
1583 static inline u64 vgettsc(cycle_t *cycle_now)
1584 {
1585         long v;
1586         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1587
1588         *cycle_now = read_tsc();
1589
1590         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1591         return v * gtod->clock.mult;
1592 }
1593
1594 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1595 {
1596         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1597         unsigned long seq;
1598         int mode;
1599         u64 ns;
1600
1601         do {
1602                 seq = read_seqcount_begin(&gtod->seq);
1603                 mode = gtod->clock.vclock_mode;
1604                 ns = gtod->nsec_base;
1605                 ns += vgettsc(cycle_now);
1606                 ns >>= gtod->clock.shift;
1607                 ns += gtod->boot_ns;
1608         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1609         *t = ns;
1610
1611         return mode;
1612 }
1613
1614 /* returns true if host is using tsc clocksource */
1615 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1616 {
1617         /* checked again under seqlock below */
1618         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1619                 return false;
1620
1621         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1622 }
1623 #endif
1624
1625 /*
1626  *
1627  * Assuming a stable TSC across physical CPUS, and a stable TSC
1628  * across virtual CPUs, the following condition is possible.
1629  * Each numbered line represents an event visible to both
1630  * CPUs at the next numbered event.
1631  *
1632  * "timespecX" represents host monotonic time. "tscX" represents
1633  * RDTSC value.
1634  *
1635  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1636  *
1637  * 1.  read timespec0,tsc0
1638  * 2.                                   | timespec1 = timespec0 + N
1639  *                                      | tsc1 = tsc0 + M
1640  * 3. transition to guest               | transition to guest
1641  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1642  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1643  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1644  *
1645  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1646  *
1647  *      - ret0 < ret1
1648  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1649  *              ...
1650  *      - 0 < N - M => M < N
1651  *
1652  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1653  * always the case (the difference between two distinct xtime instances
1654  * might be smaller then the difference between corresponding TSC reads,
1655  * when updating guest vcpus pvclock areas).
1656  *
1657  * To avoid that problem, do not allow visibility of distinct
1658  * system_timestamp/tsc_timestamp values simultaneously: use a master
1659  * copy of host monotonic time values. Update that master copy
1660  * in lockstep.
1661  *
1662  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1663  *
1664  */
1665
1666 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1667 {
1668 #ifdef CONFIG_X86_64
1669         struct kvm_arch *ka = &kvm->arch;
1670         int vclock_mode;
1671         bool host_tsc_clocksource, vcpus_matched;
1672
1673         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1674                         atomic_read(&kvm->online_vcpus));
1675
1676         /*
1677          * If the host uses TSC clock, then passthrough TSC as stable
1678          * to the guest.
1679          */
1680         host_tsc_clocksource = kvm_get_time_and_clockread(
1681                                         &ka->master_kernel_ns,
1682                                         &ka->master_cycle_now);
1683
1684         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1685                                 && !backwards_tsc_observed
1686                                 && !ka->boot_vcpu_runs_old_kvmclock;
1687
1688         if (ka->use_master_clock)
1689                 atomic_set(&kvm_guest_has_master_clock, 1);
1690
1691         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1692         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1693                                         vcpus_matched);
1694 #endif
1695 }
1696
1697 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1698 {
1699         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1700 }
1701
1702 static void kvm_gen_update_masterclock(struct kvm *kvm)
1703 {
1704 #ifdef CONFIG_X86_64
1705         int i;
1706         struct kvm_vcpu *vcpu;
1707         struct kvm_arch *ka = &kvm->arch;
1708
1709         spin_lock(&ka->pvclock_gtod_sync_lock);
1710         kvm_make_mclock_inprogress_request(kvm);
1711         /* no guest entries from this point */
1712         pvclock_update_vm_gtod_copy(kvm);
1713
1714         kvm_for_each_vcpu(i, vcpu, kvm)
1715                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1716
1717         /* guest entries allowed */
1718         kvm_for_each_vcpu(i, vcpu, kvm)
1719                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1720
1721         spin_unlock(&ka->pvclock_gtod_sync_lock);
1722 #endif
1723 }
1724
1725 static u64 __get_kvmclock_ns(struct kvm *kvm)
1726 {
1727         struct kvm_arch *ka = &kvm->arch;
1728         struct pvclock_vcpu_time_info hv_clock;
1729
1730         spin_lock(&ka->pvclock_gtod_sync_lock);
1731         if (!ka->use_master_clock) {
1732                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1733                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1734         }
1735
1736         hv_clock.tsc_timestamp = ka->master_cycle_now;
1737         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1738         spin_unlock(&ka->pvclock_gtod_sync_lock);
1739
1740         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1741                            &hv_clock.tsc_shift,
1742                            &hv_clock.tsc_to_system_mul);
1743         return __pvclock_read_cycles(&hv_clock, rdtsc());
1744 }
1745
1746 u64 get_kvmclock_ns(struct kvm *kvm)
1747 {
1748         unsigned long flags;
1749         s64 ns;
1750
1751         local_irq_save(flags);
1752         ns = __get_kvmclock_ns(kvm);
1753         local_irq_restore(flags);
1754
1755         return ns;
1756 }
1757
1758 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1759 {
1760         struct kvm_vcpu_arch *vcpu = &v->arch;
1761         struct pvclock_vcpu_time_info guest_hv_clock;
1762
1763         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1764                 &guest_hv_clock, sizeof(guest_hv_clock))))
1765                 return;
1766
1767         /* This VCPU is paused, but it's legal for a guest to read another
1768          * VCPU's kvmclock, so we really have to follow the specification where
1769          * it says that version is odd if data is being modified, and even after
1770          * it is consistent.
1771          *
1772          * Version field updates must be kept separate.  This is because
1773          * kvm_write_guest_cached might use a "rep movs" instruction, and
1774          * writes within a string instruction are weakly ordered.  So there
1775          * are three writes overall.
1776          *
1777          * As a small optimization, only write the version field in the first
1778          * and third write.  The vcpu->pv_time cache is still valid, because the
1779          * version field is the first in the struct.
1780          */
1781         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1782
1783         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1784         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1785                                 &vcpu->hv_clock,
1786                                 sizeof(vcpu->hv_clock.version));
1787
1788         smp_wmb();
1789
1790         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1791         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1792
1793         if (vcpu->pvclock_set_guest_stopped_request) {
1794                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1795                 vcpu->pvclock_set_guest_stopped_request = false;
1796         }
1797
1798         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1799
1800         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1801                                 &vcpu->hv_clock,
1802                                 sizeof(vcpu->hv_clock));
1803
1804         smp_wmb();
1805
1806         vcpu->hv_clock.version++;
1807         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1808                                 &vcpu->hv_clock,
1809                                 sizeof(vcpu->hv_clock.version));
1810 }
1811
1812 static int kvm_guest_time_update(struct kvm_vcpu *v)
1813 {
1814         unsigned long flags, tgt_tsc_khz;
1815         struct kvm_vcpu_arch *vcpu = &v->arch;
1816         struct kvm_arch *ka = &v->kvm->arch;
1817         s64 kernel_ns;
1818         u64 tsc_timestamp, host_tsc;
1819         u8 pvclock_flags;
1820         bool use_master_clock;
1821
1822         kernel_ns = 0;
1823         host_tsc = 0;
1824
1825         /*
1826          * If the host uses TSC clock, then passthrough TSC as stable
1827          * to the guest.
1828          */
1829         spin_lock(&ka->pvclock_gtod_sync_lock);
1830         use_master_clock = ka->use_master_clock;
1831         if (use_master_clock) {
1832                 host_tsc = ka->master_cycle_now;
1833                 kernel_ns = ka->master_kernel_ns;
1834         }
1835         spin_unlock(&ka->pvclock_gtod_sync_lock);
1836
1837         /* Keep irq disabled to prevent changes to the clock */
1838         local_irq_save(flags);
1839         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1840         if (unlikely(tgt_tsc_khz == 0)) {
1841                 local_irq_restore(flags);
1842                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1843                 return 1;
1844         }
1845         if (!use_master_clock) {
1846                 host_tsc = rdtsc();
1847                 kernel_ns = ktime_get_boot_ns();
1848         }
1849
1850         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1851
1852         /*
1853          * We may have to catch up the TSC to match elapsed wall clock
1854          * time for two reasons, even if kvmclock is used.
1855          *   1) CPU could have been running below the maximum TSC rate
1856          *   2) Broken TSC compensation resets the base at each VCPU
1857          *      entry to avoid unknown leaps of TSC even when running
1858          *      again on the same CPU.  This may cause apparent elapsed
1859          *      time to disappear, and the guest to stand still or run
1860          *      very slowly.
1861          */
1862         if (vcpu->tsc_catchup) {
1863                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1864                 if (tsc > tsc_timestamp) {
1865                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1866                         tsc_timestamp = tsc;
1867                 }
1868         }
1869
1870         local_irq_restore(flags);
1871
1872         /* With all the info we got, fill in the values */
1873
1874         if (kvm_has_tsc_control)
1875                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1876
1877         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1878                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1879                                    &vcpu->hv_clock.tsc_shift,
1880                                    &vcpu->hv_clock.tsc_to_system_mul);
1881                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1882         }
1883
1884         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1885         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1886         vcpu->last_guest_tsc = tsc_timestamp;
1887
1888         /* If the host uses TSC clocksource, then it is stable */
1889         pvclock_flags = 0;
1890         if (use_master_clock)
1891                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1892
1893         vcpu->hv_clock.flags = pvclock_flags;
1894
1895         if (vcpu->pv_time_enabled)
1896                 kvm_setup_pvclock_page(v);
1897         if (v == kvm_get_vcpu(v->kvm, 0))
1898                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1899         return 0;
1900 }
1901
1902 /*
1903  * kvmclock updates which are isolated to a given vcpu, such as
1904  * vcpu->cpu migration, should not allow system_timestamp from
1905  * the rest of the vcpus to remain static. Otherwise ntp frequency
1906  * correction applies to one vcpu's system_timestamp but not
1907  * the others.
1908  *
1909  * So in those cases, request a kvmclock update for all vcpus.
1910  * We need to rate-limit these requests though, as they can
1911  * considerably slow guests that have a large number of vcpus.
1912  * The time for a remote vcpu to update its kvmclock is bound
1913  * by the delay we use to rate-limit the updates.
1914  */
1915
1916 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1917
1918 static void kvmclock_update_fn(struct work_struct *work)
1919 {
1920         int i;
1921         struct delayed_work *dwork = to_delayed_work(work);
1922         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1923                                            kvmclock_update_work);
1924         struct kvm *kvm = container_of(ka, struct kvm, arch);
1925         struct kvm_vcpu *vcpu;
1926
1927         kvm_for_each_vcpu(i, vcpu, kvm) {
1928                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1929                 kvm_vcpu_kick(vcpu);
1930         }
1931 }
1932
1933 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1934 {
1935         struct kvm *kvm = v->kvm;
1936
1937         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1938         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1939                                         KVMCLOCK_UPDATE_DELAY);
1940 }
1941
1942 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1943
1944 static void kvmclock_sync_fn(struct work_struct *work)
1945 {
1946         struct delayed_work *dwork = to_delayed_work(work);
1947         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1948                                            kvmclock_sync_work);
1949         struct kvm *kvm = container_of(ka, struct kvm, arch);
1950
1951         if (!kvmclock_periodic_sync)
1952                 return;
1953
1954         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1955         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1956                                         KVMCLOCK_SYNC_PERIOD);
1957 }
1958
1959 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1960 {
1961         u64 mcg_cap = vcpu->arch.mcg_cap;
1962         unsigned bank_num = mcg_cap & 0xff;
1963
1964         switch (msr) {
1965         case MSR_IA32_MCG_STATUS:
1966                 vcpu->arch.mcg_status = data;
1967                 break;
1968         case MSR_IA32_MCG_CTL:
1969                 if (!(mcg_cap & MCG_CTL_P))
1970                         return 1;
1971                 if (data != 0 && data != ~(u64)0)
1972                         return -1;
1973                 vcpu->arch.mcg_ctl = data;
1974                 break;
1975         default:
1976                 if (msr >= MSR_IA32_MC0_CTL &&
1977                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1978                         u32 offset = msr - MSR_IA32_MC0_CTL;
1979                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1980                          * some Linux kernels though clear bit 10 in bank 4 to
1981                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1982                          * this to avoid an uncatched #GP in the guest
1983                          */
1984                         if ((offset & 0x3) == 0 &&
1985                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1986                                 return -1;
1987                         vcpu->arch.mce_banks[offset] = data;
1988                         break;
1989                 }
1990                 return 1;
1991         }
1992         return 0;
1993 }
1994
1995 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1996 {
1997         struct kvm *kvm = vcpu->kvm;
1998         int lm = is_long_mode(vcpu);
1999         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2000                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2001         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2002                 : kvm->arch.xen_hvm_config.blob_size_32;
2003         u32 page_num = data & ~PAGE_MASK;
2004         u64 page_addr = data & PAGE_MASK;
2005         u8 *page;
2006         int r;
2007
2008         r = -E2BIG;
2009         if (page_num >= blob_size)
2010                 goto out;
2011         r = -ENOMEM;
2012         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2013         if (IS_ERR(page)) {
2014                 r = PTR_ERR(page);
2015                 goto out;
2016         }
2017         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2018                 goto out_free;
2019         r = 0;
2020 out_free:
2021         kfree(page);
2022 out:
2023         return r;
2024 }
2025
2026 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2027 {
2028         gpa_t gpa = data & ~0x3f;
2029
2030         /* Bits 2:5 are reserved, Should be zero */
2031         if (data & 0x3c)
2032                 return 1;
2033
2034         vcpu->arch.apf.msr_val = data;
2035
2036         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2037                 kvm_clear_async_pf_completion_queue(vcpu);
2038                 kvm_async_pf_hash_reset(vcpu);
2039                 return 0;
2040         }
2041
2042         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2043                                         sizeof(u32)))
2044                 return 1;
2045
2046         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2047         kvm_async_pf_wakeup_all(vcpu);
2048         return 0;
2049 }
2050
2051 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2052 {
2053         vcpu->arch.pv_time_enabled = false;
2054 }
2055
2056 static void record_steal_time(struct kvm_vcpu *vcpu)
2057 {
2058         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2059                 return;
2060
2061         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2062                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2063                 return;
2064
2065         if (vcpu->arch.st.steal.version & 1)
2066                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2067
2068         vcpu->arch.st.steal.version += 1;
2069
2070         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2071                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2072
2073         smp_wmb();
2074
2075         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2076                 vcpu->arch.st.last_steal;
2077         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2078
2079         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2080                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2081
2082         smp_wmb();
2083
2084         vcpu->arch.st.steal.version += 1;
2085
2086         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2087                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2088 }
2089
2090 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2091 {
2092         bool pr = false;
2093         u32 msr = msr_info->index;
2094         u64 data = msr_info->data;
2095
2096         switch (msr) {
2097         case MSR_AMD64_NB_CFG:
2098         case MSR_IA32_UCODE_REV:
2099         case MSR_IA32_UCODE_WRITE:
2100         case MSR_VM_HSAVE_PA:
2101         case MSR_AMD64_PATCH_LOADER:
2102         case MSR_AMD64_BU_CFG2:
2103                 break;
2104
2105         case MSR_EFER:
2106                 return set_efer(vcpu, data);
2107         case MSR_K7_HWCR:
2108                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2109                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2110                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2111                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2112                 if (data != 0) {
2113                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2114                                     data);
2115                         return 1;
2116                 }
2117                 break;
2118         case MSR_FAM10H_MMIO_CONF_BASE:
2119                 if (data != 0) {
2120                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2121                                     "0x%llx\n", data);
2122                         return 1;
2123                 }
2124                 break;
2125         case MSR_IA32_DEBUGCTLMSR:
2126                 if (!data) {
2127                         /* We support the non-activated case already */
2128                         break;
2129                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2130                         /* Values other than LBR and BTF are vendor-specific,
2131                            thus reserved and should throw a #GP */
2132                         return 1;
2133                 }
2134                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2135                             __func__, data);
2136                 break;
2137         case 0x200 ... 0x2ff:
2138                 return kvm_mtrr_set_msr(vcpu, msr, data);
2139         case MSR_IA32_APICBASE:
2140                 return kvm_set_apic_base(vcpu, msr_info);
2141         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2142                 return kvm_x2apic_msr_write(vcpu, msr, data);
2143         case MSR_IA32_TSCDEADLINE:
2144                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2145                 break;
2146         case MSR_IA32_TSC_ADJUST:
2147                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2148                         if (!msr_info->host_initiated) {
2149                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2150                                 adjust_tsc_offset_guest(vcpu, adj);
2151                         }
2152                         vcpu->arch.ia32_tsc_adjust_msr = data;
2153                 }
2154                 break;
2155         case MSR_IA32_MISC_ENABLE:
2156                 vcpu->arch.ia32_misc_enable_msr = data;
2157                 break;
2158         case MSR_IA32_SMBASE:
2159                 if (!msr_info->host_initiated)
2160                         return 1;
2161                 vcpu->arch.smbase = data;
2162                 break;
2163         case MSR_KVM_WALL_CLOCK_NEW:
2164         case MSR_KVM_WALL_CLOCK:
2165                 vcpu->kvm->arch.wall_clock = data;
2166                 kvm_write_wall_clock(vcpu->kvm, data);
2167                 break;
2168         case MSR_KVM_SYSTEM_TIME_NEW:
2169         case MSR_KVM_SYSTEM_TIME: {
2170                 u64 gpa_offset;
2171                 struct kvm_arch *ka = &vcpu->kvm->arch;
2172
2173                 kvmclock_reset(vcpu);
2174
2175                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2176                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2177
2178                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2179                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2180                                         &vcpu->requests);
2181
2182                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2183                 }
2184
2185                 vcpu->arch.time = data;
2186                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2187
2188                 /* we verify if the enable bit is set... */
2189                 if (!(data & 1))
2190                         break;
2191
2192                 gpa_offset = data & ~(PAGE_MASK | 1);
2193
2194                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2195                      &vcpu->arch.pv_time, data & ~1ULL,
2196                      sizeof(struct pvclock_vcpu_time_info)))
2197                         vcpu->arch.pv_time_enabled = false;
2198                 else
2199                         vcpu->arch.pv_time_enabled = true;
2200
2201                 break;
2202         }
2203         case MSR_KVM_ASYNC_PF_EN:
2204                 if (kvm_pv_enable_async_pf(vcpu, data))
2205                         return 1;
2206                 break;
2207         case MSR_KVM_STEAL_TIME:
2208
2209                 if (unlikely(!sched_info_on()))
2210                         return 1;
2211
2212                 if (data & KVM_STEAL_RESERVED_MASK)
2213                         return 1;
2214
2215                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2216                                                 data & KVM_STEAL_VALID_BITS,
2217                                                 sizeof(struct kvm_steal_time)))
2218                         return 1;
2219
2220                 vcpu->arch.st.msr_val = data;
2221
2222                 if (!(data & KVM_MSR_ENABLED))
2223                         break;
2224
2225                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2226
2227                 break;
2228         case MSR_KVM_PV_EOI_EN:
2229                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2230                         return 1;
2231                 break;
2232
2233         case MSR_IA32_MCG_CTL:
2234         case MSR_IA32_MCG_STATUS:
2235         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2236                 return set_msr_mce(vcpu, msr, data);
2237
2238         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2239         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2240                 pr = true; /* fall through */
2241         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2242         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2243                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2244                         return kvm_pmu_set_msr(vcpu, msr_info);
2245
2246                 if (pr || data != 0)
2247                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2248                                     "0x%x data 0x%llx\n", msr, data);
2249                 break;
2250         case MSR_K7_CLK_CTL:
2251                 /*
2252                  * Ignore all writes to this no longer documented MSR.
2253                  * Writes are only relevant for old K7 processors,
2254                  * all pre-dating SVM, but a recommended workaround from
2255                  * AMD for these chips. It is possible to specify the
2256                  * affected processor models on the command line, hence
2257                  * the need to ignore the workaround.
2258                  */
2259                 break;
2260         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2261         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2262         case HV_X64_MSR_CRASH_CTL:
2263         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2264                 return kvm_hv_set_msr_common(vcpu, msr, data,
2265                                              msr_info->host_initiated);
2266         case MSR_IA32_BBL_CR_CTL3:
2267                 /* Drop writes to this legacy MSR -- see rdmsr
2268                  * counterpart for further detail.
2269                  */
2270                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2271                 break;
2272         case MSR_AMD64_OSVW_ID_LENGTH:
2273                 if (!guest_cpuid_has_osvw(vcpu))
2274                         return 1;
2275                 vcpu->arch.osvw.length = data;
2276                 break;
2277         case MSR_AMD64_OSVW_STATUS:
2278                 if (!guest_cpuid_has_osvw(vcpu))
2279                         return 1;
2280                 vcpu->arch.osvw.status = data;
2281                 break;
2282         default:
2283                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2284                         return xen_hvm_config(vcpu, data);
2285                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2286                         return kvm_pmu_set_msr(vcpu, msr_info);
2287                 if (!ignore_msrs) {
2288                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2289                                     msr, data);
2290                         return 1;
2291                 } else {
2292                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2293                                     msr, data);
2294                         break;
2295                 }
2296         }
2297         return 0;
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2300
2301
2302 /*
2303  * Reads an msr value (of 'msr_index') into 'pdata'.
2304  * Returns 0 on success, non-0 otherwise.
2305  * Assumes vcpu_load() was already called.
2306  */
2307 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2308 {
2309         return kvm_x86_ops->get_msr(vcpu, msr);
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_get_msr);
2312
2313 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2314 {
2315         u64 data;
2316         u64 mcg_cap = vcpu->arch.mcg_cap;
2317         unsigned bank_num = mcg_cap & 0xff;
2318
2319         switch (msr) {
2320         case MSR_IA32_P5_MC_ADDR:
2321         case MSR_IA32_P5_MC_TYPE:
2322                 data = 0;
2323                 break;
2324         case MSR_IA32_MCG_CAP:
2325                 data = vcpu->arch.mcg_cap;
2326                 break;
2327         case MSR_IA32_MCG_CTL:
2328                 if (!(mcg_cap & MCG_CTL_P))
2329                         return 1;
2330                 data = vcpu->arch.mcg_ctl;
2331                 break;
2332         case MSR_IA32_MCG_STATUS:
2333                 data = vcpu->arch.mcg_status;
2334                 break;
2335         default:
2336                 if (msr >= MSR_IA32_MC0_CTL &&
2337                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2338                         u32 offset = msr - MSR_IA32_MC0_CTL;
2339                         data = vcpu->arch.mce_banks[offset];
2340                         break;
2341                 }
2342                 return 1;
2343         }
2344         *pdata = data;
2345         return 0;
2346 }
2347
2348 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2349 {
2350         switch (msr_info->index) {
2351         case MSR_IA32_PLATFORM_ID:
2352         case MSR_IA32_EBL_CR_POWERON:
2353         case MSR_IA32_DEBUGCTLMSR:
2354         case MSR_IA32_LASTBRANCHFROMIP:
2355         case MSR_IA32_LASTBRANCHTOIP:
2356         case MSR_IA32_LASTINTFROMIP:
2357         case MSR_IA32_LASTINTTOIP:
2358         case MSR_K8_SYSCFG:
2359         case MSR_K8_TSEG_ADDR:
2360         case MSR_K8_TSEG_MASK:
2361         case MSR_K7_HWCR:
2362         case MSR_VM_HSAVE_PA:
2363         case MSR_K8_INT_PENDING_MSG:
2364         case MSR_AMD64_NB_CFG:
2365         case MSR_FAM10H_MMIO_CONF_BASE:
2366         case MSR_AMD64_BU_CFG2:
2367         case MSR_IA32_PERF_CTL:
2368                 msr_info->data = 0;
2369                 break;
2370         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2371         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2372         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2373         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2374                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2375                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2376                 msr_info->data = 0;
2377                 break;
2378         case MSR_IA32_UCODE_REV:
2379                 msr_info->data = 0x100000000ULL;
2380                 break;
2381         case MSR_MTRRcap:
2382         case 0x200 ... 0x2ff:
2383                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2384         case 0xcd: /* fsb frequency */
2385                 msr_info->data = 3;
2386                 break;
2387                 /*
2388                  * MSR_EBC_FREQUENCY_ID
2389                  * Conservative value valid for even the basic CPU models.
2390                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2391                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2392                  * and 266MHz for model 3, or 4. Set Core Clock
2393                  * Frequency to System Bus Frequency Ratio to 1 (bits
2394                  * 31:24) even though these are only valid for CPU
2395                  * models > 2, however guests may end up dividing or
2396                  * multiplying by zero otherwise.
2397                  */
2398         case MSR_EBC_FREQUENCY_ID:
2399                 msr_info->data = 1 << 24;
2400                 break;
2401         case MSR_IA32_APICBASE:
2402                 msr_info->data = kvm_get_apic_base(vcpu);
2403                 break;
2404         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2405                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2406                 break;
2407         case MSR_IA32_TSCDEADLINE:
2408                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2409                 break;
2410         case MSR_IA32_TSC_ADJUST:
2411                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2412                 break;
2413         case MSR_IA32_MISC_ENABLE:
2414                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2415                 break;
2416         case MSR_IA32_SMBASE:
2417                 if (!msr_info->host_initiated)
2418                         return 1;
2419                 msr_info->data = vcpu->arch.smbase;
2420                 break;
2421         case MSR_IA32_PERF_STATUS:
2422                 /* TSC increment by tick */
2423                 msr_info->data = 1000ULL;
2424                 /* CPU multiplier */
2425                 msr_info->data |= (((uint64_t)4ULL) << 40);
2426                 break;
2427         case MSR_EFER:
2428                 msr_info->data = vcpu->arch.efer;
2429                 break;
2430         case MSR_KVM_WALL_CLOCK:
2431         case MSR_KVM_WALL_CLOCK_NEW:
2432                 msr_info->data = vcpu->kvm->arch.wall_clock;
2433                 break;
2434         case MSR_KVM_SYSTEM_TIME:
2435         case MSR_KVM_SYSTEM_TIME_NEW:
2436                 msr_info->data = vcpu->arch.time;
2437                 break;
2438         case MSR_KVM_ASYNC_PF_EN:
2439                 msr_info->data = vcpu->arch.apf.msr_val;
2440                 break;
2441         case MSR_KVM_STEAL_TIME:
2442                 msr_info->data = vcpu->arch.st.msr_val;
2443                 break;
2444         case MSR_KVM_PV_EOI_EN:
2445                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2446                 break;
2447         case MSR_IA32_P5_MC_ADDR:
2448         case MSR_IA32_P5_MC_TYPE:
2449         case MSR_IA32_MCG_CAP:
2450         case MSR_IA32_MCG_CTL:
2451         case MSR_IA32_MCG_STATUS:
2452         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2453                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2454         case MSR_K7_CLK_CTL:
2455                 /*
2456                  * Provide expected ramp-up count for K7. All other
2457                  * are set to zero, indicating minimum divisors for
2458                  * every field.
2459                  *
2460                  * This prevents guest kernels on AMD host with CPU
2461                  * type 6, model 8 and higher from exploding due to
2462                  * the rdmsr failing.
2463                  */
2464                 msr_info->data = 0x20000000;
2465                 break;
2466         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2467         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2468         case HV_X64_MSR_CRASH_CTL:
2469         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2470                 return kvm_hv_get_msr_common(vcpu,
2471                                              msr_info->index, &msr_info->data);
2472                 break;
2473         case MSR_IA32_BBL_CR_CTL3:
2474                 /* This legacy MSR exists but isn't fully documented in current
2475                  * silicon.  It is however accessed by winxp in very narrow
2476                  * scenarios where it sets bit #19, itself documented as
2477                  * a "reserved" bit.  Best effort attempt to source coherent
2478                  * read data here should the balance of the register be
2479                  * interpreted by the guest:
2480                  *
2481                  * L2 cache control register 3: 64GB range, 256KB size,
2482                  * enabled, latency 0x1, configured
2483                  */
2484                 msr_info->data = 0xbe702111;
2485                 break;
2486         case MSR_AMD64_OSVW_ID_LENGTH:
2487                 if (!guest_cpuid_has_osvw(vcpu))
2488                         return 1;
2489                 msr_info->data = vcpu->arch.osvw.length;
2490                 break;
2491         case MSR_AMD64_OSVW_STATUS:
2492                 if (!guest_cpuid_has_osvw(vcpu))
2493                         return 1;
2494                 msr_info->data = vcpu->arch.osvw.status;
2495                 break;
2496         default:
2497                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2498                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2499                 if (!ignore_msrs) {
2500                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2501                         return 1;
2502                 } else {
2503                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2504                         msr_info->data = 0;
2505                 }
2506                 break;
2507         }
2508         return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2511
2512 /*
2513  * Read or write a bunch of msrs. All parameters are kernel addresses.
2514  *
2515  * @return number of msrs set successfully.
2516  */
2517 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2518                     struct kvm_msr_entry *entries,
2519                     int (*do_msr)(struct kvm_vcpu *vcpu,
2520                                   unsigned index, u64 *data))
2521 {
2522         int i, idx;
2523
2524         idx = srcu_read_lock(&vcpu->kvm->srcu);
2525         for (i = 0; i < msrs->nmsrs; ++i)
2526                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2527                         break;
2528         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2529
2530         return i;
2531 }
2532
2533 /*
2534  * Read or write a bunch of msrs. Parameters are user addresses.
2535  *
2536  * @return number of msrs set successfully.
2537  */
2538 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2539                   int (*do_msr)(struct kvm_vcpu *vcpu,
2540                                 unsigned index, u64 *data),
2541                   int writeback)
2542 {
2543         struct kvm_msrs msrs;
2544         struct kvm_msr_entry *entries;
2545         int r, n;
2546         unsigned size;
2547
2548         r = -EFAULT;
2549         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2550                 goto out;
2551
2552         r = -E2BIG;
2553         if (msrs.nmsrs >= MAX_IO_MSRS)
2554                 goto out;
2555
2556         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2557         entries = memdup_user(user_msrs->entries, size);
2558         if (IS_ERR(entries)) {
2559                 r = PTR_ERR(entries);
2560                 goto out;
2561         }
2562
2563         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2564         if (r < 0)
2565                 goto out_free;
2566
2567         r = -EFAULT;
2568         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2569                 goto out_free;
2570
2571         r = n;
2572
2573 out_free:
2574         kfree(entries);
2575 out:
2576         return r;
2577 }
2578
2579 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2580 {
2581         int r;
2582
2583         switch (ext) {
2584         case KVM_CAP_IRQCHIP:
2585         case KVM_CAP_HLT:
2586         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2587         case KVM_CAP_SET_TSS_ADDR:
2588         case KVM_CAP_EXT_CPUID:
2589         case KVM_CAP_EXT_EMUL_CPUID:
2590         case KVM_CAP_CLOCKSOURCE:
2591         case KVM_CAP_PIT:
2592         case KVM_CAP_NOP_IO_DELAY:
2593         case KVM_CAP_MP_STATE:
2594         case KVM_CAP_SYNC_MMU:
2595         case KVM_CAP_USER_NMI:
2596         case KVM_CAP_REINJECT_CONTROL:
2597         case KVM_CAP_IRQ_INJECT_STATUS:
2598         case KVM_CAP_IOEVENTFD:
2599         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2600         case KVM_CAP_PIT2:
2601         case KVM_CAP_PIT_STATE2:
2602         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2603         case KVM_CAP_XEN_HVM:
2604         case KVM_CAP_ADJUST_CLOCK:
2605         case KVM_CAP_VCPU_EVENTS:
2606         case KVM_CAP_HYPERV:
2607         case KVM_CAP_HYPERV_VAPIC:
2608         case KVM_CAP_HYPERV_SPIN:
2609         case KVM_CAP_HYPERV_SYNIC:
2610         case KVM_CAP_PCI_SEGMENT:
2611         case KVM_CAP_DEBUGREGS:
2612         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2613         case KVM_CAP_XSAVE:
2614         case KVM_CAP_ASYNC_PF:
2615         case KVM_CAP_GET_TSC_KHZ:
2616         case KVM_CAP_KVMCLOCK_CTRL:
2617         case KVM_CAP_READONLY_MEM:
2618         case KVM_CAP_HYPERV_TIME:
2619         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2620         case KVM_CAP_TSC_DEADLINE_TIMER:
2621         case KVM_CAP_ENABLE_CAP_VM:
2622         case KVM_CAP_DISABLE_QUIRKS:
2623         case KVM_CAP_SET_BOOT_CPU_ID:
2624         case KVM_CAP_SPLIT_IRQCHIP:
2625 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2626         case KVM_CAP_ASSIGN_DEV_IRQ:
2627         case KVM_CAP_PCI_2_3:
2628 #endif
2629                 r = 1;
2630                 break;
2631         case KVM_CAP_X86_SMM:
2632                 /* SMBASE is usually relocated above 1M on modern chipsets,
2633                  * and SMM handlers might indeed rely on 4G segment limits,
2634                  * so do not report SMM to be available if real mode is
2635                  * emulated via vm86 mode.  Still, do not go to great lengths
2636                  * to avoid userspace's usage of the feature, because it is a
2637                  * fringe case that is not enabled except via specific settings
2638                  * of the module parameters.
2639                  */
2640                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2641                 break;
2642         case KVM_CAP_COALESCED_MMIO:
2643                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2644                 break;
2645         case KVM_CAP_VAPIC:
2646                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2647                 break;
2648         case KVM_CAP_NR_VCPUS:
2649                 r = KVM_SOFT_MAX_VCPUS;
2650                 break;
2651         case KVM_CAP_MAX_VCPUS:
2652                 r = KVM_MAX_VCPUS;
2653                 break;
2654         case KVM_CAP_NR_MEMSLOTS:
2655                 r = KVM_USER_MEM_SLOTS;
2656                 break;
2657         case KVM_CAP_PV_MMU:    /* obsolete */
2658                 r = 0;
2659                 break;
2660 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2661         case KVM_CAP_IOMMU:
2662                 r = iommu_present(&pci_bus_type);
2663                 break;
2664 #endif
2665         case KVM_CAP_MCE:
2666                 r = KVM_MAX_MCE_BANKS;
2667                 break;
2668         case KVM_CAP_XCRS:
2669                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2670                 break;
2671         case KVM_CAP_TSC_CONTROL:
2672                 r = kvm_has_tsc_control;
2673                 break;
2674         case KVM_CAP_X2APIC_API:
2675                 r = KVM_X2APIC_API_VALID_FLAGS;
2676                 break;
2677         default:
2678                 r = 0;
2679                 break;
2680         }
2681         return r;
2682
2683 }
2684
2685 long kvm_arch_dev_ioctl(struct file *filp,
2686                         unsigned int ioctl, unsigned long arg)
2687 {
2688         void __user *argp = (void __user *)arg;
2689         long r;
2690
2691         switch (ioctl) {
2692         case KVM_GET_MSR_INDEX_LIST: {
2693                 struct kvm_msr_list __user *user_msr_list = argp;
2694                 struct kvm_msr_list msr_list;
2695                 unsigned n;
2696
2697                 r = -EFAULT;
2698                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2699                         goto out;
2700                 n = msr_list.nmsrs;
2701                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2702                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2703                         goto out;
2704                 r = -E2BIG;
2705                 if (n < msr_list.nmsrs)
2706                         goto out;
2707                 r = -EFAULT;
2708                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2709                                  num_msrs_to_save * sizeof(u32)))
2710                         goto out;
2711                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2712                                  &emulated_msrs,
2713                                  num_emulated_msrs * sizeof(u32)))
2714                         goto out;
2715                 r = 0;
2716                 break;
2717         }
2718         case KVM_GET_SUPPORTED_CPUID:
2719         case KVM_GET_EMULATED_CPUID: {
2720                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2721                 struct kvm_cpuid2 cpuid;
2722
2723                 r = -EFAULT;
2724                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2725                         goto out;
2726
2727                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2728                                             ioctl);
2729                 if (r)
2730                         goto out;
2731
2732                 r = -EFAULT;
2733                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2734                         goto out;
2735                 r = 0;
2736                 break;
2737         }
2738         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2739                 r = -EFAULT;
2740                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2741                                  sizeof(kvm_mce_cap_supported)))
2742                         goto out;
2743                 r = 0;
2744                 break;
2745         }
2746         default:
2747                 r = -EINVAL;
2748         }
2749 out:
2750         return r;
2751 }
2752
2753 static void wbinvd_ipi(void *garbage)
2754 {
2755         wbinvd();
2756 }
2757
2758 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2759 {
2760         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2761 }
2762
2763 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2764 {
2765         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2766 }
2767
2768 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2769 {
2770         /* Address WBINVD may be executed by guest */
2771         if (need_emulate_wbinvd(vcpu)) {
2772                 if (kvm_x86_ops->has_wbinvd_exit())
2773                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2774                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2775                         smp_call_function_single(vcpu->cpu,
2776                                         wbinvd_ipi, NULL, 1);
2777         }
2778
2779         kvm_x86_ops->vcpu_load(vcpu, cpu);
2780
2781         /* Apply any externally detected TSC adjustments (due to suspend) */
2782         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2783                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2784                 vcpu->arch.tsc_offset_adjustment = 0;
2785                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2786         }
2787
2788         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2789                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2790                                 rdtsc() - vcpu->arch.last_host_tsc;
2791                 if (tsc_delta < 0)
2792                         mark_tsc_unstable("KVM discovered backwards TSC");
2793
2794                 if (check_tsc_unstable()) {
2795                         u64 offset = kvm_compute_tsc_offset(vcpu,
2796                                                 vcpu->arch.last_guest_tsc);
2797                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2798                         vcpu->arch.tsc_catchup = 1;
2799                 }
2800                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2801                                 kvm_x86_ops->set_hv_timer(vcpu,
2802                                         kvm_get_lapic_tscdeadline_msr(vcpu)))
2803                         kvm_lapic_switch_to_sw_timer(vcpu);
2804                 /*
2805                  * On a host with synchronized TSC, there is no need to update
2806                  * kvmclock on vcpu->cpu migration
2807                  */
2808                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2809                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2810                 if (vcpu->cpu != cpu)
2811                         kvm_migrate_timers(vcpu);
2812                 vcpu->cpu = cpu;
2813         }
2814
2815         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2816 }
2817
2818 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2819 {
2820         kvm_x86_ops->vcpu_put(vcpu);
2821         kvm_put_guest_fpu(vcpu);
2822         vcpu->arch.last_host_tsc = rdtsc();
2823 }
2824
2825 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2826                                     struct kvm_lapic_state *s)
2827 {
2828         if (vcpu->arch.apicv_active)
2829                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2830
2831         return kvm_apic_get_state(vcpu, s);
2832 }
2833
2834 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2835                                     struct kvm_lapic_state *s)
2836 {
2837         int r;
2838
2839         r = kvm_apic_set_state(vcpu, s);
2840         if (r)
2841                 return r;
2842         update_cr8_intercept(vcpu);
2843
2844         return 0;
2845 }
2846
2847 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2848 {
2849         return (!lapic_in_kernel(vcpu) ||
2850                 kvm_apic_accept_pic_intr(vcpu));
2851 }
2852
2853 /*
2854  * if userspace requested an interrupt window, check that the
2855  * interrupt window is open.
2856  *
2857  * No need to exit to userspace if we already have an interrupt queued.
2858  */
2859 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2860 {
2861         return kvm_arch_interrupt_allowed(vcpu) &&
2862                 !kvm_cpu_has_interrupt(vcpu) &&
2863                 !kvm_event_needs_reinjection(vcpu) &&
2864                 kvm_cpu_accept_dm_intr(vcpu);
2865 }
2866
2867 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2868                                     struct kvm_interrupt *irq)
2869 {
2870         if (irq->irq >= KVM_NR_INTERRUPTS)
2871                 return -EINVAL;
2872
2873         if (!irqchip_in_kernel(vcpu->kvm)) {
2874                 kvm_queue_interrupt(vcpu, irq->irq, false);
2875                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2876                 return 0;
2877         }
2878
2879         /*
2880          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2881          * fail for in-kernel 8259.
2882          */
2883         if (pic_in_kernel(vcpu->kvm))
2884                 return -ENXIO;
2885
2886         if (vcpu->arch.pending_external_vector != -1)
2887                 return -EEXIST;
2888
2889         vcpu->arch.pending_external_vector = irq->irq;
2890         kvm_make_request(KVM_REQ_EVENT, vcpu);
2891         return 0;
2892 }
2893
2894 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2895 {
2896         kvm_inject_nmi(vcpu);
2897
2898         return 0;
2899 }
2900
2901 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2902 {
2903         kvm_make_request(KVM_REQ_SMI, vcpu);
2904
2905         return 0;
2906 }
2907
2908 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2909                                            struct kvm_tpr_access_ctl *tac)
2910 {
2911         if (tac->flags)
2912                 return -EINVAL;
2913         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2914         return 0;
2915 }
2916
2917 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2918                                         u64 mcg_cap)
2919 {
2920         int r;
2921         unsigned bank_num = mcg_cap & 0xff, bank;
2922
2923         r = -EINVAL;
2924         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2925                 goto out;
2926         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2927                 goto out;
2928         r = 0;
2929         vcpu->arch.mcg_cap = mcg_cap;
2930         /* Init IA32_MCG_CTL to all 1s */
2931         if (mcg_cap & MCG_CTL_P)
2932                 vcpu->arch.mcg_ctl = ~(u64)0;
2933         /* Init IA32_MCi_CTL to all 1s */
2934         for (bank = 0; bank < bank_num; bank++)
2935                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2936
2937         if (kvm_x86_ops->setup_mce)
2938                 kvm_x86_ops->setup_mce(vcpu);
2939 out:
2940         return r;
2941 }
2942
2943 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2944                                       struct kvm_x86_mce *mce)
2945 {
2946         u64 mcg_cap = vcpu->arch.mcg_cap;
2947         unsigned bank_num = mcg_cap & 0xff;
2948         u64 *banks = vcpu->arch.mce_banks;
2949
2950         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2951                 return -EINVAL;
2952         /*
2953          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2954          * reporting is disabled
2955          */
2956         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2957             vcpu->arch.mcg_ctl != ~(u64)0)
2958                 return 0;
2959         banks += 4 * mce->bank;
2960         /*
2961          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2962          * reporting is disabled for the bank
2963          */
2964         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2965                 return 0;
2966         if (mce->status & MCI_STATUS_UC) {
2967                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2968                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2969                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2970                         return 0;
2971                 }
2972                 if (banks[1] & MCI_STATUS_VAL)
2973                         mce->status |= MCI_STATUS_OVER;
2974                 banks[2] = mce->addr;
2975                 banks[3] = mce->misc;
2976                 vcpu->arch.mcg_status = mce->mcg_status;
2977                 banks[1] = mce->status;
2978                 kvm_queue_exception(vcpu, MC_VECTOR);
2979         } else if (!(banks[1] & MCI_STATUS_VAL)
2980                    || !(banks[1] & MCI_STATUS_UC)) {
2981                 if (banks[1] & MCI_STATUS_VAL)
2982                         mce->status |= MCI_STATUS_OVER;
2983                 banks[2] = mce->addr;
2984                 banks[3] = mce->misc;
2985                 banks[1] = mce->status;
2986         } else
2987                 banks[1] |= MCI_STATUS_OVER;
2988         return 0;
2989 }
2990
2991 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2992                                                struct kvm_vcpu_events *events)
2993 {
2994         process_nmi(vcpu);
2995         events->exception.injected =
2996                 vcpu->arch.exception.pending &&
2997                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2998         events->exception.nr = vcpu->arch.exception.nr;
2999         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3000         events->exception.pad = 0;
3001         events->exception.error_code = vcpu->arch.exception.error_code;
3002
3003         events->interrupt.injected =
3004                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3005         events->interrupt.nr = vcpu->arch.interrupt.nr;
3006         events->interrupt.soft = 0;
3007         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3008
3009         events->nmi.injected = vcpu->arch.nmi_injected;
3010         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3011         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3012         events->nmi.pad = 0;
3013
3014         events->sipi_vector = 0; /* never valid when reporting to user space */
3015
3016         events->smi.smm = is_smm(vcpu);
3017         events->smi.pending = vcpu->arch.smi_pending;
3018         events->smi.smm_inside_nmi =
3019                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3020         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3021
3022         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3023                          | KVM_VCPUEVENT_VALID_SHADOW
3024                          | KVM_VCPUEVENT_VALID_SMM);
3025         memset(&events->reserved, 0, sizeof(events->reserved));
3026 }
3027
3028 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3029                                               struct kvm_vcpu_events *events)
3030 {
3031         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3032                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3033                               | KVM_VCPUEVENT_VALID_SHADOW
3034                               | KVM_VCPUEVENT_VALID_SMM))
3035                 return -EINVAL;
3036
3037         if (events->exception.injected &&
3038             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3039                 return -EINVAL;
3040
3041         process_nmi(vcpu);
3042         vcpu->arch.exception.pending = events->exception.injected;
3043         vcpu->arch.exception.nr = events->exception.nr;
3044         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3045         vcpu->arch.exception.error_code = events->exception.error_code;
3046
3047         vcpu->arch.interrupt.pending = events->interrupt.injected;
3048         vcpu->arch.interrupt.nr = events->interrupt.nr;
3049         vcpu->arch.interrupt.soft = events->interrupt.soft;
3050         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3051                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3052                                                   events->interrupt.shadow);
3053
3054         vcpu->arch.nmi_injected = events->nmi.injected;
3055         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3056                 vcpu->arch.nmi_pending = events->nmi.pending;
3057         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3058
3059         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3060             lapic_in_kernel(vcpu))
3061                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3062
3063         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3064                 if (events->smi.smm)
3065                         vcpu->arch.hflags |= HF_SMM_MASK;
3066                 else
3067                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3068                 vcpu->arch.smi_pending = events->smi.pending;
3069                 if (events->smi.smm_inside_nmi)
3070                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3071                 else
3072                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3073                 if (lapic_in_kernel(vcpu)) {
3074                         if (events->smi.latched_init)
3075                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3076                         else
3077                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3078                 }
3079         }
3080
3081         kvm_make_request(KVM_REQ_EVENT, vcpu);
3082
3083         return 0;
3084 }
3085
3086 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3087                                              struct kvm_debugregs *dbgregs)
3088 {
3089         unsigned long val;
3090
3091         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3092         kvm_get_dr(vcpu, 6, &val);
3093         dbgregs->dr6 = val;
3094         dbgregs->dr7 = vcpu->arch.dr7;
3095         dbgregs->flags = 0;
3096         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3097 }
3098
3099 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3100                                             struct kvm_debugregs *dbgregs)
3101 {
3102         if (dbgregs->flags)
3103                 return -EINVAL;
3104
3105         if (dbgregs->dr6 & ~0xffffffffull)
3106                 return -EINVAL;
3107         if (dbgregs->dr7 & ~0xffffffffull)
3108                 return -EINVAL;
3109
3110         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3111         kvm_update_dr0123(vcpu);
3112         vcpu->arch.dr6 = dbgregs->dr6;
3113         kvm_update_dr6(vcpu);
3114         vcpu->arch.dr7 = dbgregs->dr7;
3115         kvm_update_dr7(vcpu);
3116
3117         return 0;
3118 }
3119
3120 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3121
3122 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3123 {
3124         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3125         u64 xstate_bv = xsave->header.xfeatures;
3126         u64 valid;
3127
3128         /*
3129          * Copy legacy XSAVE area, to avoid complications with CPUID
3130          * leaves 0 and 1 in the loop below.
3131          */
3132         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3133
3134         /* Set XSTATE_BV */
3135         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3136
3137         /*
3138          * Copy each region from the possibly compacted offset to the
3139          * non-compacted offset.
3140          */
3141         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3142         while (valid) {
3143                 u64 feature = valid & -valid;
3144                 int index = fls64(feature) - 1;
3145                 void *src = get_xsave_addr(xsave, feature);
3146
3147                 if (src) {
3148                         u32 size, offset, ecx, edx;
3149                         cpuid_count(XSTATE_CPUID, index,
3150                                     &size, &offset, &ecx, &edx);
3151                         memcpy(dest + offset, src, size);
3152                 }
3153
3154                 valid -= feature;
3155         }
3156 }
3157
3158 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3159 {
3160         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3161         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3162         u64 valid;
3163
3164         /*
3165          * Copy legacy XSAVE area, to avoid complications with CPUID
3166          * leaves 0 and 1 in the loop below.
3167          */
3168         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3169
3170         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3171         xsave->header.xfeatures = xstate_bv;
3172         if (boot_cpu_has(X86_FEATURE_XSAVES))
3173                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3174
3175         /*
3176          * Copy each region from the non-compacted offset to the
3177          * possibly compacted offset.
3178          */
3179         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3180         while (valid) {
3181                 u64 feature = valid & -valid;
3182                 int index = fls64(feature) - 1;
3183                 void *dest = get_xsave_addr(xsave, feature);
3184
3185                 if (dest) {
3186                         u32 size, offset, ecx, edx;
3187                         cpuid_count(XSTATE_CPUID, index,
3188                                     &size, &offset, &ecx, &edx);
3189                         memcpy(dest, src + offset, size);
3190                 }
3191
3192                 valid -= feature;
3193         }
3194 }
3195
3196 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3197                                          struct kvm_xsave *guest_xsave)
3198 {
3199         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3200                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3201                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3202         } else {
3203                 memcpy(guest_xsave->region,
3204                         &vcpu->arch.guest_fpu.state.fxsave,
3205                         sizeof(struct fxregs_state));
3206                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3207                         XFEATURE_MASK_FPSSE;
3208         }
3209 }
3210
3211 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3212                                         struct kvm_xsave *guest_xsave)
3213 {
3214         u64 xstate_bv =
3215                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3216
3217         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3218                 /*
3219                  * Here we allow setting states that are not present in
3220                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3221                  * with old userspace.
3222                  */
3223                 if (xstate_bv & ~kvm_supported_xcr0())
3224                         return -EINVAL;
3225                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3226         } else {
3227                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3228                         return -EINVAL;
3229                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3230                         guest_xsave->region, sizeof(struct fxregs_state));
3231         }
3232         return 0;
3233 }
3234
3235 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3236                                         struct kvm_xcrs *guest_xcrs)
3237 {
3238         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3239                 guest_xcrs->nr_xcrs = 0;
3240                 return;
3241         }
3242
3243         guest_xcrs->nr_xcrs = 1;
3244         guest_xcrs->flags = 0;
3245         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3246         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3247 }
3248
3249 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3250                                        struct kvm_xcrs *guest_xcrs)
3251 {
3252         int i, r = 0;
3253
3254         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3255                 return -EINVAL;
3256
3257         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3258                 return -EINVAL;
3259
3260         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3261                 /* Only support XCR0 currently */
3262                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3263                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3264                                 guest_xcrs->xcrs[i].value);
3265                         break;
3266                 }
3267         if (r)
3268                 r = -EINVAL;
3269         return r;
3270 }
3271
3272 /*
3273  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3274  * stopped by the hypervisor.  This function will be called from the host only.
3275  * EINVAL is returned when the host attempts to set the flag for a guest that
3276  * does not support pv clocks.
3277  */
3278 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3279 {
3280         if (!vcpu->arch.pv_time_enabled)
3281                 return -EINVAL;
3282         vcpu->arch.pvclock_set_guest_stopped_request = true;
3283         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3284         return 0;
3285 }
3286
3287 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3288                                      struct kvm_enable_cap *cap)
3289 {
3290         if (cap->flags)
3291                 return -EINVAL;
3292
3293         switch (cap->cap) {
3294         case KVM_CAP_HYPERV_SYNIC:
3295                 return kvm_hv_activate_synic(vcpu);
3296         default:
3297                 return -EINVAL;
3298         }
3299 }
3300
3301 long kvm_arch_vcpu_ioctl(struct file *filp,
3302                          unsigned int ioctl, unsigned long arg)
3303 {
3304         struct kvm_vcpu *vcpu = filp->private_data;
3305         void __user *argp = (void __user *)arg;
3306         int r;
3307         union {
3308                 struct kvm_lapic_state *lapic;
3309                 struct kvm_xsave *xsave;
3310                 struct kvm_xcrs *xcrs;
3311                 void *buffer;
3312         } u;
3313
3314         u.buffer = NULL;
3315         switch (ioctl) {
3316         case KVM_GET_LAPIC: {
3317                 r = -EINVAL;
3318                 if (!lapic_in_kernel(vcpu))
3319                         goto out;
3320                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3321
3322                 r = -ENOMEM;
3323                 if (!u.lapic)
3324                         goto out;
3325                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3326                 if (r)
3327                         goto out;
3328                 r = -EFAULT;
3329                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3330                         goto out;
3331                 r = 0;
3332                 break;
3333         }
3334         case KVM_SET_LAPIC: {
3335                 r = -EINVAL;
3336                 if (!lapic_in_kernel(vcpu))
3337                         goto out;
3338                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3339                 if (IS_ERR(u.lapic))
3340                         return PTR_ERR(u.lapic);
3341
3342                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3343                 break;
3344         }
3345         case KVM_INTERRUPT: {
3346                 struct kvm_interrupt irq;
3347
3348                 r = -EFAULT;
3349                 if (copy_from_user(&irq, argp, sizeof irq))
3350                         goto out;
3351                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3352                 break;
3353         }
3354         case KVM_NMI: {
3355                 r = kvm_vcpu_ioctl_nmi(vcpu);
3356                 break;
3357         }
3358         case KVM_SMI: {
3359                 r = kvm_vcpu_ioctl_smi(vcpu);
3360                 break;
3361         }
3362         case KVM_SET_CPUID: {
3363                 struct kvm_cpuid __user *cpuid_arg = argp;
3364                 struct kvm_cpuid cpuid;
3365
3366                 r = -EFAULT;
3367                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3368                         goto out;
3369                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3370                 break;
3371         }
3372         case KVM_SET_CPUID2: {
3373                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3374                 struct kvm_cpuid2 cpuid;
3375
3376                 r = -EFAULT;
3377                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3378                         goto out;
3379                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3380                                               cpuid_arg->entries);
3381                 break;
3382         }
3383         case KVM_GET_CPUID2: {
3384                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3385                 struct kvm_cpuid2 cpuid;
3386
3387                 r = -EFAULT;
3388                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3389                         goto out;
3390                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3391                                               cpuid_arg->entries);
3392                 if (r)
3393                         goto out;
3394                 r = -EFAULT;
3395                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3396                         goto out;
3397                 r = 0;
3398                 break;
3399         }
3400         case KVM_GET_MSRS:
3401                 r = msr_io(vcpu, argp, do_get_msr, 1);
3402                 break;
3403         case KVM_SET_MSRS:
3404                 r = msr_io(vcpu, argp, do_set_msr, 0);
3405                 break;
3406         case KVM_TPR_ACCESS_REPORTING: {
3407                 struct kvm_tpr_access_ctl tac;
3408
3409                 r = -EFAULT;
3410                 if (copy_from_user(&tac, argp, sizeof tac))
3411                         goto out;
3412                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3413                 if (r)
3414                         goto out;
3415                 r = -EFAULT;
3416                 if (copy_to_user(argp, &tac, sizeof tac))
3417                         goto out;
3418                 r = 0;
3419                 break;
3420         };
3421         case KVM_SET_VAPIC_ADDR: {
3422                 struct kvm_vapic_addr va;
3423
3424                 r = -EINVAL;
3425                 if (!lapic_in_kernel(vcpu))
3426                         goto out;
3427                 r = -EFAULT;
3428                 if (copy_from_user(&va, argp, sizeof va))
3429                         goto out;
3430                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3431                 break;
3432         }
3433         case KVM_X86_SETUP_MCE: {
3434                 u64 mcg_cap;
3435
3436                 r = -EFAULT;
3437                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3438                         goto out;
3439                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3440                 break;
3441         }
3442         case KVM_X86_SET_MCE: {
3443                 struct kvm_x86_mce mce;
3444
3445                 r = -EFAULT;
3446                 if (copy_from_user(&mce, argp, sizeof mce))
3447                         goto out;
3448                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3449                 break;
3450         }
3451         case KVM_GET_VCPU_EVENTS: {
3452                 struct kvm_vcpu_events events;
3453
3454                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3455
3456                 r = -EFAULT;
3457                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3458                         break;
3459                 r = 0;
3460                 break;
3461         }
3462         case KVM_SET_VCPU_EVENTS: {
3463                 struct kvm_vcpu_events events;
3464
3465                 r = -EFAULT;
3466                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3467                         break;
3468
3469                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3470                 break;
3471         }
3472         case KVM_GET_DEBUGREGS: {
3473                 struct kvm_debugregs dbgregs;
3474
3475                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3476
3477                 r = -EFAULT;
3478                 if (copy_to_user(argp, &dbgregs,
3479                                  sizeof(struct kvm_debugregs)))
3480                         break;
3481                 r = 0;
3482                 break;
3483         }
3484         case KVM_SET_DEBUGREGS: {
3485                 struct kvm_debugregs dbgregs;
3486
3487                 r = -EFAULT;
3488                 if (copy_from_user(&dbgregs, argp,
3489                                    sizeof(struct kvm_debugregs)))
3490                         break;
3491
3492                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3493                 break;
3494         }
3495         case KVM_GET_XSAVE: {
3496                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3497                 r = -ENOMEM;
3498                 if (!u.xsave)
3499                         break;
3500
3501                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3502
3503                 r = -EFAULT;
3504                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3505                         break;
3506                 r = 0;
3507                 break;
3508         }
3509         case KVM_SET_XSAVE: {
3510                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3511                 if (IS_ERR(u.xsave))
3512                         return PTR_ERR(u.xsave);
3513
3514                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3515                 break;
3516         }
3517         case KVM_GET_XCRS: {
3518                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3519                 r = -ENOMEM;
3520                 if (!u.xcrs)
3521                         break;
3522
3523                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3524
3525                 r = -EFAULT;
3526                 if (copy_to_user(argp, u.xcrs,
3527                                  sizeof(struct kvm_xcrs)))
3528                         break;
3529                 r = 0;
3530                 break;
3531         }
3532         case KVM_SET_XCRS: {
3533                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3534                 if (IS_ERR(u.xcrs))
3535                         return PTR_ERR(u.xcrs);
3536
3537                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3538                 break;
3539         }
3540         case KVM_SET_TSC_KHZ: {
3541                 u32 user_tsc_khz;
3542
3543                 r = -EINVAL;
3544                 user_tsc_khz = (u32)arg;
3545
3546                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3547                         goto out;
3548
3549                 if (user_tsc_khz == 0)
3550                         user_tsc_khz = tsc_khz;
3551
3552                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3553                         r = 0;
3554
3555                 goto out;
3556         }
3557         case KVM_GET_TSC_KHZ: {
3558                 r = vcpu->arch.virtual_tsc_khz;
3559                 goto out;
3560         }
3561         case KVM_KVMCLOCK_CTRL: {
3562                 r = kvm_set_guest_paused(vcpu);
3563                 goto out;
3564         }
3565         case KVM_ENABLE_CAP: {
3566                 struct kvm_enable_cap cap;
3567
3568                 r = -EFAULT;
3569                 if (copy_from_user(&cap, argp, sizeof(cap)))
3570                         goto out;
3571                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3572                 break;
3573         }
3574         default:
3575                 r = -EINVAL;
3576         }
3577 out:
3578         kfree(u.buffer);
3579         return r;
3580 }
3581
3582 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3583 {
3584         return VM_FAULT_SIGBUS;
3585 }
3586
3587 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3588 {
3589         int ret;
3590
3591         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3592                 return -EINVAL;
3593         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3594         return ret;
3595 }
3596
3597 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3598                                               u64 ident_addr)
3599 {
3600         kvm->arch.ept_identity_map_addr = ident_addr;
3601         return 0;
3602 }
3603
3604 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3605                                           u32 kvm_nr_mmu_pages)
3606 {
3607         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3608                 return -EINVAL;
3609
3610         mutex_lock(&kvm->slots_lock);
3611
3612         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3613         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3614
3615         mutex_unlock(&kvm->slots_lock);
3616         return 0;
3617 }
3618
3619 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3620 {
3621         return kvm->arch.n_max_mmu_pages;
3622 }
3623
3624 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3625 {
3626         int r;
3627
3628         r = 0;
3629         switch (chip->chip_id) {
3630         case KVM_IRQCHIP_PIC_MASTER:
3631                 memcpy(&chip->chip.pic,
3632                         &pic_irqchip(kvm)->pics[0],
3633                         sizeof(struct kvm_pic_state));
3634                 break;
3635         case KVM_IRQCHIP_PIC_SLAVE:
3636                 memcpy(&chip->chip.pic,
3637                         &pic_irqchip(kvm)->pics[1],
3638                         sizeof(struct kvm_pic_state));
3639                 break;
3640         case KVM_IRQCHIP_IOAPIC:
3641                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3642                 break;
3643         default:
3644                 r = -EINVAL;
3645                 break;
3646         }
3647         return r;
3648 }
3649
3650 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3651 {
3652         int r;
3653
3654         r = 0;
3655         switch (chip->chip_id) {
3656         case KVM_IRQCHIP_PIC_MASTER:
3657                 spin_lock(&pic_irqchip(kvm)->lock);
3658                 memcpy(&pic_irqchip(kvm)->pics[0],
3659                         &chip->chip.pic,
3660                         sizeof(struct kvm_pic_state));
3661                 spin_unlock(&pic_irqchip(kvm)->lock);
3662                 break;
3663         case KVM_IRQCHIP_PIC_SLAVE:
3664                 spin_lock(&pic_irqchip(kvm)->lock);
3665                 memcpy(&pic_irqchip(kvm)->pics[1],
3666                         &chip->chip.pic,
3667                         sizeof(struct kvm_pic_state));
3668                 spin_unlock(&pic_irqchip(kvm)->lock);
3669                 break;
3670         case KVM_IRQCHIP_IOAPIC:
3671                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3672                 break;
3673         default:
3674                 r = -EINVAL;
3675                 break;
3676         }
3677         kvm_pic_update_irq(pic_irqchip(kvm));
3678         return r;
3679 }
3680
3681 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3682 {
3683         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3684
3685         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3686
3687         mutex_lock(&kps->lock);
3688         memcpy(ps, &kps->channels, sizeof(*ps));
3689         mutex_unlock(&kps->lock);
3690         return 0;
3691 }
3692
3693 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3694 {
3695         int i;
3696         struct kvm_pit *pit = kvm->arch.vpit;
3697
3698         mutex_lock(&pit->pit_state.lock);
3699         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3700         for (i = 0; i < 3; i++)
3701                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3702         mutex_unlock(&pit->pit_state.lock);
3703         return 0;
3704 }
3705
3706 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3707 {
3708         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3709         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3710                 sizeof(ps->channels));
3711         ps->flags = kvm->arch.vpit->pit_state.flags;
3712         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3713         memset(&ps->reserved, 0, sizeof(ps->reserved));
3714         return 0;
3715 }
3716
3717 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3718 {
3719         int start = 0;
3720         int i;
3721         u32 prev_legacy, cur_legacy;
3722         struct kvm_pit *pit = kvm->arch.vpit;
3723
3724         mutex_lock(&pit->pit_state.lock);
3725         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3726         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3727         if (!prev_legacy && cur_legacy)
3728                 start = 1;
3729         memcpy(&pit->pit_state.channels, &ps->channels,
3730                sizeof(pit->pit_state.channels));
3731         pit->pit_state.flags = ps->flags;
3732         for (i = 0; i < 3; i++)
3733                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3734                                    start && i == 0);
3735         mutex_unlock(&pit->pit_state.lock);
3736         return 0;
3737 }
3738
3739 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3740                                  struct kvm_reinject_control *control)
3741 {
3742         struct kvm_pit *pit = kvm->arch.vpit;
3743
3744         if (!pit)
3745                 return -ENXIO;
3746
3747         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3748          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3749          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3750          */
3751         mutex_lock(&pit->pit_state.lock);
3752         kvm_pit_set_reinject(pit, control->pit_reinject);
3753         mutex_unlock(&pit->pit_state.lock);
3754
3755         return 0;
3756 }
3757
3758 /**
3759  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3760  * @kvm: kvm instance
3761  * @log: slot id and address to which we copy the log
3762  *
3763  * Steps 1-4 below provide general overview of dirty page logging. See
3764  * kvm_get_dirty_log_protect() function description for additional details.
3765  *
3766  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3767  * always flush the TLB (step 4) even if previous step failed  and the dirty
3768  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3769  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3770  * writes will be marked dirty for next log read.
3771  *
3772  *   1. Take a snapshot of the bit and clear it if needed.
3773  *   2. Write protect the corresponding page.
3774  *   3. Copy the snapshot to the userspace.
3775  *   4. Flush TLB's if needed.
3776  */
3777 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3778 {
3779         bool is_dirty = false;
3780         int r;
3781
3782         mutex_lock(&kvm->slots_lock);
3783
3784         /*
3785          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3786          */
3787         if (kvm_x86_ops->flush_log_dirty)
3788                 kvm_x86_ops->flush_log_dirty(kvm);
3789
3790         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3791
3792         /*
3793          * All the TLBs can be flushed out of mmu lock, see the comments in
3794          * kvm_mmu_slot_remove_write_access().
3795          */
3796         lockdep_assert_held(&kvm->slots_lock);
3797         if (is_dirty)
3798                 kvm_flush_remote_tlbs(kvm);
3799
3800         mutex_unlock(&kvm->slots_lock);
3801         return r;
3802 }
3803
3804 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3805                         bool line_status)
3806 {
3807         if (!irqchip_in_kernel(kvm))
3808                 return -ENXIO;
3809
3810         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3811                                         irq_event->irq, irq_event->level,
3812                                         line_status);
3813         return 0;
3814 }
3815
3816 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3817                                    struct kvm_enable_cap *cap)
3818 {
3819         int r;
3820
3821         if (cap->flags)
3822                 return -EINVAL;
3823
3824         switch (cap->cap) {
3825         case KVM_CAP_DISABLE_QUIRKS:
3826                 kvm->arch.disabled_quirks = cap->args[0];
3827                 r = 0;
3828                 break;
3829         case KVM_CAP_SPLIT_IRQCHIP: {
3830                 mutex_lock(&kvm->lock);
3831                 r = -EINVAL;
3832                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3833                         goto split_irqchip_unlock;
3834                 r = -EEXIST;
3835                 if (irqchip_in_kernel(kvm))
3836                         goto split_irqchip_unlock;
3837                 if (kvm->created_vcpus)
3838                         goto split_irqchip_unlock;
3839                 r = kvm_setup_empty_irq_routing(kvm);
3840                 if (r)
3841                         goto split_irqchip_unlock;
3842                 /* Pairs with irqchip_in_kernel. */
3843                 smp_wmb();
3844                 kvm->arch.irqchip_split = true;
3845                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3846                 r = 0;
3847 split_irqchip_unlock:
3848                 mutex_unlock(&kvm->lock);
3849                 break;
3850         }
3851         case KVM_CAP_X2APIC_API:
3852                 r = -EINVAL;
3853                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3854                         break;
3855
3856                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3857                         kvm->arch.x2apic_format = true;
3858                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3859                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3860
3861                 r = 0;
3862                 break;
3863         default:
3864                 r = -EINVAL;
3865                 break;
3866         }
3867         return r;
3868 }
3869
3870 long kvm_arch_vm_ioctl(struct file *filp,
3871                        unsigned int ioctl, unsigned long arg)
3872 {
3873         struct kvm *kvm = filp->private_data;
3874         void __user *argp = (void __user *)arg;
3875         int r = -ENOTTY;
3876         /*
3877          * This union makes it completely explicit to gcc-3.x
3878          * that these two variables' stack usage should be
3879          * combined, not added together.
3880          */
3881         union {
3882                 struct kvm_pit_state ps;
3883                 struct kvm_pit_state2 ps2;
3884                 struct kvm_pit_config pit_config;
3885         } u;
3886
3887         switch (ioctl) {
3888         case KVM_SET_TSS_ADDR:
3889                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3890                 break;
3891         case KVM_SET_IDENTITY_MAP_ADDR: {
3892                 u64 ident_addr;
3893
3894                 r = -EFAULT;
3895                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3896                         goto out;
3897                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3898                 break;
3899         }
3900         case KVM_SET_NR_MMU_PAGES:
3901                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3902                 break;
3903         case KVM_GET_NR_MMU_PAGES:
3904                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3905                 break;
3906         case KVM_CREATE_IRQCHIP: {
3907                 struct kvm_pic *vpic;
3908
3909                 mutex_lock(&kvm->lock);
3910                 r = -EEXIST;
3911                 if (kvm->arch.vpic)
3912                         goto create_irqchip_unlock;
3913                 r = -EINVAL;
3914                 if (kvm->created_vcpus)
3915                         goto create_irqchip_unlock;
3916                 r = -ENOMEM;
3917                 vpic = kvm_create_pic(kvm);
3918                 if (vpic) {
3919                         r = kvm_ioapic_init(kvm);
3920                         if (r) {
3921                                 mutex_lock(&kvm->slots_lock);
3922                                 kvm_destroy_pic(vpic);
3923                                 mutex_unlock(&kvm->slots_lock);
3924                                 goto create_irqchip_unlock;
3925                         }
3926                 } else
3927                         goto create_irqchip_unlock;
3928                 r = kvm_setup_default_irq_routing(kvm);
3929                 if (r) {
3930                         mutex_lock(&kvm->slots_lock);
3931                         mutex_lock(&kvm->irq_lock);
3932                         kvm_ioapic_destroy(kvm);
3933                         kvm_destroy_pic(vpic);
3934                         mutex_unlock(&kvm->irq_lock);
3935                         mutex_unlock(&kvm->slots_lock);
3936                         goto create_irqchip_unlock;
3937                 }
3938                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3939                 smp_wmb();
3940                 kvm->arch.vpic = vpic;
3941         create_irqchip_unlock:
3942                 mutex_unlock(&kvm->lock);
3943                 break;
3944         }
3945         case KVM_CREATE_PIT:
3946                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3947                 goto create_pit;
3948         case KVM_CREATE_PIT2:
3949                 r = -EFAULT;
3950                 if (copy_from_user(&u.pit_config, argp,
3951                                    sizeof(struct kvm_pit_config)))
3952                         goto out;
3953         create_pit:
3954                 mutex_lock(&kvm->lock);
3955                 r = -EEXIST;
3956                 if (kvm->arch.vpit)
3957                         goto create_pit_unlock;
3958                 r = -ENOMEM;
3959                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3960                 if (kvm->arch.vpit)
3961                         r = 0;
3962         create_pit_unlock:
3963                 mutex_unlock(&kvm->lock);
3964                 break;
3965         case KVM_GET_IRQCHIP: {
3966                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3967                 struct kvm_irqchip *chip;
3968
3969                 chip = memdup_user(argp, sizeof(*chip));
3970                 if (IS_ERR(chip)) {
3971                         r = PTR_ERR(chip);
3972                         goto out;
3973                 }
3974
3975                 r = -ENXIO;
3976                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3977                         goto get_irqchip_out;
3978                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3979                 if (r)
3980                         goto get_irqchip_out;
3981                 r = -EFAULT;
3982                 if (copy_to_user(argp, chip, sizeof *chip))
3983                         goto get_irqchip_out;
3984                 r = 0;
3985         get_irqchip_out:
3986                 kfree(chip);
3987                 break;
3988         }
3989         case KVM_SET_IRQCHIP: {
3990                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3991                 struct kvm_irqchip *chip;
3992
3993                 chip = memdup_user(argp, sizeof(*chip));
3994                 if (IS_ERR(chip)) {
3995                         r = PTR_ERR(chip);
3996                         goto out;
3997                 }
3998
3999                 r = -ENXIO;
4000                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4001                         goto set_irqchip_out;
4002                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4003                 if (r)
4004                         goto set_irqchip_out;
4005                 r = 0;
4006         set_irqchip_out:
4007                 kfree(chip);
4008                 break;
4009         }
4010         case KVM_GET_PIT: {
4011                 r = -EFAULT;
4012                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4013                         goto out;
4014                 r = -ENXIO;
4015                 if (!kvm->arch.vpit)
4016                         goto out;
4017                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4018                 if (r)
4019                         goto out;
4020                 r = -EFAULT;
4021                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4022                         goto out;
4023                 r = 0;
4024                 break;
4025         }
4026         case KVM_SET_PIT: {
4027                 r = -EFAULT;
4028                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4029                         goto out;
4030                 r = -ENXIO;
4031                 if (!kvm->arch.vpit)
4032                         goto out;
4033                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4034                 break;
4035         }
4036         case KVM_GET_PIT2: {
4037                 r = -ENXIO;
4038                 if (!kvm->arch.vpit)
4039                         goto out;
4040                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4041                 if (r)
4042                         goto out;
4043                 r = -EFAULT;
4044                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4045                         goto out;
4046                 r = 0;
4047                 break;
4048         }
4049         case KVM_SET_PIT2: {
4050                 r = -EFAULT;
4051                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4052                         goto out;
4053                 r = -ENXIO;
4054                 if (!kvm->arch.vpit)
4055                         goto out;
4056                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4057                 break;
4058         }
4059         case KVM_REINJECT_CONTROL: {
4060                 struct kvm_reinject_control control;
4061                 r =  -EFAULT;
4062                 if (copy_from_user(&control, argp, sizeof(control)))
4063                         goto out;
4064                 r = kvm_vm_ioctl_reinject(kvm, &control);
4065                 break;
4066         }
4067         case KVM_SET_BOOT_CPU_ID:
4068                 r = 0;
4069                 mutex_lock(&kvm->lock);
4070                 if (kvm->created_vcpus)
4071                         r = -EBUSY;
4072                 else
4073                         kvm->arch.bsp_vcpu_id = arg;
4074                 mutex_unlock(&kvm->lock);
4075                 break;
4076         case KVM_XEN_HVM_CONFIG: {
4077                 r = -EFAULT;
4078                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4079                                    sizeof(struct kvm_xen_hvm_config)))
4080                         goto out;
4081                 r = -EINVAL;
4082                 if (kvm->arch.xen_hvm_config.flags)
4083                         goto out;
4084                 r = 0;
4085                 break;
4086         }
4087         case KVM_SET_CLOCK: {
4088                 struct kvm_clock_data user_ns;
4089                 u64 now_ns;
4090
4091                 r = -EFAULT;
4092                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4093                         goto out;
4094
4095                 r = -EINVAL;
4096                 if (user_ns.flags)
4097                         goto out;
4098
4099                 r = 0;
4100                 local_irq_disable();
4101                 now_ns = __get_kvmclock_ns(kvm);
4102                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4103                 local_irq_enable();
4104                 kvm_gen_update_masterclock(kvm);
4105                 break;
4106         }
4107         case KVM_GET_CLOCK: {
4108                 struct kvm_clock_data user_ns;
4109                 u64 now_ns;
4110
4111                 now_ns = get_kvmclock_ns(kvm);
4112                 user_ns.clock = now_ns;
4113                 user_ns.flags = 0;
4114                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4115
4116                 r = -EFAULT;
4117                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4118                         goto out;
4119                 r = 0;
4120                 break;
4121         }
4122         case KVM_ENABLE_CAP: {
4123                 struct kvm_enable_cap cap;
4124
4125                 r = -EFAULT;
4126                 if (copy_from_user(&cap, argp, sizeof(cap)))
4127                         goto out;
4128                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4129                 break;
4130         }
4131         default:
4132                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4133         }
4134 out:
4135         return r;
4136 }
4137
4138 static void kvm_init_msr_list(void)
4139 {
4140         u32 dummy[2];
4141         unsigned i, j;
4142
4143         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4144                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4145                         continue;
4146
4147                 /*
4148                  * Even MSRs that are valid in the host may not be exposed
4149                  * to the guests in some cases.
4150                  */
4151                 switch (msrs_to_save[i]) {
4152                 case MSR_IA32_BNDCFGS:
4153                         if (!kvm_x86_ops->mpx_supported())
4154                                 continue;
4155                         break;
4156                 case MSR_TSC_AUX:
4157                         if (!kvm_x86_ops->rdtscp_supported())
4158                                 continue;
4159                         break;
4160                 default:
4161                         break;
4162                 }
4163
4164                 if (j < i)
4165                         msrs_to_save[j] = msrs_to_save[i];
4166                 j++;
4167         }
4168         num_msrs_to_save = j;
4169
4170         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4171                 switch (emulated_msrs[i]) {
4172                 case MSR_IA32_SMBASE:
4173                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4174                                 continue;
4175                         break;
4176                 default:
4177                         break;
4178                 }
4179
4180                 if (j < i)
4181                         emulated_msrs[j] = emulated_msrs[i];
4182                 j++;
4183         }
4184         num_emulated_msrs = j;
4185 }
4186
4187 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4188                            const void *v)
4189 {
4190         int handled = 0;
4191         int n;
4192
4193         do {
4194                 n = min(len, 8);
4195                 if (!(lapic_in_kernel(vcpu) &&
4196                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4197                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4198                         break;
4199                 handled += n;
4200                 addr += n;
4201                 len -= n;
4202                 v += n;
4203         } while (len);
4204
4205         return handled;
4206 }
4207
4208 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4209 {
4210         int handled = 0;
4211         int n;
4212
4213         do {
4214                 n = min(len, 8);
4215                 if (!(lapic_in_kernel(vcpu) &&
4216                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4217                                          addr, n, v))
4218                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4219                         break;
4220                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4221                 handled += n;
4222                 addr += n;
4223                 len -= n;
4224                 v += n;
4225         } while (len);
4226
4227         return handled;
4228 }
4229
4230 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4231                         struct kvm_segment *var, int seg)
4232 {
4233         kvm_x86_ops->set_segment(vcpu, var, seg);
4234 }
4235
4236 void kvm_get_segment(struct kvm_vcpu *vcpu,
4237                      struct kvm_segment *var, int seg)
4238 {
4239         kvm_x86_ops->get_segment(vcpu, var, seg);
4240 }
4241
4242 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4243                            struct x86_exception *exception)
4244 {
4245         gpa_t t_gpa;
4246
4247         BUG_ON(!mmu_is_nested(vcpu));
4248
4249         /* NPT walks are always user-walks */
4250         access |= PFERR_USER_MASK;
4251         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4252
4253         return t_gpa;
4254 }
4255
4256 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4257                               struct x86_exception *exception)
4258 {
4259         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4260         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4261 }
4262
4263  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4264                                 struct x86_exception *exception)
4265 {
4266         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4267         access |= PFERR_FETCH_MASK;
4268         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4269 }
4270
4271 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4272                                struct x86_exception *exception)
4273 {
4274         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4275         access |= PFERR_WRITE_MASK;
4276         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4277 }
4278
4279 /* uses this to access any guest's mapped memory without checking CPL */
4280 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4281                                 struct x86_exception *exception)
4282 {
4283         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4284 }
4285
4286 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4287                                       struct kvm_vcpu *vcpu, u32 access,
4288                                       struct x86_exception *exception)
4289 {
4290         void *data = val;
4291         int r = X86EMUL_CONTINUE;
4292
4293         while (bytes) {
4294                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4295                                                             exception);
4296                 unsigned offset = addr & (PAGE_SIZE-1);
4297                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4298                 int ret;
4299
4300                 if (gpa == UNMAPPED_GVA)
4301                         return X86EMUL_PROPAGATE_FAULT;
4302                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4303                                                offset, toread);
4304                 if (ret < 0) {
4305                         r = X86EMUL_IO_NEEDED;
4306                         goto out;
4307                 }
4308
4309                 bytes -= toread;
4310                 data += toread;
4311                 addr += toread;
4312         }
4313 out:
4314         return r;
4315 }
4316
4317 /* used for instruction fetching */
4318 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4319                                 gva_t addr, void *val, unsigned int bytes,
4320                                 struct x86_exception *exception)
4321 {
4322         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4323         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4324         unsigned offset;
4325         int ret;
4326
4327         /* Inline kvm_read_guest_virt_helper for speed.  */
4328         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4329                                                     exception);
4330         if (unlikely(gpa == UNMAPPED_GVA))
4331                 return X86EMUL_PROPAGATE_FAULT;
4332
4333         offset = addr & (PAGE_SIZE-1);
4334         if (WARN_ON(offset + bytes > PAGE_SIZE))
4335                 bytes = (unsigned)PAGE_SIZE - offset;
4336         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4337                                        offset, bytes);
4338         if (unlikely(ret < 0))
4339                 return X86EMUL_IO_NEEDED;
4340
4341         return X86EMUL_CONTINUE;
4342 }
4343
4344 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4345                                gva_t addr, void *val, unsigned int bytes,
4346                                struct x86_exception *exception)
4347 {
4348         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4349         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4350
4351         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4352                                           exception);
4353 }
4354 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4355
4356 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4357                                       gva_t addr, void *val, unsigned int bytes,
4358                                       struct x86_exception *exception)
4359 {
4360         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4361         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4362 }
4363
4364 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4365                 unsigned long addr, void *val, unsigned int bytes)
4366 {
4367         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4368         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4369
4370         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4371 }
4372
4373 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4374                                        gva_t addr, void *val,
4375                                        unsigned int bytes,
4376                                        struct x86_exception *exception)
4377 {
4378         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4379         void *data = val;
4380         int r = X86EMUL_CONTINUE;
4381
4382         while (bytes) {
4383                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4384                                                              PFERR_WRITE_MASK,
4385                                                              exception);
4386                 unsigned offset = addr & (PAGE_SIZE-1);
4387                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4388                 int ret;
4389
4390                 if (gpa == UNMAPPED_GVA)
4391                         return X86EMUL_PROPAGATE_FAULT;
4392                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4393                 if (ret < 0) {
4394                         r = X86EMUL_IO_NEEDED;
4395                         goto out;
4396                 }
4397
4398                 bytes -= towrite;
4399                 data += towrite;
4400                 addr += towrite;
4401         }
4402 out:
4403         return r;
4404 }
4405 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4406
4407 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4408                                 gpa_t *gpa, struct x86_exception *exception,
4409                                 bool write)
4410 {
4411         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4412                 | (write ? PFERR_WRITE_MASK : 0);
4413
4414         /*
4415          * currently PKRU is only applied to ept enabled guest so
4416          * there is no pkey in EPT page table for L1 guest or EPT
4417          * shadow page table for L2 guest.
4418          */
4419         if (vcpu_match_mmio_gva(vcpu, gva)
4420             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4421                                  vcpu->arch.access, 0, access)) {
4422                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4423                                         (gva & (PAGE_SIZE - 1));
4424                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4425                 return 1;
4426         }
4427
4428         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4429
4430         if (*gpa == UNMAPPED_GVA)
4431                 return -1;
4432
4433         /* For APIC access vmexit */
4434         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4435                 return 1;
4436
4437         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4438                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4439                 return 1;
4440         }
4441
4442         return 0;
4443 }
4444
4445 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4446                         const void *val, int bytes)
4447 {
4448         int ret;
4449
4450         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4451         if (ret < 0)
4452                 return 0;
4453         kvm_page_track_write(vcpu, gpa, val, bytes);
4454         return 1;
4455 }
4456
4457 struct read_write_emulator_ops {
4458         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4459                                   int bytes);
4460         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4461                                   void *val, int bytes);
4462         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4463                                int bytes, void *val);
4464         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4465                                     void *val, int bytes);
4466         bool write;
4467 };
4468
4469 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4470 {
4471         if (vcpu->mmio_read_completed) {
4472                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4473                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4474                 vcpu->mmio_read_completed = 0;
4475                 return 1;
4476         }
4477
4478         return 0;
4479 }
4480
4481 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4482                         void *val, int bytes)
4483 {
4484         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4485 }
4486
4487 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4488                          void *val, int bytes)
4489 {
4490         return emulator_write_phys(vcpu, gpa, val, bytes);
4491 }
4492
4493 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4494 {
4495         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4496         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4497 }
4498
4499 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4500                           void *val, int bytes)
4501 {
4502         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4503         return X86EMUL_IO_NEEDED;
4504 }
4505
4506 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4507                            void *val, int bytes)
4508 {
4509         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4510
4511         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4512         return X86EMUL_CONTINUE;
4513 }
4514
4515 static const struct read_write_emulator_ops read_emultor = {
4516         .read_write_prepare = read_prepare,
4517         .read_write_emulate = read_emulate,
4518         .read_write_mmio = vcpu_mmio_read,
4519         .read_write_exit_mmio = read_exit_mmio,
4520 };
4521
4522 static const struct read_write_emulator_ops write_emultor = {
4523         .read_write_emulate = write_emulate,
4524         .read_write_mmio = write_mmio,
4525         .read_write_exit_mmio = write_exit_mmio,
4526         .write = true,
4527 };
4528
4529 static int emulator_read_write_onepage(unsigned long addr, void *val,
4530                                        unsigned int bytes,
4531                                        struct x86_exception *exception,
4532                                        struct kvm_vcpu *vcpu,
4533                                        const struct read_write_emulator_ops *ops)
4534 {
4535         gpa_t gpa;
4536         int handled, ret;
4537         bool write = ops->write;
4538         struct kvm_mmio_fragment *frag;
4539
4540         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4541
4542         if (ret < 0)
4543                 return X86EMUL_PROPAGATE_FAULT;
4544
4545         /* For APIC access vmexit */
4546         if (ret)
4547                 goto mmio;
4548
4549         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4550                 return X86EMUL_CONTINUE;
4551
4552 mmio:
4553         /*
4554          * Is this MMIO handled locally?
4555          */
4556         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4557         if (handled == bytes)
4558                 return X86EMUL_CONTINUE;
4559
4560         gpa += handled;
4561         bytes -= handled;
4562         val += handled;
4563
4564         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4565         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4566         frag->gpa = gpa;
4567         frag->data = val;
4568         frag->len = bytes;
4569         return X86EMUL_CONTINUE;
4570 }
4571
4572 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4573                         unsigned long addr,
4574                         void *val, unsigned int bytes,
4575                         struct x86_exception *exception,
4576                         const struct read_write_emulator_ops *ops)
4577 {
4578         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4579         gpa_t gpa;
4580         int rc;
4581
4582         if (ops->read_write_prepare &&
4583                   ops->read_write_prepare(vcpu, val, bytes))
4584                 return X86EMUL_CONTINUE;
4585
4586         vcpu->mmio_nr_fragments = 0;
4587
4588         /* Crossing a page boundary? */
4589         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4590                 int now;
4591
4592                 now = -addr & ~PAGE_MASK;
4593                 rc = emulator_read_write_onepage(addr, val, now, exception,
4594                                                  vcpu, ops);
4595
4596                 if (rc != X86EMUL_CONTINUE)
4597                         return rc;
4598                 addr += now;
4599                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4600                         addr = (u32)addr;
4601                 val += now;
4602                 bytes -= now;
4603         }
4604
4605         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4606                                          vcpu, ops);
4607         if (rc != X86EMUL_CONTINUE)
4608                 return rc;
4609
4610         if (!vcpu->mmio_nr_fragments)
4611                 return rc;
4612
4613         gpa = vcpu->mmio_fragments[0].gpa;
4614
4615         vcpu->mmio_needed = 1;
4616         vcpu->mmio_cur_fragment = 0;
4617
4618         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4619         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4620         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4621         vcpu->run->mmio.phys_addr = gpa;
4622
4623         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4624 }
4625
4626 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4627                                   unsigned long addr,
4628                                   void *val,
4629                                   unsigned int bytes,
4630                                   struct x86_exception *exception)
4631 {
4632         return emulator_read_write(ctxt, addr, val, bytes,
4633                                    exception, &read_emultor);
4634 }
4635
4636 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4637                             unsigned long addr,
4638                             const void *val,
4639                             unsigned int bytes,
4640                             struct x86_exception *exception)
4641 {
4642         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4643                                    exception, &write_emultor);
4644 }
4645
4646 #define CMPXCHG_TYPE(t, ptr, old, new) \
4647         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4648
4649 #ifdef CONFIG_X86_64
4650 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4651 #else
4652 #  define CMPXCHG64(ptr, old, new) \
4653         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4654 #endif
4655
4656 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4657                                      unsigned long addr,
4658                                      const void *old,
4659                                      const void *new,
4660                                      unsigned int bytes,
4661                                      struct x86_exception *exception)
4662 {
4663         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4664         gpa_t gpa;
4665         struct page *page;
4666         char *kaddr;
4667         bool exchanged;
4668
4669         /* guests cmpxchg8b have to be emulated atomically */
4670         if (bytes > 8 || (bytes & (bytes - 1)))
4671                 goto emul_write;
4672
4673         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4674
4675         if (gpa == UNMAPPED_GVA ||
4676             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4677                 goto emul_write;
4678
4679         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4680                 goto emul_write;
4681
4682         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4683         if (is_error_page(page))
4684                 goto emul_write;
4685
4686         kaddr = kmap_atomic(page);
4687         kaddr += offset_in_page(gpa);
4688         switch (bytes) {
4689         case 1:
4690                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4691                 break;
4692         case 2:
4693                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4694                 break;
4695         case 4:
4696                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4697                 break;
4698         case 8:
4699                 exchanged = CMPXCHG64(kaddr, old, new);
4700                 break;
4701         default:
4702                 BUG();
4703         }
4704         kunmap_atomic(kaddr);
4705         kvm_release_page_dirty(page);
4706
4707         if (!exchanged)
4708                 return X86EMUL_CMPXCHG_FAILED;
4709
4710         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4711         kvm_page_track_write(vcpu, gpa, new, bytes);
4712
4713         return X86EMUL_CONTINUE;
4714
4715 emul_write:
4716         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4717
4718         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4719 }
4720
4721 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4722 {
4723         /* TODO: String I/O for in kernel device */
4724         int r;
4725
4726         if (vcpu->arch.pio.in)
4727                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4728                                     vcpu->arch.pio.size, pd);
4729         else
4730                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4731                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4732                                      pd);
4733         return r;
4734 }
4735
4736 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4737                                unsigned short port, void *val,
4738                                unsigned int count, bool in)
4739 {
4740         vcpu->arch.pio.port = port;
4741         vcpu->arch.pio.in = in;
4742         vcpu->arch.pio.count  = count;
4743         vcpu->arch.pio.size = size;
4744
4745         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4746                 vcpu->arch.pio.count = 0;
4747                 return 1;
4748         }
4749
4750         vcpu->run->exit_reason = KVM_EXIT_IO;
4751         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4752         vcpu->run->io.size = size;
4753         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4754         vcpu->run->io.count = count;
4755         vcpu->run->io.port = port;
4756
4757         return 0;
4758 }
4759
4760 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4761                                     int size, unsigned short port, void *val,
4762                                     unsigned int count)
4763 {
4764         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4765         int ret;
4766
4767         if (vcpu->arch.pio.count)
4768                 goto data_avail;
4769
4770         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4771         if (ret) {
4772 data_avail:
4773                 memcpy(val, vcpu->arch.pio_data, size * count);
4774                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4775                 vcpu->arch.pio.count = 0;
4776                 return 1;
4777         }
4778
4779         return 0;
4780 }
4781
4782 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4783                                      int size, unsigned short port,
4784                                      const void *val, unsigned int count)
4785 {
4786         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4787
4788         memcpy(vcpu->arch.pio_data, val, size * count);
4789         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4790         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4791 }
4792
4793 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4794 {
4795         return kvm_x86_ops->get_segment_base(vcpu, seg);
4796 }
4797
4798 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4799 {
4800         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4801 }
4802
4803 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4804 {
4805         if (!need_emulate_wbinvd(vcpu))
4806                 return X86EMUL_CONTINUE;
4807
4808         if (kvm_x86_ops->has_wbinvd_exit()) {
4809                 int cpu = get_cpu();
4810
4811                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4812                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4813                                 wbinvd_ipi, NULL, 1);
4814                 put_cpu();
4815                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4816         } else
4817                 wbinvd();
4818         return X86EMUL_CONTINUE;
4819 }
4820
4821 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4822 {
4823         kvm_x86_ops->skip_emulated_instruction(vcpu);
4824         return kvm_emulate_wbinvd_noskip(vcpu);
4825 }
4826 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4827
4828
4829
4830 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4831 {
4832         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4833 }
4834
4835 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4836                            unsigned long *dest)
4837 {
4838         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4839 }
4840
4841 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4842                            unsigned long value)
4843 {
4844
4845         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4846 }
4847
4848 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4849 {
4850         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4851 }
4852
4853 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4854 {
4855         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4856         unsigned long value;
4857
4858         switch (cr) {
4859         case 0:
4860                 value = kvm_read_cr0(vcpu);
4861                 break;
4862         case 2:
4863                 value = vcpu->arch.cr2;
4864                 break;
4865         case 3:
4866                 value = kvm_read_cr3(vcpu);
4867                 break;
4868         case 4:
4869                 value = kvm_read_cr4(vcpu);
4870                 break;
4871         case 8:
4872                 value = kvm_get_cr8(vcpu);
4873                 break;
4874         default:
4875                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4876                 return 0;
4877         }
4878
4879         return value;
4880 }
4881
4882 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4883 {
4884         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4885         int res = 0;
4886
4887         switch (cr) {
4888         case 0:
4889                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4890                 break;
4891         case 2:
4892                 vcpu->arch.cr2 = val;
4893                 break;
4894         case 3:
4895                 res = kvm_set_cr3(vcpu, val);
4896                 break;
4897         case 4:
4898                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4899                 break;
4900         case 8:
4901                 res = kvm_set_cr8(vcpu, val);
4902                 break;
4903         default:
4904                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4905                 res = -1;
4906         }
4907
4908         return res;
4909 }
4910
4911 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4912 {
4913         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4914 }
4915
4916 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4917 {
4918         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4919 }
4920
4921 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4922 {
4923         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4924 }
4925
4926 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4927 {
4928         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4929 }
4930
4931 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4932 {
4933         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4934 }
4935
4936 static unsigned long emulator_get_cached_segment_base(
4937         struct x86_emulate_ctxt *ctxt, int seg)
4938 {
4939         return get_segment_base(emul_to_vcpu(ctxt), seg);
4940 }
4941
4942 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4943                                  struct desc_struct *desc, u32 *base3,
4944                                  int seg)
4945 {
4946         struct kvm_segment var;
4947
4948         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4949         *selector = var.selector;
4950
4951         if (var.unusable) {
4952                 memset(desc, 0, sizeof(*desc));
4953                 return false;
4954         }
4955
4956         if (var.g)
4957                 var.limit >>= 12;
4958         set_desc_limit(desc, var.limit);
4959         set_desc_base(desc, (unsigned long)var.base);
4960 #ifdef CONFIG_X86_64
4961         if (base3)
4962                 *base3 = var.base >> 32;
4963 #endif
4964         desc->type = var.type;
4965         desc->s = var.s;
4966         desc->dpl = var.dpl;
4967         desc->p = var.present;
4968         desc->avl = var.avl;
4969         desc->l = var.l;
4970         desc->d = var.db;
4971         desc->g = var.g;
4972
4973         return true;
4974 }
4975
4976 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4977                                  struct desc_struct *desc, u32 base3,
4978                                  int seg)
4979 {
4980         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4981         struct kvm_segment var;
4982
4983         var.selector = selector;
4984         var.base = get_desc_base(desc);
4985 #ifdef CONFIG_X86_64
4986         var.base |= ((u64)base3) << 32;
4987 #endif
4988         var.limit = get_desc_limit(desc);
4989         if (desc->g)
4990                 var.limit = (var.limit << 12) | 0xfff;
4991         var.type = desc->type;
4992         var.dpl = desc->dpl;
4993         var.db = desc->d;
4994         var.s = desc->s;
4995         var.l = desc->l;
4996         var.g = desc->g;
4997         var.avl = desc->avl;
4998         var.present = desc->p;
4999         var.unusable = !var.present;
5000         var.padding = 0;
5001
5002         kvm_set_segment(vcpu, &var, seg);
5003         return;
5004 }
5005
5006 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5007                             u32 msr_index, u64 *pdata)
5008 {
5009         struct msr_data msr;
5010         int r;
5011
5012         msr.index = msr_index;
5013         msr.host_initiated = false;
5014         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5015         if (r)
5016                 return r;
5017
5018         *pdata = msr.data;
5019         return 0;
5020 }
5021
5022 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5023                             u32 msr_index, u64 data)
5024 {
5025         struct msr_data msr;
5026
5027         msr.data = data;
5028         msr.index = msr_index;
5029         msr.host_initiated = false;
5030         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5031 }
5032
5033 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5034 {
5035         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5036
5037         return vcpu->arch.smbase;
5038 }
5039
5040 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5041 {
5042         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5043
5044         vcpu->arch.smbase = smbase;
5045 }
5046
5047 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5048                               u32 pmc)
5049 {
5050         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5051 }
5052
5053 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5054                              u32 pmc, u64 *pdata)
5055 {
5056         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5057 }
5058
5059 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5060 {
5061         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5062 }
5063
5064 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5065 {
5066         preempt_disable();
5067         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5068         /*
5069          * CR0.TS may reference the host fpu state, not the guest fpu state,
5070          * so it may be clear at this point.
5071          */
5072         clts();
5073 }
5074
5075 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5076 {
5077         preempt_enable();
5078 }
5079
5080 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5081                               struct x86_instruction_info *info,
5082                               enum x86_intercept_stage stage)
5083 {
5084         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5085 }
5086
5087 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5088                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5089 {
5090         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5091 }
5092
5093 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5094 {
5095         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5096 }
5097
5098 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5099 {
5100         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5101 }
5102
5103 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5104 {
5105         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5106 }
5107
5108 static const struct x86_emulate_ops emulate_ops = {
5109         .read_gpr            = emulator_read_gpr,
5110         .write_gpr           = emulator_write_gpr,
5111         .read_std            = kvm_read_guest_virt_system,
5112         .write_std           = kvm_write_guest_virt_system,
5113         .read_phys           = kvm_read_guest_phys_system,
5114         .fetch               = kvm_fetch_guest_virt,
5115         .read_emulated       = emulator_read_emulated,
5116         .write_emulated      = emulator_write_emulated,
5117         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5118         .invlpg              = emulator_invlpg,
5119         .pio_in_emulated     = emulator_pio_in_emulated,
5120         .pio_out_emulated    = emulator_pio_out_emulated,
5121         .get_segment         = emulator_get_segment,
5122         .set_segment         = emulator_set_segment,
5123         .get_cached_segment_base = emulator_get_cached_segment_base,
5124         .get_gdt             = emulator_get_gdt,
5125         .get_idt             = emulator_get_idt,
5126         .set_gdt             = emulator_set_gdt,
5127         .set_idt             = emulator_set_idt,
5128         .get_cr              = emulator_get_cr,
5129         .set_cr              = emulator_set_cr,
5130         .cpl                 = emulator_get_cpl,
5131         .get_dr              = emulator_get_dr,
5132         .set_dr              = emulator_set_dr,
5133         .get_smbase          = emulator_get_smbase,
5134         .set_smbase          = emulator_set_smbase,
5135         .set_msr             = emulator_set_msr,
5136         .get_msr             = emulator_get_msr,
5137         .check_pmc           = emulator_check_pmc,
5138         .read_pmc            = emulator_read_pmc,
5139         .halt                = emulator_halt,
5140         .wbinvd              = emulator_wbinvd,
5141         .fix_hypercall       = emulator_fix_hypercall,
5142         .get_fpu             = emulator_get_fpu,
5143         .put_fpu             = emulator_put_fpu,
5144         .intercept           = emulator_intercept,
5145         .get_cpuid           = emulator_get_cpuid,
5146         .set_nmi_mask        = emulator_set_nmi_mask,
5147 };
5148
5149 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5150 {
5151         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5152         /*
5153          * an sti; sti; sequence only disable interrupts for the first
5154          * instruction. So, if the last instruction, be it emulated or
5155          * not, left the system with the INT_STI flag enabled, it
5156          * means that the last instruction is an sti. We should not
5157          * leave the flag on in this case. The same goes for mov ss
5158          */
5159         if (int_shadow & mask)
5160                 mask = 0;
5161         if (unlikely(int_shadow || mask)) {
5162                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5163                 if (!mask)
5164                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5165         }
5166 }
5167
5168 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5169 {
5170         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5171         if (ctxt->exception.vector == PF_VECTOR)
5172                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5173
5174         if (ctxt->exception.error_code_valid)
5175                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5176                                       ctxt->exception.error_code);
5177         else
5178                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5179         return false;
5180 }
5181
5182 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5183 {
5184         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5185         int cs_db, cs_l;
5186
5187         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5188
5189         ctxt->eflags = kvm_get_rflags(vcpu);
5190         ctxt->eip = kvm_rip_read(vcpu);
5191         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5192                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5193                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5194                      cs_db                              ? X86EMUL_MODE_PROT32 :
5195                                                           X86EMUL_MODE_PROT16;
5196         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5197         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5198         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5199         ctxt->emul_flags = vcpu->arch.hflags;
5200
5201         init_decode_cache(ctxt);
5202         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5203 }
5204
5205 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5206 {
5207         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5208         int ret;
5209
5210         init_emulate_ctxt(vcpu);
5211
5212         ctxt->op_bytes = 2;
5213         ctxt->ad_bytes = 2;
5214         ctxt->_eip = ctxt->eip + inc_eip;
5215         ret = emulate_int_real(ctxt, irq);
5216
5217         if (ret != X86EMUL_CONTINUE)
5218                 return EMULATE_FAIL;
5219
5220         ctxt->eip = ctxt->_eip;
5221         kvm_rip_write(vcpu, ctxt->eip);
5222         kvm_set_rflags(vcpu, ctxt->eflags);
5223
5224         if (irq == NMI_VECTOR)
5225                 vcpu->arch.nmi_pending = 0;
5226         else
5227                 vcpu->arch.interrupt.pending = false;
5228
5229         return EMULATE_DONE;
5230 }
5231 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5232
5233 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5234 {
5235         int r = EMULATE_DONE;
5236
5237         ++vcpu->stat.insn_emulation_fail;
5238         trace_kvm_emulate_insn_failed(vcpu);
5239         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5240                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5241                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5242                 vcpu->run->internal.ndata = 0;
5243                 r = EMULATE_FAIL;
5244         }
5245         kvm_queue_exception(vcpu, UD_VECTOR);
5246
5247         return r;
5248 }
5249
5250 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5251                                   bool write_fault_to_shadow_pgtable,
5252                                   int emulation_type)
5253 {
5254         gpa_t gpa = cr2;
5255         kvm_pfn_t pfn;
5256
5257         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5258                 return false;
5259
5260         if (!vcpu->arch.mmu.direct_map) {
5261                 /*
5262                  * Write permission should be allowed since only
5263                  * write access need to be emulated.
5264                  */
5265                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5266
5267                 /*
5268                  * If the mapping is invalid in guest, let cpu retry
5269                  * it to generate fault.
5270                  */
5271                 if (gpa == UNMAPPED_GVA)
5272                         return true;
5273         }
5274
5275         /*
5276          * Do not retry the unhandleable instruction if it faults on the
5277          * readonly host memory, otherwise it will goto a infinite loop:
5278          * retry instruction -> write #PF -> emulation fail -> retry
5279          * instruction -> ...
5280          */
5281         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5282
5283         /*
5284          * If the instruction failed on the error pfn, it can not be fixed,
5285          * report the error to userspace.
5286          */
5287         if (is_error_noslot_pfn(pfn))
5288                 return false;
5289
5290         kvm_release_pfn_clean(pfn);
5291
5292         /* The instructions are well-emulated on direct mmu. */
5293         if (vcpu->arch.mmu.direct_map) {
5294                 unsigned int indirect_shadow_pages;
5295
5296                 spin_lock(&vcpu->kvm->mmu_lock);
5297                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5298                 spin_unlock(&vcpu->kvm->mmu_lock);
5299
5300                 if (indirect_shadow_pages)
5301                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5302
5303                 return true;
5304         }
5305
5306         /*
5307          * if emulation was due to access to shadowed page table
5308          * and it failed try to unshadow page and re-enter the
5309          * guest to let CPU execute the instruction.
5310          */
5311         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5312
5313         /*
5314          * If the access faults on its page table, it can not
5315          * be fixed by unprotecting shadow page and it should
5316          * be reported to userspace.
5317          */
5318         return !write_fault_to_shadow_pgtable;
5319 }
5320
5321 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5322                               unsigned long cr2,  int emulation_type)
5323 {
5324         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5325         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5326
5327         last_retry_eip = vcpu->arch.last_retry_eip;
5328         last_retry_addr = vcpu->arch.last_retry_addr;
5329
5330         /*
5331          * If the emulation is caused by #PF and it is non-page_table
5332          * writing instruction, it means the VM-EXIT is caused by shadow
5333          * page protected, we can zap the shadow page and retry this
5334          * instruction directly.
5335          *
5336          * Note: if the guest uses a non-page-table modifying instruction
5337          * on the PDE that points to the instruction, then we will unmap
5338          * the instruction and go to an infinite loop. So, we cache the
5339          * last retried eip and the last fault address, if we meet the eip
5340          * and the address again, we can break out of the potential infinite
5341          * loop.
5342          */
5343         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5344
5345         if (!(emulation_type & EMULTYPE_RETRY))
5346                 return false;
5347
5348         if (x86_page_table_writing_insn(ctxt))
5349                 return false;
5350
5351         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5352                 return false;
5353
5354         vcpu->arch.last_retry_eip = ctxt->eip;
5355         vcpu->arch.last_retry_addr = cr2;
5356
5357         if (!vcpu->arch.mmu.direct_map)
5358                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5359
5360         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5361
5362         return true;
5363 }
5364
5365 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5366 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5367
5368 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5369 {
5370         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5371                 /* This is a good place to trace that we are exiting SMM.  */
5372                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5373
5374                 /* Process a latched INIT or SMI, if any.  */
5375                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5376         }
5377
5378         kvm_mmu_reset_context(vcpu);
5379 }
5380
5381 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5382 {
5383         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5384
5385         vcpu->arch.hflags = emul_flags;
5386
5387         if (changed & HF_SMM_MASK)
5388                 kvm_smm_changed(vcpu);
5389 }
5390
5391 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5392                                 unsigned long *db)
5393 {
5394         u32 dr6 = 0;
5395         int i;
5396         u32 enable, rwlen;
5397
5398         enable = dr7;
5399         rwlen = dr7 >> 16;
5400         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5401                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5402                         dr6 |= (1 << i);
5403         return dr6;
5404 }
5405
5406 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5407 {
5408         struct kvm_run *kvm_run = vcpu->run;
5409
5410         /*
5411          * rflags is the old, "raw" value of the flags.  The new value has
5412          * not been saved yet.
5413          *
5414          * This is correct even for TF set by the guest, because "the
5415          * processor will not generate this exception after the instruction
5416          * that sets the TF flag".
5417          */
5418         if (unlikely(rflags & X86_EFLAGS_TF)) {
5419                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5420                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5421                                                   DR6_RTM;
5422                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5423                         kvm_run->debug.arch.exception = DB_VECTOR;
5424                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5425                         *r = EMULATE_USER_EXIT;
5426                 } else {
5427                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5428                         /*
5429                          * "Certain debug exceptions may clear bit 0-3.  The
5430                          * remaining contents of the DR6 register are never
5431                          * cleared by the processor".
5432                          */
5433                         vcpu->arch.dr6 &= ~15;
5434                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5435                         kvm_queue_exception(vcpu, DB_VECTOR);
5436                 }
5437         }
5438 }
5439
5440 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5441 {
5442         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5443             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5444                 struct kvm_run *kvm_run = vcpu->run;
5445                 unsigned long eip = kvm_get_linear_rip(vcpu);
5446                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5447                                            vcpu->arch.guest_debug_dr7,
5448                                            vcpu->arch.eff_db);
5449
5450                 if (dr6 != 0) {
5451                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5452                         kvm_run->debug.arch.pc = eip;
5453                         kvm_run->debug.arch.exception = DB_VECTOR;
5454                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5455                         *r = EMULATE_USER_EXIT;
5456                         return true;
5457                 }
5458         }
5459
5460         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5461             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5462                 unsigned long eip = kvm_get_linear_rip(vcpu);
5463                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5464                                            vcpu->arch.dr7,
5465                                            vcpu->arch.db);
5466
5467                 if (dr6 != 0) {
5468                         vcpu->arch.dr6 &= ~15;
5469                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5470                         kvm_queue_exception(vcpu, DB_VECTOR);
5471                         *r = EMULATE_DONE;
5472                         return true;
5473                 }
5474         }
5475
5476         return false;
5477 }
5478
5479 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5480                             unsigned long cr2,
5481                             int emulation_type,
5482                             void *insn,
5483                             int insn_len)
5484 {
5485         int r;
5486         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5487         bool writeback = true;
5488         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5489
5490         /*
5491          * Clear write_fault_to_shadow_pgtable here to ensure it is
5492          * never reused.
5493          */
5494         vcpu->arch.write_fault_to_shadow_pgtable = false;
5495         kvm_clear_exception_queue(vcpu);
5496
5497         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5498                 init_emulate_ctxt(vcpu);
5499
5500                 /*
5501                  * We will reenter on the same instruction since
5502                  * we do not set complete_userspace_io.  This does not
5503                  * handle watchpoints yet, those would be handled in
5504                  * the emulate_ops.
5505                  */
5506                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5507                         return r;
5508
5509                 ctxt->interruptibility = 0;
5510                 ctxt->have_exception = false;
5511                 ctxt->exception.vector = -1;
5512                 ctxt->perm_ok = false;
5513
5514                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5515
5516                 r = x86_decode_insn(ctxt, insn, insn_len);
5517
5518                 trace_kvm_emulate_insn_start(vcpu);
5519                 ++vcpu->stat.insn_emulation;
5520                 if (r != EMULATION_OK)  {
5521                         if (emulation_type & EMULTYPE_TRAP_UD)
5522                                 return EMULATE_FAIL;
5523                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5524                                                 emulation_type))
5525                                 return EMULATE_DONE;
5526                         if (emulation_type & EMULTYPE_SKIP)
5527                                 return EMULATE_FAIL;
5528                         return handle_emulation_failure(vcpu);
5529                 }
5530         }
5531
5532         if (emulation_type & EMULTYPE_SKIP) {
5533                 kvm_rip_write(vcpu, ctxt->_eip);
5534                 if (ctxt->eflags & X86_EFLAGS_RF)
5535                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5536                 return EMULATE_DONE;
5537         }
5538
5539         if (retry_instruction(ctxt, cr2, emulation_type))
5540                 return EMULATE_DONE;
5541
5542         /* this is needed for vmware backdoor interface to work since it
5543            changes registers values  during IO operation */
5544         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5545                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5546                 emulator_invalidate_register_cache(ctxt);
5547         }
5548
5549 restart:
5550         r = x86_emulate_insn(ctxt);
5551
5552         if (r == EMULATION_INTERCEPTED)
5553                 return EMULATE_DONE;
5554
5555         if (r == EMULATION_FAILED) {
5556                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5557                                         emulation_type))
5558                         return EMULATE_DONE;
5559
5560                 return handle_emulation_failure(vcpu);
5561         }
5562
5563         if (ctxt->have_exception) {
5564                 r = EMULATE_DONE;
5565                 if (inject_emulated_exception(vcpu))
5566                         return r;
5567         } else if (vcpu->arch.pio.count) {
5568                 if (!vcpu->arch.pio.in) {
5569                         /* FIXME: return into emulator if single-stepping.  */
5570                         vcpu->arch.pio.count = 0;
5571                 } else {
5572                         writeback = false;
5573                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5574                 }
5575                 r = EMULATE_USER_EXIT;
5576         } else if (vcpu->mmio_needed) {
5577                 if (!vcpu->mmio_is_write)
5578                         writeback = false;
5579                 r = EMULATE_USER_EXIT;
5580                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5581         } else if (r == EMULATION_RESTART)
5582                 goto restart;
5583         else
5584                 r = EMULATE_DONE;
5585
5586         if (writeback) {
5587                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5588                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5589                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5590                 if (vcpu->arch.hflags != ctxt->emul_flags)
5591                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5592                 kvm_rip_write(vcpu, ctxt->eip);
5593                 if (r == EMULATE_DONE)
5594                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5595                 if (!ctxt->have_exception ||
5596                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5597                         __kvm_set_rflags(vcpu, ctxt->eflags);
5598
5599                 /*
5600                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5601                  * do nothing, and it will be requested again as soon as
5602                  * the shadow expires.  But we still need to check here,
5603                  * because POPF has no interrupt shadow.
5604                  */
5605                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5606                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5607         } else
5608                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5609
5610         return r;
5611 }
5612 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5613
5614 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5615 {
5616         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5617         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5618                                             size, port, &val, 1);
5619         /* do not return to emulator after return from userspace */
5620         vcpu->arch.pio.count = 0;
5621         return ret;
5622 }
5623 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5624
5625 static int kvmclock_cpu_down_prep(unsigned int cpu)
5626 {
5627         __this_cpu_write(cpu_tsc_khz, 0);
5628         return 0;
5629 }
5630
5631 static void tsc_khz_changed(void *data)
5632 {
5633         struct cpufreq_freqs *freq = data;
5634         unsigned long khz = 0;
5635
5636         if (data)
5637                 khz = freq->new;
5638         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5639                 khz = cpufreq_quick_get(raw_smp_processor_id());
5640         if (!khz)
5641                 khz = tsc_khz;
5642         __this_cpu_write(cpu_tsc_khz, khz);
5643 }
5644
5645 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5646                                      void *data)
5647 {
5648         struct cpufreq_freqs *freq = data;
5649         struct kvm *kvm;
5650         struct kvm_vcpu *vcpu;
5651         int i, send_ipi = 0;
5652
5653         /*
5654          * We allow guests to temporarily run on slowing clocks,
5655          * provided we notify them after, or to run on accelerating
5656          * clocks, provided we notify them before.  Thus time never
5657          * goes backwards.
5658          *
5659          * However, we have a problem.  We can't atomically update
5660          * the frequency of a given CPU from this function; it is
5661          * merely a notifier, which can be called from any CPU.
5662          * Changing the TSC frequency at arbitrary points in time
5663          * requires a recomputation of local variables related to
5664          * the TSC for each VCPU.  We must flag these local variables
5665          * to be updated and be sure the update takes place with the
5666          * new frequency before any guests proceed.
5667          *
5668          * Unfortunately, the combination of hotplug CPU and frequency
5669          * change creates an intractable locking scenario; the order
5670          * of when these callouts happen is undefined with respect to
5671          * CPU hotplug, and they can race with each other.  As such,
5672          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5673          * undefined; you can actually have a CPU frequency change take
5674          * place in between the computation of X and the setting of the
5675          * variable.  To protect against this problem, all updates of
5676          * the per_cpu tsc_khz variable are done in an interrupt
5677          * protected IPI, and all callers wishing to update the value
5678          * must wait for a synchronous IPI to complete (which is trivial
5679          * if the caller is on the CPU already).  This establishes the
5680          * necessary total order on variable updates.
5681          *
5682          * Note that because a guest time update may take place
5683          * anytime after the setting of the VCPU's request bit, the
5684          * correct TSC value must be set before the request.  However,
5685          * to ensure the update actually makes it to any guest which
5686          * starts running in hardware virtualization between the set
5687          * and the acquisition of the spinlock, we must also ping the
5688          * CPU after setting the request bit.
5689          *
5690          */
5691
5692         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5693                 return 0;
5694         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5695                 return 0;
5696
5697         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5698
5699         spin_lock(&kvm_lock);
5700         list_for_each_entry(kvm, &vm_list, vm_list) {
5701                 kvm_for_each_vcpu(i, vcpu, kvm) {
5702                         if (vcpu->cpu != freq->cpu)
5703                                 continue;
5704                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5705                         if (vcpu->cpu != smp_processor_id())
5706                                 send_ipi = 1;
5707                 }
5708         }
5709         spin_unlock(&kvm_lock);
5710
5711         if (freq->old < freq->new && send_ipi) {
5712                 /*
5713                  * We upscale the frequency.  Must make the guest
5714                  * doesn't see old kvmclock values while running with
5715                  * the new frequency, otherwise we risk the guest sees
5716                  * time go backwards.
5717                  *
5718                  * In case we update the frequency for another cpu
5719                  * (which might be in guest context) send an interrupt
5720                  * to kick the cpu out of guest context.  Next time
5721                  * guest context is entered kvmclock will be updated,
5722                  * so the guest will not see stale values.
5723                  */
5724                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5725         }
5726         return 0;
5727 }
5728
5729 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5730         .notifier_call  = kvmclock_cpufreq_notifier
5731 };
5732
5733 static int kvmclock_cpu_online(unsigned int cpu)
5734 {
5735         tsc_khz_changed(NULL);
5736         return 0;
5737 }
5738
5739 static void kvm_timer_init(void)
5740 {
5741         max_tsc_khz = tsc_khz;
5742
5743         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5744 #ifdef CONFIG_CPU_FREQ
5745                 struct cpufreq_policy policy;
5746                 int cpu;
5747
5748                 memset(&policy, 0, sizeof(policy));
5749                 cpu = get_cpu();
5750                 cpufreq_get_policy(&policy, cpu);
5751                 if (policy.cpuinfo.max_freq)
5752                         max_tsc_khz = policy.cpuinfo.max_freq;
5753                 put_cpu();
5754 #endif
5755                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5756                                           CPUFREQ_TRANSITION_NOTIFIER);
5757         }
5758         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5759
5760         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5761                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5762 }
5763
5764 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5765
5766 int kvm_is_in_guest(void)
5767 {
5768         return __this_cpu_read(current_vcpu) != NULL;
5769 }
5770
5771 static int kvm_is_user_mode(void)
5772 {
5773         int user_mode = 3;
5774
5775         if (__this_cpu_read(current_vcpu))
5776                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5777
5778         return user_mode != 0;
5779 }
5780
5781 static unsigned long kvm_get_guest_ip(void)
5782 {
5783         unsigned long ip = 0;
5784
5785         if (__this_cpu_read(current_vcpu))
5786                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5787
5788         return ip;
5789 }
5790
5791 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5792         .is_in_guest            = kvm_is_in_guest,
5793         .is_user_mode           = kvm_is_user_mode,
5794         .get_guest_ip           = kvm_get_guest_ip,
5795 };
5796
5797 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5798 {
5799         __this_cpu_write(current_vcpu, vcpu);
5800 }
5801 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5802
5803 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5804 {
5805         __this_cpu_write(current_vcpu, NULL);
5806 }
5807 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5808
5809 static void kvm_set_mmio_spte_mask(void)
5810 {
5811         u64 mask;
5812         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5813
5814         /*
5815          * Set the reserved bits and the present bit of an paging-structure
5816          * entry to generate page fault with PFER.RSV = 1.
5817          */
5818          /* Mask the reserved physical address bits. */
5819         mask = rsvd_bits(maxphyaddr, 51);
5820
5821         /* Bit 62 is always reserved for 32bit host. */
5822         mask |= 0x3ull << 62;
5823
5824         /* Set the present bit. */
5825         mask |= 1ull;
5826
5827 #ifdef CONFIG_X86_64
5828         /*
5829          * If reserved bit is not supported, clear the present bit to disable
5830          * mmio page fault.
5831          */
5832         if (maxphyaddr == 52)
5833                 mask &= ~1ull;
5834 #endif
5835
5836         kvm_mmu_set_mmio_spte_mask(mask);
5837 }
5838
5839 #ifdef CONFIG_X86_64
5840 static void pvclock_gtod_update_fn(struct work_struct *work)
5841 {
5842         struct kvm *kvm;
5843
5844         struct kvm_vcpu *vcpu;
5845         int i;
5846
5847         spin_lock(&kvm_lock);
5848         list_for_each_entry(kvm, &vm_list, vm_list)
5849                 kvm_for_each_vcpu(i, vcpu, kvm)
5850                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5851         atomic_set(&kvm_guest_has_master_clock, 0);
5852         spin_unlock(&kvm_lock);
5853 }
5854
5855 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5856
5857 /*
5858  * Notification about pvclock gtod data update.
5859  */
5860 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5861                                void *priv)
5862 {
5863         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5864         struct timekeeper *tk = priv;
5865
5866         update_pvclock_gtod(tk);
5867
5868         /* disable master clock if host does not trust, or does not
5869          * use, TSC clocksource
5870          */
5871         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5872             atomic_read(&kvm_guest_has_master_clock) != 0)
5873                 queue_work(system_long_wq, &pvclock_gtod_work);
5874
5875         return 0;
5876 }
5877
5878 static struct notifier_block pvclock_gtod_notifier = {
5879         .notifier_call = pvclock_gtod_notify,
5880 };
5881 #endif
5882
5883 int kvm_arch_init(void *opaque)
5884 {
5885         int r;
5886         struct kvm_x86_ops *ops = opaque;
5887
5888         if (kvm_x86_ops) {
5889                 printk(KERN_ERR "kvm: already loaded the other module\n");
5890                 r = -EEXIST;
5891                 goto out;
5892         }
5893
5894         if (!ops->cpu_has_kvm_support()) {
5895                 printk(KERN_ERR "kvm: no hardware support\n");
5896                 r = -EOPNOTSUPP;
5897                 goto out;
5898         }
5899         if (ops->disabled_by_bios()) {
5900                 printk(KERN_ERR "kvm: disabled by bios\n");
5901                 r = -EOPNOTSUPP;
5902                 goto out;
5903         }
5904
5905         r = -ENOMEM;
5906         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5907         if (!shared_msrs) {
5908                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5909                 goto out;
5910         }
5911
5912         r = kvm_mmu_module_init();
5913         if (r)
5914                 goto out_free_percpu;
5915
5916         kvm_set_mmio_spte_mask();
5917
5918         kvm_x86_ops = ops;
5919
5920         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5921                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
5922                         PT_PRESENT_MASK);
5923         kvm_timer_init();
5924
5925         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5926
5927         if (boot_cpu_has(X86_FEATURE_XSAVE))
5928                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5929
5930         kvm_lapic_init();
5931 #ifdef CONFIG_X86_64
5932         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5933 #endif
5934
5935         return 0;
5936
5937 out_free_percpu:
5938         free_percpu(shared_msrs);
5939 out:
5940         return r;
5941 }
5942
5943 void kvm_arch_exit(void)
5944 {
5945         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5946
5947         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5948                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5949                                             CPUFREQ_TRANSITION_NOTIFIER);
5950         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5951 #ifdef CONFIG_X86_64
5952         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5953 #endif
5954         kvm_x86_ops = NULL;
5955         kvm_mmu_module_exit();
5956         free_percpu(shared_msrs);
5957 }
5958
5959 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5960 {
5961         ++vcpu->stat.halt_exits;
5962         if (lapic_in_kernel(vcpu)) {
5963                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5964                 return 1;
5965         } else {
5966                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5967                 return 0;
5968         }
5969 }
5970 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5971
5972 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5973 {
5974         kvm_x86_ops->skip_emulated_instruction(vcpu);
5975         return kvm_vcpu_halt(vcpu);
5976 }
5977 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5978
5979 /*
5980  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5981  *
5982  * @apicid - apicid of vcpu to be kicked.
5983  */
5984 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5985 {
5986         struct kvm_lapic_irq lapic_irq;
5987
5988         lapic_irq.shorthand = 0;
5989         lapic_irq.dest_mode = 0;
5990         lapic_irq.dest_id = apicid;
5991         lapic_irq.msi_redir_hint = false;
5992
5993         lapic_irq.delivery_mode = APIC_DM_REMRD;
5994         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5995 }
5996
5997 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5998 {
5999         vcpu->arch.apicv_active = false;
6000         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6001 }
6002
6003 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6004 {
6005         unsigned long nr, a0, a1, a2, a3, ret;
6006         int op_64_bit, r = 1;
6007
6008         kvm_x86_ops->skip_emulated_instruction(vcpu);
6009
6010         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6011                 return kvm_hv_hypercall(vcpu);
6012
6013         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6014         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6015         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6016         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6017         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6018
6019         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6020
6021         op_64_bit = is_64_bit_mode(vcpu);
6022         if (!op_64_bit) {
6023                 nr &= 0xFFFFFFFF;
6024                 a0 &= 0xFFFFFFFF;
6025                 a1 &= 0xFFFFFFFF;
6026                 a2 &= 0xFFFFFFFF;
6027                 a3 &= 0xFFFFFFFF;
6028         }
6029
6030         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6031                 ret = -KVM_EPERM;
6032                 goto out;
6033         }
6034
6035         switch (nr) {
6036         case KVM_HC_VAPIC_POLL_IRQ:
6037                 ret = 0;
6038                 break;
6039         case KVM_HC_KICK_CPU:
6040                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6041                 ret = 0;
6042                 break;
6043         default:
6044                 ret = -KVM_ENOSYS;
6045                 break;
6046         }
6047 out:
6048         if (!op_64_bit)
6049                 ret = (u32)ret;
6050         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6051         ++vcpu->stat.hypercalls;
6052         return r;
6053 }
6054 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6055
6056 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6057 {
6058         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6059         char instruction[3];
6060         unsigned long rip = kvm_rip_read(vcpu);
6061
6062         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6063
6064         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6065 }
6066
6067 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6068 {
6069         return vcpu->run->request_interrupt_window &&
6070                 likely(!pic_in_kernel(vcpu->kvm));
6071 }
6072
6073 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6074 {
6075         struct kvm_run *kvm_run = vcpu->run;
6076
6077         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6078         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6079         kvm_run->cr8 = kvm_get_cr8(vcpu);
6080         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6081         kvm_run->ready_for_interrupt_injection =
6082                 pic_in_kernel(vcpu->kvm) ||
6083                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6084 }
6085
6086 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6087 {
6088         int max_irr, tpr;
6089
6090         if (!kvm_x86_ops->update_cr8_intercept)
6091                 return;
6092
6093         if (!lapic_in_kernel(vcpu))
6094                 return;
6095
6096         if (vcpu->arch.apicv_active)
6097                 return;
6098
6099         if (!vcpu->arch.apic->vapic_addr)
6100                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6101         else
6102                 max_irr = -1;
6103
6104         if (max_irr != -1)
6105                 max_irr >>= 4;
6106
6107         tpr = kvm_lapic_get_cr8(vcpu);
6108
6109         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6110 }
6111
6112 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6113 {
6114         int r;
6115
6116         /* try to reinject previous events if any */
6117         if (vcpu->arch.exception.pending) {
6118                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6119                                         vcpu->arch.exception.has_error_code,
6120                                         vcpu->arch.exception.error_code);
6121
6122                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6123                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6124                                              X86_EFLAGS_RF);
6125
6126                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6127                     (vcpu->arch.dr7 & DR7_GD)) {
6128                         vcpu->arch.dr7 &= ~DR7_GD;
6129                         kvm_update_dr7(vcpu);
6130                 }
6131
6132                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6133                                           vcpu->arch.exception.has_error_code,
6134                                           vcpu->arch.exception.error_code,
6135                                           vcpu->arch.exception.reinject);
6136                 return 0;
6137         }
6138
6139         if (vcpu->arch.nmi_injected) {
6140                 kvm_x86_ops->set_nmi(vcpu);
6141                 return 0;
6142         }
6143
6144         if (vcpu->arch.interrupt.pending) {
6145                 kvm_x86_ops->set_irq(vcpu);
6146                 return 0;
6147         }
6148
6149         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6150                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6151                 if (r != 0)
6152                         return r;
6153         }
6154
6155         /* try to inject new event if pending */
6156         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6157                 vcpu->arch.smi_pending = false;
6158                 enter_smm(vcpu);
6159         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6160                 --vcpu->arch.nmi_pending;
6161                 vcpu->arch.nmi_injected = true;
6162                 kvm_x86_ops->set_nmi(vcpu);
6163         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6164                 /*
6165                  * Because interrupts can be injected asynchronously, we are
6166                  * calling check_nested_events again here to avoid a race condition.
6167                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6168                  * proposal and current concerns.  Perhaps we should be setting
6169                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6170                  */
6171                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6172                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6173                         if (r != 0)
6174                                 return r;
6175                 }
6176                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6177                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6178                                             false);
6179                         kvm_x86_ops->set_irq(vcpu);
6180                 }
6181         }
6182
6183         return 0;
6184 }
6185
6186 static void process_nmi(struct kvm_vcpu *vcpu)
6187 {
6188         unsigned limit = 2;
6189
6190         /*
6191          * x86 is limited to one NMI running, and one NMI pending after it.
6192          * If an NMI is already in progress, limit further NMIs to just one.
6193          * Otherwise, allow two (and we'll inject the first one immediately).
6194          */
6195         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6196                 limit = 1;
6197
6198         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6199         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6200         kvm_make_request(KVM_REQ_EVENT, vcpu);
6201 }
6202
6203 #define put_smstate(type, buf, offset, val)                       \
6204         *(type *)((buf) + (offset) - 0x7e00) = val
6205
6206 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6207 {
6208         u32 flags = 0;
6209         flags |= seg->g       << 23;
6210         flags |= seg->db      << 22;
6211         flags |= seg->l       << 21;
6212         flags |= seg->avl     << 20;
6213         flags |= seg->present << 15;
6214         flags |= seg->dpl     << 13;
6215         flags |= seg->s       << 12;
6216         flags |= seg->type    << 8;
6217         return flags;
6218 }
6219
6220 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6221 {
6222         struct kvm_segment seg;
6223         int offset;
6224
6225         kvm_get_segment(vcpu, &seg, n);
6226         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6227
6228         if (n < 3)
6229                 offset = 0x7f84 + n * 12;
6230         else
6231                 offset = 0x7f2c + (n - 3) * 12;
6232
6233         put_smstate(u32, buf, offset + 8, seg.base);
6234         put_smstate(u32, buf, offset + 4, seg.limit);
6235         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6236 }
6237
6238 #ifdef CONFIG_X86_64
6239 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6240 {
6241         struct kvm_segment seg;
6242         int offset;
6243         u16 flags;
6244
6245         kvm_get_segment(vcpu, &seg, n);
6246         offset = 0x7e00 + n * 16;
6247
6248         flags = enter_smm_get_segment_flags(&seg) >> 8;
6249         put_smstate(u16, buf, offset, seg.selector);
6250         put_smstate(u16, buf, offset + 2, flags);
6251         put_smstate(u32, buf, offset + 4, seg.limit);
6252         put_smstate(u64, buf, offset + 8, seg.base);
6253 }
6254 #endif
6255
6256 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6257 {
6258         struct desc_ptr dt;
6259         struct kvm_segment seg;
6260         unsigned long val;
6261         int i;
6262
6263         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6264         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6265         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6266         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6267
6268         for (i = 0; i < 8; i++)
6269                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6270
6271         kvm_get_dr(vcpu, 6, &val);
6272         put_smstate(u32, buf, 0x7fcc, (u32)val);
6273         kvm_get_dr(vcpu, 7, &val);
6274         put_smstate(u32, buf, 0x7fc8, (u32)val);
6275
6276         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6277         put_smstate(u32, buf, 0x7fc4, seg.selector);
6278         put_smstate(u32, buf, 0x7f64, seg.base);
6279         put_smstate(u32, buf, 0x7f60, seg.limit);
6280         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6281
6282         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6283         put_smstate(u32, buf, 0x7fc0, seg.selector);
6284         put_smstate(u32, buf, 0x7f80, seg.base);
6285         put_smstate(u32, buf, 0x7f7c, seg.limit);
6286         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6287
6288         kvm_x86_ops->get_gdt(vcpu, &dt);
6289         put_smstate(u32, buf, 0x7f74, dt.address);
6290         put_smstate(u32, buf, 0x7f70, dt.size);
6291
6292         kvm_x86_ops->get_idt(vcpu, &dt);
6293         put_smstate(u32, buf, 0x7f58, dt.address);
6294         put_smstate(u32, buf, 0x7f54, dt.size);
6295
6296         for (i = 0; i < 6; i++)
6297                 enter_smm_save_seg_32(vcpu, buf, i);
6298
6299         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6300
6301         /* revision id */
6302         put_smstate(u32, buf, 0x7efc, 0x00020000);
6303         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6304 }
6305
6306 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6307 {
6308 #ifdef CONFIG_X86_64
6309         struct desc_ptr dt;
6310         struct kvm_segment seg;
6311         unsigned long val;
6312         int i;
6313
6314         for (i = 0; i < 16; i++)
6315                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6316
6317         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6318         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6319
6320         kvm_get_dr(vcpu, 6, &val);
6321         put_smstate(u64, buf, 0x7f68, val);
6322         kvm_get_dr(vcpu, 7, &val);
6323         put_smstate(u64, buf, 0x7f60, val);
6324
6325         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6326         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6327         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6328
6329         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6330
6331         /* revision id */
6332         put_smstate(u32, buf, 0x7efc, 0x00020064);
6333
6334         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6335
6336         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6337         put_smstate(u16, buf, 0x7e90, seg.selector);
6338         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6339         put_smstate(u32, buf, 0x7e94, seg.limit);
6340         put_smstate(u64, buf, 0x7e98, seg.base);
6341
6342         kvm_x86_ops->get_idt(vcpu, &dt);
6343         put_smstate(u32, buf, 0x7e84, dt.size);
6344         put_smstate(u64, buf, 0x7e88, dt.address);
6345
6346         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6347         put_smstate(u16, buf, 0x7e70, seg.selector);
6348         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6349         put_smstate(u32, buf, 0x7e74, seg.limit);
6350         put_smstate(u64, buf, 0x7e78, seg.base);
6351
6352         kvm_x86_ops->get_gdt(vcpu, &dt);
6353         put_smstate(u32, buf, 0x7e64, dt.size);
6354         put_smstate(u64, buf, 0x7e68, dt.address);
6355
6356         for (i = 0; i < 6; i++)
6357                 enter_smm_save_seg_64(vcpu, buf, i);
6358 #else
6359         WARN_ON_ONCE(1);
6360 #endif
6361 }
6362
6363 static void enter_smm(struct kvm_vcpu *vcpu)
6364 {
6365         struct kvm_segment cs, ds;
6366         struct desc_ptr dt;
6367         char buf[512];
6368         u32 cr0;
6369
6370         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6371         vcpu->arch.hflags |= HF_SMM_MASK;
6372         memset(buf, 0, 512);
6373         if (guest_cpuid_has_longmode(vcpu))
6374                 enter_smm_save_state_64(vcpu, buf);
6375         else
6376                 enter_smm_save_state_32(vcpu, buf);
6377
6378         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6379
6380         if (kvm_x86_ops->get_nmi_mask(vcpu))
6381                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6382         else
6383                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6384
6385         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6386         kvm_rip_write(vcpu, 0x8000);
6387
6388         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6389         kvm_x86_ops->set_cr0(vcpu, cr0);
6390         vcpu->arch.cr0 = cr0;
6391
6392         kvm_x86_ops->set_cr4(vcpu, 0);
6393
6394         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6395         dt.address = dt.size = 0;
6396         kvm_x86_ops->set_idt(vcpu, &dt);
6397
6398         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6399
6400         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6401         cs.base = vcpu->arch.smbase;
6402
6403         ds.selector = 0;
6404         ds.base = 0;
6405
6406         cs.limit    = ds.limit = 0xffffffff;
6407         cs.type     = ds.type = 0x3;
6408         cs.dpl      = ds.dpl = 0;
6409         cs.db       = ds.db = 0;
6410         cs.s        = ds.s = 1;
6411         cs.l        = ds.l = 0;
6412         cs.g        = ds.g = 1;
6413         cs.avl      = ds.avl = 0;
6414         cs.present  = ds.present = 1;
6415         cs.unusable = ds.unusable = 0;
6416         cs.padding  = ds.padding = 0;
6417
6418         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6419         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6420         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6421         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6422         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6423         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6424
6425         if (guest_cpuid_has_longmode(vcpu))
6426                 kvm_x86_ops->set_efer(vcpu, 0);
6427
6428         kvm_update_cpuid(vcpu);
6429         kvm_mmu_reset_context(vcpu);
6430 }
6431
6432 static void process_smi(struct kvm_vcpu *vcpu)
6433 {
6434         vcpu->arch.smi_pending = true;
6435         kvm_make_request(KVM_REQ_EVENT, vcpu);
6436 }
6437
6438 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6439 {
6440         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6441 }
6442
6443 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6444 {
6445         u64 eoi_exit_bitmap[4];
6446
6447         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6448                 return;
6449
6450         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6451
6452         if (irqchip_split(vcpu->kvm))
6453                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6454         else {
6455                 if (vcpu->arch.apicv_active)
6456                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6457                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6458         }
6459         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6460                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6461         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6462 }
6463
6464 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6465 {
6466         ++vcpu->stat.tlb_flush;
6467         kvm_x86_ops->tlb_flush(vcpu);
6468 }
6469
6470 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6471 {
6472         struct page *page = NULL;
6473
6474         if (!lapic_in_kernel(vcpu))
6475                 return;
6476
6477         if (!kvm_x86_ops->set_apic_access_page_addr)
6478                 return;
6479
6480         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6481         if (is_error_page(page))
6482                 return;
6483         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6484
6485         /*
6486          * Do not pin apic access page in memory, the MMU notifier
6487          * will call us again if it is migrated or swapped out.
6488          */
6489         put_page(page);
6490 }
6491 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6492
6493 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6494                                            unsigned long address)
6495 {
6496         /*
6497          * The physical address of apic access page is stored in the VMCS.
6498          * Update it when it becomes invalid.
6499          */
6500         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6501                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6502 }
6503
6504 /*
6505  * Returns 1 to let vcpu_run() continue the guest execution loop without
6506  * exiting to the userspace.  Otherwise, the value will be returned to the
6507  * userspace.
6508  */
6509 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6510 {
6511         int r;
6512         bool req_int_win =
6513                 dm_request_for_irq_injection(vcpu) &&
6514                 kvm_cpu_accept_dm_intr(vcpu);
6515
6516         bool req_immediate_exit = false;
6517
6518         if (vcpu->requests) {
6519                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6520                         kvm_mmu_unload(vcpu);
6521                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6522                         __kvm_migrate_timers(vcpu);
6523                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6524                         kvm_gen_update_masterclock(vcpu->kvm);
6525                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6526                         kvm_gen_kvmclock_update(vcpu);
6527                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6528                         r = kvm_guest_time_update(vcpu);
6529                         if (unlikely(r))
6530                                 goto out;
6531                 }
6532                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6533                         kvm_mmu_sync_roots(vcpu);
6534                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6535                         kvm_vcpu_flush_tlb(vcpu);
6536                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6537                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6538                         r = 0;
6539                         goto out;
6540                 }
6541                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6542                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6543                         r = 0;
6544                         goto out;
6545                 }
6546                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6547                         vcpu->fpu_active = 0;
6548                         kvm_x86_ops->fpu_deactivate(vcpu);
6549                 }
6550                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6551                         /* Page is swapped out. Do synthetic halt */
6552                         vcpu->arch.apf.halted = true;
6553                         r = 1;
6554                         goto out;
6555                 }
6556                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6557                         record_steal_time(vcpu);
6558                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6559                         process_smi(vcpu);
6560                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6561                         process_nmi(vcpu);
6562                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6563                         kvm_pmu_handle_event(vcpu);
6564                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6565                         kvm_pmu_deliver_pmi(vcpu);
6566                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6567                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6568                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6569                                      vcpu->arch.ioapic_handled_vectors)) {
6570                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6571                                 vcpu->run->eoi.vector =
6572                                                 vcpu->arch.pending_ioapic_eoi;
6573                                 r = 0;
6574                                 goto out;
6575                         }
6576                 }
6577                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6578                         vcpu_scan_ioapic(vcpu);
6579                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6580                         kvm_vcpu_reload_apic_access_page(vcpu);
6581                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6582                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6583                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6584                         r = 0;
6585                         goto out;
6586                 }
6587                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6588                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6589                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6590                         r = 0;
6591                         goto out;
6592                 }
6593                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6594                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6595                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6596                         r = 0;
6597                         goto out;
6598                 }
6599
6600                 /*
6601                  * KVM_REQ_HV_STIMER has to be processed after
6602                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6603                  * depend on the guest clock being up-to-date
6604                  */
6605                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6606                         kvm_hv_process_stimers(vcpu);
6607         }
6608
6609         /*
6610          * KVM_REQ_EVENT is not set when posted interrupts are set by
6611          * VT-d hardware, so we have to update RVI unconditionally.
6612          */
6613         if (kvm_lapic_enabled(vcpu)) {
6614                 /*
6615                  * Update architecture specific hints for APIC
6616                  * virtual interrupt delivery.
6617                  */
6618                 if (vcpu->arch.apicv_active)
6619                         kvm_x86_ops->hwapic_irr_update(vcpu,
6620                                 kvm_lapic_find_highest_irr(vcpu));
6621         }
6622
6623         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6624                 kvm_apic_accept_events(vcpu);
6625                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6626                         r = 1;
6627                         goto out;
6628                 }
6629
6630                 if (inject_pending_event(vcpu, req_int_win) != 0)
6631                         req_immediate_exit = true;
6632                 else {
6633                         /* Enable NMI/IRQ window open exits if needed.
6634                          *
6635                          * SMIs have two cases: 1) they can be nested, and
6636                          * then there is nothing to do here because RSM will
6637                          * cause a vmexit anyway; 2) or the SMI can be pending
6638                          * because inject_pending_event has completed the
6639                          * injection of an IRQ or NMI from the previous vmexit,
6640                          * and then we request an immediate exit to inject the SMI.
6641                          */
6642                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6643                                 req_immediate_exit = true;
6644                         if (vcpu->arch.nmi_pending)
6645                                 kvm_x86_ops->enable_nmi_window(vcpu);
6646                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6647                                 kvm_x86_ops->enable_irq_window(vcpu);
6648                 }
6649
6650                 if (kvm_lapic_enabled(vcpu)) {
6651                         update_cr8_intercept(vcpu);
6652                         kvm_lapic_sync_to_vapic(vcpu);
6653                 }
6654         }
6655
6656         r = kvm_mmu_reload(vcpu);
6657         if (unlikely(r)) {
6658                 goto cancel_injection;
6659         }
6660
6661         preempt_disable();
6662
6663         kvm_x86_ops->prepare_guest_switch(vcpu);
6664         if (vcpu->fpu_active)
6665                 kvm_load_guest_fpu(vcpu);
6666         vcpu->mode = IN_GUEST_MODE;
6667
6668         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6669
6670         /*
6671          * We should set ->mode before check ->requests,
6672          * Please see the comment in kvm_make_all_cpus_request.
6673          * This also orders the write to mode from any reads
6674          * to the page tables done while the VCPU is running.
6675          * Please see the comment in kvm_flush_remote_tlbs.
6676          */
6677         smp_mb__after_srcu_read_unlock();
6678
6679         local_irq_disable();
6680
6681         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6682             || need_resched() || signal_pending(current)) {
6683                 vcpu->mode = OUTSIDE_GUEST_MODE;
6684                 smp_wmb();
6685                 local_irq_enable();
6686                 preempt_enable();
6687                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6688                 r = 1;
6689                 goto cancel_injection;
6690         }
6691
6692         kvm_load_guest_xcr0(vcpu);
6693
6694         if (req_immediate_exit) {
6695                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6696                 smp_send_reschedule(vcpu->cpu);
6697         }
6698
6699         trace_kvm_entry(vcpu->vcpu_id);
6700         wait_lapic_expire(vcpu);
6701         guest_enter_irqoff();
6702
6703         if (unlikely(vcpu->arch.switch_db_regs)) {
6704                 set_debugreg(0, 7);
6705                 set_debugreg(vcpu->arch.eff_db[0], 0);
6706                 set_debugreg(vcpu->arch.eff_db[1], 1);
6707                 set_debugreg(vcpu->arch.eff_db[2], 2);
6708                 set_debugreg(vcpu->arch.eff_db[3], 3);
6709                 set_debugreg(vcpu->arch.dr6, 6);
6710                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6711         }
6712
6713         kvm_x86_ops->run(vcpu);
6714
6715         /*
6716          * Do this here before restoring debug registers on the host.  And
6717          * since we do this before handling the vmexit, a DR access vmexit
6718          * can (a) read the correct value of the debug registers, (b) set
6719          * KVM_DEBUGREG_WONT_EXIT again.
6720          */
6721         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6722                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6723                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6724                 kvm_update_dr0123(vcpu);
6725                 kvm_update_dr6(vcpu);
6726                 kvm_update_dr7(vcpu);
6727                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6728         }
6729
6730         /*
6731          * If the guest has used debug registers, at least dr7
6732          * will be disabled while returning to the host.
6733          * If we don't have active breakpoints in the host, we don't
6734          * care about the messed up debug address registers. But if
6735          * we have some of them active, restore the old state.
6736          */
6737         if (hw_breakpoint_active())
6738                 hw_breakpoint_restore();
6739
6740         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6741
6742         vcpu->mode = OUTSIDE_GUEST_MODE;
6743         smp_wmb();
6744
6745         kvm_put_guest_xcr0(vcpu);
6746
6747         kvm_x86_ops->handle_external_intr(vcpu);
6748
6749         ++vcpu->stat.exits;
6750
6751         guest_exit_irqoff();
6752
6753         local_irq_enable();
6754         preempt_enable();
6755
6756         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6757
6758         /*
6759          * Profile KVM exit RIPs:
6760          */
6761         if (unlikely(prof_on == KVM_PROFILING)) {
6762                 unsigned long rip = kvm_rip_read(vcpu);
6763                 profile_hit(KVM_PROFILING, (void *)rip);
6764         }
6765
6766         if (unlikely(vcpu->arch.tsc_always_catchup))
6767                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6768
6769         if (vcpu->arch.apic_attention)
6770                 kvm_lapic_sync_from_vapic(vcpu);
6771
6772         r = kvm_x86_ops->handle_exit(vcpu);
6773         return r;
6774
6775 cancel_injection:
6776         kvm_x86_ops->cancel_injection(vcpu);
6777         if (unlikely(vcpu->arch.apic_attention))
6778                 kvm_lapic_sync_from_vapic(vcpu);
6779 out:
6780         return r;
6781 }
6782
6783 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6784 {
6785         if (!kvm_arch_vcpu_runnable(vcpu) &&
6786             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6787                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6788                 kvm_vcpu_block(vcpu);
6789                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6790
6791                 if (kvm_x86_ops->post_block)
6792                         kvm_x86_ops->post_block(vcpu);
6793
6794                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6795                         return 1;
6796         }
6797
6798         kvm_apic_accept_events(vcpu);
6799         switch(vcpu->arch.mp_state) {
6800         case KVM_MP_STATE_HALTED:
6801                 vcpu->arch.pv.pv_unhalted = false;
6802                 vcpu->arch.mp_state =
6803                         KVM_MP_STATE_RUNNABLE;
6804         case KVM_MP_STATE_RUNNABLE:
6805                 vcpu->arch.apf.halted = false;
6806                 break;
6807         case KVM_MP_STATE_INIT_RECEIVED:
6808                 break;
6809         default:
6810                 return -EINTR;
6811                 break;
6812         }
6813         return 1;
6814 }
6815
6816 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6817 {
6818         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6819                 !vcpu->arch.apf.halted);
6820 }
6821
6822 static int vcpu_run(struct kvm_vcpu *vcpu)
6823 {
6824         int r;
6825         struct kvm *kvm = vcpu->kvm;
6826
6827         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6828
6829         for (;;) {
6830                 if (kvm_vcpu_running(vcpu)) {
6831                         r = vcpu_enter_guest(vcpu);
6832                 } else {
6833                         r = vcpu_block(kvm, vcpu);
6834                 }
6835
6836                 if (r <= 0)
6837                         break;
6838
6839                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6840                 if (kvm_cpu_has_pending_timer(vcpu))
6841                         kvm_inject_pending_timer_irqs(vcpu);
6842
6843                 if (dm_request_for_irq_injection(vcpu) &&
6844                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6845                         r = 0;
6846                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6847                         ++vcpu->stat.request_irq_exits;
6848                         break;
6849                 }
6850
6851                 kvm_check_async_pf_completion(vcpu);
6852
6853                 if (signal_pending(current)) {
6854                         r = -EINTR;
6855                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6856                         ++vcpu->stat.signal_exits;
6857                         break;
6858                 }
6859                 if (need_resched()) {
6860                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6861                         cond_resched();
6862                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6863                 }
6864         }
6865
6866         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6867
6868         return r;
6869 }
6870
6871 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6872 {
6873         int r;
6874         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6875         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6876         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6877         if (r != EMULATE_DONE)
6878                 return 0;
6879         return 1;
6880 }
6881
6882 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6883 {
6884         BUG_ON(!vcpu->arch.pio.count);
6885
6886         return complete_emulated_io(vcpu);
6887 }
6888
6889 /*
6890  * Implements the following, as a state machine:
6891  *
6892  * read:
6893  *   for each fragment
6894  *     for each mmio piece in the fragment
6895  *       write gpa, len
6896  *       exit
6897  *       copy data
6898  *   execute insn
6899  *
6900  * write:
6901  *   for each fragment
6902  *     for each mmio piece in the fragment
6903  *       write gpa, len
6904  *       copy data
6905  *       exit
6906  */
6907 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6908 {
6909         struct kvm_run *run = vcpu->run;
6910         struct kvm_mmio_fragment *frag;
6911         unsigned len;
6912
6913         BUG_ON(!vcpu->mmio_needed);
6914
6915         /* Complete previous fragment */
6916         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6917         len = min(8u, frag->len);
6918         if (!vcpu->mmio_is_write)
6919                 memcpy(frag->data, run->mmio.data, len);
6920
6921         if (frag->len <= 8) {
6922                 /* Switch to the next fragment. */
6923                 frag++;
6924                 vcpu->mmio_cur_fragment++;
6925         } else {
6926                 /* Go forward to the next mmio piece. */
6927                 frag->data += len;
6928                 frag->gpa += len;
6929                 frag->len -= len;
6930         }
6931
6932         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6933                 vcpu->mmio_needed = 0;
6934
6935                 /* FIXME: return into emulator if single-stepping.  */
6936                 if (vcpu->mmio_is_write)
6937                         return 1;
6938                 vcpu->mmio_read_completed = 1;
6939                 return complete_emulated_io(vcpu);
6940         }
6941
6942         run->exit_reason = KVM_EXIT_MMIO;
6943         run->mmio.phys_addr = frag->gpa;
6944         if (vcpu->mmio_is_write)
6945                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6946         run->mmio.len = min(8u, frag->len);
6947         run->mmio.is_write = vcpu->mmio_is_write;
6948         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6949         return 0;
6950 }
6951
6952
6953 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6954 {
6955         struct fpu *fpu = &current->thread.fpu;
6956         int r;
6957         sigset_t sigsaved;
6958
6959         fpu__activate_curr(fpu);
6960
6961         if (vcpu->sigset_active)
6962                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6963
6964         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6965                 kvm_vcpu_block(vcpu);
6966                 kvm_apic_accept_events(vcpu);
6967                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6968                 r = -EAGAIN;
6969                 goto out;
6970         }
6971
6972         /* re-sync apic's tpr */
6973         if (!lapic_in_kernel(vcpu)) {
6974                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6975                         r = -EINVAL;
6976                         goto out;
6977                 }
6978         }
6979
6980         if (unlikely(vcpu->arch.complete_userspace_io)) {
6981                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6982                 vcpu->arch.complete_userspace_io = NULL;
6983                 r = cui(vcpu);
6984                 if (r <= 0)
6985                         goto out;
6986         } else
6987                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6988
6989         r = vcpu_run(vcpu);
6990
6991 out:
6992         post_kvm_run_save(vcpu);
6993         if (vcpu->sigset_active)
6994                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6995
6996         return r;
6997 }
6998
6999 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7000 {
7001         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7002                 /*
7003                  * We are here if userspace calls get_regs() in the middle of
7004                  * instruction emulation. Registers state needs to be copied
7005                  * back from emulation context to vcpu. Userspace shouldn't do
7006                  * that usually, but some bad designed PV devices (vmware
7007                  * backdoor interface) need this to work
7008                  */
7009                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7010                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7011         }
7012         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7013         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7014         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7015         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7016         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7017         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7018         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7019         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7020 #ifdef CONFIG_X86_64
7021         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7022         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7023         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7024         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7025         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7026         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7027         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7028         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7029 #endif
7030
7031         regs->rip = kvm_rip_read(vcpu);
7032         regs->rflags = kvm_get_rflags(vcpu);
7033
7034         return 0;
7035 }
7036
7037 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7038 {
7039         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7040         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7041
7042         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7043         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7044         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7045         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7046         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7047         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7048         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7049         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7050 #ifdef CONFIG_X86_64
7051         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7052         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7053         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7054         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7055         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7056         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7057         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7058         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7059 #endif
7060
7061         kvm_rip_write(vcpu, regs->rip);
7062         kvm_set_rflags(vcpu, regs->rflags);
7063
7064         vcpu->arch.exception.pending = false;
7065
7066         kvm_make_request(KVM_REQ_EVENT, vcpu);
7067
7068         return 0;
7069 }
7070
7071 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7072 {
7073         struct kvm_segment cs;
7074
7075         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7076         *db = cs.db;
7077         *l = cs.l;
7078 }
7079 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7080
7081 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7082                                   struct kvm_sregs *sregs)
7083 {
7084         struct desc_ptr dt;
7085
7086         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7087         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7088         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7089         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7090         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7091         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7092
7093         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7094         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7095
7096         kvm_x86_ops->get_idt(vcpu, &dt);
7097         sregs->idt.limit = dt.size;
7098         sregs->idt.base = dt.address;
7099         kvm_x86_ops->get_gdt(vcpu, &dt);
7100         sregs->gdt.limit = dt.size;
7101         sregs->gdt.base = dt.address;
7102
7103         sregs->cr0 = kvm_read_cr0(vcpu);
7104         sregs->cr2 = vcpu->arch.cr2;
7105         sregs->cr3 = kvm_read_cr3(vcpu);
7106         sregs->cr4 = kvm_read_cr4(vcpu);
7107         sregs->cr8 = kvm_get_cr8(vcpu);
7108         sregs->efer = vcpu->arch.efer;
7109         sregs->apic_base = kvm_get_apic_base(vcpu);
7110
7111         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7112
7113         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7114                 set_bit(vcpu->arch.interrupt.nr,
7115                         (unsigned long *)sregs->interrupt_bitmap);
7116
7117         return 0;
7118 }
7119
7120 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7121                                     struct kvm_mp_state *mp_state)
7122 {
7123         kvm_apic_accept_events(vcpu);
7124         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7125                                         vcpu->arch.pv.pv_unhalted)
7126                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7127         else
7128                 mp_state->mp_state = vcpu->arch.mp_state;
7129
7130         return 0;
7131 }
7132
7133 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7134                                     struct kvm_mp_state *mp_state)
7135 {
7136         if (!lapic_in_kernel(vcpu) &&
7137             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7138                 return -EINVAL;
7139
7140         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7141                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7142                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7143         } else
7144                 vcpu->arch.mp_state = mp_state->mp_state;
7145         kvm_make_request(KVM_REQ_EVENT, vcpu);
7146         return 0;
7147 }
7148
7149 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7150                     int reason, bool has_error_code, u32 error_code)
7151 {
7152         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7153         int ret;
7154
7155         init_emulate_ctxt(vcpu);
7156
7157         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7158                                    has_error_code, error_code);
7159
7160         if (ret)
7161                 return EMULATE_FAIL;
7162
7163         kvm_rip_write(vcpu, ctxt->eip);
7164         kvm_set_rflags(vcpu, ctxt->eflags);
7165         kvm_make_request(KVM_REQ_EVENT, vcpu);
7166         return EMULATE_DONE;
7167 }
7168 EXPORT_SYMBOL_GPL(kvm_task_switch);
7169
7170 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7171                                   struct kvm_sregs *sregs)
7172 {
7173         struct msr_data apic_base_msr;
7174         int mmu_reset_needed = 0;
7175         int pending_vec, max_bits, idx;
7176         struct desc_ptr dt;
7177
7178         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7179                 return -EINVAL;
7180
7181         dt.size = sregs->idt.limit;
7182         dt.address = sregs->idt.base;
7183         kvm_x86_ops->set_idt(vcpu, &dt);
7184         dt.size = sregs->gdt.limit;
7185         dt.address = sregs->gdt.base;
7186         kvm_x86_ops->set_gdt(vcpu, &dt);
7187
7188         vcpu->arch.cr2 = sregs->cr2;
7189         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7190         vcpu->arch.cr3 = sregs->cr3;
7191         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7192
7193         kvm_set_cr8(vcpu, sregs->cr8);
7194
7195         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7196         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7197         apic_base_msr.data = sregs->apic_base;
7198         apic_base_msr.host_initiated = true;
7199         kvm_set_apic_base(vcpu, &apic_base_msr);
7200
7201         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7202         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7203         vcpu->arch.cr0 = sregs->cr0;
7204
7205         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7206         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7207         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7208                 kvm_update_cpuid(vcpu);
7209
7210         idx = srcu_read_lock(&vcpu->kvm->srcu);
7211         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7212                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7213                 mmu_reset_needed = 1;
7214         }
7215         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7216
7217         if (mmu_reset_needed)
7218                 kvm_mmu_reset_context(vcpu);
7219
7220         max_bits = KVM_NR_INTERRUPTS;
7221         pending_vec = find_first_bit(
7222                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7223         if (pending_vec < max_bits) {
7224                 kvm_queue_interrupt(vcpu, pending_vec, false);
7225                 pr_debug("Set back pending irq %d\n", pending_vec);
7226         }
7227
7228         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7229         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7230         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7231         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7232         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7233         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7234
7235         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7236         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7237
7238         update_cr8_intercept(vcpu);
7239
7240         /* Older userspace won't unhalt the vcpu on reset. */
7241         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7242             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7243             !is_protmode(vcpu))
7244                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7245
7246         kvm_make_request(KVM_REQ_EVENT, vcpu);
7247
7248         return 0;
7249 }
7250
7251 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7252                                         struct kvm_guest_debug *dbg)
7253 {
7254         unsigned long rflags;
7255         int i, r;
7256
7257         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7258                 r = -EBUSY;
7259                 if (vcpu->arch.exception.pending)
7260                         goto out;
7261                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7262                         kvm_queue_exception(vcpu, DB_VECTOR);
7263                 else
7264                         kvm_queue_exception(vcpu, BP_VECTOR);
7265         }
7266
7267         /*
7268          * Read rflags as long as potentially injected trace flags are still
7269          * filtered out.
7270          */
7271         rflags = kvm_get_rflags(vcpu);
7272
7273         vcpu->guest_debug = dbg->control;
7274         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7275                 vcpu->guest_debug = 0;
7276
7277         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7278                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7279                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7280                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7281         } else {
7282                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7283                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7284         }
7285         kvm_update_dr7(vcpu);
7286
7287         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7288                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7289                         get_segment_base(vcpu, VCPU_SREG_CS);
7290
7291         /*
7292          * Trigger an rflags update that will inject or remove the trace
7293          * flags.
7294          */
7295         kvm_set_rflags(vcpu, rflags);
7296
7297         kvm_x86_ops->update_bp_intercept(vcpu);
7298
7299         r = 0;
7300
7301 out:
7302
7303         return r;
7304 }
7305
7306 /*
7307  * Translate a guest virtual address to a guest physical address.
7308  */
7309 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7310                                     struct kvm_translation *tr)
7311 {
7312         unsigned long vaddr = tr->linear_address;
7313         gpa_t gpa;
7314         int idx;
7315
7316         idx = srcu_read_lock(&vcpu->kvm->srcu);
7317         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7318         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7319         tr->physical_address = gpa;
7320         tr->valid = gpa != UNMAPPED_GVA;
7321         tr->writeable = 1;
7322         tr->usermode = 0;
7323
7324         return 0;
7325 }
7326
7327 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7328 {
7329         struct fxregs_state *fxsave =
7330                         &vcpu->arch.guest_fpu.state.fxsave;
7331
7332         memcpy(fpu->fpr, fxsave->st_space, 128);
7333         fpu->fcw = fxsave->cwd;
7334         fpu->fsw = fxsave->swd;
7335         fpu->ftwx = fxsave->twd;
7336         fpu->last_opcode = fxsave->fop;
7337         fpu->last_ip = fxsave->rip;
7338         fpu->last_dp = fxsave->rdp;
7339         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7340
7341         return 0;
7342 }
7343
7344 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7345 {
7346         struct fxregs_state *fxsave =
7347                         &vcpu->arch.guest_fpu.state.fxsave;
7348
7349         memcpy(fxsave->st_space, fpu->fpr, 128);
7350         fxsave->cwd = fpu->fcw;
7351         fxsave->swd = fpu->fsw;
7352         fxsave->twd = fpu->ftwx;
7353         fxsave->fop = fpu->last_opcode;
7354         fxsave->rip = fpu->last_ip;
7355         fxsave->rdp = fpu->last_dp;
7356         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7357
7358         return 0;
7359 }
7360
7361 static void fx_init(struct kvm_vcpu *vcpu)
7362 {
7363         fpstate_init(&vcpu->arch.guest_fpu.state);
7364         if (boot_cpu_has(X86_FEATURE_XSAVES))
7365                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7366                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7367
7368         /*
7369          * Ensure guest xcr0 is valid for loading
7370          */
7371         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7372
7373         vcpu->arch.cr0 |= X86_CR0_ET;
7374 }
7375
7376 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7377 {
7378         if (vcpu->guest_fpu_loaded)
7379                 return;
7380
7381         /*
7382          * Restore all possible states in the guest,
7383          * and assume host would use all available bits.
7384          * Guest xcr0 would be loaded later.
7385          */
7386         vcpu->guest_fpu_loaded = 1;
7387         __kernel_fpu_begin();
7388         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7389         trace_kvm_fpu(1);
7390 }
7391
7392 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7393 {
7394         if (!vcpu->guest_fpu_loaded) {
7395                 vcpu->fpu_counter = 0;
7396                 return;
7397         }
7398
7399         vcpu->guest_fpu_loaded = 0;
7400         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7401         __kernel_fpu_end();
7402         ++vcpu->stat.fpu_reload;
7403         /*
7404          * If using eager FPU mode, or if the guest is a frequent user
7405          * of the FPU, just leave the FPU active for next time.
7406          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7407          * the FPU in bursts will revert to loading it on demand.
7408          */
7409         if (!use_eager_fpu()) {
7410                 if (++vcpu->fpu_counter < 5)
7411                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7412         }
7413         trace_kvm_fpu(0);
7414 }
7415
7416 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7417 {
7418         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7419
7420         kvmclock_reset(vcpu);
7421
7422         kvm_x86_ops->vcpu_free(vcpu);
7423         free_cpumask_var(wbinvd_dirty_mask);
7424 }
7425
7426 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7427                                                 unsigned int id)
7428 {
7429         struct kvm_vcpu *vcpu;
7430
7431         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7432                 printk_once(KERN_WARNING
7433                 "kvm: SMP vm created on host with unstable TSC; "
7434                 "guest TSC will not be reliable\n");
7435
7436         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7437
7438         return vcpu;
7439 }
7440
7441 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7442 {
7443         int r;
7444
7445         kvm_vcpu_mtrr_init(vcpu);
7446         r = vcpu_load(vcpu);
7447         if (r)
7448                 return r;
7449         kvm_vcpu_reset(vcpu, false);
7450         kvm_mmu_setup(vcpu);
7451         vcpu_put(vcpu);
7452         return r;
7453 }
7454
7455 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7456 {
7457         struct msr_data msr;
7458         struct kvm *kvm = vcpu->kvm;
7459
7460         if (vcpu_load(vcpu))
7461                 return;
7462         msr.data = 0x0;
7463         msr.index = MSR_IA32_TSC;
7464         msr.host_initiated = true;
7465         kvm_write_tsc(vcpu, &msr);
7466         vcpu_put(vcpu);
7467
7468         if (!kvmclock_periodic_sync)
7469                 return;
7470
7471         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7472                                         KVMCLOCK_SYNC_PERIOD);
7473 }
7474
7475 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7476 {
7477         int r;
7478         vcpu->arch.apf.msr_val = 0;
7479
7480         r = vcpu_load(vcpu);
7481         BUG_ON(r);
7482         kvm_mmu_unload(vcpu);
7483         vcpu_put(vcpu);
7484
7485         kvm_x86_ops->vcpu_free(vcpu);
7486 }
7487
7488 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7489 {
7490         vcpu->arch.hflags = 0;
7491
7492         vcpu->arch.smi_pending = 0;
7493         atomic_set(&vcpu->arch.nmi_queued, 0);
7494         vcpu->arch.nmi_pending = 0;
7495         vcpu->arch.nmi_injected = false;
7496         kvm_clear_interrupt_queue(vcpu);
7497         kvm_clear_exception_queue(vcpu);
7498
7499         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7500         kvm_update_dr0123(vcpu);
7501         vcpu->arch.dr6 = DR6_INIT;
7502         kvm_update_dr6(vcpu);
7503         vcpu->arch.dr7 = DR7_FIXED_1;
7504         kvm_update_dr7(vcpu);
7505
7506         vcpu->arch.cr2 = 0;
7507
7508         kvm_make_request(KVM_REQ_EVENT, vcpu);
7509         vcpu->arch.apf.msr_val = 0;
7510         vcpu->arch.st.msr_val = 0;
7511
7512         kvmclock_reset(vcpu);
7513
7514         kvm_clear_async_pf_completion_queue(vcpu);
7515         kvm_async_pf_hash_reset(vcpu);
7516         vcpu->arch.apf.halted = false;
7517
7518         if (!init_event) {
7519                 kvm_pmu_reset(vcpu);
7520                 vcpu->arch.smbase = 0x30000;
7521         }
7522
7523         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7524         vcpu->arch.regs_avail = ~0;
7525         vcpu->arch.regs_dirty = ~0;
7526
7527         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7528 }
7529
7530 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7531 {
7532         struct kvm_segment cs;
7533
7534         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7535         cs.selector = vector << 8;
7536         cs.base = vector << 12;
7537         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7538         kvm_rip_write(vcpu, 0);
7539 }
7540
7541 int kvm_arch_hardware_enable(void)
7542 {
7543         struct kvm *kvm;
7544         struct kvm_vcpu *vcpu;
7545         int i;
7546         int ret;
7547         u64 local_tsc;
7548         u64 max_tsc = 0;
7549         bool stable, backwards_tsc = false;
7550
7551         kvm_shared_msr_cpu_online();
7552         ret = kvm_x86_ops->hardware_enable();
7553         if (ret != 0)
7554                 return ret;
7555
7556         local_tsc = rdtsc();
7557         stable = !check_tsc_unstable();
7558         list_for_each_entry(kvm, &vm_list, vm_list) {
7559                 kvm_for_each_vcpu(i, vcpu, kvm) {
7560                         if (!stable && vcpu->cpu == smp_processor_id())
7561                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7562                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7563                                 backwards_tsc = true;
7564                                 if (vcpu->arch.last_host_tsc > max_tsc)
7565                                         max_tsc = vcpu->arch.last_host_tsc;
7566                         }
7567                 }
7568         }
7569
7570         /*
7571          * Sometimes, even reliable TSCs go backwards.  This happens on
7572          * platforms that reset TSC during suspend or hibernate actions, but
7573          * maintain synchronization.  We must compensate.  Fortunately, we can
7574          * detect that condition here, which happens early in CPU bringup,
7575          * before any KVM threads can be running.  Unfortunately, we can't
7576          * bring the TSCs fully up to date with real time, as we aren't yet far
7577          * enough into CPU bringup that we know how much real time has actually
7578          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7579          * variables that haven't been updated yet.
7580          *
7581          * So we simply find the maximum observed TSC above, then record the
7582          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7583          * the adjustment will be applied.  Note that we accumulate
7584          * adjustments, in case multiple suspend cycles happen before some VCPU
7585          * gets a chance to run again.  In the event that no KVM threads get a
7586          * chance to run, we will miss the entire elapsed period, as we'll have
7587          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7588          * loose cycle time.  This isn't too big a deal, since the loss will be
7589          * uniform across all VCPUs (not to mention the scenario is extremely
7590          * unlikely). It is possible that a second hibernate recovery happens
7591          * much faster than a first, causing the observed TSC here to be
7592          * smaller; this would require additional padding adjustment, which is
7593          * why we set last_host_tsc to the local tsc observed here.
7594          *
7595          * N.B. - this code below runs only on platforms with reliable TSC,
7596          * as that is the only way backwards_tsc is set above.  Also note
7597          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7598          * have the same delta_cyc adjustment applied if backwards_tsc
7599          * is detected.  Note further, this adjustment is only done once,
7600          * as we reset last_host_tsc on all VCPUs to stop this from being
7601          * called multiple times (one for each physical CPU bringup).
7602          *
7603          * Platforms with unreliable TSCs don't have to deal with this, they
7604          * will be compensated by the logic in vcpu_load, which sets the TSC to
7605          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7606          * guarantee that they stay in perfect synchronization.
7607          */
7608         if (backwards_tsc) {
7609                 u64 delta_cyc = max_tsc - local_tsc;
7610                 backwards_tsc_observed = true;
7611                 list_for_each_entry(kvm, &vm_list, vm_list) {
7612                         kvm_for_each_vcpu(i, vcpu, kvm) {
7613                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7614                                 vcpu->arch.last_host_tsc = local_tsc;
7615                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7616                         }
7617
7618                         /*
7619                          * We have to disable TSC offset matching.. if you were
7620                          * booting a VM while issuing an S4 host suspend....
7621                          * you may have some problem.  Solving this issue is
7622                          * left as an exercise to the reader.
7623                          */
7624                         kvm->arch.last_tsc_nsec = 0;
7625                         kvm->arch.last_tsc_write = 0;
7626                 }
7627
7628         }
7629         return 0;
7630 }
7631
7632 void kvm_arch_hardware_disable(void)
7633 {
7634         kvm_x86_ops->hardware_disable();
7635         drop_user_return_notifiers();
7636 }
7637
7638 int kvm_arch_hardware_setup(void)
7639 {
7640         int r;
7641
7642         r = kvm_x86_ops->hardware_setup();
7643         if (r != 0)
7644                 return r;
7645
7646         if (kvm_has_tsc_control) {
7647                 /*
7648                  * Make sure the user can only configure tsc_khz values that
7649                  * fit into a signed integer.
7650                  * A min value is not calculated needed because it will always
7651                  * be 1 on all machines.
7652                  */
7653                 u64 max = min(0x7fffffffULL,
7654                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7655                 kvm_max_guest_tsc_khz = max;
7656
7657                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7658         }
7659
7660         kvm_init_msr_list();
7661         return 0;
7662 }
7663
7664 void kvm_arch_hardware_unsetup(void)
7665 {
7666         kvm_x86_ops->hardware_unsetup();
7667 }
7668
7669 void kvm_arch_check_processor_compat(void *rtn)
7670 {
7671         kvm_x86_ops->check_processor_compatibility(rtn);
7672 }
7673
7674 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7675 {
7676         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7677 }
7678 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7679
7680 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7681 {
7682         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7683 }
7684
7685 struct static_key kvm_no_apic_vcpu __read_mostly;
7686 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7687
7688 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7689 {
7690         struct page *page;
7691         struct kvm *kvm;
7692         int r;
7693
7694         BUG_ON(vcpu->kvm == NULL);
7695         kvm = vcpu->kvm;
7696
7697         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7698         vcpu->arch.pv.pv_unhalted = false;
7699         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7700         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7701                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7702         else
7703                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7704
7705         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7706         if (!page) {
7707                 r = -ENOMEM;
7708                 goto fail;
7709         }
7710         vcpu->arch.pio_data = page_address(page);
7711
7712         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7713
7714         r = kvm_mmu_create(vcpu);
7715         if (r < 0)
7716                 goto fail_free_pio_data;
7717
7718         if (irqchip_in_kernel(kvm)) {
7719                 r = kvm_create_lapic(vcpu);
7720                 if (r < 0)
7721                         goto fail_mmu_destroy;
7722         } else
7723                 static_key_slow_inc(&kvm_no_apic_vcpu);
7724
7725         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7726                                        GFP_KERNEL);
7727         if (!vcpu->arch.mce_banks) {
7728                 r = -ENOMEM;
7729                 goto fail_free_lapic;
7730         }
7731         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7732
7733         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7734                 r = -ENOMEM;
7735                 goto fail_free_mce_banks;
7736         }
7737
7738         fx_init(vcpu);
7739
7740         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7741         vcpu->arch.pv_time_enabled = false;
7742
7743         vcpu->arch.guest_supported_xcr0 = 0;
7744         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7745
7746         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7747
7748         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7749
7750         kvm_async_pf_hash_reset(vcpu);
7751         kvm_pmu_init(vcpu);
7752
7753         vcpu->arch.pending_external_vector = -1;
7754
7755         kvm_hv_vcpu_init(vcpu);
7756
7757         return 0;
7758
7759 fail_free_mce_banks:
7760         kfree(vcpu->arch.mce_banks);
7761 fail_free_lapic:
7762         kvm_free_lapic(vcpu);
7763 fail_mmu_destroy:
7764         kvm_mmu_destroy(vcpu);
7765 fail_free_pio_data:
7766         free_page((unsigned long)vcpu->arch.pio_data);
7767 fail:
7768         return r;
7769 }
7770
7771 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7772 {
7773         int idx;
7774
7775         kvm_hv_vcpu_uninit(vcpu);
7776         kvm_pmu_destroy(vcpu);
7777         kfree(vcpu->arch.mce_banks);
7778         kvm_free_lapic(vcpu);
7779         idx = srcu_read_lock(&vcpu->kvm->srcu);
7780         kvm_mmu_destroy(vcpu);
7781         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7782         free_page((unsigned long)vcpu->arch.pio_data);
7783         if (!lapic_in_kernel(vcpu))
7784                 static_key_slow_dec(&kvm_no_apic_vcpu);
7785 }
7786
7787 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7788 {
7789         kvm_x86_ops->sched_in(vcpu, cpu);
7790 }
7791
7792 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7793 {
7794         if (type)
7795                 return -EINVAL;
7796
7797         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7798         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7799         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7800         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7801         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7802
7803         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7804         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7805         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7806         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7807                 &kvm->arch.irq_sources_bitmap);
7808
7809         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7810         mutex_init(&kvm->arch.apic_map_lock);
7811         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7812
7813         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7814         pvclock_update_vm_gtod_copy(kvm);
7815
7816         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7817         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7818
7819         kvm_page_track_init(kvm);
7820         kvm_mmu_init_vm(kvm);
7821
7822         if (kvm_x86_ops->vm_init)
7823                 return kvm_x86_ops->vm_init(kvm);
7824
7825         return 0;
7826 }
7827
7828 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7829 {
7830         int r;
7831         r = vcpu_load(vcpu);
7832         BUG_ON(r);
7833         kvm_mmu_unload(vcpu);
7834         vcpu_put(vcpu);
7835 }
7836
7837 static void kvm_free_vcpus(struct kvm *kvm)
7838 {
7839         unsigned int i;
7840         struct kvm_vcpu *vcpu;
7841
7842         /*
7843          * Unpin any mmu pages first.
7844          */
7845         kvm_for_each_vcpu(i, vcpu, kvm) {
7846                 kvm_clear_async_pf_completion_queue(vcpu);
7847                 kvm_unload_vcpu_mmu(vcpu);
7848         }
7849         kvm_for_each_vcpu(i, vcpu, kvm)
7850                 kvm_arch_vcpu_free(vcpu);
7851
7852         mutex_lock(&kvm->lock);
7853         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7854                 kvm->vcpus[i] = NULL;
7855
7856         atomic_set(&kvm->online_vcpus, 0);
7857         mutex_unlock(&kvm->lock);
7858 }
7859
7860 void kvm_arch_sync_events(struct kvm *kvm)
7861 {
7862         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7863         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7864         kvm_free_all_assigned_devices(kvm);
7865         kvm_free_pit(kvm);
7866 }
7867
7868 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7869 {
7870         int i, r;
7871         unsigned long hva;
7872         struct kvm_memslots *slots = kvm_memslots(kvm);
7873         struct kvm_memory_slot *slot, old;
7874
7875         /* Called with kvm->slots_lock held.  */
7876         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7877                 return -EINVAL;
7878
7879         slot = id_to_memslot(slots, id);
7880         if (size) {
7881                 if (slot->npages)
7882                         return -EEXIST;
7883
7884                 /*
7885                  * MAP_SHARED to prevent internal slot pages from being moved
7886                  * by fork()/COW.
7887                  */
7888                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7889                               MAP_SHARED | MAP_ANONYMOUS, 0);
7890                 if (IS_ERR((void *)hva))
7891                         return PTR_ERR((void *)hva);
7892         } else {
7893                 if (!slot->npages)
7894                         return 0;
7895
7896                 hva = 0;
7897         }
7898
7899         old = *slot;
7900         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7901                 struct kvm_userspace_memory_region m;
7902
7903                 m.slot = id | (i << 16);
7904                 m.flags = 0;
7905                 m.guest_phys_addr = gpa;
7906                 m.userspace_addr = hva;
7907                 m.memory_size = size;
7908                 r = __kvm_set_memory_region(kvm, &m);
7909                 if (r < 0)
7910                         return r;
7911         }
7912
7913         if (!size) {
7914                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7915                 WARN_ON(r < 0);
7916         }
7917
7918         return 0;
7919 }
7920 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7921
7922 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7923 {
7924         int r;
7925
7926         mutex_lock(&kvm->slots_lock);
7927         r = __x86_set_memory_region(kvm, id, gpa, size);
7928         mutex_unlock(&kvm->slots_lock);
7929
7930         return r;
7931 }
7932 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7933
7934 void kvm_arch_destroy_vm(struct kvm *kvm)
7935 {
7936         if (current->mm == kvm->mm) {
7937                 /*
7938                  * Free memory regions allocated on behalf of userspace,
7939                  * unless the the memory map has changed due to process exit
7940                  * or fd copying.
7941                  */
7942                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7943                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7944                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7945         }
7946         if (kvm_x86_ops->vm_destroy)
7947                 kvm_x86_ops->vm_destroy(kvm);
7948         kvm_iommu_unmap_guest(kvm);
7949         kfree(kvm->arch.vpic);
7950         kfree(kvm->arch.vioapic);
7951         kvm_free_vcpus(kvm);
7952         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7953         kvm_mmu_uninit_vm(kvm);
7954 }
7955
7956 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7957                            struct kvm_memory_slot *dont)
7958 {
7959         int i;
7960
7961         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7962                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7963                         kvfree(free->arch.rmap[i]);
7964                         free->arch.rmap[i] = NULL;
7965                 }
7966                 if (i == 0)
7967                         continue;
7968
7969                 if (!dont || free->arch.lpage_info[i - 1] !=
7970                              dont->arch.lpage_info[i - 1]) {
7971                         kvfree(free->arch.lpage_info[i - 1]);
7972                         free->arch.lpage_info[i - 1] = NULL;
7973                 }
7974         }
7975
7976         kvm_page_track_free_memslot(free, dont);
7977 }
7978
7979 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7980                             unsigned long npages)
7981 {
7982         int i;
7983
7984         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7985                 struct kvm_lpage_info *linfo;
7986                 unsigned long ugfn;
7987                 int lpages;
7988                 int level = i + 1;
7989
7990                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7991                                       slot->base_gfn, level) + 1;
7992
7993                 slot->arch.rmap[i] =
7994                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7995                 if (!slot->arch.rmap[i])
7996                         goto out_free;
7997                 if (i == 0)
7998                         continue;
7999
8000                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8001                 if (!linfo)
8002                         goto out_free;
8003
8004                 slot->arch.lpage_info[i - 1] = linfo;
8005
8006                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8007                         linfo[0].disallow_lpage = 1;
8008                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8009                         linfo[lpages - 1].disallow_lpage = 1;
8010                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8011                 /*
8012                  * If the gfn and userspace address are not aligned wrt each
8013                  * other, or if explicitly asked to, disable large page
8014                  * support for this slot
8015                  */
8016                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8017                     !kvm_largepages_enabled()) {
8018                         unsigned long j;
8019
8020                         for (j = 0; j < lpages; ++j)
8021                                 linfo[j].disallow_lpage = 1;
8022                 }
8023         }
8024
8025         if (kvm_page_track_create_memslot(slot, npages))
8026                 goto out_free;
8027
8028         return 0;
8029
8030 out_free:
8031         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8032                 kvfree(slot->arch.rmap[i]);
8033                 slot->arch.rmap[i] = NULL;
8034                 if (i == 0)
8035                         continue;
8036
8037                 kvfree(slot->arch.lpage_info[i - 1]);
8038                 slot->arch.lpage_info[i - 1] = NULL;
8039         }
8040         return -ENOMEM;
8041 }
8042
8043 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8044 {
8045         /*
8046          * memslots->generation has been incremented.
8047          * mmio generation may have reached its maximum value.
8048          */
8049         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8050 }
8051
8052 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8053                                 struct kvm_memory_slot *memslot,
8054                                 const struct kvm_userspace_memory_region *mem,
8055                                 enum kvm_mr_change change)
8056 {
8057         return 0;
8058 }
8059
8060 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8061                                      struct kvm_memory_slot *new)
8062 {
8063         /* Still write protect RO slot */
8064         if (new->flags & KVM_MEM_READONLY) {
8065                 kvm_mmu_slot_remove_write_access(kvm, new);
8066                 return;
8067         }
8068
8069         /*
8070          * Call kvm_x86_ops dirty logging hooks when they are valid.
8071          *
8072          * kvm_x86_ops->slot_disable_log_dirty is called when:
8073          *
8074          *  - KVM_MR_CREATE with dirty logging is disabled
8075          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8076          *
8077          * The reason is, in case of PML, we need to set D-bit for any slots
8078          * with dirty logging disabled in order to eliminate unnecessary GPA
8079          * logging in PML buffer (and potential PML buffer full VMEXT). This
8080          * guarantees leaving PML enabled during guest's lifetime won't have
8081          * any additonal overhead from PML when guest is running with dirty
8082          * logging disabled for memory slots.
8083          *
8084          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8085          * to dirty logging mode.
8086          *
8087          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8088          *
8089          * In case of write protect:
8090          *
8091          * Write protect all pages for dirty logging.
8092          *
8093          * All the sptes including the large sptes which point to this
8094          * slot are set to readonly. We can not create any new large
8095          * spte on this slot until the end of the logging.
8096          *
8097          * See the comments in fast_page_fault().
8098          */
8099         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8100                 if (kvm_x86_ops->slot_enable_log_dirty)
8101                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8102                 else
8103                         kvm_mmu_slot_remove_write_access(kvm, new);
8104         } else {
8105                 if (kvm_x86_ops->slot_disable_log_dirty)
8106                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8107         }
8108 }
8109
8110 void kvm_arch_commit_memory_region(struct kvm *kvm,
8111                                 const struct kvm_userspace_memory_region *mem,
8112                                 const struct kvm_memory_slot *old,
8113                                 const struct kvm_memory_slot *new,
8114                                 enum kvm_mr_change change)
8115 {
8116         int nr_mmu_pages = 0;
8117
8118         if (!kvm->arch.n_requested_mmu_pages)
8119                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8120
8121         if (nr_mmu_pages)
8122                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8123
8124         /*
8125          * Dirty logging tracks sptes in 4k granularity, meaning that large
8126          * sptes have to be split.  If live migration is successful, the guest
8127          * in the source machine will be destroyed and large sptes will be
8128          * created in the destination. However, if the guest continues to run
8129          * in the source machine (for example if live migration fails), small
8130          * sptes will remain around and cause bad performance.
8131          *
8132          * Scan sptes if dirty logging has been stopped, dropping those
8133          * which can be collapsed into a single large-page spte.  Later
8134          * page faults will create the large-page sptes.
8135          */
8136         if ((change != KVM_MR_DELETE) &&
8137                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8138                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8139                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8140
8141         /*
8142          * Set up write protection and/or dirty logging for the new slot.
8143          *
8144          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8145          * been zapped so no dirty logging staff is needed for old slot. For
8146          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8147          * new and it's also covered when dealing with the new slot.
8148          *
8149          * FIXME: const-ify all uses of struct kvm_memory_slot.
8150          */
8151         if (change != KVM_MR_DELETE)
8152                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8153 }
8154
8155 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8156 {
8157         kvm_mmu_invalidate_zap_all_pages(kvm);
8158 }
8159
8160 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8161                                    struct kvm_memory_slot *slot)
8162 {
8163         kvm_mmu_invalidate_zap_all_pages(kvm);
8164 }
8165
8166 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8167 {
8168         if (!list_empty_careful(&vcpu->async_pf.done))
8169                 return true;
8170
8171         if (kvm_apic_has_events(vcpu))
8172                 return true;
8173
8174         if (vcpu->arch.pv.pv_unhalted)
8175                 return true;
8176
8177         if (atomic_read(&vcpu->arch.nmi_queued))
8178                 return true;
8179
8180         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8181                 return true;
8182
8183         if (kvm_arch_interrupt_allowed(vcpu) &&
8184             kvm_cpu_has_interrupt(vcpu))
8185                 return true;
8186
8187         if (kvm_hv_has_stimer_pending(vcpu))
8188                 return true;
8189
8190         return false;
8191 }
8192
8193 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8194 {
8195         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8196                 kvm_x86_ops->check_nested_events(vcpu, false);
8197
8198         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8199 }
8200
8201 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8202 {
8203         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8204 }
8205
8206 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8207 {
8208         return kvm_x86_ops->interrupt_allowed(vcpu);
8209 }
8210
8211 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8212 {
8213         if (is_64_bit_mode(vcpu))
8214                 return kvm_rip_read(vcpu);
8215         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8216                      kvm_rip_read(vcpu));
8217 }
8218 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8219
8220 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8221 {
8222         return kvm_get_linear_rip(vcpu) == linear_rip;
8223 }
8224 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8225
8226 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8227 {
8228         unsigned long rflags;
8229
8230         rflags = kvm_x86_ops->get_rflags(vcpu);
8231         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8232                 rflags &= ~X86_EFLAGS_TF;
8233         return rflags;
8234 }
8235 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8236
8237 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8238 {
8239         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8240             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8241                 rflags |= X86_EFLAGS_TF;
8242         kvm_x86_ops->set_rflags(vcpu, rflags);
8243 }
8244
8245 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8246 {
8247         __kvm_set_rflags(vcpu, rflags);
8248         kvm_make_request(KVM_REQ_EVENT, vcpu);
8249 }
8250 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8251
8252 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8253 {
8254         int r;
8255
8256         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8257               work->wakeup_all)
8258                 return;
8259
8260         r = kvm_mmu_reload(vcpu);
8261         if (unlikely(r))
8262                 return;
8263
8264         if (!vcpu->arch.mmu.direct_map &&
8265               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8266                 return;
8267
8268         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8269 }
8270
8271 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8272 {
8273         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8274 }
8275
8276 static inline u32 kvm_async_pf_next_probe(u32 key)
8277 {
8278         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8279 }
8280
8281 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8282 {
8283         u32 key = kvm_async_pf_hash_fn(gfn);
8284
8285         while (vcpu->arch.apf.gfns[key] != ~0)
8286                 key = kvm_async_pf_next_probe(key);
8287
8288         vcpu->arch.apf.gfns[key] = gfn;
8289 }
8290
8291 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8292 {
8293         int i;
8294         u32 key = kvm_async_pf_hash_fn(gfn);
8295
8296         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8297                      (vcpu->arch.apf.gfns[key] != gfn &&
8298                       vcpu->arch.apf.gfns[key] != ~0); i++)
8299                 key = kvm_async_pf_next_probe(key);
8300
8301         return key;
8302 }
8303
8304 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8305 {
8306         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8307 }
8308
8309 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8310 {
8311         u32 i, j, k;
8312
8313         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8314         while (true) {
8315                 vcpu->arch.apf.gfns[i] = ~0;
8316                 do {
8317                         j = kvm_async_pf_next_probe(j);
8318                         if (vcpu->arch.apf.gfns[j] == ~0)
8319                                 return;
8320                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8321                         /*
8322                          * k lies cyclically in ]i,j]
8323                          * |    i.k.j |
8324                          * |....j i.k.| or  |.k..j i...|
8325                          */
8326                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8327                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8328                 i = j;
8329         }
8330 }
8331
8332 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8333 {
8334
8335         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8336                                       sizeof(val));
8337 }
8338
8339 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8340                                      struct kvm_async_pf *work)
8341 {
8342         struct x86_exception fault;
8343
8344         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8345         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8346
8347         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8348             (vcpu->arch.apf.send_user_only &&
8349              kvm_x86_ops->get_cpl(vcpu) == 0))
8350                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8351         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8352                 fault.vector = PF_VECTOR;
8353                 fault.error_code_valid = true;
8354                 fault.error_code = 0;
8355                 fault.nested_page_fault = false;
8356                 fault.address = work->arch.token;
8357                 kvm_inject_page_fault(vcpu, &fault);
8358         }
8359 }
8360
8361 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8362                                  struct kvm_async_pf *work)
8363 {
8364         struct x86_exception fault;
8365
8366         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8367         if (work->wakeup_all)
8368                 work->arch.token = ~0; /* broadcast wakeup */
8369         else
8370                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8371
8372         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8373             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8374                 fault.vector = PF_VECTOR;
8375                 fault.error_code_valid = true;
8376                 fault.error_code = 0;
8377                 fault.nested_page_fault = false;
8378                 fault.address = work->arch.token;
8379                 kvm_inject_page_fault(vcpu, &fault);
8380         }
8381         vcpu->arch.apf.halted = false;
8382         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8383 }
8384
8385 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8386 {
8387         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8388                 return true;
8389         else
8390                 return !kvm_event_needs_reinjection(vcpu) &&
8391                         kvm_x86_ops->interrupt_allowed(vcpu);
8392 }
8393
8394 void kvm_arch_start_assignment(struct kvm *kvm)
8395 {
8396         atomic_inc(&kvm->arch.assigned_device_count);
8397 }
8398 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8399
8400 void kvm_arch_end_assignment(struct kvm *kvm)
8401 {
8402         atomic_dec(&kvm->arch.assigned_device_count);
8403 }
8404 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8405
8406 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8407 {
8408         return atomic_read(&kvm->arch.assigned_device_count);
8409 }
8410 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8411
8412 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8413 {
8414         atomic_inc(&kvm->arch.noncoherent_dma_count);
8415 }
8416 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8417
8418 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8419 {
8420         atomic_dec(&kvm->arch.noncoherent_dma_count);
8421 }
8422 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8423
8424 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8425 {
8426         return atomic_read(&kvm->arch.noncoherent_dma_count);
8427 }
8428 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8429
8430 bool kvm_arch_has_irq_bypass(void)
8431 {
8432         return kvm_x86_ops->update_pi_irte != NULL;
8433 }
8434
8435 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8436                                       struct irq_bypass_producer *prod)
8437 {
8438         struct kvm_kernel_irqfd *irqfd =
8439                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8440
8441         irqfd->producer = prod;
8442
8443         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8444                                            prod->irq, irqfd->gsi, 1);
8445 }
8446
8447 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8448                                       struct irq_bypass_producer *prod)
8449 {
8450         int ret;
8451         struct kvm_kernel_irqfd *irqfd =
8452                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8453
8454         WARN_ON(irqfd->producer != prod);
8455         irqfd->producer = NULL;
8456
8457         /*
8458          * When producer of consumer is unregistered, we change back to
8459          * remapped mode, so we can re-use the current implementation
8460          * when the irq is masked/disabled or the consumer side (KVM
8461          * int this case doesn't want to receive the interrupts.
8462         */
8463         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8464         if (ret)
8465                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8466                        " fails: %d\n", irqfd->consumer.token, ret);
8467 }
8468
8469 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8470                                    uint32_t guest_irq, bool set)
8471 {
8472         if (!kvm_x86_ops->update_pi_irte)
8473                 return -EINVAL;
8474
8475         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8476 }
8477
8478 bool kvm_vector_hashing_enabled(void)
8479 {
8480         return vector_hashing;
8481 }
8482 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8483
8484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);