KVM: Use eoi to track RTC interrupt delivery status
[linux-2.6-block.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
559 {
560         u64 xcr0;
561
562         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
563         if (index != XCR_XFEATURE_ENABLED_MASK)
564                 return 1;
565         xcr0 = xcr;
566         if (kvm_x86_ops->get_cpl(vcpu) != 0)
567                 return 1;
568         if (!(xcr0 & XSTATE_FP))
569                 return 1;
570         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
571                 return 1;
572         if (xcr0 & ~host_xcr0)
573                 return 1;
574         vcpu->arch.xcr0 = xcr0;
575         vcpu->guest_xcr0_loaded = 0;
576         return 0;
577 }
578
579 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
580 {
581         if (__kvm_set_xcr(vcpu, index, xcr)) {
582                 kvm_inject_gp(vcpu, 0);
583                 return 1;
584         }
585         return 0;
586 }
587 EXPORT_SYMBOL_GPL(kvm_set_xcr);
588
589 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
590 {
591         unsigned long old_cr4 = kvm_read_cr4(vcpu);
592         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
593                                    X86_CR4_PAE | X86_CR4_SMEP;
594         if (cr4 & CR4_RESERVED_BITS)
595                 return 1;
596
597         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
598                 return 1;
599
600         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
601                 return 1;
602
603         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
604                 return 1;
605
606         if (is_long_mode(vcpu)) {
607                 if (!(cr4 & X86_CR4_PAE))
608                         return 1;
609         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
610                    && ((cr4 ^ old_cr4) & pdptr_bits)
611                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
612                                    kvm_read_cr3(vcpu)))
613                 return 1;
614
615         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
616                 if (!guest_cpuid_has_pcid(vcpu))
617                         return 1;
618
619                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
620                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
621                         return 1;
622         }
623
624         if (kvm_x86_ops->set_cr4(vcpu, cr4))
625                 return 1;
626
627         if (((cr4 ^ old_cr4) & pdptr_bits) ||
628             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
629                 kvm_mmu_reset_context(vcpu);
630
631         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
632                 kvm_update_cpuid(vcpu);
633
634         return 0;
635 }
636 EXPORT_SYMBOL_GPL(kvm_set_cr4);
637
638 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
639 {
640         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
641                 kvm_mmu_sync_roots(vcpu);
642                 kvm_mmu_flush_tlb(vcpu);
643                 return 0;
644         }
645
646         if (is_long_mode(vcpu)) {
647                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
648                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
649                                 return 1;
650                 } else
651                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
652                                 return 1;
653         } else {
654                 if (is_pae(vcpu)) {
655                         if (cr3 & CR3_PAE_RESERVED_BITS)
656                                 return 1;
657                         if (is_paging(vcpu) &&
658                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
659                                 return 1;
660                 }
661                 /*
662                  * We don't check reserved bits in nonpae mode, because
663                  * this isn't enforced, and VMware depends on this.
664                  */
665         }
666
667         /*
668          * Does the new cr3 value map to physical memory? (Note, we
669          * catch an invalid cr3 even in real-mode, because it would
670          * cause trouble later on when we turn on paging anyway.)
671          *
672          * A real CPU would silently accept an invalid cr3 and would
673          * attempt to use it - with largely undefined (and often hard
674          * to debug) behavior on the guest side.
675          */
676         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
677                 return 1;
678         vcpu->arch.cr3 = cr3;
679         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
680         vcpu->arch.mmu.new_cr3(vcpu);
681         return 0;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_cr3);
684
685 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
686 {
687         if (cr8 & CR8_RESERVED_BITS)
688                 return 1;
689         if (irqchip_in_kernel(vcpu->kvm))
690                 kvm_lapic_set_tpr(vcpu, cr8);
691         else
692                 vcpu->arch.cr8 = cr8;
693         return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_cr8);
696
697 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
698 {
699         if (irqchip_in_kernel(vcpu->kvm))
700                 return kvm_lapic_get_cr8(vcpu);
701         else
702                 return vcpu->arch.cr8;
703 }
704 EXPORT_SYMBOL_GPL(kvm_get_cr8);
705
706 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
707 {
708         unsigned long dr7;
709
710         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
711                 dr7 = vcpu->arch.guest_debug_dr7;
712         else
713                 dr7 = vcpu->arch.dr7;
714         kvm_x86_ops->set_dr7(vcpu, dr7);
715         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
716 }
717
718 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         switch (dr) {
721         case 0 ... 3:
722                 vcpu->arch.db[dr] = val;
723                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
724                         vcpu->arch.eff_db[dr] = val;
725                 break;
726         case 4:
727                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728                         return 1; /* #UD */
729                 /* fall through */
730         case 6:
731                 if (val & 0xffffffff00000000ULL)
732                         return -1; /* #GP */
733                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
734                 break;
735         case 5:
736                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
737                         return 1; /* #UD */
738                 /* fall through */
739         default: /* 7 */
740                 if (val & 0xffffffff00000000ULL)
741                         return -1; /* #GP */
742                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
743                 kvm_update_dr7(vcpu);
744                 break;
745         }
746
747         return 0;
748 }
749
750 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
751 {
752         int res;
753
754         res = __kvm_set_dr(vcpu, dr, val);
755         if (res > 0)
756                 kvm_queue_exception(vcpu, UD_VECTOR);
757         else if (res < 0)
758                 kvm_inject_gp(vcpu, 0);
759
760         return res;
761 }
762 EXPORT_SYMBOL_GPL(kvm_set_dr);
763
764 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
765 {
766         switch (dr) {
767         case 0 ... 3:
768                 *val = vcpu->arch.db[dr];
769                 break;
770         case 4:
771                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
772                         return 1;
773                 /* fall through */
774         case 6:
775                 *val = vcpu->arch.dr6;
776                 break;
777         case 5:
778                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
779                         return 1;
780                 /* fall through */
781         default: /* 7 */
782                 *val = vcpu->arch.dr7;
783                 break;
784         }
785
786         return 0;
787 }
788
789 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
790 {
791         if (_kvm_get_dr(vcpu, dr, val)) {
792                 kvm_queue_exception(vcpu, UD_VECTOR);
793                 return 1;
794         }
795         return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_get_dr);
798
799 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
800 {
801         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
802         u64 data;
803         int err;
804
805         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
806         if (err)
807                 return err;
808         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
809         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
810         return err;
811 }
812 EXPORT_SYMBOL_GPL(kvm_rdpmc);
813
814 /*
815  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
816  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
817  *
818  * This list is modified at module load time to reflect the
819  * capabilities of the host cpu. This capabilities test skips MSRs that are
820  * kvm-specific. Those are put in the beginning of the list.
821  */
822
823 #define KVM_SAVE_MSRS_BEGIN     10
824 static u32 msrs_to_save[] = {
825         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
826         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
827         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
828         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
829         MSR_KVM_PV_EOI_EN,
830         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
831         MSR_STAR,
832 #ifdef CONFIG_X86_64
833         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
834 #endif
835         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
836 };
837
838 static unsigned num_msrs_to_save;
839
840 static const u32 emulated_msrs[] = {
841         MSR_IA32_TSC_ADJUST,
842         MSR_IA32_TSCDEADLINE,
843         MSR_IA32_MISC_ENABLE,
844         MSR_IA32_MCG_STATUS,
845         MSR_IA32_MCG_CTL,
846 };
847
848 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
849 {
850         u64 old_efer = vcpu->arch.efer;
851
852         if (efer & efer_reserved_bits)
853                 return 1;
854
855         if (is_paging(vcpu)
856             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
857                 return 1;
858
859         if (efer & EFER_FFXSR) {
860                 struct kvm_cpuid_entry2 *feat;
861
862                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
863                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
864                         return 1;
865         }
866
867         if (efer & EFER_SVME) {
868                 struct kvm_cpuid_entry2 *feat;
869
870                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
871                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
872                         return 1;
873         }
874
875         efer &= ~EFER_LMA;
876         efer |= vcpu->arch.efer & EFER_LMA;
877
878         kvm_x86_ops->set_efer(vcpu, efer);
879
880         /* Update reserved bits */
881         if ((efer ^ old_efer) & EFER_NX)
882                 kvm_mmu_reset_context(vcpu);
883
884         return 0;
885 }
886
887 void kvm_enable_efer_bits(u64 mask)
888 {
889        efer_reserved_bits &= ~mask;
890 }
891 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
892
893
894 /*
895  * Writes msr value into into the appropriate "register".
896  * Returns 0 on success, non-0 otherwise.
897  * Assumes vcpu_load() was already called.
898  */
899 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
900 {
901         return kvm_x86_ops->set_msr(vcpu, msr);
902 }
903
904 /*
905  * Adapt set_msr() to msr_io()'s calling convention
906  */
907 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
908 {
909         struct msr_data msr;
910
911         msr.data = *data;
912         msr.index = index;
913         msr.host_initiated = true;
914         return kvm_set_msr(vcpu, &msr);
915 }
916
917 #ifdef CONFIG_X86_64
918 struct pvclock_gtod_data {
919         seqcount_t      seq;
920
921         struct { /* extract of a clocksource struct */
922                 int vclock_mode;
923                 cycle_t cycle_last;
924                 cycle_t mask;
925                 u32     mult;
926                 u32     shift;
927         } clock;
928
929         /* open coded 'struct timespec' */
930         u64             monotonic_time_snsec;
931         time_t          monotonic_time_sec;
932 };
933
934 static struct pvclock_gtod_data pvclock_gtod_data;
935
936 static void update_pvclock_gtod(struct timekeeper *tk)
937 {
938         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
939
940         write_seqcount_begin(&vdata->seq);
941
942         /* copy pvclock gtod data */
943         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
944         vdata->clock.cycle_last         = tk->clock->cycle_last;
945         vdata->clock.mask               = tk->clock->mask;
946         vdata->clock.mult               = tk->mult;
947         vdata->clock.shift              = tk->shift;
948
949         vdata->monotonic_time_sec       = tk->xtime_sec
950                                         + tk->wall_to_monotonic.tv_sec;
951         vdata->monotonic_time_snsec     = tk->xtime_nsec
952                                         + (tk->wall_to_monotonic.tv_nsec
953                                                 << tk->shift);
954         while (vdata->monotonic_time_snsec >=
955                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
956                 vdata->monotonic_time_snsec -=
957                                         ((u64)NSEC_PER_SEC) << tk->shift;
958                 vdata->monotonic_time_sec++;
959         }
960
961         write_seqcount_end(&vdata->seq);
962 }
963 #endif
964
965
966 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
967 {
968         int version;
969         int r;
970         struct pvclock_wall_clock wc;
971         struct timespec boot;
972
973         if (!wall_clock)
974                 return;
975
976         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
977         if (r)
978                 return;
979
980         if (version & 1)
981                 ++version;  /* first time write, random junk */
982
983         ++version;
984
985         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
986
987         /*
988          * The guest calculates current wall clock time by adding
989          * system time (updated by kvm_guest_time_update below) to the
990          * wall clock specified here.  guest system time equals host
991          * system time for us, thus we must fill in host boot time here.
992          */
993         getboottime(&boot);
994
995         if (kvm->arch.kvmclock_offset) {
996                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
997                 boot = timespec_sub(boot, ts);
998         }
999         wc.sec = boot.tv_sec;
1000         wc.nsec = boot.tv_nsec;
1001         wc.version = version;
1002
1003         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1004
1005         version++;
1006         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1007 }
1008
1009 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1010 {
1011         uint32_t quotient, remainder;
1012
1013         /* Don't try to replace with do_div(), this one calculates
1014          * "(dividend << 32) / divisor" */
1015         __asm__ ( "divl %4"
1016                   : "=a" (quotient), "=d" (remainder)
1017                   : "0" (0), "1" (dividend), "r" (divisor) );
1018         return quotient;
1019 }
1020
1021 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1022                                s8 *pshift, u32 *pmultiplier)
1023 {
1024         uint64_t scaled64;
1025         int32_t  shift = 0;
1026         uint64_t tps64;
1027         uint32_t tps32;
1028
1029         tps64 = base_khz * 1000LL;
1030         scaled64 = scaled_khz * 1000LL;
1031         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1032                 tps64 >>= 1;
1033                 shift--;
1034         }
1035
1036         tps32 = (uint32_t)tps64;
1037         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1038                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1039                         scaled64 >>= 1;
1040                 else
1041                         tps32 <<= 1;
1042                 shift++;
1043         }
1044
1045         *pshift = shift;
1046         *pmultiplier = div_frac(scaled64, tps32);
1047
1048         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1049                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1050 }
1051
1052 static inline u64 get_kernel_ns(void)
1053 {
1054         struct timespec ts;
1055
1056         WARN_ON(preemptible());
1057         ktime_get_ts(&ts);
1058         monotonic_to_bootbased(&ts);
1059         return timespec_to_ns(&ts);
1060 }
1061
1062 #ifdef CONFIG_X86_64
1063 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1064 #endif
1065
1066 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1067 unsigned long max_tsc_khz;
1068
1069 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1070 {
1071         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1072                                    vcpu->arch.virtual_tsc_shift);
1073 }
1074
1075 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1076 {
1077         u64 v = (u64)khz * (1000000 + ppm);
1078         do_div(v, 1000000);
1079         return v;
1080 }
1081
1082 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1083 {
1084         u32 thresh_lo, thresh_hi;
1085         int use_scaling = 0;
1086
1087         /* tsc_khz can be zero if TSC calibration fails */
1088         if (this_tsc_khz == 0)
1089                 return;
1090
1091         /* Compute a scale to convert nanoseconds in TSC cycles */
1092         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1093                            &vcpu->arch.virtual_tsc_shift,
1094                            &vcpu->arch.virtual_tsc_mult);
1095         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1096
1097         /*
1098          * Compute the variation in TSC rate which is acceptable
1099          * within the range of tolerance and decide if the
1100          * rate being applied is within that bounds of the hardware
1101          * rate.  If so, no scaling or compensation need be done.
1102          */
1103         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1104         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1105         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1106                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1107                 use_scaling = 1;
1108         }
1109         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1110 }
1111
1112 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1113 {
1114         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1115                                       vcpu->arch.virtual_tsc_mult,
1116                                       vcpu->arch.virtual_tsc_shift);
1117         tsc += vcpu->arch.this_tsc_write;
1118         return tsc;
1119 }
1120
1121 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1122 {
1123 #ifdef CONFIG_X86_64
1124         bool vcpus_matched;
1125         bool do_request = false;
1126         struct kvm_arch *ka = &vcpu->kvm->arch;
1127         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1128
1129         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1130                          atomic_read(&vcpu->kvm->online_vcpus));
1131
1132         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1133                 if (!ka->use_master_clock)
1134                         do_request = 1;
1135
1136         if (!vcpus_matched && ka->use_master_clock)
1137                         do_request = 1;
1138
1139         if (do_request)
1140                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1141
1142         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1143                             atomic_read(&vcpu->kvm->online_vcpus),
1144                             ka->use_master_clock, gtod->clock.vclock_mode);
1145 #endif
1146 }
1147
1148 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1149 {
1150         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1151         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1152 }
1153
1154 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1155 {
1156         struct kvm *kvm = vcpu->kvm;
1157         u64 offset, ns, elapsed;
1158         unsigned long flags;
1159         s64 usdiff;
1160         bool matched;
1161         u64 data = msr->data;
1162
1163         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1164         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1165         ns = get_kernel_ns();
1166         elapsed = ns - kvm->arch.last_tsc_nsec;
1167
1168         if (vcpu->arch.virtual_tsc_khz) {
1169                 /* n.b - signed multiplication and division required */
1170                 usdiff = data - kvm->arch.last_tsc_write;
1171 #ifdef CONFIG_X86_64
1172                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1173 #else
1174                 /* do_div() only does unsigned */
1175                 asm("idivl %2; xor %%edx, %%edx"
1176                 : "=A"(usdiff)
1177                 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1178 #endif
1179                 do_div(elapsed, 1000);
1180                 usdiff -= elapsed;
1181                 if (usdiff < 0)
1182                         usdiff = -usdiff;
1183         } else
1184                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1185
1186         /*
1187          * Special case: TSC write with a small delta (1 second) of virtual
1188          * cycle time against real time is interpreted as an attempt to
1189          * synchronize the CPU.
1190          *
1191          * For a reliable TSC, we can match TSC offsets, and for an unstable
1192          * TSC, we add elapsed time in this computation.  We could let the
1193          * compensation code attempt to catch up if we fall behind, but
1194          * it's better to try to match offsets from the beginning.
1195          */
1196         if (usdiff < USEC_PER_SEC &&
1197             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1198                 if (!check_tsc_unstable()) {
1199                         offset = kvm->arch.cur_tsc_offset;
1200                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1201                 } else {
1202                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1203                         data += delta;
1204                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1205                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1206                 }
1207                 matched = true;
1208         } else {
1209                 /*
1210                  * We split periods of matched TSC writes into generations.
1211                  * For each generation, we track the original measured
1212                  * nanosecond time, offset, and write, so if TSCs are in
1213                  * sync, we can match exact offset, and if not, we can match
1214                  * exact software computation in compute_guest_tsc()
1215                  *
1216                  * These values are tracked in kvm->arch.cur_xxx variables.
1217                  */
1218                 kvm->arch.cur_tsc_generation++;
1219                 kvm->arch.cur_tsc_nsec = ns;
1220                 kvm->arch.cur_tsc_write = data;
1221                 kvm->arch.cur_tsc_offset = offset;
1222                 matched = false;
1223                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1224                          kvm->arch.cur_tsc_generation, data);
1225         }
1226
1227         /*
1228          * We also track th most recent recorded KHZ, write and time to
1229          * allow the matching interval to be extended at each write.
1230          */
1231         kvm->arch.last_tsc_nsec = ns;
1232         kvm->arch.last_tsc_write = data;
1233         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1234
1235         /* Reset of TSC must disable overshoot protection below */
1236         vcpu->arch.hv_clock.tsc_timestamp = 0;
1237         vcpu->arch.last_guest_tsc = data;
1238
1239         /* Keep track of which generation this VCPU has synchronized to */
1240         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1241         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1242         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1243
1244         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1245                 update_ia32_tsc_adjust_msr(vcpu, offset);
1246         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1247         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1248
1249         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1250         if (matched)
1251                 kvm->arch.nr_vcpus_matched_tsc++;
1252         else
1253                 kvm->arch.nr_vcpus_matched_tsc = 0;
1254
1255         kvm_track_tsc_matching(vcpu);
1256         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1257 }
1258
1259 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1260
1261 #ifdef CONFIG_X86_64
1262
1263 static cycle_t read_tsc(void)
1264 {
1265         cycle_t ret;
1266         u64 last;
1267
1268         /*
1269          * Empirically, a fence (of type that depends on the CPU)
1270          * before rdtsc is enough to ensure that rdtsc is ordered
1271          * with respect to loads.  The various CPU manuals are unclear
1272          * as to whether rdtsc can be reordered with later loads,
1273          * but no one has ever seen it happen.
1274          */
1275         rdtsc_barrier();
1276         ret = (cycle_t)vget_cycles();
1277
1278         last = pvclock_gtod_data.clock.cycle_last;
1279
1280         if (likely(ret >= last))
1281                 return ret;
1282
1283         /*
1284          * GCC likes to generate cmov here, but this branch is extremely
1285          * predictable (it's just a funciton of time and the likely is
1286          * very likely) and there's a data dependence, so force GCC
1287          * to generate a branch instead.  I don't barrier() because
1288          * we don't actually need a barrier, and if this function
1289          * ever gets inlined it will generate worse code.
1290          */
1291         asm volatile ("");
1292         return last;
1293 }
1294
1295 static inline u64 vgettsc(cycle_t *cycle_now)
1296 {
1297         long v;
1298         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1299
1300         *cycle_now = read_tsc();
1301
1302         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1303         return v * gtod->clock.mult;
1304 }
1305
1306 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1307 {
1308         unsigned long seq;
1309         u64 ns;
1310         int mode;
1311         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1312
1313         ts->tv_nsec = 0;
1314         do {
1315                 seq = read_seqcount_begin(&gtod->seq);
1316                 mode = gtod->clock.vclock_mode;
1317                 ts->tv_sec = gtod->monotonic_time_sec;
1318                 ns = gtod->monotonic_time_snsec;
1319                 ns += vgettsc(cycle_now);
1320                 ns >>= gtod->clock.shift;
1321         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1322         timespec_add_ns(ts, ns);
1323
1324         return mode;
1325 }
1326
1327 /* returns true if host is using tsc clocksource */
1328 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1329 {
1330         struct timespec ts;
1331
1332         /* checked again under seqlock below */
1333         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1334                 return false;
1335
1336         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1337                 return false;
1338
1339         monotonic_to_bootbased(&ts);
1340         *kernel_ns = timespec_to_ns(&ts);
1341
1342         return true;
1343 }
1344 #endif
1345
1346 /*
1347  *
1348  * Assuming a stable TSC across physical CPUS, and a stable TSC
1349  * across virtual CPUs, the following condition is possible.
1350  * Each numbered line represents an event visible to both
1351  * CPUs at the next numbered event.
1352  *
1353  * "timespecX" represents host monotonic time. "tscX" represents
1354  * RDTSC value.
1355  *
1356  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1357  *
1358  * 1.  read timespec0,tsc0
1359  * 2.                                   | timespec1 = timespec0 + N
1360  *                                      | tsc1 = tsc0 + M
1361  * 3. transition to guest               | transition to guest
1362  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1363  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1364  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1365  *
1366  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1367  *
1368  *      - ret0 < ret1
1369  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1370  *              ...
1371  *      - 0 < N - M => M < N
1372  *
1373  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1374  * always the case (the difference between two distinct xtime instances
1375  * might be smaller then the difference between corresponding TSC reads,
1376  * when updating guest vcpus pvclock areas).
1377  *
1378  * To avoid that problem, do not allow visibility of distinct
1379  * system_timestamp/tsc_timestamp values simultaneously: use a master
1380  * copy of host monotonic time values. Update that master copy
1381  * in lockstep.
1382  *
1383  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1384  *
1385  */
1386
1387 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1388 {
1389 #ifdef CONFIG_X86_64
1390         struct kvm_arch *ka = &kvm->arch;
1391         int vclock_mode;
1392         bool host_tsc_clocksource, vcpus_matched;
1393
1394         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1395                         atomic_read(&kvm->online_vcpus));
1396
1397         /*
1398          * If the host uses TSC clock, then passthrough TSC as stable
1399          * to the guest.
1400          */
1401         host_tsc_clocksource = kvm_get_time_and_clockread(
1402                                         &ka->master_kernel_ns,
1403                                         &ka->master_cycle_now);
1404
1405         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1406
1407         if (ka->use_master_clock)
1408                 atomic_set(&kvm_guest_has_master_clock, 1);
1409
1410         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1411         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1412                                         vcpus_matched);
1413 #endif
1414 }
1415
1416 static int kvm_guest_time_update(struct kvm_vcpu *v)
1417 {
1418         unsigned long flags, this_tsc_khz;
1419         struct kvm_vcpu_arch *vcpu = &v->arch;
1420         struct kvm_arch *ka = &v->kvm->arch;
1421         s64 kernel_ns, max_kernel_ns;
1422         u64 tsc_timestamp, host_tsc;
1423         struct pvclock_vcpu_time_info guest_hv_clock;
1424         u8 pvclock_flags;
1425         bool use_master_clock;
1426
1427         kernel_ns = 0;
1428         host_tsc = 0;
1429
1430         /*
1431          * If the host uses TSC clock, then passthrough TSC as stable
1432          * to the guest.
1433          */
1434         spin_lock(&ka->pvclock_gtod_sync_lock);
1435         use_master_clock = ka->use_master_clock;
1436         if (use_master_clock) {
1437                 host_tsc = ka->master_cycle_now;
1438                 kernel_ns = ka->master_kernel_ns;
1439         }
1440         spin_unlock(&ka->pvclock_gtod_sync_lock);
1441
1442         /* Keep irq disabled to prevent changes to the clock */
1443         local_irq_save(flags);
1444         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1445         if (unlikely(this_tsc_khz == 0)) {
1446                 local_irq_restore(flags);
1447                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1448                 return 1;
1449         }
1450         if (!use_master_clock) {
1451                 host_tsc = native_read_tsc();
1452                 kernel_ns = get_kernel_ns();
1453         }
1454
1455         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1456
1457         /*
1458          * We may have to catch up the TSC to match elapsed wall clock
1459          * time for two reasons, even if kvmclock is used.
1460          *   1) CPU could have been running below the maximum TSC rate
1461          *   2) Broken TSC compensation resets the base at each VCPU
1462          *      entry to avoid unknown leaps of TSC even when running
1463          *      again on the same CPU.  This may cause apparent elapsed
1464          *      time to disappear, and the guest to stand still or run
1465          *      very slowly.
1466          */
1467         if (vcpu->tsc_catchup) {
1468                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1469                 if (tsc > tsc_timestamp) {
1470                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1471                         tsc_timestamp = tsc;
1472                 }
1473         }
1474
1475         local_irq_restore(flags);
1476
1477         if (!vcpu->pv_time_enabled)
1478                 return 0;
1479
1480         /*
1481          * Time as measured by the TSC may go backwards when resetting the base
1482          * tsc_timestamp.  The reason for this is that the TSC resolution is
1483          * higher than the resolution of the other clock scales.  Thus, many
1484          * possible measurments of the TSC correspond to one measurement of any
1485          * other clock, and so a spread of values is possible.  This is not a
1486          * problem for the computation of the nanosecond clock; with TSC rates
1487          * around 1GHZ, there can only be a few cycles which correspond to one
1488          * nanosecond value, and any path through this code will inevitably
1489          * take longer than that.  However, with the kernel_ns value itself,
1490          * the precision may be much lower, down to HZ granularity.  If the
1491          * first sampling of TSC against kernel_ns ends in the low part of the
1492          * range, and the second in the high end of the range, we can get:
1493          *
1494          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1495          *
1496          * As the sampling errors potentially range in the thousands of cycles,
1497          * it is possible such a time value has already been observed by the
1498          * guest.  To protect against this, we must compute the system time as
1499          * observed by the guest and ensure the new system time is greater.
1500          */
1501         max_kernel_ns = 0;
1502         if (vcpu->hv_clock.tsc_timestamp) {
1503                 max_kernel_ns = vcpu->last_guest_tsc -
1504                                 vcpu->hv_clock.tsc_timestamp;
1505                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1506                                     vcpu->hv_clock.tsc_to_system_mul,
1507                                     vcpu->hv_clock.tsc_shift);
1508                 max_kernel_ns += vcpu->last_kernel_ns;
1509         }
1510
1511         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1512                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1513                                    &vcpu->hv_clock.tsc_shift,
1514                                    &vcpu->hv_clock.tsc_to_system_mul);
1515                 vcpu->hw_tsc_khz = this_tsc_khz;
1516         }
1517
1518         /* with a master <monotonic time, tsc value> tuple,
1519          * pvclock clock reads always increase at the (scaled) rate
1520          * of guest TSC - no need to deal with sampling errors.
1521          */
1522         if (!use_master_clock) {
1523                 if (max_kernel_ns > kernel_ns)
1524                         kernel_ns = max_kernel_ns;
1525         }
1526         /* With all the info we got, fill in the values */
1527         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1528         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1529         vcpu->last_kernel_ns = kernel_ns;
1530         vcpu->last_guest_tsc = tsc_timestamp;
1531
1532         /*
1533          * The interface expects us to write an even number signaling that the
1534          * update is finished. Since the guest won't see the intermediate
1535          * state, we just increase by 2 at the end.
1536          */
1537         vcpu->hv_clock.version += 2;
1538
1539         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1540                 &guest_hv_clock, sizeof(guest_hv_clock))))
1541                 return 0;
1542
1543         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1544         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1545
1546         if (vcpu->pvclock_set_guest_stopped_request) {
1547                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1548                 vcpu->pvclock_set_guest_stopped_request = false;
1549         }
1550
1551         /* If the host uses TSC clocksource, then it is stable */
1552         if (use_master_clock)
1553                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1554
1555         vcpu->hv_clock.flags = pvclock_flags;
1556
1557         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1558                                 &vcpu->hv_clock,
1559                                 sizeof(vcpu->hv_clock));
1560         return 0;
1561 }
1562
1563 static bool msr_mtrr_valid(unsigned msr)
1564 {
1565         switch (msr) {
1566         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1567         case MSR_MTRRfix64K_00000:
1568         case MSR_MTRRfix16K_80000:
1569         case MSR_MTRRfix16K_A0000:
1570         case MSR_MTRRfix4K_C0000:
1571         case MSR_MTRRfix4K_C8000:
1572         case MSR_MTRRfix4K_D0000:
1573         case MSR_MTRRfix4K_D8000:
1574         case MSR_MTRRfix4K_E0000:
1575         case MSR_MTRRfix4K_E8000:
1576         case MSR_MTRRfix4K_F0000:
1577         case MSR_MTRRfix4K_F8000:
1578         case MSR_MTRRdefType:
1579         case MSR_IA32_CR_PAT:
1580                 return true;
1581         case 0x2f8:
1582                 return true;
1583         }
1584         return false;
1585 }
1586
1587 static bool valid_pat_type(unsigned t)
1588 {
1589         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1590 }
1591
1592 static bool valid_mtrr_type(unsigned t)
1593 {
1594         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1595 }
1596
1597 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1598 {
1599         int i;
1600
1601         if (!msr_mtrr_valid(msr))
1602                 return false;
1603
1604         if (msr == MSR_IA32_CR_PAT) {
1605                 for (i = 0; i < 8; i++)
1606                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1607                                 return false;
1608                 return true;
1609         } else if (msr == MSR_MTRRdefType) {
1610                 if (data & ~0xcff)
1611                         return false;
1612                 return valid_mtrr_type(data & 0xff);
1613         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1614                 for (i = 0; i < 8 ; i++)
1615                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1616                                 return false;
1617                 return true;
1618         }
1619
1620         /* variable MTRRs */
1621         return valid_mtrr_type(data & 0xff);
1622 }
1623
1624 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1625 {
1626         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1627
1628         if (!mtrr_valid(vcpu, msr, data))
1629                 return 1;
1630
1631         if (msr == MSR_MTRRdefType) {
1632                 vcpu->arch.mtrr_state.def_type = data;
1633                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1634         } else if (msr == MSR_MTRRfix64K_00000)
1635                 p[0] = data;
1636         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1637                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1638         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1639                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1640         else if (msr == MSR_IA32_CR_PAT)
1641                 vcpu->arch.pat = data;
1642         else {  /* Variable MTRRs */
1643                 int idx, is_mtrr_mask;
1644                 u64 *pt;
1645
1646                 idx = (msr - 0x200) / 2;
1647                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1648                 if (!is_mtrr_mask)
1649                         pt =
1650                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1651                 else
1652                         pt =
1653                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1654                 *pt = data;
1655         }
1656
1657         kvm_mmu_reset_context(vcpu);
1658         return 0;
1659 }
1660
1661 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1662 {
1663         u64 mcg_cap = vcpu->arch.mcg_cap;
1664         unsigned bank_num = mcg_cap & 0xff;
1665
1666         switch (msr) {
1667         case MSR_IA32_MCG_STATUS:
1668                 vcpu->arch.mcg_status = data;
1669                 break;
1670         case MSR_IA32_MCG_CTL:
1671                 if (!(mcg_cap & MCG_CTL_P))
1672                         return 1;
1673                 if (data != 0 && data != ~(u64)0)
1674                         return -1;
1675                 vcpu->arch.mcg_ctl = data;
1676                 break;
1677         default:
1678                 if (msr >= MSR_IA32_MC0_CTL &&
1679                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1680                         u32 offset = msr - MSR_IA32_MC0_CTL;
1681                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1682                          * some Linux kernels though clear bit 10 in bank 4 to
1683                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1684                          * this to avoid an uncatched #GP in the guest
1685                          */
1686                         if ((offset & 0x3) == 0 &&
1687                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1688                                 return -1;
1689                         vcpu->arch.mce_banks[offset] = data;
1690                         break;
1691                 }
1692                 return 1;
1693         }
1694         return 0;
1695 }
1696
1697 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1698 {
1699         struct kvm *kvm = vcpu->kvm;
1700         int lm = is_long_mode(vcpu);
1701         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1702                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1703         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1704                 : kvm->arch.xen_hvm_config.blob_size_32;
1705         u32 page_num = data & ~PAGE_MASK;
1706         u64 page_addr = data & PAGE_MASK;
1707         u8 *page;
1708         int r;
1709
1710         r = -E2BIG;
1711         if (page_num >= blob_size)
1712                 goto out;
1713         r = -ENOMEM;
1714         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1715         if (IS_ERR(page)) {
1716                 r = PTR_ERR(page);
1717                 goto out;
1718         }
1719         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1720                 goto out_free;
1721         r = 0;
1722 out_free:
1723         kfree(page);
1724 out:
1725         return r;
1726 }
1727
1728 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1729 {
1730         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1731 }
1732
1733 static bool kvm_hv_msr_partition_wide(u32 msr)
1734 {
1735         bool r = false;
1736         switch (msr) {
1737         case HV_X64_MSR_GUEST_OS_ID:
1738         case HV_X64_MSR_HYPERCALL:
1739                 r = true;
1740                 break;
1741         }
1742
1743         return r;
1744 }
1745
1746 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1747 {
1748         struct kvm *kvm = vcpu->kvm;
1749
1750         switch (msr) {
1751         case HV_X64_MSR_GUEST_OS_ID:
1752                 kvm->arch.hv_guest_os_id = data;
1753                 /* setting guest os id to zero disables hypercall page */
1754                 if (!kvm->arch.hv_guest_os_id)
1755                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1756                 break;
1757         case HV_X64_MSR_HYPERCALL: {
1758                 u64 gfn;
1759                 unsigned long addr;
1760                 u8 instructions[4];
1761
1762                 /* if guest os id is not set hypercall should remain disabled */
1763                 if (!kvm->arch.hv_guest_os_id)
1764                         break;
1765                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1766                         kvm->arch.hv_hypercall = data;
1767                         break;
1768                 }
1769                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1770                 addr = gfn_to_hva(kvm, gfn);
1771                 if (kvm_is_error_hva(addr))
1772                         return 1;
1773                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1774                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1775                 if (__copy_to_user((void __user *)addr, instructions, 4))
1776                         return 1;
1777                 kvm->arch.hv_hypercall = data;
1778                 break;
1779         }
1780         default:
1781                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1782                             "data 0x%llx\n", msr, data);
1783                 return 1;
1784         }
1785         return 0;
1786 }
1787
1788 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1789 {
1790         switch (msr) {
1791         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1792                 unsigned long addr;
1793
1794                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1795                         vcpu->arch.hv_vapic = data;
1796                         break;
1797                 }
1798                 addr = gfn_to_hva(vcpu->kvm, data >>
1799                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1800                 if (kvm_is_error_hva(addr))
1801                         return 1;
1802                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1803                         return 1;
1804                 vcpu->arch.hv_vapic = data;
1805                 break;
1806         }
1807         case HV_X64_MSR_EOI:
1808                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1809         case HV_X64_MSR_ICR:
1810                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1811         case HV_X64_MSR_TPR:
1812                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1813         default:
1814                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1815                             "data 0x%llx\n", msr, data);
1816                 return 1;
1817         }
1818
1819         return 0;
1820 }
1821
1822 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1823 {
1824         gpa_t gpa = data & ~0x3f;
1825
1826         /* Bits 2:5 are reserved, Should be zero */
1827         if (data & 0x3c)
1828                 return 1;
1829
1830         vcpu->arch.apf.msr_val = data;
1831
1832         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1833                 kvm_clear_async_pf_completion_queue(vcpu);
1834                 kvm_async_pf_hash_reset(vcpu);
1835                 return 0;
1836         }
1837
1838         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1839                 return 1;
1840
1841         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1842         kvm_async_pf_wakeup_all(vcpu);
1843         return 0;
1844 }
1845
1846 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1847 {
1848         vcpu->arch.pv_time_enabled = false;
1849 }
1850
1851 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1852 {
1853         u64 delta;
1854
1855         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1856                 return;
1857
1858         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1859         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1860         vcpu->arch.st.accum_steal = delta;
1861 }
1862
1863 static void record_steal_time(struct kvm_vcpu *vcpu)
1864 {
1865         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1866                 return;
1867
1868         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1869                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1870                 return;
1871
1872         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1873         vcpu->arch.st.steal.version += 2;
1874         vcpu->arch.st.accum_steal = 0;
1875
1876         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1877                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1878 }
1879
1880 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1881 {
1882         bool pr = false;
1883         u32 msr = msr_info->index;
1884         u64 data = msr_info->data;
1885
1886         switch (msr) {
1887         case MSR_AMD64_NB_CFG:
1888         case MSR_IA32_UCODE_REV:
1889         case MSR_IA32_UCODE_WRITE:
1890         case MSR_VM_HSAVE_PA:
1891         case MSR_AMD64_PATCH_LOADER:
1892         case MSR_AMD64_BU_CFG2:
1893                 break;
1894
1895         case MSR_EFER:
1896                 return set_efer(vcpu, data);
1897         case MSR_K7_HWCR:
1898                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1899                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1900                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1901                 if (data != 0) {
1902                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1903                                     data);
1904                         return 1;
1905                 }
1906                 break;
1907         case MSR_FAM10H_MMIO_CONF_BASE:
1908                 if (data != 0) {
1909                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1910                                     "0x%llx\n", data);
1911                         return 1;
1912                 }
1913                 break;
1914         case MSR_IA32_DEBUGCTLMSR:
1915                 if (!data) {
1916                         /* We support the non-activated case already */
1917                         break;
1918                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1919                         /* Values other than LBR and BTF are vendor-specific,
1920                            thus reserved and should throw a #GP */
1921                         return 1;
1922                 }
1923                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1924                             __func__, data);
1925                 break;
1926         case 0x200 ... 0x2ff:
1927                 return set_msr_mtrr(vcpu, msr, data);
1928         case MSR_IA32_APICBASE:
1929                 kvm_set_apic_base(vcpu, data);
1930                 break;
1931         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1932                 return kvm_x2apic_msr_write(vcpu, msr, data);
1933         case MSR_IA32_TSCDEADLINE:
1934                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1935                 break;
1936         case MSR_IA32_TSC_ADJUST:
1937                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1938                         if (!msr_info->host_initiated) {
1939                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1940                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1941                         }
1942                         vcpu->arch.ia32_tsc_adjust_msr = data;
1943                 }
1944                 break;
1945         case MSR_IA32_MISC_ENABLE:
1946                 vcpu->arch.ia32_misc_enable_msr = data;
1947                 break;
1948         case MSR_KVM_WALL_CLOCK_NEW:
1949         case MSR_KVM_WALL_CLOCK:
1950                 vcpu->kvm->arch.wall_clock = data;
1951                 kvm_write_wall_clock(vcpu->kvm, data);
1952                 break;
1953         case MSR_KVM_SYSTEM_TIME_NEW:
1954         case MSR_KVM_SYSTEM_TIME: {
1955                 u64 gpa_offset;
1956                 kvmclock_reset(vcpu);
1957
1958                 vcpu->arch.time = data;
1959                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1960
1961                 /* we verify if the enable bit is set... */
1962                 if (!(data & 1))
1963                         break;
1964
1965                 gpa_offset = data & ~(PAGE_MASK | 1);
1966
1967                 /* Check that the address is 32-byte aligned. */
1968                 if (gpa_offset & (sizeof(struct pvclock_vcpu_time_info) - 1))
1969                         break;
1970
1971                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1972                      &vcpu->arch.pv_time, data & ~1ULL))
1973                         vcpu->arch.pv_time_enabled = false;
1974                 else
1975                         vcpu->arch.pv_time_enabled = true;
1976
1977                 break;
1978         }
1979         case MSR_KVM_ASYNC_PF_EN:
1980                 if (kvm_pv_enable_async_pf(vcpu, data))
1981                         return 1;
1982                 break;
1983         case MSR_KVM_STEAL_TIME:
1984
1985                 if (unlikely(!sched_info_on()))
1986                         return 1;
1987
1988                 if (data & KVM_STEAL_RESERVED_MASK)
1989                         return 1;
1990
1991                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1992                                                         data & KVM_STEAL_VALID_BITS))
1993                         return 1;
1994
1995                 vcpu->arch.st.msr_val = data;
1996
1997                 if (!(data & KVM_MSR_ENABLED))
1998                         break;
1999
2000                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2001
2002                 preempt_disable();
2003                 accumulate_steal_time(vcpu);
2004                 preempt_enable();
2005
2006                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2007
2008                 break;
2009         case MSR_KVM_PV_EOI_EN:
2010                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2011                         return 1;
2012                 break;
2013
2014         case MSR_IA32_MCG_CTL:
2015         case MSR_IA32_MCG_STATUS:
2016         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2017                 return set_msr_mce(vcpu, msr, data);
2018
2019         /* Performance counters are not protected by a CPUID bit,
2020          * so we should check all of them in the generic path for the sake of
2021          * cross vendor migration.
2022          * Writing a zero into the event select MSRs disables them,
2023          * which we perfectly emulate ;-). Any other value should be at least
2024          * reported, some guests depend on them.
2025          */
2026         case MSR_K7_EVNTSEL0:
2027         case MSR_K7_EVNTSEL1:
2028         case MSR_K7_EVNTSEL2:
2029         case MSR_K7_EVNTSEL3:
2030                 if (data != 0)
2031                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2032                                     "0x%x data 0x%llx\n", msr, data);
2033                 break;
2034         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2035          * so we ignore writes to make it happy.
2036          */
2037         case MSR_K7_PERFCTR0:
2038         case MSR_K7_PERFCTR1:
2039         case MSR_K7_PERFCTR2:
2040         case MSR_K7_PERFCTR3:
2041                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2042                             "0x%x data 0x%llx\n", msr, data);
2043                 break;
2044         case MSR_P6_PERFCTR0:
2045         case MSR_P6_PERFCTR1:
2046                 pr = true;
2047         case MSR_P6_EVNTSEL0:
2048         case MSR_P6_EVNTSEL1:
2049                 if (kvm_pmu_msr(vcpu, msr))
2050                         return kvm_pmu_set_msr(vcpu, msr_info);
2051
2052                 if (pr || data != 0)
2053                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2054                                     "0x%x data 0x%llx\n", msr, data);
2055                 break;
2056         case MSR_K7_CLK_CTL:
2057                 /*
2058                  * Ignore all writes to this no longer documented MSR.
2059                  * Writes are only relevant for old K7 processors,
2060                  * all pre-dating SVM, but a recommended workaround from
2061                  * AMD for these chips. It is possible to specify the
2062                  * affected processor models on the command line, hence
2063                  * the need to ignore the workaround.
2064                  */
2065                 break;
2066         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2067                 if (kvm_hv_msr_partition_wide(msr)) {
2068                         int r;
2069                         mutex_lock(&vcpu->kvm->lock);
2070                         r = set_msr_hyperv_pw(vcpu, msr, data);
2071                         mutex_unlock(&vcpu->kvm->lock);
2072                         return r;
2073                 } else
2074                         return set_msr_hyperv(vcpu, msr, data);
2075                 break;
2076         case MSR_IA32_BBL_CR_CTL3:
2077                 /* Drop writes to this legacy MSR -- see rdmsr
2078                  * counterpart for further detail.
2079                  */
2080                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2081                 break;
2082         case MSR_AMD64_OSVW_ID_LENGTH:
2083                 if (!guest_cpuid_has_osvw(vcpu))
2084                         return 1;
2085                 vcpu->arch.osvw.length = data;
2086                 break;
2087         case MSR_AMD64_OSVW_STATUS:
2088                 if (!guest_cpuid_has_osvw(vcpu))
2089                         return 1;
2090                 vcpu->arch.osvw.status = data;
2091                 break;
2092         default:
2093                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2094                         return xen_hvm_config(vcpu, data);
2095                 if (kvm_pmu_msr(vcpu, msr))
2096                         return kvm_pmu_set_msr(vcpu, msr_info);
2097                 if (!ignore_msrs) {
2098                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2099                                     msr, data);
2100                         return 1;
2101                 } else {
2102                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2103                                     msr, data);
2104                         break;
2105                 }
2106         }
2107         return 0;
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2110
2111
2112 /*
2113  * Reads an msr value (of 'msr_index') into 'pdata'.
2114  * Returns 0 on success, non-0 otherwise.
2115  * Assumes vcpu_load() was already called.
2116  */
2117 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2118 {
2119         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2120 }
2121
2122 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2123 {
2124         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2125
2126         if (!msr_mtrr_valid(msr))
2127                 return 1;
2128
2129         if (msr == MSR_MTRRdefType)
2130                 *pdata = vcpu->arch.mtrr_state.def_type +
2131                          (vcpu->arch.mtrr_state.enabled << 10);
2132         else if (msr == MSR_MTRRfix64K_00000)
2133                 *pdata = p[0];
2134         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2135                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2136         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2137                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2138         else if (msr == MSR_IA32_CR_PAT)
2139                 *pdata = vcpu->arch.pat;
2140         else {  /* Variable MTRRs */
2141                 int idx, is_mtrr_mask;
2142                 u64 *pt;
2143
2144                 idx = (msr - 0x200) / 2;
2145                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2146                 if (!is_mtrr_mask)
2147                         pt =
2148                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2149                 else
2150                         pt =
2151                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2152                 *pdata = *pt;
2153         }
2154
2155         return 0;
2156 }
2157
2158 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2159 {
2160         u64 data;
2161         u64 mcg_cap = vcpu->arch.mcg_cap;
2162         unsigned bank_num = mcg_cap & 0xff;
2163
2164         switch (msr) {
2165         case MSR_IA32_P5_MC_ADDR:
2166         case MSR_IA32_P5_MC_TYPE:
2167                 data = 0;
2168                 break;
2169         case MSR_IA32_MCG_CAP:
2170                 data = vcpu->arch.mcg_cap;
2171                 break;
2172         case MSR_IA32_MCG_CTL:
2173                 if (!(mcg_cap & MCG_CTL_P))
2174                         return 1;
2175                 data = vcpu->arch.mcg_ctl;
2176                 break;
2177         case MSR_IA32_MCG_STATUS:
2178                 data = vcpu->arch.mcg_status;
2179                 break;
2180         default:
2181                 if (msr >= MSR_IA32_MC0_CTL &&
2182                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2183                         u32 offset = msr - MSR_IA32_MC0_CTL;
2184                         data = vcpu->arch.mce_banks[offset];
2185                         break;
2186                 }
2187                 return 1;
2188         }
2189         *pdata = data;
2190         return 0;
2191 }
2192
2193 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2194 {
2195         u64 data = 0;
2196         struct kvm *kvm = vcpu->kvm;
2197
2198         switch (msr) {
2199         case HV_X64_MSR_GUEST_OS_ID:
2200                 data = kvm->arch.hv_guest_os_id;
2201                 break;
2202         case HV_X64_MSR_HYPERCALL:
2203                 data = kvm->arch.hv_hypercall;
2204                 break;
2205         default:
2206                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2207                 return 1;
2208         }
2209
2210         *pdata = data;
2211         return 0;
2212 }
2213
2214 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2215 {
2216         u64 data = 0;
2217
2218         switch (msr) {
2219         case HV_X64_MSR_VP_INDEX: {
2220                 int r;
2221                 struct kvm_vcpu *v;
2222                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2223                         if (v == vcpu)
2224                                 data = r;
2225                 break;
2226         }
2227         case HV_X64_MSR_EOI:
2228                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2229         case HV_X64_MSR_ICR:
2230                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2231         case HV_X64_MSR_TPR:
2232                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2233         case HV_X64_MSR_APIC_ASSIST_PAGE:
2234                 data = vcpu->arch.hv_vapic;
2235                 break;
2236         default:
2237                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2238                 return 1;
2239         }
2240         *pdata = data;
2241         return 0;
2242 }
2243
2244 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2245 {
2246         u64 data;
2247
2248         switch (msr) {
2249         case MSR_IA32_PLATFORM_ID:
2250         case MSR_IA32_EBL_CR_POWERON:
2251         case MSR_IA32_DEBUGCTLMSR:
2252         case MSR_IA32_LASTBRANCHFROMIP:
2253         case MSR_IA32_LASTBRANCHTOIP:
2254         case MSR_IA32_LASTINTFROMIP:
2255         case MSR_IA32_LASTINTTOIP:
2256         case MSR_K8_SYSCFG:
2257         case MSR_K7_HWCR:
2258         case MSR_VM_HSAVE_PA:
2259         case MSR_K7_EVNTSEL0:
2260         case MSR_K7_PERFCTR0:
2261         case MSR_K8_INT_PENDING_MSG:
2262         case MSR_AMD64_NB_CFG:
2263         case MSR_FAM10H_MMIO_CONF_BASE:
2264         case MSR_AMD64_BU_CFG2:
2265                 data = 0;
2266                 break;
2267         case MSR_P6_PERFCTR0:
2268         case MSR_P6_PERFCTR1:
2269         case MSR_P6_EVNTSEL0:
2270         case MSR_P6_EVNTSEL1:
2271                 if (kvm_pmu_msr(vcpu, msr))
2272                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2273                 data = 0;
2274                 break;
2275         case MSR_IA32_UCODE_REV:
2276                 data = 0x100000000ULL;
2277                 break;
2278         case MSR_MTRRcap:
2279                 data = 0x500 | KVM_NR_VAR_MTRR;
2280                 break;
2281         case 0x200 ... 0x2ff:
2282                 return get_msr_mtrr(vcpu, msr, pdata);
2283         case 0xcd: /* fsb frequency */
2284                 data = 3;
2285                 break;
2286                 /*
2287                  * MSR_EBC_FREQUENCY_ID
2288                  * Conservative value valid for even the basic CPU models.
2289                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2290                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2291                  * and 266MHz for model 3, or 4. Set Core Clock
2292                  * Frequency to System Bus Frequency Ratio to 1 (bits
2293                  * 31:24) even though these are only valid for CPU
2294                  * models > 2, however guests may end up dividing or
2295                  * multiplying by zero otherwise.
2296                  */
2297         case MSR_EBC_FREQUENCY_ID:
2298                 data = 1 << 24;
2299                 break;
2300         case MSR_IA32_APICBASE:
2301                 data = kvm_get_apic_base(vcpu);
2302                 break;
2303         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2304                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2305                 break;
2306         case MSR_IA32_TSCDEADLINE:
2307                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2308                 break;
2309         case MSR_IA32_TSC_ADJUST:
2310                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2311                 break;
2312         case MSR_IA32_MISC_ENABLE:
2313                 data = vcpu->arch.ia32_misc_enable_msr;
2314                 break;
2315         case MSR_IA32_PERF_STATUS:
2316                 /* TSC increment by tick */
2317                 data = 1000ULL;
2318                 /* CPU multiplier */
2319                 data |= (((uint64_t)4ULL) << 40);
2320                 break;
2321         case MSR_EFER:
2322                 data = vcpu->arch.efer;
2323                 break;
2324         case MSR_KVM_WALL_CLOCK:
2325         case MSR_KVM_WALL_CLOCK_NEW:
2326                 data = vcpu->kvm->arch.wall_clock;
2327                 break;
2328         case MSR_KVM_SYSTEM_TIME:
2329         case MSR_KVM_SYSTEM_TIME_NEW:
2330                 data = vcpu->arch.time;
2331                 break;
2332         case MSR_KVM_ASYNC_PF_EN:
2333                 data = vcpu->arch.apf.msr_val;
2334                 break;
2335         case MSR_KVM_STEAL_TIME:
2336                 data = vcpu->arch.st.msr_val;
2337                 break;
2338         case MSR_KVM_PV_EOI_EN:
2339                 data = vcpu->arch.pv_eoi.msr_val;
2340                 break;
2341         case MSR_IA32_P5_MC_ADDR:
2342         case MSR_IA32_P5_MC_TYPE:
2343         case MSR_IA32_MCG_CAP:
2344         case MSR_IA32_MCG_CTL:
2345         case MSR_IA32_MCG_STATUS:
2346         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2347                 return get_msr_mce(vcpu, msr, pdata);
2348         case MSR_K7_CLK_CTL:
2349                 /*
2350                  * Provide expected ramp-up count for K7. All other
2351                  * are set to zero, indicating minimum divisors for
2352                  * every field.
2353                  *
2354                  * This prevents guest kernels on AMD host with CPU
2355                  * type 6, model 8 and higher from exploding due to
2356                  * the rdmsr failing.
2357                  */
2358                 data = 0x20000000;
2359                 break;
2360         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2361                 if (kvm_hv_msr_partition_wide(msr)) {
2362                         int r;
2363                         mutex_lock(&vcpu->kvm->lock);
2364                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2365                         mutex_unlock(&vcpu->kvm->lock);
2366                         return r;
2367                 } else
2368                         return get_msr_hyperv(vcpu, msr, pdata);
2369                 break;
2370         case MSR_IA32_BBL_CR_CTL3:
2371                 /* This legacy MSR exists but isn't fully documented in current
2372                  * silicon.  It is however accessed by winxp in very narrow
2373                  * scenarios where it sets bit #19, itself documented as
2374                  * a "reserved" bit.  Best effort attempt to source coherent
2375                  * read data here should the balance of the register be
2376                  * interpreted by the guest:
2377                  *
2378                  * L2 cache control register 3: 64GB range, 256KB size,
2379                  * enabled, latency 0x1, configured
2380                  */
2381                 data = 0xbe702111;
2382                 break;
2383         case MSR_AMD64_OSVW_ID_LENGTH:
2384                 if (!guest_cpuid_has_osvw(vcpu))
2385                         return 1;
2386                 data = vcpu->arch.osvw.length;
2387                 break;
2388         case MSR_AMD64_OSVW_STATUS:
2389                 if (!guest_cpuid_has_osvw(vcpu))
2390                         return 1;
2391                 data = vcpu->arch.osvw.status;
2392                 break;
2393         default:
2394                 if (kvm_pmu_msr(vcpu, msr))
2395                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2396                 if (!ignore_msrs) {
2397                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2398                         return 1;
2399                 } else {
2400                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2401                         data = 0;
2402                 }
2403                 break;
2404         }
2405         *pdata = data;
2406         return 0;
2407 }
2408 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2409
2410 /*
2411  * Read or write a bunch of msrs. All parameters are kernel addresses.
2412  *
2413  * @return number of msrs set successfully.
2414  */
2415 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2416                     struct kvm_msr_entry *entries,
2417                     int (*do_msr)(struct kvm_vcpu *vcpu,
2418                                   unsigned index, u64 *data))
2419 {
2420         int i, idx;
2421
2422         idx = srcu_read_lock(&vcpu->kvm->srcu);
2423         for (i = 0; i < msrs->nmsrs; ++i)
2424                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2425                         break;
2426         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2427
2428         return i;
2429 }
2430
2431 /*
2432  * Read or write a bunch of msrs. Parameters are user addresses.
2433  *
2434  * @return number of msrs set successfully.
2435  */
2436 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2437                   int (*do_msr)(struct kvm_vcpu *vcpu,
2438                                 unsigned index, u64 *data),
2439                   int writeback)
2440 {
2441         struct kvm_msrs msrs;
2442         struct kvm_msr_entry *entries;
2443         int r, n;
2444         unsigned size;
2445
2446         r = -EFAULT;
2447         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2448                 goto out;
2449
2450         r = -E2BIG;
2451         if (msrs.nmsrs >= MAX_IO_MSRS)
2452                 goto out;
2453
2454         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2455         entries = memdup_user(user_msrs->entries, size);
2456         if (IS_ERR(entries)) {
2457                 r = PTR_ERR(entries);
2458                 goto out;
2459         }
2460
2461         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2462         if (r < 0)
2463                 goto out_free;
2464
2465         r = -EFAULT;
2466         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2467                 goto out_free;
2468
2469         r = n;
2470
2471 out_free:
2472         kfree(entries);
2473 out:
2474         return r;
2475 }
2476
2477 int kvm_dev_ioctl_check_extension(long ext)
2478 {
2479         int r;
2480
2481         switch (ext) {
2482         case KVM_CAP_IRQCHIP:
2483         case KVM_CAP_HLT:
2484         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2485         case KVM_CAP_SET_TSS_ADDR:
2486         case KVM_CAP_EXT_CPUID:
2487         case KVM_CAP_CLOCKSOURCE:
2488         case KVM_CAP_PIT:
2489         case KVM_CAP_NOP_IO_DELAY:
2490         case KVM_CAP_MP_STATE:
2491         case KVM_CAP_SYNC_MMU:
2492         case KVM_CAP_USER_NMI:
2493         case KVM_CAP_REINJECT_CONTROL:
2494         case KVM_CAP_IRQ_INJECT_STATUS:
2495         case KVM_CAP_ASSIGN_DEV_IRQ:
2496         case KVM_CAP_IRQFD:
2497         case KVM_CAP_IOEVENTFD:
2498         case KVM_CAP_PIT2:
2499         case KVM_CAP_PIT_STATE2:
2500         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2501         case KVM_CAP_XEN_HVM:
2502         case KVM_CAP_ADJUST_CLOCK:
2503         case KVM_CAP_VCPU_EVENTS:
2504         case KVM_CAP_HYPERV:
2505         case KVM_CAP_HYPERV_VAPIC:
2506         case KVM_CAP_HYPERV_SPIN:
2507         case KVM_CAP_PCI_SEGMENT:
2508         case KVM_CAP_DEBUGREGS:
2509         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2510         case KVM_CAP_XSAVE:
2511         case KVM_CAP_ASYNC_PF:
2512         case KVM_CAP_GET_TSC_KHZ:
2513         case KVM_CAP_PCI_2_3:
2514         case KVM_CAP_KVMCLOCK_CTRL:
2515         case KVM_CAP_READONLY_MEM:
2516         case KVM_CAP_IRQFD_RESAMPLE:
2517                 r = 1;
2518                 break;
2519         case KVM_CAP_COALESCED_MMIO:
2520                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2521                 break;
2522         case KVM_CAP_VAPIC:
2523                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2524                 break;
2525         case KVM_CAP_NR_VCPUS:
2526                 r = KVM_SOFT_MAX_VCPUS;
2527                 break;
2528         case KVM_CAP_MAX_VCPUS:
2529                 r = KVM_MAX_VCPUS;
2530                 break;
2531         case KVM_CAP_NR_MEMSLOTS:
2532                 r = KVM_USER_MEM_SLOTS;
2533                 break;
2534         case KVM_CAP_PV_MMU:    /* obsolete */
2535                 r = 0;
2536                 break;
2537         case KVM_CAP_IOMMU:
2538                 r = iommu_present(&pci_bus_type);
2539                 break;
2540         case KVM_CAP_MCE:
2541                 r = KVM_MAX_MCE_BANKS;
2542                 break;
2543         case KVM_CAP_XCRS:
2544                 r = cpu_has_xsave;
2545                 break;
2546         case KVM_CAP_TSC_CONTROL:
2547                 r = kvm_has_tsc_control;
2548                 break;
2549         case KVM_CAP_TSC_DEADLINE_TIMER:
2550                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2551                 break;
2552         default:
2553                 r = 0;
2554                 break;
2555         }
2556         return r;
2557
2558 }
2559
2560 long kvm_arch_dev_ioctl(struct file *filp,
2561                         unsigned int ioctl, unsigned long arg)
2562 {
2563         void __user *argp = (void __user *)arg;
2564         long r;
2565
2566         switch (ioctl) {
2567         case KVM_GET_MSR_INDEX_LIST: {
2568                 struct kvm_msr_list __user *user_msr_list = argp;
2569                 struct kvm_msr_list msr_list;
2570                 unsigned n;
2571
2572                 r = -EFAULT;
2573                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2574                         goto out;
2575                 n = msr_list.nmsrs;
2576                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2577                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2578                         goto out;
2579                 r = -E2BIG;
2580                 if (n < msr_list.nmsrs)
2581                         goto out;
2582                 r = -EFAULT;
2583                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2584                                  num_msrs_to_save * sizeof(u32)))
2585                         goto out;
2586                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2587                                  &emulated_msrs,
2588                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2589                         goto out;
2590                 r = 0;
2591                 break;
2592         }
2593         case KVM_GET_SUPPORTED_CPUID: {
2594                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2595                 struct kvm_cpuid2 cpuid;
2596
2597                 r = -EFAULT;
2598                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2599                         goto out;
2600                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2601                                                       cpuid_arg->entries);
2602                 if (r)
2603                         goto out;
2604
2605                 r = -EFAULT;
2606                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2607                         goto out;
2608                 r = 0;
2609                 break;
2610         }
2611         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2612                 u64 mce_cap;
2613
2614                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2615                 r = -EFAULT;
2616                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2617                         goto out;
2618                 r = 0;
2619                 break;
2620         }
2621         default:
2622                 r = -EINVAL;
2623         }
2624 out:
2625         return r;
2626 }
2627
2628 static void wbinvd_ipi(void *garbage)
2629 {
2630         wbinvd();
2631 }
2632
2633 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2634 {
2635         return vcpu->kvm->arch.iommu_domain &&
2636                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2637 }
2638
2639 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2640 {
2641         /* Address WBINVD may be executed by guest */
2642         if (need_emulate_wbinvd(vcpu)) {
2643                 if (kvm_x86_ops->has_wbinvd_exit())
2644                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2645                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2646                         smp_call_function_single(vcpu->cpu,
2647                                         wbinvd_ipi, NULL, 1);
2648         }
2649
2650         kvm_x86_ops->vcpu_load(vcpu, cpu);
2651
2652         /* Apply any externally detected TSC adjustments (due to suspend) */
2653         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2654                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2655                 vcpu->arch.tsc_offset_adjustment = 0;
2656                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2657         }
2658
2659         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2660                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2661                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2662                 if (tsc_delta < 0)
2663                         mark_tsc_unstable("KVM discovered backwards TSC");
2664                 if (check_tsc_unstable()) {
2665                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2666                                                 vcpu->arch.last_guest_tsc);
2667                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2668                         vcpu->arch.tsc_catchup = 1;
2669                 }
2670                 /*
2671                  * On a host with synchronized TSC, there is no need to update
2672                  * kvmclock on vcpu->cpu migration
2673                  */
2674                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2675                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2676                 if (vcpu->cpu != cpu)
2677                         kvm_migrate_timers(vcpu);
2678                 vcpu->cpu = cpu;
2679         }
2680
2681         accumulate_steal_time(vcpu);
2682         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2683 }
2684
2685 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2686 {
2687         kvm_x86_ops->vcpu_put(vcpu);
2688         kvm_put_guest_fpu(vcpu);
2689         vcpu->arch.last_host_tsc = native_read_tsc();
2690 }
2691
2692 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2693                                     struct kvm_lapic_state *s)
2694 {
2695         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2696
2697         return 0;
2698 }
2699
2700 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2701                                     struct kvm_lapic_state *s)
2702 {
2703         kvm_apic_post_state_restore(vcpu, s);
2704         update_cr8_intercept(vcpu);
2705
2706         return 0;
2707 }
2708
2709 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2710                                     struct kvm_interrupt *irq)
2711 {
2712         if (irq->irq >= KVM_NR_INTERRUPTS)
2713                 return -EINVAL;
2714         if (irqchip_in_kernel(vcpu->kvm))
2715                 return -ENXIO;
2716
2717         kvm_queue_interrupt(vcpu, irq->irq, false);
2718         kvm_make_request(KVM_REQ_EVENT, vcpu);
2719
2720         return 0;
2721 }
2722
2723 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2724 {
2725         kvm_inject_nmi(vcpu);
2726
2727         return 0;
2728 }
2729
2730 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2731                                            struct kvm_tpr_access_ctl *tac)
2732 {
2733         if (tac->flags)
2734                 return -EINVAL;
2735         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2736         return 0;
2737 }
2738
2739 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2740                                         u64 mcg_cap)
2741 {
2742         int r;
2743         unsigned bank_num = mcg_cap & 0xff, bank;
2744
2745         r = -EINVAL;
2746         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2747                 goto out;
2748         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2749                 goto out;
2750         r = 0;
2751         vcpu->arch.mcg_cap = mcg_cap;
2752         /* Init IA32_MCG_CTL to all 1s */
2753         if (mcg_cap & MCG_CTL_P)
2754                 vcpu->arch.mcg_ctl = ~(u64)0;
2755         /* Init IA32_MCi_CTL to all 1s */
2756         for (bank = 0; bank < bank_num; bank++)
2757                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2758 out:
2759         return r;
2760 }
2761
2762 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2763                                       struct kvm_x86_mce *mce)
2764 {
2765         u64 mcg_cap = vcpu->arch.mcg_cap;
2766         unsigned bank_num = mcg_cap & 0xff;
2767         u64 *banks = vcpu->arch.mce_banks;
2768
2769         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2770                 return -EINVAL;
2771         /*
2772          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2773          * reporting is disabled
2774          */
2775         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2776             vcpu->arch.mcg_ctl != ~(u64)0)
2777                 return 0;
2778         banks += 4 * mce->bank;
2779         /*
2780          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2781          * reporting is disabled for the bank
2782          */
2783         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2784                 return 0;
2785         if (mce->status & MCI_STATUS_UC) {
2786                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2787                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2788                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2789                         return 0;
2790                 }
2791                 if (banks[1] & MCI_STATUS_VAL)
2792                         mce->status |= MCI_STATUS_OVER;
2793                 banks[2] = mce->addr;
2794                 banks[3] = mce->misc;
2795                 vcpu->arch.mcg_status = mce->mcg_status;
2796                 banks[1] = mce->status;
2797                 kvm_queue_exception(vcpu, MC_VECTOR);
2798         } else if (!(banks[1] & MCI_STATUS_VAL)
2799                    || !(banks[1] & MCI_STATUS_UC)) {
2800                 if (banks[1] & MCI_STATUS_VAL)
2801                         mce->status |= MCI_STATUS_OVER;
2802                 banks[2] = mce->addr;
2803                 banks[3] = mce->misc;
2804                 banks[1] = mce->status;
2805         } else
2806                 banks[1] |= MCI_STATUS_OVER;
2807         return 0;
2808 }
2809
2810 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2811                                                struct kvm_vcpu_events *events)
2812 {
2813         process_nmi(vcpu);
2814         events->exception.injected =
2815                 vcpu->arch.exception.pending &&
2816                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2817         events->exception.nr = vcpu->arch.exception.nr;
2818         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2819         events->exception.pad = 0;
2820         events->exception.error_code = vcpu->arch.exception.error_code;
2821
2822         events->interrupt.injected =
2823                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2824         events->interrupt.nr = vcpu->arch.interrupt.nr;
2825         events->interrupt.soft = 0;
2826         events->interrupt.shadow =
2827                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2828                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2829
2830         events->nmi.injected = vcpu->arch.nmi_injected;
2831         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2832         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2833         events->nmi.pad = 0;
2834
2835         events->sipi_vector = 0; /* never valid when reporting to user space */
2836
2837         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2838                          | KVM_VCPUEVENT_VALID_SHADOW);
2839         memset(&events->reserved, 0, sizeof(events->reserved));
2840 }
2841
2842 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2843                                               struct kvm_vcpu_events *events)
2844 {
2845         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2846                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2847                               | KVM_VCPUEVENT_VALID_SHADOW))
2848                 return -EINVAL;
2849
2850         process_nmi(vcpu);
2851         vcpu->arch.exception.pending = events->exception.injected;
2852         vcpu->arch.exception.nr = events->exception.nr;
2853         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2854         vcpu->arch.exception.error_code = events->exception.error_code;
2855
2856         vcpu->arch.interrupt.pending = events->interrupt.injected;
2857         vcpu->arch.interrupt.nr = events->interrupt.nr;
2858         vcpu->arch.interrupt.soft = events->interrupt.soft;
2859         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2860                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2861                                                   events->interrupt.shadow);
2862
2863         vcpu->arch.nmi_injected = events->nmi.injected;
2864         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2865                 vcpu->arch.nmi_pending = events->nmi.pending;
2866         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2867
2868         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2869             kvm_vcpu_has_lapic(vcpu))
2870                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2871
2872         kvm_make_request(KVM_REQ_EVENT, vcpu);
2873
2874         return 0;
2875 }
2876
2877 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2878                                              struct kvm_debugregs *dbgregs)
2879 {
2880         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2881         dbgregs->dr6 = vcpu->arch.dr6;
2882         dbgregs->dr7 = vcpu->arch.dr7;
2883         dbgregs->flags = 0;
2884         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2885 }
2886
2887 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2888                                             struct kvm_debugregs *dbgregs)
2889 {
2890         if (dbgregs->flags)
2891                 return -EINVAL;
2892
2893         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2894         vcpu->arch.dr6 = dbgregs->dr6;
2895         vcpu->arch.dr7 = dbgregs->dr7;
2896
2897         return 0;
2898 }
2899
2900 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2901                                          struct kvm_xsave *guest_xsave)
2902 {
2903         if (cpu_has_xsave)
2904                 memcpy(guest_xsave->region,
2905                         &vcpu->arch.guest_fpu.state->xsave,
2906                         xstate_size);
2907         else {
2908                 memcpy(guest_xsave->region,
2909                         &vcpu->arch.guest_fpu.state->fxsave,
2910                         sizeof(struct i387_fxsave_struct));
2911                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2912                         XSTATE_FPSSE;
2913         }
2914 }
2915
2916 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2917                                         struct kvm_xsave *guest_xsave)
2918 {
2919         u64 xstate_bv =
2920                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2921
2922         if (cpu_has_xsave)
2923                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2924                         guest_xsave->region, xstate_size);
2925         else {
2926                 if (xstate_bv & ~XSTATE_FPSSE)
2927                         return -EINVAL;
2928                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2929                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2930         }
2931         return 0;
2932 }
2933
2934 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2935                                         struct kvm_xcrs *guest_xcrs)
2936 {
2937         if (!cpu_has_xsave) {
2938                 guest_xcrs->nr_xcrs = 0;
2939                 return;
2940         }
2941
2942         guest_xcrs->nr_xcrs = 1;
2943         guest_xcrs->flags = 0;
2944         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2945         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2946 }
2947
2948 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2949                                        struct kvm_xcrs *guest_xcrs)
2950 {
2951         int i, r = 0;
2952
2953         if (!cpu_has_xsave)
2954                 return -EINVAL;
2955
2956         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2957                 return -EINVAL;
2958
2959         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2960                 /* Only support XCR0 currently */
2961                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2962                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2963                                 guest_xcrs->xcrs[0].value);
2964                         break;
2965                 }
2966         if (r)
2967                 r = -EINVAL;
2968         return r;
2969 }
2970
2971 /*
2972  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2973  * stopped by the hypervisor.  This function will be called from the host only.
2974  * EINVAL is returned when the host attempts to set the flag for a guest that
2975  * does not support pv clocks.
2976  */
2977 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2978 {
2979         if (!vcpu->arch.pv_time_enabled)
2980                 return -EINVAL;
2981         vcpu->arch.pvclock_set_guest_stopped_request = true;
2982         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2983         return 0;
2984 }
2985
2986 long kvm_arch_vcpu_ioctl(struct file *filp,
2987                          unsigned int ioctl, unsigned long arg)
2988 {
2989         struct kvm_vcpu *vcpu = filp->private_data;
2990         void __user *argp = (void __user *)arg;
2991         int r;
2992         union {
2993                 struct kvm_lapic_state *lapic;
2994                 struct kvm_xsave *xsave;
2995                 struct kvm_xcrs *xcrs;
2996                 void *buffer;
2997         } u;
2998
2999         u.buffer = NULL;
3000         switch (ioctl) {
3001         case KVM_GET_LAPIC: {
3002                 r = -EINVAL;
3003                 if (!vcpu->arch.apic)
3004                         goto out;
3005                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3006
3007                 r = -ENOMEM;
3008                 if (!u.lapic)
3009                         goto out;
3010                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3011                 if (r)
3012                         goto out;
3013                 r = -EFAULT;
3014                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3015                         goto out;
3016                 r = 0;
3017                 break;
3018         }
3019         case KVM_SET_LAPIC: {
3020                 r = -EINVAL;
3021                 if (!vcpu->arch.apic)
3022                         goto out;
3023                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3024                 if (IS_ERR(u.lapic))
3025                         return PTR_ERR(u.lapic);
3026
3027                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3028                 break;
3029         }
3030         case KVM_INTERRUPT: {
3031                 struct kvm_interrupt irq;
3032
3033                 r = -EFAULT;
3034                 if (copy_from_user(&irq, argp, sizeof irq))
3035                         goto out;
3036                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3037                 break;
3038         }
3039         case KVM_NMI: {
3040                 r = kvm_vcpu_ioctl_nmi(vcpu);
3041                 break;
3042         }
3043         case KVM_SET_CPUID: {
3044                 struct kvm_cpuid __user *cpuid_arg = argp;
3045                 struct kvm_cpuid cpuid;
3046
3047                 r = -EFAULT;
3048                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3049                         goto out;
3050                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3051                 break;
3052         }
3053         case KVM_SET_CPUID2: {
3054                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3055                 struct kvm_cpuid2 cpuid;
3056
3057                 r = -EFAULT;
3058                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3059                         goto out;
3060                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3061                                               cpuid_arg->entries);
3062                 break;
3063         }
3064         case KVM_GET_CPUID2: {
3065                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3066                 struct kvm_cpuid2 cpuid;
3067
3068                 r = -EFAULT;
3069                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3070                         goto out;
3071                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3072                                               cpuid_arg->entries);
3073                 if (r)
3074                         goto out;
3075                 r = -EFAULT;
3076                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3077                         goto out;
3078                 r = 0;
3079                 break;
3080         }
3081         case KVM_GET_MSRS:
3082                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3083                 break;
3084         case KVM_SET_MSRS:
3085                 r = msr_io(vcpu, argp, do_set_msr, 0);
3086                 break;
3087         case KVM_TPR_ACCESS_REPORTING: {
3088                 struct kvm_tpr_access_ctl tac;
3089
3090                 r = -EFAULT;
3091                 if (copy_from_user(&tac, argp, sizeof tac))
3092                         goto out;
3093                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3094                 if (r)
3095                         goto out;
3096                 r = -EFAULT;
3097                 if (copy_to_user(argp, &tac, sizeof tac))
3098                         goto out;
3099                 r = 0;
3100                 break;
3101         };
3102         case KVM_SET_VAPIC_ADDR: {
3103                 struct kvm_vapic_addr va;
3104
3105                 r = -EINVAL;
3106                 if (!irqchip_in_kernel(vcpu->kvm))
3107                         goto out;
3108                 r = -EFAULT;
3109                 if (copy_from_user(&va, argp, sizeof va))
3110                         goto out;
3111                 r = 0;
3112                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3113                 break;
3114         }
3115         case KVM_X86_SETUP_MCE: {
3116                 u64 mcg_cap;
3117
3118                 r = -EFAULT;
3119                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3120                         goto out;
3121                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3122                 break;
3123         }
3124         case KVM_X86_SET_MCE: {
3125                 struct kvm_x86_mce mce;
3126
3127                 r = -EFAULT;
3128                 if (copy_from_user(&mce, argp, sizeof mce))
3129                         goto out;
3130                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3131                 break;
3132         }
3133         case KVM_GET_VCPU_EVENTS: {
3134                 struct kvm_vcpu_events events;
3135
3136                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3137
3138                 r = -EFAULT;
3139                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3140                         break;
3141                 r = 0;
3142                 break;
3143         }
3144         case KVM_SET_VCPU_EVENTS: {
3145                 struct kvm_vcpu_events events;
3146
3147                 r = -EFAULT;
3148                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3149                         break;
3150
3151                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3152                 break;
3153         }
3154         case KVM_GET_DEBUGREGS: {
3155                 struct kvm_debugregs dbgregs;
3156
3157                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3158
3159                 r = -EFAULT;
3160                 if (copy_to_user(argp, &dbgregs,
3161                                  sizeof(struct kvm_debugregs)))
3162                         break;
3163                 r = 0;
3164                 break;
3165         }
3166         case KVM_SET_DEBUGREGS: {
3167                 struct kvm_debugregs dbgregs;
3168
3169                 r = -EFAULT;
3170                 if (copy_from_user(&dbgregs, argp,
3171                                    sizeof(struct kvm_debugregs)))
3172                         break;
3173
3174                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3175                 break;
3176         }
3177         case KVM_GET_XSAVE: {
3178                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3179                 r = -ENOMEM;
3180                 if (!u.xsave)
3181                         break;
3182
3183                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3184
3185                 r = -EFAULT;
3186                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3187                         break;
3188                 r = 0;
3189                 break;
3190         }
3191         case KVM_SET_XSAVE: {
3192                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3193                 if (IS_ERR(u.xsave))
3194                         return PTR_ERR(u.xsave);
3195
3196                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3197                 break;
3198         }
3199         case KVM_GET_XCRS: {
3200                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3201                 r = -ENOMEM;
3202                 if (!u.xcrs)
3203                         break;
3204
3205                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3206
3207                 r = -EFAULT;
3208                 if (copy_to_user(argp, u.xcrs,
3209                                  sizeof(struct kvm_xcrs)))
3210                         break;
3211                 r = 0;
3212                 break;
3213         }
3214         case KVM_SET_XCRS: {
3215                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3216                 if (IS_ERR(u.xcrs))
3217                         return PTR_ERR(u.xcrs);
3218
3219                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3220                 break;
3221         }
3222         case KVM_SET_TSC_KHZ: {
3223                 u32 user_tsc_khz;
3224
3225                 r = -EINVAL;
3226                 user_tsc_khz = (u32)arg;
3227
3228                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3229                         goto out;
3230
3231                 if (user_tsc_khz == 0)
3232                         user_tsc_khz = tsc_khz;
3233
3234                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3235
3236                 r = 0;
3237                 goto out;
3238         }
3239         case KVM_GET_TSC_KHZ: {
3240                 r = vcpu->arch.virtual_tsc_khz;
3241                 goto out;
3242         }
3243         case KVM_KVMCLOCK_CTRL: {
3244                 r = kvm_set_guest_paused(vcpu);
3245                 goto out;
3246         }
3247         default:
3248                 r = -EINVAL;
3249         }
3250 out:
3251         kfree(u.buffer);
3252         return r;
3253 }
3254
3255 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3256 {
3257         return VM_FAULT_SIGBUS;
3258 }
3259
3260 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3261 {
3262         int ret;
3263
3264         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3265                 return -EINVAL;
3266         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3267         return ret;
3268 }
3269
3270 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3271                                               u64 ident_addr)
3272 {
3273         kvm->arch.ept_identity_map_addr = ident_addr;
3274         return 0;
3275 }
3276
3277 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3278                                           u32 kvm_nr_mmu_pages)
3279 {
3280         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3281                 return -EINVAL;
3282
3283         mutex_lock(&kvm->slots_lock);
3284
3285         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3286         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3287
3288         mutex_unlock(&kvm->slots_lock);
3289         return 0;
3290 }
3291
3292 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3293 {
3294         return kvm->arch.n_max_mmu_pages;
3295 }
3296
3297 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3298 {
3299         int r;
3300
3301         r = 0;
3302         switch (chip->chip_id) {
3303         case KVM_IRQCHIP_PIC_MASTER:
3304                 memcpy(&chip->chip.pic,
3305                         &pic_irqchip(kvm)->pics[0],
3306                         sizeof(struct kvm_pic_state));
3307                 break;
3308         case KVM_IRQCHIP_PIC_SLAVE:
3309                 memcpy(&chip->chip.pic,
3310                         &pic_irqchip(kvm)->pics[1],
3311                         sizeof(struct kvm_pic_state));
3312                 break;
3313         case KVM_IRQCHIP_IOAPIC:
3314                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3315                 break;
3316         default:
3317                 r = -EINVAL;
3318                 break;
3319         }
3320         return r;
3321 }
3322
3323 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3324 {
3325         int r;
3326
3327         r = 0;
3328         switch (chip->chip_id) {
3329         case KVM_IRQCHIP_PIC_MASTER:
3330                 spin_lock(&pic_irqchip(kvm)->lock);
3331                 memcpy(&pic_irqchip(kvm)->pics[0],
3332                         &chip->chip.pic,
3333                         sizeof(struct kvm_pic_state));
3334                 spin_unlock(&pic_irqchip(kvm)->lock);
3335                 break;
3336         case KVM_IRQCHIP_PIC_SLAVE:
3337                 spin_lock(&pic_irqchip(kvm)->lock);
3338                 memcpy(&pic_irqchip(kvm)->pics[1],
3339                         &chip->chip.pic,
3340                         sizeof(struct kvm_pic_state));
3341                 spin_unlock(&pic_irqchip(kvm)->lock);
3342                 break;
3343         case KVM_IRQCHIP_IOAPIC:
3344                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3345                 break;
3346         default:
3347                 r = -EINVAL;
3348                 break;
3349         }
3350         kvm_pic_update_irq(pic_irqchip(kvm));
3351         return r;
3352 }
3353
3354 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3355 {
3356         int r = 0;
3357
3358         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3359         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3360         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3361         return r;
3362 }
3363
3364 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3365 {
3366         int r = 0;
3367
3368         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3369         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3370         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3371         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3372         return r;
3373 }
3374
3375 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3376 {
3377         int r = 0;
3378
3379         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3380         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3381                 sizeof(ps->channels));
3382         ps->flags = kvm->arch.vpit->pit_state.flags;
3383         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3384         memset(&ps->reserved, 0, sizeof(ps->reserved));
3385         return r;
3386 }
3387
3388 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3389 {
3390         int r = 0, start = 0;
3391         u32 prev_legacy, cur_legacy;
3392         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3393         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3394         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3395         if (!prev_legacy && cur_legacy)
3396                 start = 1;
3397         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3398                sizeof(kvm->arch.vpit->pit_state.channels));
3399         kvm->arch.vpit->pit_state.flags = ps->flags;
3400         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3401         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3402         return r;
3403 }
3404
3405 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3406                                  struct kvm_reinject_control *control)
3407 {
3408         if (!kvm->arch.vpit)
3409                 return -ENXIO;
3410         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3411         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3412         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3413         return 0;
3414 }
3415
3416 /**
3417  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3418  * @kvm: kvm instance
3419  * @log: slot id and address to which we copy the log
3420  *
3421  * We need to keep it in mind that VCPU threads can write to the bitmap
3422  * concurrently.  So, to avoid losing data, we keep the following order for
3423  * each bit:
3424  *
3425  *   1. Take a snapshot of the bit and clear it if needed.
3426  *   2. Write protect the corresponding page.
3427  *   3. Flush TLB's if needed.
3428  *   4. Copy the snapshot to the userspace.
3429  *
3430  * Between 2 and 3, the guest may write to the page using the remaining TLB
3431  * entry.  This is not a problem because the page will be reported dirty at
3432  * step 4 using the snapshot taken before and step 3 ensures that successive
3433  * writes will be logged for the next call.
3434  */
3435 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3436 {
3437         int r;
3438         struct kvm_memory_slot *memslot;
3439         unsigned long n, i;
3440         unsigned long *dirty_bitmap;
3441         unsigned long *dirty_bitmap_buffer;
3442         bool is_dirty = false;
3443
3444         mutex_lock(&kvm->slots_lock);
3445
3446         r = -EINVAL;
3447         if (log->slot >= KVM_USER_MEM_SLOTS)
3448                 goto out;
3449
3450         memslot = id_to_memslot(kvm->memslots, log->slot);
3451
3452         dirty_bitmap = memslot->dirty_bitmap;
3453         r = -ENOENT;
3454         if (!dirty_bitmap)
3455                 goto out;
3456
3457         n = kvm_dirty_bitmap_bytes(memslot);
3458
3459         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3460         memset(dirty_bitmap_buffer, 0, n);
3461
3462         spin_lock(&kvm->mmu_lock);
3463
3464         for (i = 0; i < n / sizeof(long); i++) {
3465                 unsigned long mask;
3466                 gfn_t offset;
3467
3468                 if (!dirty_bitmap[i])
3469                         continue;
3470
3471                 is_dirty = true;
3472
3473                 mask = xchg(&dirty_bitmap[i], 0);
3474                 dirty_bitmap_buffer[i] = mask;
3475
3476                 offset = i * BITS_PER_LONG;
3477                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3478         }
3479         if (is_dirty)
3480                 kvm_flush_remote_tlbs(kvm);
3481
3482         spin_unlock(&kvm->mmu_lock);
3483
3484         r = -EFAULT;
3485         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3486                 goto out;
3487
3488         r = 0;
3489 out:
3490         mutex_unlock(&kvm->slots_lock);
3491         return r;
3492 }
3493
3494 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3495                         bool line_status)
3496 {
3497         if (!irqchip_in_kernel(kvm))
3498                 return -ENXIO;
3499
3500         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3501                                         irq_event->irq, irq_event->level,
3502                                         line_status);
3503         return 0;
3504 }
3505
3506 long kvm_arch_vm_ioctl(struct file *filp,
3507                        unsigned int ioctl, unsigned long arg)
3508 {
3509         struct kvm *kvm = filp->private_data;
3510         void __user *argp = (void __user *)arg;
3511         int r = -ENOTTY;
3512         /*
3513          * This union makes it completely explicit to gcc-3.x
3514          * that these two variables' stack usage should be
3515          * combined, not added together.
3516          */
3517         union {
3518                 struct kvm_pit_state ps;
3519                 struct kvm_pit_state2 ps2;
3520                 struct kvm_pit_config pit_config;
3521         } u;
3522
3523         switch (ioctl) {
3524         case KVM_SET_TSS_ADDR:
3525                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3526                 break;
3527         case KVM_SET_IDENTITY_MAP_ADDR: {
3528                 u64 ident_addr;
3529
3530                 r = -EFAULT;
3531                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3532                         goto out;
3533                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3534                 break;
3535         }
3536         case KVM_SET_NR_MMU_PAGES:
3537                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3538                 break;
3539         case KVM_GET_NR_MMU_PAGES:
3540                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3541                 break;
3542         case KVM_CREATE_IRQCHIP: {
3543                 struct kvm_pic *vpic;
3544
3545                 mutex_lock(&kvm->lock);
3546                 r = -EEXIST;
3547                 if (kvm->arch.vpic)
3548                         goto create_irqchip_unlock;
3549                 r = -EINVAL;
3550                 if (atomic_read(&kvm->online_vcpus))
3551                         goto create_irqchip_unlock;
3552                 r = -ENOMEM;
3553                 vpic = kvm_create_pic(kvm);
3554                 if (vpic) {
3555                         r = kvm_ioapic_init(kvm);
3556                         if (r) {
3557                                 mutex_lock(&kvm->slots_lock);
3558                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3559                                                           &vpic->dev_master);
3560                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3561                                                           &vpic->dev_slave);
3562                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3563                                                           &vpic->dev_eclr);
3564                                 mutex_unlock(&kvm->slots_lock);
3565                                 kfree(vpic);
3566                                 goto create_irqchip_unlock;
3567                         }
3568                 } else
3569                         goto create_irqchip_unlock;
3570                 smp_wmb();
3571                 kvm->arch.vpic = vpic;
3572                 smp_wmb();
3573                 r = kvm_setup_default_irq_routing(kvm);
3574                 if (r) {
3575                         mutex_lock(&kvm->slots_lock);
3576                         mutex_lock(&kvm->irq_lock);
3577                         kvm_ioapic_destroy(kvm);
3578                         kvm_destroy_pic(kvm);
3579                         mutex_unlock(&kvm->irq_lock);
3580                         mutex_unlock(&kvm->slots_lock);
3581                 }
3582         create_irqchip_unlock:
3583                 mutex_unlock(&kvm->lock);
3584                 break;
3585         }
3586         case KVM_CREATE_PIT:
3587                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3588                 goto create_pit;
3589         case KVM_CREATE_PIT2:
3590                 r = -EFAULT;
3591                 if (copy_from_user(&u.pit_config, argp,
3592                                    sizeof(struct kvm_pit_config)))
3593                         goto out;
3594         create_pit:
3595                 mutex_lock(&kvm->slots_lock);
3596                 r = -EEXIST;
3597                 if (kvm->arch.vpit)
3598                         goto create_pit_unlock;
3599                 r = -ENOMEM;
3600                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3601                 if (kvm->arch.vpit)
3602                         r = 0;
3603         create_pit_unlock:
3604                 mutex_unlock(&kvm->slots_lock);
3605                 break;
3606         case KVM_GET_IRQCHIP: {
3607                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3608                 struct kvm_irqchip *chip;
3609
3610                 chip = memdup_user(argp, sizeof(*chip));
3611                 if (IS_ERR(chip)) {
3612                         r = PTR_ERR(chip);
3613                         goto out;
3614                 }
3615
3616                 r = -ENXIO;
3617                 if (!irqchip_in_kernel(kvm))
3618                         goto get_irqchip_out;
3619                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3620                 if (r)
3621                         goto get_irqchip_out;
3622                 r = -EFAULT;
3623                 if (copy_to_user(argp, chip, sizeof *chip))
3624                         goto get_irqchip_out;
3625                 r = 0;
3626         get_irqchip_out:
3627                 kfree(chip);
3628                 break;
3629         }
3630         case KVM_SET_IRQCHIP: {
3631                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3632                 struct kvm_irqchip *chip;
3633
3634                 chip = memdup_user(argp, sizeof(*chip));
3635                 if (IS_ERR(chip)) {
3636                         r = PTR_ERR(chip);
3637                         goto out;
3638                 }
3639
3640                 r = -ENXIO;
3641                 if (!irqchip_in_kernel(kvm))
3642                         goto set_irqchip_out;
3643                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3644                 if (r)
3645                         goto set_irqchip_out;
3646                 r = 0;
3647         set_irqchip_out:
3648                 kfree(chip);
3649                 break;
3650         }
3651         case KVM_GET_PIT: {
3652                 r = -EFAULT;
3653                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3654                         goto out;
3655                 r = -ENXIO;
3656                 if (!kvm->arch.vpit)
3657                         goto out;
3658                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3659                 if (r)
3660                         goto out;
3661                 r = -EFAULT;
3662                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3663                         goto out;
3664                 r = 0;
3665                 break;
3666         }
3667         case KVM_SET_PIT: {
3668                 r = -EFAULT;
3669                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3670                         goto out;
3671                 r = -ENXIO;
3672                 if (!kvm->arch.vpit)
3673                         goto out;
3674                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3675                 break;
3676         }
3677         case KVM_GET_PIT2: {
3678                 r = -ENXIO;
3679                 if (!kvm->arch.vpit)
3680                         goto out;
3681                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3682                 if (r)
3683                         goto out;
3684                 r = -EFAULT;
3685                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3686                         goto out;
3687                 r = 0;
3688                 break;
3689         }
3690         case KVM_SET_PIT2: {
3691                 r = -EFAULT;
3692                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3693                         goto out;
3694                 r = -ENXIO;
3695                 if (!kvm->arch.vpit)
3696                         goto out;
3697                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3698                 break;
3699         }
3700         case KVM_REINJECT_CONTROL: {
3701                 struct kvm_reinject_control control;
3702                 r =  -EFAULT;
3703                 if (copy_from_user(&control, argp, sizeof(control)))
3704                         goto out;
3705                 r = kvm_vm_ioctl_reinject(kvm, &control);
3706                 break;
3707         }
3708         case KVM_XEN_HVM_CONFIG: {
3709                 r = -EFAULT;
3710                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3711                                    sizeof(struct kvm_xen_hvm_config)))
3712                         goto out;
3713                 r = -EINVAL;
3714                 if (kvm->arch.xen_hvm_config.flags)
3715                         goto out;
3716                 r = 0;
3717                 break;
3718         }
3719         case KVM_SET_CLOCK: {
3720                 struct kvm_clock_data user_ns;
3721                 u64 now_ns;
3722                 s64 delta;
3723
3724                 r = -EFAULT;
3725                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3726                         goto out;
3727
3728                 r = -EINVAL;
3729                 if (user_ns.flags)
3730                         goto out;
3731
3732                 r = 0;
3733                 local_irq_disable();
3734                 now_ns = get_kernel_ns();
3735                 delta = user_ns.clock - now_ns;
3736                 local_irq_enable();
3737                 kvm->arch.kvmclock_offset = delta;
3738                 break;
3739         }
3740         case KVM_GET_CLOCK: {
3741                 struct kvm_clock_data user_ns;
3742                 u64 now_ns;
3743
3744                 local_irq_disable();
3745                 now_ns = get_kernel_ns();
3746                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3747                 local_irq_enable();
3748                 user_ns.flags = 0;
3749                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3750
3751                 r = -EFAULT;
3752                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3753                         goto out;
3754                 r = 0;
3755                 break;
3756         }
3757
3758         default:
3759                 ;
3760         }
3761 out:
3762         return r;
3763 }
3764
3765 static void kvm_init_msr_list(void)
3766 {
3767         u32 dummy[2];
3768         unsigned i, j;
3769
3770         /* skip the first msrs in the list. KVM-specific */
3771         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3772                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3773                         continue;
3774                 if (j < i)
3775                         msrs_to_save[j] = msrs_to_save[i];
3776                 j++;
3777         }
3778         num_msrs_to_save = j;
3779 }
3780
3781 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3782                            const void *v)
3783 {
3784         int handled = 0;
3785         int n;
3786
3787         do {
3788                 n = min(len, 8);
3789                 if (!(vcpu->arch.apic &&
3790                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3791                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3792                         break;
3793                 handled += n;
3794                 addr += n;
3795                 len -= n;
3796                 v += n;
3797         } while (len);
3798
3799         return handled;
3800 }
3801
3802 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3803 {
3804         int handled = 0;
3805         int n;
3806
3807         do {
3808                 n = min(len, 8);
3809                 if (!(vcpu->arch.apic &&
3810                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3811                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3812                         break;
3813                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3814                 handled += n;
3815                 addr += n;
3816                 len -= n;
3817                 v += n;
3818         } while (len);
3819
3820         return handled;
3821 }
3822
3823 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3824                         struct kvm_segment *var, int seg)
3825 {
3826         kvm_x86_ops->set_segment(vcpu, var, seg);
3827 }
3828
3829 void kvm_get_segment(struct kvm_vcpu *vcpu,
3830                      struct kvm_segment *var, int seg)
3831 {
3832         kvm_x86_ops->get_segment(vcpu, var, seg);
3833 }
3834
3835 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3836 {
3837         gpa_t t_gpa;
3838         struct x86_exception exception;
3839
3840         BUG_ON(!mmu_is_nested(vcpu));
3841
3842         /* NPT walks are always user-walks */
3843         access |= PFERR_USER_MASK;
3844         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3845
3846         return t_gpa;
3847 }
3848
3849 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3850                               struct x86_exception *exception)
3851 {
3852         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3853         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3854 }
3855
3856  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3857                                 struct x86_exception *exception)
3858 {
3859         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3860         access |= PFERR_FETCH_MASK;
3861         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3862 }
3863
3864 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3865                                struct x86_exception *exception)
3866 {
3867         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3868         access |= PFERR_WRITE_MASK;
3869         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3870 }
3871
3872 /* uses this to access any guest's mapped memory without checking CPL */
3873 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3874                                 struct x86_exception *exception)
3875 {
3876         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3877 }
3878
3879 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3880                                       struct kvm_vcpu *vcpu, u32 access,
3881                                       struct x86_exception *exception)
3882 {
3883         void *data = val;
3884         int r = X86EMUL_CONTINUE;
3885
3886         while (bytes) {
3887                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3888                                                             exception);
3889                 unsigned offset = addr & (PAGE_SIZE-1);
3890                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3891                 int ret;
3892
3893                 if (gpa == UNMAPPED_GVA)
3894                         return X86EMUL_PROPAGATE_FAULT;
3895                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3896                 if (ret < 0) {
3897                         r = X86EMUL_IO_NEEDED;
3898                         goto out;
3899                 }
3900
3901                 bytes -= toread;
3902                 data += toread;
3903                 addr += toread;
3904         }
3905 out:
3906         return r;
3907 }
3908
3909 /* used for instruction fetching */
3910 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3911                                 gva_t addr, void *val, unsigned int bytes,
3912                                 struct x86_exception *exception)
3913 {
3914         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3915         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3916
3917         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3918                                           access | PFERR_FETCH_MASK,
3919                                           exception);
3920 }
3921
3922 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3923                                gva_t addr, void *val, unsigned int bytes,
3924                                struct x86_exception *exception)
3925 {
3926         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3927         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3928
3929         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3930                                           exception);
3931 }
3932 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3933
3934 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3935                                       gva_t addr, void *val, unsigned int bytes,
3936                                       struct x86_exception *exception)
3937 {
3938         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3940 }
3941
3942 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3943                                        gva_t addr, void *val,
3944                                        unsigned int bytes,
3945                                        struct x86_exception *exception)
3946 {
3947         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3948         void *data = val;
3949         int r = X86EMUL_CONTINUE;
3950
3951         while (bytes) {
3952                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3953                                                              PFERR_WRITE_MASK,
3954                                                              exception);
3955                 unsigned offset = addr & (PAGE_SIZE-1);
3956                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3957                 int ret;
3958
3959                 if (gpa == UNMAPPED_GVA)
3960                         return X86EMUL_PROPAGATE_FAULT;
3961                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3962                 if (ret < 0) {
3963                         r = X86EMUL_IO_NEEDED;
3964                         goto out;
3965                 }
3966
3967                 bytes -= towrite;
3968                 data += towrite;
3969                 addr += towrite;
3970         }
3971 out:
3972         return r;
3973 }
3974 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3975
3976 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3977                                 gpa_t *gpa, struct x86_exception *exception,
3978                                 bool write)
3979 {
3980         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3981                 | (write ? PFERR_WRITE_MASK : 0);
3982
3983         if (vcpu_match_mmio_gva(vcpu, gva)
3984             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3985                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3986                                         (gva & (PAGE_SIZE - 1));
3987                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3988                 return 1;
3989         }
3990
3991         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3992
3993         if (*gpa == UNMAPPED_GVA)
3994                 return -1;
3995
3996         /* For APIC access vmexit */
3997         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3998                 return 1;
3999
4000         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4001                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4002                 return 1;
4003         }
4004
4005         return 0;
4006 }
4007
4008 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4009                         const void *val, int bytes)
4010 {
4011         int ret;
4012
4013         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4014         if (ret < 0)
4015                 return 0;
4016         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4017         return 1;
4018 }
4019
4020 struct read_write_emulator_ops {
4021         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4022                                   int bytes);
4023         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4024                                   void *val, int bytes);
4025         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4026                                int bytes, void *val);
4027         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4028                                     void *val, int bytes);
4029         bool write;
4030 };
4031
4032 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4033 {
4034         if (vcpu->mmio_read_completed) {
4035                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4036                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4037                 vcpu->mmio_read_completed = 0;
4038                 return 1;
4039         }
4040
4041         return 0;
4042 }
4043
4044 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4045                         void *val, int bytes)
4046 {
4047         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4048 }
4049
4050 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4051                          void *val, int bytes)
4052 {
4053         return emulator_write_phys(vcpu, gpa, val, bytes);
4054 }
4055
4056 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4057 {
4058         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4059         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4060 }
4061
4062 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4063                           void *val, int bytes)
4064 {
4065         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4066         return X86EMUL_IO_NEEDED;
4067 }
4068
4069 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4070                            void *val, int bytes)
4071 {
4072         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4073
4074         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4075         return X86EMUL_CONTINUE;
4076 }
4077
4078 static const struct read_write_emulator_ops read_emultor = {
4079         .read_write_prepare = read_prepare,
4080         .read_write_emulate = read_emulate,
4081         .read_write_mmio = vcpu_mmio_read,
4082         .read_write_exit_mmio = read_exit_mmio,
4083 };
4084
4085 static const struct read_write_emulator_ops write_emultor = {
4086         .read_write_emulate = write_emulate,
4087         .read_write_mmio = write_mmio,
4088         .read_write_exit_mmio = write_exit_mmio,
4089         .write = true,
4090 };
4091
4092 static int emulator_read_write_onepage(unsigned long addr, void *val,
4093                                        unsigned int bytes,
4094                                        struct x86_exception *exception,
4095                                        struct kvm_vcpu *vcpu,
4096                                        const struct read_write_emulator_ops *ops)
4097 {
4098         gpa_t gpa;
4099         int handled, ret;
4100         bool write = ops->write;
4101         struct kvm_mmio_fragment *frag;
4102
4103         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4104
4105         if (ret < 0)
4106                 return X86EMUL_PROPAGATE_FAULT;
4107
4108         /* For APIC access vmexit */
4109         if (ret)
4110                 goto mmio;
4111
4112         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4113                 return X86EMUL_CONTINUE;
4114
4115 mmio:
4116         /*
4117          * Is this MMIO handled locally?
4118          */
4119         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4120         if (handled == bytes)
4121                 return X86EMUL_CONTINUE;
4122
4123         gpa += handled;
4124         bytes -= handled;
4125         val += handled;
4126
4127         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4128         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4129         frag->gpa = gpa;
4130         frag->data = val;
4131         frag->len = bytes;
4132         return X86EMUL_CONTINUE;
4133 }
4134
4135 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4136                         void *val, unsigned int bytes,
4137                         struct x86_exception *exception,
4138                         const struct read_write_emulator_ops *ops)
4139 {
4140         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4141         gpa_t gpa;
4142         int rc;
4143
4144         if (ops->read_write_prepare &&
4145                   ops->read_write_prepare(vcpu, val, bytes))
4146                 return X86EMUL_CONTINUE;
4147
4148         vcpu->mmio_nr_fragments = 0;
4149
4150         /* Crossing a page boundary? */
4151         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4152                 int now;
4153
4154                 now = -addr & ~PAGE_MASK;
4155                 rc = emulator_read_write_onepage(addr, val, now, exception,
4156                                                  vcpu, ops);
4157
4158                 if (rc != X86EMUL_CONTINUE)
4159                         return rc;
4160                 addr += now;
4161                 val += now;
4162                 bytes -= now;
4163         }
4164
4165         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4166                                          vcpu, ops);
4167         if (rc != X86EMUL_CONTINUE)
4168                 return rc;
4169
4170         if (!vcpu->mmio_nr_fragments)
4171                 return rc;
4172
4173         gpa = vcpu->mmio_fragments[0].gpa;
4174
4175         vcpu->mmio_needed = 1;
4176         vcpu->mmio_cur_fragment = 0;
4177
4178         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4179         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4180         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4181         vcpu->run->mmio.phys_addr = gpa;
4182
4183         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4184 }
4185
4186 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4187                                   unsigned long addr,
4188                                   void *val,
4189                                   unsigned int bytes,
4190                                   struct x86_exception *exception)
4191 {
4192         return emulator_read_write(ctxt, addr, val, bytes,
4193                                    exception, &read_emultor);
4194 }
4195
4196 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4197                             unsigned long addr,
4198                             const void *val,
4199                             unsigned int bytes,
4200                             struct x86_exception *exception)
4201 {
4202         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4203                                    exception, &write_emultor);
4204 }
4205
4206 #define CMPXCHG_TYPE(t, ptr, old, new) \
4207         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4208
4209 #ifdef CONFIG_X86_64
4210 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4211 #else
4212 #  define CMPXCHG64(ptr, old, new) \
4213         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4214 #endif
4215
4216 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4217                                      unsigned long addr,
4218                                      const void *old,
4219                                      const void *new,
4220                                      unsigned int bytes,
4221                                      struct x86_exception *exception)
4222 {
4223         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4224         gpa_t gpa;
4225         struct page *page;
4226         char *kaddr;
4227         bool exchanged;
4228
4229         /* guests cmpxchg8b have to be emulated atomically */
4230         if (bytes > 8 || (bytes & (bytes - 1)))
4231                 goto emul_write;
4232
4233         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4234
4235         if (gpa == UNMAPPED_GVA ||
4236             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4237                 goto emul_write;
4238
4239         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4240                 goto emul_write;
4241
4242         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4243         if (is_error_page(page))
4244                 goto emul_write;
4245
4246         kaddr = kmap_atomic(page);
4247         kaddr += offset_in_page(gpa);
4248         switch (bytes) {
4249         case 1:
4250                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4251                 break;
4252         case 2:
4253                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4254                 break;
4255         case 4:
4256                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4257                 break;
4258         case 8:
4259                 exchanged = CMPXCHG64(kaddr, old, new);
4260                 break;
4261         default:
4262                 BUG();
4263         }
4264         kunmap_atomic(kaddr);
4265         kvm_release_page_dirty(page);
4266
4267         if (!exchanged)
4268                 return X86EMUL_CMPXCHG_FAILED;
4269
4270         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4271
4272         return X86EMUL_CONTINUE;
4273
4274 emul_write:
4275         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4276
4277         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4278 }
4279
4280 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4281 {
4282         /* TODO: String I/O for in kernel device */
4283         int r;
4284
4285         if (vcpu->arch.pio.in)
4286                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4287                                     vcpu->arch.pio.size, pd);
4288         else
4289                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4290                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4291                                      pd);
4292         return r;
4293 }
4294
4295 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4296                                unsigned short port, void *val,
4297                                unsigned int count, bool in)
4298 {
4299         trace_kvm_pio(!in, port, size, count);
4300
4301         vcpu->arch.pio.port = port;
4302         vcpu->arch.pio.in = in;
4303         vcpu->arch.pio.count  = count;
4304         vcpu->arch.pio.size = size;
4305
4306         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4307                 vcpu->arch.pio.count = 0;
4308                 return 1;
4309         }
4310
4311         vcpu->run->exit_reason = KVM_EXIT_IO;
4312         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4313         vcpu->run->io.size = size;
4314         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4315         vcpu->run->io.count = count;
4316         vcpu->run->io.port = port;
4317
4318         return 0;
4319 }
4320
4321 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4322                                     int size, unsigned short port, void *val,
4323                                     unsigned int count)
4324 {
4325         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4326         int ret;
4327
4328         if (vcpu->arch.pio.count)
4329                 goto data_avail;
4330
4331         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4332         if (ret) {
4333 data_avail:
4334                 memcpy(val, vcpu->arch.pio_data, size * count);
4335                 vcpu->arch.pio.count = 0;
4336                 return 1;
4337         }
4338
4339         return 0;
4340 }
4341
4342 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4343                                      int size, unsigned short port,
4344                                      const void *val, unsigned int count)
4345 {
4346         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4347
4348         memcpy(vcpu->arch.pio_data, val, size * count);
4349         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4350 }
4351
4352 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4353 {
4354         return kvm_x86_ops->get_segment_base(vcpu, seg);
4355 }
4356
4357 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4358 {
4359         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4360 }
4361
4362 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4363 {
4364         if (!need_emulate_wbinvd(vcpu))
4365                 return X86EMUL_CONTINUE;
4366
4367         if (kvm_x86_ops->has_wbinvd_exit()) {
4368                 int cpu = get_cpu();
4369
4370                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4371                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4372                                 wbinvd_ipi, NULL, 1);
4373                 put_cpu();
4374                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4375         } else
4376                 wbinvd();
4377         return X86EMUL_CONTINUE;
4378 }
4379 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4380
4381 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4382 {
4383         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4384 }
4385
4386 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4387 {
4388         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4389 }
4390
4391 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4392 {
4393
4394         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4395 }
4396
4397 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4398 {
4399         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4400 }
4401
4402 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4403 {
4404         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4405         unsigned long value;
4406
4407         switch (cr) {
4408         case 0:
4409                 value = kvm_read_cr0(vcpu);
4410                 break;
4411         case 2:
4412                 value = vcpu->arch.cr2;
4413                 break;
4414         case 3:
4415                 value = kvm_read_cr3(vcpu);
4416                 break;
4417         case 4:
4418                 value = kvm_read_cr4(vcpu);
4419                 break;
4420         case 8:
4421                 value = kvm_get_cr8(vcpu);
4422                 break;
4423         default:
4424                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4425                 return 0;
4426         }
4427
4428         return value;
4429 }
4430
4431 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4432 {
4433         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4434         int res = 0;
4435
4436         switch (cr) {
4437         case 0:
4438                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4439                 break;
4440         case 2:
4441                 vcpu->arch.cr2 = val;
4442                 break;
4443         case 3:
4444                 res = kvm_set_cr3(vcpu, val);
4445                 break;
4446         case 4:
4447                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4448                 break;
4449         case 8:
4450                 res = kvm_set_cr8(vcpu, val);
4451                 break;
4452         default:
4453                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4454                 res = -1;
4455         }
4456
4457         return res;
4458 }
4459
4460 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4461 {
4462         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4463 }
4464
4465 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4466 {
4467         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4468 }
4469
4470 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4471 {
4472         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4473 }
4474
4475 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4476 {
4477         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4478 }
4479
4480 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4481 {
4482         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4483 }
4484
4485 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4486 {
4487         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4488 }
4489
4490 static unsigned long emulator_get_cached_segment_base(
4491         struct x86_emulate_ctxt *ctxt, int seg)
4492 {
4493         return get_segment_base(emul_to_vcpu(ctxt), seg);
4494 }
4495
4496 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4497                                  struct desc_struct *desc, u32 *base3,
4498                                  int seg)
4499 {
4500         struct kvm_segment var;
4501
4502         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4503         *selector = var.selector;
4504
4505         if (var.unusable) {
4506                 memset(desc, 0, sizeof(*desc));
4507                 return false;
4508         }
4509
4510         if (var.g)
4511                 var.limit >>= 12;
4512         set_desc_limit(desc, var.limit);
4513         set_desc_base(desc, (unsigned long)var.base);
4514 #ifdef CONFIG_X86_64
4515         if (base3)
4516                 *base3 = var.base >> 32;
4517 #endif
4518         desc->type = var.type;
4519         desc->s = var.s;
4520         desc->dpl = var.dpl;
4521         desc->p = var.present;
4522         desc->avl = var.avl;
4523         desc->l = var.l;
4524         desc->d = var.db;
4525         desc->g = var.g;
4526
4527         return true;
4528 }
4529
4530 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4531                                  struct desc_struct *desc, u32 base3,
4532                                  int seg)
4533 {
4534         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4535         struct kvm_segment var;
4536
4537         var.selector = selector;
4538         var.base = get_desc_base(desc);
4539 #ifdef CONFIG_X86_64
4540         var.base |= ((u64)base3) << 32;
4541 #endif
4542         var.limit = get_desc_limit(desc);
4543         if (desc->g)
4544                 var.limit = (var.limit << 12) | 0xfff;
4545         var.type = desc->type;
4546         var.present = desc->p;
4547         var.dpl = desc->dpl;
4548         var.db = desc->d;
4549         var.s = desc->s;
4550         var.l = desc->l;
4551         var.g = desc->g;
4552         var.avl = desc->avl;
4553         var.present = desc->p;
4554         var.unusable = !var.present;
4555         var.padding = 0;
4556
4557         kvm_set_segment(vcpu, &var, seg);
4558         return;
4559 }
4560
4561 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4562                             u32 msr_index, u64 *pdata)
4563 {
4564         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4565 }
4566
4567 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4568                             u32 msr_index, u64 data)
4569 {
4570         struct msr_data msr;
4571
4572         msr.data = data;
4573         msr.index = msr_index;
4574         msr.host_initiated = false;
4575         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4576 }
4577
4578 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4579                              u32 pmc, u64 *pdata)
4580 {
4581         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4582 }
4583
4584 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4585 {
4586         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4587 }
4588
4589 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4590 {
4591         preempt_disable();
4592         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4593         /*
4594          * CR0.TS may reference the host fpu state, not the guest fpu state,
4595          * so it may be clear at this point.
4596          */
4597         clts();
4598 }
4599
4600 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4601 {
4602         preempt_enable();
4603 }
4604
4605 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4606                               struct x86_instruction_info *info,
4607                               enum x86_intercept_stage stage)
4608 {
4609         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4610 }
4611
4612 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4613                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4614 {
4615         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4616 }
4617
4618 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4619 {
4620         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4621 }
4622
4623 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4624 {
4625         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4626 }
4627
4628 static const struct x86_emulate_ops emulate_ops = {
4629         .read_gpr            = emulator_read_gpr,
4630         .write_gpr           = emulator_write_gpr,
4631         .read_std            = kvm_read_guest_virt_system,
4632         .write_std           = kvm_write_guest_virt_system,
4633         .fetch               = kvm_fetch_guest_virt,
4634         .read_emulated       = emulator_read_emulated,
4635         .write_emulated      = emulator_write_emulated,
4636         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4637         .invlpg              = emulator_invlpg,
4638         .pio_in_emulated     = emulator_pio_in_emulated,
4639         .pio_out_emulated    = emulator_pio_out_emulated,
4640         .get_segment         = emulator_get_segment,
4641         .set_segment         = emulator_set_segment,
4642         .get_cached_segment_base = emulator_get_cached_segment_base,
4643         .get_gdt             = emulator_get_gdt,
4644         .get_idt             = emulator_get_idt,
4645         .set_gdt             = emulator_set_gdt,
4646         .set_idt             = emulator_set_idt,
4647         .get_cr              = emulator_get_cr,
4648         .set_cr              = emulator_set_cr,
4649         .set_rflags          = emulator_set_rflags,
4650         .cpl                 = emulator_get_cpl,
4651         .get_dr              = emulator_get_dr,
4652         .set_dr              = emulator_set_dr,
4653         .set_msr             = emulator_set_msr,
4654         .get_msr             = emulator_get_msr,
4655         .read_pmc            = emulator_read_pmc,
4656         .halt                = emulator_halt,
4657         .wbinvd              = emulator_wbinvd,
4658         .fix_hypercall       = emulator_fix_hypercall,
4659         .get_fpu             = emulator_get_fpu,
4660         .put_fpu             = emulator_put_fpu,
4661         .intercept           = emulator_intercept,
4662         .get_cpuid           = emulator_get_cpuid,
4663 };
4664
4665 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4666 {
4667         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4668         /*
4669          * an sti; sti; sequence only disable interrupts for the first
4670          * instruction. So, if the last instruction, be it emulated or
4671          * not, left the system with the INT_STI flag enabled, it
4672          * means that the last instruction is an sti. We should not
4673          * leave the flag on in this case. The same goes for mov ss
4674          */
4675         if (!(int_shadow & mask))
4676                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4677 }
4678
4679 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4680 {
4681         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4682         if (ctxt->exception.vector == PF_VECTOR)
4683                 kvm_propagate_fault(vcpu, &ctxt->exception);
4684         else if (ctxt->exception.error_code_valid)
4685                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4686                                       ctxt->exception.error_code);
4687         else
4688                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4689 }
4690
4691 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4692 {
4693         memset(&ctxt->twobyte, 0,
4694                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4695
4696         ctxt->fetch.start = 0;
4697         ctxt->fetch.end = 0;
4698         ctxt->io_read.pos = 0;
4699         ctxt->io_read.end = 0;
4700         ctxt->mem_read.pos = 0;
4701         ctxt->mem_read.end = 0;
4702 }
4703
4704 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4705 {
4706         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4707         int cs_db, cs_l;
4708
4709         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4710
4711         ctxt->eflags = kvm_get_rflags(vcpu);
4712         ctxt->eip = kvm_rip_read(vcpu);
4713         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4714                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4715                      cs_l                               ? X86EMUL_MODE_PROT64 :
4716                      cs_db                              ? X86EMUL_MODE_PROT32 :
4717                                                           X86EMUL_MODE_PROT16;
4718         ctxt->guest_mode = is_guest_mode(vcpu);
4719
4720         init_decode_cache(ctxt);
4721         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4722 }
4723
4724 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4725 {
4726         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4727         int ret;
4728
4729         init_emulate_ctxt(vcpu);
4730
4731         ctxt->op_bytes = 2;
4732         ctxt->ad_bytes = 2;
4733         ctxt->_eip = ctxt->eip + inc_eip;
4734         ret = emulate_int_real(ctxt, irq);
4735
4736         if (ret != X86EMUL_CONTINUE)
4737                 return EMULATE_FAIL;
4738
4739         ctxt->eip = ctxt->_eip;
4740         kvm_rip_write(vcpu, ctxt->eip);
4741         kvm_set_rflags(vcpu, ctxt->eflags);
4742
4743         if (irq == NMI_VECTOR)
4744                 vcpu->arch.nmi_pending = 0;
4745         else
4746                 vcpu->arch.interrupt.pending = false;
4747
4748         return EMULATE_DONE;
4749 }
4750 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4751
4752 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4753 {
4754         int r = EMULATE_DONE;
4755
4756         ++vcpu->stat.insn_emulation_fail;
4757         trace_kvm_emulate_insn_failed(vcpu);
4758         if (!is_guest_mode(vcpu)) {
4759                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4760                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4761                 vcpu->run->internal.ndata = 0;
4762                 r = EMULATE_FAIL;
4763         }
4764         kvm_queue_exception(vcpu, UD_VECTOR);
4765
4766         return r;
4767 }
4768
4769 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4770                                   bool write_fault_to_shadow_pgtable,
4771                                   int emulation_type)
4772 {
4773         gpa_t gpa = cr2;
4774         pfn_t pfn;
4775
4776         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4777                 return false;
4778
4779         if (!vcpu->arch.mmu.direct_map) {
4780                 /*
4781                  * Write permission should be allowed since only
4782                  * write access need to be emulated.
4783                  */
4784                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4785
4786                 /*
4787                  * If the mapping is invalid in guest, let cpu retry
4788                  * it to generate fault.
4789                  */
4790                 if (gpa == UNMAPPED_GVA)
4791                         return true;
4792         }
4793
4794         /*
4795          * Do not retry the unhandleable instruction if it faults on the
4796          * readonly host memory, otherwise it will goto a infinite loop:
4797          * retry instruction -> write #PF -> emulation fail -> retry
4798          * instruction -> ...
4799          */
4800         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4801
4802         /*
4803          * If the instruction failed on the error pfn, it can not be fixed,
4804          * report the error to userspace.
4805          */
4806         if (is_error_noslot_pfn(pfn))
4807                 return false;
4808
4809         kvm_release_pfn_clean(pfn);
4810
4811         /* The instructions are well-emulated on direct mmu. */
4812         if (vcpu->arch.mmu.direct_map) {
4813                 unsigned int indirect_shadow_pages;
4814
4815                 spin_lock(&vcpu->kvm->mmu_lock);
4816                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4817                 spin_unlock(&vcpu->kvm->mmu_lock);
4818
4819                 if (indirect_shadow_pages)
4820                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4821
4822                 return true;
4823         }
4824
4825         /*
4826          * if emulation was due to access to shadowed page table
4827          * and it failed try to unshadow page and re-enter the
4828          * guest to let CPU execute the instruction.
4829          */
4830         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4831
4832         /*
4833          * If the access faults on its page table, it can not
4834          * be fixed by unprotecting shadow page and it should
4835          * be reported to userspace.
4836          */
4837         return !write_fault_to_shadow_pgtable;
4838 }
4839
4840 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4841                               unsigned long cr2,  int emulation_type)
4842 {
4843         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4844         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4845
4846         last_retry_eip = vcpu->arch.last_retry_eip;
4847         last_retry_addr = vcpu->arch.last_retry_addr;
4848
4849         /*
4850          * If the emulation is caused by #PF and it is non-page_table
4851          * writing instruction, it means the VM-EXIT is caused by shadow
4852          * page protected, we can zap the shadow page and retry this
4853          * instruction directly.
4854          *
4855          * Note: if the guest uses a non-page-table modifying instruction
4856          * on the PDE that points to the instruction, then we will unmap
4857          * the instruction and go to an infinite loop. So, we cache the
4858          * last retried eip and the last fault address, if we meet the eip
4859          * and the address again, we can break out of the potential infinite
4860          * loop.
4861          */
4862         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4863
4864         if (!(emulation_type & EMULTYPE_RETRY))
4865                 return false;
4866
4867         if (x86_page_table_writing_insn(ctxt))
4868                 return false;
4869
4870         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4871                 return false;
4872
4873         vcpu->arch.last_retry_eip = ctxt->eip;
4874         vcpu->arch.last_retry_addr = cr2;
4875
4876         if (!vcpu->arch.mmu.direct_map)
4877                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4878
4879         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4880
4881         return true;
4882 }
4883
4884 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4885 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4886
4887 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4888                             unsigned long cr2,
4889                             int emulation_type,
4890                             void *insn,
4891                             int insn_len)
4892 {
4893         int r;
4894         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4895         bool writeback = true;
4896         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4897
4898         /*
4899          * Clear write_fault_to_shadow_pgtable here to ensure it is
4900          * never reused.
4901          */
4902         vcpu->arch.write_fault_to_shadow_pgtable = false;
4903         kvm_clear_exception_queue(vcpu);
4904
4905         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4906                 init_emulate_ctxt(vcpu);
4907                 ctxt->interruptibility = 0;
4908                 ctxt->have_exception = false;
4909                 ctxt->perm_ok = false;
4910
4911                 ctxt->only_vendor_specific_insn
4912                         = emulation_type & EMULTYPE_TRAP_UD;
4913
4914                 r = x86_decode_insn(ctxt, insn, insn_len);
4915
4916                 trace_kvm_emulate_insn_start(vcpu);
4917                 ++vcpu->stat.insn_emulation;
4918                 if (r != EMULATION_OK)  {
4919                         if (emulation_type & EMULTYPE_TRAP_UD)
4920                                 return EMULATE_FAIL;
4921                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4922                                                 emulation_type))
4923                                 return EMULATE_DONE;
4924                         if (emulation_type & EMULTYPE_SKIP)
4925                                 return EMULATE_FAIL;
4926                         return handle_emulation_failure(vcpu);
4927                 }
4928         }
4929
4930         if (emulation_type & EMULTYPE_SKIP) {
4931                 kvm_rip_write(vcpu, ctxt->_eip);
4932                 return EMULATE_DONE;
4933         }
4934
4935         if (retry_instruction(ctxt, cr2, emulation_type))
4936                 return EMULATE_DONE;
4937
4938         /* this is needed for vmware backdoor interface to work since it
4939            changes registers values  during IO operation */
4940         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4941                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4942                 emulator_invalidate_register_cache(ctxt);
4943         }
4944
4945 restart:
4946         r = x86_emulate_insn(ctxt);
4947
4948         if (r == EMULATION_INTERCEPTED)
4949                 return EMULATE_DONE;
4950
4951         if (r == EMULATION_FAILED) {
4952                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4953                                         emulation_type))
4954                         return EMULATE_DONE;
4955
4956                 return handle_emulation_failure(vcpu);
4957         }
4958
4959         if (ctxt->have_exception) {
4960                 inject_emulated_exception(vcpu);
4961                 r = EMULATE_DONE;
4962         } else if (vcpu->arch.pio.count) {
4963                 if (!vcpu->arch.pio.in)
4964                         vcpu->arch.pio.count = 0;
4965                 else {
4966                         writeback = false;
4967                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4968                 }
4969                 r = EMULATE_DO_MMIO;
4970         } else if (vcpu->mmio_needed) {
4971                 if (!vcpu->mmio_is_write)
4972                         writeback = false;
4973                 r = EMULATE_DO_MMIO;
4974                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4975         } else if (r == EMULATION_RESTART)
4976                 goto restart;
4977         else
4978                 r = EMULATE_DONE;
4979
4980         if (writeback) {
4981                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4982                 kvm_set_rflags(vcpu, ctxt->eflags);
4983                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4984                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4985                 kvm_rip_write(vcpu, ctxt->eip);
4986         } else
4987                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4988
4989         return r;
4990 }
4991 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4992
4993 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4994 {
4995         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4996         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4997                                             size, port, &val, 1);
4998         /* do not return to emulator after return from userspace */
4999         vcpu->arch.pio.count = 0;
5000         return ret;
5001 }
5002 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5003
5004 static void tsc_bad(void *info)
5005 {
5006         __this_cpu_write(cpu_tsc_khz, 0);
5007 }
5008
5009 static void tsc_khz_changed(void *data)
5010 {
5011         struct cpufreq_freqs *freq = data;
5012         unsigned long khz = 0;
5013
5014         if (data)
5015                 khz = freq->new;
5016         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5017                 khz = cpufreq_quick_get(raw_smp_processor_id());
5018         if (!khz)
5019                 khz = tsc_khz;
5020         __this_cpu_write(cpu_tsc_khz, khz);
5021 }
5022
5023 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5024                                      void *data)
5025 {
5026         struct cpufreq_freqs *freq = data;
5027         struct kvm *kvm;
5028         struct kvm_vcpu *vcpu;
5029         int i, send_ipi = 0;
5030
5031         /*
5032          * We allow guests to temporarily run on slowing clocks,
5033          * provided we notify them after, or to run on accelerating
5034          * clocks, provided we notify them before.  Thus time never
5035          * goes backwards.
5036          *
5037          * However, we have a problem.  We can't atomically update
5038          * the frequency of a given CPU from this function; it is
5039          * merely a notifier, which can be called from any CPU.
5040          * Changing the TSC frequency at arbitrary points in time
5041          * requires a recomputation of local variables related to
5042          * the TSC for each VCPU.  We must flag these local variables
5043          * to be updated and be sure the update takes place with the
5044          * new frequency before any guests proceed.
5045          *
5046          * Unfortunately, the combination of hotplug CPU and frequency
5047          * change creates an intractable locking scenario; the order
5048          * of when these callouts happen is undefined with respect to
5049          * CPU hotplug, and they can race with each other.  As such,
5050          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5051          * undefined; you can actually have a CPU frequency change take
5052          * place in between the computation of X and the setting of the
5053          * variable.  To protect against this problem, all updates of
5054          * the per_cpu tsc_khz variable are done in an interrupt
5055          * protected IPI, and all callers wishing to update the value
5056          * must wait for a synchronous IPI to complete (which is trivial
5057          * if the caller is on the CPU already).  This establishes the
5058          * necessary total order on variable updates.
5059          *
5060          * Note that because a guest time update may take place
5061          * anytime after the setting of the VCPU's request bit, the
5062          * correct TSC value must be set before the request.  However,
5063          * to ensure the update actually makes it to any guest which
5064          * starts running in hardware virtualization between the set
5065          * and the acquisition of the spinlock, we must also ping the
5066          * CPU after setting the request bit.
5067          *
5068          */
5069
5070         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5071                 return 0;
5072         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5073                 return 0;
5074
5075         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5076
5077         raw_spin_lock(&kvm_lock);
5078         list_for_each_entry(kvm, &vm_list, vm_list) {
5079                 kvm_for_each_vcpu(i, vcpu, kvm) {
5080                         if (vcpu->cpu != freq->cpu)
5081                                 continue;
5082                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5083                         if (vcpu->cpu != smp_processor_id())
5084                                 send_ipi = 1;
5085                 }
5086         }
5087         raw_spin_unlock(&kvm_lock);
5088
5089         if (freq->old < freq->new && send_ipi) {
5090                 /*
5091                  * We upscale the frequency.  Must make the guest
5092                  * doesn't see old kvmclock values while running with
5093                  * the new frequency, otherwise we risk the guest sees
5094                  * time go backwards.
5095                  *
5096                  * In case we update the frequency for another cpu
5097                  * (which might be in guest context) send an interrupt
5098                  * to kick the cpu out of guest context.  Next time
5099                  * guest context is entered kvmclock will be updated,
5100                  * so the guest will not see stale values.
5101                  */
5102                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5103         }
5104         return 0;
5105 }
5106
5107 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5108         .notifier_call  = kvmclock_cpufreq_notifier
5109 };
5110
5111 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5112                                         unsigned long action, void *hcpu)
5113 {
5114         unsigned int cpu = (unsigned long)hcpu;
5115
5116         switch (action) {
5117                 case CPU_ONLINE:
5118                 case CPU_DOWN_FAILED:
5119                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5120                         break;
5121                 case CPU_DOWN_PREPARE:
5122                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5123                         break;
5124         }
5125         return NOTIFY_OK;
5126 }
5127
5128 static struct notifier_block kvmclock_cpu_notifier_block = {
5129         .notifier_call  = kvmclock_cpu_notifier,
5130         .priority = -INT_MAX
5131 };
5132
5133 static void kvm_timer_init(void)
5134 {
5135         int cpu;
5136
5137         max_tsc_khz = tsc_khz;
5138         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5139         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5140 #ifdef CONFIG_CPU_FREQ
5141                 struct cpufreq_policy policy;
5142                 memset(&policy, 0, sizeof(policy));
5143                 cpu = get_cpu();
5144                 cpufreq_get_policy(&policy, cpu);
5145                 if (policy.cpuinfo.max_freq)
5146                         max_tsc_khz = policy.cpuinfo.max_freq;
5147                 put_cpu();
5148 #endif
5149                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5150                                           CPUFREQ_TRANSITION_NOTIFIER);
5151         }
5152         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5153         for_each_online_cpu(cpu)
5154                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5155 }
5156
5157 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5158
5159 int kvm_is_in_guest(void)
5160 {
5161         return __this_cpu_read(current_vcpu) != NULL;
5162 }
5163
5164 static int kvm_is_user_mode(void)
5165 {
5166         int user_mode = 3;
5167
5168         if (__this_cpu_read(current_vcpu))
5169                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5170
5171         return user_mode != 0;
5172 }
5173
5174 static unsigned long kvm_get_guest_ip(void)
5175 {
5176         unsigned long ip = 0;
5177
5178         if (__this_cpu_read(current_vcpu))
5179                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5180
5181         return ip;
5182 }
5183
5184 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5185         .is_in_guest            = kvm_is_in_guest,
5186         .is_user_mode           = kvm_is_user_mode,
5187         .get_guest_ip           = kvm_get_guest_ip,
5188 };
5189
5190 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5191 {
5192         __this_cpu_write(current_vcpu, vcpu);
5193 }
5194 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5195
5196 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5197 {
5198         __this_cpu_write(current_vcpu, NULL);
5199 }
5200 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5201
5202 static void kvm_set_mmio_spte_mask(void)
5203 {
5204         u64 mask;
5205         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5206
5207         /*
5208          * Set the reserved bits and the present bit of an paging-structure
5209          * entry to generate page fault with PFER.RSV = 1.
5210          */
5211         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5212         mask |= 1ull;
5213
5214 #ifdef CONFIG_X86_64
5215         /*
5216          * If reserved bit is not supported, clear the present bit to disable
5217          * mmio page fault.
5218          */
5219         if (maxphyaddr == 52)
5220                 mask &= ~1ull;
5221 #endif
5222
5223         kvm_mmu_set_mmio_spte_mask(mask);
5224 }
5225
5226 #ifdef CONFIG_X86_64
5227 static void pvclock_gtod_update_fn(struct work_struct *work)
5228 {
5229         struct kvm *kvm;
5230
5231         struct kvm_vcpu *vcpu;
5232         int i;
5233
5234         raw_spin_lock(&kvm_lock);
5235         list_for_each_entry(kvm, &vm_list, vm_list)
5236                 kvm_for_each_vcpu(i, vcpu, kvm)
5237                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5238         atomic_set(&kvm_guest_has_master_clock, 0);
5239         raw_spin_unlock(&kvm_lock);
5240 }
5241
5242 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5243
5244 /*
5245  * Notification about pvclock gtod data update.
5246  */
5247 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5248                                void *priv)
5249 {
5250         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5251         struct timekeeper *tk = priv;
5252
5253         update_pvclock_gtod(tk);
5254
5255         /* disable master clock if host does not trust, or does not
5256          * use, TSC clocksource
5257          */
5258         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5259             atomic_read(&kvm_guest_has_master_clock) != 0)
5260                 queue_work(system_long_wq, &pvclock_gtod_work);
5261
5262         return 0;
5263 }
5264
5265 static struct notifier_block pvclock_gtod_notifier = {
5266         .notifier_call = pvclock_gtod_notify,
5267 };
5268 #endif
5269
5270 int kvm_arch_init(void *opaque)
5271 {
5272         int r;
5273         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5274
5275         if (kvm_x86_ops) {
5276                 printk(KERN_ERR "kvm: already loaded the other module\n");
5277                 r = -EEXIST;
5278                 goto out;
5279         }
5280
5281         if (!ops->cpu_has_kvm_support()) {
5282                 printk(KERN_ERR "kvm: no hardware support\n");
5283                 r = -EOPNOTSUPP;
5284                 goto out;
5285         }
5286         if (ops->disabled_by_bios()) {
5287                 printk(KERN_ERR "kvm: disabled by bios\n");
5288                 r = -EOPNOTSUPP;
5289                 goto out;
5290         }
5291
5292         r = -ENOMEM;
5293         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5294         if (!shared_msrs) {
5295                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5296                 goto out;
5297         }
5298
5299         r = kvm_mmu_module_init();
5300         if (r)
5301                 goto out_free_percpu;
5302
5303         kvm_set_mmio_spte_mask();
5304         kvm_init_msr_list();
5305
5306         kvm_x86_ops = ops;
5307         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5308                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5309
5310         kvm_timer_init();
5311
5312         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5313
5314         if (cpu_has_xsave)
5315                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5316
5317         kvm_lapic_init();
5318 #ifdef CONFIG_X86_64
5319         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5320 #endif
5321
5322         return 0;
5323
5324 out_free_percpu:
5325         free_percpu(shared_msrs);
5326 out:
5327         return r;
5328 }
5329
5330 void kvm_arch_exit(void)
5331 {
5332         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5333
5334         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5335                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5336                                             CPUFREQ_TRANSITION_NOTIFIER);
5337         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5338 #ifdef CONFIG_X86_64
5339         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5340 #endif
5341         kvm_x86_ops = NULL;
5342         kvm_mmu_module_exit();
5343         free_percpu(shared_msrs);
5344 }
5345
5346 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5347 {
5348         ++vcpu->stat.halt_exits;
5349         if (irqchip_in_kernel(vcpu->kvm)) {
5350                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5351                 return 1;
5352         } else {
5353                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5354                 return 0;
5355         }
5356 }
5357 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5358
5359 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5360 {
5361         u64 param, ingpa, outgpa, ret;
5362         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5363         bool fast, longmode;
5364         int cs_db, cs_l;
5365
5366         /*
5367          * hypercall generates UD from non zero cpl and real mode
5368          * per HYPER-V spec
5369          */
5370         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5371                 kvm_queue_exception(vcpu, UD_VECTOR);
5372                 return 0;
5373         }
5374
5375         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5376         longmode = is_long_mode(vcpu) && cs_l == 1;
5377
5378         if (!longmode) {
5379                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5380                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5381                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5382                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5383                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5384                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5385         }
5386 #ifdef CONFIG_X86_64
5387         else {
5388                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5389                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5390                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5391         }
5392 #endif
5393
5394         code = param & 0xffff;
5395         fast = (param >> 16) & 0x1;
5396         rep_cnt = (param >> 32) & 0xfff;
5397         rep_idx = (param >> 48) & 0xfff;
5398
5399         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5400
5401         switch (code) {
5402         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5403                 kvm_vcpu_on_spin(vcpu);
5404                 break;
5405         default:
5406                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5407                 break;
5408         }
5409
5410         ret = res | (((u64)rep_done & 0xfff) << 32);
5411         if (longmode) {
5412                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5413         } else {
5414                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5415                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5416         }
5417
5418         return 1;
5419 }
5420
5421 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5422 {
5423         unsigned long nr, a0, a1, a2, a3, ret;
5424         int r = 1;
5425
5426         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5427                 return kvm_hv_hypercall(vcpu);
5428
5429         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5430         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5431         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5432         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5433         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5434
5435         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5436
5437         if (!is_long_mode(vcpu)) {
5438                 nr &= 0xFFFFFFFF;
5439                 a0 &= 0xFFFFFFFF;
5440                 a1 &= 0xFFFFFFFF;
5441                 a2 &= 0xFFFFFFFF;
5442                 a3 &= 0xFFFFFFFF;
5443         }
5444
5445         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5446                 ret = -KVM_EPERM;
5447                 goto out;
5448         }
5449
5450         switch (nr) {
5451         case KVM_HC_VAPIC_POLL_IRQ:
5452                 ret = 0;
5453                 break;
5454         default:
5455                 ret = -KVM_ENOSYS;
5456                 break;
5457         }
5458 out:
5459         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5460         ++vcpu->stat.hypercalls;
5461         return r;
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5464
5465 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5466 {
5467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5468         char instruction[3];
5469         unsigned long rip = kvm_rip_read(vcpu);
5470
5471         /*
5472          * Blow out the MMU to ensure that no other VCPU has an active mapping
5473          * to ensure that the updated hypercall appears atomically across all
5474          * VCPUs.
5475          */
5476         kvm_mmu_zap_all(vcpu->kvm);
5477
5478         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5479
5480         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5481 }
5482
5483 /*
5484  * Check if userspace requested an interrupt window, and that the
5485  * interrupt window is open.
5486  *
5487  * No need to exit to userspace if we already have an interrupt queued.
5488  */
5489 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5490 {
5491         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5492                 vcpu->run->request_interrupt_window &&
5493                 kvm_arch_interrupt_allowed(vcpu));
5494 }
5495
5496 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5497 {
5498         struct kvm_run *kvm_run = vcpu->run;
5499
5500         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5501         kvm_run->cr8 = kvm_get_cr8(vcpu);
5502         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5503         if (irqchip_in_kernel(vcpu->kvm))
5504                 kvm_run->ready_for_interrupt_injection = 1;
5505         else
5506                 kvm_run->ready_for_interrupt_injection =
5507                         kvm_arch_interrupt_allowed(vcpu) &&
5508                         !kvm_cpu_has_interrupt(vcpu) &&
5509                         !kvm_event_needs_reinjection(vcpu);
5510 }
5511
5512 static int vapic_enter(struct kvm_vcpu *vcpu)
5513 {
5514         struct kvm_lapic *apic = vcpu->arch.apic;
5515         struct page *page;
5516
5517         if (!apic || !apic->vapic_addr)
5518                 return 0;
5519
5520         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5521         if (is_error_page(page))
5522                 return -EFAULT;
5523
5524         vcpu->arch.apic->vapic_page = page;
5525         return 0;
5526 }
5527
5528 static void vapic_exit(struct kvm_vcpu *vcpu)
5529 {
5530         struct kvm_lapic *apic = vcpu->arch.apic;
5531         int idx;
5532
5533         if (!apic || !apic->vapic_addr)
5534                 return;
5535
5536         idx = srcu_read_lock(&vcpu->kvm->srcu);
5537         kvm_release_page_dirty(apic->vapic_page);
5538         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5539         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5540 }
5541
5542 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5543 {
5544         int max_irr, tpr;
5545
5546         if (!kvm_x86_ops->update_cr8_intercept)
5547                 return;
5548
5549         if (!vcpu->arch.apic)
5550                 return;
5551
5552         if (!vcpu->arch.apic->vapic_addr)
5553                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5554         else
5555                 max_irr = -1;
5556
5557         if (max_irr != -1)
5558                 max_irr >>= 4;
5559
5560         tpr = kvm_lapic_get_cr8(vcpu);
5561
5562         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5563 }
5564
5565 static void inject_pending_event(struct kvm_vcpu *vcpu)
5566 {
5567         /* try to reinject previous events if any */
5568         if (vcpu->arch.exception.pending) {
5569                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5570                                         vcpu->arch.exception.has_error_code,
5571                                         vcpu->arch.exception.error_code);
5572                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5573                                           vcpu->arch.exception.has_error_code,
5574                                           vcpu->arch.exception.error_code,
5575                                           vcpu->arch.exception.reinject);
5576                 return;
5577         }
5578
5579         if (vcpu->arch.nmi_injected) {
5580                 kvm_x86_ops->set_nmi(vcpu);
5581                 return;
5582         }
5583
5584         if (vcpu->arch.interrupt.pending) {
5585                 kvm_x86_ops->set_irq(vcpu);
5586                 return;
5587         }
5588
5589         /* try to inject new event if pending */
5590         if (vcpu->arch.nmi_pending) {
5591                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5592                         --vcpu->arch.nmi_pending;
5593                         vcpu->arch.nmi_injected = true;
5594                         kvm_x86_ops->set_nmi(vcpu);
5595                 }
5596         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5597                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5598                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5599                                             false);
5600                         kvm_x86_ops->set_irq(vcpu);
5601                 }
5602         }
5603 }
5604
5605 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5606 {
5607         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5608                         !vcpu->guest_xcr0_loaded) {
5609                 /* kvm_set_xcr() also depends on this */
5610                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5611                 vcpu->guest_xcr0_loaded = 1;
5612         }
5613 }
5614
5615 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5616 {
5617         if (vcpu->guest_xcr0_loaded) {
5618                 if (vcpu->arch.xcr0 != host_xcr0)
5619                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5620                 vcpu->guest_xcr0_loaded = 0;
5621         }
5622 }
5623
5624 static void process_nmi(struct kvm_vcpu *vcpu)
5625 {
5626         unsigned limit = 2;
5627
5628         /*
5629          * x86 is limited to one NMI running, and one NMI pending after it.
5630          * If an NMI is already in progress, limit further NMIs to just one.
5631          * Otherwise, allow two (and we'll inject the first one immediately).
5632          */
5633         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5634                 limit = 1;
5635
5636         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5637         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5638         kvm_make_request(KVM_REQ_EVENT, vcpu);
5639 }
5640
5641 static void kvm_gen_update_masterclock(struct kvm *kvm)
5642 {
5643 #ifdef CONFIG_X86_64
5644         int i;
5645         struct kvm_vcpu *vcpu;
5646         struct kvm_arch *ka = &kvm->arch;
5647
5648         spin_lock(&ka->pvclock_gtod_sync_lock);
5649         kvm_make_mclock_inprogress_request(kvm);
5650         /* no guest entries from this point */
5651         pvclock_update_vm_gtod_copy(kvm);
5652
5653         kvm_for_each_vcpu(i, vcpu, kvm)
5654                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5655
5656         /* guest entries allowed */
5657         kvm_for_each_vcpu(i, vcpu, kvm)
5658                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5659
5660         spin_unlock(&ka->pvclock_gtod_sync_lock);
5661 #endif
5662 }
5663
5664 static void update_eoi_exitmap(struct kvm_vcpu *vcpu)
5665 {
5666         u64 eoi_exit_bitmap[4];
5667
5668         memset(eoi_exit_bitmap, 0, 32);
5669
5670         kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap);
5671         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5672 }
5673
5674 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5675 {
5676         int r;
5677         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5678                 vcpu->run->request_interrupt_window;
5679         bool req_immediate_exit = 0;
5680
5681         if (vcpu->requests) {
5682                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5683                         kvm_mmu_unload(vcpu);
5684                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5685                         __kvm_migrate_timers(vcpu);
5686                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5687                         kvm_gen_update_masterclock(vcpu->kvm);
5688                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5689                         r = kvm_guest_time_update(vcpu);
5690                         if (unlikely(r))
5691                                 goto out;
5692                 }
5693                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5694                         kvm_mmu_sync_roots(vcpu);
5695                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5696                         kvm_x86_ops->tlb_flush(vcpu);
5697                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5698                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5699                         r = 0;
5700                         goto out;
5701                 }
5702                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5703                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5704                         r = 0;
5705                         goto out;
5706                 }
5707                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5708                         vcpu->fpu_active = 0;
5709                         kvm_x86_ops->fpu_deactivate(vcpu);
5710                 }
5711                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5712                         /* Page is swapped out. Do synthetic halt */
5713                         vcpu->arch.apf.halted = true;
5714                         r = 1;
5715                         goto out;
5716                 }
5717                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5718                         record_steal_time(vcpu);
5719                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5720                         process_nmi(vcpu);
5721                 req_immediate_exit =
5722                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5723                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5724                         kvm_handle_pmu_event(vcpu);
5725                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5726                         kvm_deliver_pmi(vcpu);
5727                 if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu))
5728                         update_eoi_exitmap(vcpu);
5729         }
5730
5731         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5732                 kvm_apic_accept_events(vcpu);
5733                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5734                         r = 1;
5735                         goto out;
5736                 }
5737
5738                 inject_pending_event(vcpu);
5739
5740                 /* enable NMI/IRQ window open exits if needed */
5741                 if (vcpu->arch.nmi_pending)
5742                         kvm_x86_ops->enable_nmi_window(vcpu);
5743                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5744                         kvm_x86_ops->enable_irq_window(vcpu);
5745
5746                 if (kvm_lapic_enabled(vcpu)) {
5747                         /*
5748                          * Update architecture specific hints for APIC
5749                          * virtual interrupt delivery.
5750                          */
5751                         if (kvm_x86_ops->hwapic_irr_update)
5752                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5753                                         kvm_lapic_find_highest_irr(vcpu));
5754                         update_cr8_intercept(vcpu);
5755                         kvm_lapic_sync_to_vapic(vcpu);
5756                 }
5757         }
5758
5759         r = kvm_mmu_reload(vcpu);
5760         if (unlikely(r)) {
5761                 goto cancel_injection;
5762         }
5763
5764         preempt_disable();
5765
5766         kvm_x86_ops->prepare_guest_switch(vcpu);
5767         if (vcpu->fpu_active)
5768                 kvm_load_guest_fpu(vcpu);
5769         kvm_load_guest_xcr0(vcpu);
5770
5771         vcpu->mode = IN_GUEST_MODE;
5772
5773         /* We should set ->mode before check ->requests,
5774          * see the comment in make_all_cpus_request.
5775          */
5776         smp_mb();
5777
5778         local_irq_disable();
5779
5780         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5781             || need_resched() || signal_pending(current)) {
5782                 vcpu->mode = OUTSIDE_GUEST_MODE;
5783                 smp_wmb();
5784                 local_irq_enable();
5785                 preempt_enable();
5786                 r = 1;
5787                 goto cancel_injection;
5788         }
5789
5790         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5791
5792         if (req_immediate_exit)
5793                 smp_send_reschedule(vcpu->cpu);
5794
5795         kvm_guest_enter();
5796
5797         if (unlikely(vcpu->arch.switch_db_regs)) {
5798                 set_debugreg(0, 7);
5799                 set_debugreg(vcpu->arch.eff_db[0], 0);
5800                 set_debugreg(vcpu->arch.eff_db[1], 1);
5801                 set_debugreg(vcpu->arch.eff_db[2], 2);
5802                 set_debugreg(vcpu->arch.eff_db[3], 3);
5803         }
5804
5805         trace_kvm_entry(vcpu->vcpu_id);
5806         kvm_x86_ops->run(vcpu);
5807
5808         /*
5809          * If the guest has used debug registers, at least dr7
5810          * will be disabled while returning to the host.
5811          * If we don't have active breakpoints in the host, we don't
5812          * care about the messed up debug address registers. But if
5813          * we have some of them active, restore the old state.
5814          */
5815         if (hw_breakpoint_active())
5816                 hw_breakpoint_restore();
5817
5818         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5819                                                            native_read_tsc());
5820
5821         vcpu->mode = OUTSIDE_GUEST_MODE;
5822         smp_wmb();
5823         local_irq_enable();
5824
5825         ++vcpu->stat.exits;
5826
5827         /*
5828          * We must have an instruction between local_irq_enable() and
5829          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5830          * the interrupt shadow.  The stat.exits increment will do nicely.
5831          * But we need to prevent reordering, hence this barrier():
5832          */
5833         barrier();
5834
5835         kvm_guest_exit();
5836
5837         preempt_enable();
5838
5839         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5840
5841         /*
5842          * Profile KVM exit RIPs:
5843          */
5844         if (unlikely(prof_on == KVM_PROFILING)) {
5845                 unsigned long rip = kvm_rip_read(vcpu);
5846                 profile_hit(KVM_PROFILING, (void *)rip);
5847         }
5848
5849         if (unlikely(vcpu->arch.tsc_always_catchup))
5850                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5851
5852         if (vcpu->arch.apic_attention)
5853                 kvm_lapic_sync_from_vapic(vcpu);
5854
5855         r = kvm_x86_ops->handle_exit(vcpu);
5856         return r;
5857
5858 cancel_injection:
5859         kvm_x86_ops->cancel_injection(vcpu);
5860         if (unlikely(vcpu->arch.apic_attention))
5861                 kvm_lapic_sync_from_vapic(vcpu);
5862 out:
5863         return r;
5864 }
5865
5866
5867 static int __vcpu_run(struct kvm_vcpu *vcpu)
5868 {
5869         int r;
5870         struct kvm *kvm = vcpu->kvm;
5871
5872         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5873         r = vapic_enter(vcpu);
5874         if (r) {
5875                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5876                 return r;
5877         }
5878
5879         r = 1;
5880         while (r > 0) {
5881                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5882                     !vcpu->arch.apf.halted)
5883                         r = vcpu_enter_guest(vcpu);
5884                 else {
5885                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5886                         kvm_vcpu_block(vcpu);
5887                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5888                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5889                                 kvm_apic_accept_events(vcpu);
5890                                 switch(vcpu->arch.mp_state) {
5891                                 case KVM_MP_STATE_HALTED:
5892                                         vcpu->arch.mp_state =
5893                                                 KVM_MP_STATE_RUNNABLE;
5894                                 case KVM_MP_STATE_RUNNABLE:
5895                                         vcpu->arch.apf.halted = false;
5896                                         break;
5897                                 case KVM_MP_STATE_INIT_RECEIVED:
5898                                         break;
5899                                 default:
5900                                         r = -EINTR;
5901                                         break;
5902                                 }
5903                         }
5904                 }
5905
5906                 if (r <= 0)
5907                         break;
5908
5909                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5910                 if (kvm_cpu_has_pending_timer(vcpu))
5911                         kvm_inject_pending_timer_irqs(vcpu);
5912
5913                 if (dm_request_for_irq_injection(vcpu)) {
5914                         r = -EINTR;
5915                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5916                         ++vcpu->stat.request_irq_exits;
5917                 }
5918
5919                 kvm_check_async_pf_completion(vcpu);
5920
5921                 if (signal_pending(current)) {
5922                         r = -EINTR;
5923                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5924                         ++vcpu->stat.signal_exits;
5925                 }
5926                 if (need_resched()) {
5927                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5928                         kvm_resched(vcpu);
5929                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5930                 }
5931         }
5932
5933         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5934
5935         vapic_exit(vcpu);
5936
5937         return r;
5938 }
5939
5940 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5941 {
5942         int r;
5943         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5944         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5945         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5946         if (r != EMULATE_DONE)
5947                 return 0;
5948         return 1;
5949 }
5950
5951 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5952 {
5953         BUG_ON(!vcpu->arch.pio.count);
5954
5955         return complete_emulated_io(vcpu);
5956 }
5957
5958 /*
5959  * Implements the following, as a state machine:
5960  *
5961  * read:
5962  *   for each fragment
5963  *     for each mmio piece in the fragment
5964  *       write gpa, len
5965  *       exit
5966  *       copy data
5967  *   execute insn
5968  *
5969  * write:
5970  *   for each fragment
5971  *     for each mmio piece in the fragment
5972  *       write gpa, len
5973  *       copy data
5974  *       exit
5975  */
5976 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5977 {
5978         struct kvm_run *run = vcpu->run;
5979         struct kvm_mmio_fragment *frag;
5980         unsigned len;
5981
5982         BUG_ON(!vcpu->mmio_needed);
5983
5984         /* Complete previous fragment */
5985         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5986         len = min(8u, frag->len);
5987         if (!vcpu->mmio_is_write)
5988                 memcpy(frag->data, run->mmio.data, len);
5989
5990         if (frag->len <= 8) {
5991                 /* Switch to the next fragment. */
5992                 frag++;
5993                 vcpu->mmio_cur_fragment++;
5994         } else {
5995                 /* Go forward to the next mmio piece. */
5996                 frag->data += len;
5997                 frag->gpa += len;
5998                 frag->len -= len;
5999         }
6000
6001         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6002                 vcpu->mmio_needed = 0;
6003                 if (vcpu->mmio_is_write)
6004                         return 1;
6005                 vcpu->mmio_read_completed = 1;
6006                 return complete_emulated_io(vcpu);
6007         }
6008
6009         run->exit_reason = KVM_EXIT_MMIO;
6010         run->mmio.phys_addr = frag->gpa;
6011         if (vcpu->mmio_is_write)
6012                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6013         run->mmio.len = min(8u, frag->len);
6014         run->mmio.is_write = vcpu->mmio_is_write;
6015         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6016         return 0;
6017 }
6018
6019
6020 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6021 {
6022         int r;
6023         sigset_t sigsaved;
6024
6025         if (!tsk_used_math(current) && init_fpu(current))
6026                 return -ENOMEM;
6027
6028         if (vcpu->sigset_active)
6029                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6030
6031         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6032                 kvm_vcpu_block(vcpu);
6033                 kvm_apic_accept_events(vcpu);
6034                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6035                 r = -EAGAIN;
6036                 goto out;
6037         }
6038
6039         /* re-sync apic's tpr */
6040         if (!irqchip_in_kernel(vcpu->kvm)) {
6041                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6042                         r = -EINVAL;
6043                         goto out;
6044                 }
6045         }
6046
6047         if (unlikely(vcpu->arch.complete_userspace_io)) {
6048                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6049                 vcpu->arch.complete_userspace_io = NULL;
6050                 r = cui(vcpu);
6051                 if (r <= 0)
6052                         goto out;
6053         } else
6054                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6055
6056         r = __vcpu_run(vcpu);
6057
6058 out:
6059         post_kvm_run_save(vcpu);
6060         if (vcpu->sigset_active)
6061                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6062
6063         return r;
6064 }
6065
6066 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6067 {
6068         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6069                 /*
6070                  * We are here if userspace calls get_regs() in the middle of
6071                  * instruction emulation. Registers state needs to be copied
6072                  * back from emulation context to vcpu. Userspace shouldn't do
6073                  * that usually, but some bad designed PV devices (vmware
6074                  * backdoor interface) need this to work
6075                  */
6076                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6077                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6078         }
6079         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6080         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6081         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6082         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6083         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6084         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6085         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6086         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6087 #ifdef CONFIG_X86_64
6088         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6089         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6090         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6091         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6092         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6093         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6094         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6095         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6096 #endif
6097
6098         regs->rip = kvm_rip_read(vcpu);
6099         regs->rflags = kvm_get_rflags(vcpu);
6100
6101         return 0;
6102 }
6103
6104 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6105 {
6106         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6107         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6108
6109         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6110         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6111         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6112         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6113         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6114         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6115         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6116         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6117 #ifdef CONFIG_X86_64
6118         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6119         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6120         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6121         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6122         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6123         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6124         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6125         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6126 #endif
6127
6128         kvm_rip_write(vcpu, regs->rip);
6129         kvm_set_rflags(vcpu, regs->rflags);
6130
6131         vcpu->arch.exception.pending = false;
6132
6133         kvm_make_request(KVM_REQ_EVENT, vcpu);
6134
6135         return 0;
6136 }
6137
6138 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6139 {
6140         struct kvm_segment cs;
6141
6142         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6143         *db = cs.db;
6144         *l = cs.l;
6145 }
6146 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6147
6148 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6149                                   struct kvm_sregs *sregs)
6150 {
6151         struct desc_ptr dt;
6152
6153         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6154         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6155         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6156         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6157         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6158         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6159
6160         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6161         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6162
6163         kvm_x86_ops->get_idt(vcpu, &dt);
6164         sregs->idt.limit = dt.size;
6165         sregs->idt.base = dt.address;
6166         kvm_x86_ops->get_gdt(vcpu, &dt);
6167         sregs->gdt.limit = dt.size;
6168         sregs->gdt.base = dt.address;
6169
6170         sregs->cr0 = kvm_read_cr0(vcpu);
6171         sregs->cr2 = vcpu->arch.cr2;
6172         sregs->cr3 = kvm_read_cr3(vcpu);
6173         sregs->cr4 = kvm_read_cr4(vcpu);
6174         sregs->cr8 = kvm_get_cr8(vcpu);
6175         sregs->efer = vcpu->arch.efer;
6176         sregs->apic_base = kvm_get_apic_base(vcpu);
6177
6178         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6179
6180         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6181                 set_bit(vcpu->arch.interrupt.nr,
6182                         (unsigned long *)sregs->interrupt_bitmap);
6183
6184         return 0;
6185 }
6186
6187 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6188                                     struct kvm_mp_state *mp_state)
6189 {
6190         kvm_apic_accept_events(vcpu);
6191         mp_state->mp_state = vcpu->arch.mp_state;
6192         return 0;
6193 }
6194
6195 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6196                                     struct kvm_mp_state *mp_state)
6197 {
6198         if (!kvm_vcpu_has_lapic(vcpu) &&
6199             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6200                 return -EINVAL;
6201
6202         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6203                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6204                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6205         } else
6206                 vcpu->arch.mp_state = mp_state->mp_state;
6207         kvm_make_request(KVM_REQ_EVENT, vcpu);
6208         return 0;
6209 }
6210
6211 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6212                     int reason, bool has_error_code, u32 error_code)
6213 {
6214         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6215         int ret;
6216
6217         init_emulate_ctxt(vcpu);
6218
6219         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6220                                    has_error_code, error_code);
6221
6222         if (ret)
6223                 return EMULATE_FAIL;
6224
6225         kvm_rip_write(vcpu, ctxt->eip);
6226         kvm_set_rflags(vcpu, ctxt->eflags);
6227         kvm_make_request(KVM_REQ_EVENT, vcpu);
6228         return EMULATE_DONE;
6229 }
6230 EXPORT_SYMBOL_GPL(kvm_task_switch);
6231
6232 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6233                                   struct kvm_sregs *sregs)
6234 {
6235         int mmu_reset_needed = 0;
6236         int pending_vec, max_bits, idx;
6237         struct desc_ptr dt;
6238
6239         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6240                 return -EINVAL;
6241
6242         dt.size = sregs->idt.limit;
6243         dt.address = sregs->idt.base;
6244         kvm_x86_ops->set_idt(vcpu, &dt);
6245         dt.size = sregs->gdt.limit;
6246         dt.address = sregs->gdt.base;
6247         kvm_x86_ops->set_gdt(vcpu, &dt);
6248
6249         vcpu->arch.cr2 = sregs->cr2;
6250         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6251         vcpu->arch.cr3 = sregs->cr3;
6252         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6253
6254         kvm_set_cr8(vcpu, sregs->cr8);
6255
6256         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6257         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6258         kvm_set_apic_base(vcpu, sregs->apic_base);
6259
6260         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6261         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6262         vcpu->arch.cr0 = sregs->cr0;
6263
6264         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6265         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6266         if (sregs->cr4 & X86_CR4_OSXSAVE)
6267                 kvm_update_cpuid(vcpu);
6268
6269         idx = srcu_read_lock(&vcpu->kvm->srcu);
6270         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6271                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6272                 mmu_reset_needed = 1;
6273         }
6274         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6275
6276         if (mmu_reset_needed)
6277                 kvm_mmu_reset_context(vcpu);
6278
6279         max_bits = KVM_NR_INTERRUPTS;
6280         pending_vec = find_first_bit(
6281                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6282         if (pending_vec < max_bits) {
6283                 kvm_queue_interrupt(vcpu, pending_vec, false);
6284                 pr_debug("Set back pending irq %d\n", pending_vec);
6285         }
6286
6287         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6288         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6289         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6290         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6291         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6292         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6293
6294         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6295         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6296
6297         update_cr8_intercept(vcpu);
6298
6299         /* Older userspace won't unhalt the vcpu on reset. */
6300         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6301             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6302             !is_protmode(vcpu))
6303                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6304
6305         kvm_make_request(KVM_REQ_EVENT, vcpu);
6306
6307         return 0;
6308 }
6309
6310 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6311                                         struct kvm_guest_debug *dbg)
6312 {
6313         unsigned long rflags;
6314         int i, r;
6315
6316         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6317                 r = -EBUSY;
6318                 if (vcpu->arch.exception.pending)
6319                         goto out;
6320                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6321                         kvm_queue_exception(vcpu, DB_VECTOR);
6322                 else
6323                         kvm_queue_exception(vcpu, BP_VECTOR);
6324         }
6325
6326         /*
6327          * Read rflags as long as potentially injected trace flags are still
6328          * filtered out.
6329          */
6330         rflags = kvm_get_rflags(vcpu);
6331
6332         vcpu->guest_debug = dbg->control;
6333         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6334                 vcpu->guest_debug = 0;
6335
6336         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6337                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6338                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6339                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6340         } else {
6341                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6342                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6343         }
6344         kvm_update_dr7(vcpu);
6345
6346         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6347                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6348                         get_segment_base(vcpu, VCPU_SREG_CS);
6349
6350         /*
6351          * Trigger an rflags update that will inject or remove the trace
6352          * flags.
6353          */
6354         kvm_set_rflags(vcpu, rflags);
6355
6356         kvm_x86_ops->update_db_bp_intercept(vcpu);
6357
6358         r = 0;
6359
6360 out:
6361
6362         return r;
6363 }
6364
6365 /*
6366  * Translate a guest virtual address to a guest physical address.
6367  */
6368 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6369                                     struct kvm_translation *tr)
6370 {
6371         unsigned long vaddr = tr->linear_address;
6372         gpa_t gpa;
6373         int idx;
6374
6375         idx = srcu_read_lock(&vcpu->kvm->srcu);
6376         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6377         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6378         tr->physical_address = gpa;
6379         tr->valid = gpa != UNMAPPED_GVA;
6380         tr->writeable = 1;
6381         tr->usermode = 0;
6382
6383         return 0;
6384 }
6385
6386 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6387 {
6388         struct i387_fxsave_struct *fxsave =
6389                         &vcpu->arch.guest_fpu.state->fxsave;
6390
6391         memcpy(fpu->fpr, fxsave->st_space, 128);
6392         fpu->fcw = fxsave->cwd;
6393         fpu->fsw = fxsave->swd;
6394         fpu->ftwx = fxsave->twd;
6395         fpu->last_opcode = fxsave->fop;
6396         fpu->last_ip = fxsave->rip;
6397         fpu->last_dp = fxsave->rdp;
6398         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6399
6400         return 0;
6401 }
6402
6403 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6404 {
6405         struct i387_fxsave_struct *fxsave =
6406                         &vcpu->arch.guest_fpu.state->fxsave;
6407
6408         memcpy(fxsave->st_space, fpu->fpr, 128);
6409         fxsave->cwd = fpu->fcw;
6410         fxsave->swd = fpu->fsw;
6411         fxsave->twd = fpu->ftwx;
6412         fxsave->fop = fpu->last_opcode;
6413         fxsave->rip = fpu->last_ip;
6414         fxsave->rdp = fpu->last_dp;
6415         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6416
6417         return 0;
6418 }
6419
6420 int fx_init(struct kvm_vcpu *vcpu)
6421 {
6422         int err;
6423
6424         err = fpu_alloc(&vcpu->arch.guest_fpu);
6425         if (err)
6426                 return err;
6427
6428         fpu_finit(&vcpu->arch.guest_fpu);
6429
6430         /*
6431          * Ensure guest xcr0 is valid for loading
6432          */
6433         vcpu->arch.xcr0 = XSTATE_FP;
6434
6435         vcpu->arch.cr0 |= X86_CR0_ET;
6436
6437         return 0;
6438 }
6439 EXPORT_SYMBOL_GPL(fx_init);
6440
6441 static void fx_free(struct kvm_vcpu *vcpu)
6442 {
6443         fpu_free(&vcpu->arch.guest_fpu);
6444 }
6445
6446 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6447 {
6448         if (vcpu->guest_fpu_loaded)
6449                 return;
6450
6451         /*
6452          * Restore all possible states in the guest,
6453          * and assume host would use all available bits.
6454          * Guest xcr0 would be loaded later.
6455          */
6456         kvm_put_guest_xcr0(vcpu);
6457         vcpu->guest_fpu_loaded = 1;
6458         __kernel_fpu_begin();
6459         fpu_restore_checking(&vcpu->arch.guest_fpu);
6460         trace_kvm_fpu(1);
6461 }
6462
6463 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6464 {
6465         kvm_put_guest_xcr0(vcpu);
6466
6467         if (!vcpu->guest_fpu_loaded)
6468                 return;
6469
6470         vcpu->guest_fpu_loaded = 0;
6471         fpu_save_init(&vcpu->arch.guest_fpu);
6472         __kernel_fpu_end();
6473         ++vcpu->stat.fpu_reload;
6474         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6475         trace_kvm_fpu(0);
6476 }
6477
6478 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6479 {
6480         kvmclock_reset(vcpu);
6481
6482         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6483         fx_free(vcpu);
6484         kvm_x86_ops->vcpu_free(vcpu);
6485 }
6486
6487 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6488                                                 unsigned int id)
6489 {
6490         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6491                 printk_once(KERN_WARNING
6492                 "kvm: SMP vm created on host with unstable TSC; "
6493                 "guest TSC will not be reliable\n");
6494         return kvm_x86_ops->vcpu_create(kvm, id);
6495 }
6496
6497 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6498 {
6499         int r;
6500
6501         vcpu->arch.mtrr_state.have_fixed = 1;
6502         r = vcpu_load(vcpu);
6503         if (r)
6504                 return r;
6505         kvm_vcpu_reset(vcpu);
6506         r = kvm_mmu_setup(vcpu);
6507         vcpu_put(vcpu);
6508
6509         return r;
6510 }
6511
6512 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6513 {
6514         int r;
6515         struct msr_data msr;
6516
6517         r = vcpu_load(vcpu);
6518         if (r)
6519                 return r;
6520         msr.data = 0x0;
6521         msr.index = MSR_IA32_TSC;
6522         msr.host_initiated = true;
6523         kvm_write_tsc(vcpu, &msr);
6524         vcpu_put(vcpu);
6525
6526         return r;
6527 }
6528
6529 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6530 {
6531         int r;
6532         vcpu->arch.apf.msr_val = 0;
6533
6534         r = vcpu_load(vcpu);
6535         BUG_ON(r);
6536         kvm_mmu_unload(vcpu);
6537         vcpu_put(vcpu);
6538
6539         fx_free(vcpu);
6540         kvm_x86_ops->vcpu_free(vcpu);
6541 }
6542
6543 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6544 {
6545         atomic_set(&vcpu->arch.nmi_queued, 0);
6546         vcpu->arch.nmi_pending = 0;
6547         vcpu->arch.nmi_injected = false;
6548
6549         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6550         vcpu->arch.dr6 = DR6_FIXED_1;
6551         vcpu->arch.dr7 = DR7_FIXED_1;
6552         kvm_update_dr7(vcpu);
6553
6554         kvm_make_request(KVM_REQ_EVENT, vcpu);
6555         vcpu->arch.apf.msr_val = 0;
6556         vcpu->arch.st.msr_val = 0;
6557
6558         kvmclock_reset(vcpu);
6559
6560         kvm_clear_async_pf_completion_queue(vcpu);
6561         kvm_async_pf_hash_reset(vcpu);
6562         vcpu->arch.apf.halted = false;
6563
6564         kvm_pmu_reset(vcpu);
6565
6566         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6567         vcpu->arch.regs_avail = ~0;
6568         vcpu->arch.regs_dirty = ~0;
6569
6570         kvm_x86_ops->vcpu_reset(vcpu);
6571 }
6572
6573 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6574 {
6575         struct kvm_segment cs;
6576
6577         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6578         cs.selector = vector << 8;
6579         cs.base = vector << 12;
6580         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6581         kvm_rip_write(vcpu, 0);
6582 }
6583
6584 int kvm_arch_hardware_enable(void *garbage)
6585 {
6586         struct kvm *kvm;
6587         struct kvm_vcpu *vcpu;
6588         int i;
6589         int ret;
6590         u64 local_tsc;
6591         u64 max_tsc = 0;
6592         bool stable, backwards_tsc = false;
6593
6594         kvm_shared_msr_cpu_online();
6595         ret = kvm_x86_ops->hardware_enable(garbage);
6596         if (ret != 0)
6597                 return ret;
6598
6599         local_tsc = native_read_tsc();
6600         stable = !check_tsc_unstable();
6601         list_for_each_entry(kvm, &vm_list, vm_list) {
6602                 kvm_for_each_vcpu(i, vcpu, kvm) {
6603                         if (!stable && vcpu->cpu == smp_processor_id())
6604                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6605                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6606                                 backwards_tsc = true;
6607                                 if (vcpu->arch.last_host_tsc > max_tsc)
6608                                         max_tsc = vcpu->arch.last_host_tsc;
6609                         }
6610                 }
6611         }
6612
6613         /*
6614          * Sometimes, even reliable TSCs go backwards.  This happens on
6615          * platforms that reset TSC during suspend or hibernate actions, but
6616          * maintain synchronization.  We must compensate.  Fortunately, we can
6617          * detect that condition here, which happens early in CPU bringup,
6618          * before any KVM threads can be running.  Unfortunately, we can't
6619          * bring the TSCs fully up to date with real time, as we aren't yet far
6620          * enough into CPU bringup that we know how much real time has actually
6621          * elapsed; our helper function, get_kernel_ns() will be using boot
6622          * variables that haven't been updated yet.
6623          *
6624          * So we simply find the maximum observed TSC above, then record the
6625          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6626          * the adjustment will be applied.  Note that we accumulate
6627          * adjustments, in case multiple suspend cycles happen before some VCPU
6628          * gets a chance to run again.  In the event that no KVM threads get a
6629          * chance to run, we will miss the entire elapsed period, as we'll have
6630          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6631          * loose cycle time.  This isn't too big a deal, since the loss will be
6632          * uniform across all VCPUs (not to mention the scenario is extremely
6633          * unlikely). It is possible that a second hibernate recovery happens
6634          * much faster than a first, causing the observed TSC here to be
6635          * smaller; this would require additional padding adjustment, which is
6636          * why we set last_host_tsc to the local tsc observed here.
6637          *
6638          * N.B. - this code below runs only on platforms with reliable TSC,
6639          * as that is the only way backwards_tsc is set above.  Also note
6640          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6641          * have the same delta_cyc adjustment applied if backwards_tsc
6642          * is detected.  Note further, this adjustment is only done once,
6643          * as we reset last_host_tsc on all VCPUs to stop this from being
6644          * called multiple times (one for each physical CPU bringup).
6645          *
6646          * Platforms with unreliable TSCs don't have to deal with this, they
6647          * will be compensated by the logic in vcpu_load, which sets the TSC to
6648          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6649          * guarantee that they stay in perfect synchronization.
6650          */
6651         if (backwards_tsc) {
6652                 u64 delta_cyc = max_tsc - local_tsc;
6653                 list_for_each_entry(kvm, &vm_list, vm_list) {
6654                         kvm_for_each_vcpu(i, vcpu, kvm) {
6655                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6656                                 vcpu->arch.last_host_tsc = local_tsc;
6657                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6658                                         &vcpu->requests);
6659                         }
6660
6661                         /*
6662                          * We have to disable TSC offset matching.. if you were
6663                          * booting a VM while issuing an S4 host suspend....
6664                          * you may have some problem.  Solving this issue is
6665                          * left as an exercise to the reader.
6666                          */
6667                         kvm->arch.last_tsc_nsec = 0;
6668                         kvm->arch.last_tsc_write = 0;
6669                 }
6670
6671         }
6672         return 0;
6673 }
6674
6675 void kvm_arch_hardware_disable(void *garbage)
6676 {
6677         kvm_x86_ops->hardware_disable(garbage);
6678         drop_user_return_notifiers(garbage);
6679 }
6680
6681 int kvm_arch_hardware_setup(void)
6682 {
6683         return kvm_x86_ops->hardware_setup();
6684 }
6685
6686 void kvm_arch_hardware_unsetup(void)
6687 {
6688         kvm_x86_ops->hardware_unsetup();
6689 }
6690
6691 void kvm_arch_check_processor_compat(void *rtn)
6692 {
6693         kvm_x86_ops->check_processor_compatibility(rtn);
6694 }
6695
6696 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6697 {
6698         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6699 }
6700
6701 struct static_key kvm_no_apic_vcpu __read_mostly;
6702
6703 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6704 {
6705         struct page *page;
6706         struct kvm *kvm;
6707         int r;
6708
6709         BUG_ON(vcpu->kvm == NULL);
6710         kvm = vcpu->kvm;
6711
6712         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6713         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6714                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6715         else
6716                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6717
6718         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6719         if (!page) {
6720                 r = -ENOMEM;
6721                 goto fail;
6722         }
6723         vcpu->arch.pio_data = page_address(page);
6724
6725         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6726
6727         r = kvm_mmu_create(vcpu);
6728         if (r < 0)
6729                 goto fail_free_pio_data;
6730
6731         if (irqchip_in_kernel(kvm)) {
6732                 r = kvm_create_lapic(vcpu);
6733                 if (r < 0)
6734                         goto fail_mmu_destroy;
6735         } else
6736                 static_key_slow_inc(&kvm_no_apic_vcpu);
6737
6738         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6739                                        GFP_KERNEL);
6740         if (!vcpu->arch.mce_banks) {
6741                 r = -ENOMEM;
6742                 goto fail_free_lapic;
6743         }
6744         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6745
6746         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6747                 goto fail_free_mce_banks;
6748
6749         r = fx_init(vcpu);
6750         if (r)
6751                 goto fail_free_wbinvd_dirty_mask;
6752
6753         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6754         vcpu->arch.pv_time_enabled = false;
6755         kvm_async_pf_hash_reset(vcpu);
6756         kvm_pmu_init(vcpu);
6757
6758         return 0;
6759 fail_free_wbinvd_dirty_mask:
6760         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6761 fail_free_mce_banks:
6762         kfree(vcpu->arch.mce_banks);
6763 fail_free_lapic:
6764         kvm_free_lapic(vcpu);
6765 fail_mmu_destroy:
6766         kvm_mmu_destroy(vcpu);
6767 fail_free_pio_data:
6768         free_page((unsigned long)vcpu->arch.pio_data);
6769 fail:
6770         return r;
6771 }
6772
6773 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6774 {
6775         int idx;
6776
6777         kvm_pmu_destroy(vcpu);
6778         kfree(vcpu->arch.mce_banks);
6779         kvm_free_lapic(vcpu);
6780         idx = srcu_read_lock(&vcpu->kvm->srcu);
6781         kvm_mmu_destroy(vcpu);
6782         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6783         free_page((unsigned long)vcpu->arch.pio_data);
6784         if (!irqchip_in_kernel(vcpu->kvm))
6785                 static_key_slow_dec(&kvm_no_apic_vcpu);
6786 }
6787
6788 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6789 {
6790         if (type)
6791                 return -EINVAL;
6792
6793         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6794         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6795
6796         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6797         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6798         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6799         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6800                 &kvm->arch.irq_sources_bitmap);
6801
6802         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6803         mutex_init(&kvm->arch.apic_map_lock);
6804         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6805
6806         pvclock_update_vm_gtod_copy(kvm);
6807
6808         return 0;
6809 }
6810
6811 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6812 {
6813         int r;
6814         r = vcpu_load(vcpu);
6815         BUG_ON(r);
6816         kvm_mmu_unload(vcpu);
6817         vcpu_put(vcpu);
6818 }
6819
6820 static void kvm_free_vcpus(struct kvm *kvm)
6821 {
6822         unsigned int i;
6823         struct kvm_vcpu *vcpu;
6824
6825         /*
6826          * Unpin any mmu pages first.
6827          */
6828         kvm_for_each_vcpu(i, vcpu, kvm) {
6829                 kvm_clear_async_pf_completion_queue(vcpu);
6830                 kvm_unload_vcpu_mmu(vcpu);
6831         }
6832         kvm_for_each_vcpu(i, vcpu, kvm)
6833                 kvm_arch_vcpu_free(vcpu);
6834
6835         mutex_lock(&kvm->lock);
6836         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6837                 kvm->vcpus[i] = NULL;
6838
6839         atomic_set(&kvm->online_vcpus, 0);
6840         mutex_unlock(&kvm->lock);
6841 }
6842
6843 void kvm_arch_sync_events(struct kvm *kvm)
6844 {
6845         kvm_free_all_assigned_devices(kvm);
6846         kvm_free_pit(kvm);
6847 }
6848
6849 void kvm_arch_destroy_vm(struct kvm *kvm)
6850 {
6851         kvm_iommu_unmap_guest(kvm);
6852         kfree(kvm->arch.vpic);
6853         kfree(kvm->arch.vioapic);
6854         kvm_free_vcpus(kvm);
6855         if (kvm->arch.apic_access_page)
6856                 put_page(kvm->arch.apic_access_page);
6857         if (kvm->arch.ept_identity_pagetable)
6858                 put_page(kvm->arch.ept_identity_pagetable);
6859         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6860 }
6861
6862 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6863                            struct kvm_memory_slot *dont)
6864 {
6865         int i;
6866
6867         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6868                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6869                         kvm_kvfree(free->arch.rmap[i]);
6870                         free->arch.rmap[i] = NULL;
6871                 }
6872                 if (i == 0)
6873                         continue;
6874
6875                 if (!dont || free->arch.lpage_info[i - 1] !=
6876                              dont->arch.lpage_info[i - 1]) {
6877                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6878                         free->arch.lpage_info[i - 1] = NULL;
6879                 }
6880         }
6881 }
6882
6883 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6884 {
6885         int i;
6886
6887         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6888                 unsigned long ugfn;
6889                 int lpages;
6890                 int level = i + 1;
6891
6892                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6893                                       slot->base_gfn, level) + 1;
6894
6895                 slot->arch.rmap[i] =
6896                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6897                 if (!slot->arch.rmap[i])
6898                         goto out_free;
6899                 if (i == 0)
6900                         continue;
6901
6902                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6903                                         sizeof(*slot->arch.lpage_info[i - 1]));
6904                 if (!slot->arch.lpage_info[i - 1])
6905                         goto out_free;
6906
6907                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6908                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6909                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6910                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6911                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6912                 /*
6913                  * If the gfn and userspace address are not aligned wrt each
6914                  * other, or if explicitly asked to, disable large page
6915                  * support for this slot
6916                  */
6917                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6918                     !kvm_largepages_enabled()) {
6919                         unsigned long j;
6920
6921                         for (j = 0; j < lpages; ++j)
6922                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6923                 }
6924         }
6925
6926         return 0;
6927
6928 out_free:
6929         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6930                 kvm_kvfree(slot->arch.rmap[i]);
6931                 slot->arch.rmap[i] = NULL;
6932                 if (i == 0)
6933                         continue;
6934
6935                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6936                 slot->arch.lpage_info[i - 1] = NULL;
6937         }
6938         return -ENOMEM;
6939 }
6940
6941 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6942                                 struct kvm_memory_slot *memslot,
6943                                 struct kvm_userspace_memory_region *mem,
6944                                 enum kvm_mr_change change)
6945 {
6946         /*
6947          * Only private memory slots need to be mapped here since
6948          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6949          */
6950         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6951                 unsigned long userspace_addr;
6952
6953                 /*
6954                  * MAP_SHARED to prevent internal slot pages from being moved
6955                  * by fork()/COW.
6956                  */
6957                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6958                                          PROT_READ | PROT_WRITE,
6959                                          MAP_SHARED | MAP_ANONYMOUS, 0);
6960
6961                 if (IS_ERR((void *)userspace_addr))
6962                         return PTR_ERR((void *)userspace_addr);
6963
6964                 memslot->userspace_addr = userspace_addr;
6965         }
6966
6967         return 0;
6968 }
6969
6970 void kvm_arch_commit_memory_region(struct kvm *kvm,
6971                                 struct kvm_userspace_memory_region *mem,
6972                                 const struct kvm_memory_slot *old,
6973                                 enum kvm_mr_change change)
6974 {
6975
6976         int nr_mmu_pages = 0;
6977
6978         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
6979                 int ret;
6980
6981                 ret = vm_munmap(old->userspace_addr,
6982                                 old->npages * PAGE_SIZE);
6983                 if (ret < 0)
6984                         printk(KERN_WARNING
6985                                "kvm_vm_ioctl_set_memory_region: "
6986                                "failed to munmap memory\n");
6987         }
6988
6989         if (!kvm->arch.n_requested_mmu_pages)
6990                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6991
6992         if (nr_mmu_pages)
6993                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6994         /*
6995          * Write protect all pages for dirty logging.
6996          * Existing largepage mappings are destroyed here and new ones will
6997          * not be created until the end of the logging.
6998          */
6999         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7000                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7001         /*
7002          * If memory slot is created, or moved, we need to clear all
7003          * mmio sptes.
7004          */
7005         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7006                 kvm_mmu_zap_mmio_sptes(kvm);
7007                 kvm_reload_remote_mmus(kvm);
7008         }
7009 }
7010
7011 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7012 {
7013         kvm_mmu_zap_all(kvm);
7014         kvm_reload_remote_mmus(kvm);
7015 }
7016
7017 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7018                                    struct kvm_memory_slot *slot)
7019 {
7020         kvm_arch_flush_shadow_all(kvm);
7021 }
7022
7023 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7024 {
7025         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7026                 !vcpu->arch.apf.halted)
7027                 || !list_empty_careful(&vcpu->async_pf.done)
7028                 || kvm_apic_has_events(vcpu)
7029                 || atomic_read(&vcpu->arch.nmi_queued) ||
7030                 (kvm_arch_interrupt_allowed(vcpu) &&
7031                  kvm_cpu_has_interrupt(vcpu));
7032 }
7033
7034 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7035 {
7036         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7037 }
7038
7039 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7040 {
7041         return kvm_x86_ops->interrupt_allowed(vcpu);
7042 }
7043
7044 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7045 {
7046         unsigned long current_rip = kvm_rip_read(vcpu) +
7047                 get_segment_base(vcpu, VCPU_SREG_CS);
7048
7049         return current_rip == linear_rip;
7050 }
7051 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7052
7053 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7054 {
7055         unsigned long rflags;
7056
7057         rflags = kvm_x86_ops->get_rflags(vcpu);
7058         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7059                 rflags &= ~X86_EFLAGS_TF;
7060         return rflags;
7061 }
7062 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7063
7064 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7065 {
7066         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7067             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7068                 rflags |= X86_EFLAGS_TF;
7069         kvm_x86_ops->set_rflags(vcpu, rflags);
7070         kvm_make_request(KVM_REQ_EVENT, vcpu);
7071 }
7072 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7073
7074 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7075 {
7076         int r;
7077
7078         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7079               is_error_page(work->page))
7080                 return;
7081
7082         r = kvm_mmu_reload(vcpu);
7083         if (unlikely(r))
7084                 return;
7085
7086         if (!vcpu->arch.mmu.direct_map &&
7087               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7088                 return;
7089
7090         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7091 }
7092
7093 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7094 {
7095         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7096 }
7097
7098 static inline u32 kvm_async_pf_next_probe(u32 key)
7099 {
7100         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7101 }
7102
7103 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7104 {
7105         u32 key = kvm_async_pf_hash_fn(gfn);
7106
7107         while (vcpu->arch.apf.gfns[key] != ~0)
7108                 key = kvm_async_pf_next_probe(key);
7109
7110         vcpu->arch.apf.gfns[key] = gfn;
7111 }
7112
7113 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7114 {
7115         int i;
7116         u32 key = kvm_async_pf_hash_fn(gfn);
7117
7118         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7119                      (vcpu->arch.apf.gfns[key] != gfn &&
7120                       vcpu->arch.apf.gfns[key] != ~0); i++)
7121                 key = kvm_async_pf_next_probe(key);
7122
7123         return key;
7124 }
7125
7126 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7127 {
7128         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7129 }
7130
7131 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7132 {
7133         u32 i, j, k;
7134
7135         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7136         while (true) {
7137                 vcpu->arch.apf.gfns[i] = ~0;
7138                 do {
7139                         j = kvm_async_pf_next_probe(j);
7140                         if (vcpu->arch.apf.gfns[j] == ~0)
7141                                 return;
7142                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7143                         /*
7144                          * k lies cyclically in ]i,j]
7145                          * |    i.k.j |
7146                          * |....j i.k.| or  |.k..j i...|
7147                          */
7148                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7149                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7150                 i = j;
7151         }
7152 }
7153
7154 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7155 {
7156
7157         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7158                                       sizeof(val));
7159 }
7160
7161 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7162                                      struct kvm_async_pf *work)
7163 {
7164         struct x86_exception fault;
7165
7166         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7167         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7168
7169         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7170             (vcpu->arch.apf.send_user_only &&
7171              kvm_x86_ops->get_cpl(vcpu) == 0))
7172                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7173         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7174                 fault.vector = PF_VECTOR;
7175                 fault.error_code_valid = true;
7176                 fault.error_code = 0;
7177                 fault.nested_page_fault = false;
7178                 fault.address = work->arch.token;
7179                 kvm_inject_page_fault(vcpu, &fault);
7180         }
7181 }
7182
7183 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7184                                  struct kvm_async_pf *work)
7185 {
7186         struct x86_exception fault;
7187
7188         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7189         if (is_error_page(work->page))
7190                 work->arch.token = ~0; /* broadcast wakeup */
7191         else
7192                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7193
7194         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7195             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7196                 fault.vector = PF_VECTOR;
7197                 fault.error_code_valid = true;
7198                 fault.error_code = 0;
7199                 fault.nested_page_fault = false;
7200                 fault.address = work->arch.token;
7201                 kvm_inject_page_fault(vcpu, &fault);
7202         }
7203         vcpu->arch.apf.halted = false;
7204         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7205 }
7206
7207 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7208 {
7209         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7210                 return true;
7211         else
7212                 return !kvm_event_needs_reinjection(vcpu) &&
7213                         kvm_x86_ops->interrupt_allowed(vcpu);
7214 }
7215
7216 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7217 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);